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PREFACE

This report describes the use of modified Gram-Schmidt orthogonal-
ization in computer routines that find a basic approximate solution and
the least squares solution of minimum Euclidean norm. to the system of
equations AX=B, where A is an m by n matrix or rank r, X i8 an n by h
matrix, and B is an m by h matrix. A can be treated as if it were of
a user-specified rank, k.

The report includes a description of the application of the rou-
tines to (a) perform stepwise regression analysis and (b) assess the
effect on the solution of decreasing the reliability of the entries in
the coefficient matrix.

I am deeply grateful to Dr. John P. Chandler for his advice and
support during the preparation of the report. I am also grateful to

Dr. Donald Grace for his help in the organization of this paper.
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CHAPTER 1
INTRODUCTION

This réport discﬁssés the use of modified Gram-~Schmidt ortho-
gonalization for solving generalized linear least squares problems and
performing stepwise régréssion analysis. Chapter I of this report
describes some sources of generalized linear least squares problems.
Chapter II presents a general discussion of the generalized linear
least squares problem. The closely related problem of stepwise regres-
sion analysis is'dispussed,in Chapter iII. An algorithm constructed
by.E. E. Osborne (1) to solve genéralized linear least squares problems
and some modifications and additions that have been made to Osborne's
algorithm aré deséribed in Chapter IV. A package consisting of two
computer subroutines hés been written to implement the algorithm des-
cribed inVChapter IV. Chapter V describes test cases that were run
using the package énd the results of these test cases.

Linear Least Squares Problems in Curve
and Surface Fitting

One source of a generalized linear least squarés problem occurs
when trying to find the function,

y = £(t,c),
that best (to be defined) represents a set of data points,
{ysthy,

where y is the dependent variable, the t are the independent variables,



the ¢ are the coefficients to be determined (the solution vector),
f(EaE) is a function from a given‘family of functioﬁs that is linear
in ¢, and {y;E}i is the i-th observation. Note that £(t,c) is not
necessarily linear in t.

For example, we may wish»to‘represent the set of data points,
"(ti,yi) = (2,3), (0,1, (1,1),"

by a function, f(t,c), from some given family of functions, that gives
the best fit. ¢ is called the vector of parameters for this family.
The function that gives the best fit is/taken often to be the function

for which

m ‘2

is minimized, where m is the number of data points and the general form
of f(t,c) has been pre-determined. This definition was proposed by
Gauss (2) and is the most often used definition of the best fit (3).
Finding the vector c that minimizes (1.1) is called a linear least

squares problem. The discrepancy, or error,
f(Ei ’E) - ¥i

is called the i-th residual.
It will be shown that a necessary and sufficient condition for

expression (l.1) to possess minima is that

...._a_ Izl':l (f 2) =0
a:j 121 (Ei ,2) _Yi) =



for j=1,...,n, where n is the number of constants, Cys which are to be
determined.

Taking the first partial derivatives with respect to ey, J=1l,¢..,m,
we obtain

m
X (f(Ei:E) = Yi) a'f(Ei,S)
iml ) e '

=0 1.2)

for j=1,...,n.

If we attempt te fit the above data to a function of the form
£(t,c) = cytesty,

equations (1.2) generate the system of equations

bey +10c, =7 (1.3)

These are called the 'normal equations."

Selving the normal equations, we obtain

- 1l = -1
c1 7 and ch 14 .
An equivalent way of looking at the problem of finding the curve
that best fits the data is that we are trying to find the least squares

solution of the overdetermined system of.equations
T h. vT % g' d :
C = where - - ;
c = y, where id and y 1 R

or
Cl + 3'02 = 2
Cl + 0'02 1l

(1.4)
Cl + 1".C2 = ],



Problems of this form can also arise from situations unrelated to
curve fitting.

There is no vector c such that (1.4) is satisfied exactly since
there are more equations than variables and none of the three equations
is a restatement  (linear superposition) of the other two. However,

there is a point (Cl’c2) such that
' 2 _ 2 _ 2
(cl + 3¢, - 2)° + (c1 1)“ + (c1 + ¢, 1)

is a minimum. That point is (11/7,1/14). This corresponds to finding

a vector ¢ such that

HTe -yl (1.5)

is a minimum, where i||Tc - y|| 1s the length (or "Euclidean norm") of

the vector Tc - y. The length of the vector w is defined to be

el = ot - w =] F,

and is denoted by llgjl;

The ¢ that minimizés (i.S) is the linear least squares solution of
equations (1.4). |

The above example had only one independent variable. In general.
there can be any number df independent variables in the function that
is used-as the mathematical model for the curve to be fitted. An
example with two independent variables is the following.

The distance of penetration of a projectile into a target depends
upon the thickness and hardness of the target plate (4). A simple

mathematical model might include only the thickness (tl) and hardness

(t2) and have the linear form



y = cl + cztl + c3t2,

where §¥ is an estimate of the dependent variable y (penetration), and
the c; are the coefficients to be determined.

The need to solve a generalized linear least squares problem occurs
almost any time one seeks the solution of an overdetermined system of

equations (one which has more equations than variables),

Ax=b.

Only in exceptional cases can all of the equations be satisfied. We
could choose a subset of the equations'to be satisfied exactly. The fit
of the remaining equations would be disregarded. 1In the least squares

approach, we fit all the equations as closely as possible.



CHAPTER II
THE GENERALIZED LINEAR LEAST SQUARES PROBLEM
Problem Definition

The definition of the generalized linear least squares problem will

be given after a short discussion of systems of linear equations.

Systems of Linear Equations

Consider the system of linear equations Ax=b consisting of m equa-
tions in n variables. The coefficient métrix,_A, is an m by n matrix,
where m may be less than, equal to, or greater than n, b is an m-
component vector (the "right hand side", or vector. of comstants), and
x 1s an n-component vector (the solution vector).

‘Let the j~th column of a matrix, A, be denoted by Aj. The column
rank of the matrix, A, is defined to be the maximum number of linearly
independent columns in A (5). A is linearly independent of the other

columns of A if there do not exist constants 0; such that

n
,21 aiAi = AJ.

1=

The row rank of A is the number of linearly independent rows in
A (5). The row rank is equal to the column rank (6). The term rank
refers to the column rank throughout the remainder of this report.

The rank of a matrix is less than or equal to min(m,n). If the rank



of the matrix is equal tc n, the matrix is said to be of full rank.

Exactly Determined Systems of Equations (m=n)

If A is an m by n matrix of full rank n, the ordinary inverse, A~1,

of A, exists, and ngflE, The solution vector x is unique (3).

Underdetermined Systems of Equations (m<n)

If the system of equations has more variables than equations (m<n),
the system of equations is probaﬁly consistent. A system of equations
is consistent if the rank of the coefficient matrix is equal to the rank
of the augmented matrix (A,b) (5). The rank of the system of equa-
tions is less than or equal to m, since any set of m+l or more m-
component vectors is linearly dependent (5). When the number of
variables is greater than the .number of equations, there is a linear
subspace of solutions. Two types.of solutioens are usually of interest
in this case. They are a basic approximate solution that has at most
r nonzero components, where r is the rank of the coefficient matrix,
and the least squares solution of minimum length (Euclidean norm).

These types of solutions will be described in detail in the next

saction.

Overdetermined Systems of Equations (m>n)

If the matrix, A, i1s an m by a matrix, where m isAgreater than‘h,
the system of equations Ax=b is most likely inconsistent since there
are more equations than variables. A system of equations i3 inconsistent.
if the rank of the coefficient matrix is not equal to the rank of . the

augmented matrix (A,b) (5). With m>n, if the system of equatioms is



consistent, then m-n of the equations are restatements of other equa-
tions or combinations of other equations in the‘tjstem; they provide
no new information. If the system of equations 1s consistent, thera
exists a unique vector x such thaﬁ,Ag:g.

If the system of equations is dnconsistent, there does not exist
a vector x such that Ax=b. In this case, the conventional choice is
to find a Vector'g.that minimizes the length of the vector Ax-b. As

mentioned previously, the length (or Euclidean norm) of a vector w is

- —
1wl J.vz w2 Ve

+ The vector Ax-b is called the 'residual

defined to be

and is denoted by IIEJ
vector.'" A vector, x, that produces the minimum value for the length
of the residual vector is called av"least squares solution.'" The
problem of finding a solution vector that produces a residual vector

of minimum length is called a "linear least squares problem.'

If the rank, r, of A is n, where n 1s the number of columns in the
matrix, the vector that minimizes the length of the residual vector is
unique (7). If the rank, r, is less than n, there is a linear sub-
space Ka line or hyperplane) of least squares solutions (7). The
solutions can be classified by type. The two types that are usually of
interest are the least squares solution of minimum length and a basic
approximate solution that has at meost ¥ nonzero components, where r is
the rank of the coefficient matrix-(l).h The former 1s unique (7). The

latter is not unique if n>1 (7).



A basic approximate solution is defined as follows:

X is a basic approximate solution of Ax=b if for all vectors x,
[lax-p|| > |fax -b]|

and x has at most r nonzero components (8). Let BAS stand for basic
approximate solution throughout this report.

A miniﬁum norm solution is defined as follows:

Xg is the least squares solution of minimum Euclidean norm if for

all vectors x either

|lax-bl| > {lax -b]]

or else
Hax=bll = [lax-bl} and []x]] > |1x[].

The second condition holds of x is orthogonal to the null space of Aj;
i.e., x is orthogonal to every solution of Ax=0 (1).
A vector u is orthogonal to a vector v if

nyv=

n
I 3
i=1

uivi = 0.

Definition of the Generalized Linear Least Squares Problem

The problem of finding the solution vector, x, that minimizes the
length of the vector Ax-b, where the rank of A is less than or equal
to n, is called the ''generalized linear least squares problem." The
term ''generalized linear least squares problem" is used to emphasize

that the rank of A may be less than the number of columns in A. In
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the past, the term "linear least squares problem' was usad to denote
the problem of finding the vector, x, that minimized the length of the
vector Ax-b, where A was of full rank.

As mentioned previously, the solutien of the system of aquations.
Ax~b, where A is an n by n matrix of rank n, can be obtained by the
pre~multiplication of the right hand side by a matrix, A-l, gallad the
inverse of A. The solution of the system of equations.Axwb, where A
is an m by n matrix of rank r (rsmin(m,n)), can be represented by the
pre-multiplication of the right hand side, b, by a matrix {(to be
defined) called the generalized inverse of A, It has been shown further
that the generalized inverse of any complex matrix, A (not necessarily
square), is unique, and, therefore, the minimum length solution is

unique (7).

Relation of the Linear Least Squares Problem to

the Generalized Inverse of a Matrix

Penrose (7) has shown that the least squares .solution of minimum
Euclidean norm is unique and is represented by §fA@E; where AC is
called the generalized inverse or pseudo-inverse of A,

A@ is defined by the relatlonships

AA@AHA

a8 =a®
T TN

and (A@A)*-AA@, where A% 1s the conjugate transpose of A.

A*-XT' - (Kj i) .



11

Rosen (8) has shown that the BAS (Basic Approximate Solution) can

be represented by E?A#E) where A¥ is defined below.

For r=ngm, A# is equal to A@ and x, is also the least squares

solution of minimum Euclidean norm. For r=n=m,
A

For r<n, A# is not necessarily unique. For this last case, A# can be

defined as follows:
Let A be of rank r (r<n). Let B consist of r linearly independent

columns of A. Let B consist of the other n-r columns of A. For simpli-

fication, assume that B consists of the first r columns of A so that

A=(8,B).

& (g*s~1)8*
@
#{B
A
)

The first r rows of A# consist of the matrix B&. The remaining n-r

rows are Zero.

AQ@ can be expressed in terms of B@ as follows:

AC-c*(cc*)~1p@

where

C=B@A

. _
and C" is the conjugate tramnspose of C (7).

It is not necessary to find A€ or At explicitly to find the least

squares solution of minimum norm or a BAS. Osborne has constructed an

algorithm to find these solutions without finding AC or af, His
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approach is analogous to the case of solving the system of equations

Ax=b by Gaussian elimination when A is an n by n matrix of rank n.
=A"1p
in this case, but A™L did not need to be found explicitly.

Method

The most popular pxéctical method for finding the least squares

solution of AE?E is to solve the normal equations,
ATAx=ATb.

A derivation of the normal equat;ons and a justification for their
use follows.
The vector, x, that minimizes ||A§ch|2 also minimizes ||A§f§J|.

A necessary conditioﬁ for,]lAﬁjhllz to possess a minimum is that

3 ||ax-bl|®

_—Tﬁ;—“ = F for j=l1,...,n, (2.1)
where n is the number of columns in A. Since I!Aﬁchlz is a positive
semidefinite quadratic form in x and is greater thaﬁ 6r»équa1 to zero
- for all x, IlAEﬁEIlZ does not contain an inflection poiﬁt or a maximum
in an uﬁrestricted domain (5). Therefore, the x for which equations
(2.1) are satisfied must be the point where [|A§72||2 attains its
minimum value. As mentioned above, |lA§f§J|2 does not contain an
inflection point or a maximum in an unrestricted domain, and therefore,
it is sufficient to find a vector x that satisfies (2.1) to find a

minimum to IIAETPJ|2-
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Since

[12]12 = ||Ax-b||? = (Ax-b)T(ax-b)

m n
- e xoa )2
Y k§1 (bk iEl Xi&ki) » (2.2)
d ||ax-p||* m n ,
a xj a= kzil (bk "' iEl xiaki>akj = O, J=1,c ) ,n-

Equation (2.2) can be rewritten as follows:

m m n ,
L bkakj - L a *®* a x =0 or

k=1 kwl KI og=y kil
n n m
Z akj Z akixi = z bkakj "‘j -1 g0 ,n.

k=1 A=1 ‘ k=1

The above equations are called the normal equations. iﬁ matrix nota-

tion this is equivalent to
ATax = ATp.

ATA is always symmetric and positive semi-definite (its determinant is
nonnegative, as are all its eigenvalues).
Note from (2.2) that the residual vector, r, is orthogonal to

every nonzero column of A, since

n
(bk - iEl xiaki) =.rk’

m
z rkakj a (
k=1

or

rTAj =0, j=1,...,n.
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This will be used in the derivation of an alternate method for solving

a linear least squares problem. As stated earlier, the most popular
method for finding the least squares solution of minimum norm is to

solve the normal equations using a method such as Gaussian elimination.
There are two problems with using the normal equations to find a least
squares solution of minimum norm. First,if A has rank less than n,

ATA has rank less fhan n. A mefhod such as Gaussian elimination would
fail to find a solution. Second, the matrix ATA is often ill-conditioned
(3). A matrix is ill—conditioned if small errors in the entries in the
matrix or small errors in the solving process have a large effect on

the solution obtained to the problem Agéé_for some b. The degree of
ill-conditioning of a matrix depends on the magnitude of the elements

of the inverse of A, A quantity called the condition number is a measure

of the ill-conditioning of A. The condition number is equal to

llAll ‘IA-lll, where

Hxl] =1 (9).

The larger the condition number the greater the ill—condiﬁioning 3).
The smallest possible condition Qumber is one. If the condition
number of A is cond (A), the condition number of ATA is cond?(A).

Longley (10) and Wampler (11) have done comparative studies of
methods used to solve the gemeralized linear least squares problem.
Both of them have shown examples where solving the normal equations
has produced a éolution vector with almost no correct digits.

Since the normal equations cannot easily be used to find the

least squares solution when the coefficient matrix has a rank less
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than the number of columns in the matrix, and should not be used when
ATA is ill-conditioned, a better method is needed. In Chapter IV a
description of an algorithm developed by E. E. Osborne is presented.

A brief history of some of the methods that have been developed to
find the solution to the genefélized linear least squares problem is

given below.
History

As mentioned preQiously, if the coefficient matrix is of full rank,
then the most popular method for findingvthe least squares solution is
to solve the normal equations. If the system is ill~conditioned,
solving the normal equations can produce a solution vector that is very
inaccurate (10);

Orthogonalization techniques are the second most popular class of
methods for solving the generalized linear least squares problem.
Householder transformations or a form of the Gram-Schmidt method are

used normally to do the orthogonalization (3).

Algorithms Using Householder Transformations

E. E. Osborne (12) first proposed using Householder transformations
to do orthogonalization-in 1961. The method he developed was primarily

for the homogeneous case Ax=0

His intent was to improve the accuracy
of the solution he obtained. In 1965, Businger and Golub (13) proposed
using Householder transformations for solving the nonhomogeneous case

Ax=b, where A is of full rank. In 1965, Golub (14) allowed the imposi-
tion of linear equalities (a subset of equations that must be satisfied

exactly). In 1967, Bjsrck and Golub (15) added iterative improvement
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of the solution to the algorithm proposed by Businger and Golub., In
1969, Hanson and Lawson (16) extended the Businger-Golub algerithm to

solve systems of equations of the form Ax=b,where A is of rank r (rsm).

Algorithms Using Gram-Schmidt Orthogonalization

In 1964, Bauer (17) publiéhed.an algorithm using modified Gram-
Schmidt orthogonalization to solve the system of equations Ax=b. This
method was good for matrices of full ramnk only. In 1965, Osborme (1)
extenaed the use of modified Gram-Schmidt otrhogonalization to the
case where the coefficient matrix was of rank r {rsn). In 1968, Bjorck
(18) combined iterative improvement of the solution with the use of
modified Gram~Schmidt orthogonalization to reduce the error in the
solutioen of the system of equatiéns Ax=b, where the rank of A is r (rsm).
Bjorck (18) has shown. that modified Gram-Schmidt orthogonalization pro-
duces a somewhat more accurate scelution vector than the use of House-
holder transformations for orthogonalizationm.

Programs implementing Bjorck's algorithm (18) and Bauer's algorithm
(17) are available at Oklahoma State University, Stillwater, Oklahoma.
The package consisting of the FORTRAN subroutines, LLCR and LLSQ, has
been compared with the programs;implementing Bjorck's and Bauer's
algorithms. The LLCR package produced results that were as accurate or
more accurate than the routines of Bjorck and Bauer. Bjorck's routine
does allow the imposition of linear equalities. In practice, this
option is not usually used and hence ﬁas omitted. The imposition of
linear equalities can be approxrimated by multiplying those rows of A
and components of b by a large weighting factor before using the

package. In addition, the user of the package consisting of LLCR and
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LLSQ has many options available that are not available to the user of

the other routines.



