COMPUTER SOLUTION OF THE GENERALIZED LINEAR LEAST SQUARES PROBLEM USING MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION

By

JOANNA CHAMBERLAIN HWANG,

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1969

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1972

OKLAHOMA STATE UNIVERSI 'IRRARY

FEB 5 1973

COMPUTER SOLUTION OF THE GENERALIZED LINEAR LEAST SQUARES PROBLEM USING MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION

Thesis Approved: Thesis ser Adv 20 Dean of the Graduate College

PREFACE

This report describes the use of modified Gram-Schmidt orthogonalization in computer routines that find a basic approximate solution and the least squares solution of minimum Euclidean norm to the system of equations AX=B, where A is an m by n matrix or rank r, X is an n by h matrix, and B is an m by h matrix. A can be treated as if it were of a user-specified rank, k.

The report includes a description of the application of the routimes to (a) perform stepwise regression analysis and (b) assess the effect on the solution of decreasing the reliability of the entries in the coefficient matrix.

I am deeply grateful to Dr. John P. Chandler for his advice and support during the preparation of the report. I am also grateful to Dr. Donald Grace for his help in the organization of this paper.

TABLE OF CONTENTS

ĩ

Chapter	for a second	Page
I.	INTRODUCTION	. 1
	Linear Least Squares Problems in Curve and	
	Surface Fitting	. 1
11.	THE GENERALIZED LINEAR LEAST SQUARES PROBLEM	. 6
	Problem Definition	. 6
	Underdetermined Systems of Equations (m <n)< td=""><td>. 7</td></n)<>	. 7
	Overdetermined Systems of Equations (m>n) Definition of the Generalized Linear Least	• 7
	Squares Problem	• 9
	Relation of the Linear Least Squares Problem	
	to the Generalized Inverse of a Matrix Method	. 12 . 15 . 15
111.	STEPWISE REGRESSION ANALYSIS	. 18
IV.	THE USE OF MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION TO SOLVE THE GENERALIZED LINEAR LEAST SQUARES PROBLEM	. 22
	Osborne's Algorithm	. 23
	Phase I	. 23
	Phase II	
	Phase III	
	Mathematical Summary of the Algorithm	
	Modification and Additions	
	IVOR	. 31
	Pre-specified Rank	. 33
	Iterative Improvement of the Initial Solutions .	
	Calculation of the Error Matrix	
	Polynomial Fitting	

Chapter

ŀ

/

V. RESULTS AND CONCLUSIONS	37
Test Problems and Verification	37
Inverse of an Arbitrary Matrix	37
Using the Package to Find the Solution Vector	
for an Arbitrary System of Equations	
	38
Example 2	39
Example 3	40
Exemple 4	43
Using the Package to Perform IVOR	44
Using the Package to Test the Effects of	
Decreasing the Precision of the Entries in	
the Coefficient Matrix	46
Comparison of Methods	
Number of Operations and Storage Requirements	49
Summary	51
A SELECTED BIBLIOGRAPHY	54
APPENDIX A - COMPUTER LISTINGS OF LLCR AND LLSQ	56
APPENDIX B - SAMPLE OUTPUT FROM THE PROBLEM CONSISTING OF THE FIRST FIVE COLUMNS OF A 6 BY 6 INVERSE HILBERT MATRIX AND A RIGHT HAND SIDE CHOSEN TO GENERATE THE SOLUTION VECTOR $(1., \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}) \cdots \cdots \cdots \cdots \cdots$	70
APPENDIX C - SETTING THE INPUT VARIABLES FOR LLCR AND LLSQ	82

Page

, *i*

LIST OF TABLES

.

Table			P	age
Ι.	Solution of the System of Equations Consisting of the First Five Columns of a 6 by 6 Inverse Hilbert Matrix and a Right Hand Side Chosen to Generate the Solution Vector $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5})$	э	ō	41
11.	Solution of the System of Equations Consisting of the Last Six Columns of an 8 by 8 Inverse Hilbert Matrix and a Right Hand Side Chosen to Generate the Solution Vector $(\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8})$	¢	o	42
I II.	Solution of the System of Equations Consisting of the First Five Elements of Each of the First Three Rows of a 6 by 6 Inverse Hilbert Matrix with a Right Hand Side (463,-13860,97020)	o	o	43
IV.	Results of the IVOR Analysis of the Oxygen Solubility Data	٥	0	45
۷.	Analysis of Oxygen Solubility Data Using Osborne Pivoting	e	٥	48
VI.	Uses of the Package Consisting of LLCR and LLSQ	¢	o	52
VII.	Setting the Usage Independent FORTRAN Variables Needed by the LLCR Package	e	c	83
VIII.	Setting the Usage Dependent Variable Needed by the LLCR Package	o	C	85
	LIST OF FIGURES			

Figu	re								P	age
1.	Geometrical Representation of the Orthogonaliza Vectors in 2-space						•	8	a	26
2.	Setting the Usage Dependent FORTRAN Variables	•	ø	•	Ð	Ð	0	•	•	84

CHAPTER I

INTRODUCTION

This report discusses the use of modified Gram-Schmidt orthogonalization for solving generalized linear least squares problems and performing stepwise regression analysis. Chapter I of this report describes some sources of generalized linear least squares problems. Chapter II presents a general discussion of the generalized linear least squares problem. The closely related problem of stepwise regression analysis is discussed in Chapter III. An algorithm constructed by E. E. Osborne (1) to solve generalized linear least squares problems and some modifications and additions that have been made to Osborne's algorithm are described in Chapter IV. A package consisting of two computer subroutines has been written to implement the algorithm described in Chapter IV. Chapter V describes test cases that were run using the package and the results of these test cases.

Linear Least Squares Problems in Curve and Surface Fitting

One source of a generalized linear least squares problem occurs when trying to find the function,

y = f(t,c),

that best (to be defined) represents a set of data points,

{y;<u>t</u>}_i,

where y is the dependent variable, the t are the independent variables,

the <u>c</u> are the coefficients to be determined (the solution vector), $f(\underline{t},\underline{c})$ is a function from a given family of functions that is linear in <u>c</u>, and $\{y;\underline{t}\}_{\underline{i}}$ is the i-th observation. Note that $f(\underline{t},\underline{c})$ is not necessarily linear in <u>t</u>.

For example, we may wish to represent the set of data points,

$$''(t_1,y_1) = (2,3), (0,1), (1,1), ''$$

by a function, $f(\underline{t},\underline{c})$, from some given family of functions, that gives the best fit. <u>c</u> is called the vector of parameters for this family. The function that gives the best fit is taken often to be the function for which

$$\sum_{i=1}^{m} (f(\underline{t}_{i},\underline{c}) - y_{i})^{2}$$
 (1.1)

is minimized, where m is the number of data points and the general form of $f(\underline{t},\underline{c})$ has been pre-determined. This definition was proposed by Gauss (2) and is the most often used definition of the best fit (3). Finding the vector \underline{c} that minimizes (1.1) is called a linear least squares problem. The discrepancy, or error,

$$f(\underline{t_i},\underline{c}) - y_i$$

is called the i-th residual.

It will be shown that a necessary and sufficient condition for expression (1.1) to possess minima is that

$$\frac{\partial}{\partial c_{j}} \begin{pmatrix} m \\ \sum_{i=1}^{m} (f(\underline{t}_{i}, \underline{c}) - y_{i})^{2} \end{pmatrix} = 0$$

Taking the first partial derivatives with respect to c_j , j=1,...,n, we obtain

$$\sum_{i=1}^{m} (f(\underline{t}_{i},\underline{c}) - y_{i}) \xrightarrow{\partial f(\underline{t}_{i},\underline{c})}{\partial c_{j}} = 0 \qquad (1.2)$$

for j=1,...,n.

If we attempt to fit the above data to a function of the form

$$f(\underline{t},\underline{c}) = c_1 + c_2 t_1,$$

equations (1.2) generate the system of equations

$$3c_1 + 4c_2 = 5$$

 $4c_1 + 10c_2 = 7$ (1.3)

These are called the "normal equations."

Solving the normal equations, we obtain

$$c_1 = \frac{11}{7}$$
 and $c_2 = \frac{1}{14}$.

