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PREFACE 

This report describes the use of modified Gram-Schmidt orthogonal­

ization in computer routines that find a basic approximate solution and 

the least squares solution of minimum Euclidean norm.to the system of 

equations AX•B, where A is an m by n matrix or rank r, Xis an n by h 

matrix, and Bis an m by h matrix, A can be treated as if it were of 

a user-specified rank, k, 

The report includes a description of the application of the rou­

tines to (a) perform.stepwise r~gression analysis and (b) assess the 

effect on the solution of decreasing the reliability of the entries in 

the coefficient matrix, 

I am deeply grateful to Dr. John P. Chandler for his advice and 

support during the preparation of the report, I am also grateful to 

Dr, Donald Grace for his help in the organization of this paper. 
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CHAPTER I 

INTRODUCTION 

This r,eport discusses the use of modified Gram'""Schmidt ortho-

gonalization for solving generalized linear least squares problems and 

performing stepwise regression analysis. Chapter I of this report 

describes some sources of generalized linear least squares problems. 

Chapter II presents a general discussion of the generalized linear 

least squares problem. The closely related problem of stepwise regres-

sion analysis is discussed in Chapter III. An algorithm constructed 

by E. E. Osborne (1) to solve generalized linear least squares problems 

and some modifications and additions that have been made to Osborne's 

algorithm are described in Chapter IV. A package consisting of two 

computer subroutines has been written to implement the algorithm des-

cribed in Chapter IV. Chapter V describes test cases that were run 

using the package and the results of these test cases. 

Linear Least Squares Problems in Curve 
and Surface Fitting 

One source of a generalized linear least squares problem occurs 

when trying to find the function, 

y = f <!.,.£.) ' 

that best (to be defined) represents a set.of data points, 

where y is the dependent variable, the tare the independent variables, 

1 



the care the coefficients to be determined (the solution vector), 

f(!_,_£) is a function from a given family of functions that is linear 

in .£, and {y ;!_} i is the i-th observation. Note that f (!_,£_) is not 

necessariiy linear in!.· 

For example, we may wish to represent the set of data points, 

"(ti,Yi) • (2,3), (0,1), (1,1)," 

2 

by a function, f(t,.£), from some given family of functions, that gives 

the best fit. c is called the vector of parameters for this family. 

The function that gives the best fit is taken often to be the function 

for which 

m 
I: (f (_;_., ,.£) ""'., Yi) 2 

i=l "" (1.1) 

is minimized, where mis the number of data points and the general form 

of f{E_,.£) has been pre-determined. This definition was proposed by 

Gauss (2) and is the most often used definition of the best fit (3). 

Finding the vector c that minimizes (1.1) is called a linear least 

squares problem. The discrepancy, or error, 

f(!i_,.£) - Yi 

is called the i-th residual. 

It will be shown that a necessary and sufficient condition for 

expression (1.1) to possess minima is that 



for j•l,.,,,n, where.n is the number of constants, cj, which are to be 

determined. 
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Taking the first partial derivatives with respect to Cj, j=l,, •• ,n, 

we obtain 

= 0 (1. 2) 

for j•l,,,. ,n, 

If we attempt to fit the above data to a function of the form 

equations (1,2) generate the sy~tem of equations 

3c1 + 4c2 • 5 

4c1 + 10c2 • 7 

These are called the ·11normal equations," 

Solving the normal equations, w..e obtain 

c • 11 and 1 7 

(1.3) 

An equivalent way of lookif\'8 at the problem of finding the curve 

that best fits the data is that we are trying to find the least squares 

solution of the overdetermined system of-equations 

T£ • z, w~re T • [HJ and z • [ I] , 
or 

cl+ o·c2 • 1 

c1 + l•c2 • 1 • 
(1.4) 
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Problems of this form can also arise from situations unrelated to 

curve fitting. 

There is no vector.£ such that (1.4) is satisfied exactly since 

there are more equations than variables and none of the three equations 

is a restatement· (linear superposition) of the other two. However, 

there is a point (c1 ,c2) such that 

is a minimum. That point is (11/7,1/14). This corresponds to finding 

a vector c such that 

(1. 5) 

is a minimum, where q I Tc - x.11 is the length (or "Euclidean norm") of 

the vector T.£ - J_• The length of the vector w is defined to be 

re-;-
=..J i;;l wi 

and is denoted by I lw 11, 
The c that minimizes (1.5) is the linear least squares solution of 

equations (1.4). 

The above example had only one independent variable. In general. 

there can be any number of independent variables in the function that 

is used as the mathematical model for the curve to be fitted. An 

example with two independent variables is the following. 

The distance of penetration of a projectile into a target depends 

upon the thickness and hardness of the target plate (4). A simple 

mathematical model might include only the thickness (t1 ) and hardness 

(t2) and have the linear form 
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where y is an estimate of the dependent variable y (penetration), and 

the Ci are the coefficients to be determined. 

The need to solve a generalized linear least squares problem occurs 

almost any time one s·eeks the solution of an overdetermined system of 

equations (one which has more equations than variables), 

Ax=b. 

Only in exceptional cases can all of the equations be satisfied. We 

could choose a subset of the equations to be satisfied exactly. The fit 

of the remaining equations would be disregarded. In the least squares 

approach, we fit all the equations as closely as possible. 



CHAPTER II 

THE GENERALIZED LINEAR LEAST SQUARES PROBLEM 

Problem Definition 

The definition of the genera\ized linear least squares problem will 

be given after a short discussion of systems of linear'equations. 

Systems of Linear Equations 

Consider th~ system of linear equations~~ consisting of m equa-

tions inn variables. The coefficient matrix,.A, is an m by n matrix, 

where m may be less than, equal to, or greater than n, ~ is an m-

component vector (the "right hand side", or vectb~:. of constants), and 

xis an n-component vector (the solution vector). 

Let the j-th column of a matrix, A, be denoted by Aj, The column 

rank of the matrix, A, is defined to be the maximum number of linearly 

independent columns in A (5). A is linearly independent of the other 

columns of A if there do not exist constants ai such that 

The row rank of A is the number of linearly independent rows in 

A (5), The row rank is equal to the column rank (6), The term rank 

refers to the column rank throughout the remainder of this report. 

The rank of a matrix is less than or equal to min(m,n). If the rank 

6 
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of the matrix is equal.ton, the matrix is said to be of full rank, 

Exactly Determined Systems of Equations (m•n) 

-1 If A is an m by n matrix of full rank n,. the ordinary inverae, A , 

of A, exists, and x-A-1b, The solution vector xis unique (5), 

Underdetermined Systems of Equations (m<n) 

If the system of equations has more variables than equations (m<n), 

the system of equations is probably consistent, A system of equations 

is consistent if the rank of the coefficient matrix is equal to the rank 

of the augmented matrix (A,]?_) (5), The rank of the system of equa-

tions is less than or equal tom, since any set.of m+l or more m-

component vectore is linearly dependent (5), When the number of 

variables is greater than the number of equations, th~re is a linear 

subspace of solutions, Two types of solutions are usually of interest 

in this case. They are a basic approximate solution that has at most 

r nonzero component!:!, where r is the rank of the coefficient matrix, 

and the least squares solution of minimum length (Euclidean norm), 

These types of solutions will be described in detail in the next 

section, 

Overdetermined Systems of Equations (m>n) 

If the matrix, A, is an m by n matrix, where mis greater than n, 

the system of equations ~·bis most likely inconsistent.since there 

are more equations than variables, A system of equations is inconsistent, 

if the rank of the coefficient matrix is not equal to the rank of·, the 

augmented matrix (A,]?_) (5), With m>n, if the system of equations is 



consistent, then m-n of the equationa are restatements.of other equa­

tions or combinations of other equations in the ~y~tem; they provide 

no new information, If the system of equations is consistent, there 

exists a unique vector~ s._µc.h that.Ax-b, 

If the system of equations is .inconsistent, there does. not exist 

a vector~ such that~-~· In this case, the conventional choice is 

to find a vector .!..that minimizes the length of the vector Ax-b. As 

mentioned previously, the length (or Euclidean norm) of a vector w is 

defined to be 

and. is denoted by I 1.!!:.11, 'l'he vector Ax-b is called the "residual 

vector." A vector,_!, that produces the minimum value for the length 

of the residual vector is called a "least squares solution." The 

8 

problem of finding a solution vector that produces a residual vector 

of minimum length is called a "linear least squares problem." 

If the rank, r, of .A is n, whe~e n is the number of columns in the 

matrix, the vector that min:!,.mizes the length of the residual vector is 

unique (7), If .the rank, r, is less than n, there is a linear sub-

space. ,(a line or hyperplane) of least.squares solutions (7). The 

solutions can be classified by type, The two types that are usually of 

interest are the least squares solution of minimum length and a basic 

approximate solution that has at most t nonzero components, where r is 

the rank of the coefficient matrix (l). The former is unique (7), The 

latter is not unique if n>l (7). 
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A basic approximate solution is defined as follows: 

~ is a basic approximate solution of Ax=b if for all vectors~, 

> ll~-E-11 

and~ has at most r nonzero components (8). Let BAS stand for basic 

approximate solution throughout this report. 

A minimum norm solution is defined as follows: 

.!() is the least squares solution of minimum Euclidean norm if for 

all vectors x either 

> 

or else 

The second condition holds of~ is orthogonal to the null space of A; 

i.e.,~ is orthogonal to every solution of Ax=.Q. (1). 

A vector u is orthogonal to a vector v if 

Definition of the Generalized Linear Least Squares Problem 

The problem of finding the solution vector,~' that minimizes the 

length of the vector Ax-E_, where. the rank of A is less than or equal 

ton, is called the "generalized linear least squares problem." The 

term "generalized linear least squares problem" is used to emphasize 

that the rank of A may be less than the number of columns in A. In 
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the past, the term "linear least squares problem" was usad to demote 

the problem of finding the vector,~, that minimized the length of the 

vector~-~, where A was of full rank. 

As mentioned previously, the solution of the system of equations. 

Ax•b, where A is an n by n matrix of rank n, can be obtained by the 

-1 
pre~multiplication of the right hand side by a matr~x, A , called the 

inverse of A. The solution of the system of equations.~·~, where .A 

is an m by n matrix of rank r (r~min(m,n)), can be represented by the 

pre-multiplication of. the right .hand side, ~' by a matrix (to be 

defined) called the generalized inverse of A, It has been shown further 

that the generalized inverse of any complex matrix, A (not necessarily 

square), is unique, and, therefore, the minimum length solution is 

unique (7). 

Relation of the Linear Least Squares Problem to 

the .Generalized Inverse of a Matrix 

Penrose (7) has shown that tp.e least S<t~~res,s9lution of minimum 

Euclidean norm is unique and is represented by ~-A~b, where A@ is 

called the generalized inverse or pseudo-inverse of A, 

A@ is defined by the relationships 

AA@A•A 

A@AA •A@ 

(AA@s'w•A@A 

and (A@A)tlr•AA@, where Aw is the conjugate transpose of A. 

-T- IT ) A*•A • \n.j i . 
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Rosen (8) has shown that the BAS (Basic Approximate Solution) can 

be represented by ~=A#E_, where A# is defined below. 

For r=ns;m, All is equal to A@ and ~ is also the least squares 

solution of minimum Euclidean norm. For r=n=m, 

For r<n, A# is not necessarily unique. For this last case, A# can be 

defined as follows: 

Let A be of rank r (r<n). Let B consist of r linearly independent 

columns of A. Let B consist of the other n-r columns of A. For simpli-

fication, assume that B consists of the first r columns of A so that 

A= (B,~). 

B@=(B*B-l)B* 

A#=(~@) 

The first r rows of A# consist of the matrix B@. The remaining n-r 

rows are zero. 

A@ can be expressed in terms of B@ as follows: 

where 

and c* is the conjugate transpose of C (7). 

It is not necessary to find A@ or A# explicitly to find the least 

squares solution of minimum norm or a BAS. Osborne has constructed an 

algorithm to find these solutions without finding A@ or All. His 



approach is analogous to the case of solving the system of equations 

A.!.~b by Gaussian elimination when A is an n by n matrix of rank n. 

in this case, but A-1 did not need to be found explicitly. 

Method 

The most popular p,ractical method for finding the least squares 

solution of Ax=b is to solve the normal equations, 

A derivation of the normal equations and a justification for their 

use follows. 

The vector, .!., that minimizes 11 A.!.-£.11 2 also minimizes 11 Ax-b 11 . 

A necessary condition for 11 ~-£.J 12 to possess a minimum is that 

a ll~-£.11 2 

a xj 
= 0 for j=l, •.. ,n, (2.1) 

12 

where n is the number of columns in A. Since j jA~-£.1 j 2 is a positive 

semidefinite quadratic form in~ and is greater than or equal to zero 

for all ~, 11 ~-£.11 2 does not contain an inflection point or a maximum 

in an unrestricted domain,(5). Therefore, the~ for which equations 

(2.1) are satisfied must be the point where I IA~-£.1 j 2 attains its 

minimum value. As mentioned above, I !Ax-bl j 2 does not contain an 

inflection point or a maximum in an unrestricted domain, and therefore, 

it is sufficient to find a vector x that satisfies (2.1) to find a 



Since 

m 
.. r 

k=l 

n 
(bk - ~~~· xi aki) 2 ' 

Equation (2.2) can be rewritten as follows: 

m m n 
r bkakj - r akj 

Lt- 8 kixi • () or 
k=l k•l i•l 

11\ n m 
r akj r akixi = r bkakf'j•l, ••• ,n. 

k=l .i=l k•l 

13 

(2 .2) 

The above equations are called the normal equations. In matrix nota-

tion this is equivalent to 

ATA is always symmetric and positive semi-definite (its determinant.is 

nonnegative, as are all its eigenvalues). 

Note from (2.2) that the residual vector, r, is orthogonal to 

every nonzero column of A, since 

(b -k 

n 

r xiaki") = rk' i=l 

or 

Tj r A = O, j•l.- •• ,n. 
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This will be used in the derivation of an alternate method for solving 

a linear least squares problem. As stated earlier, the most popular 

method for finding the least squares solution of minimum norm is to 

solve the normal equations using a method such as Gaussian elimination. 

There are two problems with using the normal equations to find a least 

squares solution of minimum norm. First,if A has rank less than n, 

ATA has rank less than n-. A method such as Gaussian elimination would 

fail to find a solution. Second, the matrix ATA is often ill-conditioned 

(3)~ A matrix is ill-conditioned if small errors in the entries in the 

matrix or small errors in the solving process have a large effect on 

the solution obtained to the problem ~=E_ for some b. The degree of 

ill-conditioning 0£ a matrix depends.on the magnitude of the elements 

of the inverse of A. A quantity called the condition number is a measure 

of the ill-conditioning of A. The condition number is equal to 

I !Al I I IA-1 11, where 

11 Al I = max 11 A~I I 

11~11 = 1 (9). 

The larger the condition number the greater the ill-conditioning (3). 

The smallest possible condition number is one. If the condition 

number of A is cond (A), the condition number of ATA is cond 2 (A). 

Longley (10) and Wampler (11) have done comparative studies of 

methods used to solve the generalized linear least squares problem. 

Both of them have shown examples where solving the normal equations 

has produced a solution vector with almost no correct digits. 

Since the normal equations cannot easily be used to find the 

least squares solution when the coefficient matrix has a rank less 
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than the number of columns in the matrix, and should not be used when 

ATA is ill-conditioned, a better method is needed. In Chapter IV a 

description of an algorithm developed by E. E. Osborne is presented. 

A brief history of some of the methods that have been developed to 

find the solution to the generalized linear least squares problem is 

given below. 

History 

As mentioned previously, if the coefficient matrix is of full rank, 

then the most popular method for finding the least squares solution is 

to solve the nonnal equations. If the system is ill-conditioned, 

solving the normal equations can produce a solution vector that is very 

inaccurate (10). 

Orthogonalization techniques are the second most popular class of 

methods for soiving the generalized linear least squares problem. 

Householder transformations or a form of the Gram-Schmidt method are 

used normally to do the orthogonalization (3). 

Algorithms Using Householder Transformations 

E. E. Osborne (12) first proposed using Householder t.ransformations 

to do orthogonalization in 1961. The method he developed was primarily 

for the homogeneous case Ax=.Q_. His intent was to improve the accuracy 

of the solution he obtained. In 1965, Businger and Golub (13) proposed 

using Householder transformations for solving the nonhomogeneous case 

A~b, where A is of full rank. In 1965, Golub (14) allowed the imposi­

tion of linear equalities (a subset of equations that must be satisfied 

exactly). In 1967, Bjorck and Golub (15) added iterative improvement 
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of the solution to the algorithm proposed by Businger and Golub. In 

1969, Hanson and Lawson (16) extended the Businger~Golub algorithm to 

solve systems of equations of the form~•!?_,where A is of rank r (r~n), 

Algorithms Using Gram-Schmidt Orthogonalization 

In 1964, Bauer (17) published an algorithm using modified Gram­

Schmidt orthogonalization to solve the system of equations Ax=!?_. This 

method was good for matrices of full rank only, In 1965, Osborne (1) 

exten-ed the use of modifi-ed Gram-Schmidt otrhogonalization to the 

case where the coefficient matrix was of rank r (r~n), In 1968, Bjorck 

(18) combined iterative improve~ent of the solution with the use of 

modified Gram-Schmidt orthogonalization to reduce the error in the 

solution of the system of equations Ax•b, where the rank of A is r (r~n), 

Bjorck (18) has shown that modified Gram~Schmidt orthogonalization pro­

duces a somewhat more accurate solution vector than the use of House­

holder transformations for orthogonalization. 

Programs implementing Bjorck's algorithm (18) at;ld Bauer's algorithm 

(17) are available at Oklahoma State University, Stillwater, Oklahoma, 

The package consisting of the FORTRAN subroutines, LLCR and LLSQ, has 

been compared with the programs iimplementing Bjorck's and Bauer's 

algorithms, The LLCR package produced results that were as accurate or 

more accurate than the routines of Bj~rck and Bauer, Bjorck's routine 

does allow the imposition of linear equalities, In practice, this 

option is not usually used and.hence was omitted, The imposition of 

linear equalities can be approximated by multiplying those rows of A 

and components of .E_ by a large weighting factor before using the 

packageo In addition, the user of the package consisting of LLCR and 



LLSQ has many options.available that are.not available to the user of 

the other routines, 

17 



CHAPTER III 

STEPWISE REGRESSION ANALYSIS 

Stepwise regression analysis is closely related to the generalized 

linear least squares problem described in Chapter IL 

In stepwise regression analysis a curve is fitted to a set of data 

points, 

{y.; t 1 ,,,, ,t }. is the i-th observation (19). The mathematical model 
i n i 

for the curve is called the regression equation and has the form 

where y is an estimate of the dependent variable, y, the tj, j=l, .•. ,n, 

are the independent variables, and the ci,i=O, ••. ,n, are the coefficients 

to be determined. The tj,j=l, ••• ,n, can represent functions of the form 

where the functions,_g_(zj), do not contain the dependent variable and 

where the .!j are variables whose observed numerical values completely 

determine the numerical value of the tj (19). 