CHAPTER III
STEPWISE REGRESSION ANALYSIS

Stepwise regression analysis is closely related to the generalized
linear least squares probiem described in Chapter II. -
In stepwise regression analysis a curve is fitted to a set of data

points,
Ayys s ooes t ), d=1,...,m, where

{Yi; tl""’tn}i is the i-th observation (19). The mathematical model

for the curve is called the regression equation and has the form
?i = cp + c1tqq + cotijo + ..+ cptiy

where § is an estimate of the dependent variable, y, the tj’ j=l,...,n,
are the independent variables, and the c;,i=0,...,n, are the coefficients

to be determined. The £5,3=1,...,n, can represent functions of the form
tj = g_'](i_'])’

where the functions,gﬁgj), do not contain the dependent variable and

where the Z; are variables whose observed numerical values completely
determine the numerical value of the tj (19).
Stepwise regression is used when it is desired to represent the

dependent variable in terms of as few of the independent variables as

possible. When the dependent variables are highly correlated, the



19

 simple regression model may be considerably simplified by eliminating
some of the variables. In the stepwise procedure one variable is added
to the mathematical model at a time (19). Thus, the intermediate

- equations

g = S0

o T "
V= cgtoerty,
¥

C”"'C"t +c'lt
o T e fpy Teaty,

are obtained. Note the il is not necessarily equal to 1, 12 is not

necessarily equal to 2, etc.

An important property of the stepwise procedure is basgd on the
fact that a variéblg may be significant at an early stage but may
become insignificant after'seVeral other variables are entered in the
equation. A variable that is not highly correlated with tﬁe other
variables in the regression equatioﬁ at an early stage may be highly
correlated with variables that enter the regreséion equation later,
thereby reducing its significance. The stepwise procedure permits the
insignificant variable (highly correlated variable) to be removed from
the reg;ession equation. The ﬁest to decide if any variable is to
leave or enter the regression equation is a statistical test, namely
the F-test. The F-test measures the degree of linear correlation
among variables in the regression equation (20). If a variable is
too highly correlated with the other variables in the regression equa-
tion, it will be removed or not allowed to enter.

The decision as to which variable is to enter the regressior equation
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is a numerical decision. The variable added to the regression equation
at each step is the one that makes the greatest improvement in the fit
of the curve as measured by the length of the residual vectorj; i.e., it
is the one that préduces the shortest residual vector. At each stage
of the stepwise procedure, the least squares solution is found for the
variables entered in the regression equation at that point (19).

Stepwise regression does nofynecessarily produce the solution vector
with the residual vector of minimumvlength. All that is assured is that
given k variables in the regression equation, the next variable to enter
the equation is tﬁe variable whose addition to the model_produces the
solution vector for which the length qf‘the residual vector is minimized.

Some packages that are calleq stepwiée regression packages do not
have the ability to delete variables from the regression equation.
Stepwise regression without the deletion of variables is called IVOR
(Independent Variable Ordering by Regression Sum of Squares)(4) or
"forward selection" (19). Some packages that include only forward
selection are the IBM 360 Scientific:Subroutine Package (21), the Bio~
Medical (BMD) stepwise regression programs (22), and the package that
implements the methods described ip the ﬁext chapterﬁ

Deletion of variables from the regression equation was not imple-
mented because of the following reasons.

First, there is no standard statistical test that best calculates
the linear correlatioq among variables in the regression equation for
all cases. The F—tesﬁ assumes that the standard deviations of all the
variables are equal. If the standard deviations are not all equal, the
F;test may not give an accurate calculation of the linear correlation

among the variables.
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Second, when a variable is deleted from the regression equationm,
the system of equationé must be returned to the state in which it would
have been if the variable had never entered the regression equation.
When orthogonalization is used to do stepwise regression, this state
must be constructed. The construction of this state can be inaccurate.
The LLCR package was written to provide an accurate means to solve gen-
eralized linear least squares problems and to perform stepwise
regression (IVOR).

Third, cycling may occur whén variables are deleted from the equa-
tion. A group of variables may alternately enter and leave the
regression equation. For example, variable ti, may enter the regres-

sion equation followed by tiz's entry. til may be deleted from the
regression equation followed by fiz's deletion from the regression
equation. ti, may reenter the regression equation followed by tiz's
reentry into the regression ‘equation. This pattern may continue until

something extra-ordinary happens to stop the process such as exceeding

the time limit or the job.

An attempt will be made to implement deletion of variables from the

regression equation in the future.



CHAPTER IV

THE USE OF MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION TO

SOLVE THE GENERALIZED LINEAR LEAST SQUARES PROBLEM

The generalized linear least squares problem consists of finding
the solution vector x to the system of equations, Ax=b, that minimizes
the length of the residual vector Ax-b.

E. E. Osborne (1) has constructed a ;ethod for solving the gener-
alized linear least;équares problem based on the fact that (a) the resid-~
ual vector for a linear least squaras solution is orthogonal to every
nonzero column of A and (b) the'least‘squares solution of minimum norm.
is orthogonal to the null space of Aj i.e., orthogonal to every solution
of Ax=0.

Osborne's algorithm consists of three phases. During the first
phase of the algorithm, the numerical rank of the system of equations
is found and a decomposition of the coefficient matrix into the preduct
of an orthogonal matrix and a permuted unit ﬁpper triangular matrix is
determined, During the second pﬁase, a BAS (Basic Approximate Solution)
is found. During the third phase, the minimum norm solution is found.
Before the three phases of the algorithm are discussed, a definition of
numerical rank will be given.

As mentioned in Chapter II, the rank of a matrix is equal to the
number of linearly independent columns in A. Aj, the j-th column of A,

is linearly dependent on the other columns of A if there exist constants

¢ such that

1

22
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igl adat = a3,
i'fj (4.1)

Osborne's .algorithm considers a column, AJ, to ba linearly depen-

dent on other columns of A if there exlst constants &, such . that.

3
P isAl
Had -2 asal]] <e
1#]
[a3]]

where € 1s set by the user of the algorithm, as a measure of the rela-
tive error he will tolerate. In practice, € is 24, whered is the
smallest number such that

ln +5 > l.

in single precision real arithmétic on the computer being used. For
example, on the IBM 360/65. §& = 9.6 x 107/,

The numericil rank of A is the number of linearly independent
columns in A, where the definition of linear dependency is the numeri-

cal one given in (4.1).
Osborne's Algorithm
Phase 1

Phase I of Osborne's algorithm consists largely of elementary

column operations performed on the matrix, .

()

where R is an n by n identity matrix, that produces a decompesitioen
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-1
of the form A = ANRNY and determines the numerical rank of A, If
the numerical rank of A if r¥*, r¥* columns of Ay will be made mutually

orthogonal using modified Grgp-Schmidt orthogenalization. A descrip-

tion of RN is given later in this s&ttion.

)

The transformation of

intoe the matrix
(o)
by modified Gram-Schmidt orthogeonalization will be described now.

In modified Gram~Schmidt ofthogonalization of a matrix of full
rank, the second coluﬁn is orthogonalized with respect to the first
column, the third column is orthogonalized with respect to the first
and second columns, ..., the n-th column is orthogonalized with respect
to all the other columns of A, where n is the number of columns in A.

If the matrix has a‘numerical rank less than the number of columns,
the lengths of some of the columns will become £ € during the orthogon-
alization process (1). No attempt should be made to orthogonalize
these columns with respect to the other columns of the coeffiéient,
matrix.

In order to kaep track of the columns that remain to be orthogon~
alized, if any, Osborne reordered the columns of the partilally orthog-

onalized coefficient matrix so that the first k columns of the modified

A matrix contain the k columns that have been made mutually orthogonal,
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for kel,...,r%*= pnumerical rank of A. A vector,
p = (IlAlllz» 'lAzllz’ cevy l'An’lz)’

also is set up at the beginning ef the algorithm. Whenever columns of

the modified matrix,

A
R
are interchanged, correspondingbcomponents of p are interchanged.
The k-th step of the modified Gram—Schmidt orthogonalization pro-

cedure is described beldw.

For k=1,...,r%= the numerical rank of A, the quantities
k .
e = A gll®
kL4
kj (Ak—l Ak-l)/dk
N k
Aem1 7 Oyhi-1

] ] k
Rk - Rk""l - aijk-l’ k+l<jsn,

o
B

2]
]

.

where Ao = A and RQ = I, are calculated.

A vector representatlon for the orthogonalization of -two vectors
in 2-space is shown in Figure 1 (23). The orthogonal projection of @
on 0 is made. The orthogonalized vectors arefB ' and o, wheref "=8- a.
B ' is orthogonal to o.

Let
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Figure 1. Geometrical Representation of the Orthogonalization
of 2 vectors in 2-space.

be used to designate the state of the matrix
. A
R

after each step k, k=1,..., numerical rank of A, of the algorithm. At

this point (1), k columms have been made mutually orthogenal and

-1
A= AkRk
or
Ak = ARk'
The quantities

€3> = 14112/

are calculated for j = k+l,...,n, where Al 1s the j=th column of A.
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t{i) <€ for j=k+l,...,n,

the numerical rank of A is k and AN = A The numerical rank is the

x
first k for which

t(j) <€ for j=k+l,...,n.
If
t(i) > € for any j, j=k+l,...,n,

the j for which t(j) is the maximum is found. Column j of

(&)

is interchanged with column k+l1 of

)
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The j~th component of p is interchanged with the (k+l)-st component of

p - The selection of the column to become the (k+1)-st column of Ak+l

ig called Osborne pivoting throughout the remainder of the report.

Once the numerical rank, r*, of the matrix is determined, the n-r¥%

vectors that have a length < € are considered to be zero vectors. The

last n-r* columns of R_, are made mutually orthogonal. The operations

described above produce the matrix

Ca
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Ry has the following properties (1):
(i)  det Ry = + 1,
(ii) A = 2 = AR
ARy or Ay = ARG
(ii1) Ry is obtainable by permuting rows of an upper triangular matrix

all of whose diagonal elements are unity.
*4]
> By

for the null space of A (1).

. ot
(iv) The vectors R§ 2, see s Rﬁ form an orthogonal basis

Phase II

The basic app;oximate solution 1s found during phase II. The pro-
cedure to find the basic approximate solution 1s based on the fact that
the residual vector for a linear least squares solution is orthogonal
to every nonzero column of the coefficlent matrix. The development of
a method to find thé basic approximate solution will be given now.

If the vector

is appended to the matrix

Ry .
the matrix ARy b
Ry O

results. This matrix is post-multiplied by the (n+1) by (n+l) matrix
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Go)

which will orthogonalize -b with respect to the first r* columns of

.ARN; The matrix

results. Sinée'RN is nonsingulaf and the residual vector ARu-b

"is orthogonal .to every nonzero column of ARN’ RNE is a least squares
solution of Ax=b. According to Rosen's definition (8), it is a basic
approximate solution. This follows from properties (i) and (iii) above

and from the fact that‘RNg is a linear combination of the first r*

columns of Ry. Therefore, Ryu has at most r* nomzero components (1).

Phase III

In phase III, the minimum length solution is found by computing a
least squares solution that is orthogonal to the null space of Aj;
i.e., orthogonal to every éoiution of Ax=0.

The following discussion shows how the minimumvlength solution is
found from the basic approximate solution.

If the matrix

ARy ARyu-b
Ry Ryu

is post-multiplied by the (n+l) by (n+l) matrix

(o 1)



30

which will orthogonalize Ryu with respect to the last n-r* columns of

Ry, where r* is the numerical rank of A, the matrix

[ ARy ARy(rrw-b

Ry Ry(vtw)

is obtained. The first r* components of v are zero and the last n-r*

columns of A are considered to be zero vectors. Therefore,

A'RN 1=0
and ARN(gfg) is orthogonal to the nonzero columns of ARy. Thus,
Ry(v+u) is a least squares solution of Ax=b. Ry(vtu) is orthogonal to

the null space of A, and, therefore, is the unique least squares solu-

tion of minimum length (1).

Mathematical Summary of the Algorithm

The complete algorithm can be described mathematically as follows:

]
b
=

P
3

k-1 3. Ak ]
R§ = Rk - ¥ AN A RrJ
i=1 s

af - o
N

k-1 i .

A§ = Ak _321 A% Ak Al for k=2,...,r*,

5o o)
N

where r* is the numerical rank of A.
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ENECRE L i A )

J=re+l

The routines that have been implemented to solve the generalized
linear least squares pfoblem employ the algorithm constructed by
Osborne. Certain modifications in Osbqrne's method have been made and

several additional features have been added.
Modification and Additions

The major addition to Osborne's algorithm was the ability to do
IVOR (Independent Xariable-gydefing by Regression Sum of Squares)--
stepwise regression without the deletion of variables from the regres-
sion equation. 1In addition, the coefficient matrix can be treated as
if it had a pre-specified rank, the initial BAS and minimum length
solutions can be iteratiyely refined, and the error matrix, (ATA)_l,

is calculated for matrices of full rank.
IVOR

Earlier in the chapter it was stated that after r* steps of the
algorithm constructed by Osborne, r¥ columns of the coefficient matrix
are mutually ofthogonal; After k steps of the algorithm, k columns of
thé coefficient matrix are mutually orthogonal. Let the state of the

coefficient matrix be designated by Ak'

Ay = ARy or A = ARy .



32

If

(%)

is appended to - ARk v
Ry

the matrix

AR, <D

R O

results. If the resulting matrix is post-multiplied by the (n+l) by

(n+l) matrix ,

)

that will orthogonalize -b with respect to the first k columns of

[ MRy
‘ Ry Ryu

results. u has k nonzero components since det = &1, is
o] p

ARk, the matrix

obtainable by permuting the rows of an unit upper triangular matrix,
and Ru is a linear combination of the first k columns of Ry. The

k nonzero components of Ru are the regression coefficients for the
k variables that have entered the regressioh equation. The (k+l1)-st
variable to enter the regression equation is found as follows:

For each variable not in the regression equation, we predict the
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length of the residual vector that would be obtained if the variable
were entered in the regressippm equation. The length of the residual

vector can be predicted by calculating

t .
A * (ARgu-b)

Kad

| (AR, u-B) - At

t t

A * 8y

for each variable t that is not in the regression equation. The var-
iable that will produce the residual vector of the shortest length

is the variable to enter the regression equation.

Solving the System of Equations for a Pre—ﬁﬁecified Rank

The coefficient matrix can be treated as if it were of a pre~
specified rank, k. If the numerical rank is less than k, the minimum
norm sclution is found; otherwise k columms of the coefficient matrix
are made mutually orthogonal. Osborne's method (1) of colummn seléc—
tion is used to choose those k columns. The remaining columns of the
coefficient matrix are treated as if they are zero vectors. The last
n-k colummns of Rk then are made‘mﬁtually orthogonal, where n is the
number of columns in the coefficient matrix. Orthogonalizing only k
columns of the coefficient matrix when the rank of the coefficient
matrix is not less than k corresponds to increasing the value of €
until the numerical rank of the coefficient matrix is equal te k. This
might be used on an accurate computer such as the CDC 6600 to predict

the solution that could be found on a less accurate computer such as

the IBM 360.
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& is the value usad to determine if a celumn is a linear combin-
ation of other columns in the coefficient matrix. The system of equa-
tions can be solved for several ranks during one run of the implemented
routines. This corresponds to solving the system of equatilons for a

range of E.

Iterative Improvement of the Initial Solutioms

Roundoff error in the calculation of a solutlon vector often makes
the solution vector ilnaccurate. If X, is the calculated answer and
X, is the true answer,

t

X+ Ax =
and
Ax_ =Db or Alx+lx) =)
or Abx = b - Axc

Iterative improvement of the initial BAS and minimum length solutions
has been implemented to improve their accuracy. The interative Ilmprove-

ment procedure is described as follows (1):

(1) Let x; be the initial svlutionm.
(ii) Calculate the vector r=b-Axy in double precision.

(iii) Solve the system of equations

AAx, = 1.,

-1 -

(v) 1£ xgpg = 2l 1/ xgqq ]| s 5y
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where €, is greater than or equal to$, Xy is accaepted as the
solution to Ax=b.
§ is the smallest floating point number such that 1. +35 > 1. in

the computer.

Calculation of the Error Matrix

The matrix RN_generated by the orthogonalization process described

above can be used to obtain the error matrix, KATA)'l;'if A is of full

rank.

The derivation of the error matrix from R follows.

~1"
A= ARy |
@H™? = aghTarh1”

[ R—l)T-AT A Rfl "1
( N N NN ]

1

-1\ T =14-1
[@hHT orh

RND‘1<<R;1)T)~1

-1¢(r-1y-1)T
RD™HURES) )

R D~1RT D is a diagonal matrix.
NN N ‘

Polynomial Fitting

The LLCR package can be used to fit a polynomial to a set of data

poiants,
{y;t}i

where y is the dependent variable, t is the independent variable, and
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{Y;t}i is the i-th observation.

The mathematical model for the curve would have the form

§ = cg t ot + c2t2 + ...+ cntn,

where §¥ is an estimate of y and the Cj’ 3j=0,...,n are the coeffi-
cients to be determined. When the package is used to fit a polynomial
to a set of data points, one variable is entered into the mathematical

model at a time. The variables are entered in the following order:

t, t2, t%, ..., to.

Entering the variables in the above order is called sequential selec-
tion. When the variables are entered sequentially, the intermediate

equations

0
= '+ lt
YT 5T A
y = cé' + ci't + cé't2
y = cé" + ci"t + cé"t2 + cé"t3

are obtained. The user can decide if he wishes to represent the data

by a polynomial of a lesser degree.