An equivalent way of looking at the problem of finding the curve that best fits the data is that we are trying to find the least squares solution of the overdetermined system of equations

$$\underline{\mathbf{T}_{\mathbf{C}}} = \underline{\mathbf{y}}, \text{ where } \mathbf{T} = \begin{bmatrix} \mathbf{1} & \mathbf{3} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} \text{ and } \underline{\mathbf{y}} = \begin{bmatrix} \mathbf{2} \\ \mathbf{4} \\ \mathbf{1} \end{bmatrix},$$

or

$$c_1 + 3 \cdot c_2 = 2$$

 $c_1 + 0 \cdot c_2 = 1$
 $c_1 + 1 \cdot c_2 = 1$.
(1.4)

Problems of this form can also arise from situations unrelated to curve fitting.

There is no vector <u>c</u> such that (1.4) is satisfied exactly since there are more equations than variables and none of the three equations is a restatement (linear superposition) of the other two. However, there is a point (c_1, c_2) such that

$$(c_1 + 3c_2 - 2)^2 + (c_1 - 1)^2 + (c_1 + c_2 - 1)^2$$

is a minimum. That point is (11/7, 1/14). This corresponds to finding a vector <u>c</u> such that

$$\left|\left|\mathbf{T}_{\underline{\mathbf{c}}} - \underline{\mathbf{y}}\right|\right| \tag{1.5}$$

is a minimum, where $|||\underline{T_c} - \underline{y}||$ is the length (or "Euclidean norm") of the vector $\underline{T_c} - \underline{y}$. The length of the vector \underline{w} is defined to be

$$||\underline{w}|| = \sqrt{\underline{w}^{\mathrm{T}} \cdot \underline{w}} = \sqrt{\frac{\sum_{i=1}^{n} w_{i}^{2}}{\sum_{i=1}^{n} w_{i}^{2}}}$$

and is denoted by $\|\mathbf{w}\|$.

The <u>c</u> that minimizes (1.5) is the linear least squares solution of equations (1.4).

The above example had only one independent variable. In general. there can be any number of independent variables in the function that is used as the mathematical model for the curve to be fitted. An example with two independent variables is the following.

The distance of penetration of a projectile into a target depends upon the thickness and hardness of the target plate (4). A simple mathematical model might include only the thickness (t_1) and hardness (t_2) and have the linear form where \hat{y} is an estimate of the dependent variable y (penetration), and the c_i are the coefficients to be determined.

The need to solve a generalized linear least squares problem occurs almost any time one seeks the solution of an overdetermined system of equations (one which has more equations than variables),

Ax=b.

Only in exceptional cases can all of the equations be satisfied. We could choose a subset of the equations to be satisfied exactly. The fit of the remaining equations would be disregarded. In the least squares approach, we fit all the equations as closely as possible.

CHAPTER II

THE GENERALIZED LINEAR LEAST SQUARES PROBLEM

Problem Definition

The definition of the generalized linear least squares problem will be given after a short discussion of systems of linear equations.

Systems of Linear Equations

Consider the system of linear equations $A\underline{x}=\underline{b}$ consisting of m equations in n variables. The coefficient matrix, A, is an m by n matrix, where m may be less than, equal to, or greater than n, \underline{b} is an mcomponent vector (the "right hand side", or vector of constants), and \underline{x} is an n-component vector (the solution vector).

Let the j-th column of a matrix, A, be denoted by A^{j} . The column rank of the matrix, A, is defined to be the maximum number of linearly independent columns in A (5). A is linearly independent of the other columns of A if there do not exist constants α_{i} such that

$$\sum_{\substack{i=1\\i\neq j}}^{n} \alpha_{i} A^{i} = A^{j}.$$

The row rank of A is the number of linearly independent rows in A (5). The row rank is equal to the column rank (6). The term rank refers to the column rank throughout the remainder of this report. The rank of a matrix is less than or equal to $\min(m,n)$. If the rank

of the matrix is equal to n, the matrix is said to be of full rank.

Exactly Determined Systems of Equations (m=n)

If A is an m by n matrix of full rank n, the ordinary inverse, A^{-1} , of A, exists, and $x-A^{-1}b$. The solution vector <u>x</u> is unique (5).

Underdetermined Systems of Equations (m<n)

If the system of equations has more variables than equations (m < n), the system of equations is probably consistent. A system of equations is consistent if the rank of the coefficient matrix is equal to the rank of the augmented matrix (A, \underline{b}) (5). The rank of the system of equations is less than or equal to m, since any set of m+1 or more mcomponent vectors is linearly dependent (5). When the number of variables is greater than the number of equations, there is a linear subspace of solutions. Two types of solutions are usually of interest in this case. They are a basic approximate solution that has at most r nonzero components, where r is the rank of the coefficient matrix, and the least squares solution of minimum length (Euclidean norm). These types of solutions will be described in detail in the next section.

Overdetermined Systems of Equations (m>n)

If the matrix, A, is an m by n matrix, where m is greater than n, the system of equations Ax=b is most likely inconsistent since there are more equations than variables. A system of equations is inconsistent if the rank of the coefficient matrix is not equal to the rank of the augmented matrix (A,b) (5). With m>n, if the system of equations is consistent, then m-n of the equations are restatements of other equations or combinations of other equations in the system; they provide no new information. If the system of equations is consistent, there exists a unique vector \underline{x} such that $\underline{Ax=b}$.

If the system of equations is inconsistent, there does not exist a vector <u>x</u> such that $A\underline{x=b}$. In this case, the conventional choice is to find a vector <u>x</u> that minimizes the length of the vector $A\underline{x-b}$. As mentioned previously, the length (or Euclidean norm) of a vector <u>w</u> is defined to be

$$||\underline{w}|| = \sqrt{\underline{w}^{\mathrm{T}}\underline{w}} = \sqrt{\frac{n}{\Sigma} + w_{1}^{2}}$$

and is denoted by $||\underline{w}||$. The vector $A\underline{x}-\underline{b}$ is called the "residual vector." A vector, \underline{x} , that produces the minimum value for the length of the residual vector is called a "least squares solution." The problem of finding a solution vector that produces a residual vector of minimum length is called a "linear least squares problem."

If the rank, r, of A is n, where n is the number of columns in the matrix, the vector that minimizes the length of the residual vector is unique (7). If the rank, r, is less than n, there is a linear subspace (a line or hyperplane) of least squares solutions (7). The solutions can be classified by type. The two types that are usually of interest are the least squares solution of minimum length and a basic approximate solution that has at most r nonzero components, where r is the rank of the coefficient matrix (1). The former is unique (7). The latter is not unique if n>1 (7).

A basic approximate solution is defined as follows:

 \underline{x}_{b} is a basic approximate solution of $\underline{Ax=b}$ if for all vectors \underline{x} ,

$$||A\underline{x}-\underline{b}|| \geq ||A\underline{x}-\underline{b}||$$

and \underline{x} has at most r nonzero components (8). Let BAS stand for basic approximate solution throughout this report.

A minimum norm solution is defined as follows:

 \underline{x}_0 is the least squares solution of minimum Euclidean norm if for all vectors \underline{x} either

$$||A\underline{x}-\underline{b}|| > ||A\underline{x}-\underline{b}||$$

or else

$$||\underline{Ax-b}|| = ||\underline{Ax}-\underline{b}||$$
 and $||\underline{x}|| > ||\underline{x}_0||$.

The second condition holds of \underline{x} is orthogonal to the null space of A; i.e., \underline{x} is orthogonal to every solution of Ax=0 (1).

A vector \underline{u} is orthogonal to a vector \underline{v} if

$$\underline{\mathbf{u}}^{\mathrm{T}}\underline{\mathbf{v}} = \sum_{i=1}^{n} \mathbf{u}_{i}\mathbf{v}_{i} = 0.$$

Definition of the Generalized Linear Least Squares Problem

The problem of finding the solution vector, \underline{x} , that minimizes the length of the vector A<u>x</u>-<u>b</u>, where the rank of A is less than or equal to n, is called the "generalized linear least squares problem." The term "generalized linear least squares problem" is used to emphasize that the rank of A may be less than the number of columns in A. In the past, the term "linear least squares problem" was used to denote the problem of finding the vector, \underline{x} , that minimized the length of the vector Ax-b, where A was of full rank.

As mentioned previously, the solution of the system of equations $A\underline{x}=\underline{b}$, where A is an n by n matrix of rank n, can be obtained by the pre-multiplication of the right hand side by a matrix, A^{-1} , called the inverse of A. The solution of the system of equations $A\underline{x}=\underline{b}$, where A is an m by n matrix of rank r (r≤min(m,n)), can be represented by the pre-multiplication of the right hand side, \underline{b} , by a matrix (to be defined) called the generalized inverse of A. It has been shown further that the generalized inverse of any complex matrix, A (not necessarily square), is unique, and, therefore, the minimum length solution is unique (7).