Stepwise regression is used when it is desired to represent the 

dependent variable in terms of as few of the independent variables as 

possible. When the dependent variables are highly correlated, the 
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simple regression model may be considerably simplified by eliminating 

some of the variables. In the stepwise procedure one variable is added 

to the mathematical model at a time (19). Thus, the intermediate 

· equations 

" y = CO 
A = c' + cit· y 0 "l.1 
A c'' + CI It + CI It y = 0 l i1 2 i2 

are obtained. Note the i 1 is not necessarily equal to 1, i 2 is not 

necessarily equal to 2, etc. 

An important property of the stepwise procedure is based on the 

fact that a variable may be significant at an early stage but may 

become insignificant after several other variables are entered in the 

equation. A variable that is not highly correlated with the other 

variables in the regression equation at an early stage may be highly 

correlated with variables that enter the regression equation later, 

thereby reducing its significance. The stepwise procedure permits the 

insignificant variable (highly ~orrelated variable) to be removed from 

the regression equation. The test to decide if any variable is to 

leave or enter the regression equation is a statistical test, namely 

the F-test. The F-test measures the degree of linear correlation 

among variables in the regression equation (20). If a variable is 

too highly correlated with the other variables in the regression equa-

tion, it will be removed or not allowed to enter. 

The decision as to which variable is to enter the regressiorequation 
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is a numerical decision. The variable added to the regression equation 

at each step is the one that makes the greatest improvement in the fit 

of the curve as measured by the length of the residual vector, i.e., it 

is the one that produces the shortest residual vector. At each stage 

of the stepwise procedure, the least squares solution is found for the 

variables entered in the regression equation at that point (19). 

Stepwise regression does not necessarily produce the solution vector 

with the residual vector of minimum length. All that is assured is that 

given k variables in the regression equation, the next variable to enter 

the equation is the variable whose addition to the model produces the 

solution vector for which the length of the residual vector is minimized. 

Some packages that are called stepwise regression packages do not 

have the ability to delete variables from the regression equation. 

Stepwise regression without the deletion of variables is called IVOR 

(_!ndependent ~ariable Qrdering by Regression Sum of Squares)(4) or 

"forward selection" (19). Some packages that include only forward 

selection are the IBM 360 Scientific Subroutine Package (21), the Bio­

Medical (BMD) stepwise regression programs (22), and the package that 

implements the methods described in the next chapter. 

Deletion of variables from the regression equation was not imple­

mented because of the following reasons, 

First, there is no standard statistical test that best calculates 

the linear correlation among variables in the regression equation for 

all cases. The F-test assumes that the standard deviations of all the 

variables are equal. If the standard deviations are not all equal, the 

F-test may not give an accurate calculation of the linear correlation 

among the variables. 
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Second, when a variable is deleted from the regression equation, 

the system of equations must be returned to the state in which it would 

have been if the variable had never entered the regression equation. 

When orthogonalization is used to do stepwise regression, this state 

must be constructed. The construction of this state can be inaccurate. 

The LLCR package was written to provide an accurate means to solve gen­

eralized linear least squares problems and to perform stepwise 

regression (IVOR). 

Third, cycling may occur when variables are deleted from the equa­

tion. A group of variables may alternately enter and leave the 

regression equation. For example, variable ti1 may enter the regres­

sion equation followed by ti2 's ~ntry. ti1 may be deleted from the 

regression equation followed by ti2 's deletion from the regression 

equation. ti1 may reenter the regression equation followed by ti2 's 

reentry into the regression equation. This pattern may continue until 

something extra-ordinary happens to stop the process such as exceeding 

the time limit or. the job. 

An attempt will be made to implement deletion of variables from the 

regression equation in the future. 



CUAPT.ER IV 

THE USE OF MODIFIED GRAM-SCHMIDT ORTHOGONAL'I:~"TION TO 

SOLVE THE GENERALIZED LINEAR LEAST.SQUARES PROBLEM 

The generalized linear least squares problelll consists of finding 

the solution vector.! to the system of equations, A,!•b, that minimizes 

the length of the residual vector Ax-b. 

E. E. Osborne (1) has constructed a ~ethod for solving the gener­

alized linear least squares problem based on the fact.that.Ca) th,e resid­

ual vector for a linear least squares solution is orthogonal t9 every 

nonzero column of A and (b) the least.squares solut~on of minimum norm. 

is orthogonal to the null space of A; i.e., orthogonal to every solution 

of Ax-0. 

Osborne's algorithm consists of.three phases. During the first 

phase of the algorithm, the numerical rank of the system of equations 

is found and a decomposition of the coefficient matrix into the product 

of an orthogonal matrix and a permuted unit upper triangular matrix is 

determined. During the.second phase, a BAS (Basic Approximate Solution) 

is found. Ji)llrlng the third phase, the minimum norm solution is found. 

Before the three phases of the algorithm are discussed, a definition of 

numerical rank will be given. 

As mentioned in Chapter II, the rank of a matrix is equal to the 

number of linearly independent columns in A. Aj; the j-th column of A, 

is linearly dependent en the other columns ef A if there .exist constants 

G\i such that 

22 
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(4.1) 

Qsborne' s .:algorithm consid~rs a column, Aj , to be linearly depen-

dent on other coiumns of A if there exist constants ~j suck that. 

where tis set by the user of the algorithm, as a measure of the rela-

tive error he will tolerate. In practice, E is: ~:o,'. where o is the 

smallest number such that 

1. +5 > 1. 

in single precision real arithmetic on the computer being used. For 

example, on the IaM 360/65. 6. er, 9 .• 6 x 10-7• 

The numericil rank of A is the number of linearly independent 

columns in A, where the definition of linear dependency is the numeri-

cal one given in (4.1). 

Osborne's Algorithm 

Phase I 

Phase. I of Osborne's algorithm consists. largely. of elementary 

column operations.performed on the matrix, 

(!) 
where R is an n by n identity matrix, that produces a decomposition 
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of the form A=~. and.determines ·the numerical rank of A. If 

the numerical rank.of A if r*, r* columns of~ will be made mutually 

orthogonal using modified Gr~m~Schmidt orthogonalization. A descrip­

tion of RN is given later in thi:s -a~tition. 

The transformation of 

(!) 
into the matrix 

(~) 

by modified Gram-Schmidt orthogonalization will be described now. 

In modified Gram-Schmidt orthogonalization of a matrix of full 

rank, the second column is orthogonalized with respect .to the first 

column, the third column is orthogonali~ed with respect to the first. 
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and second columns, ••• ,then-th column is orthogonalized with respect 

to all the other columns of A, where n is the number of columns in A. 

If the matrix has a numerical rank less than the number of columns, 

the lengths of some of the columns will become,£ during the orthogon-

alization process (1), No attempt should be made to orthogonalize 

these columns with respect to the other columns.of the coefficient. 

matrix. 

In order to keep track of the columns that remain to be orthogon-

alized, if any, Osborne reordered the columns of the parttally orthog-

onalized coefficient matrix so that the first k columns of the modified 

A matrix contain the k columns that have been made mutually orthogonal. 
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for k•l, ••• ,r*• numerical rank of A. A vector, 

also is set up at the beginning ef the algorithm. Whenever columns of 

the modified matrix, 

(!) 
are interchanged, corresponding components of pare interchanged. 

The k-th,step of the modified Gt'ui.-Schmidt orthogonali~ation pro-

cedure is described belqw. 

For k"!'l, ••• ,r*= the numerical rank of A, the quantities 

~ . 
kj 

(Ak • Aj )/d 
k-1 k-1 k 

= A.j 
--K-1 

where A0 = A and Ra, .. I, 4r@ calculated. 

A vector representation for the orthogonaJ,.ization of two vectors 

in 2-space is shown in Figure 1 (23). The orthogonal projection of t 

on a is made. The orthogonalized vectors are$ ' and a, where fl , .. fl- Cll.. 

al is orthogonal to Cll.. 

Let 

(~) 



Figure 1. Geometrical Representation of the Orthogonalization 
of 2 vectors in 2-space. 

be used to designate the state of the matrix 

(!) 
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after each step k, k•l, .•. , numerical rank of A, of the algorithm. At 

this point (l), k columns have been made mutually orthogonal and 

or 

The quantities 

t (j ) "" 11 ~ 11 2 / P (j ) 

are calculated for j = k+l, ••• ,n, where Aj is the j-th column of A. 



If 

t (j) S E for j=k+l, ••• ,n, 

the nu~erical rank of A is k and~= Ak. The numerical rank is.the 

first k for which 

t (j) S E for j~k+l, ••• ,n. 

If 

t (j) > E for any j, j=k+l, ••• ,n, 

the j for which t(j) is the maximum is found. Column j of 

is interchanged with column .k+l of 

(~). 
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The j-th component of pis interchanged with the (k+l)-st component of 

p. The selection of the colum1;1 to become the (k+l)-st column of ~+l 

is call~d Osborne pivoting throughout the remainder of the report. 

Once the numerical rank, r*, of the matrix is determined, the n-r* 

vectors that have a lengths E are considered to be zero vectors. The 

last n-r* columns of Rr* are made mutually orthogonal. The operations 

described above produce the matrix 

(~) 
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RN has the following properties (1): 

(i) det ~ = ± 1, 

(ii) A = ~~ or ~ = ~\ 

(iii) RN is obtainable by permuting rows of an upper triangular matrix 

all of whose diagonal elements are unity. 

r*+l r*+2 ~ (iv) The vectors Ri , ~ , ··· , -~ form an orthogonal basis 

for the null space of A (1). 

Phase II 

The basic approximate solution is found during phase II. The pro-

cedure to find the basic approximate solution is based on the fact that 

the residual vector for a linear least squares solution is orthogonal 

to every nonzero column of the coefficient matrix. The development of 

a method to find the basic approximate solution will be given now. 

If the vector 

is appended to the matrix 

( ~ ). 
the matrix 

( 
A~ -b ) 

RN Q 

results. This matrix is post-multiplied by the (n+l) by (n+l) matrix 
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which will orthogonalize -b with respect to the first r* columns of 

_ARN. The matrix 

results. Since RN is nonsingular and the residual vector ~~-E_ 

·is orthogonal .to every nonzero column of A~,~ is a least squares 

solution of Ax=b. According to Rosen's definition (8), it is a basic 

approximate solution. This follows from properties (i) and (iii) above 

and from the fact that~ is a linear combination of the first r* 

columns of RN. Therefore, R~ has at most r* nonzero components (1). 

Phase III 

In phase III, the minimum length solution is found by computing a 

least squares solution that is orthogonal to the null space of A; 

i.e., orthogonal to every solution of Ax=O. 

The followingdiscussion shows how the minimum length solution is 

found from the basic approximate solution. 

If the matrix 

is post-multiplied by the (n+l) by (n+l) matrix 
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which will orthogonalize~~ with respect to the last n-r* columns of 

RN, where r* is the numerical rank of A, the matrix 

( 
~ ~(v+u)-b ) 

R R. (v+u) N N--

is obtained. The first r* components of v are zero and the last n-r* 

columns of A are considered to be zero vectors. Therefore, 

and ~(v+u) is orthogonal to the nonzero columns of ARN. Thus, 

~(v+u) is a least sq~ares solution of Ax=.!?_. RN(~) is orthogonal to 

the null space of A, and, therefore, is the unique least squares solu-

tion of minimum length (1). 

Mathematical Summary of the Algorithm 

The complete algorithm can be described mathematically as follows: 

~=Al 

~ = Rl 

R~ = Rk 
k-1 

1: 
j=l 

k-1 
Ak = Ak - 1: 
-~ j=l 

where r* is the numerical rank of A. 

for k=2, ••• ,r*, 
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r* 
( ~-. (~l) ) Rj ~=- E 

j=l N 

~·~ 

n ( ~· (~) ) Ri· ~(~+v) = ~- E 
j=r*+l ~ ~ 

The routines that have been implemented to solve the generalized 

linear least squares problem employ the algorithm constructed by 

Osborne. Certain modifications in Osborne's method have been made and 

several additional features have been added. 

Modification and Additions 

The major addition to Osborne's algorithm was the ability to do 
'' 

IVOR (_!ndependent ,Yariable Ordering by Regression Sum of Squares)--

stepwise regression without the deletion of variables from the regres-

sion equation. In addition, the coefficient matrix can be treated as 

if it had a pre-specified rank, the initial BAS and minimum length 

solutions can be iteratively refined, and the error matrix, (ATA)-1 , 

is calculated for matrices of full rank. 

IVOR 

Earlier in the chapter it was stated that after r* steps of the 

algorithm constructed by Osborne, r* columns of the coefficient matrix 

are mutually orthogonal. After k steps of the algorithm, k columns of 

the coefficient matrix are mutually orthogonal. Let the state of the 

coefficient matrix be designated by~· 
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If 

is appended to (::) 
the matrix 

results. If the resulting matrix is post-multiplied by the (n+l) by 

(n+l) matrix , 

that will orthogonalize -b with respect to the first k columns of 

ARk' the matrix 

results. !\.~ has k nonzero components since det 1\. = ±1, 1\. is 

obtainable by permuting the rows of an unit upper triangular matrix, 

and ~u is a linear combination of the first k columns of Rk. The 

k nonzero components of R12! are the regression coefficients for the 

k variables that have entered the regression equation. The (k+l)-st 

variable to enter the regression equation is found as follows: 

For each variable not in the regression equation, we predict the 

• 
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length of the residual vector that would be obtained if the variable 

were entered in the regressi• equation. The length of the residual 

vector can.be predicted by calculating 

for each variable t that is not in the regression equation. The var-

iable that will produce the residual vector of the shortest length 

is the variable to enter the regression equation, 

. i 

Solving the System of Equaticms for a Pre-ppecified Rank. 

The coefficient .matrix can be treated as if it were of a pre-

specified rank, k. If ~he numerical rank is less thank, the minimum 

norm solution is found; otherwise k columns of the coefficient matrix 

are made mutually orthogonal, 0sborne's method (1) of column selec-

tion is used to choose those k columns, The remaining columns of the 

coefficient matrix are treated as if they are zero vectors, The last 

n-k columns of~ then are made mutually orthogonal, where n is the 

number of columns in the.coefficient matrix, Orthogonaliiing only k 

columns ef the coefficient matrix when the rank of the coefficient 

matrix is not less thank corresponds to increasing the value of E 

until the numerical rank of the coefficient matrix is equal to k, This 

might be used on an accurate computer such as the CDC 6600 to predict 

the solution that could be found on.a less accurate computer such as 

the IBM 360, 
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Eis the value usad to determine if a column is a linear combin-

ation of other columns in the coefficient matrix. The system of equa-

tions can be solved fqr several ranks during one run of the implemented 

routines,· This corresponds to solving th.e system of equations for a 

range of E. 

Iterative Improvement of the Initial Solutions 

Roundoff .error in the calculation of a.solution vector often makes 

the solution vector inaccurate. If ~ is the cal.culated answer and 

~t is the. true answer, 

and. 

or AAx "' b - A3£c 

Iterative improvement of the initial BAS and minimum length solutions 

has been implemented to improve their accuracy. The interative improve-:-

ment procedure is described as follows (1): 

(i) 

(ii) 

(iii) 

(v) 

Let~ be the initial solution. 

Calculate, the vector £"'E_-A18. ifi double precision. 

Solve the system of equations 

If 

A.8.x. • r •• 
-J. -J. 



where ~l is greater than or equal toS, xi+l is accepted as the 

solution to Ax-b. 
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o is the smallest floating point number such that l. + 5 > L in 

the computer. 

Calculation of the Error Matrix 

The matrix~ generated by the orthogonali~ation process described 

above can be used to obtain the error matrix, ;(ATA)-1 , if A is of full 

rank. 

The derivation of the error matrix from R follows. 

A"" ~~1" 

(A~)-1 = [(AN~l)T(~~l)]-1 

• [(R-l)T AT A R-1]-1 
N N N N 

.. [(R-l)T DR-lJ-1 
N N 

-1(( -l)T)-1 • RND ~ 

a R n-l((R-1)-l)T 
N N 

Dis a diagonal matrix. 

Polynomial Fitting 

The LLCR package can be used to fit a polynomial to a set of data 

points, 

where y is the dependent variable, tis the independent variaple, and 
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{y;t}i is the i-th observation. 

The mathematical model for the curve would have the form 

where y is an estimate of y an.d the cj, j=O, ••• ,n, are the coeffi-

cients to be determined. When the package is used to fit a polynomial 

to a set of data points, one _variable is entered into the mathematical 

model at a time. The variables are entered in the following order: 

2 3 n t, t 't ' ... , t. 

Entering the variables in the above order is called sequential selec-

tion. When the variables are enttered sequentially, the intermediate 

equations 

y = co 

y = c' + c't 
0 1 

y = CI I + CI It + c"t2 
0 1 2 

y = CI I I + c" 't + c"'t 2 + CI I It 3 

0 1 2 3 

are obtained. The us~r can decide if he wishes to represent the data 

by a polynomial of a lesser degree. 



CHAPTER V 

RESULTS AijB CONCLUSI0NS 

. Test Problems and Verification 

A package consisting of the routines~.LLCR"and'Y:,LSQhas'.been written 

in Standard FORTRAN (24) to implement Osborne's method.(l). for solving 

the generalized linear least squares problem. Since the routines can 

solve a system of equations for multiple right hand sides during one 

run of the program, the generalized.inverse of an arbitrary matrix can 

be found accurately and efficiently. In addition, the user of the.pack-

age can perform IVOR (Independent Variable Ordering by Regression Sum - - ·- -
of Squares)~stepwise regression without the deletion of variables from 

the regression equation. The user also can study efficiently the effects 

on.the solution vector of decreasing the reliability of the entries in 

the .coefficient matrix. Th~ error matrix, (AT~;.;.l, is calculated for 

systems where the coefficient matrix is of full rank~ 

Each of the above uses has been tested .on the IBM,~S at Okla-

homa State University, Stillwater, Oklahoma. The results are·listed 

below. 

Vsing the Package to Find the Generalized 

Inverse .of an Arbitrarz Matrix 

The generalized inverse of an arbitrary matrix, A, can be·found 

by solving the set of equations AX•I, where A.is an m py n matrix, X 
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(the generalized inverse of A) is an n by m matrix, and I is an m by m 

identity matrix. 

The generalized inverse of a 6 by 4 zero matrix was found exactly 

in one iteration. Many routines for solving an arbitrary system of 

equations will not handle the case where the coefficient matrix has a 

rank of zero, 

The generalized inverse of the matrix . · 

!. 

2. 

-!. 

4. 

-1. 

4. 

2. 

!. 

J. 

5. 

-!. 

9. 

!. 

!. 

!. 

!. 

was.found to full single precision accuracy without iterating the solu­

tion. This example was taken from Rosen (8). The generalized inverse 

was found to be 

-.21153 

-,19230 

.08653 

.50961 

.04487 

.19230 

-.00320 

-.09294. 

-.22435 

.03846 

.01602 

.46474 

Using the Package to Find the Solution Vector 

for an Arbitrary System of Squations ' 

.05769 

-.03846 

.06730 

-.04807 

Example. l, ·: +he ,fir~t example was takert frc:>m::Rc:lsen' s article (.8). 

The system consisted of 



1. -1. 

2. 4. 

-L 2. 