CHAPTER V
RESULTS AND CONCLUSIONS
Test Problems and Verification

A package consisting of the routines.LLCR"and LLSQ has’ been written
in Standard FORTRAN (24) to implement Osborne's method (1) for solving
the generalized linear least squares problem. Since the routines can
solve a system of equations for multiple right hand sides during omne
run of the program; the generalized inverse of an arbiltrary matrix can
be found accurately and efficieﬁtly; In addition, the user of the pack-
age can perform IVOR (Independent Variable Ordering by Ragression Sum
of Squares)--stepwise regression without the deletion of variables from
the regression equation. The user also can study efficiently the effects
on the solution vector of decreasing the reliability of the entries in
the coefflicient matrix. The error matrix, (ATAQ‘1, is calculatad for
systems where the coefficilent matrix is of full rank.

Each of the above uses has been tested on the IBM 36&/65 at Okla-
homa State University, Stillwater, Oklahoma. The results are listed

below.

Using the Package to Find the Generalized

Inverse of an Arbitrary Matrix

The generalized inverse of an arbitrary matrix, A, can be found

by solving the set of equations AX=I, where A 1s an m by n matrix, X

27
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(the generalized inverse of A) is an n by m matrix, and I is an m by m
identity matrix.

The generalized inverse of a 6 by 4 zero matrix was found exactly
in one iteration. Many routines for solving an arbitrary system of
equations will not handle the c;se where the coefficient matrix has a
rank of zero.

The generalized inverse of the matrix .’

1.  -1. 3. 1.
2, 40 5. 1.
-1. 2. -1, 1.
4. 1. 9. 1.

" .

was found to full single precision accuracy without iterating the solu-
tion. This example was taken from Rosen (8). The generalized inverse

was found to be

-.21153 . 04487 -.22435 .05769

-.19230 .19230 .03846 ~.03846
.08653 -.00320 01602 .06730
50961 ~.09294 . 46474 -.04807 .

Using the Package to Find the Solution Vector

for an Arbitrary System of Equations

Example 1. . The-first example was taken from-Rosen's article (8).

The system consisted of
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rl. "ln 3- lu Xl lo

2- 4: 5. ll XZ ~ 3.
—l- 2. -la lo X3 2-5
_4. 1. 9. l'__ _X4 i -2.5H .

Using an € of .16 x 10_5, the rank of the system was found to be
three. Full single precision accuracy was obtained without iteratipg
the solution. The lengths of the residual vector for the basic approxi-
mate solution (BAS) aﬁd the minimum length solution Qere both .5. The
lengths of thé BAS vector and the minimum length solution vector were

1.607 and 1.451, respectively. The BAS vector was

. .07692
.38462
0

1.5577

SN —d

The minimum length solution vector was

e —

~. 49359
.« 38462
.28526

1.27240

S —

Example 2. The second system of equations that was used to test
the package had a coefficient matrix consisting of the first five col-
umns of a 6 by 6 inverse Hilbert matrix and a right hand side chosen

to generate a solution vector of (li»%h %3 %u %9. The matrix,
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1 1 1
1 T 5 =
111, L
2 3 4 m
111 1
3 4 5°° " mwkl.
A 11 1
m-lmml’ ° " 2m=1

is the Hilbert matrix of order m.

The inverse of the Hilbert matrix wés-used because each of the
entries in it is an integer .and can be represented in a computer exact-~
ly if the precision of the computer is large enough (3). Therefore,
the effect of roundoff error on tie solution vector can be studied.
This system of equations is fairly ill-conditioned, getting worse with
larger m.

Full single precigion accuracy was achieved when the solution was
iterated. The results of the run are shown in Table I.

The implementation of Bjorck's routine (18) required five itera-
tions to obtain this accuracy. Oqu three iterations were required
with LLCR and LLSQ.

Example 3. The third test case consisted of the last six columns
of an 8 by 8 inverse Hilbert matrix with a right hand side chosen to

produce .the solution vector 111111

30 ’4‘3_'5_3 _6" 7"'8‘)'
This system is extremely ill-conditioned., As mentioned previously,
when a system is ill-conditioned, small errors in the entries in the

input coefficient matrix or in the solution process cause a large
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TABLE I

SOLUTION OF THE SYSTEM OF EQUATIONS CONSISTING OF THE

FIRST FIVE COLUMNS OF A 6 BY 6 INVERSE HILBERT MATRIX

AND A RIGHT HAND SIDE CH?SE§ T? GENERATE THE  SOLUTION
VECTOR (1, TR -5-)

Iteration Selution ' Length of the
Number _ Vector Residual Vector

0 .9558830 1.043110
’ ‘ .4843262 :

«3263453

+ 2468576

»1988596

1 .9997082 .4102879
«4999225
. 3333055
«2499895 -
+1999996

2 19999999 .1591172
.4999998
.3333333
.2499999
1,2000000

3 9999999 +2431152
»4999999
3333333
+2499999
. 2000000

change in the solutien vector (3). The condition number of a matrix is
a measureiaf the,ill-éondifiqning”of the gsystem. The smallest possible
condition number is unity. Thé gsystem in the present examﬁie has a.
condition number of 108,

Using an € of .16 x 1073 and doing all calculations in single
precision, the numerical rank was determined to be four. Full single
precision accuracy was achieved after iteration of the solution. The
rank was not determined to be six as there was considerable truncation

error in forming inner products due to the low precision of the IBM 360.
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Table II contains the results of the run.

TABLE II

SOLUTION OF THE SYSTEM OF EQUATIONS CONSISTING
OF THE LAST SIX COLUMNS OF AN 8 BY 8 INVERSE
HILBERT MATRIX AND A RIGHT HAND SIDE CHOSEN
TO GENERATE THE SOLUTION VECTOR
111 1 1y

334358678

Minimum
Léngth

- Solution

- Vector

Iteration
Number

Basic

- Approximate
‘Solution
Vector

Length of the
Residual Vector
for the Minimum
Length Solution

Length of the
Residual
Vector for

0 -.09663224
.03279249

»05031452

. 02720612
-.008033112
-.04418335

1 -.09643781
.03278171

.05018743

. 02709594
~-.008037787
-.04403742

2 -.09643847
.03278175

.05018786

»02709632
~-.008037772
~.04403792

3 -~.09643847
.03278176

.05018786

.02709632

-.00837772
-.04403792

the BAS

155.1612 -.1880930
-.6149425
-.00001407021
0
0

-.005662531

97.75385

135.0647

133.9126

132.2448

Bjorck's routine failed to find a solution for this example. It

must be emphasized again that obtailning a numerical rank of four was

not a failure of the routines but was caused by the low precision of



the computer on which the test case was run.

Example 4.

The fourth test case consisted of the first five

elements of each of the first three rows of a 6 by 6 inverse Hilbert

matrix with the right hand side (463,-13860,97020).

Both the basic

approximate solution vector and the minimum norm solution vector are

of interest since the number of equations is less than the number of

variables.

Table III contains the results of the run.

TABLE III

SOLUTION OF THE SYSTEM OF EQUATIONS CONSISTING OF

THE FIRST FIVE ELEMENIS OF EACH OF THE

FIRST THREE ROWS OF A 6 BY 6
INVERSE HILBERT MATRIX WITH
A RIGHT HAND SIDE
(463,-13860,97020)
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‘Minimum Norm Square of the

- Solution
Vector

Iteration
Number

Length of the

" ‘Residual

Vector

JBdsic
Approximate
Solution
Vector

0 .02615530
- -.08060956
.—.002280064

.07264209
.1280568

1 .02614972

-.08058983
~-.002287482
.07262659

.1280463

2 .02614973
-.08058983
~.002287471

.07262659
.1280463

3 .02614974
-.08058983
-.002287467

.07262659
.1280463

.009011976

.0009218131

.0005667009

0004688033

1.583456
.2777886
0
0
.07685214
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Using the Package to Perform IVOR

The package consisting of LLCR and LLSQ was used to perform IVOR
on oxygen solubility data. The mathematical model for this curve is

defined below.

Let z; absolute temperature,

122 = galinity of seawater,

y log of the solubility of oxygen in sea water,

and the model be described by

R 2
¥i = (agitayp/zyitayzln(zyy)tajyzyitayszygte..)

(bil+bi2212+"‘)

so that
til =1, cq Ealbl
ti2 ¥ 252 ¢y =ayby
tig E1/z4, c3 Eaphy
ti4 = 239/257s ey Faghy
tj5 = 1n(zil) s cy = a3bl
tig = 2plnlzgy)s g =a3by
ti7 =211 €7 Fab;
tig = 212241 cg = 3,0y
etc. etc,

Table IV contains the results of the IVOR analysis. The results
of a stepwise regression analysis of this data appears in an article
by Weiss (25). 1In his anaiysis, only eight of the twelve variables in
the model were entered in the regression equation because the sum of

the squares of the residuals divided by the number of degrees of



TABLE IV

RESULTS OF THE IVOR ANALYSIS OF THE
OXYGEN SOLUBILITY DATA
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Length of

Number of = Number Length of Length of Length of Residual
Variables of the the Basic the Residual the Minimum Vector
in the Variable Solution Vector for Norm Solution for the
Equation Entered Vector the Basic Vector: Minimum

Solution Norm

Solution

1 2 .4040704x10°  2419.978 ©  .1014893x10° 7617.572

2 1 ,9049813x10°  981.9752 .1028102x10°5 6018.,982

3 7 .8972010x10°  212.4384 .1031885x10° 7818.671

4 3 .3168621x107  82.10176 .1091479x10° 4422.,227

5 8 .1634972%107  28.52036 .1092203x10° 4558.884

6 12 .1634366x107 27.99304 .1097797x10° 3548.216

7 4 .1033133x103 | 26.44726 .1103234x10° 3473.011

8 9 .1005459x10°% ~ 26.06484 .1197020%10° 2147.965

9 5 .1540121x1C - 25.942180 .1205483x10° 454,9831

10 6 .2658320x10'!  25.50685 .1207378x10° 29.94534
11 10 .3464215x10%! 25.27790  .2317320x10°  42.48019
12 11 .3202155x10'!  25.12197 .3202155x10*! 25,12197

freedom (m-n) failed to decrease after eight variables had entered the

equation.

form the stepwise regression analysis.

This was caused by the use of the normal equations to per-

Twelve variasbles were entered in the regression equation by the

LLCR package.

with each variable added to the regression equation.

The length of the residual vector continued to decrease

Note that with all twelve variables in the regression equation,
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the length of the solution vector was ,.3202155 x 10!! with a residual
vector of length 25.12197. The length of the solution vector with
seven variables in the regression equation was .1033133 x 10° with a
residual vector of length 26.44726.  Thus, with a modest increase in
the lenéth of the residual vector, a large decrease in the length of
the solution vector was.obtained.

In Chépter II, it was stated that if the true rank of the coeffi-
cient matrix .is less than the nﬁmber of columns, there i3 a linear
Subspacé of -solution vectors with a residual vector of some minimum
length. Among all the vectors in that subspace, there is a unique
vector of minimum length (7). All the components of this vector are
nonzero. An attempt was made to consider the variables not entered
in the regression equation to bé_ linear combinations of the variables
represented in the regression equation. The least squares solution of
minimum length was then calculated as if the coefficient matrix had
a rank equal to the~number of variables in the regression equation.
The length of each of these solutjon vectors was considerably less
than the length of the b#sic approximate solution vector (BAS) for the
same rank. The lengths of the residual vectors were unacceptably high

in most cases. Table IV contains the results of this analysis.

Using the Package to Test the Effects of Decreasing the

Precision of the Entries in the Coefficient Matrix

As mentioned in Chapter IV, the user can request that the coeffi-
cient matrix be treated as if it had a rank equal to k. This corres-
ponds to increasing the value of & until the rank of the coefficient

matrix is k, where € is the value used to determine the numerical rank
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of the coefficient matrix. If the true numerical rank is less than the
rank requested, the true minimum length solution is found. If not, n-k
columns of the coefficient matrix are considered to be linear combina-
tions of the k columns that are chosen to be made mutually orthogonal;
the minimum norm solution for rank k 1s found.

The ability to specify a rank enables the user to test the effect
on the solution vector of measuring the entries in the coefficient
matrix less accurately. During one run of the package, the solution
vectors for each choice of rank ranging from one to min(m,n) can be
found. This corresponds to finding the solution to the generalized
linear least squares problem for a range of €. Osborne's method of
column selection is used to select the columns to be made mutually
orthogonal when the package is uéed for this purpose.

The solution vectors for a range of ranks were found for the
oxygen solubility data. Table V contains the results of the analysis.
Note that for ranks ten and eleven, the length of the minimum
length solution vectors greatly decreased with only a moderate increase
in the length of the residual vector. For example, thé minimum length

solution vector's length was .12072x10° with a residual vector of

length 26.1 for rank ten. For rank eleven, the minimum length solution
bector's length was .3462100x10’ wiﬁh a residual vector of length 25.6.
In contrast, when IVOR was performed and eleven variables had entered
the regression equation, the length of the solution vector was
.3464215%10'! with a residual vector of length 25.3. When ten variables
had entered the regression equation, the length of the solution vector
was .1033x10% with a residual vector of length 25.5.

If the user's objective is to obtain the best trade-off between
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Basgic , . _Length

Variable Length of Length of the Length of of the

Rank Entered the Basic Regidual Vector the Minimum Residual
in the Solution for the BAS Nerm Solution Vector for
Equation Vector Vector the Minimum
Norm Solutior
1 1 21612785x10° .4380520x10"  .1008446x10° $8425207x10"
2 10 .1614233x10° .4168454x10%  ,102177x10° .7203746x10"
3 11 .161299x%10° .4164684x10"  .102470x10° .5419911x10"
4 4 .1649864x10° .1013336x10"  .1045335x10° .2508875x10"
5 5 .1652604x10° .9690841x10°  ,1051180x10° .1671074x10"
6 12 .1652779x10°% .9588091x10%  ,1051873x10°% .1564966x10"

7 7 .1724977x10° .8021976x102  .1118416x10° .250944x10"

8 6 .1724570%10° .7149151x10%  ,1127042x10°% .236241x10"
9 9 .1724276x10° .7111963x10%  ,1196991x10° .1190856x10"
10 8 .1723771x10° .2611948x102  ,1207238x10%°  .2611625x102
11 2 ,6880348x107 .2565849x10%2  .3462101x107 .2565829x10%
12 3 .3202155x10%Y  .2512197x10%  ,3202155x10'! .2512197x10%

the length of the solution vector and the length of the residual vector,

thefpackage should be run once with IVOR and once with Osborne pivoting.

Comparison of Methods

The package consisting of LLCR and LLSQ appears to be the first

accurate IVOR (stepwise regression) package for ill-conditioned systems

of equations.

Until this time, stepwise regression packages have
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solved the normal equatiouns,
ATax = AT,

The normal equationéjare often very ill—éonditioned, making double pre-
cision calculations necessary (3). Longley (10) has shown examples
where essentially no correct digits were obtalned when the normal equa-
tions were solvédu In additipn, refinement of’the intermediate solutions
is available with this package.

For ill-conditioned systems using modified Gram-Schmidt orthogonal-
ization preddces'a much more accurate solution vector than using the
normal equations to solve a linear least squares problem. For a math-
ematical comparison of the accuracy of the methods, see article's by

Bjorck (26), Golub (27), and Wémpler (11).

Number of Operations. and Storage Requirements:

If the coefficient matrix is of full rank, the package requires

approximately mn® 2

multiplications and ma + m + n“ + 2n storage locations
to calculate the linear_léast squéres solution of ‘minimum norm when iter-
ative refinement of the solution is not performed. This should be
contrasted with 2mn2 + ﬁ%E single precision multiplications and n?
storage locations needed for forming and sélving the normal equations
in double precision (24).

If iterative refinement i1s performed, another m(n+l) storage loca-
tions are required. An additional n? + kn locations are needed if the

system is solved for more than one rank, where k is the number of ranks

for which the system is.solved.
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If the coefficient matrix is of deficient rank, r¥*, the number of
multiplications necessary for finding the solution is mn2—(n-r*-l)(m+n)
multiplications. The storage requirements are the same as for the full
rank case.

When the package 1is usedlﬁo perfbrm IVOR, the number of operations
necessa;y to add the k-th variable to the regréssion equation is-
2m(n—k&ggr3nk+n2). The totai number of operations would be 4m®n?+ mn3-n.
ApproximAtely (n+2)2(m+§E) operations'are required for stepwise regres-
sion using the normal equations (19). If double precision calculations
are necessary ‘to obtain single precision accuracy, the comparison is
more favorable.

The user of the LLCR package should consider putting all the float-
ing point variables in double ;recision when solving an ill-conditioned
system of equations. Refinement of the initial solutions would be
ineffective so no more storage would be required than would be when the
calculations were done in single precision with the initial solutions
being refined. § should be chosen so that 1.D0 + § > 1.D0 when doing
all calculations in double precision. The solution process is slower
when all calculations are done in double precision; the results should
be more accurate, however.

There are advantages to being able to solve the system of equations
for a range of ranks during one run of the LLCR package instead of
using a routine like Berck's;. Beginning with a guess, several runs
might be necessary to find the € to produce the desired rank. 1In
addition, if the results were sought for a range of ranks, BjErck’s
routine would require that the first h~l columns of .the coefficient

matrix be orthogonalized for each rank h for which the solution was
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desired. The LLCR package requires that only one column of the coeffi-
cient matrix be orthogonalized after the solution vector for the first

rank is found. 2n2

additional words are required .for this feature,
however.
Table VI contains a list of the various uses of the package, and

the method of column selection, the ranks for which the system is

solved, and the extra storage required for each use.
Summary

Routines have been written that use modified Gram-Schmidt orthogon-
alization to solve the generalized liﬁear least squares problem. Both
a basic approeximate solution and the least squares solution of minimum
Euclidean norm are found. Impfovement in the accuracy of the soelutions
by means of lterative refinement of the initial solutions is available
to the user of these routines. Full single-precision accuracy in the
solutions is obtained when iterative improvement of the solutions is
performed and the parameter that is used to determine the numerical rank
of the system i1s at least as great as the relative accuracy of the com-
puter on which the package is fun. The error matrix, (ATA)_l, is
returned for systems of full rank.