Relation of the Linear Least Squares Problem to

the Generalized Inverse of a Matrix

Penrose (7) has shown that the least squares solution of minimum Euclidean norm is unique and is represented by $\underline{x}=A^{[0]\underline{b}}$, where $A^{[0]\underline{c}}$ is called the generalized inverse or pseudo-inverse of A.

A[@] is defined by the relationships

$$AA^{Q}A=A$$
$$A^{Q}AA=A^{Q}$$
$$(AA^{Q})=A^{Q}A$$

(A^QA)*=AA^Q, where A* is the conjugate transpose of A.

$$A^{*=\overline{A}^{T}} = (\overline{A}_{ji}).$$

and

Rosen (8) has shown that the BAS (Basic Approximate Solution) can be represented by $\underline{x}=A^{\#}\underline{b}$, where $A^{\#}$ is defined below.

For $r=n \le m$, $A^{\#}$ is equal to $A^{@}$ and \underline{x}_{b} is also the least squares solution of minimum Euclidean norm. For r=n=m,

$$A^{\#} = A^{@} = A^{-1}$$
.

For r<n, $A^{\text{\#}}$ is not necessarily unique. For this last case, $A^{\text{\#}}$ can be defined as follows:

Let A be of rank r (r<n). Let B consist of r linearly independent columns of A. Let \underline{B} consist of the other n-r columns of A. For simplification, assume that B consists of the first r columns of A so that

$$A = (B, \underline{B}).$$
$$B^{\mathbb{Q}} = (B^* B^{-1})B^*$$
$$A^{\#} = \begin{pmatrix} B^{\mathbb{Q}} \\ 0 \end{pmatrix}$$

The first r rows of $A^{\#}$ consist of the matrix $B^{\mathbb{Q}}$. The remaining n-r rows are zero.

A^Q can be expressed in terms of B^Q as follows:

$$A^{@}=C^{*}(CC^{*})^{-1}B^{@}$$

where

C=₿[@]A

and C^{*} is the conjugate transpose of C (7).

$$\underline{x}=A^{-1}\underline{b}$$

in this case, but A^{-1} did not need to be found explicitly.

Method

The most popular practical method for finding the least squares solution of Ax=b is to solve the normal equations,

$A^{T}Ax = A^{T}b$.

A derivation of the normal equations and a justification for their use follows.

The vector, <u>x</u>, that minimizes $||A\underline{x}-\underline{b}||^2$ also minimizes $||A\underline{x}-\underline{b}||$. A necessary condition for $||A\underline{x}-\underline{b}||^2$ to possess a minimum is that

$$\frac{\partial ||\underline{Ax}-\underline{b}||^2}{\partial_{x_j}} = 0 \quad \text{for } j=1,\ldots,n, \quad (2.1)$$

where n is the number of columns in A. Since $||A\underline{x}-\underline{b}||^2$ is a positive semidefinite quadratic form in \underline{x} and is greater than or equal to zero for all \underline{x} , $||A\underline{x}-\underline{b}||^2$ does not contain an inflection point or a maximum in an unrestricted domain (5). Therefore, the \underline{x} for which equations (2.1) are satisfied must be the point where $||A\underline{x}-\underline{b}||^2$ attains its minimum value. As mentioned above, $||A\underline{x}-\underline{b}||^2$ does not contain an inflection point or a maximum in an unrestricted domain, and therefore, it is sufficient to find a vector \underline{x} that satisfies (2.1) to find a minimum to $||A\underline{x}-\underline{b}||^2$. Since

$$||\mathbf{r}||^{2} = ||\underline{A}\underline{\mathbf{x}}-\underline{\mathbf{b}}||^{2} = (\underline{A}\underline{\mathbf{x}}-\underline{\mathbf{b}})^{T}(\underline{A}\underline{\mathbf{x}}-\underline{\mathbf{b}})$$

= $\sum_{k=1}^{m} (\underline{\mathbf{b}}_{k} - \sum_{i=1}^{n} x_{i} a_{ki})^{2},$ (2.2)

$$\frac{\partial ||A\underline{x}-\underline{b}||^2}{\partial x_j} = \sum_{k=1}^{m} (b_k - \sum_{i=1}^{n} x_i a_{ki}) a_{kj} = 0, j=1,...,n.$$

Equation (2.2) can be rewritten as follows:

$$\sum_{k=1}^{m} b_{k}a_{kj} - \sum_{k=1}^{m} a_{kj} \sum_{i=1}^{n} a_{ki}x = 0 \text{ or}$$

$$\sum_{k=1}^{m} a_{kj} \sum_{i=1}^{n} a_{ki}x_{i} = \sum_{k=1}^{m} b_{k}a_{kj}, j=1, \dots, n.$$

The above equations are called the normal equations. In matrix notation this is equivalent to

$$A^{T}Ax = A^{T}b.$$

A^TA is always symmetric and positive semi-definite (its determinant is nonnegative, as are all its eigenvalues).

Note from (2.2) that the residual vector, r, is orthogonal to every nonzero column of A, since

or

$$r^{T}A^{j} = 0, j=1,...,n.$$

This will be used in the derivation of an alternate method for solving a linear least squares problem. As stated earlier, the most popular method for finding the least squares solution of minimum norm is to solve the normal equations using a method such as Gaussian elimination. There are two problems with using the normal equations to find a least squares solution of minimum norm. First, if A has rank less than n, $A^{T}A$ has rank less than n. A method such as Gaussian elimination would fail to find a solution. Second, the matrix $A^{T}A$ is often ill-conditioned (3). A matrix is ill-conditioned if small errors in the entries in the matrix or small errors in the solving process have a large effect on the solution obtained to the problem $A\underline{x}=\underline{b}$ for some \underline{b} . The degree of ill-conditioning of a matrix depends on the magnitude of the elements of the inverse of A. A quantity called the condition number is a measure of the ill-conditioning of A. The condition number is equal to $||A|| = ||A^{-1}||$, where

$$||A|| = \max ||A\underline{x}||$$

 $||\underline{x}|| = 1$ (9).

The larger the condition number the greater the ill-conditioning (3). The smallest possible condition number is one. If the condition number of A is cond (A), the condition number of $A^{T}A$ is cond²(A).

Longley (10) and Wampler (11) have done comparative studies of methods used to solve the generalized linear least squares problem. Both of them have shown examples where solving the normal equations has produced a solution vector with almost no correct digits.

Since the normal equations cannot easily be used to find the least squares solution when the coefficient matrix has a rank less

than the number of columns in the matrix, and should not be used when $A^{T}A$ is ill-conditioned, a better method is needed. In Chapter IV a description of an algorithm developed by E. E. Osborne is presented.

A brief history of some of the methods that have been developed to find the solution to the generalized linear least squares problem is given below.

History

As mentioned previously, if the coefficient matrix is of full rank, then the most popular method for finding the least squares solution is to solve the normal equations. If the system is ill-conditioned, solving the normal equations can produce a solution vector that is very inaccurate (10).

Orthogonalization techniques are the second most popular class of methods for solving the generalized linear least squares problem. Householder transformations or a form of the Gram-Schmidt method are used normally to do the orthogonalization (3).

Algorithms Using Householder Transformations

E. E. Osborne (12) first proposed using Householder transformations to do orthogonalization in 1961. The method he developed was primarily for the homogeneous case $A\underline{x=0}$. His intent was to improve the accuracy of the solution he obtained. In 1965, Businger and Golub (13) proposed using Householder transformations for solving the nonhomogeneous case $A\underline{x=b}$, where A is of full rank. In 1965, Golub (14) allowed the imposition of linear equalities (a subset of equations that must be satisfied exactly). In 1967, Björck and Golub (15) added iterative improvement

of the solution to the algorithm proposed by Businger and Golub. In 1969, Hanson and Lawson (16) extended the Businger-Golub algorithm to solve systems of equations of the form $A\underline{x=b}$, where A is of rank r (r≤n).

Algorithms Using Gram-Schmidt Orthogonalization

In 1964, Bauer (17) published an algorithm using modified Gram-Schmidt orthogonalization to solve the system of equations $A\underline{x=b}$. This method was good for matrices of full rank only. In 1965, Osborne (1) extended the use of modified Gram-Schmidt otrhogonalization to the case where the coefficient matrix was of rank r (r≤n). In 1968, Björck (18) combined iterative improvement of the solution with the use of modified Gram-Schmidt orthogonalization to reduce the error in the solution of the system of equations $A\underline{x=b}$, where the rank of A is r (r≤n). Björck (18) has shown that modified Gram-Schmidt orthogonalization produces a somewhat more accurate solution vector than the use of Householder transformations for orthogonalization.