4, 1, 

3, 1, 

s. 1. 

-1, 1, 

9, 1, 

= 

1. 

3. 

2,5 

2.5 

Using an E of ,16 x 10-5 , the rank of the system was found to be 
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three. Full single precision accuracy was obtained without iteratipg 

the solution. The .. leng~hs. of the residual vector for the basic approxi-

mate solutio~ (BAS) and the minimum length solution were both .5. The 

lengths of the BAS vector and the minimum length solution vector were 

1,607 and 1,451, respectively, The BAS vector was 

t, 07692 

.38462 

0 

1, SS77 

The minimum length solution vector was 

-,49359 

.38462 

,28526 

1. 27240 

Example 2, The second system of equations that was used to test 

the package had a coefficient matrix consisting·of the first five col-

umns of a 6 by 6 inverse Hilbert matrix ~nd a right hand side chosen 

1 · f (1· 1 1 1 1) to generate a so ution vector o ,, •7,, -:f' 7i'' '5" , The matrix, 
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l 1 l 1 
2 3 • • . ;::r· 

1 l 1 1 
2 3 4 • • • m 

l 1 1 1 
3 4 s • . . · m+l, 

1 l 1 1 ---~ .. m-1 m m+l · • 2m..;;l· 

. . 

is the Hilbert.matrix of order m. 

The invers~ of the Hilber~ matrix was used because each of the 

entries in it is an integer.and can be represented in a computer exact-

ly if the precision of the computer.is large enough (3), Therefore, 

the effect of rQundoff error on~ .solution vector can be.studied. 

This system of equations is fairly ill-conditioned, getting worse with 

larger m. 

Full single prec~i9,.n -accuracy .was achieved when the solution was 

iterated. The results of the run are.shown in Table I. 

The implementation of Bjerck's routine (18) req~ired five itera-

tions tQ obtain this accuracy. Only three iterations were required 

with LLCR and LLSQ. 

Example 3. The third test case consisted of the last six columns 

of an 8 by 8 inverse Hil~ert;. matrix with a right hand side chosen to 

produce . the soluti.on vector 1 l 1 l 1 1 
<3, 4' s' 6' 7' · a>· 

This syst~m is extremely ill-conditioned~ As mentioned previously, 

when a system is ill-conditioned, small errors in the entries in the 

input;. coefficient .matrix or in the sol1,1tion process cause a large 



TABLE I 

S0LUTION 0F THE SYSTEM 0F EQUATI0NS CONSISTING OF THE 
FIRST FIVE C0LUMNS OF A 6 BY 6 INVERSE HILBERT MATRIX 
AND A RIGHT HAND SIDE CH!SEr T~ GfNERATE THE S0LUTI0N 

VECTOR (1, 2, 3, 4, 5) 

Iteration 
Number 

1 

2 

3 

Solution 
Vectar 

,9558830 
.4843262 
.3263453 
,2468576 
,1988596 

.9997082 
,4999225 
,3333055 
,2499895· 
.1999996 

,9999999 
.4999998 
.3333333 
.2499999 

. ,2000000 

,9999999 
,4999999 
,3333333 
,2499999 
.2000000 

Length of the 
Residual Vector 

1.043110 

,4102879 

.1591172 

,2431152 
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change in the solution vector (3). The condition number of a matrix is 

a measure of the ill-conditioning of the syst~m. The smallest possible 

condition number is unity, The system in the present examp'!.e has a 

condition number of 108, 

Using an E of .16 x 10-5 and doing all calculations in single 

precision, the numerical rank was determined to be four. Full single 

precision accuracy was achieved after iteration of the solution. The 

rank was not determined to be six as there was considerable truncation 

error in forming inner products due to the low precision of the IBM 360. 
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Table II contains the results of the run. 

Iteration 
Number 

0 

1 

2 

3 

TABLE II 

SOLUTION OF THE SYSTEM OF EQUATIONS CONSISTING 
OF THE LAST SIX COLUMNS OF AN 8 BY 8 INVERSE 

HILBERT MATRIX AND.ARIGHT HAND SIDE CHOSEN 
TO GENERATE THE SOLUTION VECTOR 

Minimum 
Len.gth 

. Solution 
Vector 

-.09663224 
,03V9249 
0.05031452 
• ,02720612 

-.008033112 
-.04418335 

-.09643781 
, 03278171 
.05018743 
. 02709594 

-,008037787 
-.04403742 

-.09643847 
.03278175 
.05018786 
,02709632 

-. 008037772 
-.04403792 

-,09643847 
,03278176 
,05018786 
.02709632 

-,00837772 
-,04403792 

(!, !, !, !, !, !) 
3 4 5 6 7 8 

Length .of the 
Residual Vector 
for.the Minimum 
Length Solution 

155,1612 

135,0647 

133.9126 

132,2448 

Basic Length of the 
Approximate Residual 

Solution Vector for 
Vector the BAS 

-.1880930 97,75385 
-.6149425 
-.00001407021 

0 
0 

-.005662531 

Bjorck's routine failed to find a solution for this example, It 

must be emphasized again that obtaining a numerical rank of four was 

not a failure of the routines but was caused by the low precision of 



the computer on which the test case was run. 

Example 4. The fourth test case consisted of the first five 

elements of each of the first three rows of a 6 by 6 inverse Hilbert 

matrix with th.e right hand side (463,-13860,97020). Both the basic 

approximate solution vector and the minimum norm solution vector are 

of interest since the number of equations is less than the number of 

variables. 

Table III contains the results of the run. 

TABLE III 

SOLUTION OF THE SYSTEM OF EQUATIONS CONSISTING OF 
THE FIRST FIVE ELEMENTS OF EACH OF THE 

Iteration 
Number 

0 

1 

2 

3 

FIRST THREE ROWS OF A 6 BY 6 
INVERSE HILBERT MATRIX WITH 

ARIGHT HAND SIDE 
(463,-13860,97020) 

}iin:i..mum Norm 
Solution 
Vector 

.02615530 
-.08060956 

. - . 002280064 
.07264209 
.1280568 

• 02614972 
-,08058983 
-,002287482 

• 07262659 
.1280463 

.02614973 
-.08058983 
-.002287471 

.07262659 

.1280463 

.02614974 
-.08058983 
-.002287467 

, 07262659 
.1280463 

Square of the 
Length of the 

Residual. 
Vector. 

.009011976 

.0009218131 

.0005667009 

.0004688033 

Basic 
Approiimate 

Solution 
Vector 

1.583456 
• 2777886 
0 
0 

,07685214 

43 
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Using the ~ackage to Perform.IVOR 

The package consisting of LLCR and LLSQ was used to perform IVOR 

on oxygen solubility data. The tllathematical model for this curve is 

defined below. 

Let z1 • absolute temperature, 

z2 • salinity of seawater, 

y = log of the solubility of oxygen in sea water, 

and the model be described by 

(bil+bi22 i2+ ••• ) 

so th$t 

til = 1, cl = albl 

ti2 = zi2' c2 = a2b2 

ti3 = 1/zil, C3 = a2b1 

ti4 = 2 i2/:.i:il' C4 = a2b2 

ti5 = 1n(z11), C5 = a3bl 

ti6 = zi2ln(zil), c6 = a3b2 

t:17 :.: zil' c7 = a4bl 

ti8 : Z.i22 :il' ca = a4b2 

etc. etc,-

Table IV contains the results of the IVOR analysis. The results 

of a stepwise regression analysis of this data appears in an article 

by Weiss (25). In his analysis, only eight -of the twelve variables in 

the model were entered in the regression equation because the sum of 

the.squares of the residuals divided by the number of degrees of 



45 

TABLE IV 

RESULTS OF THE IVOR ANALYSIS OF THE 
OXYGEN SOLUBILITY DATA 

Length of 
Number of Number Length of Length of Length of Residual 
Variables of the- the Basic the Residual the Minimum Vector 

in the Variabl~ Solution Vector for Norm Solution for the 
Equation Entered Vector the Basic Vector.: Minimum 

Solution Norm 
Solution 

1 2 .4040704xl0 5 241,9.978 .1014893x10 5 7617. 572 

2 1 ·• 9049813x10 5 981.9752 .1028102xl0 5 6018.982 

3 7 .8972010x10 5 212.4384 ,1031885xl0 5 7818.671 

4 3 .316862lxl0 7 82.10176 ,1091479xl0 5 4422.227 

5 8 .1634912x101 28.52036 ,1092203xl0 5 4558.884 

6 12 .1634366xl0 7 27.99304 .1097797x10 5 3548.216 

7 4 ,1033133xl0 8 26,44726 ,1103234xl0 5 3473.011 

8 9 .1005459xl0 8 26.06484 ,1197020xl0 5 2147,965 

9 5 .154012lxla9 25.942180 .1205483xl0 5 454.9831 

10 6 . 2658320xl0·11 25.50685 ,1207378x10 5 29.94534 

11 10 .3464215xl0 11 ~5.27790 • i:n73~0xl0 8 42.48019 

12 11 ,3202155xl0 11 25.12197 .3202155x10 11 25.12197 

freedom (m-n) failed to decrease after eight.variables had entered the 

equation. This was caused by the use of the normal equations to per-

form the stepwise regression atlalysis, 

Twelve variables were entered in the regression equation by the 

LLCR package, The length of the residual vector continued to decrease 

with each variable added to the regression equation, 

Note that with all twelve variables in the regression equation, 
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the length of the solution vector was ,32021:55 x 10 11 with a residual 

vector of length 25.12197, The length of the solution .vector with 

seven variables in the regression equation was ,1033133 x 108 with a 

residual vector of length 26,44726.- Thus, with a modest increase in 

the length of the re~idual vector, a la;rge decrease in the length of 

the solution vector was.obtained, 

In Chapter II, it was stated that if the true rank of the coeffi-

cient matrix is less than the number of columns, there is.a linear 

' subspace of -.~olution vectors .with a residual vector of some minimum 

length, Among all the vec.tors in that subspace, there is a unique 

vector of minimum length (7). All the components of this vector are 

nonzero. An attempt was made to consider the variables not entered 

in the regression equation to be linear combinations of the variables 

represented in the regression ,equation. The least squares solution of 

minimum length was then calculated as if the coefficient matrix had 

a.rank.equal to the number of variables in the regressi~n equation. 

The length of each of these solution vectors was considerably less 

than the length of the basic approximate solution vector (BAS) for the 

same rank. The lengths of the residual vectors were unacceptably high 

in· most cases. Tab.le IV . contains the result_s of this analy$iS. 

Using the Package to Test the Effects of Decreasing the 

Precision of the Entries in the Coefficient .Matrix 

As mentioned in Chapter IV, the user can request that the coeffi-

cient matrix be treated as if it had a rank equal to k, This corres-

ponds to increasing the value of E until the .rank of the coefficient 

matrix is k, where Eis the value used to determine the numerical rank 
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of the coefficient matrix. If the true numerical rank is less than the 

rank requested, the true minimum length solution is found. If not, n-k 

columns of the coefficient matrix are considered to be linear combina­

tions of the k columns that are chosen to be made mutually orthogonal; 

the minimum norm solution for rank k is found. 

The ability to specify a rank enables the user to test the effect 

on the solution vector of measuring the entries in the coefficient 

matrix less accurately. During one run of the package, the solution 

vectors for each choice of rank ranging from one to min(m,n) can be 

found. This corresponds to finding the solution to the generali~ed 

linear least squares problem for a range of€. Osborne's method of 

column selection is used to select the columns to be made mutually 

orthogonal when the package is used for this purpose. 

The solution vectors for a range of ranks were found for the 

oxygen solubility data. Table V contains the results of the analysis. 

Note that for ranks ten and eleven, the length of the minimum 

length solution vectors greatly decreased with only a moderate increase 

in the length of the residual vector. For example, the minimum length 

solution vector's length was .12072xl0 5 with a residual vector of 

length 26. l for rank t.en. For rartk eleven, the minimum length solution 

bector's length was .3462100xl0 7 with a residual vector of length 25.6. 

In contrast, when IVOR was performed and eleven variables had entered 

the regression equation, the length of the solution vector was 

.3464215xl0 11 with a residual vector of length 25,3. When ten variables 

had entered the regression equation, the length of the solution vector 

was .1033xl0 8 with a residual vector of length 25.5. 

If the user's objective is to obtain the best trade-off between 



Basic 
Variable 

Rank Entered 
in the 

Equation 

1 1 

2 10 

3 11 

4 4 

5 5 

6 12 

7 7 

8 6 

9 9 

10 8 

11 2 

12 3 

TABLE V 

ANALYSIS OF OXYGEN SOLUBILITY DATA 
USING OSBORNE PIVOTING 

Length of Length .of the Length of 
the Basic Residual Vector the Minimum 
Solution for the BAS bliivnr Solut.ion 
Vector Vector 

.11612 7 85x10 5 .43805~0x10'+ .1008446x10 5 

.1614233x10 5 .4168454xlo'+ .102177x10 5 

.161299x10 5 .4164684x10'+ .102470xl0 5 

,1649864xl0 5 ,1013336xl0'+ .1045335xl0 5 

.1652604xl0 5 ,969084lxl0 3 .1051180xl0 5 

.1652779xl0 5 ' .958809lxl0 3 .1051873x10 5 

, 1724977xl0 5 .8021976xl0 2 , 1118416xl0 5 

,1724570xl0 5 • 7149151xl0 2 ,1127042xl0 5 

.1724276xl0 5 , 7111963xl0 2 , 119699lxl0 5 

.172377lxl0 5 ,2611948x10 2 .1207238x10 5 

.6880348xl0 7 .2565849xl0 2 .346210lx10 7 

.3202155xl0 11 ,2512197x10 2 .3202155xl0 11 
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, Length 
of the 

Residual 
Vector for 

the Minimum 
Norm Solutiot 

~8425207x10 4 

, 7203746xl0'+ 

,54199llxl0'+ 

,2508875x10 4 

.1671074x10 4 

.1564966xl0 4 

.250944xl0'+ 

,23624lxl0 4 

,1190856xl0 4 

.2611625xl0 2 

.2565829xl0 2 

,2512197x10 2 

the length of the solution vector and the length of the residual vector, 

the)package should be run once with IVOR and once with Osborne pivoting, 

Comparison of Methods 

The package consisting of LLCR and LLSQ appears to be the first 

accurate IVOR (stepwise regression) package for ill-conditioned systems 

of equations. Until this time, stepwise regression packages have 
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solved the normal equations, 

.I 

The normal equations are often very ill-conditioned, making double pre-

cision calculations necessary (3). Longley (10) has shown examples 

where essentially no correct digits were obtained when the normal equa-

tions were solved. In add~tion, refinement of the intermediate solutions 

is available with this package. 

For ill-conditioned systems using modified Grlim-Schmidt orthogonal-

ization produces a much more accurate solution vector than using the 

normal equations to solve a linear least squares problem. For a math-

ematical comparison of the accuracy of the methods, see article's by 

Bjorck (26), Golub (27), and Wampler (11), 

Number of Operations and Storage Requirements· 

If the coefficient matr,ix is of full rank, the package requires 

approximately mn2 multiplications and~+ m + n2 + 2n storage locations 

to calculate the linear least squares solution of minimum norm when iter-

ative refinement of the solution is not performed, This should be 

2 4n3 2 contrasted with 2mn + ~3- single precision multiplications and n 

storage locations needed for forming and solving the normal equations 

in double precision (24), 

If iterative refinement is performed, another m(n+l) storage loca­

tions are required. An additional n2 + kn locations are needed if the 

~ystem is solved for more than one rank, where k is the number of ranks 

for which the system is solved, 
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If the coefficient matrix is of deficient rank, r*, the number of 

multiplications necessary for finding the.solution is mn2-(n-r*-l)(m+n) 

multiplications. The storage require~ents are the same as for the full 

rank. case, 

When the package is used to perform IVOR, the number of operations 

necessary to add the k-th variable to the regression equation is· 

2m(n-k-tr~nk+n2), The total number of .operations would be 4m2n2+ mn3-n. 

Approximately (n+2) 2(m+3n) operations are required for stepwise regres-
2 

sion using the normal equations (19), If double precision calculations 

are necessary ·to obtain single precision accuracy, the comparison is 

more favorable. 

The user of the LLCR package should consider putting all the float-, 
,,. 

ing point variables in double precision when solving an ill-conditioned 

system of equations, Refinement of the initial solutions would be 

ineffective so no more storage.would be required than would be when the 

calculations were done in single precision with the initial solutions 

being refined. 5 should be chosen so that !.DO + 5 '.>> Lt>O when doing 

all calculations in double precision, The solution process is slower 

when all calculations are done in deuble precision; the results should 

be more accurate, however, 

There are advantages. to being able to. solve the system of equations 

for a range of ranks during one run of the LLCR package instead of 

using a routine like Bjorck's •. Beginning with a guess, several runs 

might be necessary to find the E to produce the desired rank, In 

addition, if the results were sought for a range of ranks, Bjorck's 

routine would require that the first .h-1 columns of the coefficient 

matrix be orthogonaliied for each rank h for which the solution was 
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desired. The LLCR package requires that ·only one column of the coeffi-

cient .matrix be orthogonalized after the solution vector for the first 

rank is found. 2n2 additional words are required for this feature, 

however, 

Ta,ble VI contains a list of the various.uses of the package, and 

the method of column selection, the ranks for which the system is 

solved, and the extra storage required for each use. 

Summary 

Routines have been written that use modified Gram-Schmidt orthogon-

alization to solve the generalized linear least; squares problem. Both 

a basic approximate solution and the least squares soluti.on of minimum 

Euclidean norm are found. Improvement in the accuracy of the solutions 

by means of iterative·refinement of the initial solutions is available 

to the user of these routines. Full single-precision accuracy in the 

solutions is obtained when iterative improvement of the solutions is 

performed and the parameter that is used to determine the numerical rank 

of .the system is at least as great as the relative accuracy of the com­

T -1 puter on which the package is run. The error matr~x, (A A) , is 

returned for systems of full rank. 