The routines can be used to determine éefficiently and accurately
the generalized inverse of an arbitrary matrix, A. This is8 accomplish~

ed by solving the system of equations
AX = T

for the matrix X, I is an m by m identity matrix, where n is the

number of rows in the matrix A. The generalized inverse, X, is an n
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TABLE VI

USES OF THE PACKAGE CONSISTING OF LLCR AND LLSQ

Method of The Solution Amount of
Problem Column will be found Extra Storage

Selection for Ranks Needed

To calculate the Osborne the numerical m(m-1)

generalized inverse pivoting rank of A

of A, an m by n :

matrix

To find the solution Osborne the numerical none

of an arbitrary pivoting ‘rank of A

system of equatioms,

AX = b

To perform step- IVOR 1 .ta the 2n2

wise regression numerical rank

without the dele-~ of the coeffi-

tion of wvariables ¢lent matrix

To study the effect Osborne l<j<numerical 2n2

of decreasing the plvoting rank of A (a

reliability of the range for j is

entries in the chosen by the

coefficient matrix user)

(solve the system

for a range of ranks)

To find the best ~ IVOR and 1 to the 2n?

trade-off between Osborne numerical rank

the length of the pivoting of A

solution vector

and the residual

vector

To fit a polynomial Sequential 1 to the degree 2n2

to a set of data selection " of the polynomial

points

by m matrix, where n is the number of columns in A.

IVOR, or forward selection, has been implemented. IVOR corres-
ponds to stepwise regression without the deletion of variables from the
regregsion equation. The package appears to be the first accurate step-

wise regression package for ill-conditioned problems.
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The coefficient matrix can be treated as if it had a user—specified
rank, k. This corresponds te increasing the value of the parameter
that is used to determine the numerical rank of the coefficient matrix
until the rank 'is k. This facility can be used to test the sensitivity
of the selution vector to decreased precision of the entries in the

coefficient matrix.
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‘SUBROUTINE LLCRUAsLAgRsLREySAVEsLSAVyXyRHOyRHOMy SAyERR ¢RES+VsXOLDy LLCROO10

®SALPH,LSAL,

NR¢NC+BASICyNRHS ¢ XSAVE)

JOANNA C. HWANG

MARCH 1, 1972 VERSION 1.1

BRIEF DESCRIPTION OF THIS PROGRAMsses

THIS ROUTINE WILL GIVE THE SOLUTION OF MINIMUM NGRM TO THE
GENERAL LINEAR LEAST SQUARES PROBLEM. MODIFIED GRAM=-SCHMIDT ORTHOG-
ONALIZATION IS USED TO OBTAIN THIS SOLUTION.

1'
2'
3.

4.

S

6.

THE FOLLONWI
THE SOLUTION
COEFFICIENT
REFINEMENT O

NG OPTIONS HAVE BEEN IMPLEMENTED.

S FOR MULTIPLE RIGHT HAND SIDES WITH A SINGLE
MATRIX CAN BE FOUND DURING ONE CALL TO THE ROUTINE.
F THE INITIAL 8ASIC APPROXIMATE AND INITIAL MINIMUM

NORM SOLUTIONS IS AVAILABLE. :
THE ERROR MATRIX, THE INVERSE OF THE RRODUCT OF THE COEFFICIENT

MATRIX AND I
THE BASIC SO
ASSUME THAT

THE BASIC SO
NONZERO COMP
THE USER CAN
BY REGRESSIO
PERFORMING S

TS TRANPOSE, IS CALCULATED FOR SYSTEMS OF FULL RANK.
LUTIONS CAN BE PRINTED.
THE RANK OF THE COEFFICIENT MATRIX IS IRANK, WHERE

“IRANK 1S LESS THAN THE NUMBER OF COLUMNS IN THE COEFFICIENT MATRIX.

LUTION OBTAINED IS THE SOLUTION WITH AT MOST IRANK
ONENTS THAT GIVES THE MINIMUM EUCLIODEAN NORM.

REQUEST THAT IVOR, INODEPENDENT VARIABLE ORDERING
N SUM OF SQUARES, BE PERFORMED. [IVOR CORRESPONDS TO
TEPWISE REGRESSION WITHOUT REMOVING A VARIABLE FROM

THE REGRESSION EQUATION ONCE IT HAS ENTERED THE REGRESSION

EQUATION.
THE USER CAN

REQUEST THAT THE COEFFICIENT MATRIX BE TREATED AS IF

IT HAD A RANGE OF RANKS, KRBEG THROUGH KREND. IF THE RANK

REQUESTED IS
(DETERMINED
FOR A MORE

GREATER THAN THE NUMERICAL RANK OF 'THE SYSTEM
8Y THE RELATIVE ACCURACY ‘EPS}, A MESSAGE IS PRINTED.
COMPLETE DESCRIPTION OF THIS ROUTINE, SEE THE WRITE-UP

IN THE AUTHOR=-S M,S. REPORT (DEPARTMENT OF COMPUTING AND INFORMATION
SCIENCESs OKLAHOMA STATE UNIVERSITY, MAY, 1972),

REFERENCEScaes
E. E. OSBORNE, JOURNAL OF THE SIAM 12 (1965} 300

J. B. ROSEN
G. GOLUBs N
JOHN R. RIC
A. BJORCK,
A. BJORCK,
A. BJORCKy

"DESCRIPTION OF

LLSQ =~

+ JOURNAL OF THE SIAM 12 (1964} 156

UMER ISCHE MATHEMATIK 7 (1965) 206

Ey MATHEMATICS OF COMPUTATION 20 (1966) 325
BIT 7 (1967) 257

BIT 8 (1968) 8

BIT 7 (1967) 1

SUBROUTINES CALLED.s..
THE INITIAL BASIC APPROXIMATE SOLUTION AND LEAST
SQUARES SOLUTION-OF -MINIMUM NORM FOR EACH RIGHT HAND
SIDE 1S FOUND.

DESCRIPTION OF VARIABLESwsee
INPUT VARIABLES.ese

A ==

THE NR BY NCOLS AUGMENTED MATRIX

THE NRHS RIGHT HAND SIDES ARE CONCATENATED WITH THE
NR BY NC COEFFICIENT MATRIX TO FORM THE AUGMENTED
MATRIX.

THE FIRST IRANK COLUMNS OF A ARE MADE MUTUALLY
ORTHOGONAL. THE NEXT (NC-IRANK) COLUMNS ARE .
CONSIDERED TO BE ZERO VECTORS. THIS TRANSFORMED
MATRIX IS REFERRED TO BELOW AS A .

LLCRQ020
LLCROO30
LLCROO40
LLCROOS0
LLCROO6O
LLCROO70
LLCROO8O
LLCR0O090
LLCRO100
LLCRO110
LLCRO120
LLCROL130
LLCRO140
LLCRO150
LLCRO160
LLCROL70
LLCRO1 80
LLCRO190
LLCRO200
LLCRO210
LLCRO220
LLCRO230
LLCRO240
LLCRO250
LLCRO260
LLCRO270
LLCRO280
LLCR 0290
LLCRD300
LLCRO310
LLCRO320
LLCRO330
LLCRO340
LLCRO350
LLCRO360
LLCRO370
LLCRO380
LLCRO390
LLCRO400
LLCRO410
LLCRO420
LLCRO430
LLCR 0440
LLCRO450
LLCRO460
LLCRO470
LLCRO480
LLCR 0490
LLCRO500
LLCROS10
LLCRO520
LLCRO530
LLCRO540
LLCRO550
LLCRO560
LLCROS70
LLCRQ580
LLCR0590
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LA

LRE

LSAV

LSAL

EPS1

EPS

NR
NC
NRHS

IPIV

ISwW

IREF

NTRAC

KW
KRBEGyKREND

-

N
THE FIRST DIMENSION OF THE A ARRAY
(LA MUST BE +GE. NR.)}
THE FIRST DIMENSION OF THE R AND ERR ARRAYS
(LRE MUST BE .GE. NC.)
THE FIRST DIMENSION OF THE ARRAY SAVE

58

LLCRO600
LLCRO610
LLCRO620
LLCRO630
LLCROG640
LLCRO6S50

(LSAV MUST BE .GE. NR IF ITERATIVE IMPROVEMENT OF THELLCRO660

SOLUTION IS REQUESTED. LSAY SHOULD EQUAL 1
OTHERNWISE,) :

THE FIRST DIMENSION OF THE ARRAY SALPH

(LSAL MUST BE .GE. NC IF THE PROBLEM IS TO BE SOLVED
FOR MORE THAN ONE RANK. LSAL SHOULD EQUAL 1
OTHERWISE.

THE CONVERGENCE CRITERION FOR YHE ITERATIVE IMPROVE-
MENT OF THE SOLUTION

EACH COMPONENT IN THE FINAL SOLUTION VECTOR WILL
DIFFER FROM THE CORRESPONDING COMPONENT IN THE
PREVIQUS SOLUTION VECTOR BY NO MORE THAN EPS1

* TIMES THE COMPONENT IN THE FINAL SOLUTION VECTOR.

THE VALUE USED TO DETERMINE IF A COLUMN IN THE
COEFFICIENT MATRIX IS A LINEAR COMBINATION OF OTHER
COLUMNS IN THE COEFFIGCIENT MATRIX
NEITHER EPS NOR EPS1 SHOULD BE LESS THAN THE PRODUCT
Of THE BASE AND THE RELATIVE ACCURACY OF THE MACHINE
BEING USED.
THE NUMBER OF EQUATIONS IN THE SYSTEM
(NUMBER OF ROWS OF A)
THE NUMBER OF INDEPENDENT VARIABLES
(NUMBER OF COLUMNS OF A BEFORE IT IS AUGMENTED}
THE NUMBER OF RIGHT HAND SIDES
{NRHS MUST BE «GE. l.}
=-1 NO PIVOTING IS PERFORMED.
= 0 OSBORNE PIVOTING IS PERFORMED.
= 1 IVOR IS PERFORMED.
SEE THE ARTICLE BY OSBORNE FOR A DESCRIPTION OF
OSBORNE PIVOTING. '

WCRO670
LLCROG8O
LLCRO690
LLCRO700
LLCRO710
LLCRO720
LLCRO730
LLCRO740
LLCRO750
LLCRO760
LLCROTT0
LLCRO780
LLCRO790
LLCROBOO
LLCROS1O
LLCRO820
LLCRO830
LLCROB40
LLCRO850
LLCRO86O

"LLCROBTO

LLCROSBO
LLCRO890
LLCRO900
LLCRO910
LLCRO920
LLCRQ930
LLCR0O940
LLCRO950

=1 If THE SQUARE OF THE NORM IS TO BE RECOMPUTED USINGLLCRO960

INNER PRODUCTS
OTHERWISEs THE SQUARE OF THE NORM IS RECOMPUTED
USING THE METHOD PROPOSED BY OSBORNE.

= 1 IF THE INITIAL SOLUTION IS TO BE REFINED

= 0 IF THE SOLUTION IS NOT TO BE REFINED BMT THE
RESIDUAL VECTOR IS TO BE CALCULATED

LLCROS70
LLCRO980
LLCRO990
LLCR1000
LLCR1010
LLCR1020

=~]1 THE SOLUTION IS NOT TO BE REFINED AND THE RESIDUALLLCR1030

VECTOGR CANNOT BE CALCULATED
(SAVE AND A ARE THE SAME MATRIX.}

==1 ERROR MESSAGES ONLY ARE PRINTED.

= 0 THE FINAL SOLUTION VECTORS AND THE RANK OF THE
COEFFICIENT MATRIX ARE PRINTED IN ADODITION TO THE
ABOVE .

= 1 THE INTERMEDIATE SOLUTION VECTORS, THE RESIDUAL
VECTORS FOR EACH INTERMEDIATE SOLUTION AND THE
FINAL SOLUTION, AND THE ERROR MATRIX ARE PRINTED
IN ADDITION TO THE ABOVE.

= 2 THE ORIGINAL COEFFICIENT MATRIX, THE OGRIGINAL

LLCR 1040
LLCR1050
LLCR1060
LLCR1070
LLCR1080
LLCR1090
LLCR1100
LLCR1110
LLCR1120
LLCR1130
LLCR1140

RIGHT HAND SIDES, AND THE DECOMPOSITION MATRIX ARELLCR1150

PRINTED IN ADDITION TO THE ITEMS LISTED ABOVE.
THE STANDARD OUTPUT UNIT NUMBER
AN ATTEMPT WILL BE MADE TO SOLVE THE SYSTEMS OF
EQUATIONS AS IF THE COEFFICIENT MATRIX HAD A RANK OF

LLCR1160
LLCR1170
LLCR1180
LLCR1190
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MAXIT

KRBEGsKRBEG+l 9o o s 9KREND. IF THE TRUE RANK OF THE
SYSTEM IS LESS THAN THE RANK THE USER REQUESTS,s A
MESSAGE IS PRINTED.

KRBEG MUST BE SET GREATER THAN OR EQUAL TO ONE.-‘ IF
THE RANK OF THE COEFFICIENT MATRIX IS ZEROs THE
CORRECT SOLUTION WILL BE RETURNED, HOWEVER.

SEE THE DEFINITION OF KRANK BELGW.

THE MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR THE
ITERATIVE IMPROVEMENT PROCEDURE

MAXIT SHOULD BE GREATER OR EQUAL TO ONE IF ITERATIVE
IMPROVEMENT OF THE SOLUTION IS NOT DESIRED.

OUTPUT VARIABLESeese

R

XSAVE{I+JvK)

BASIC(J}
X

RES
ERR

TRANK

NFAIL

INTERMEDIATE
SALPH

SAVE
XoLD

RHO(K}
RHOM (K)
KRANK

AN NC BY NCGLS MATRIX THAT INITIALLY HOLDS AN

IDENTITY MATRIX IN ITS FIRST NC COLUMNS AND ZERO

COLUMNS FOR THE REMAINING (NCOLS-NC) COLUMNS

THE FIRST NC COLUMNS OF R ARE TRANSFORMED INTO THE R

-1

OF THE DECOMPOSITION A=A R . THE REMAINING COLUMNS
NN

HOLO THE SOLUTIONS TO THE SYSTEMS OF EQUATIONS.

IF IPIV.EQ.lsy THE I-TH COEFFICIENT OF THE REGRESSION

EQUATION FOR RIGHT HAND SIDE NUMBER J WHEN KRBEG

+K-1 VARIABLES HAVE ENTERED THE REGRESSION EQUATION

OTHERWISEy THE I-TH COMPONENT OF THE SOLUTION VECTOR

OF MINIMUM LENGTH FOR RIGHT HAND SIDE NUMBER J WHEN

RANK KRBEG+K~1

THE LENGTH 'OF THE BASIC APPROXIMATE SOLUTIGN VECTOR

FOR THE J-TH RIGHT HAND SIDE

THE SOLUTION VECTOR FOR EACH RIGHT HAND SIDE

IS PLACED IN X PRIOR TO THE ITERATIVE IMPROVEMENT OF

THE SOLUTION FOR THAT REUGHT HAND SIDE. ITERATIVE

IMPROVEMENT IS PERFORMED ON THE SOLUTION VECTOR FOR

ONE RIGHT HAND SIDE AT A TIME.

THE RESIDUAL VECTORS FOR THE RIGHT HAND SIDES

. THE INVERSE OF THE TRANSPOSE OF THE COEFFICIENT

MATRIX TIMES ITS TRANSPOSE

THIS IS CALCULATED ONLY IF THE COEFFICIENT MATRIX IS
OF FULL RANK. THIS IS AN NC BY NC ARRAY.

{A IS THE UNAUGMENTED COEFFICIENT MATRIX IN THIS
CASE,)

THE SMALLER OF THE NUMERICAL RANK OF THE COEFFICIENT
MATRIX AND KRANK

=0 IF ITERATIVE IMPROVEMENT FAILS TO PRODUCE RESULTS

OF THE DESIRED ACCURACY WITHIN MAXIT ITERATIONS

=] OTHERWISE

VARIABLES«eee 4

HOLDS R IN THE STATE IT IS IN AFTER THE BASIC
APPROXIMATE SOLUTION IS FOUND FOR A GIVEN RANK
THIS MATRIX IS NOT NEEDED IF KRBEG.EQ.KREND.

HOLDS THE ORIGINAL AUGMENTED MATRIX,y A

THIS MATRIX IS NOT REFERENCED If ITERATIVE IMPROVE-
MENT OF THE SOLUTIONS IS NOT DESIRED.

THE SOLUTION VECTOR FOR EACH RIGHT HAND SIDE FOUND

-DURING THE PREVIOUS ITERATION OF THE IMPROQVEMENT

PROCEDURE IS PLACED IN XOLD.