Programs implementing Björck's algorithm (18) and Bauer's algorithm (17) are available at Oklahoma State University, Stillwater, Oklahoma. The package consisting of the FORTRAN subroutines, LLCR and LLSQ, has been compared with the programs implementing Björck's and Bauer's algorithms. The LLCR package produced results that were as accurate or more accurate than the routines of Björck and Bauer. Björck's routine does allow the imposition of linear equalities. In practice, this option is not usually used and hence was omitted. The imposition of linear equalities can be approximated by multiplying those rows of A and components of <u>b</u> by a large weighting factor before using the package. In addition, the user of the package consisting of LLCR and LLSQ has many options available that are not available to the user of the other routines.

CHAPTER III

STEPWISE REGRESSION ANALYSIS

Stepwise regression analysis is closely related to the generalized linear least squares problem described in Chapter II.

In stepwise regression analysis a curve is fitted to a set of data points,

$$\{y_{i}; t_{1}, ..., t_{n}\}_{i}, i=1,...,m, where$$

 $\{y_i; t_1, \dots, t_n\}_i$ is the i-th observation (19). The mathematical model for the curve is called the regression equation and has the form

$$\hat{y}_i = c_0 + c_1 t_{i1} + c_2 t_{i2} + \dots + c_n t_{in}$$

where \hat{y} is an estimate of the dependent variable, y, the t_j, j=1,...,n, are the independent variables, and the c_i,i=0,...,n, are the coefficients to be determined. The t_j,j=1,...,n, can represent functions of the form

$$t_j = g_j(\underline{z}_j),$$

where the functions, $\underline{g}(\underline{z}_j)$, do not contain the dependent variable and where the \underline{z}_j are variables whose observed numerical values completely determine the numerical value of the t_j (19).

Stepwise regression is used when it is desired to represent the dependent variable in terms of as few of the independent variables as possible. When the dependent variables are highly correlated, the

- -

simple regression model may be considerably simplified by eliminating some of the variables. In the stepwise procedure one variable is added to the mathematical model at a time (19). Thus, the intermediate equations

$$\hat{y} = c_0$$

 $\hat{y} = c_0' + c_1't_{i_1}$
 $\hat{y} = c_0' + c_1''t_{i_1} + c_2''t_{i_2}$

are obtained. Note the i_1 is not necessarily equal to 1, i_2 is not necessarily equal to 2, etc.

An important property of the stepwise procedure is based on the fact that a variable may be significant at an early stage but may become insignificant after several other variables are entered in the equation. A variable that is not highly correlated with the other variables in the regression equation at an early stage may be highly correlated with variables that enter the regression equation later, thereby reducing its significance. The stepwise procedure permits the insignificant variable (highly correlated variable) to be removed from the regression equation. The test to decide if any variable is to leave or enter the regression equation is a statistical test, namely the F-test. The F-test measures the degree of linear correlation among variables in the regression equation (20). If a variable is too highly correlated with the other variables in the regression equation, it will be removed or not allowed to enter.

The decision as to which variable is to enter the regression equation

is a numerical decision. The variable added to the regression equation at each step is the one that makes the greatest improvement in the fit of the curve as measured by the length of the residual vector; i.e., it is the one that produces the shortest residual vector. At each stage of the stepwise procedure, the least squares solution is found for the variables entered in the regression equation at that point (19).

Stepwise regression does not necessarily produce the solution vector with the residual vector of minimum length. All that is assured is that given k variables in the regression equation, the next variable to enter the equation is the variable whose addition to the model produces the solution vector for which the length of the residual vector is minimized.

Some packages that are called stepwise regression packages do not have the ability to delete variables from the regression equation. Stepwise regression without the deletion of variables is called IVOR (Independent Variable Ordering by Regression Sum of Squares)(4) or "forward selection" (19). Some packages that include only forward selection are the IBM 360 Scientific Subroutine Package (21), the Bio-Medical (BMD) stepwise regression programs (22), and the package that implements the methods described in the next chapter.

Deletion of variables from the regression equation was not implemented because of the following reasons.

First, there is no standard statistical test that best calculates the linear correlation among variables in the regression equation for all cases. The F-test assumes that the standard deviations of all the variables are equal. If the standard deviations are not all equal, the F-test may not give an accurate calculation of the linear correlation among the variables.

Second, when a variable is deleted from the regression equation, the system of equations must be returned to the state in which it would have been if the variable had never entered the regression equation. When orthogonalization is used to do stepwise regression, this state must be constructed. The construction of this state can be inaccurate. The LLCR package was written to provide an accurate means to solve generalized linear least squares problems and to perform stepwise regression (IVOR).

Third, cycling may occur when variables are deleted from the equation. A group of variables may alternately enter and leave the regression equation. For example, variable t_{i_1} may enter the regression equation followed by t_{i_2} 's entry. t_{i_1} may be deleted from the regression equation followed by t_{i_2} 's deletion from the regression equation. t_{i_1} may reenter the regression equation followed by t_{i_2} 's reentry into the regression equation. This pattern may continue until something extra-ordinary happens to stop the process such as exceeding the time limit on the job.

An attempt will be made to implement deletion of variables from the regression equation in the future.

CHAPTER IV

THE USE OF MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION TO SOLVE THE GENERALIZED LINEAR LEAST SQUARES PROBLEM

The generalized linear least squares problem consists of finding the solution vector \underline{x} to the system of equations, $A\underline{x=b}$, that minimizes the length of the residual vector $A\underline{x-b}$.

E. E. Osborne (1) has constructed a method for solving the generalized linear least squares problem based on the fact that (a) the residual vector for a linear least squares solution is orthogonal to every nonzero column of A and (b) the least squares solution of minimum norm is orthogonal to the null space of A; i.e., orthogonal to every solution of Ax=0.

Osborne's algorithm consists of three phases. During the first phase of the algorithm, the numerical rank of the system of equations is found and a decomposition of the coefficient matrix into the product of an orthogonal matrix and a permuted unit upper triangular matrix is determined. During the second phase, a BAS (Basic Approximate Solution) is found. During the third phase, the minimum norm solution is found. Before the three phases of the algorithm are discussed, a definition of numerical rank will be given.

As mentioned in Chapter II, the rank of a matrix is equal to the number of linearly independent columns in A. A^{j} , the j-th column of A, is linearly dependent on the other columns of A if there exist constants α_{i} such that

$$\begin{array}{ll}
\overset{\mathbf{n}}{\Sigma} & \alpha_{\pm} A^{\pm} = A^{\pm}, \\
\mathbf{i} = 1 & (4.1) \\
\mathbf{i} \neq \mathbf{j} & (4.1)
\end{array}$$

Osborne's algorithm considers a column, A^{j} , to be linearly dependent on other columns of A if there exist constants α_{j} such that

$$\frac{||\mathbf{A}^{\mathbf{j}} - \Sigma \quad \boldsymbol{\alpha}_{\mathbf{i}} \mathbf{A}^{\mathbf{i}}|| < \varepsilon}{\mathbf{i} \neq \mathbf{j}}$$

where ε is set by the user of the algorithm, as a measure of the relative error he will tolerate. In practice, ε is $\geq \delta$, where δ is the smallest number such that

1.
$$+\delta > 1$$
.

in single precision real arithmetic on the computer being used. For example, on the IBM 360/65. $\delta \simeq 9.6 \times 10^{-7}$.

The numerical rank of A is the number of linearly independent columns in A, where the definition of linear dependency is the numerical one given in (4.1).

Osborne's Algorithm

Phase I

Phase I of Osborne's algorithm consists largely of elementary column operations performed on the matrix,

$\begin{pmatrix} A \\ R \end{pmatrix}$

where R is an n by n identity matrix, that produces a decomposition

of the form $A = A_N R_N^{-1}$ and determines the numerical rank of A. If the numerical rank of A if r*, r* columns of A_N will be made mutually orthogonal using modified Gram-Schmidt orthogonalization. A description of R_N is given later in this section.

The transformation of

$$\begin{pmatrix} A \\ R \end{pmatrix}$$

into the matrix

$$\left(\begin{smallmatrix} A_N \\ R_N \end{smallmatrix} \right)$$

by modified Gram-Schmidt orthogonalization will be described now.

In modified Gram-Schmidt orthogonalization of a matrix of full rank, the second column is orthogonalized with respect to the first column, the third column is orthogonalized with respect to the first and second columns, ..., the n-th column is orthogonalized with respect to all the other columns of A, where n is the number of columns in A.