The routines can be used to determine efficiently and accurately 

the generalized inverse of an arbitrary matrix, A. This is accomplish-

ed by solving the system of equations 

AX• I 

for the matrix X, I is an m by m identity matrix, where n is the 

number of rows in the matrix A. The generalized inverse, X, is an n 



TABLE VI 

USES OF THE PACKAGE CONSISTING OF LLCR AND LLSQ 

Preblem 

To calculate the 
generalized inverse 
of A, an m by n 
matrix 

To find the solution 
of an arbitrary 
system of equations, 
A~• b 

To perform step­
wise regression 
without the dele­
tion of variables 

To study the effect 
of decreasing the 
reliability of the 
entries in the 
coefficient matrix 
(solve the system 
for a range of ranks) 

To find the best 
trade-off between 
the length of the 
solution vector 
and the residual 
vector 

Method of 
Column 

Selection 

Osborne 
pivoting 

Osborne 
pivoting 

IVOR 

Osborne 
pivoting 

IVOR and 
Osborne 
pivoting 

The Solution 
will be found 

for Ranks 

the numerical 
rank of A 

the numerical 
rank of A 

.l .to .. the 
numerical ral).k 
of the coeffi­
cient matrix 

lsjsnumerical 
rank of A (a 
range for j is 
chosen by the 
user) 

1 to the 
numerical rank 
of A 
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Amount of 
Extra Storage 

Needed 

m(m-1) 

none 

2n2 

To fit a polynomial 
to a set of data 
points 

Sequential 
selection 

1 to the degree 2n2 
of the polynomial 

by m matrix, where n is the number of columns in A, 

IVOR, or forward selection, has been implemented. IVOR corres-

ponds to stepwise regression without the deletion of variables from the 

regression equation, Th.e package appears to be the first accurate step-

wise regression package for ill-conditioned problems, 
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The coefficient matrix can be treated as if it had.a user-specified 

rank, k. Th:l,s corresponds to increasing the value of the parameter 

that is used to determine the numerical rank of the coefficient matrix 

until the rank is k, This facility can be used to test the sensitivity 

of the solution vector to decreased precision of the entries in the 

coefficient matrix. 
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274 SUBROUTINE LLCRCA,LA,R,LRE,SAVE,LSAV,X,RHO,RHOM,SA,ERR,RES,V,XOLD,LLCROOlO 
*SALPH,LSAL,NR,NC,BAS1C,NRHS,XSAVE) LLCR0020 

C AUTHOR . JOANNA C. HWANG LLCR0030 
C LLCR0040 
C DATE MARCH 1, 1972 VERSION 1.1 LLCR0050 
C LLCR0060 
C BRIEF DESCRIPTION OF THIS PROGRAM..... LLCR0070 
C THIS ROUTINE Will GIVE THE SOLUTION OF MINIMUM NORM TO THE LLCR0080 
C GENERAL LINEAR LEAST SQUARES PROBLEM. MODIFIED GRAM-SCHMIOT ORTHOG- LLCR0090 
C ONALIZATION IS USED TO OBTAlN THIS SOLUTION. LLCROlOO 
C THE. FOLLOWING OPTIONS HAVE BEEN IMPLEMENTED. U.CROllO 
C 1. THE SOLUTIONS FOR MULTIPLE RIGHT HAND SIDES WITH A SINGLE LLCR0120 
C COEFFICIENT MATRIX CAN BE FOUND DURING ONE CALL TO THE ROUTINE. LLCR0130 
C z. REFINEMENt OF THE INITIAL B·ASIC APPROXIMATE ANO INITIAL MINIMUM LLCR0140 
C NORM SOLUTIONS IS AVAILABLE. LLCR0150 
C 3. THE ERROR MATRIX, THE INVERSE OF THE l!RODUCT OF THE COEFFICIENT LLCR0160 
C MATRIX ANO ITS TRANPOSE, IS CALCULATED FOR SYSTEMS OF FWLL RANK. LLCR0170 
C 4. THE BASIC SOLUT10NS CAN BE PRINTED. . LLCR0180 
C ASSUME THAT THE RANK OF THE COEFFICIENT MATRIX IS IRANKt WHERE LLCR0190 
C · IRANK tS LESS THAN THE NUMBER OF COLUMNS IN THE COEFFICIENT MATRIX.LLCR0200 
C THE BASIC SOLUTION OBTAINED IS THE SOLUTION WITH AT MOST IRANK LLCR0210 
C NONZERO COMPONENTS THAT GIVES THE MINIMUM EUCLIDEAN NORM. LLCR0220 
C 5o THE USER CAN REQUEST THAT IVOR, INDEPENDENT VARIABLE ORDERING LLCR0230 
C BY REGRESSION SUM OF SQUARES, BE PERFORMED. IVOR CORRESPONDS TO LLCR0240 
C PEI\FORMING SlEPWISE REGRESSION WITHOUT REMOVING A VARIA3LE FROM LLCR0250 
C THE REGRESSION EQUATION ONCE IT HAS ENTERED THE REGRESSION LLCR0260 
C EQUATION. LLCR0270 
C 6. THE USER CAN REQUEST THAT THE COEFFICIENT MATRIX BE TRE~TED AS IF LLCR0280 
C IT HAO A RANGE OF RANKS, KRBEG THROUGH KREND. IF THE RANK LLCR0290 
C REQUESTED IS GREATER THAN THE NUMERICAL RANK OF ·THE SYSTEM llCR0300 
C !DETERMINED BY THE RELATIVE ACCURACY EPSI, A MESSAGE IS PRINTED. LLCR0310 
C FOR A MORI: COMPLETE OESCRIPTION OF THIS ROUTINE, SEE THE WRITE-UP LLCR0320 
C IN THE AUTHOR-S M.S. REPORT !DEPARTMENT OF COMPUTING AND INFORMATION LLCR0330 
C SCIENCES, OKLAHOMA STATE UNIVERSITY, MAY, 19721. LLCR0340 
C LLCR0350 
C REFERENCES.••. LLCR0360 
C E. E. OSBORNE, JOURNAL OF THE SIAM 12 119651 300 LLCR0370 
C J. B. ROSEN, JOURNAL OF THE SIAM 12 119641 156 LLCR0380 
C G. GOLUB, NUMERISCHE MATHEMATIK 7 11965) 206 LLCR0390 
C JOHN R. RICE, MATHEMATICS OF COMPU~ATION 20 119661 325 LLCR0400 
C A. BJORCK, BIT 7 ( 1967) 257 LLCR0410 
C A. BJORCK, BIT 8 ( 19681 8 LLCR0420 
C A. BJORCK, BIT 7 Cl 96 7) 1 LLCR 0430 
C , LLCR0440 
c,oescRIPTtON OF SUBROUTINES CALLEO.... LLCR0450 
C LLSQ -- T~E INITIAL BASIC APPROXIMATE SOLUTION ANO LEAST LLCR0460 
C SQUARES SOLUl ION, OF MINI MUM NORM FOR EACH RIGHT HANO lLCR0470 
C SIDE IS FOUND. LLCR0480 
C LLCR0490 
C DESCRIPTION OF VARIABLES•••• LLCR0500 
C INPUT VARIABLES.... LLCR0510 
C A -- THE NR BY NCOLS AUGMENTED MATRIX LLCR0520 
C THE NRHS RIGHT HAND SIDES ARE CONCATENATED WITH THE LLCR0530 
C NR BY NC COEFFICIENT MATRIX TO FORM THE AUGMENTED LLCR0540 
C MATRIX. LLCR0550 
C THE FIRST IRANK COLUMNS OF A ARE MADE MUTUALLY LLCR0560 
C ORTHOGONAL. THE NEXT CNC-IRANKI COLUMNS ARE LLCR0570 
C CONSIDERED TO BE ZERO VECTORS. THIS TRANSFORMED LLCR0580 
C MATRIX IS REFERRED TO BELOW AS A. LLCR0590 
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c 
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c 
c 
c 
c 
c. 
c 

LA 

LRE 

LSAV 

N 
THE FIRST DIMENSION OF THE A ARRAY 
(LA MUST BE .GE. NR.t 
THE FIRST DIMENSION OF THE R ANO ERR ARRAYS 
ILRE MUST eE .GE. NC.,) 
THE FIRST DIMENSION OF THE ARR~Y SAVE 
I LSAV MUST BE .GE. NR 1 F ITERATIVE IMPROVEMENT 
SOLUTION IS REQUESTED. LSAV SHOULD EQUAL 1 
OTHERWISE.) 
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LLCR0600 
LLCR0610 
LLCR0620 
LLCR0630 
LLCR0640 
LLCR0650 

LSAL -· THE FIRST DIMENSION OF. THE ARRAY SALPH 

OF THELLCR0660 
LLCR0670 
LLCR0680 
LLCR0690 

ILSAL MUST BE .ce. NC IF THE PROBLEM IS TO BE 
FOR MORI: 1HAN ONE RANK. LSAL SHOULD EQUAL 1 
OTHERWISE. 

SOLVED LLCR0700 

EPSl ·- THE CONVERGENCE CRITERION FOR THE ITERATIVE IMPROVE­
MENT OF THE SOLUTION 
EACH COMPONENT lN 1HE FINAL SOLUTION VECTOR WILL 
DIFFER FROM THE CORRESPONDING COMPONENT IN THE 
PREVIOUS SOLUTION VECTOR BY NO MORE THAN EPSl 
TIMES THE COMPONENT IN THE FINAL SOLUTION VECTOR. 

EPS -- THE VALUE USED TO DETERMINE IF A COLUMN IN THE 
COEFFICIENT MATRIX IS A LINEAR COMBINATION OF OTHER 
COLUMNS IN THE COEFFICIENT MATRIX 

NR 

NC 

NRHS 

I PIV 

NEITHER EPS NOR EPSl SHOULD BE LESS THAN THE PRODUCT 
OF THE BASE ANO THE RELATIVE ACCURACY OF ~HE MACHINE 
BEING useo. 
THE NUMBER OF EQUATIONS IN THE SYSTEM 
!NUMBER OF ROWS OF Al 
THE NUMBER OF tNDEPENOENT VARIABLES 
(NUMBER OF COLUMNS OF A BEFORE IT IS AUGMENTED) 
THE NUMBER OF RIGHT HANO SIDES 
INRHS MUST BE .GE. 1 •• 

•-1 NO PIVOTING IS PERFORMED. 
• 0 OSBORNE PIVOTING IS PERFORMED. 
• 1 IVOR IS PERFORMED. 

LLCR0710 
LLCR0720 
LLCR0730 
LLCR0740 
LLCR0750 
LLCR0760 
LLCR0770 
LLCR0780 
LLCR0790 
LLCR0800 
LLCR0810 
LLCR0820 
LLCR0830 
LLCR0840 
LLCR0850 
LLCR0860 
LLCR0870 
LLCR0880 
LLCR0890 
LLCR0900 
LLCR0910 
LLCR0920 
LLCR0930 

SEE THE ARTICLE BY OSBORNE FOR 
OSBORNE PIVOTING. 

A DESCRIPTION OF LLCR0940 
LLCR0950 

ISW -- •1 IF THE SQUARE OF THE NORM IS 
tNNER PRODUCTS 

TO BE RECOMPUTED USINGLLCR0960 
LLCR0970 
LLCR0980 
LLCR0990 

OTHERWISE, THE SQUARE OF THE NORM IS RECOMPUTED 
USING THE METHOD PROPOSED BY OSBORNE. 

IREF -- • l IF THE INITIAL SOLUTION IS TO BE REFINED LLCRlOOO 
LLCR1010 
LLCR1020 

NT RAC 

~ 0 IF.THE SOLUTION. IS NOT TO BE REFINED B~T THE 
RESIDUAL VECTOR IS TO BE CALCULATED 

=-1 THE SOLUTION IS NOT TO BE REFINED ANO THE 
VECTOR CANNOT BE CALCULATED 
(SAVE ANO A ARE THE SAME MATRIX.) 

RESIOUALLLCR1030 
LLCR1040 
LLCR1050 

•-1 ERROR MESSAGES ONLY ARE PRINTED. 
= 0 THE FINAL SOLUTION VECTORS ANO THE RANK OF THE 

COEFFICIENT MATRIX ARE PRINTED IN ADDITION TO THE 
ABOVE. 

= 1 THE INTERMEDIATE SOLUTION VECTORS, THE RESIDUAL 
VECTORS FOR EACH INTERMEDIATE SOLUTION ANO THE 
FINAL SOLUTION, ANO THE ERROR MATRIX ARE PRINTED 
IN ADDITION TO THE ABOVE. 

= Z THE ORIGINAL COEFFICIENT MATRIX, THE ORIGINAL 
RIGHT HANO SIDES, ANO THE DECOMPOSITION MATRIX 
PRINTED IN ADDITION TO THE ITEMS LISTED ABOVE. 

LLCRl060 
LLCR 1070 
LLCR1080 
LLCR1090 
LLCRllOO 
LLCRlllO 
LLCR1120 
LLCR1130 
LLCR1140 

C KW 
C KRBEG,KRENO 
c 

THE STANDARD OUTPUT UNIT NUMBER 
AN ATTEMPT WILL BE MADE TO SOLVE THE SYSTEMS OF 
EQUATIONS AS IF THE COEFFICIENT MATRIX HAO A RANK 

ARELLCR1150 
LLCRll60 
LLCR1170 
LLCR 1180 

Of LLCR1190 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

MAXIT --

KRBEG,KRBEG+l, ••• ,KREND. IF THE TRUE RANK OF THE 
SYSTEM IS LESS THAN THE RANK THE USER REQUESTS, A 
MESSAGE IS PRINTED. 
.KRBEG MUST BE SET GREATER THAN OR EQUAL TO ONE.' IF 
THE RANK OF THE COEFFICIENT MATRIX IS ZERO, THE 
CORRECT SOLUTION WILL BE RETURNED, HlWEVER. 
SEE THE DEFINITION OF KRANK BELOW. 
THE MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR THE 
ITERATIVE IMPROVEMENT PROCEDURE 
MAXIT SHOULD BE GREATER OR EQUAL TO ONE IF ITERATIVE 
IMPROVEMENT OF THE SOLUTION IS NOT DESIRED. 

C OUTPUT VARIABLES •••• 
C R -- AN NC BY NCOLS MATRIX THAT INITIALLY HOLOS AN 
C IDENTITY MATRIX IN ITS FIRST NC COL.UMNS AND ZERO 
C COLUMNS FOR THE REMAINING (NCOLS-NCI COLUMNS 
C THE FIRST NC COLUMNS OF RARE TRANSFORMED INTO THE R 
C -1 
C OF THE DECOMPOSITION A=A R THE REMAINING COLUMNS 
C N N 
C HOLD THE SOLUTIONS TO THE SYSTEMS OF EQUA~IONS. 
C XSAVE(I,J,KJ -- IF IPtV.EQ.1, THE I-TH COEFFICIENT OF THE REGRESSION 
C EQUATION FOR RIGHT HAND SIDE NUMBER J WHEN KRBEG 
C +K-1 VARIABLES HAVE ENTERED THE REGRESSION EQUATION 
C OTHERWISE, THE I-TH COMPONENT OF THE SOLU~ION VECTOR 
C OF MINIMUM LENGTH FOR Rl~HT HANO SIDE NUMBER J WHEN 
C RANK KRBEG+K-1 
C BASIC(JI THE LENGTH'OF THE BASIC APPROXIMATE SOLUTION VECTOR 
C FOR THE J-TH RIGHT HANO SIDE 
C X THE SOLUTION VECTOR FOR EACH RIGHT HAND SIDE 
C IS PLACED IN X PRIOR 1'0 THE ITERATIVE IMPROVEMENT OF 
C THE SOLUTION FOR THAT RiGHT HAND SIDE. ITERATIVE 
C IMPROVEMENT IS PERFORMED ON THE SOLUTION VECTOR FOR 
C ONE RtGHT HAND SIDE AT A TIME. 
C RES THE RESIDUAL VECTORS FOR THE RIGHT HAND SIDES 
C ERR THE INVERSE OF THE TRANSPOSE OF THE COEFFICIENT 
C MATRIX TIMES ITS TRANSPOSE 
C THIS IS CALCULATED ONLY IF THE COEFFICIENT MATRIX IS 
C OF FULL RANK. THIS IS AN NC BY NC ARRAY. 
C (A IS THE UNAUGMENTED COEFFICIENT MATRIX IN THIS 
C CASE.J 
C IRANK THE SMALLER OF THE NUMERICAL RANK OF THE COEFFICIENT 
C MATRIX AND KRANK 
C NFAIL =O IF ITERATIVE IMPROVEMENT FAILS TO PRODUCE RESULTS 
C OF THE DESIRE.D ACCURACY WITHIN MAXIT ITERATIONS 
C •l OTHERWISE 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
t 

INTERMEDIATE 
SAL PH 

SAVE 

XOLD 

RHO(KI 
RHOMIKI 

KRANK 

VARIABLES •••• 
HOLDS R IN THE STATE IT IS IN AFTER THE BASIC 
APPROXIMATE SOLUTION IS FOUND FOR A GIVEN RANK 
THIS MATRI~ IS NOT NEEDED IF KRBEG.EQ.KREND. 
HOLDS THE ORIGINAL AUGMENTED.MATRIX, A 
THIS MATRI:X IS NOT REFERENCED IF ITERATIVE IMPROVE­
MENT OF THE SOLUTIONS IS NOT DESIRED. 
THE SOLUTION VECTOR FOR EACH RIGHT HAND SIDE FOUND 
DURING THE PREVIOUS ·ITERATION OF THE IMPROVEMENT 
PROCEDURE IS PLACED IN XOLO. 
THE SQUARE OF THE NORM OF THE K-TH COLUMN OF A 
THE SQUARE OF THE NORM OF THE K-TH COLUMN OF R 
AN ATTEMPT IS MADE TO FIND THE SOLUTION 
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LLCR 1200 
LLCR1210 
LLCR1220 
LLCR1230 
LLCR1240 
LLCR1250 
LLCR1260 
LLCR1270 
LLCR1280 
LLCR1290 
LLCR1300 
LLCR1310 
LLGR1320 
LLCR1330 
LLCR1340 
LLCR1350 
LLCR1360 
LLCR1370 
LLCR1380 
LLCR1390 
LLCR1400 
LLCR1410 
LLCR1420 
LLCR1430 
LLCR1440 
LLCR1450 
LLCR1460 
LLCR1470 
LLCR1480 
LLCRf490 
LLCR1500 
LLCR1510 
LLCR1520 
LLCR1530 
LLCR1540 
LLCR1550 
LLCR1560 
LLCR1570 
LLCR1580 
LLCR 1590 
LLCR1600 
LLCR1610 
LLCR1620 
LLCR1630 
LLCR1640 
LLCR1650 
LLCR1660 
LLCR1670 
LLCR1680 
LLCR1690 
LLCR1700 
LLCR1710 
LLCR1720 
LLCR 1730 
LLCR1740 
LLCR1750 
LLCR1760 
LLCR1770 
LLCR1780 
LLCR1790 
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C AS IF THE COEFFICfE~T MATRIX HAO A RANK OF KRANK. LLCR1800 
C KROLD THE PREVIOUS SOLUTION OF THE SYSTEMS OF EQUATIONS LLCR1810 
C WAS HADE AS IF THE RANK OF THE COEFFICIENT MATRIX LLCR1820 
C WAS KROLD. LLCR1830 
C NCP THE NUMBER OF INDEPENDENT VARIABLES PLUS ONE LLCR1840 
C NCOLS THE NUMBER OF INDEPENDENT VARIABLES PLUS lHE NUMBER LLCR1850 
C OF RIGHT HAND SIDES LLCR1860 
C LLCR1870 
C use OF THIS PROGRAM.... LLCR1880 
C TO USE THIS PROGRAM, A CALLING PROGRAM THAT CALLS THE SUBROUTINE LLCR1890 
C LLCR MUST BE WRITTEN. THE CALLING PROGRAM MUST DEFINE THE VARIABLES LLCR1900 
C A, LA, NR, NC,- NRHS, LRE, EPSl, EPS, I BAS, I SW, NTRAC, KRBEG, KR END, LLCR 1910 
C KW, IREF, LSAV, LSAL, ANO MAXIT. , LLCR1920 
C THE FOLLOWING STATEMENTS MUST APPEAR IN THE CALLING PROGRAM. LLCR1930 
C DIMENSION A( LA, NCOLSI ,R (LRE, NCOLSI ,SAVE ( LSAV ,NCO LS >tX ( NICl,RHOCNC I, LLCR1940 
C lSA(NCl,ERR(LRE,NCJ,RES(NRl,V(NCJ,XOLD(NCJ,SALPH(LSAL,NCOLS~, LLCR1950 
C 2RHOM(NCl,BASIC(NRHSl,XSAVE(NC,NRHStKRENO-KRBEG+ll LLCR1960 
C · COMMON/Bel AIEPS, EPS 1, lP IV, I SW ,NT RAC, NCOLS,KR~EG, KR END, KRANK, KROLD, LLCR1970 
C lt'REF,KW,NCP,IRANK,MAXIT,NFAIL,IRGT LLCR1980 
C LLCR1990 
C (DEFINITION OF VARIABLES) LLCR2000 
C LLCR2010 
C CALL LLCRCA,LA,R,LRE,SAVE,LSAV,X,RHO,RHOM,SA,ERR,RES,V,XOLD,SALPH,LLCR2020 
C lLSAL,NR,NC,BASIC,NRHS,XSAVE) LLCR2030 
C CALL EXIT LLCR2040 
C ENO LLCR2050 
C LLCR2060 
C THE NUMERICAL VALUES OF THE V_ARIABLES USED TO INDICATE THE LLCR2070 
C DIMENSIONS OF THE ABOVE ARRAYS MUST APPEAR IN THE DIMENSION STATEMENT LLCR2080 
C IN THE CALLING PROGRAM. THE DIMENSIONS INDICATED IN THE DIMENSION LLCR2090 
C STATEMENT ARE MINIMUM DIMENSIONS. LA MUST BE EQUAL TO OR GREATER THANLLCR2100 
C NR. LRE MUST BE EQUAL TO OR GREATER THAN NC. IF ITERATIVE LLCR2110 
C IMPROVEMENT OF THE SOLUTION IS NOT USED, SAVE SHOULD BE DIMENSIONED LLCR2120 
C 11,11 IN THE CALLING PROGRAM, AND LSAV SHOULD BE SET EQUAL TO ONE. LLCR2130 
C OTHERWISE, LSAV SHOULD BE EQUAL TO OR GREATER THAN NR. IF THE LLCR2140 
C PROBLEM IS GOING TO BE SOLVED FOR ONLY ONE RANK, SALPH SHOULD BE LLCR2150 
C DIMENSIONED (1,11 IN THE CALLING PROGRAM., ANO LSAL SET EQUAL TO ONE. LLCR2160 
C OTHERWISE, LSAL SHOULD BE EQUAL TO OR GREATER THAN NC. LLCR2170 
C IF THIS PROGRAM- IS RUN UNDER A COMPILER THAT CHECKS SUBSCRIPTS OR LLCR2180 
C DOES NOT PERMIT VARIABLE SUBSCRIPTING, THE DIMENSION STATEMENTS IN THELLCR2190 
C SUBROUTINES LLCR AND LLSQ WILL HAVE TO BE CHANGED. LLCR2200 
C IF THE MACHINE ON WHICH THE PROGRAM JS BEING EXECUTED ODES NOT LLCR2210 
C HAVE LABELED COMMON, THE COMMON STATEMENT WILL HAVE TO BE CHANGED. LLCR2220 
C LLCR2230 