THE SQUARE OF THE NORM OF THE K~TH COLUMN OF A
THE SQUARE OF  THE NORM OF THE K-TH COLUMN OF R
AN ATTEMPT IS MADE TO FIND THE SOLUTION
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LLCR 1200
LLCR1210
LLCR1220
LLCR1230
LLCR1240
LLCR1250
LLCR1260
LLCR1270
LLCR 1280
LLCR1290
LLCR1300
LLCR1310
LLGR1320
LLCR1330
LLCR1340
LLCR1350
LLCR1360
LLCR1370
LLCR1380
LLCR1390
LLCR 1400
LLCR1410
LLCR1420
LLCR1430
LLCR1440
LLCR1450
LLCR1460
LLCR1470
LLCR1480
LLCR1490
LLCR1500
LLCR1510
LLCR1520
LLCR1530
LLCR1540
LLCR1550
LLCR1560
LLCR1570
LLCR1580
LLCR1590
LLCR1600
LLCR1610
LLCR1620
LLCR1630
LLCR1640
LLCR1650
LLCR1660
LLCR1670
LLCR1680
LLCR1690
LLCR1700
LLCR1710
LLCR1720
LLCR1730
LLCR1740
LLCR1750
LLCR1760
LLCR1770
LLCR1780
LLCR1790
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AS IF THE COEFFICIENT MATRIX HAD A RANK OF KRANK. LLCR1800

KROLD =~ THE PREVIOUS SOLUTION OF THE SYSTEMS OF EQUATIONS - LLCR1810

WAS MADE AS IF THE RANK OF THE COEFFICIENI MATRIX LLCR1820

WAS KROLD. ‘ LLCR1830

NCP == THE NUMBER OF INDEPENDENT VARIABLES PLUS ONE LLCR1840

NCOLS == THE NUMBER OF INDEPENDENT VARIABLES PLUS WHE NUMBER LLCR1850

OF RIGHT HAND SIDES LLCR1860

. LLCR1870

USE OF THIS PROGRAMeees LLCR1880

TO USE THIS PROGRAM, A CALLING PROGRAM THAT CALLS THE SUBROUTINE LLCR189%0
LLCR MUST BE WRITTEN. THE CALLING PROGRAM MUST DEFINE THE VARIABLES LLCR1900
Ae LAy, NRy NCy. NRHS, LRE, EPS1l, EPS, IBAS, ISW, NTRAC» KRBEG, KREND, LLCR1910

KW, IREFs LSAVse LSALs AND MAXIT, . LLCR1920
THE FOLLOWING STATEMENTS MUST APPEAR IN THE CALLING PROGRAM. LLCR1930
DIMENSION ACLAyNCOLS) sR{LRE,NCOLS) »SAVE{LSAV4NCOLS) X (MC)+RHO(NC), LLCR1940

LSACNCY,ERR(LREsNC) ¢ RES{NR) yVINC} ¢XDLD{NC) » SALPH{LSAL,NCOLS ¥y LLCR1950
2RHOMUNC) yBASIC(NRHS }  XSAVE(NC yNRHS : KREND-KRBEG+1 ) LLCR1960
COMMON/BETA/EPS+EPSLy IPIVyISWsNTRAC)NCOLSyKRBEG,KREND y KRANK KROLDy LLCR1970
LIREF y KW NCP» IRANK, MAXIT¢NFAILy IRGY LLCR1980
‘ LLCR 1990
(DEFINITION OF VARIABLES) LLCR2000
LLCR2010

CALL LLCR(A.LA.R'LRE,SAVE.LSAV.X,RHU.RHUH.SA,ERR,RESoV'XOLD,SALPHuLLCRZOZO
LLSAL s NRe¢NCyBASICyNRHS yXSAVE} LLCR2030
CALL EXIT LLCR2040
END LLCR2050
LLCR2060

THE  NUMERICAL VALUES OF THE VARIABLES USED YO INDICATE THE LLCR2070

DIMENSIONS OF THE ABOVE ARRAYS MUST APPEAR IN THE DIMENSION STATEMENT LLCR2080
IN THE CALLING PROGRAM., THE DIMENSIONS INDICATED IN THE DIMENSION LLCR20S0
STATEMENT ARE MINIMUM DIMENSIONS. LA MUST BE EQUAL TO OR GREATER THANLLCR2100
NR. LRE MUST BE EQUAL TO OR GREATER THAN NC. IF ITERATIVE LLCR2110
IMPROVEMENT OF THE SOLUTION IS NOT USED, SAVE SHOULD BE OIMENSIONED LLCR2120
(141) IN THE CALLING PROGRAM, AND LSAV SHOULD BE SET EQUAL TO ONE. LLCR2130

OTHERWISE, LSAV SHOULD BE EQUAL TO OR GREATER THAN NR. [IF THE LLCR2140
PROBLEM IS GOING TO BE SOLVED FOR ONLY ONE RANK, SALPH SHOULD BE LLCR2150
DIMENSIONED (1,1) IN THE CALLING PROGRAM., AND LSAL SET EQUAL TO ONE. LLCR2160
OTHERWISE,» LSAL SHOULD BE EQUAL TO OR GREATER THAN NC. LLCR2170

IF THIS PROGRAM IS RUN UNDER A COMPILER THAT CHECKS SUBSCRIPTS OR LULCR2180
DOES NOT PERMIT VARIABLE SUBSCRIPTING, THE DIMENSION STATEMENTS IN THELLCR2190
SUBROUTINES LLCR AND LLSQ WILL HAVE TO BE CHANGED. LLCR2200

IF THE MACHINE ON WHICH THE PROGRAM 1S BEING EXECUTED DOES NOT LLCR2210
HAVE LABELED COMMON, THE COMMON STATEMENT WILL HAVE TO BE CHANGED. LLCR2220

LLCR 2230

DOUBLE PRECISION DRESDINT,DINTP,DSAVE LLCR2240

LLCR2250
seese IF SINGLE PRECISION OOES NOT GIVE THE ACCURACY DESIRED, ALL LLCR2260
seee CALCULATIONS MUST BE DONE IN DOUBLE PRECISION. TO DO THIS, LLCR2270
veee REMOVE THE C IN COLUMN ONE FROM THE FOLLOWING STATEMENT. IN LLCR2280

eses THIS CASE, ITERATIVE IMPROVEMENT OF THE SOLUTIONS WOULD BE LLCR2290
Y INEFFECTIVE AND SHOULD NOT BE REQUESTED. LLCR 2300
DOUBLE PRECISION AyRyRHOsSA¢RHOMySALPHyEPSyDENOM,DOTy ALPHA LLCR2310
LVZERD,ONE+EPS1y BASICyQSQRT LLCR2320

. LLCR2330

DIMENSION A(LAs1)sR{LRE+1)sSAVE(LSAV,1)+X{(NC),RHO(NC)+SAINC), LLCR2340
*ERR{LREyNC) 9yRES (NR) ¢V (NC) y XOLD(NC) 9 SALPH{LSALy1) yRHOM{NC¥, LLCR2350
*BASTC(NRHS) ¢ XSAVE(NCoNRHS,1) LLCR2360
CDMHDN/BETA/EPS,EPSI!IPIV'ISHvNTRACyNCULS,KRBEG!KRENDvKRANK'KRULD'LLCR2370
*IREFy KWy NCPy IRANKsMAXIT 9y NFATIL s IRGT LLCR2380

LLCR2390



278

279
280
281
282
283
284
285
286
287
288
289

290
291
292
293

294
295
296
297
298
299
300

301
302
303

304
305

306
307
308

309

310
311

312
313
314
315
316
317

318
319

A OO0

O

LLCR 2420

QSQRTIY)=SQRTLY) ‘ LLCR2430
LLCR2440

IF(NTRAC)20,10,10 } LLCR2450

10 WRITE(KWsB8TO)EPS1+EPSoNRyNCoISWy IREF4MAXIT,KRBEGKREND LLCR 2460
20 NCP=NC+1 LLCR2470
IRGT=0 LLCR 2480
VZERO=0. LLCR2490
KROLOD=~1 LLCR2500
ONE=1. LWCR2510
IRANK=NCP LLCR2520
NFAIL=1 LLCR2530
NCOL S=NC +NRHS LLCR2540
EPSQ=EPS*EPS LLCR2550
soes SAVE THE ORIGINAL COEFFICIENT MATRIX AND RIGHT LLCR2560
cace HAND SIDES. ) LLCR2570
IF(IREF)50,30530 LLCR2580

30 00 40 IR=1,NR LLCR2590
D0 40 IC=1,NCOLS LLCR2600

40 SAVE{IR,IC)=A{IR,IC) LLCR2610
esee PRINT THE ORIGINAL COEFFICIENT MATRIX AND RIGHT LLCR2620
oo HAND SIDES. i LLCR2630
50 IF(NTRAC=2190¢60+60 LLCR 2640
60 WRITE(KW,750) LLCR2650
DO 70 I=14NR LLCR2660

70 WRITE(KW.8l0){AlI+Jd)eJI=1,NC} WCR2670
WRITE(KNW,760) LLCR2680

DO 80 IC=NCP.NCOLS LLCR2690

80 WRITE(KW.810)(A(I,IC)+I=1,4NR) LLCR2700
ceas : NEGATE EACH RIGHT HAND SIDE. ' LLCR2710
90 DO 100 I=1,NR ) LLCR2720
DO 100 J=NCP,NCOLS LLCR2730

100 AlIyJl==A(I,J) LLCR2740
aeve FIND THE SOLUTIONS TO THE PROBLEM W CR2750
sces FOR RANKS KRBEG THROUGH KREND. LLCR2T60
DO 730 MRANK=KRBEG¢KREND LLCR2770
KRANK=MRANK LLCR2780
ssee WRITE A MESSAGE IF THE RANK ASKED FOR IS LLCR2790
sece KNOWN TO BE LESS THAN THE RANK OF THE SYSTEM. LLCR2800
IF{IRANK-KROLD) 11041205120 LLCR 2810

110 WRITE{KW,850) ° LLCR2820
GO TO 740 LLCR2830
XX FIND THE INITIAL SOLUTION TO THE PROBLEMs LLCR2840
120 CALL LLSQ(AsLA¢RHOyRHOMpSAySALPHoLSAL ¢NRyNCyRyLRE,BASICyNRHS, LLCR2850
*SAVE.LSAVyXSAVE) LLCR2860
IF(IRGT)IT40,130,740 LLCR28TO

130 KROLO=KRANK LLCR2880
oo PRINT THE DECOMPOSED MATRIX. LLCR2890
IFINTRAC-2)170,4140,140 ) LLCR2900

140 WRITE(KW,840)IRANK LLCR2910
DO 150 I=14NR i ULCR2920

150 WRITE(KWeB1l0)C(A(Isd)yJI=1,NC) LLCR2930
D0 160 I=1,NC LLCR2940

160 WRITE(KWIBLOI(R(IoJ)od=1,NC)’ LLCR 2950
csee FIND THE FINAL SOLUTION FOR EACH RIGHT HANOD LLCR2960
Iy SIDE. LLCR2970
170 DO 670 K=NCP,NCOLS LLCR2980
LLCR2990

KSH==1

61

CHANGE QSQRT(Y)=SQRT(Y) TO QSQRT(Y)=DSQRTIY) IF LLCR2400
ALL COMPUTATIONS ARE DONE IN DOUBLE PRECISION. LLCR2410
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DO 180 I=1,NC LLCR3000

180 X{I)=R{I,K) LLCR3010
KNT=0 LLCR 3020
seee CHECK 1F REFINEMENT OF THE SOLUTION IS DESIRED. LLCR3030
IF(IREF=1)510+190,510 LLCR3040
190" KNT=0 LLCR3050
sase . CHECK TO SEE I[F THE BASIC APPROXIMATE OR THE LLCR3060
eees MINIMUM NORM SOLUTION IS TO 8E ITERATED. LLCR3070
IF(KSW)200,2204670 ) LLCR3080

200 WRITE(KW,900) LLCR3090
KK=K=NC LLCR3100
NO=KRANK-~KRBEG+1 LLCR3110

DO 210 I=1,NC LLCR3120

210 X(I)=XSAVE(I,KKsNO) LLCR3130
GO TO 240 LLCR3140

220 WRITE(KW,910) LLCR3150
D0 230 [=1,NC LLCR3160

230 X{I)}=R{I.+K) LLCR3170
240 KNT=KNT+1 C LLCR 3180
cese CHECK FOR TOG MANY ITERATIONS TO ACHIEVE THE LLCR3190
ceee . DESIRED ACCURACY. LLCR3200
IF(KNT-MAXIT) 260,260,250 LLCR3210

250 NO=K-NC LLCR3220
WRITEYKWoT90INO,MAXIT LLCR3230
NFAIL=0 LLCR3240

GO TO 740 LLCR3250
sses CALCULATE THE RESIDUAL :VECTOR FOR THE (K-NC)-TH LLCR3260
cses . RIGHT HAND SIDE. LLCR3270
260 DO 280 I=1,NR LLCR3280
DRES=VZERO LLCR 3290

DO 270 J=1,NC LLCR3300
DINT=X(J}¥ LLCR3310
DINTP=SAVE(I+J) LLCR 3320

270 DRES=DRES+DINTP®DINT LLCR3330
DSAVE=SAVE(1,+K) LLCR3340

280 RES{I)=DSAVE~DRES LLCR3350
sese CALCULATE THE SQUARE OF THE NORM OF THE RESIDUALLLCR3360
ecse VECTOR. tLCR3370
DNORM=VZERO LLCR3380

DO 290 I=1.NR . LLCR3390

290 DNORM=DNORM+RES {I)*RES(I) LLCR3400
seas CALCULATE THE LENGTH OF THE RESIDUAL VECTOR. LLCR3410
SNORM=DNORM . . LLCR3420
DNORM=QSQRT {DNORM) LLCR3430
NO=K=NC ’ . LLCR3440
seee PRINT: THE RESIDUAL VECTOR AND THE LENGTH OF THE LLCR3450
cese "RESIDUAL VECTOR. LLCR3460
KNTM1=KNT-1 LLCR34T0

- IFINTRAC)310,3004300 LLCR3480
300 WRITE{KW¢860)KNTML LLCR3490
WRITE(KWs7TOIND, (RESCI),I=1,NR) LLCR3500
WRITE(KW+920 )ONORM, SNORM LLCR3510
ccee PRINT THE NEW SOLUTION VECTOR. . LLCR3520
WRITE(KW,800)INO, (X{IC),IC=1,NC) ' LLCR3530
esee - SOLVE THE PROBLEM COMPOSED OF THE LLCR3540
eses ORIGINAL COEFFICIENT MATRIX AND THE RESIDUAL LLCR3550
esos ) VECTOR FOR THE RiIGHT HAND SIDE. LLCR3560
310 DO 320 I=1,NC LLCR3570
320 V(I)=VZERO LLCR3580
DO 330 IR=14NR LLCR3590
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330 RES(IR)==RES(IR)
IF(IRANK}400+4004340
340 DO 380 I=1sIRANK
DOT=VZERD
DO 350 J=14NR
350 DOT=DOT+A(JyI)*RES(J}
ALPHA=DOT/RHO(I)
DO 360 J=1.NR
360 RES(JY=RES(J)~ALPHA®A(JyI)
DO 370 J=14NC
370 VIJ)=V{J)-ALPHASR{J,1)
380 CONTINUE
IF(KSW)440,390, 390
390 IF(IRANK=NC)400+440,400
400 IRNKP=IRANK+1
DO 430 I=IRNKPyNC
DOT=VZEROD
DO 410 J=1.NC
410 DOT=DOT+R{J,I)2V(S)
sese RHOM({I) CAN NEVER BE ZERO THEORETICALLY OR
sess ' NUMER ICALLY. i .
ALPHA=DOT/RHOM( 1)
DO 420 J=14NC
420 V{J3)=V{J)-ALPHA®R(J,I)
430 CONTINUE
ccee CALCULATE THE NEW ‘SOLUTION VECTOR.
440 DO 450 I=1,NC
XOLD(I)=X(1)
450 X{I)=X{I)+V(I)"
ceee “ - CHECK FOR CONVERGENCE.
DO 500 I=1.NC
DIF=X(1)=-XOLD(I)
IF{DIF)460,470,470
460 DIF==DIF
470 XOLDUI)=X(I)
IF(XOLD{1))480+4904490
480 XOLO(1)=-XOLDI(I)
490 IF{DIF-EPS1*XDOLD(1))500,500,240
500 CONTINUE
IF(KSW) 54055104540
510 IF(IPIV-~1)5204540,520
520 NO=KRANK-KRBEG+1
KK=K~=NC
DO 530 KL=1,NC
530 XSAVE(KL+KK¢NO)=X(KL)
540 IF(NTRAC)670,550+550
550 WRITE(KWy860)KNT
NO=K-~NC .
IF(IREF)630+560,5%560 :
svee ) CALCULATE THE RESIDUAL VECTOR.
560 DO 580 I=1,NR i
DRES=VIERD
DO S70 J=1+NC
DINT=X(J)
DINTP=SAVE(I,J)
570 DRES=DRES+DINTP*DINT
DSAVE=SAVE(I,K}
580 RES(I)=DSAVE-DRES
IF(NTRAC-2)600, 590,600
590 WRITE(KW,TTOINO(RES(I}yI=1,NR}
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sees CALCULATE THE LENGTH OF THE RESIDUAL VECTOR. LLCR4200
600 DNORM=VZERO - LLCR4210
DO 610 I=1,NR LLCR4220
610 DNORM=DNORM+RES(II=®RES(I) LLCR4230
SNORM=DONORM LLCR4240
DNORM=QSQRT (DNORM) ' LLCR4250
WRITE (KW 780 )DNORM, SNORM LLCR4260
IF (DNORM-BASIC(NO)3630+6204620 LLCR4270
620 WRITEtKW,880) . LLCR4280
630 WRITE(KWe830INO,(X(I),I=14NC} LLCR4290
DOT=VZERO LLCR4300
00 640 I=1.NC tLCR4310
640 DOT=DOT+X(I)*X(I) LLCR4320
DOT=QSQRT{(DOT) . . LLCR4330
WRITE(KW,890)D0T LLCR4340
IF(KSW)650,670,670 LLCR4350
650 DO 660 KL=14NC LLCR4360
660 XSAVE(KLsKKoNO)=X(KL} LLCR4370
KSW=KSH+1 ) LLCR4380
GO0 TO 190 ' LLCR4390
670 CONTINUE ’ LLCR4400
sees CALCULATE THE ERROR MATRIX, THE INVERSE OF A LLCR4410
cens TRANSPOSE TIMES Ay IF THE RANK OF THE SYSTEM IS LLCR4420
canse NC. ) i ' LLCR4430
IFCIRANK-NC) 730,680,730 LLCR4440
680 DO 700 I=1,NC LLCR4450
DO 700 J=1.NC : LLCR4460
DOT=VZERO : LLCR4470
D0 690 K=1,NC : LLCR4480
690 DOT=DOT+R(I +K)#R{JyK}/RHO(K) : LLCR4490
700 ERR(I,J)=DOT LLCR4500
IF(NTRAC-1)730,710,710 LLCR4510
710 WRITE(KW,820). LLCR4520
00 720 IR=1,NC LLCR4530
720 WRITE(KW+B810)(ERR{LRyIC)sIC=14NC} LLCR4540
730 CONTINUE ' LLCR4550
740 RETURN LLCR4560
sese CHANGE S5E20.7 TO 4D25.14 IF USING DOUBLE PRECISION LLCR4570
seee CALCULATIONS . LLCR4580
750 FORMAT(/32H THE ORIGINAL COEFFICIENT MATRIX) . LLCR4590
760 FORMAT(/30H THE ORIGINAL RIGHT HAND SIDES) LLCR 4600