If the matrix has a numerical rank less than the number of columns, the lengths of some of the columns will become $\leq \epsilon$ during the orthogonalization process (1). No attempt should be made to orthogonalize these columns with respect to the other columns of the coefficient matrix.

In order to keep track of the columns that remain to be orthogonalized, if any, Osborne reordered the columns of the partially orthogonalized coefficient matrix so that the first k columns of the modified A matrix contain the k columns that have been made mutually orthogonal, for k=1,...,r*= numerical rank of A. A vector,

$$\rho = (||A^{1}||^{2}, ||A^{2}||^{2}, ..., ||A^{n}||^{2}),$$

also is set up at the beginning of the algorithm. Whenever columns of the modified matrix,

$\begin{pmatrix} A \\ R \end{pmatrix}$

are interchanged, corresponding components of ρ are interchanged.

The k-th step of the modified Gram-Schmidt orthogonalization procedure is described below.

For $k=1,\ldots,r^{*}$ the numerical rank of A, the quantities

$$\begin{aligned} d_{k} &= ||A_{k-1}^{k}||^{2} \\ \alpha_{kj} &= (A_{k-1}^{k} \cdot A_{k-1}^{j})/d_{k} \\ A_{k}^{j} &= A_{k-1}^{j} - \alpha_{kj}A_{k-1}^{k} \\ A_{k}^{j} &= R_{k-1}^{j} - \alpha_{kj}A_{k-1}^{k}, \\ \end{aligned}$$

where $A_0 = A$ and $R_0 = I$, are calculated.

A vector representation for the orthogonalization of two vectors in 2-space is shown in Figure 1 (23). The orthogonal projection of \mathfrak{F} on α is made. The orthogonalized vectors are β ' and α , where β '= $\beta - \alpha$. β ' is orthogonal to α .

> A_K R_k

Let

Figure 1. Geometrical Representation of the Orthogonalization of 2 vectors in 2-space.

be used to designate the state of the matrix

after each step k, k=1,..., numerical rank of A, of the algorithm. At this point (1), k columns have been made mutually orthogonal and

 $\left(\begin{array}{c} A\\ R\end{array}\right)$

 $A = A_k R_k^{-1}$ or $A_k = A R_k.$

The quantities

$$t(j) = ||A_k^j||^2/\rho(j)$$

are calculated for j = k+1, ..., n, where A^j is the j-th column of A.

 $t(j) \leq \varepsilon$ for $j=k+1,\ldots,n$,

the numerical rank of A is k and $A_N = A_k$. The numerical rank is the first k for which

$$t(j) \leq \varepsilon$$
 for $j=k+1,...,n$

If

t(j) > ε for any j, j=k+1,...,n,

the j for which t(j) is the maximum is found. Column j of

 $\begin{pmatrix} A_k \\ R_k \end{pmatrix}$

is interchanged with column k+1 of

Ak >

The j-th component of ρ is interchanged with the (k+1)-st component of ρ . The selection of the column to become the (k+1)-st column of A_{k+1} is called Osborne pivoting throughout the remainder of the report.

Once the numerical rank, r*, of the matrix is determined, the n-r* vectors that have a length $\leq \varepsilon$ are considered to be zero vectors. The last n-r* columns of R_{r*} are made mutually orthogonal. The operations described above produce the matrix

 $\begin{pmatrix} A_{N} \\ R_{N} \end{pmatrix}$

 R_N has the following properties (1):

(i) det
$$R_{N} = \pm 1$$
,

(ii)
$$A = A_N R_N$$
 or $A_N = A R_N^{-1}$,

- (iii) R_N is obtainable by permuting rows of an upper triangular matrix all of whose diagonal elements are unity.
- (iv) The vectors R_N^{r*+1} , R_N^{r*+2} , ..., R_N^n form an orthogonal basis for the null space of A (1).

Phase II

The basic approximate solution is found during phase II. The procedure to find the basic approximate solution is based on the fact that the residual vector for a linear least squares solution is orthogonal to every nonzero column of the coefficient matrix. The development of a method to find the basic approximate solution will be given now.

If the vector

$$\left(\begin{array}{c} \underline{o} \\ \underline{o} \end{array}\right)$$

is appended to the matrix

$$\begin{pmatrix} AR_{N} \\ R_{N} \end{pmatrix},$$
$$\begin{pmatrix} AR_{N} - \underline{b} \\ R_{N} & \underline{0} \end{pmatrix}$$

the matrix

results. This matrix is post-multiplied by the (n+1) by (n+1) matrix

which will orthogonalize $-\underline{b}$ with respect to the first r* columns of AR_N. The matrix

 $\begin{pmatrix} I \\ 0 \\ 1 \end{pmatrix}$

$$\left(\begin{array}{cc} AR_{N} & AR_{N}\underline{u}\underline{b} \\ R_{N} & R_{N}\underline{u} \end{array}\right)$$

results. Since R_N is nonsingular and the residual vector $AR_N\underline{u}-\underline{b}$ is orthogonal to every nonzero column of AR_N , $R_N\underline{u}$ is a least squares solution of Ax=b. According to Rosen's definition (8), it is a basic approximate solution. This follows from properties (i) and (iii) above and from the fact that $R_N\underline{u}$ is a linear combination of the first r* columns of R_N . Therefore, $R_N\underline{u}$ has at most r* nonzero components (1).

Phase III

In phase III, the minimum length solution is found by computing a least squares solution that is orthogonal to the null space of A; i.e., orthogonal to every solution of Ax=0.

The following discussion shows how the minimum length solution is found from the basic approximate solution.

If the matrix

$$\begin{pmatrix} AR_N & AR_N\underline{u}\underline{-b} \\ R_N & R_N\underline{u} \end{pmatrix}$$

 $\left(\begin{array}{cc}\mathbf{I} & \underline{\mathbf{v}}\\ \mathbf{0} & \mathbf{1}\end{array}\right)$

is post-multiplied by the (n+1) by (n+1) matrix

which will orthogonalize $R_{N^{\underline{u}}}$ with respect to the last n-r* columns of R_{N} , where r* is the numerical rank of A, the matrix

$$\begin{pmatrix} AR_{N} & AR_{N}(\underline{v}+\underline{u})-\underline{b} \\ R_{N} & R_{N}(\underline{v}+\underline{u}) \end{pmatrix}$$

is obtained. The first r* components of \underline{v} are zero and the last n-r* columns of A are considered to be zero vectors. Therefore,

ARN V=0

and $AR_N(\underline{v+u})$ is orthogonal to the nonzero columns of AR_N . Thus, $R_N(\underline{v+u})$ is a least squares solution of $A\underline{x=b}$. $R_N(\underline{v+u})$ is orthogonal to the null space of A, and, therefore, is the unique least squares solution of minimum length (1).

Mathematical Summary of the Algorithm

The complete algorithm can be described mathematically as follows:

$$\begin{aligned} A_{N}^{1} &= A^{1} \\ R_{N}^{1} &= R^{1} \\ R_{N}^{k} &= R^{k} - \sum_{\substack{j=1 \\ j=1}}^{k} \left(\begin{array}{c} A_{N}^{j} \cdot A^{k} \\ \hline A_{N}^{j} \cdot A_{N}^{j} \end{array} \right) R^{j} \\ A_{N}^{k} &= A^{k} - \sum_{\substack{j=1 \\ j=1}}^{k} \left(\begin{array}{c} A_{N}^{j} \cdot A^{k} \\ \hline \hline A_{N}^{j} \cdot A_{N}^{j} \end{array} \right) A^{j} \text{ for } k=2, \dots, r^{*}, \end{aligned}$$

where r* is the numerical rank of A.

$$R_{N} \underline{u} = -\sum_{j=1}^{r^{*}} \left(\frac{A_{N}^{j} \cdot (-\underline{b})}{A_{N}^{j} \cdot A_{N}^{j}} \right) R_{N}^{j}$$

$$R_{N} (\underline{u} + \underline{v}) = R_{N} \underline{u} - \sum_{j=r^{*}+1}^{n} \left(\frac{R_{N}^{j} \cdot (R_{N} \underline{u})}{R_{N}^{j} \cdot R_{N}^{j}} \right) R_{N}^{j}.$$

The routines that have been implemented to solve the generalized linear least squares problem employ the algorithm constructed by Osborne. Certain modifications in Osborne's method have been made and several additional features have been added.