275 DOUBLE PRECISION DRES,DINT,DINTP,DSAVE LLCR2240 
C LLCR2250 
C IF SINGLE PRECISION DOES NOT GIVE THE ACCURACY DESIRED, ALL LLCR2260 
C CALCULATIONS MUST BE DONE IN DOUBLE PRECISION. TO 00 THIS, LLCR2270 
C REMOVE THE C IN COLUMN ONE FROM THE FOLLOWING STATEMENT. IN LLCR2280 
C THIS CASE, ITERATIVE IMPROVEMENT OF THE SOLUTIONS WOULD BE LLCR2290 
C INEFFECTIVE ANO SHOULD NOT BE REQUESTED. LLCR2300 
C DOUBLE PRECISION A,R,RHO,SA,RHOM,SALPH,EPS,DENOM,DOT,AtPHA, LLCR2310 
C lVZERO,ONE, EPSl, BASIC, QSQRT LLCR2320 
C LLCR2330 

276 DIMENSION ACLA,1),R(LRE,11,SAVE(LSAV,11,X(NCJ,RHO(NCl,SA(NCI, LLCR2340 
*ERR(LRE,NCJ,RESCNRJ,V(NCl,XOLD(NCl,SALPH(LSAL,11,RHOMINCJ, LLCR2350 
*BASIC (NRHS), XSAVEC NC,NRHS, U LLCR2360 

277 COMMON/BETA/EPS, EPSl, IPIV, ISW ,NT RAC, NCOLS,KRBEG, KREND,KRANK, KROLD, LLCR2370 
*IREF,KW,NCP,IRANK,MAXIT,NFAIL,IRGT LLCR2380 

C LLCR2390 



278 

279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 

290 
291 
292 
293 

294 
295 
296 
297 
298 
299 
300 

301 
302 
303 

304 
305 

306 
307 
308 

309 

310 
311 

312 
313 
314 
H5 
,11., 
317 

c •••• CHANGE QSQRTIYJ•SQRTtYI TO QSQRT(Y)•OSQRTIYI IF 
ALL COMPUTATIONS ARE DONE IN DOUBLE PRECISION. c 

c 
c 

.... 
QSQRT(Yl•SQRT(Y I 

IF(NTRAC)20,10,10 
10 WRITECKW,8701EPS1,EPS,NR,NC,ISW~IREF,MAXIT,KRBEG,KRENO 
20 NCP•NC+l 

IRGT•O 
VZERO•O. 
KROLD•-1 
ONE•l. 
IRANK•NCP 
NFAIL•l 
NCOLS•NC+NRHS 
EPSQ•EPS•EPS 

C SAVE THE ORIGINAL COEFFICIENT MATRIX AND RIGHT 
C HAND SIDES. 

IF(IREFl50,30,30 
30 00 40 IR•l,NR 

DO 40 IC•l,NCOLS 
40 SAVE(IR,ICJzA(IR,IC) 

C PRINT THE ORIGINAL COEFFICIENT MATRIX AND RIGHT 
C HAND SIDES. 

50 IFCNTRAC-2190,60,60 
60 WRITE(KW,750) 

DO 70 l•l,NR 
70 WRITEIKW,810)1AII,Jl,.,_1,NCI 

WRITECKW,7601 
DO 80 IC•NCP,NCOLS 

80 WRITE(KW,810J(A(l,ICJ,I•l,NRI 
C NEGATE EACH RIGHT HANO SIDE. 

90 DO 100 1•1,NR 
DO 100 J•NCP,NCOLS 

100 A!I,Jl•-A(I,J) 
C FINO THE SOLUTIONS TO THE PROBLEM 
'.: FOR RANKS KRBEG THROUGH KREND. 

DO 730 MRANK•KRBEG,KREND 
KRANK• MRANK 

C WRITE A MESSAGE IF THE RANK ASKED FOR IS 
C KNOWN TO BE LESS THAN THE RANK OF THE SYSTEM. 

IF(IRANK-KROLD)ll0,120,120 
110 WRITE(KW,8501. 

GO TO 740 
C FIND THE INITIAL SOLUTION TO THE PROBLEM. 

l20 CALL LLSQCA,LA,RHO,RHOM,SA,SALPH,LSAL,NR,NC,R,LRE,BASIC,NRHS, 
*SAVEoLSAV,XSAVEI 

IF(IRGTl740,130,740 
130 KROLD=KRANK 

C PRINT THE OECOMPOSEO·MATRIX. 
IF(NTRAC-21170,140,140 

140 WRITEfKW,84011RANK 
00 150 I•l,NR 

150 WRITE!KW,810)(A{l,Jl,.,_l,NCJ 
00 160 I•l,NC 

160 WRJTE(KW,8101(RII,Jl,Jal,NCI 
C FINO THE FINAL SOLUTION FOR EACH RIGHT HANO 
C SIDE. 

l 70 DO 670 K•NCP,NCOLS 
KSWz-1 
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LLCR2400 
LLCR2410 
LLCR2420 
LLCR2430 
LLCR2440 
LLCR2450 
LLCR2460 
LLCR2470 
UCR2480 
LLCR2490 
LLCR2500 
LLCR2510 
LLCR2520 
LLCR2530 
LLCR2540 
LLCR2550 
LLCR2560 
LLCR2570 
LLCR2580 
LLCR2590 
LLCR2600 
UCR2610 
LLCR2620 
LLCR2630 
LLCR26.fi.0 
LLCR2650 
LLCR2660 
LLCR2670 
LLCR2680 
LLCR2690 
LLCR2700 
LLCR2710 
LLCR2720 
LLCR2730 
LLCR2740 
LLCR2750 
LLCR2760 
LLCR2770 
LLCR2780 
LLCR2790 
LLCR2800 
LLCR2810 
LLCR2820 
LLCR2830 
LLCR2840 
LLCR2850 
LLCR2860 
LLCR2870 
LLCR2880 
LLCR2890 
LLCR2900 
LLCR2910 
LLCR2920 
LLCR2930 
LLCR2940 
LLCR2950 
LLCR2960 
LLCR2970 
LLCR2980 
LLCR2990 



62 

320 00 180 I•l,NC LLCR3000 
321 180 XCI).,RCI,KI LLCR3010 
322 KNTzO LLCR3020 

C CHECK IF REFINEMENT OF THE SOLUTION IS DESI-RED. LLCR3030 
323 IF(IREF-11510,190,510 LLCR3040 
324 " 190· KNT,.O LLCR3050 

C CHECK TO SEE IF ;THE BASIC APPROXIMATE OR THE LLCR3060 
C •• • • MINIMUM NORM SOLUTION. IS TO .BE ITERATED. LLCR3070 

325 IFCKSWl200,220,670 LLCR3080 
326 200 WRITE(KW,900) llCR3090 
327 KK .. K-NC LLCR3100 
328 NO=KRANK~KRBEG+l LLCR3110 
329 00 210 I-=1,NC LLCR3120 
330 210 XCll•XSAVECI,KK,NO) LLC~3130 
331 GO TO 240 LLCR3140 
332 220 WRITE(KW,9101 LLC~3150 
333 00 230 I=l ,NC LLCR3160 
334 230 XCl)•RCI,KI LLCR3170 
335 240 KNT=KNT+l LLCR3180 

C CHECK FOR TOB MANY llERATIONS TO ACHIEVE THE LLCR3190 
C DES IRED ACCURACY• LLCR3200 

336 IFCKNT-MAXIT>260,260,250 LLCR3210 
337 250 NO=K-NC LLCR3220 
338 WRITE'(KW,790)N0,14AXIT LLCR3230 
339 NFAIL .. O LLCR3240 
340 GO TO 740 LLCR3250 

C CALCULATE THE RESIDUAL ·VECTOR FOR THE {K-NCJ-TH LLCR3260 
C RIGHT HANO SIDE. LLCR3270 

341 260 00 280 I•l,NR LLCR3280 
342 DRES=VZERO LLCR3290 
343 DO 270 J=l,NC LLCR3300 
344 OINTzXCJI· LLCR3310 
3-45 OINTPzSAVE ( I ,JI LLCR3320 
346 270 ORES=ORES+OINTP*OINT LLCR3330 
347 DSAVE=SAVEC I,KJ LLCR3340 
348 280 RESCil=DSAVE-DRES LLCR3350 

C •••• CALCULATE THE SQUARE OF THE NORM OF lHE RESIDUALLLCR3360 
C VECTOR. LLCR3370 

349 DNORM•VZERO LLCR3380 
350 DO 290 I•l,NR LLCR3390 
351 290 ONORM=ONORM+RES C II *RESC II LLCR3400 

C CALCULATE THE LENGTH .Of THE RESIDUAL VECTOR. LLCR3410 
352 SNORM=ONORM LLCR3420 
353 ONORMzQSQRTCDNORMI LLCR3430 
354 NO=K-NC LLCR3440 

C PRINT THE RESIDUAL VECTOR ANO THE LENGTH Of THE LLCR3450 
C ·RESIDUAL VECTOR. LLOR3460 

355 KNTMl•KNT-1 LLCR3470 
356 IFCNTRACl310,300,300 LLCR3480 
357 300 WRITEIKW,860)KNTM1 LLCR3490 
358 WRITE (KW, 7701NO, (RES(II, I=l ,NRI LLCR3500 
359 WRITECKW,92010NORM,SNORM LLCR3510 

C PRINT THE NEW SOLUTION VECTOR. . LLCR3520 
360 WRITE(KW,BOO)NO,IXIICl,IC=l,NCI LLCR3530 

C SOL VE THE PROBLEM COMPOSED Of THE LLCR3540 
C ORIGINAL COEFFICIENT MATRIX ANO THE RESIDUAL LLCR3550 
C VECTOR FOR THE RIGHT HAND SIDE• LLCR3560 

361 310 00 320 1•1,NC LLCR3570 
362 320 V( I l=VZERO LLCR3580 
363 00 330 tR=l,NR LLCR3590 
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364 330 RES<I R J•-RESCIRI LLCR3600 
365 IF(IRANKl400,400,340 llCR3610 
366 340 DO 380 1•1,IRANK LLCR3620 
367 DOT•VZERO LLCR3630 
368 DO 350 J•l,NR LLCR3640 
369 350 DOT•DOT+ACJ,ll•RES(JJ LLCR3650 
370 ALPHA•DOT/RHO( 11 LLCR3660 
371 DO 360 J•l,NR LLCR3670 
372 360 RES( J l•RES (J l•AL·PHA•A CJ, I I LLCR3680 
373 DO 370 J=l,NC LLCR3690 
374 370 V(Jl•V(JI-ALPHA•R(J,11 LLCR3700 
375 380 CONTINUE LLCR3710 
376 IF(KSWl440,390,390 llCR3720 
377 390 IF(IRANK-NCl400,440,400 LLCR3730 
378 400 IRNKP•IRANK+l LLCR3740 
379 00 430 I•IRNKP,NC LLCR3750 
380 OOT=VZERO LLCR3760 
381 DO 410 J=l,NC LLCR3770 
382 410 OOT=DOT+R(J, I l•VCJI llCR3780 

c RHOMU I CAN NEVER BE ZERO THEORETICALLY OR LLCR3790 
c .... NUMERICALLY. LLCR3800 

383 ALPHA•OOT/RHOM( II LLCR3810 
384 00 420 J ... 1,NC llCR3820 
385 420 V(Jl=V(JI-ALPHA•R<J,[) LLCR3830 
386 430 CONTINUE U.CR3840 

c CALCULATE THE NEW SOLUTION VECTOR. LLCR 3850 
387 440 00 450 1•1,NC LLCR3860 
388 XOLD(IJ2X(IJ LLCR3870 
389 450 X(Il•X(Il+V(·IJ. LLCR3880 

c CHECK FOR CONVERGENCE. llCR3890 
390 00 500 12 1,NC LLCR3900 
391 DifaX( I >-XOLD( I I LLCR3910 
392 IF(OIFl460,470,470 LLCR3920 
393 460 DIF=-DIF LLCR3930 
394 470 XOLD(IJ..,X(II LLCR3940 
395 IFCXOLO(IJ1480,490,490 LLCR3950 
396 480 XOLD( ll=-XOLD( I) LLCR3960 
397 490 IFIOIF-EPSl*XOLO(I)l500,500,240 LLCR3970 
398 500 CONTINUE LLCR3980 
399 IF CKSW 1540, 510., 540 LLCR3990 
400 510 IF(IPIV-11520,540,520 LLCR4000 
401 520 NO=KRANK-KRBEG+l LLCR4010 
402 KK.,K-NC LLCR4020 
403 DO 530 KL.,1,NC LLCR4030 
404 530 XSAVE(KL,KK,NOJ•X(KLI LLCR4040 
405 540 IF(NTRACl670,550,550 LLCR4050 
406 550 WRITECKW,860IKNT LLCR4060 
407 NO=K-NC LLCR4070 
408 IF(IREFl630,560,560 LLCR4080 

c CALCULATE THE RESIDUAL VECTOR. LLCR4090 
409 560 00 580 l•l,NR LLCR4100 
410 DRES=VZERO LLCR4110 
411 00 570 J=l,NC LLCR4120 
412 DINT=XCJJ LLCR4130 
413 DINTP=SAVEC I,JI LLCR4140 
414 570 DRES=DRES+DINTP*DINT LLCR4150 
415 DSAVE=SAVE(I,KI LLCR4160 
416 580 RESCil=DSAVE-DRES LLCR4170 
417 IFCNTRAC-21600,590,600 LLCR4l80 
ltl8 590 WRITECKW,7701NO,CRES(ll,1=1,NRJ LLCR4190 



c 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 

c 
c 
c 

439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 

c 
c 

452 
453 
454 

455 

456 
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CALCULATE THE LENGTH OF THE RESIDUAL VECTOR. LLCR4200 
600 ONORM=VZERO LLCR4210 

00 610 l•l,NR LLCR4220 
610 ONORM=-ONORM+RES( U*RES( It LLCR4230 

SNORM•DNORM LLCR4240 
ONORM•QSQRTCONORMI LLCR4250 
WRITECKW,780tONORM,SNORM LLCR4260 
IFCONORM-BASICC NOH630,620, 620 LLCR4270 

620 WRITE(KW,880) LLCR4280 
630 WRITEIKW,8301NO,CX( It ,Isl~NCt LLCR4290 

OOT•VZERO LLCR4300 
00 640 I•l,NC LLCR4310 

640 OOT•OOT+X(ll*XCI) LLCR4320 
OQT•QSQRT(OOT) LLCR4330 
WRITECKW,890tOOT LLCR4340 
IF(KSWl650,670,670 lLCR4350 

650 00 660 KL•l,NC LLCR4360 
660 XSAVE(KL,KK,NOl•X(KLI LLCR4370 

KSW•KSW+l LLCR4380 
GO TO 190 LLCR4390 

670 CONTINUE LLCR4400 
CALCULATE THE ERROR MATRIX, THE INVERSE OF A LLCR4410 

•••• TRANSPOSE TIMES A, IF THE RANK OF THE SYSTEM IS LLCR4420 
NC. LLCR4430 

IF(IRANK-NC) 730,680,730 LLCR4440 
680 00 700 1•1,NC LLCR4450 

00 70.0 J=l,NC LLCR4460 
OOT•V'zERO LLCR4470 
00 690 K•l,NC LLCR4480 

690 OOT•OOT+RCI,Kl*RCJ,Kt/RHO(KI LLCR4490 
700 ERRCI,J)•OOT LLCR4500 

IF(NTRAC-1)730,710,710 LLCR4510 
710 WRITE(KW,820). LLCR4520 

00 720 IR•l ,NC LLCR4530 
720 WRITE(KW,BlOICERRCtR,ICl,IC=-1,NC) LLCR4540 
730 CONTINUE LLCR4550 
740 RETURN LLCR4560 

CHANGE 5E20.7 TO 4025.14 IF USING DOUBLE PRECISION LLCR4570 
CALCULATIONS. LLCR4580 

750 FORMATl/32H THE ORIGINAL COEFFICIENT MATRIX) LLCR4590 
760 FORMATl/30H THE ORIGINAL RIGHT HANO SIOESI LLCR4600 
710 FORMATl/48H THE RESIDUAL VECTOR FOR RIGHT HANO SIDE NU•MBER , I5,3H LLCR4610 