‘770 FORMAT(/48H THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER ,15,3H LLCR4610

*[S/(1X+5E20.7)) LLCR4620
780 FORMAT(/61H THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTILLCR4630
*ON IS +E20.7/75H THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FLLCR4640
*0R THE FINAL SOLUTION IS +E20.7) LLCR4650
790 FORMAT(/72H THE CONVERGENCE CRITERION FOR THE SOLUTION WITH RIGHT LLCR4660
*HAND SIDE NUMBER 4I15/20H WAS NOT REACHED IN 4I5412H ITERATIONS./ LLCR4670
*85H THE VALUE OF EPS IS TOO SMALL FOR THE MACHINE ON WHICH YOU ARELLCR4680
* RUNNING THIS ROUTINE./40H INCREASE EPS AND RUN THE ROUTINE AGAIN.LLCR4690

*) ) LLCR4700
800 FORMAT(/55H THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER LLCR4710
*,15/(1Xy5€20.7)) LLCR4720
810 FORMAT{/(1X+5E20.7)) LLCR4730
B20 FORMAT(/17H THE ERROR MATRIX) LLCR4T40
830 FORMAT(/65H THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SILLCR4750
*DE NUMBER +15/(1Xy5E20.7)) LLCR4760
840 FORMAT(/44H THE DECOMPOSITION MATRIX FOR RANK EQUAL TO ,15% LLCR4770
850 FORMAT(/S58H THE RANK REQUESTED IS GREATER THAN THE RANK OF THE SYSLLCR4780
XTEM) , LLCR4790
860 FORMAT(/L11H ITERATION ,13) LLCR4800
870 FORMAT(LH1,SHEPS1=4E10.3+5X,4HEPS=,E10.355X,3HNR=915,5X, 3HNC=, LLCR4B10
*15,5Xy4HISW=412/1X s SHIREF=41245X6HMAXIT=715+5X,6HKRBEG=515,5X;  LLCR4820
*6HKREND=, 15} {LCR4830
880 FORMAT(/76H THE BASIC APPROXIMATE SOLUTION IS A BETTER SOLUTION THLLCR4840
*AN THE FINAL SOLUTION? LLCR 4850
890 FORMAT(/44H THE LENGTH OF THE FINAL SOLUTION VECTOR IS ,E20.7) ~ LLCR4860
900 FORMAT(///35H START ITERATING THE BASIC SOLUTION) LLCR4870
910 FORMAT(///42H START ITERATING THE MINIMUM NORM SOLUTION) LLCR4880
920 FORMAT(/38H THE LENGTH OF THE RESIDUAL VECTOR IS +E20.7/ LLCR4890
*52H THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS ,E20.7) LLCR4500
END LLCR4910

SENTRY
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SUBROUTINE LLSQ{A,LAsRHO9RHOMySAsSALPH,LSAL,NR,NCyR¢LRE,BASIC,
#NRHS ¢ SAVE, LSAVy XSAVE)
AUTHOR JOANNA C. HWANG \ ‘.

DATE _MARCH 1, 1972 ' VERSION 1.1

BRIEF DESCRIPTION OF THIS PROGRAM....

THIS ROUTINE FINDS THE INITIAL BASIC APPROXIMATE SOLUTIONS AND
THE SOLUTION DOF MINIMUM NORM FOR A GENERAL LINEAR LEAST SQUARES
PROBLEM, A#X=B, WHERE A IS AN NR BY NC MATRIX, X IS AN NC BY NRHS

65

LLSQ0010
LLSQO0020
LLSQO0030
LLSQ0040
LLSQ0050
LLSQ0060
LLSQ0070
LLSQ0080
LLSQ0090
LLSQO0100

MATRIX, AND B IS AN NR BY NRHS MATRIX. A ‘IS CONSIDERED TO HAVE A RANKLLSQO110

SPECIFIED BY THE USER. )
FOR REFERENCESy DESCRIPTIONS OF METHODS USED, AND DESCRIPTIONS
OF VARIABLES, SEE THE SUBROUTINE LLCR.

DOUBLE PRECISION DRES DINTPoDINT,DSAVE

ceon IF SINGLE PRECISION DOES NOT GIVE THE ACCURACY DESIRED, ALL
eses CALCULATIONS MUST BE DONE IN DOUBLE PRECISION., TO DO THIS,
sece REMOVE THE C IN COLUMN ONE FROM THE FOLLOWING STATEMENT. IN
cese THIS CASE, ITERATIVE IMPROVEMENT OF THE SOLUTIONS WOULD BE
ceee INEFFECTIVE AND SHOULD NOT B8E REQUESTED.
DOUBLE PRECISION AyRyRHO¢SAyRHOMySALPHeEPS,DENOM,DOTyALPHA,
LVZERO,ONETMAXy TRY y TEMP, EPS1 » BASIC+ QSQRT

DIMENSION A(LAy11+RHO(NC),RHOMINC),SAINC),SALPH(LSALs1}sR{LRE,1),

®BASIC{NRHS ) s SAVE(LSAV 1) s XSAVE(NCyNRHS, 1)

COMMON/BETA/EPS+EPS19IPIV,ISWsNTRAC s NCOLS ¢KRBEG » KREND ¢ KRANKy KROLD,

&IREF ¢ KW,NCPy IRANKyMAXIToNFAIL, IRGT

ctese - CHANGE QSQRT{Y)=SQRT(Y) TO QSQRT(Y)=DSQRT(Y)
sore IF ALL CALCULATIONS ARE BEING DONE IN DOUBLE
cese . PRECISION,

QSQRT{Y)=SQRT(Y)

EPSQ=EPS*EPS

ONE=1,

HUGE=1.E50

VZERD=0. .
cese CHECK TO SEE IF THIS IS THE FIRST TIME THE
XX ’ " SUBROUTINE HAS BEEN ENTERED.

IF(KROLD)30430,10
10 KROP=KROLD+1
ssee IF THE SUBROUTINE HAS BEEN ENTERED PREVIOUSLY,
soee RETURN THE AUGMENTED MATRIX TO THE STATE IT WAS
veso ~IN PRIOR TO ORTHOGONALIZING THE LAST NC-KROLD

cese . COLUMNS OF R,
DO 20 IR=1,NC
DO 20 IC=KROP¢NCOLS

20 RUIR,ICY=SALPHUIR,IC)

K=KROP

GO TO 80
cave SET UP AN NC BY NCOLS MATRIX R SUCH THAT THE
cevse . FIRST NC COLUMNS FORM:- AN NC BY NC IDENTITY
eese MATRIX AND THE LAST NRHS COLUMNS ARE ZERO
cane VECTORS. :

30 DO 50 I=1,NC
DO 40 J=1,NCOLS
40 R{I,J)=VZERD

LLSQO120
LLSQO130
LLSQO140
LLSQO150
LLSQOl60
LLSQO170
LLSQO0180
LLSQ0190
LLSQ0200
LLSQO210
LLSQ0220
LLSQ0230
LL $SQ0240
LLSQ0250
LLSQ0260
LLSQ0270
LLSQ0280
LLSQ0290
LLSQ0300
LLSQ0310
LLSQ0320
LLSQ0330
LLSQ0340
LLSQ0350
LLSQ0360
LLSQO370
LLSQ0380
LL SQ0390
LLSQ0400
LLSQ0410
LLSQ0420
LLSQ0430
LLSQ0440
LLSQO0450
LLSQ0460
LLSQO0470
LLSQ0480
LLSQO0490
LLSQ0500
LLSQO0510
LLSQ0520
LLSQ0530
LLSQQ0540
LLSQO0550
LLSQO0560
LLSQO0570
LLSQ0580
LLSQ0590
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106 50 R(I,I)=0ONE LLSQ0600
C oevee SET UP A VECTOR RHO SUCH THAT RHO(J} IS THE LLSQO610

C ecee SQUARE OF THE EUCLIDEAN NORM OF THE J-TH COLUMN LLSQ0620

C evee OF A. ‘ LLSQ0630

107 DO 70 J=1,NC ) LLSQU640
108 DOT=VZERO LLSQ0650
109 DO 60 I=1,4NR LLSQU660
110 60 DOT=DOT+A(I+J)%A(1,J) : LLSQ0670
111 RHO(J)=DOT LLSQ0680
C eeee INITIALIZE SA(J) TO RHO(J). LLSQ0690

C eoee J=14NC. LLSQO700

112 70 SA(J)=RHO(J) LLSQO710
C enee INITIALIZE A POINTER K. LLSQ0720

113 K=1 LLSQO0730
C eeee TEST FOR THE COMPLETION OF THE TRANSFORMATION OFLLSQO740

C eeee : A INTO A MATRIX WHOSE NONZERO COLUMNS ARE LLSQO750

C eene ORTHOGONAL « LLSQO760

114 80 IF(K=NC}90,90,710 LLSQO770
115 90 IF(K-KRANK)100,100,300 LLSQO0780
116 100 MAXP=K . LLSQO0790
. C eeee SEARCH FOR THE PIVOTAL COLUMN OF A. LLSQO800
117 KPl=K+1 LLSQo810
118 IF(IPIV)110,110,200 LLSQ0820
119 110 IF(SA(K))120,120,130 LLSQO0830
120 120 TMAX=VZERO LLSQ0840
121 GO TO 140 : LLSQ0850
122 130 TMAX=RHO(K)/SA(K) LLSQO0860
C eaee IF IPIV.EQ.~1y NOD PIVOTING IS PERFORMED. LLSQO0870

123 140 IF(IPIVI290,150,150 LLSQO0880
124 150 IF(K~NC)1604+290,290 LLSQ0890
125 160 DO 190 I=KPl,NC LLSQO0900
126 IF(SA(I))150+190,+170 . LLSQO910
127 170 TRY=RHO(I)/SA(I) LLSQ0920
128 IF(TRY-TMAX) 190,190,180 LLSQ0930
129 180 TMAX=TRY ' LLSQ0940
130 MAXP=1 LLSQO0950
131 190 CONTINUE LLSQ0960
132 GO TO 290 LLSQ0970
C eene IF IPIV.EQ.ly IVOR, INDEPENDENT VARIABLE LLSQ0980

C eees ORDERING BY REGRESSION SUM OF SQUARES, IS LLSQ 0990

C eeee PERFORMED. LLSQL1000

133 . 200 TRAX=VZEROD LLSQl010
134 TMIN=HUGE ) LLSQ1020
135 DO 270 J=K,NC LLSQ1030
136 IF(RHO{J)-SA(J) #EPSQ) 270,270,210 LLSQ1040
137 210 DOT=VZERO LLSQ1050
138 DO 220 I=1,NR : ' LLSQL060
139 220 DOT=DOT+A(I +J)=A(I,NCP) LLSQ1070
140 DOT=DOT/RHO(J) LLSQl080
141 SUM=VZEROD LLSQ1090
142 DO 230 I=14NR - LLSQl100
143 AUX=A(I,NCP)=-DOT*A(1,J) LLSQ1110
144 230 SUM=SUM+AUX*AUX ) LLSQl120
145 IF(NTRAC~2)250, 240,250 LLSQLl130
146 240 WRITE(KW,840)JsSUM LLSQ1140
147 250 IF(SUM-TMIN)260,270,270 LLSQ1150
148 260 TMIN=SUM ) LLSQ1160
149 MAXP=J LLSQL170
150 270 CONTINUE LLSQ1180

151 IF(SA(MAXP))300, 300,280 LLSQ1190



152

153
154
155

156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175

176
177
178
179
180
181l
182
183

184
i85
186
187
188
189
190
191
192
193
194
195
196
197
198
199

[ ¥ EaNaNulN el

280 TMAX=RHO{MAXP)/SA{MAXP)

cece IF THE SQUARE OF THE NORM OF THE PIVGTAL

coee COLUMN DIVIDED BY THE SQUARE OF THE NORM OF
seee THAT COLUMN PRIOR FO ELEMENTARY COLUMN 4
sess OPERATIONS BEING PERFORMED ON IT IS LESS THAN
cese OR EQUAL TO THE SQUARE OF EPSs THE RANK OF A IS
cese DETERMINED TO BE K-1.

290 IF{TMAX-EPSQ)300,300,490
300 IRANK=K=-1
NO=KRANK=-KRBEG+1 ,
cses : PRINT THE RANK.
IF(NTRAC)310,310,310 .
310 WRITE(KW,810) IRANK
DO 320 I=1,NC
D0 320 J=NCP,NCOLS

JJ=J=NC
320 XSAVE(I+JJeNOI=R{I4J)
seee CALCULATE THE LENGTH OF THE RESIDUAL VECTOR
seen FOR EACH BASIC APPROXIMATE SOLUTION.
IF(IREF)370,330,330 :
330 DO 360 IND1=NCP,NCOLS
NO=IND1-NC
DOT=VZERD
D0 350 IR=1,NR
DRES=VZERD

D0 340 IC=1,NC
DINT=R{IC,IND1}
DINTP=SAVEU(IR,IC)
340 DRES=DRES+DINTP#*DINT
DSAVE=SAVE(IR, IND1)
DIF=DSAVE=-DRES
350 DOT=DOT+DIF*DIF

360 BASIC(NO)=QSQRT(DOT)
cace SAVE THE STATE OF THE SYSTEM AFTER FINDING THE
ceee BASIC SOLUTIONS.

370 IF(KREND~KRBEG)400,400,380
380 DO 390 IR=1,NC
DO 390 IC=K,NCOLS
390 SALPH{IR,IC)=R{IR,IC} .
400 IF(IRANK-KROLD)420,410,420
410 WRITE(KW,800)
IRGT=1 )
GO TO 740
ceee CHECK IF THE BASIC SOLUTION IS TO BE PRINTED.
420 IF(NTRAC)4560+4304+430
430 DO 450 L=NCP,NCOLS
NO=t-NC
WRITE(KW, 790)IND
WRITE(KW¢7T8O){RUIRyL) s IR=1,4NC)
DOT=VZERO
DO 440 IC=14NC
440 DOT=DOT4R{IC,L)*R(IC,L}
DOT=QSORT(DOT)
WRITE (KW820100T
IF({IREF)4604+450,450
450 SQLEN=BASIC(NO)*BASICI(NO)
WRITE(KW,830)INO,BASIC(NG)+SQLEN
460 IF(IRANK)470,470+,660
470 DO 480 J=1,NC
480 RHOM(J)=0ONE
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LLSQ1200
LLsQ1210
LLSQ1220
LLSQ1230
LLSQ1240
LLSQ1250
LLSQ1260
LLSQ1270
LLSQ1280
LLSQ1290
LLSQ1300
LLSQ1310
LLSQ1320
LLSQ1330
LLSQ1340
LLSQ1350
LLSQ1360
LLSQ1370
LL5Q1380
LLSQ1390
LLSQ1400
LLSQ1410
LLSQ1420
LLSQ1430

LLSQ1440
LLSQ1450
LLSQ1460
LLSQ1470
LLSQ1480
LLSQ1450
LLSQ1500

~ LLSQ1510

LLSQl1520
LLSQL1530
LLSQ1540

- LLsSQ1550

LLSQ1560
LLSQ1570
LLSQ1580
LL SQ1590
LLSQ1600
LLSQ1610
LLSQ1620
LLSQ1630
LLSQ1640
LLSQ1650
LLSQ1660
LLSQ1670
LLSQLl680
LLSQ16%0
LLSQ1700
LLSQ1l710
LLSQ1720
LLSQL1730
LLSQL740
LLSQ1750
LLSQL760
LLSQL1770
LLS5Q1780
LLSQ1730



200

201
202
203
204
205
206
207
208
208
210
211
212
213
214
215

216
217
218
219
220
221
222

223
© 224

225
226
227
228

229
230
231
232
233
234
235
236
237

238
239

240
241
242
243
244

o000

GO TO 720 .
esen IF MAXP, THE INDEX OF THE PIVOTAL COLUMN, IS K,
esen DO NOTHING. OTHERWISE INTERCHANGE THE MAXP-TH
veee AND. K~TH COLUMNS OF A AND R, AND THE MAXP-TH
ceee AND K-~TH COMPONENTS OF RHO AND SA.

490 IF{MAXP-K)500,530,500
500 DO 510 I=1.NR
TEMP=A(1,K)
A(I+K)=A(I,MAXP)
510 A({I,MAXP)=TEMP
DO 520 I=1.NC
TEMP=R(4K)
R{IyK)}=R(I+MAXP)
520 R{I,MAXP)=TEMP
TEMP=RHO(K)
RHO{K }=RHO{MAXP)

. RHO{MAXP)=TEMP

TEMP=SA(K)

SA{K)=SA(MAXP)

SA(MAXP)=TEMP
rese USE THE MODIFIED GRAM-SCHMIDT PROCESS TO
seee ORTHOGONALIZE THE NONZERO COLUMNS OF A.