Modification and Additions

The major addition to Osborne's algorithm was the ability to do IVOR (Independent Variable Ordering by Regression Sum of Squares)--stepwise regression without the deletion of variables from the regression equation. In addition, the coefficient matrix can be treated as if it had a pre-specified rank, the initial BAS and minimum length solutions can be iteratively refined, and the error matrix, $(A^TA)^{-1}$, is calculated for matrices of full rank.

IVOR

Earlier in the chapter it was stated that after r* steps of the algorithm constructed by Osborne, r* columns of the coefficient matrix are mutually orthogonal. After k steps of the algorithm, k columns of the coefficient matrix are mutually orthogonal. Let the state of the coefficient matrix be designated by $A_{\rm b}$.

$$A_k = AR_k$$
 or $A = A_k R_k^{-1}$.

$$\left(\begin{array}{c} -\underline{b}\\ \underline{0} \end{array}\right)$$

is appended to

the matrix

results. If the resulting matrix is post-multiplied by the (n+1) by (n+1) matrix,

AR_k

 $\left(\begin{array}{c}\mathbf{I} \ \underline{\mathbf{u}}\\\mathbf{0} \ \mathbf{1}\end{array}\right)$

that will orthogonalize $-\underline{b}$ with respect to the first k columns of AR_k , the matrix

$$\begin{pmatrix} AR_{k} & AR_{k}\underline{u}\underline{b} \\ R_{k} & R_{k}\underline{u} \end{pmatrix}$$

results. $R_{k\underline{u}}$ has k nonzero components since det $R_k = \pm 1$, R_k is obtainable by permuting the rows of an unit upper triangular matrix, and $R_{k\underline{u}}$ is a linear combination of the first k columns of R_k . The k nonzero components of $R_{k\underline{u}}$ are the regression coefficients for the k variables that have entered the regression equation. The (k+1)-st variable to enter the regression equation is found as follows:

For each variable not in the regression equation, we predict the

٠

length of the residual vector that would be obtained if the variable were entered in the regression equation. The length of the residual vector can be predicted by calculating

$$||(AR_{k}\underline{u}-\underline{b}) - \left(\frac{A_{k}^{t} \cdot (AR_{k}\underline{u}-\underline{b})}{A_{k}^{t} \cdot a_{k}^{t}}\right) A_{k}^{t}||$$

for each variable t that is not in the regression equation. The variable that will produce the residual vector of the shortest length is the variable to enter the regression equation.

Solving the System of Equations for a Pre-specified Rank.

The coefficient matrix can be treated as if it were of a prespecified rank, k. If the numerical rank is less than k, the minimum norm solution is found; otherwise k columns of the coefficient matrix are made mutually orthogonal. Osborne's method (1) of column selection is used to choose those k columns. The remaining columns of the coefficient matrix are treated as if they are zero vectors. The last n-k columns of R_k then are made mutually orthogonal, where n is the number of columns in the coefficient matrix. Orthogonalizing only k columns of the coefficient matrix when the rank of the coefficient matrix is not less than k corresponds to increasing the value of ε until the numerical rank of the coefficient matrix is equal to k. This might be used on an accurate computer such as the CDC 6600 to predict the solution that could be found on a less accurate computer such as the IBM 360. ε is the value used to determine if a column is a linear combination of other columns in the coefficient matrix. The system of equations can be solved for several ranks during one run of the implemented routines. This corresponds to solving the system of equations for a range of ε .

Iterative Improvement of the Initial Solutions

Roundoff error in the calculation of a solution vector often makes the solution vector inaccurate. If \underline{x}_{c} is the calculated answer and \underline{x}_{r} is the true answer,

 $\underline{\mathbf{x}}_{c} + \Delta \underline{\mathbf{x}} = \underline{\mathbf{x}}_{t}$

and

 $Ax_t = b$ or $A(x + \Delta x) = b$

 $A\Delta x = b - Ax_c$

Iterative improvement of the initial BAS and minimum length solutions has been implemented to improve their accuracy. The interative improvement procedure is described as follows (1):

(i) Let x_i be the initial solution.

or

(ii) Calculate the vector <u>r=b-Ax</u>, in double precision.

(iii) Solve the system of equations

 $A\Delta \underline{x}_i = \underline{r}_i$.

(v) If
$$||\underline{x}_{i+1} - \underline{x}_i||/||\underline{x}_{i+1}|| \le \varepsilon_1$$

where ε_1 is greater than or equal to $\int \frac{x_{i+1}}{x_{i+1}}$ is accepted as the solution to Ax=b.

 δ is the smallest floating point number such that 1. + δ > 1. in the computer.

Calculation of the Error Matrix

The matrix R_N generated by the orthogonalization process described above can be used to obtain the error matrix, $(A^TA)^{-1}$, if A is of full rank.

The derivation of the error matrix from R follows.

$$A = A_{N}R_{N}^{-1}$$

$$(A - A)^{-1} = [(A_{N}R_{N}^{-1})^{T}(A_{N}R_{N}^{-1})]^{-1}$$

$$= [(R_{N}^{-1})^{T}A_{N}^{T}A_{N}R_{N}^{-1}]^{-1}$$

$$= [(R_{N}^{-1})^{T}DR_{N}^{-1}]^{-1}$$

$$= R_{N}D^{-1}((R_{N}^{-1})^{T})^{-1}$$

$$= R_{N}D^{-1}((R_{N}^{-1})^{-1})^{T}$$

$$= R_{N}D^{-1}R_{N}^{T}$$
D is a diagonal matrix.

Polynomial Fitting

The LLCR package can be used to fit a polynomial to a set of data points,

{y;t}_1

where y is the dependent variable, t is the independent variable, and

 ${y;t}_i$ is the i-th observation.

The mathematical model for the curve would have the form

 $\hat{y} = c_0 + c_1 t + c_2 t^2 + \ldots + c_n t^n$,

where \hat{y} is an estimate of y and the c_j , $j=0,\ldots,n$, are the coefficients to be determined. When the package is used to fit a polynomial to a set of data points, one variable is entered into the mathematical model at a time. The variables are entered in the following order:

 t, t^2, t^3, \ldots, t^n .

Entering the variables in the above order is called sequential selection. When the variables are entered sequentially, the intermediate equations

 $y = c_{0}$ $y = c_{0}' + c_{1}'t$ $y = c_{0}'' + c_{1}''t + c_{2}''t^{2}$ $y = c_{0}''' + c_{1}''t + c_{2}''t^{2} + c_{3}''t^{3}$.

are obtained. The user can decide if he wishes to represent the data by a polynomial of a lesser degree.

CHAPTER V

RESULTS AND CONCLUSIONS

Test Problems and Verification

A package consisting of the routines.LLCR and LLSQ has been written in Standard FORTRAN (24) to implement Osborne's method (1) for solving the generalized linear least squares problem. Since the routines can solve a system of equations for multiple right hand sides during one run of the program, the generalized inverse of an arbitrary matrix can be found accurately and efficiently. In addition, the user of the package can perform IVOR (Independent Variable Ordering by Regression Sum of Squares)--stepwise regression without the deletion of variables from the regression equation. The user also can study efficiently the effects on the solution vector of decreasing the reliability of the entries in the coefficient matrix. The error matrix, $(A^TA)^{-1}$, is calculated for systems where the coefficient matrix is of full rank.

Each of the above uses has been tested on the IBM 360/65 at Oklahoma State University, Stillwater, Oklahoma. The results are listed below.

Using the Package to Find the Generalized

Inverse of an Arbitrary Matrix

The generalized inverse of an arbitrary matrix, A, can be found by solving the set of equations AX=I, where A is an m by n matrix, X

27

(the generalized inverse of A) is an n by m matrix, and I is an m by m identity matrix.

The generalized inverse of a 6 by 4 zero matrix was found exactly in one iteration. Many routines for solving an arbitrary system of equations will not handle the case where the coefficient matrix has a rank of zero.

The generalized inverse of the matrix

was found to full single precision accuracy without iterating the solution. This example was taken from Rosen (8). The generalized inverse was found to be

and the second se	21153	.04487	22435	.05769	
	19230	.19230	.03846	03846	
	.08653	00320	.01602	.06730	
	.50961	09294	.46474	04807	

Using the Package to Find the Solution Vector

for an Arbitrary System of Equations

Example 1. The first example was taken from Rosen's article (8). The system consisted of

1.	-1.	3.	1.	$\begin{bmatrix} x_1 \end{bmatrix}$	1.
2.	4.	5.	1.	x ₂	3.
-1.		-1.	1.	×3 =	2.5
4.	1.	9.	1.	x ₄	2.5

Using an ε of .16 x 10⁻⁵, the rank of the system was found to be three. Full single precision accuracy was obtained without iterating the solution. The lengths of the residual vector for the basic approximate solution (BAS) and the minimum length solution were both .5. The lengths of the BAS vector and the minimum length solution vector were 1.607 and 1.451, respectively. The BAS vector was

The minimum length solution vector was

Example 2. The second system of equations that was used to test the package had a coefficient matrix consisting of the first five columns of a 6 by 6 inverse Hilbert matrix and a right hand side chosen to generate a solution vector of $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5})$. The matrix,

39

is the Hilbert matrix of order m.