*IS/11X,5E20.71) LLCR4620 
780 FORMAT(/61H THE. LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTILLCR4630 

*ON IS ,E20.7/75H THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FLLCR4640 
*OR THE FINAL SOLUTION IS ,EZ0.7) LLCR4650 

790 FORMATl/72H THE CONVERGENCE CRITERION FOR THE SOLUTION WITH RIGHT LLCR4660 
*HANO SIDE NUMBER ,I5/20H WAS NOT REACHED IN ,I5,12H IT•ERATIONS./ LLCR4670 
*85H THE VALUE OF EPS IS TOO SMALL FOR THE MACHINE ON WHICH YOU ARELLCR4680 
* RUNNING THIS ROUTINE./40H INCREASE EPS ANO RUN THE ROUTINE AGAIN.LLCR4690 
*> . LLCR4700 

457 800 FORMAT l/55H THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER LLCR4710 
*,I5/11X,5E20.71t LLCR4720 

458 810 FORMATI/C1X,5E20.7)) LLCR4730 
459 820 FORHAT(/17H THE ERROR MATRIX) LLCR4740 
460 830 FORMAT(/65H THE FINAL SOLUTION TO JHE SYSTEM FOR THE RIGHT HANO SILLCR4750 

•DE NUMBER ,15/C1X,5E20.7)t LLCR4760 
461 840 FORMATC/44H THE DECOMPOSITION MATRIX FOR RANK EQUAL TO ,15) LLCR4770 
462 850 FORMATU58H THE RANK REQUESTEO IS GREATER THAN THE RANK OF THE SYSLLCR478.0 

463 
464 

465 

466 
467 
468 
469 

470 

*TEMI LLCR4790 

860 FORMAT(/llH ITERATION ,131 
870 FORMAT(lH1,5HEPSl=,El0.3,5X,4HEPS=,El0.3,5X,3HNR=,I5,5X,3HNC=, 

*I5,5X,4HISW=,I2/1X,5HIREFm,I2,5X,6HMAXIT=,15,5X,6HKRBEG=,I5,5X, 
*6HKREND=,I5) 

880 FORMATl/76H THE BASIC APPROXIMATE SOLUTION IS A BETTER SOLUTION 
*AN THE FINAL SOLUTION} 

890 FORMATC/44H THE LENGTH OF THE FINAL SOLUTION VECTOR IS ,E20.7) 
900 FORMATC///35H START ITERATING THE BASIC SOLUTIONI 
910 FORMAT(///42H START ITERATING THE MINIMUM NORM SOLUTION! 
920 FORMAT(/38H THE LENGTH OF THE RESIDUAL VECTOR IS ,E20o7/ 

*52H THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS ,E20.7) 
ENO 

$ENTRY 

_LLCR4800 
LLCR4810 
LlCR4820 
llCR4830 

THLLCR4840 
LLCR4850 
LLCR4860 
LLCR4870 
LLCR4880 
LLCR4890 
LLCR4900 
LLCR49l0 



87 

88 

89 

90 

91 

92 
93 
94 
95 

96 
97 

98 
99 

100 
101 
102 

103 
104 
105 

65 

SUBROUTINE LLSQ(A,LA,RHO,RHOM,SA,SALPH,LSAL,NR,NC,R,LRE,BASIC, LLSQOOlO 
*NRHS,SAVE,LSAV,XSAVEJ LLSQ0020 

C AUTHOR JOANNA C. HWANG LLSQ0030 
C LLSQ0040 
C DATE MARCH 1, 1972 VERSION lol LLSQ0050 
C LLSQ0060 
C BRIEF DESCRIPTION OF THIS PROGRAM.... LLSQ0070 
C THIS ROUTINE FINDS THE INITIAL BASIC APPROXIMATE SOLUTIONS AND LLSQ0080 
C THE SOLUTION OF MINIMUM NORM FOR A GENERAL LINEAR LEAST SQUARES LLSQ0090 
C PROBLEM, A*X•B, WHERE A IS AN NR BY NC MATRIX, XIS AN NC BY NRHS LLSQOlOO 
C MATRIX, ANO BIS AN NR BY NRHS MATRIX. A IS CONSIDERED TO HAVE A RANKLLSQOllO 
C SPECIFIED BY THE USER. LLSQ0120 
C FOR REFERENCES, DESCRIPTIONS Of METHODS USED, AND DESCRIPTIONS LLSQ0130 
C OF VARIABLES, SEE THE SUBROUTINE LLCR. LLSQ0140 
C ' LLSQ0150 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 

c 

c 
c 

c 
c 
t 
c 

c 
c 
c 
c 

DOUBLE PRECISION DRES,DINTP,OINT,DSAVE LLSQ0160 

.... IF SINGLE PRECISION DOES NOT GIVE THE ACCURACY DESIRED, ALL 
CALCULATIONS MUST BE DONE IN DOUBLE PRECISION. TO 00 THIS, 
REMOVE THE C IN COLUMN ONE FROM THE FOLLOWING STATEMENT. IN 
THIS CASE, ITERATIVE IMPROVEMENT OF THE SOLUTIONS WOULD BE 
INEFFECTIVE AND SHOULD NOT BE REQUESTED. 

DOUBLE PRECISION A, R, RHO, SA, RHOM, SAL PH, EPS,DENOM,DOT, ALPHA, 
lVZERO,ONE,TMAX,TRY,TEMP,EPSl,BASIC,QSQRT 

LLSQ0170 
LLSQ0180 
LLSQ0190 
LLSQ0200 
LLSQ0210 
LLSQ0220 
LLSQ0230 
LLSQ0240 
LLSQ0250 

DIMENSION A (LA, lt ,RHOCNC 1, RHOMCNCJ, SA INCi ,SALPHC lSAL, U, R( LRE, 11, LLSQ0260 
*BASIC C NRHS I, SAVE(LS AV ,11,XSAVE( NC, NRHS, 11 LlSQ0270 

COMMON/8ETA/EPS,EPS1,IPIV,ISW,NTRAC,NCOLS,KRBEG,KREND,KRANK,KROLD,LLSQ0280 
*IREF,KW,NCP, IRANK,MAXIT,NFAIL, IRGT LlSQ0290 

OSORT CY l•SORTC YI 

EPSO•EPS*EPS 
ONE•l. 
HUGE•loE50 
VZERO•O. 

If(KROLOl30,30,10 
10 KROP•KROLO+l 

DO 20 IR•l,NC 

CHANGE QSQRTCYl=SQRTCYI TO QSQRTCYJsDSQRTCYI 
IF ALL CALCULATIONS ARE BEING DONE IN DOUBLE 
PRECISION. 

CHECK TD SEE IF THIS IS THE FIRST TIME THE 
SUBROUTINE HAS BEEN ENTERED. 

IF THE SUBROUTINE HAS BEEN ENTERED PREVIOUSLY, 
RETURN THE AUGMENTED MATRIX TO THE STATE IT WAS 

· IN PRIOR TO ORTHOGONALIZING THE LAST NC-KROLO 
COLUMNS Of R. 

DO 20 IC•KROP,NCOLS 
20 RCIR,IC)=SALPHCIR,ICI 

K•KROP 
GO TO 80 

30 DO 50 I•l,NC 
DO 40 J•l,NCOLS 

40 RII,Jl:VZERO 

SET UP AN NC BY NCOLS MATRIX R SUCH THAT THE 
FIRST NC COLUMNS FORM AN NC BY NC IDENTITY 
MATRIX ANO THE LAST NRHS COLUMNS ARE ZERO­
VECTORS. 

LLSQ0300 
LLSQ0310 
LLSQ0320 
LLSQ0330 
LLSQ0340 
LLSQ0350 
LLSQ0360 
LLSQ0370 
LLSQ0380 
LLSQ0390 
LLSQ0400 
LLSQ0410 
LLSQ0420 
LLSQ0430 
LLSQ0440 
LLSQ0450 
LLSQ0460 
LLSQ0470 
LLSQ0480 
LLSQ0490 
LLSQ0500 
LLSQ0510 
LLSQ0520 
LLSQ0530 
LLS00540 
LLSQ0550 
LLSQ0560 
LLSQ0570 
LLSQ0580 
LLSQ0590 
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106 50 RI I, IJ•ONE LLSQ0600 
C SET UP A VECTOR RHO SUCH THAT RHOIJI IS THE LLSQ0610 
C SQUARE OF THE EUCLIOEAN NORM OF THE J-TH COLUMN LLSQ0620 
C OF A. LLSQ0630 

107 DO 70 J•l,NC LLSQ0640 
108 DOT•VZERO LLSQ0650 
109 DO 60 l•l,NR LLSQ0660 
llO 60 DOT•DOT+AII,Jl•AII,JI LLSQ0670 
111 RHOIJl•OOT LLSQ0680 

C INITIALIZE SAIJI TO RHOIJI. LLSQ0690 
C J•l,NC. LLSQ0700 

112 70 SAIJl•RHOIJI LLSQ0710 
C INITIALIZE A POINTER K. LLSQ0720 

113 K•l LLSQ0730 
C TEST FOR THE COMPLETION OF THE TRANSFORMATION OFLLSQ0740 
C A INTO A MATRIX WHOSE NONZERO COLUMNS ARE LLSQOT50 
C ORTHOGONAL. LLSQ0760 

114 80 IFIK-NCl90,90,710 LLSQ0770 
115 90 IFCK-KRANKtl00,100,300 LLSQ0780 
116 100 MAXP•K LLSQ0790 

c SEARCH FOR THE PIVOTAL COLUMN OF A. LLSQ0800 
l l T KPl•K+l LLSQ0810 
118 IF(lPIVlll0,110,200 LLSQ0820 

110 119 IFISA'(Klll20,120,130 LLSQ0830 
120 120 TMAX•VZERO LLSQ0840 

121 GO TO 140 LLSQ0850 
130 122 TMAXzRHOIKIISA(KI LLSQ0860 

c IF IPIV.EQ.-1, NO PIVOTING IS PERFORMED. LLSQ0870 
140 123 tFCIPIV1290,150,150 LLSQ0880 
150 124 IF(K-NCl160,290,290 LLSQ0890 
160 125 00 190 l•KPl,NC LLSQ0900 

126 IFCSAfllll90,190,170 LLSQ0910 
170 127 TRYzRHO(IJ/SACII LLSQ0920 

128 IFURY-TMAX1190,190,180 LLSQ0930 
129 TMAX•TRY LLSQ0940 180 
130 MAXP•I LLSQ0950 

190 131 CONTINUE LLSQ0960 
132 GO TO 290 LLSQ0970 

c IF IPIV.EQ.l, IVOR, INDEPENDENT VARIABLE LLSQ0980 
ORDERING BY REGRESSION SUM OF SQUARES, IS LLSQ0990 
PERFORMED. . LLSQlOOO 

c 
c 

133 200 TMAX•VZERO LLSQ1010 
134 TMIN•HUGE LLSQ1020 
135 DO 270 J•K,NC LLSQ1030 
136 IF(RHOCJ)-SACJJ•EPSQl270,270,210 LLSQ1040 
137 210 OOT•VZERO LLSQ1050 
138 00 220 I•l,NR LLSQ1060 
139 220 OOT•OOT+AII ,Jl•AU ,NCPI LLSQ1070 
140 DOT•DOT/RHO(Jl LLSQ1080 
141 SUMzVZERO LLSQ1090 
142 00 230 1•1,NR LLSQllOO 
143 AUX•All,NCPI-OOT•ACt,JI LLSQlllO 
144 230 SUM=SUM+AUX*AUX LLSQ1120 
145 IFCNTRAC-21250,240,250 LLSQ1130 
146 240 WRITECKW,8401J,SUM LLSQll40 
147 250 IFCSUM-TMINl260,270,270 LLSQ1150 
148 260 TMIN•SUM LLSQll60 
149 MAXP•J LLSQ1170 
150 270 CONTINUE LLSQ1180 
151 IFCSAIMAXP)l300,300,280 LLSQll90 



152 

153 
154 
155 

156 
157 
158 
159 
160 
161 

162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 

176 
177 
178 
179 
180 
181 
182 
183 

184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 

280 TMAX•RHO(MAXPI/SA(MAXPI 
C [F THE SQUARE OF THE NORM OF THE PIVCITAL 
C COLUMN DIVIDED BY THE SQUARE OF THE NORM OF 
C THAT COLUMN PRIOR TO ELEMENTARY COLUMN 
C OPERATIONS BEING PERFORMED ON IT IS LESS THAN 
C OR EQUAL TO THE SQUARE OF EPS, THE RANK OF A IS 
C DETERMINED TO BE K-1. 

290 IF(TMAX-EPSQl300,300,490 
300 IRANK•K-1 

NO•KRANK-KRBEG+l 
C PRINT.THE RANK. 

IFINTRACl310,310,310 
310 WRITEIKW,8101IRANK 

00 320 I•l,NC 
DO 320 J•NCP,NCOLS 
JJ•J-NC 

320 XSAVEII,JJ,NOl•RtI,JI 
C CALCULATE THE LENGTH OF THE RESIDUAL VECTOR 
C FOR EACH BASIC APPROXIMATE SOLUTION. 

IFIIREFl370,330,330 
330 DO 360 INDl•NCP,NCOLS 

NO•INDl-NC 
OOT•VZERO 
00 350 IRal,NR 
ORES•VZERO 
DO 340 IC,.1,NC 
DINT•R(IC,INDll 
OINTP=SAVECIR,ICI 

340 ORES•DRES+OINTP*OINT 
OSAVE=SAVEIIR,INDll 
DI F•OSAVE-ORES 

350 OOT•OOT+OIF*OIF 
360 BASICINOl=QSORTIOOTI 

C SAVE THE STATE OF THE SYSTEM AFTER FINDING THE 
C BAS IC SOLUTIONS. 

370 IFIKRENO-KRBEGl400,400,380 
380 00 390 IR~l,NC 

00 390 IC•K,NCOLS 
390 SALPHIIR,ICl•R(IR,IC) 
400 IFIIRANK-KROLDl420,410,420 
410 WRITEJKW,8001 

I RGT• l 
GO TO 740 

C CHECK IF THE BASIC SOLUTION IS TO BE PRINTED. 
420 IF(NTRAC)460,430,430 
430 00 450 L•NCP,NCOLS 

NO-L-NC 
WRITEIKW,7901NO 
WRITEIKW,780IIR(IR,Ll,IR•l,NCI 
OOT•VZERO 
00 440 IC•l,NC 

440 OOTzOQT+RIIC,Ll*RIIC,LI 
OOT=OSQR TC DOT I 
WRITEIKW,820100T 
IFIIREF1460,450,450 

450 SOLEN:BASIC(NOl*BASIC(NOI 
WRITEIKW,830)NO,BASIC(NOJ,SQLEN 

460 IFIIRANKl470,470,660 
470 00 480 J•l,NC 
480 RHOMIJl;,ONE 

67 

LLSQ1200 
LLSQ1210 
LLSQ1220 
LlSQ1230 
LLSQ1240 
LLSQ1250 
LLSQ1260 
LLSQ1270 
LLSQ1280 
LLSQ1290 
LLSQ1300 
LLSQ1310 
LLSQ1320 
LLSQ 1330 
LLSQ1340 
LLSQ1350 
LLSQ1360 
LLSQ1370 
LLSQ1380 
LLSQ1390 
LLSQ1400 
LLSQ1410 
LLSQ1420 
LLSQ1430 
LLSQ1440 
LLSQ1450 
LLSQ1460 
LLSQ1470 
LLSQ1480 
LLSQ1490 
LLSQ1500 
LLSQ 1510 
LlSQ1520 
LLSQ1530 
LLSQ1540 
LLSQ1550 
LLSQ1560 
LLSQ1570 
LLSQ1580 
LlSQ1590 
LLSQ1600 
LLSQ1610 
LLSQ1620 
LLSQ1630 
LLSQ1640 
LLSQ1650 
LLSQ1660 
LLSQ1670 
LlSQl680 
LlSQ1690 
LLSQ1700 
LLSQ1710 
lLSQ1720 
LLSQl 730 
LLSQ1740 
LLSQl 750 
LLSQ1760 
LLSQ1770 
LLSQ1780 
LLSQ1790 



200 

201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 

216 
217 
218 
219 
220 
221 
222 

223 
224 

225 
226 
227 
228 

229 
230 
231 
232 
233 
234 
235 
236 
237 

238 
239 

240 
241 
242 
243 
244 

GO TO 720 
c •••• IF MAXP, THE INDEX OF THE PIVOTAL COLUMN, IS K, 

DO NOTHING. OTHERWISE INTERCHANGE THE MAXP-TH 
AND.K-TH COLUMNS OF A AND R, AND THE MAXP-7H 
ANO K-TH COMPONENTS OF RHO ANO SA. 

c 
c 
c 

c 

490 
500 

510 

520 

JFIMAXP-KJS00,530,500 
00 510 I,;,1,NR 
TEMP=ACl ,K) 
All,Kl=AII,MAXPI 
A(l,MAXPl•TEMP 
00 520 I=l,NC 
TEMP•R(I ,Kl 
RII,Kl=Rll,MAXPI 
RII,MAXPl=TEMP 
TEMP=RHOIKI 
RHOIKl•RHOIMAXPI 

.RHOIMAXP)sTEMP 
TEMP=SA(KI 
SAIK)=SA(MAXPI 
SA(MAXi:tl=TEMP 

c •••• 
USE THE MODIFIED GRAM-SCHMIDT PROCESS TO 
ORTHOGONALIZE THE NONZERO COLUMNS OF A. 

530 KPl=K+l 
DO 640 I•KPl,NCOLS 
IF(I-NCPl540,550,550 

540 IF(RHOI 11-EPSO*SA( 111640,640,550 
550 DOT=VZERO 

DO 560 J=l,NR 
560 OOT=DOT+A(J,Kl*AIJ,II 

C DIVIDE THE CALCULATED INNER PRODUCT BY THE 
C SQUARE OF THE NORM OF THE K-TH COLUMN OF A. 

IF(RHO(K)J300,300,570 
570 ALPHA=DOT/RHO(K) 

C SUBTRACT MULTIPLES OF THE K-TH COLUMNS OF A AND 
C R FROM THE I-TH COLUMNS. 

DO 580 Jal, NR 
580 AIJ,Il=AIJ,II-ALPHA*AIJ,K) 

DO 5qo J=l,NC 
590 RIJ,ll=RIJ,II-ALPHA*RIJ,KI 

C RECALCULATE THE SQUARE OF THE NORM OF THE I-TH 
C COLUMN OF A. 

c 

IFII-NC~)60~,640,640 
600 IF(I SW-1) 610,610,620'-
610 RHOII)=RHO(II-ALPHA*ALPHA*RHOIKI 

GO TO 640 
620 DOT=VZERO 

DO 630 J=l,NR 
630 OOT=DOT+A(J,Il*AIJ,1) 

RHO(ll=DOT 
640 CONTINUE 

INCREMENT THE COLUMN COUNTER, K. 
K=K+l 
GO TO 80 

C CALCULATE THE SQUARE OF THE NORM OF THE K-TH 
C COLUMN OF R. 