530 KPl=aK+]
DO 640 I=KP1l,NCOLS
IF(I-NCP) 540,550,550
540 IF(RHO{I)-EPSQ*SA(1))640,640,550
550 DOT=VZERO
DO 560 J=1,NR
560 DOT=DOT+A(JKI®A(J,1)
eees DIVIDE THE CALCULATED INNER PRODUCT BY THE
ensee SQUARE OF THE NORM OF THE K-TH COLUMN OF A,
IF(RHO(K))300,300,570
570 ALPHA=DOT/RHO(K)
eese SUBTRACT MULTIPLES OF THE K-TH COLUMNS OF A AND
soes R FROM THE I-TH COLUMNS,
DO 580 J=1s NR
580 A(JdsI)=A(Jy1)=ALPHA®A(J,K)
DO 590 J=1yNC
590 R{JyI1=R{Js1)=-ALPHARR(J,K)
eses RECALCULATE THE SQUARE OF THE NORM OF THE I-TH
ceee . COLUMN OF A.
IF(I-NCP1600+640+640
600 IF{ISW=-1)1610,610,620"
610 RHO(I)=RHO(I )=-ALPHA*ALPHA*RHO(K)
GO TO 640
620 DOT=VZIERD
DO 630 J=1+NR
630 DOT=DOT+A(J,1)*AL4, 1)

RHO(I)=DOT
640 CONTINUE
vese INCREMENT THE COLUMN COUNTER, K.
K=K¢1
GO TO 80 4
cses CALCULATE THE SQUARE OF THE NORM OF THE K-TH
cree COLUMN OF R,

650 IF(K~NC)6604660+740
660 DENOM=VZERD
KPl=K+1
DO 670 I=14NC
670 DENOM=DENCOM+R(I K)*R{,K)

68

LLSQ1800
LLsQls8lo0
LLSQ1820
LLSQ1830
LLSQ1840
LLSQ1850
LLSQ1860
LLSQ1870
LLSQ1880
LLSQ1890
LLSQ1900
LLSQ1910
LLSQ1920
LLSQ1930
LLSQ1940
LLSQ1950
LLSQ1960
LLSQ1970
LLSQ1980
LLSQ1990
LLSQ2000
LLSQ2010
LLSQ2020
LLSQ2030
LLSQ2040
LLSQ2050
LLSQ2060
LLSQ2070
LLSQ2080
LLSQ2090
LLSQ2100
LLSQ2110
LLSQ2120
LLSQ2130
LLSQ2140
LLSQ2150
LLSQ2160
LLSQ2170
LLSQ2180
LLSQ2190
LLSQ2200
LLSQ2210
LLSQ2220
LLSQ2230
LLSQ2240
LLSQ2250
LLSQ2260
LLSQ2270
LLSQ2280
LLSQ2290
LLSQ2300
LLSQ2310
LLSQ2320
LLSQ2330
LLSQ2340
LLSQ2350
LLSQ2360
LLSQ2370
LLSQ2380
LLSQ2390



245

246
247
248
249

250
2%1
252
253
254
258

256
2587
258
289
260
261
262
253
264
265

266
261
268

269
270

21

272
213
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RHOM (K ) =DENOM LL5Q2400
seee . CALCULATE THE INNER PRODUCT OF THE I-TH COLUMN LLSQ2410
cece OF R WITH THE K-TH COLUMN OF Ry I=K#1ly..4NCOLS. LLSQ2420

DO 700 I=KP1,NCOLS ’ LLSQ2430

DOT=VZERO ' LLSQ2440

DO 680 J=m1lNC ! LLSQ2450
680 DOT=DOT+R(J,1)#R(J,K) LL 5SQ2460
) SUBTRACT MULTIPLES OF THE K-TH COLUMN OF R LLSQ2470
asee FROM THE I-TH COLUMN OF R, LLSQ2480

ALPHA=DOT/DENOM LLSQ2490

DO 690 J=1,NC LLSQ2500
690 R{Jy1)uR{Jy[)=ALPHA®R(J,K]) LLSQ2510
700 CONTINUE LLSQ2520

K=K+l LLSQ2530

60 TO 650 ) ) LLSQ2540
“sss THE RANK OF A IS KRANK. LLSQ2550
710 IRANK=KRANK LLSQ2560
720 IF(NYRAC)IT40,730,730 LLSQ2570
T30 WRITE(KW,810) IRANK LLSQ2580
T40 IF(KRANK=NCITT0,750,770 LLSQ2590
750 NOaNC=KRBEG+L LLSQ2600

DO 740 I=1,NC LLSQ2610

DO 760 J=1 NRHS L1 5Q2620

JNC=J+NC LLSQ2630
T60 XSAVE(T,JsNOI=R(T4JINC) LLSQ2640
770 RETURN ’ LLSQ2650
sese CHANGE BE20.7 TO 4D25.14 IF USING DOUBLE PRECISION LLSQ2660
XXX CALCULATIONS . LLSQ2670
780 FORMAT(/{1Xs5E20.,7)) LLSQ2680

790 FORMAT(/47H THE BASIC SOLUTION FOR RIGHT HAND SI0OE NUMBER ,15) LLSQ2690
800 PFORMAT(/58H THE RANK REQUESTED 1S GREATER THAN THE RANK OF THE SYSLLSQ2720

*TEM) LLSQ2730
810 FORMAY(/40H THE RANK QOF THE SYSTEM OF EQUATIONS IS ,I10) LLSQ2740
820 FORMAT(/44H THE LENGTH OF THE BASIC SOLUTION VECTOR IS ,E20.7) - LLSQ2750
830 FORMAT (/854 THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTILLSQ2760

#0N FOR RIGHT HAND SIDE NUMBER ,1544H IS ,E20.7/75H THE SQUARE OF TLLSQ2770

*HE LENGTH OF THE RESIOUAL VECTOR FOR THE BASIC SOLUTION IS , LLSQ2780
*E2047) LLSQ2790
840 FORMAT(/21H RESIDUAL FOR COLUMN ,1I5,4H 1S ,E20.7) ‘ LLSQ2800
END LLSQ2810



APPENDIX B

SAMPLE OUTPUT FROM THE PROBLEM CONSISTING OF THE
FIRST FIVE COLUMNS OF A 6 BY 6 INVERSE HILBERT
MATRIX AND A RIGHT HAND SIDE CHQSEN

TO GENERATE THE SOLUTION VECTOR
(1 .llll)

t Bl Biowat BEReal Bos

2 3 4 5

70



EPS1l= 0,160E-05

IREF= 1

MAXIT=

0.,160E-~05

KPBEG=

THE ORIGINAL COEFFICIENT MATRIX

THE

THE

THE

THE

THE
THE

THE

START ITERATING THE BASIC

0.3600000E 02
«0.6300000E 03
0.3360000E 04
~0.,7560000E 04
0. 7560000 04
~0,2772000E 04

-0.6300000E
0.1470000E
-0.8820000E
0,2116800€
=0.2205000E

0.8316000E

DRIGINAt RIGHT HAND SIDES

0.4630000€ 03
-0.1164240F 06

RANK 0OF THE SYSTEM OF EQUATIONS IS

BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER

0.3601010E 02

LENGTH OF THE BASIC SOLUTION VECTOR (S

LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HANO SIDE NUMBER 11§
0.1466062E 10

-0.1386000E

-0.,0000000E

NR=

1

05

[+]}

[} NC=

KREND= 5

0. 3360000E
-0.8820000E
0. 5644800E
-0.1411200€
0.1512000€
~0. 58212 00E

0.9702000E

1

-0, 0000000E

0.3601009€ 02

05
06
07
07

06

oo

1Sw= 2

~0.7560000€ 04
0.2116800E 06
~0+1411200E 07

0.3628800E 07

~0.3969000E 07

0.1552320€ 07

~0.2587200E 06

~0+,0000000E 00

SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS

DECCMPOSITION MATRIX FOR RANK EQUAL TO

0.3600000E 02
-0.6300000fF 03
0.3360000E 04
-0.7560000E 04
0.7560000E 04

-0.2772000F 04

0.1000000E 01

0.0000000€ 00
0.0000000E 00
0.0000000E 00

0.0000000€ 00

0.3942717TE
~0,3224754E
0.7398688E
~0.3417063E
~0.5402938E
0.4291125E
0.2845200E
0.1000000€
-0.0000000E
-0, 0000000E

-0.0000000E

SOLUTION

03
04

04

1
-0.3551730E
0. 3275525¢
-0.8061488E
0. 4026300E
0., 6053700E
-0, 4991675E
~0.2368622E
0.6739621E
0. 1000000E
~0, 0000000E

-0.0000000E

04
05
[}

0.1038025E 05
-0.1022744E 06
0.2632230E 96
~0.1386520E 06
~0.2015480E 06
0.17092}05 06
0.1341271€E-01
~0.3763733E 00
02539779 01
0.1000000E 01

-0,0000000€ 00

0.7560000E 04
-0.2205000E 06
0.1512000E 07
~0.3969000E 07
0.4410000E 07

-0.1746360E 07

0.2910600E 06

-0.,0000000E 00

-0.1220827E 05
0.1254448E 06
-0,3330380E 06
0.1823370F 06
0.2586630E 06
=0.2242040E 06
-0.2026308E-02

0.5461901€-01
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0.3828919E DS

~0.3686066E 00

0.9567620E 00

0.1000000E 01



ITERATION O

THE RESIDUAL VECYOR FOR AIGHT MAND SIDE NUMBER 118
-0.8333635E 03 0.8826363E 04 =0.2397394E 05 0.1351636E 05
«0.1660400€ DS
Tﬁ! LENGTH OF THE RESIDUAL VECTOR IS 0.3828919E 03
THE SQUARE OF THE LENGTH OF YHE RESIDUAL VECTOR IS 0.1466062E 10
THE SOLUTION YO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1
0.3601010E 02 «0.0000000E 00 ~0. 0000000 00 =0.0000000E 00

ITERATION 1

THE RESIDUAL VECTOR FOR AIGHT HAND SIDE NUMBER 118
-0.8333652€ 03 0.8826391E 04 =0.2397409€ 05 0.1351671E 05
=0.1660387€ 05

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.3828919E 05
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS

THE SASIC. APPROXIMATE SOLUTION IS A BETTER SOLUTION THAN THE FINAL SOLUTICON
THE FINAL SOLUTION YO THE SYSTEM FOR THE RIGHT HANO SIDE NUMBER

1
0.3601015E 02 0.0000000E 00 0. 0000000 00 0.0000000E 00

THE LENGYH OF THE FINAL SOLUTIQON VECTOR IS 0.3601013E 02

START ITERATING THE MININUM NORM SOLUTION
ITERATION 0

THE RESIDUAL VECTOR FOR RIGHT MANC SIDE NUMSER 118
=0.6297304E 02 0.1089738E 04 ~0.3764518E 04 0.2665347E 04
-0,3263177E 04 .

THE LENGTH OF THE RESIDUAL VECTOR IS 0.6594492€ 04 :

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.4348734E 08

THE SOLUTION TO THE SYSTEM FOR-RIGHT HAND SIDE NUMBER 1 .
0.6908672E-06 ~0.1764074E=02 0.11767006-01 ~ =0,3054278£-01

ITERATION 1
THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 118

-0.6297322E 02 . 0,1089743€ 04 «0. 3764552 04 0.,2665438E 04
=0.3263138E 04
THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.6594480E 04
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS
THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 1
0469064 T4E~04 ~0e1744075E-02 0.1176700E~01 =0.3054279E-01
THE LENGTH OF THE FINAL SOLUTION VECYOR IS 0.4697099E-01

THE RANK OF THE SYSTEM OF EQUATIONS IS 2
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0.1882363E 05

<0.0000000E 0O

0.1882329€ 05

041466062E 10

0.0000000€ 00

0+3240679E 04

0.3365493E-01

0.3240580¢ 04

0.4348718E 08

0.3365494E-01



THE BASIC SOLUTICN FOR RIGHT HAND SIDE NUMBER

-0.3918518¢ 01

THE LENGTH OF THE BASIC SOLUTION VECTOR IS

THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER

-0,0000000E

00

1

-0, 0000000E

0.3519152€ 0l

00

~0.0000000€ 00

THE SQUARE CF THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION 1§

THE DECOMPOSITION MATRIX FOR RANK EQUAL TO

0.3600000¢ 02
-0.6300000F 03
0.3360000€ 04
-0, 7560000E 0%
0.7560000E 04
~0.2772000€ 04
0.1000000€ 01
0,0000000F 00
0.0000000 00
0.0000000€ 00

0. 0000000€ 00

START IYERATING THE BASIC

ITERATION 0

THE RESIOUAL VECTOR FOR RIGHT HAND SIDE NUMBER

0,543485TE 02
-0.3012573E 03

-0,1220827¢
0.1254448E
~0.3330380¢

0.1823370E

© 042586630

=0.2242040€
-0.5491187E
-0.0000000E
-0,0000000E
~0.,0000000E

0.1000000€

SOLUTION

~0.2952224€

THE LENGTH OF THE RESIDUAL VECTOR IS
THE SQUARE DF THE LENGTH OF THE RESIDUAL VECTOR IS

05

06 .

03

2
-0, 6808057E
0.32553 15E
~0.2296938E
=0, 2615789E
=0, 2907891E
0.2807582E
=-0. 6286052€E
-0. 0000000E
0. 1000000E
-0, 0000000E
~042351623E

11s
0.2426062E

0.5536350E 03

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER

-0.3919518E 01

ITERATION 1

THE RESINDUAL VECTOR FOR RIGHT HAND SIDE NUMBER

0.5434B0SE 02
=-0.3012175€ 03

~0.0000000E 00

-0.2952134E

THE LENGTH OF THE RESIDUAL VECTOR IS
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR 1S

03

~0. 0000000E

1 IS
0. 2425582E

0.5536348€ 03

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER

03
04
04
04
03
04

00
01

00

03

0.8523711€ 03
~0.4371688E 04
0.330525CE 04
0.3651938E 04
0.32412%CE 03
-0.4057813E 04
0.1585388E-01
~0.0000000€E 00
0.1109883E€ 01
0.1000000E 01

0.5194420E 00

0.2579912€ 03

0.3065118E 06

1
00

03

~0.0000000€ 00

0.2580994E 03

0.3065116E 06

1

0.7271403E-01

118

0.3065117€ 06

0.1363816E 03
-0.5748318E 03
0.3635234E 03
0.4346638E 03
0.6111328E 02
~0.445007BE 03
0.2677550€-02
0.1000000¢ 01
0.1456825€E 00
-0.1102253€ 00

=0.9915954E-01

0.1512101E 02

0.7271403¢t-01

0.1501286E 02
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0.5536350€ 03



-0.3918504E 01 0.0000000E 00 0.0000000E 00 0.0000000E QO
ITERATION 2
THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 11IS
0.5434805€ 02 ~0.2952134E 03 0.2425582€ 03 0.2580994E 03
-0.,3012175E 03

THE LENGTH Of THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.5536348E 03
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS

THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 1
-0.3918504E 01 0.0000000E 00 0.0000000E 00 0.0000000€ 00
THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.3919178E 01

START ITERATING THE MINIMUM NORM SOLUTION
ITERATION 0

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 11Is
0.,1196937€ 02 ~0.9165155E 02 0.9815402€ 02 0.9341266E 02
-0.1245328€ 03 ’
THE LENGTH OF THE RESIDUAL VECTOR 1S 0.2059540€ 03
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.4241705E 05
THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1
-0.1122564€-02 0.1701020E~01 =0, 4927908E~01 0. 7638268E-02

ITERATION 1

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 118
0.1196851E 02 ~0.9162877E 02 0.9800777E 02 0.9377876E 02
-0.1243818E 03
THE LENGTH DF THE RESIDUAL VECTOR IS 0.2059540¢ 03
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 04 424LT707E 05
THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1
~0.1122562E~02 0.1701017€~01 «0.4927897E~01 0.7638149E-02

ITERATION 2

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 1S
0.1196846E 02 «0.91627T12E 02 0.9799654E 02 0.9380801E 02
«~0.1243691E 03

THME LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.2059540E 03
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS

THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 1
~0.1122562E<02 0.1701017€-01 ~0.4927897€E-01 0.7638138E-02
THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.1048326E 00

THE RANK OF THE SYSTEM OF EQUATIONS IS 3

74

0.7271403E~01

0. 1501286E 02

0.3065116E 06

0.7271403E~01

-0.2290949E 01

)

0.9062308E~01

=042683254E 01

0.9062302E~-01

~0.2715523€ 01

0.4241707E 05

0.9062302E~01
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THE BASIC SOLUTICN FOR RIGHT HAND SIDE NUMBER 1
0.5984886E 01 0.,5876597€ 00 -0, 0000000E 00 ~0.0000000E 00 0.8512783E-01
THE LENGTH OF THE BASIC SOLUTION VECTOR IS 0.6014267E 01
THE LENGTH OF THE RESTOUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HANO SIDE NUMBER 11s 0.7305113E 02
THE SQUARE DOF THE LENGTH OF THE RESIOUAL VECTOR FOR THE BASIC SOLUTION IS 0.5336465E 04
THE DECOMPOSITION MATR1X FOR RANK EQUAL TO 3
0.3600000E 02 -0.1220827E 05 .’ 0.1363816E 03 ~0.2807053E 03 0.1331047€ 03
~0.6300000E 03 0.1254448E 06 ~0.5748318E 03 0.4040898E 03 -0.1751582E 03
0,3360000E 04 ~0.3330380E 06 0.3635234E 03 0.2850486E 03 ~0.1274695E 03
~0. 7560000 04 0.1823370E 06 0. 4346638E 03 0.4069238E 02 -0.2176294E 02
0. 7560000E 04 0,2586630€ 06 0.6111328E 02 ~0,1836123€ 03 0.7392822€ 02
-0.2772000€ 04 ‘ -0.2242040€ 06 -0.4450078E 03 ~0.3606279€ 03 0.1518242¢€ 03
0.1000000E 01 ‘ =0.5491187E 03 0.1685228E 02 =0.7022729E 02 ~0.1663666E 00
0.0000000E 00 ~0.0000000E 00 0. 1000000€ 01 -0,8308134E 01 0.1486743E 01
0.0000000E 00 ~0.0000000€ 00 -0.0000000E 00 -0.0000000E 00 0.1000000F 01
0.0000000E 00 -0.0000000€ 00 -0, 0000000E 00 0.1000000€ 01 0.5393688E 00
0.0000000F 00 0.1000000E 01 0.2112422E-01 0. 6049420 00 0.2171915€E 00

START ITERATING THE BASIC SOLUTION

ITERATION 0

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 11s
-0.2579671E 02 0.4256795E 02 0.2908449E 02 0.2302523€ 01 -0.2051759E 02
-0.3983452F 02
THE LENGTH OF THE RESIDUAL VECTOR IS 0.7305113€ 02
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.5336469E 04
THE SOLUTION T THE SYSTEM FNR RIGHT HAND SIDE NUMBER 1
0.59A4886E .0} 0.5476557€ 00 -0, 0000000E 00 -0.0000000E 00 0,8512783E-01