The inverse of the Hilbert matrix was used because each of the entries in it is an integer and can be represented in a computer exactly if the precision of the computer is large enough (3). Therefore, the effect of roundoff error on the solution vector can be studied. This system of equations is fairly ill-conditioned, getting worse with larger m.

Full single precision accuracy was achieved when the solution was iterated. The results of the run are shown in Table I.

The implementation of Björck's routine (18) required five iterations to obtain this accuracy. Only three iterations were required with LLCR and LLSQ.

Example 3. The third test case consisted of the last six columns of an 8 by 8 inverse Hilbert matrix with a right hand side chosen to produce the solution vector $(\frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8})$.

This system is extremely ill-conditioned. As mentioned previously, when a system is ill-conditioned, small errors in the entries in the input coefficient matrix or in the solution process cause a large

TABLE I

SOLUTION OF THE SYSTEM OF EQUATIONS CONSISTING OF THE FIRST FIVE COLUMNS OF A 6 BY 6 INVERSE HILBERT MATRIX AND A RIGHT HAND SIDE CHOSEN TO GENERATE THE SOLUTION VECTOR $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5})$

Iteration Number	Solution Vector	Length of the Residual Vector
0	.9558830	1.043110
a a a a a a a a a a a a a a a a a a a	.4843262	
	.3263453	
	.2468576	· · · · ·
	.1988596	1 ·
1	.9997082	.4102879
	.4999225	
	.3333055	
	.2499895	
	.1999996	
	*	
2	<i>:</i> 9999999	. 15 91 172
	.4999998	
	. 3333333	
	. 2499999	
	.2000000	
3	.9999999	.2431152
	. 4999999	
	.3333333	
	2499999	
	.2000000	

change in the solution vector (3). The condition number of a matrix is a measure of the ill-conditioning of the system. The smallest possible condition number is unity. The system in the present example has a condition number of 10^8 .

Using an ε of .16 x 10⁻⁵ and doing all calculations in single precision, the numerical rank was determined to be four. Full single precision accuracy was achieved after iteration of the solution. The rank was not determined to be six as there was considerable truncation error in forming inner products due to the low precision of the IBM 360.

TABLE II

SOLUTION OF THE SYSTEM OF EQUATIONS CONSISTING OF THE LAST SIX COLUMNS OF AN 8 BY 8 INVERSE HILBERT MATRIX AND A RIGHT HAND SIDE CHOSEN TO GENERATE THE SOLUTION VECTOR (1 1 1 1 1 1)

-	_		-	-	-+-)	
·,			9			
`n '	, -	÷ *			- n "	
3	4	<u></u>	6		8	
v	-	-	•		•	

Iteration Number	Minimum Length Solution Vector	Length of the Residual Vector for the Minimum Length Solution	Basic Approximate Solution Vector	Length of the Residual Vector for the BAS
. 0	09663224 .03279249 .05031452 .02720612 008033112 04418335	155.1612	1880930 6149425 00001407021 0 0 005662531	97.75385
1	09643781 .03278171 .05018743 .02709594 008037787 04403742	135.0647		
2	09643847 .03278175 .05018786 .02709632 008037772 04403792	133.9126		
3	09643847 .03278176 .05018786 .02709632 00837772 04403792	132.2448		

Björck's routine failed to find a solution for this example. It must be emphasized again that obtaining a numerical rank of four was not a failure of the routines but was caused by the low precision of the computer on which the test case was run.

<u>Example 4</u>. The fourth test case consisted of the first five elements of each of the first three rows of a 6 by 6 inverse Hilbert matrix with the right hand side (463,-13860,97020). Both the basic approximate solution vector and the minimum norm solution vector are of interest since the number of equations is less than the number of variables.

Table III contains the results of the run.

TABLE III

SOLUTION OF THE SYSTEM OF EQUATIONS CONSISTING OF THE FIRST FIVE ELEMENTS OF EACH OF THE FIRST THREE ROWS OF A 6 BY 6 INVERSE HILBERT MATRIX WITH A RIGHT HAND SIDE (463,-13860,97020)

Iteration Number	Minimum Norm Solution Vector	Square of the Length of the Residual Vector	Basic Approximate Solution Vector
0	.02615530 08060956 002280064 .07264209 .1280568	.009011976	1.583456 .2777886 0 0 .07685214
1 .	.02614972 08058983 002287482 .07262659 .1280463	.0009218131	•
2	.02614973 08058983 002287471 .07262659 .1280463	.0005667009	
3	.02614974 08058983 002287467 .07262659 .1280463	.0004688033	

The package consisting of LLCR and LLSQ was used to perform IVOR on oxygen solubility data. The mathematical model for this curve is defined below.

z_l = absolute temperature,

z₂ = salinity of seawater,

y = log of the solubility of oxygen in sea water, and the model be described by

 $\hat{y}_i = (a_{i1} + a_{i2} / z_{i1} + a_{i3} \ln(z_{i1}) + a_{i4} z_{i1} + a_{i5} z_{i1} + \dots) \cdot$

(b_{i1}+b_{i2}z_{i2}+...)

so that

Let

$$t_{11} \equiv 1$$
, $c_1 \equiv a_1 b_1$ $t_{12} \equiv z_{12}$, $c_2 \equiv a_2 b_2$ $t_{13} \equiv 1/z_{11}$, $c_3 \equiv a_2 b_1$ $t_{14} \equiv z_{12}/z_{11}$, $c_4 \equiv a_2 b_2$ $t_{15} \equiv 1n(z_{11})$, $c_5 \equiv a_3 b_1$ $t_{16} \equiv z_{12} ln(z_{11})$, $c_6 \equiv a_3 b_2$ $t_{17} \equiv z_{11}$, $c_7 \equiv a_4 b_1$ $t_{18} \equiv z_{12} z_{11}$, $c_8 \equiv a_4 b_2$ etc.etc.

Table IV contains the results of the IVOR analysis. The results of a stepwise regression analysis of this data appears in an article by Weiss (25). In his analysis, only eight of the twelve variables in the model were entered in the regression equation because the sum of the squares of the residuals divided by the number of degrees of

TABLE IV

RESULTS OF THE IVOR ANALYSIS OF THE OXYGEN SOLUBILITY DATA

Number of Variables in the Equation	Number of the Variable Entered	Length of the Basic Solution Vector	Length of the Residual Vector for the Basic Solution	Length of the Minimum Norm Solution Vectory	Length of Residual Vector for the Minimum Norm Solution
1	2	4040704x10 ⁵	2419.978	.1014893x10 ⁵	7617.572
2	1.	9049813x10 ⁵	981.9752	.1028102x10 ⁵	6018.982
3	7.	8972010x10 ⁵	212.4384	.1031885x10 ⁵	7818.671
4	3	3168621x10 ⁷	82.10176	.1091479x10 ⁵	4422.227
5	8.	.1634 9 72x10 ⁷	28.52036	.1092203x10 ⁵	4558.884
6	12 .	1634366x10 ⁷	27.99304	.1097797x10 ⁵	3548.216
7	4.	.1033133x10 ⁸	26.44726	.1103234x10 ⁵	3473.011
8	9.	.1005459x10 ⁸	26.06484	.1197020x10 ⁵	2147.965
9	5.	.1540121x10 ⁹	25.942180	.1205483x10 ⁵	454 .9 831
10	6.	.2658320x10 ¹¹	25.50685	.1207378x10 ⁵	2 9.9 4534
11	10 .	.3464215x10 ¹¹	25.27790	.2317320x10 ⁸	42.48019
12	11 .	3202155x10 ¹¹	25.12197	.3202155x10 ¹¹	25.12197

freedom (m-n) failed to decrease after eight variables had entered the equation. This was caused by the use of the normal equations to perform the stepwise regression analysis.

Twelve variables were entered in the regression equation by the LLCR package. The length of the residual vector continued to decrease with each variable added to the regression equation.