650 IFIK-NC)660,660,740 
660 DENOM=VZERO • 

KPl=K+l 
DO 670 I=l ,NC 

670 DENO~=DENOM+RII,Kl*Rll,KI 

68 

LLSQ1800 
LLSQ1810 
LLSQ1820 
LLSQ1830 
LLSQ1840 
LLSQ1850 
LLSQ1860 
LLSQ1870 
LLSQ1880 
LLSQ1890 
LLSQ1900 
LLSQ1910 
LLSQ1920. 
LLSQ1930 
USQ1940 
LLSQ1950 
LLSQ1960 
LLSQ1970 
LLSQ1980 
LLSQ1990 
LLSQ2000 
LLSQ2010 
LLS02020 
LLSQ2030 
LLSQ2040 
LLSQ2050 
LLSQ2060 
LLSQ2070 
LLSQ2080 
LLSQ2090 
LLSQ2100 
LLSQ2110 
LLSQ2120 
LLSQ2130 
LLSQ2140 
LLSQ2150 
LLSQ2160 
LLSQ2170 
LLSQ2180 
LLSQ2190 
LLSQ2200 
LLSQ2210 
LLSQ2220 
LLSQ2230 
LLSQ2240 
LLSQ2250 
LLSQ2260 
LLSQ2270 
LLSQ2280 
LLSQ2290 
LLSQ2300 
LLSQ2310 
LLSQ2320 
LLSQ2330 
LLSQ2340 
LLSQ2350 
LLSQ2360 
LLSQ2370 
LLSQ2380 
LLSQ2390 
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245 RHOMIK)•DENOM LLSQ2400 
C CALCULATE THE INNER PRODUCT OF THE I-TH COLUMN LLSQ2410 
C OF R WITH THE K-TH COLUMN OF R, I=K+l, •• ,NCOLS. LLSQ2420 

246 DO 700 l•KPl ,NCOLS ' LLSQ2430 
247 DOT•VZERO LLSQ2440 
248 DO 680 J•l,NC LLSQ2450 
249 680 OOT•OOT+RCJ,U*RIJ,K) LLSQ2460 

C •••• SUBTRACT MULTIPLES Of THE K-TH COLUMN OF R LLSQ2470 
C • • •. FROM THE I•TH COLUMN OF R. LLSQ2480 

250 ALPHA•DOT/DENOM LLSQ2490 
251 DO 690 J•l,NC LLSQ2500 
252 690 RIJ, 1 ),.R(J, 11-ALPHA*RIJ,K) LLSQ2510 
253 700 CONTINUE LLSQ2520 
254 K•K+l LLSQ2530 
255 GO TO 650 LLSQ2540 

C •••• THE RANK OF A IS KRANK. LLSQ2550 
256 110 IRANK•KRANK LLSQ2560 
257 720 IF(NTUCl740,730,no LLSQ2570 
258 730 WRITECKW,S10ttRANK LLSQ2580 
25~ 740 IP(KRANK .. NCl?70,750,7't0 LLSQ2590 
260 750 NO•NC•KRBEG+l LLSQ2600 
261 00 760 1•1 ,NC LLSQ2610 
262 00 760 J•l,NRHS LLSQ2620 
263 JNC•J+NC LLSQ2630 
264 760 XSAVECt,J,NOl•fUl,JNCI LLSQ2640 
265 770 RETURN LLSQ2650 

C •••• CHANGE 51:20.7 TO 4025.14 IF USING DOUBLE PRECISION LLSQ2660 
C •••• CALCULATIONS. LLSQ2670 

266 780 fORMATI/ClX,5E20.7)1 LLSQ2680 
267 790 POllMAT(l47H THE BASIC SOLUttON FOR RIGHT HANO SIDE NUMBER ,151 LLSQ2690 
268 aoo PORMAT(/58H THE RANK REQUESTED IS GREATER THAN THE RANK OF THE SYSLLSQ2720 

•T~MI LLSQ2730 
269 810 FORMAtl/40H THE RANK OF THE SYSTEM OF EQUATIONS IS ,1101 LLSQ2740 
210 820 FORMAT(/44H THE LENGfH OF THE BASIC SOLUTION VECTOR IS ,EZ0.71 LLSQ2750 
271 830 FORMAT I/SSH THE LENGTH OF THE RESlOUAL VECTOR FOR THE BASIC SOLUTILLSQ2760 

•ON FOR RIGHT HANO SIDE NUMBER ,I5,4H IS ,E20.7/75H THE SQUARE OF TLLSQ2770 
*HE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS, LLSQ2780 
•Ezo. 7) LLSQ2790 

272 840 FORMATl/21H RESIOUAL FOR COLUMN ,I5,4H IS ,E20. 71 LLSQ2800 
213 ENO LLSQ2810 



APPENDIX B 

SAMPLE OUTPUT FROM THE PRO~LEM CONSISTING OF THE 

FIRST FIVE COLUMNS OF A 6 BY 6 INVERSE HILBERT 

MATRIX AND A RIGHT HAND SIDE CHOSEN 

TO GENERATE THE SOLUTION VECT0R 

(1. ' .!., l, !, l) 
2 3 4 5 

70 
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EPSl• O.l60E-05 EPS• 0, l60E-05 NR• 6 NC• ISW• 2 
!REF• 1 MAXIT• 10 KRBFG• I KRENO• 5 

THE ORIGINAL COEFFICIENT MATRIX 

0, 3600000E 02 -0,6300000E 03 0,3360000E 04 -0,7560000E 04 0,7560000E 04 

-o, 6300000E 03 O,l470000E 05 -o.ee20000E 05 0,2116BOOE 06 -0.2205000E 06 

0,3360000E 04 -0,BBZOOOOE 05 o. 5644800E 06 -0,1411200E 07 0.1512000E 07 

-0,7560000E 04 0,2116800E 06 -0.1411200E 07 0,3628BOOE 07 -0, 3969000E 07 

0, 7560000E 04 -0,2205000E 06 .O, l512000E 07 -0,3969000E 07 0,44l0000E 07 

~0,2772000E 04 0,8316000E 05 -0, 58212 DOE 06 0,1552320E 07 -O.l746360E 07 

THE C1RIGINAI RIGHT HAND SIDES 

0,4630000E 03 -O, l 386000E 05 0,9702000E 05 -0, 25 87200E 06 0.2910600E 06 
-O, ll6•240E 06 

THE RANK OF THE SYSTEM OF EQUATIONS IS 

THF BASIC SOLUTION FOR RIGHT HANO SIDE NUMBER .l 

o. 3601010E 02 -o.oooooooe oo -o. oooooooE 00 -0,0000000E 00 -o.oooooooE oo 

THE LENGTH OF THE BASIC SOLUTION VECTOR IS 0.3601009E 02 

THE LENr.TH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER l IS 0,3828919E 05 
THE SOUAP:~ OF THE LENGTH OF THE RESIOUAL VECTOR FOR THE BASIC SOLUTION IS O,l466062E 10 

THE DECCMPOSITJON MATRIX FOR RANK EQUAL TO 

0,3600000E oz 0,3942717E 03 -o. 355l 730E 04 0.1038025E 05 -0, 1220B27E 05 

-0,6~00000E 03 -0, 3224 754E 04 0, 32 7552 5E 05 -o, 1022 744E 06 0, 125444BE 06, 

0,3360000E 04 0, 7398688E 04 -0, 806148,BE 05 0.2632230E 06 -0, 3330380E 06 

-0, 7560000E 04 -0,3417063E 04 0, 4026300E 05 -O,l386520E 06 0,1823370E 06 

0, 7560000E 04 -0. 540293BE 04 0, 6053700E 05 -0.2015480E 06 0,2586630E 06 

-0,2772000E 04 o,4zg112se 04 -o, 4991675E 05 0, l709210E 06 -0.2242040E 06 

o.1000000E 01 0, 2R45200E 02 -0, 2368622E 00 0,1341271E-Ol -0.202630BE-02 

O,OOOOOOOE 00 o.1ooooooe 01 0, 6739621E 01 -0,3763733E 00 0,5461901E-Ol 

o.oooooooE 00 -o. 00000.00E 00 O,lOOOOOOE 01 0, 2539779E 01 -0,3686066E 00 

o.oooooooe 00 -0, OOOOOOOE 00 -0, OOOOOOOE 00 O,lOOOOOOE 01 0,9567620E 00 

O,OOOOOOOE 00 -o.oooooooE 00 -o.oooooooE 00 -o.oooooooE 00 O, l OOOOOOE 01 

START ITERATING THE ~ASIC SOLUTION 
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ITl!IUTION O 

THI! RESIDUAL Vl!CTOR FOR IIIGHT HANO SIDE NUMBER 1 I'S 
-0.1333635E 03 0011263631! 04 -0.2397J~E 05 Do 1351636E 05 D.l882363E 05 
-i>.l660400E 05 

THI! LENGTH OF THE IIESIOUAL VECTOlt IS Oo3821919E 05 
THE SOUAIIE OF THE LENGTH OF THE RESIDUAL VECTOR IS Oo1466062E 10 

THE SOLUTION TO THE SYSTEM FOR RIGHT HANO SIDE NUMBER 1 
0.360l010E 02 -o.oooooooE oo -o.oooooooE 00 -o.oooooooE 00 -o.oooooooE 00 

ITERATION 

THE RESIDUAL VECTOR FOR RIGHT HANO SIDE NUMBER 1 IS 
•Oo8333652E 03 Oo8826391E 04 -o. 23971t09E 05 0.1351671E 05 O.l882329E 05 
-O.l660387E 05 

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS D.3828919E 05 
THE SOUARE OF THE LENGTH OF THE RESlllUAL VECTOR FOR THE FINAL SOLUTION IS Ool466062E 10 

THE BASIC APPROXIMATE SOLUTION IS A BETTER SOLUTION THAN THE FINAL SOLUTION 

THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAI«> SIDE NUMBER 1 
o.360l015E 02 o.oooooooE oo o.oooooooE oo o.oooooooE oo o.oooooooE oo 

THE"LENGTH OF THE FINAL SOLUTION VECTOR IS Oo3601013E 02 

START ITERATING THE MINIMUM NOIIM SOLUTION 

ITERATION O 

THE RESIDUAL VECTOR FOR RIGHT. HANO SIDE NUMBER l JS 
-0.629T304E 02 Do l·0119UIIE 04 -o. 3764518E 04 0.2665347E 04 O. 321t06 79E 04 
•O. 32431 77E 04 

THE LENGTH OF THE RESIDUAL VECTOR IS Oo6591tlt92E 04 
THE SQUARE OF THE LENGTH OF THE IIESIOUAL VECTOR IS Oo431t8734E 08 

THE SOLUTION TO THE SYSTEM FOR·RJGHT HANO SIDE NUMBER 1 
0.69081t72E•04 -0.1744071tE·02 Ooll76700E-Ol -0.3051t278E-Ol 0.33651t93E-Ol 

ITEltArtON 

TH~ RESIDUAL Vl!CTOtt ~OR RIGHT HAND SIDE NUMBER 1 IS 
-0.629T322E 02 Ool089Tlt3E 04 -0.3764552E 04 0.2665lt38E 04 0.32405BOE 04 
-0.3243138E 04 

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.65941t80E 04 
THE SQUARE QF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS O.lt34B71BE 08 

THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 1 
Oo6908"71tE-Olt -0.1_7...,.075E-02 Oo ll 767DOE-Ol -o. 30542T9E-Ol 

THE LENGTH OF THE FINAL SOLUTION.VECTOR IS 

THE RANK OF THE SYSTEM OF EQUATIONS IS 2 

Oo4697899E-Ol 

Oo33651t94E-Ol 



THE BASIC ~OLUTICN FOR RIGHT HANO SIDE NUMBER 

-0. 391A518E 01 -0,0000000E 00 -o. oooooooe oo -o.oooooooE oo O. 7271403E-Ol 

THE LENGTH OF THE BASIC SOLUTION VECTOR IS 0.3919l92E 01 

THE LEIIIGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HANO SIDE NUMBER 1 IS 
Tl'E SQUARE .C'f THE LFNGTH Of THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS 0,30b5117E Ob 

THE OECONPOS!TiON MATRIX FOR RANK EQUAL TO 

O. 3600000E 02 

-0.6300000E OJ 

0,3360000E 04 

-o. 75hOOOOE 0.4 

0 • 7560000E 04 

-o.2n2000E 04 

o.1000000E 01 

o.oooooooE oo 

o.oooooooE oo 

o.oooooooE oo 

o.oooooooe oo 

-0, 1220827E 05 

0.1254448E 06 

-o. 3 3303 BOE Ob 

0,1823370E 06 

0,2586630E 06 

-0. 2 242040E 06 

-o. 5491187E 03 

-o.oooooooE oo 

-o.oooooooE oo 

-o.oooooooe oo 

o.1000000E 01 

START ITERATING THE BASIC SOLUTION 

ITFRATln'I O 

-o. 6808057E 03 

0,3255375E 04 

-o. 2296938E 04 

-0, 2615789E 04 

-o. 2'107891E 03 

0, 2807582E 04 

-o. 6286052E 02 

-o. oooooooE oo 

0.1 ooooooE 01 

-o. oooooooE oo 

-0, 2351623E 00 

THE Rf S IOUAL vec TOR FOR RIGHT HAND S !DE NUMBER 1 IS 
o. 54)4857E 02 -o.n52224E 03 o. 2426062E 03 

-o. 30\2573E 03 

THE LENGTH OF THE RESIDUAL VECTOR IS 0,5536350E 03 

0,8523711E 03 

-0,4371688E 04 

0,3305250E 04 

0,3651'138E 04 

0, 324125CE 03 

-0,4057813E 04 

0,1585388E-Ol 

-o.oooooooe oo 

0.1109883E 01 

o.1000000E 01 

0.51'14420E 00 

0,25799l2E 03 

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0,3065118E 06 

THE SOLUTION TO THE SYSTEM FOR RIGHT HANO SIDE NUMBER 1 
-o.391~51BE 01 -o.oooooooe oo -o.oooooooe oo -o.oooooooE oo 

ITERATION 

THE RFSIOUAL VECTOR FOR RIGHT HANO SIDE NU~BER 1 IS 
0,5434805E 02 -0.2952134E 03 0,24255B2E 03 

-o. 3017 l 75E o, 

TtlE LENGTH (1F THE RESIDUAL VECTOR IS 0.5536348E 03 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0,3065116E 06 

THE SOLUTION TO THE ~YSTEM FOR RIGHT HANO SIDE NUMBER 

0, 1363816E 03 

-0,5748318E 03 

o. 3635234E 03 

0,4346638E 03 

0,6111328E 02 

-0,445007BE 03 

0. 26 77550f-02 

o.1ooooooe 01 

0,1456825E 00 

-0, l102253E 00 

-0,'1915'154E-Ol 

0,1512101E 02 

0, 7271403E-Ol 

0,1501286E 02 

73 

0.5536350E 03 



-0.3918504E 01 

ITERATION 2 

O~OOOOOOOE 00 o.oooooooE oo 

THE RESIDUAL VECTOR FOR RIGHT HANO SIOE NUMBER l ·lS 
0.5434805E 02 •0.2952l34E 03 Oo2425582E 03 

-o. 3012 l75E 03 

o.oooooooE qo 

O.Z580994E 03 

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION lS Oo5536348E 03 

74 

Oo7271403E-Ol 

Ool501286E 02 

THE SQUARE OF THE LEN.GTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.3065116E 06 

THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HANO SIDE NUMBER 
-o.39l8504E 01 o.oooooooE oo o.oooooooe oo 

THE LENGTH OF THE FINAL SOLUTION VECTOR 15 

START ITERATING THE ~INIMUM NORM SOLUTION 

lTERAtlON O 

0.3919178E 01 

THE RESIDUAL VECTOR FOR RIGHT HANO SIDE NUMBER 1 IS 
O.ll96937E 02 •0.9165155E 02 o.9815402E 02 

-O.l24532BE 03 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.2059540E 03 

1 
o.oooooooE oo 

0.9341266E 02 

THE SQUARE OF THE LENGTH OF tHE RESIDUAL VECTOR IS 0.4241705E 05 

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 
-0 .1122564E•02 . 0.1701020E-Ol -Oo492790BE-Ol 0.7638268E-02 

ITEUTION 

THE RESIDUAL VECTOR FOR RIGHT HANO SIDE NUMBER l lS 
0.1196851E 02 -0.9162877E 02 0.9800777E 02 Oo9377876E 02 

•Oo1243818E 03 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.2059540E 03 
THE SQUARE Of THE Ll:NGTH OF THE. RESIDUAL VECTOR IS Oo4241707E 05 

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 
-o. 1122562E-02 Oo l 701.0l 7E•Ol •O. 4927897E-Ol O. 7638l49E-02 

ITERATION 2 

THE RESIDUAL VECTOR FOR RIGHT HANO SIDE NUMBER l IS 
0.11968461! 02 . •0.91621l2E 02 Oo9799654E 02 Oo 9380BOlE 02 

-o. l24369le 01 

THE LENGTH OF THE RestOUAL VECTOR FOR THE FINAL SOLUTION 15 0.2059540E 03 

O. 7Z71403E-Ol 

-0.2290949E 01 

0.906230BE-Ol 

-0.2683254E 01 

o. 90623 02E-Ol 

-0.2715523E 01 

THE SQUARE OF THE LENGT!l OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.4241707E 05 

THE FINAL SOLUTION TO·tHE ·sYSTEM FOR THE RIGHT HANO SIDE NUMBER 
-o.1122s62e-02 o.1101011E-01 -0.4927B97E-01 

THE LENGTH OF THE FINAL SOLUtlON VECTOR lS 

THE RANK OF THE SYSTEM OF EQUATIONS 15 3 

0.1048326E 00 

l 
Oo 763813 BE-02 0.9062302E-Ol 
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THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER 

o.5984886E 01 o.5876591E 00 -o.oooooooe 00 -o.oooooooE oo 0.8512183E-Ol 

THE LENGTH OF THE BAS IC SOLUTION VECTOR IS 0.6014261E 01 

THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HANO SIDE NUMBER l IS 0.1305! l 3E 02 
THE SOUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS 0.5336465E 04 