ITERATION 1

THE RESIDUAL VECTOR FOR RIGHY HAND SIDE NUMBER 118
-0.2580716E 02 0.4262851E Q2 . 0.2894385€ 02 0.2535038E 01 ~0.2078429€ 02
-0.3970796E 02
THE LENGTH OF THE RESIDUAL VECTOR IS 0.7304846E 02
- THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.5336078F Q4
THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIOE NUMBER 1

0.5986060E 01 " 0.5877273E 00 0. 0000000 00 0.0000000E 00 0.8512926E-01



76

ITERATION 2

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 11§ :
=0.2580716E 02 0.4262851E 02 0. 2894385E 02 0.2535038E 01 ~0,2078429E 02
=04.3970796E 02 ' '
THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.7304846E 02
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.5336078E 04
THE FINAL SOLUTICN TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 1
0.5986060E 01 0.5877273E 00 ° 0. 0000000E 00O 0.0000000E 00 0.8512926E~01
THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.6015442E 01

START ITERATING THE MINIMUM NORM SOLUTION

ITERATION ]

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 118
-0.1412092€ 01 0.7000010E O1 0.4034684E 01 -0.9714581E 00 ~0.4376644E 01
-0.7957222€E 01

THE LENGTH OF THE RESIDUAL VECTOR IS 0.1227554€ 02

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1506889€ 03

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1
0.1159034E-01 =0.7548279€~-01 " 0.2888909€~01 0.1005700E 00 0.1428152E 00

ITERATION 1

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 11s

. -0.1419850€ 01 0.7070168E 01 0.3861511E 01 -0.6887278E 00 =0.4759110€ 01
-0.7739984€ 01

THE LENGTH OF THE RESIDUAL VECTOR IS 0.1224521E 02

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1499453E€ 03

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1
0.1159722€-01 ~0.75532 79E~01 0.2893130€~01 0.1006204E 00 0.1428436E 00

ITERATION 2

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 118
. -0.1419912E 01 0.7071811E 01 0.3850997€ 01 -0.6624421E 00 -0.4787273€ 01

-0.7729140E 01

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.1224554E 02

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.1499532€ 03

THE FINAL SOLUTICN TO THE SYSTEM FOR THE RIGHY HAND SIDE NUMBER 1
0.1159722E-01 =0.75532 79E~01 0. 2893132E-01 0.1006204E 00 0.1428436E 00

THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.1928872E 00

THE RANK OF THE SYSTEM OF EQUATIONS IS 4

THE BASIC SOLUTICN FOR RIGHT HAND SIDE NUMBER 1



-0.2953621F 01 ~0.,8268492E 00 -0.2370200¢€

00 -0.0000000€

THE LENGTH OF THE BASIC SOLUTICN VECTOR 1S 0.3078319E 01

THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HAND SI0OE NUMBER

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS

THE DECOMPOSITION MATRIX FOR RANK EQUAL TO 4
0.3600000E 02 ~0.1220827€ 05 0.1363816E 03 0.1331047€
-0.6300000€ 03 0.1254448E 06 ~0.5748318E 03 -0.1751582E
0.3360000€ 04 -0.3330380E 06 0.3635234E_03 -0.1274655€
~0. 7560000E 04 0.1823370E 06 0.4346638E 03 -0.2176294€
0.7560000E 04 0.2586630E 06 0.6111328€ 02 0.7392822€
-0.2772000€ .04 -0.2242040E 06 -0.4450078E 03 0.1518242E
0.1000000E 01 -0.5491187€ 03 0.1685228¢ 02 0.3771204€
0.0000000E 00 -0.0000000E 00 0.1000000E 01 0.5967891E
0.0000000E 00 ~0.0000000€ 00 ~0.0000000€ 00 0.1000000€
0.0000000E 00 -0.0000000E 00 -0. 0000000E 00 -0, 0000000
0.0000000E 00 0.1000000€ Ol 0.2112422E-01 -0.1090953€
i
START ITERATING THE BASIC SOLUTION ’
ITERATION 0
THE RESIDUAL VECTOR FOR RIGHT MAND SIDE NUMBER 11s
0.5751670F 01 0.1055882E 01 -0.1063993E 01 ~0.2833993E

-0.3979918E 01

THE LENGTH OF THE RESIDUAL VECTOR IS 0.8257427€ 01
YHE SOUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER
~0.2953621E 01 -0.8268492€E 00 ~0.2370200€

ITERATION 1
THF RESTOUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 1s
0.5795353€ 01 0.1082843E 01 " ~0.1307373€
~0.3707628E 01

THE LENGTH QF THE RESIDUAL VECTOR IS 0.8239532E 01
THE SQUARE OF THE LENGTH OF THE RESIOUAL VECTOR IS

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIOE NUMBER
-0.2969888E 01 ~-0.8297057€ 00 ~0.2375268€

0.6818512E 02

1
oo «0.0000000E

01 . «0,2626111E

0.,6788991E 02

1
00 0.0000000E

o0

03
03
03
02

02

02
01
01
0o

00

01

0.1109856¢

1 1s

0.6818509E 02

0,2305908E
0.4353271F
-0.5855225E
~0,8973831¢€
-0.1489728F
-0.1414307E
0.1583708E
0.5311466E
0.2282146E
0.1000000€

0.3559704E

~0.2997540¢t

0.1109856E

-0.3283153E

0. 1110445E
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00

0.8257427€ 01

02
o1
01

01

01

o]}

]}



ITERATION 2

THE RESIDUAL VECTOR FOR RIGHT HAND S10E NUMBER
0.5798730€ 01 0.1074282E 01
~0.3768431E 01

118

THE LENGTH OF THE RESIDUAL VECTOR IS 0.8243764E 01
THE SQUARE DF THE LENGTH OF THE RESIDUAL VECTOR IS

THE SOLUTICON YO THE SYSTEM FOR RIGHT HAND SIOE NUMBER

~0.2969910€E 01 -0,8297095E 00 -0.237527SE
ITERATION 3
THE RESTDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 11s

0.5795730E 01
-0.3768431E 01

0.1074282E 01 ~0.1251246E

THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS

«0.1251246E 01

=0.2769856E

0.6795966E 02
1

00 0.0000000E
ol ~0.2769856E
0.8243764E

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS

THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER

=0.2969910E 0l ~0.,8297095E 00 ~0.237527SE

THE LENGTH OF THE FINAL SOLUTION VECTOR IS

START ITERATING THE MINIMUM NORM SOLUTION
ITERATION 0
THE RESTDUAL VECTOR FOR RIGHT HAND SIDE NUMBER

0.1576748E 01 0,2459836E 00
-0.1467851E 01

118

THE LENGTH OF THE RESIDUAL VECTOR IS 0.2622519E 01
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS

THE SCLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER
-0,B8600903E-01 0.1348953E 00 0.1762071E

ITERATION 1
THE RESIDUAL VECTOR FOR RIGHT HAND SIOE NUMBER

0.1586388E 01 0.2919084E 00
=041044050E 01

11s
=0.3293967TE

THE LENGTH OF THE RESIDUAL VECTOR IS 0.2258464E 01
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER
~0,8656365E-01 0.1360603E 00 0.1770899E

ITERATION 2
THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER

0.1586201E 01 0.2967024F 00
-0.1009189¢ Ol

118
~0.3611898E

0. 1041412E~

00 0.0000000E

0.3094758E 01

ol -0.1475101E

0.6877613E 01

1

00 0.1B10&69SE

00 =0.7901716E

0.5100661E 01

1

00 0.1B15757E

00 ~0.T7083106€

01

00

o1

ol

00

ol

00

00

00

00

78

-0.3126715€E 01

0.1110445E 00

~0.3126715E 01

0.6795966E 02

0.1110445E 00

-0.1892567E-01

0.1754409E 00

-0.8221400E 00

0.1756532E 00

-0.9115863E 00



THE LENGTH OF THE RESIDUAL VECTOR IS 0.2255144E 01

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.508567SE 01

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1

. -0, 8656299€E-01 0.1360589E 00 0.1770889E 00 0.1815751E

ITERATION 3

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS
0.1586201E 01 0,2967024E 00 -0.3611898E 00 -0.T7083106E
=-0.100918%9€ Ol
THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.2255144E
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS
THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 1
~0.B656299E-01 0.1360589E 00 0.1770889€ 00 0.1815751E
THE LENGTH OF THE FINAL SOLUTION VECTOR IS . 0e3481222E 00
THE RANK OF THE SYSTEM OF EQUATIONS IS 5
THE DECOMPOSITION MATRIX FOR RANK EQUAL TO 5
0.3600000E 02 ~0.1220827€E 05 0.1363816E 03 0.1331047E
-0.6300000E 03 0,1254448E 06 -0.5748318€ 03 -0.1751582E
0.3360000E 04 ~0.3330380E 06 0. 3635234€ 03 =0.1274695E
~0. 7560000 04 0.18233T0E 06 0.4346638E 03 ~0,2176294E
0.7560000§ 04 0.2586630E 06 0.6111328E 02 0.7392822€
-0-2772000E 04 ~0.2242040€ 06 ~0. 4450078 03 0.1518242E
d.lOOOOOOE 0l -0.5491187E€ 03 0.1685228E 02 0.3771204E
0.0000000E 00 H-O.OOOOOOOE 00 0. 1000000E 01 0.5967891€
0.0000000E 00 ~0.,0000000E 00 ~0. 0000000E 00 0.100000CE
0. 0000000€ 00 -0.0000000E 00 =0, 0000000E 00 -0,0000000€
0,0000000E 00 0.1000000E 01 0.2112422€-01 -0.1090953€

START ITERATING THE BASEIC SOLUTION
ITERAT ION 0

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 115
0.5903137€-01 =0.2641082E-01 0.2598023E 00 =0, 6255484E
-0.4057903E 00
THE LENGTH OF THE RESIDUAL VECTOR IS 0.1043110€ 01
THE SQUARE OF THF LENGTH OF THE RESIOUAL VECTOR IS 0.1088079€E 01

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1

00

00

01

00

03
03
03
02
02
03
02
o1
01
00
00

00

0.1756529E

~0.9115863E

0.5085675E 01

0.1756529E

0.2305908E
0.4353271E
-0.5855225€
-0.8973831€
-0.1489728€
-0.1414307€
0.1583708E
0.5311466E
0.2282146E
0.1000000E
0.3559704E

0.6785452E
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00

00

00

02
01
01
01
02
02
02
o1
01
o1

00

00



0.9558830E 00 0.4843262E 00 0.3263453E 00 0.2468576E
ITERATION 1
THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 11s

0.1099586E~02 ~0.1439452E~01 0.97131 73E-01 -0.2567983E
~0,1110306€ 00

THE LENGTH OF THE RESIOUAL VECTOR IS 0.4102879E 00

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1683362E 00

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIOE NUMBER 1

0.9997082€ 00 0.4999225E 00 0.333305%E 00 0.2499895E
ITERATION 2 )

THE RESIDUAL VECTOR FOR RTGHT HAND SIOE NUMBER 118
~0.2093215E-03 0.58829 7802 ~0,3905296E~01 0.1000857E
0.4262761E=01
THE LENGTM OF THE RESIDUAL VECTOR IS 0.1591172E 00
THE SOQUARE OF THE LENGTH OF THE RESIDUAL VECTOR 1§ 0.2531829€-01
THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1
0. 9999990E 00 0,4999998E 00 0.3333333€ 00 0,2499999E

ITERATION 3

THE RESTOUAL VECTOR FOR RIGHT HAND SIDE NUMBER 118
-0.3291368E-03 0.9074807E-02 ~D.5993128€E-01 0.1531076E
0.6493306E=01 ]
THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.2431152E
THE SQUARE OF THWE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS
THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 1
0.9999999€ 00 0.4999999€ 00 043333333E 00 0.2499999¢

THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.1209797E 01

START [TERATING THE MINIMUM NORM SOLUTION
ITERATION 0

THE RESIDUAL VECTUR FOR RIGHT HAND SIDE NUMBER 118
0,%903137€=01 =0.2641082E=01 0. 2598023€ 00 -0.6255484E
=0.4057903€ 00
THE LENGTM OF THE RESIDUAL VECTOR 1S 0.1043110€ 01
THE SOUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1088079E 01
THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1

0.9558830E 00 0.4843262E 00 0.3263453€ 00 0,2468576E
ITERATION 1

THE RESIDUAL VECTOR FOR RIGHY HAND SIDE NUMBER 1 1S
0.1099586E-02 =0.1439452E~01 0.9713173E-01 -0.2567983E

00

00

00

00

00

00

0o

00

00

00

00

0.1988596E

0.2835846E

0.1999967E

-0.1091981E

0.2000000E

~0.1666510E

0.5910502E-01

0.2000000E

0.6785452E

0.1988596E

0.2835846E
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-0.1110306E 00

THE LENGTH Ué THE RESIDUAL VECTOR IS 0.4102879E 00

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1683362E 00

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1

0.9997082E 00 . 0.4999225€ 00 0.3333055€ 00 0.2499895€ 00
ITERATION 2
THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 118
-0.2093315E-03 0.58082978E~02 -0.3905296E-01 0.1000857€ 00
0.4262781€-01
THE LENGTH OF THE RESIDUAL VECTOR IS 0.1591172E 00
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR S 0,2531829E~01
THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1
0.9999990E 00 0.4999998E 00 0.3333333E 00 0.2499999E 00
ITERATION 3 ‘
THE RESIDUAL VECTOR FDR RIGHT HAND SIDE NUMBER 118
-0.3291368E~03 0.,9074807E~02 ~0.5993128E~01 0.1531076E 00
0.6493306E-01
THE LENGTH OF THE RESIOUAL VECTOR FOR THE FINAL SOLUTION IS 0.2431152€ 00

THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FDR THE FINAL SOLUTION IS

THE FINAL SOLUTIEN TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER

0.9999999E 00

THE ERROR MATRIX

0.2461610E 00
0.7977712€-01
0.3363910€-01
0.1456363E-01
0.5140688E-02

0.4999999E 00

THE LENGTH OF THE FINAL SOLUTION VECTOR IS

0.7977712€-01
0.2632471E-01
0,1121059€~01
0.4884373E~02
0.1731764E~02

0.3333333E 00

0.1209797E 01

0.3363910€-01

. 0.1121059€-01

0.4800081€-02
0, 2098641€-02
0.7458888E-03

1
0.2499999€ 00

0.1456363E-01
0.4884373E-02
0.2098641E-02
0.9195909E-03
0.3273471E-03

0.1999967E 00

-0.1091981E 00

0.2000000E 00

-0.1666510E 00

0.5910502E~-01

0.2000000E 00

0.5140688E-02
0.1731764E-02
0.7458888E~03
0.3273471E-03

0.1166535E~03
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APPENDIX C

SETTING THE INPUT VARIABLES FOR

LLCR AND LLSQ
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The following flowchart and tables will give the user of the LLCR
package the information he needs to set the FORTRAN variables needed by
the package. A complete description of the calling sequence is given in
Appendix A.

The first group of variables are usage independent. They should
be set .at the values given below for every problem solved by the package.
Table VII contains the FORTRAN variables in the group and the correspond-

ing values.

TABLE VII

SETTING THE USAGE INDEPENDENT FORTRAN
VARIABLES NEEDED BY THE LLCR PACKAGE

FORTRAN Variables Values
RREND , <n, = KRBEG
EPS 295
EPS1 28
NR m
NC n
LA o “em
LRE 2n

n is the number of columns in the coefficient matrix, m is the number of
rows in the coefficient matrix, and3 is the relative accuracy of the
computer.

The values at which the second group of variables are set depends
upon -the amount of extra storage available for the program, the agcuracy
desired for the final solutions, and the amount of extra execution time

the user is willing to sacrifice. Figure 2 contains a flow chart that



will show the user how to set this group of variables.

IREF = -1
MAXIT = Q
LSAV = 1

. Is
Residual

Yes

LSAV 2 m

no

to be
Refined?

yes

IREF = 1

MAXIT = 1

TREF = 0
| MAXIT = 0

Figure 2. Setting the .Usage Dependent FORTRAN Variables

( Exit )

84
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The third group of variables are usage dependent; these variables
will be set differently for different usages of the package. The
appropriate value for each variable in this group for each usage is

given in Table VIII.

TABLE VIIL

SETTING THE USAGE DEPENDENT VARIABLES NEEDED
BY THE LLCR PACKAGE

Program Usage , IPIV KRBEG NRHS LSAL

To solve a system or systems of 0 n h 1
equatlons AX=B

To perform IVOR or "forward 1 1 1 Zn
selection" :
To solve AX=B while treating 0] z 1 h 2 n

the entries in A as if.they
had a variable precision

To fit a polynomial to data -1 1 1 Z2n
To calculate a generalized . 0 n m 1
inverse

The tables and flowchart:. given above and the information given in
Appendix A should should enable the user to work with LLCR and LLSQ
with relative ease. The routines are also documented internally with

comment cards.



v

VITA
Joanna Chamberlain Hwang
Candidate for the Degree of

Master of Science

Thesis: COMPUTER SOLUTION OF THE GENERALIZED LINEAR LEAST SQUARES
PROBLEM USING MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION

Major Field: Computing and Information Sciences
Biographical:

Personal Data: Born in New Castle, Pennsylvania, November 6, 1946,
the daughter of Mr. and Mrs. Robert L. Chamberlain.

Education: Graduated from Shenango High School, New Castle,
Pennsylvania, in June, 1964; attended Carnegie Institute of
Technology, Pittsburgh, Pennsylvania, and the University of
Houston, Houston, Texas} received a Bachelor of Science
degree in mathematics from Oklahoma State University in 1969;
completed requirements for the Master of .Science degree at
Oklahoma State University in July, 1972.

Prafessional Experience: graduate teaching assistant, Oklahoma
State University, Department of Computing and Information
Sciences, 1970-1971; instructor, Northern Oklahoma.College,
Tonkawa, Oklahoma, 1972-present.