THE DECOMPOSITION MATRIX FOR RANK EOUAL TO 

0.3600000E 02 -O.l220827E 05 Ool363816E 03 -O.Z807053E 03 0.133!041E 03 

-0.6300000E 03 0.125444BE 06 -o. 5748318E 03 0.4040898E 03· -O.l 7515B2E 03 

0.3360000E 04 -0.3330380E 06 O. 3635234E 03 O.Z850486E 03 -0.1274695E 03 

-0.7560000E 04 0.10233 70E 06 O. 4346638E 03 0.4069238E 02 -o. 2116294E 02 

O. 7560000E 04 0.2586630E 06 O. 6lll328E 02 -o • 183612 3E 03 o. 7392822E 02 

-o. 2 71ZOOOE 04 -0.2242040E 06 -o. 4450018E 03 -o; 3606219E 03 0.1518242E 03 

o.1000000E 01 -0.549ll87E 03 O. l685228E 02 -0 • 1022 72 9E 02 -0.1663666E 00 

o.oooooooE 00 -o. OOOOOOOE 00 o.1000000E 01 -0.8308134E 01 O.l486743E 01 

o.oooooooE 00 -o.oooooooE 00 -o.oooooooE 00 -o.oooooooE 00 o.1ooooooe 01 

o.oooooooE 00 -O. OOOOOOOE 00 -o. OOOOOOOE 00 o.1000000E Ol 0.5393688E 00 

O. OOOOOOOE 00 O. l OOOOOOE 01 0.2112422E-Ol o. 6049420E 00 0.2l11915E 00 

START ITERATING THE BASIC SOLUTION 

ITERATION O 

THE RESIDUAL VECTOR FOR RIGHT HANO SIDE NUMBER l IS 
-O.Z57967!E Oz' 0.4256795E 02 0.2908449E OZ O. 2302 52 3E 01 -0. 205l159E 02 
-0.3983452f 02 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.1305113E 02 
THE SQUARE OF TUE LENGTH Of THE RESIDUAL VECTOR IS 0.5336469E 04 

THF. SOLUTION TO THE SYSTEM FnR RIGHT HANO SIDE NUMBER 1 
o.59A4A86E 01 o.s976597E oo -o.oooooooE oo -o.oooooooe oo 0.8512783E-Ol 

ITE~HION 

THE RESIOUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 
-0.2580716E 02 0.4262851E 02 0.2894385E 02 0.2535038E 01 -0.2078~29E 02 
-0.3970796E 02 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.7304846E 02 
. THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.5336.078E 04 

THE SOLUTION TO THE SYSTEM FOR RIGHT HANO SIDE NUMBER l 
o.59s&o&oE .01 o.sa11273E oo o.oooooooe oo o.oooooooE oo O.B512926E-Ol 
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ITERATION 2 

THE RESIDUAL VECTOR FOR RIGHT HANO SIDE NUMBER 1 IS 
-0.25807l6E 02 0.4262851E 02 0.2894385E 02 0.253503BE 01 -o. 2078429E 02 
-0.3970796E 02 

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.7304846E 02 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.5336078E 04 

THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 
o.5986060E 01 o.5877273E oo o.oooooooE oo 

THE LENG.TH OF THE FINAL SOLUTION VECTOR IS 

START ITERATING THE MINIMUM NORM SOLUTION 

ITERATION O 

0.60l5442E 01 

THE RESIDUAL VECTOR FOR RIGHT HAND SIOE NUMBER 1 IS 
-o.1412092E 01 o.1000010E 01 o.40346B4E 01 
-0.7957222E 01 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.1227554E 02 

l 
o.oooooooE oo 

-0.97l4581E 00 

THE SOUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS O.l506889E 03 

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER l 
O.ll59034E-Ol -0.7548279E-Ol 0.2888909E-Ol 0.1005700E 00 

ITER.ATION 

THE RESIDUAL VECTOR FOR RIGHT HANO SIDE NUMBER l IS 
-0.14l9850E 01 0.7070168E 01 0.3861511E 01 -0.6BB727BE DO 
-o. 77399B4E 01 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.1224521E 02 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1499453E 03 

THE SOLUTION TO THE SYSTEM FOR RIGHT HANO SIDE NUMBER l 
O.ll59722E-Ol -0.7553279E-Ol 0.2B93130E-Ol O.l006204E 00 

ITERATION 2 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER l IS 
-0.1419912E 01 0.7071Bllt Dl 0.38~0997E 01 -0.6624421E 00 
-0.7729140E 01 

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS D.1224554E 02 

O.B512926E-Ol 

-0.4376644E 01 

O.l42Bl52E 00 

-0. 4 75911 OE 01 

0.1428436E 00 

-0.4787273E 01 

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS O.l499532E 03 

THE FlNAL SOLUTION TO THE SYSTEM FOR THE RIGHT HANO SIDE NUMBER 
O.ll59722E-Ol -0.7553279E-Ol 0.2893132E-Ol 

THE LENGTH OF THE FINAL SOLUTION VECTOR IS 

THE RANK OF THE SYSTEM OF EQUATIONS IS 

THE !ASIC SOLUTION FOR RIGHT HANO SIDE NUMBER 

0.1928B72E 00 

4 

l 
O.l006204E 00 0.1428436E 00 
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-o. Z9536Zlf 01 -O.Z370200E 00 -o. OOOOOOOE 00 0.1109856E 00 

THE LENGTH OF THE BASIC SOLUTICN VECTOR IS 0.3078319E 01 

THE LENGTH OF THE RES !DUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HANO SIDE NUMBER l IS 0.8251427E 01 
T>fE SQUARE OF THE LENGTH OF THE RESIOUAL VECTOR FOR THE BASIC SOLUTION rs 0.6818509E 02 

THE OE COMPOS IT ION MATRIX FOR RANK EQUAL TO 4 

o. 31,pooooE 02 -O. l 2208Z7E 05 O.l3638l6E 03 0.1331047E 03 O. 2305908E 02 

-0.6300000E 03 0.12 54448E 06 -o. 574831 BE 03 -0.1151582E 03 o. 4353271E 01 

o. 3360000E 04 -0.3130380E 06 O. 3635234E 03 -0.12 746~5E 03 -o. 5855225E 01 

-o. 7560000E 04 0.18233 70E Ob o. 4346638E 03 -o .2l76294E 02 -0.8973831E 01 

0.75&0000E 04 0.2586630E 06 0.61ll328E 02 O. 7392 822E 02 -O. l489728f 02 

-o. 2772000E .04 -0.224Z040E 06 -0.4450078E 03 0.1518242E 03 -0.1414307E 02 

O. !OOOOOOE 01 -0.549ll87E 03 0.16852ZBE oz o. 3771204E 02 0. !583708E 02 

O. OOOOOOOE 00 -o.oooooooE 00 o.1ooooooe 01 0.5967891E 01 O. 53ll466E 01 

O. OOOOOOOE 00 -o.oooooooE 00 -o.oooooooe 00 O. IOOOOOOE 01 0.2282146E 01 

o.oooooooE 00 -o.oooooooE 00 -o. oooooooE 00 -o.oooooooe 00 O.lOOOOOOE 01 

o.oooooooE 00 o.1000000E 01 O. 2ll2422E-Ol -0.1090953E 00 O. 3559704E 00 

START ITERATING THE BASIC SOLUTION 

ITERATION 0 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 
0.5751670E 01 O.l05588ZE 01 -0.1063993E 01 -o. 2833993E 01 -0.2997540E 01 

-0.3979918E 01 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.8257427E 01 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 

THE SOLUTION TO THE SYSTEM FOR RIGHf HANO SIDE NUMBER l 
-0.2953621E 01 -0,826B492E 00 -O.Z370200E 00 -0.0000000E 00 O,ll09856E 00 

ITERATION 

TH< RESIOUAL VECTOR FOR RIGHT HANO SIOE NUMBER l IS 
0.5795353E 01 O.l082843E 01 -0.1307373E 01 -0,2626lllE 01 -0,3283153E 01 

-o. 3707628E 01 

THE LENGTH OS THE RESIOUAL VECTOR IS 0.8239532E 01 
THE SOUARE OF THE LENGTH Of THE PESIOUAL VECTOR IS 0,678899lE 02 

THE SOLUTION TO THE SYSTEM FOR RIGHT HANO SIDE NUMBER 1 
-O,Z969888E 01 -0,8297057E 00 -0,2375268E 00 o.oooooooe oo 0, 1110445E 00 



78 

ITERATION 2 

THE RESIOUAL VECTOR FOR RIGHT HANO SIOE NUMBER l IS 
0.5795730E 01 0.1074282E 01 -0.1251246E 01 -0.2769856E 01 -o. 312671 SE 01 

-0.3768431E 01 

THE LENGTH OF THE RESIDUAL VECTOR IS O.B243764E 01 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6795966E 02 

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER l 
-0.2969910E 01 -0.8297095E 00 -o. 23 752 75E 00 o.oooooooE 00 O. lll0445E 00 

ITERATION 3 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 
o. 5795730E 01 0.1074282E 01 -0.12 51246E 01 -0.2769856E 01 -0.3126715E 01 

-0.3768431E 01 

THE LENGTH Of THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS O.B243764E 01 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.6795966E 02 

THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIOE NUMBER l 
-0.2969910E 01 -0.8297095E 00 -0.2375275E 00 o.oooooooE oo O. l 110445E 00 

THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.3094758E 01 

START ITERATING THE MINIMUM NORM SOLUTION 

lTERAT ION O 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER l IS 
0.157674BE 01 0.2459836E 00 0.1041412E-Ol -0.1475101E 01 -0.1892567E-Ol 

-O. l467851E 01 

THE LENGTH OF THE RESIDUAL VECTOR .IS 0.2622519E 01 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6B77613E 01 

·THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER l 
-0.8600903E-Ol O. l348953E 00 o. l 762071E 00 0.1810695E 00 0.1754409E 00 

ITERATION 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER l IS 
0.1586388E 01 0.2919084E 00 -0.3293967E 00 -o. 790l 7l6E 00 -0.8221400E 00 

-0.1044050E 01 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.225B464E 01 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.510066lE 01 

THE SOLUTION TO THE SYSTEM FOR RIGHT HANO SIDE NUMBER l 
-O.B656365E-Ol 0.1360603E 00 Ool770B99E 00 o.1Bl5757E 00 O. 1 756532E 00 

ITERATION 2 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER l IS 
0.15B6201E 01 0.2967024E 00 -0.3611B9BE 00 -o. 7083l06E 00 -0.9115B63E 00 

-0.1009189E 01 
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THE LENGTH OF THE RESIDUAL VECTOR IS 0.2255144E 01 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.50B5675E 01 

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 
-O.B656299E-Ol Ool3605B9E 00 0.1770889E 00 0.1Bl5751E 00 0.1756529E 00 

ITERATION 3 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 
0.1586201E 01 0.2967024E 00 -0.36ll89BE 00 -0.70B3l06E 00 -o. 9115B63E 00 

-0.100918~E 01 

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.2255144E 01 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.5085675E 01 

THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 
-0.8656299E-Ol 0.1360589E 00 0.1770B89E 00 

THE LENGTH. OF THE FINAL SOLUTION VECTOR IS 

THE RANK OF THE SYSTEM OF EQUATIONS IS 

THE DECOMPOSITION MATRIX FOR RANK EQUAL TO 

0.360000DE 02 

-o. 6300000E 03 

0.3360000E 04 

-o. 7560000E 04 

0.7560000E 04 

-o. 2772000E 04 

o.1ooooooe 01 

o.oooooooe oo 

o.oooooooE oo 

o.oooooooE oo 

o.oooooooe oo 

-0.1220!l27E 05 

0.125444BE 06 

-o. 33303BOE 06 

o. 18233 70E 06 

o. 2586630E 06 

-0.2242040E 06 

-0.5491187E 03 

-o.oooooooE oo 

-o.oooooooe oo 

-o.oooooooe oo 

o.1000000E 01 

START ITERATING THE BASIC S.OLUTION 

ITERATION O 

0.3481222E 00 

5 

5 

0.1363816E 03 

-0.5748318E 03 

Oo3635234E 03 

0.4346638E 03 

o. 6lll328E 02 

-o. 445007BE 03 

0.1685228E 02 

o.1000000E 01 

-o.oooooooE oo 

-o.oooooooE oo 

O. 2112422E-Ol 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER l IS 
o.5903137E-Ol -0.26410B2E-Ol O. 2598023E 00 

-0.4057903E 00 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.1043110E 01 

l 
0.1Bl5751E 00 

0.1331047E 03 

-0 .1751582E 03 

-0.1274695E 03 

-o. 2176294E 02 

o. 7392 822E 02 

0.151B242E 03 

0.3771204E 02 

0.5967891E 01 

o.1000000E 01 

-o.oooooooE oo 

-0.1090953E 00 

-0. 62 554B4E 00 

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR JS 0.1088079E 01 

T.HE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 

0 .1 756529E 00 

0.230590BE 02 

0.4353271E 01 

-0.5855225E 01 

-o. 8973831E 01 

-O. l489728E 02 

-0.1414307E 02 

0.1583708E 02 

0.5311466E 01 

0.2282146E 01 

o.1ooooooe 01 

0.3559704E 00 

0.67B5452E 00 



0.9558830E 00 

ITERATION 

0.4843262E 00 0.3263453E 00 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 
Ool099586E-02 •0.1439452E•Ol Oo9713173E•Ol 

•Oo ll 10306E 00 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.4102879E 00 

0 .-24685 76E 00 

-0.2567983E 00 

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS Ool683362E 00 

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 
0.9997082E 00 Oo4999225E 00 0.33330S5E oo 0.21t99895E 00 

ITERATION 2 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 
•Oo2093315E•03 0.5882978E•02 •0.3905296E•Ol O. 100085 7E 00 
o. 4262781E•Ol 

THE LENGTH OF THE RESIDUAL VECTOR IS Ool591172E 00 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.2531829E·Ol 

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER l 
Oo9999990E 00 0.4999998E 00 0.3333333E 00 

ITERATION 3 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 
-0.3291368E-03 o.,o71t807E-02 -0.5993128E•Ol 0.1531076E 00 

Oo6493306E•Ol 

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.2431152E 00 

80 

Ool988596E 00 

0.2835846E 00 

O. l999967E 00 

-0.1091981E 00 

o. 2000000E 00 

-0.1666510E 00 

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.5910502E·Ol 

THE ~INAL SOLUTION TO THE SYSTEM FOR THE RIGHT HANO SIDE NUMBER 
Oo9999999E 00 Oo4999999E 00 Oo3333333E 00 

THE LENGTH OF THE FINAL SOL UT.ION VECTOR IS 

START ITERATING THE MINIMUM NORM SOLUTION 

ITERATION O 

O.lZ09797E 01 

THE RUlDUAL vecTOR FOR IUGHT. HANO Sloe NUMlll!R 1 IS 
O.S903137E-Ol •0.2&41082E•01 0.25980Z3E 00 

~0,405'r903E 00 

THE LENGTH OF THf RESIOUAL VECTOR IS 0.1043llOE 01 

1 
0.2499999E 00 

·0.6Z55484E 00 

THE SOUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1088079E 01 

THE SOLUTION TO THE_ SYSTEM FOR RIGHT HAND SIDE NUMBER l 
o.9558830& oo o.4843262E oo o.3263453E oo 0.2468576E 00 

ITERATION 

THE RESIDUAL VECTOR FOR RIGHT HANO SIDE NUMBER l IS 
0.1099586E•02 •O.l439452E•Ol 0.9713173E·Ol ·O.Z567983E 00 

o.2ooooooe oo 

0.6785452E 00 

0.1988596E 00 

0,2835846E 00 



-O. lll0306E 00 

THE LENGTH OF THE RESIDUAL VECTOR IS 0.4102879E 00 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS O.l683362E 00 

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUM8ER l 
0.9997082E oo· 0.4999225E 00 0.3333055E DO 0 .2499895E 00 O.l999967E 00 

ITERATION 2 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER l IS 
-o. 2093315E-03 O. 5882978E-02 -o. 390529bE-Ol 0.1000857E 00 -0.1091981E 00 

0.4262781E-Ol 

THE LENGTH OF THE RESIDUAL VECTOR IS Ool591172E 00 
THE SOUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0 0 2531829E-Ol 

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER l 
0.9999990E 00 0.4999998E 00 0.3333333E 00 0.2499999E 00 0.2000000E 00 

ITERATION 3 

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER l IS 
-0.3291368E-03 o.9074807E-02 -0.5993128E-Ol 0.1531076E 00 -0.1666510E 00 

0.6 ... 93306E-Ol 

THE LENG.TH Of THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.2431152E 00 
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.5910502E-Ol 

THE FINAL SOLUTICN, TO THE SYSTEM FOR THE RIGHT HANO SIDE NUM8ER 
0.9999999E 00 0.4999999E 00 0.3333333E 00 

THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.1209797E 01 

THE ERROR MATRIX 

0.2461610E 00 0.7977712E-Ol 0.33639lOE-Ol 

o. 7977712E•Ol 0.2632471E-Ol O. ll21059E-Ol 

O. 3363910E-Ol 0.1121059E-Ol 0.4800081E-02 

O. l456363E-Ol 0.4884373E-02 O. 2098641E-02 

o.514068BE-02 O. l 731 764E-02 o. 7458888E-03 

l 
0.2499999E 00 

0.1456363E-Ol 

0.4884373E-02 

o. 2098641E-02 

0.9l95909E-03 

O. 327.34 71E-03 

O. 2000000E 00 

0.5140688E-02 

0.173 l764E-02 

0.7451!888E-03 

O. 32734 71E-03 

O.ll66535E-03 
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LLCR AND LLSQ 
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The following flowchart and tables will give the user of the LLCR 

package the information he needs to set the FORTRAN variables needed by 

the package. A complete description of the calling sequence is given in 

Appendix A, 

The first group of variables are usage independent. They should 

b~ set .at the values given below for every problem solved by the package, 

Table VII contains the FORTRAN variables in the group and the correspond~ 

ing values. 

TABLE VII 

SETTING THE USAGE INDEPENDENT FORTRAN 
VARIABLES NEEDED BY THE LLCR PACKAGE 

FORTRAN Variables Values 

KR END 5n, ;.: KRBEG 

EPS 25 

EPSl 26 

NR m 

NC n 

LA ·:.:m 

LRE 2n 

n is the number of columns in the coefficient matrix, mis the number of 

rows in the coefficient matrix, and5 is the relative accuracy of the 

computer. 

The values at which the second group of variables are set depends 

upon the amount of extra storage available for the program, the accuracy 

desired for the final solutions, and the amount of extra execution time 

the user is willing to sacrifice. Figure 2 contains a flow chart that 



will show the user how to set this group of variables. 

!REF• -1 
MAXIT • 0 

LSAV = 1 

No 

Start 

Yes 

LSAV;.:: m 

yes 

!REF= 1 

MAXIT ;.:: 1 

Exit 

no IREF = 0 

MAXIT = 0 

Figure 2. Setting the.Usage Dependent FORTRAN Variables 
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The third group of variables are usage dependent; these variables 

will be set differently for different usages of the package. The 

appropriate value for each variable in this group for each usage is 

given in Table VIII. 

TABLE VIII 

SETTING THE USAGE DEPENDENT.VARIABLES NEEDED 
BY THE LLCR PACKAGE 

Program Usage IPIV KR.BEG NIUiS 

To solve a system or systems of 0 n h 
equations AX•B 

To perform IVOR or "forward. 1 1 1 
selection" 

To solve AX=B while treating 0 c!: 1 h 
the entries in A as if they 
had a variable pre~ision 

To fit a polynomial tQ data -1 1 1 

To calculate a generalized 0 n m 
inverse 

LSAL 

1 

~ n 

:.? n 

~ n 

1 

The tables and flowchart~ given above and the information given in 

Appendix A should should enable the user to work with LLCR and LLSQ 

with relative ease. The routines are also documented internally with 

co~ment cards. 
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