Note that with all twelve variables in the regression equation,

the length of the solution vector was .3202155 x 10^{11} with a residual vector of length 25.12197. The length of the solution vector with seven variables in the regression equation was .1033133 x 10^8 with a residual vector of length 26.44726. Thus, with a modest increase in the length of the residual vector, a large decrease in the length of the solution vector was obtained.

In Chapter II, it was stated that if the true rank of the coefficient matrix is less than the number of columns, there is a linear subspace of solution vectors with a residual vector of some minimum length. Among all the vectors in that subspace, there is a unique vector of minimum length (7). All the components of this vector are nonzero. An attempt was made to consider the variables not entered in the regression equation to be linear combinations of the variables represented in the regression equation. The least squares solution of minimum length was then calculated as if the coefficient matrix had a rank equal to the number of variables in the regression equation. The length of each of these solution vectors was considerably less than the length of the basic approximate solution vector (BAS) for the same rank. The lengths of the residual vectors were unacceptably high in most cases. Table IV contains the results of this analysis.

Using the Package to Test the Effects of Decreasing the Precision of the Entries in the Coefficient Matrix

As mentioned in Chapter IV, the user can request that the coefficient matrix be treated as if it had a rank equal to k. This corresponds to increasing the value of ε until the rank of the coefficient matrix is k, where ε is the value used to determine the numerical rank

46

of the coefficient matrix. If the true numerical rank is less than the rank requested, the true minimum length solution is found. If not, n-k columns of the coefficient matrix are considered to be linear combinations of the k columns that are chosen to be made mutually orthogonal; the minimum norm solution for rank k is found.

The ability to specify a rank enables the user to test the effect on the solution vector of measuring the entries in the coefficient matrix less accurately. During one run of the package, the solution vectors for each choice of rank ranging from one to $\min(m,n)$ can be found. This corresponds to finding the solution to the generalized linear least squares problem for a range of ε . Osborne's method of column selection is used to select the columns to be made mutually orthogonal when the package is used for this purpose.

The solution vectors for a range of ranks were found for the oxygen solubility data. Table V contains the results of the analysis.

Note that for ranks ten and eleven, the length of the minimum length solution vectors greatly decreased with only a moderate increase in the length of the residual vector. For example, the minimum length solution vector's length was $.12072 \times 10^5$ with a residual vector of length 26.1 for rank ten. For rank eleven, the minimum length solution bector's length was $.3462100 \times 10^7$ with a residual vector of length 25.6. In contrast, when IVOR was performed and eleven variables had entered the regression equation, the length of the solution vector was $.3464215 \times 10^{11}$ with a residual vector of length 25.3. When ten variables had entered the regression equation, the length of the solution vector was $.1033 \times 10^8$ with a residual vector of length 25.5.

If the user's objective is to obtain the best trade-off between

TABLE V

ANALYSIS OF OXYGEN SOLUBILITY DATA USING OSBORNE PIVOTING

		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Basic Variable Entered in the Equation	Length of the Basic Solution Vector	Length of the Residual Vector for the BAS	Length of the Minimum Norm Solution Vector	Length of the Residual Vector for the Minimum Norm Solutior
1	a1612785x10 ⁵	.4380520x10 ⁴	.1008446x10 ⁵	.8425207 x10 ⁴
10	.1614233x10 ⁵	.4168454x10 ⁴	.102177x10 ⁵	.7203746x10 ⁴
11	.161299x10 ⁵	.4164684x10 ⁴	.102470x10 ⁵	.5419911×10 ⁴
4	.1649864x10 ⁵	.1013336x10 ⁴	.1045335x10 ⁵	.2508875x10 ⁴
5	.1652604x10 ⁵	.9690841x10 ³	.1051180x10 ⁵	.1671074x10 ⁴
12	.1652779x10 ⁵	.9588091x10 ³	.1051873x10 ⁵	.1564966x10 ⁴
7	.1724977x10 ⁵	.8021976x10 ²	.1118416x10 ⁵	.250944x10 ⁴
6	.1724570x10 ⁵	.7149151x10 ²	.1127042x10 ⁵	.236241x10 ⁴
9	.1724276x10 ⁵	.7111963x10 ²	.1196991x10 ⁵	.1190856x10 ⁴
8	.1723771x10 ⁵	.2611948x10 ²	.1207238x10 ⁵	.2611625x10 ²
2	.6880348x10 ⁷	.2565849x10 ²	.3462101x10 ⁷	.2565829x10 ²
3	.3202155x10 ¹¹	.2512197x10 ²	.3202155x10 ¹¹	.2512197x10 ²
	Variable Entered in the Equation 1 10 11 4 5 12 7 6 9 8 2	Variable Entered in the Equation Length of the Basic Solution Vector 1 al612785x10 ⁵ 10 .1614233x10 ⁵ 11 .161299x10 ⁵ 4 .1649864x10 ⁵ 5 .1652604x10 ⁵ 12 .1652779x10 ⁵ 6 .1724977x10 ⁵ 9 .1724276x10 ⁵ 8 .1723771x10 ⁵ 2 .6880348x10 ⁷	Variable Length of the Basic Length of Residual Vector in the Equation Solution Vector For the BAS 1 a1612785x10 ⁵ .4380520x10 ⁴ 10 .1614233x10 ⁵ .4168454x10 ⁴ 10 .1614233x10 ⁵ .4168454x10 ⁴ 11 .161299x10 ⁵ .4164684x10 ⁴ 4 .1649864x10 ⁵ .1013336x10 ⁴ 5 .1652604x10 ⁵ .9690841x10 ³ 12 .1652779x10 ⁵ .9588091x10 ³ 7 .1724977x10 ⁵ .8021976x10 ² 6 .1724570x10 ⁵ .7149151x10 ² 9 .1724276x10 ⁵ .7111963x10 ² 8 .1723771x10 ⁵ .2611948x10 ² 2 .6880348x10 ⁷ .2565849x10 ²	Variable Entered in the Equation Length of the Basic Solution Vector Length of the Residual Vector for the BAS Length of the Minimum Norm Solution Vector 1 a1612785x10 ⁵ .4380520x10 ⁴ .1008446x10 ⁵ 10 .1614233x10 ⁵ .4168454x10 ⁴ .102177x10 ⁵ 11 .161299x10 ⁵ .4164684x10 ⁴ .102470x10 ⁵ 4 .1649864x10 ⁵ .1013336x10 ⁴ .1045335x10 ⁵ 5 .1652604x10 ⁵ .9690841x10 ³ .1051180x10 ⁵ 12 .1652779x10 ⁵ .9588091x10 ³ .1051873x10 ⁵ 7 .1724977x10 ⁵ .8021976x10 ² .1118416x10 ⁵ 9 .1724570x10 ⁵ .7111963x10 ² .1127042x10 ⁵ 8 .1723771x10 ⁵ .2611948x10 ² .1207238x10 ⁵ 2 .6880348x10 ⁷ .2565849x10 ² .3462101x10 ⁷

the length of the solution vector and the length of the residual vector, the package should be run once with IVOR and once with Osborne pivoting.

Comparison of Methods

The package consisting of LLCR and LLSQ appears to be the first accurate IVOR (stepwise regression) package for ill-conditioned systems of equations. Until this time, stepwise regression packages have solved the normal equations,

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\underline{\mathbf{x}} = \mathbf{A}^{\mathrm{T}}\underline{\mathbf{b}}.$$

The normal equations are often very ill-conditioned, making double precision calculations necessary (3). Longley (10) has shown examples where essentially no correct digits were obtained when the normal equations were solved. In addition, refinement of the intermediate solutions is available with this package.

For ill-conditioned systems using modified Gram-Schmidt orthogonalization produces a much more accurate solution vector than using the normal equations to solve a linear least squares problem. For a mathematical comparison of the accuracy of the methods, see article's by Björck (26), Golub (27), and Wampler (11).

Number of Operations and Storage Requirements

If the coefficient matrix is of full rank, the package requires approximately mn^2 multiplications and $mn + m + n^2 + 2n$ storage locations to calculate the linear least squares solution of minimum norm when iterative refinement of the solution is not performed. This should be contrasted with $2mn^2 + \frac{4n^3}{3}$ single precision multiplications and n^2 storage locations needed for forming and solving the normal equations in double precision (24).

If iterative refinement is performed, another m(n+1) storage locations are required. An additional $n^2 + kn$ locations are needed if the system is solved for more than one rank, where k is the number of ranks for which the system is solved. If the coefficient matrix is of deficient rank, r^* , the number of multiplications necessary for finding the solution is $mn^2-(n-r^*-1)(m+n)$ multiplications. The storage requirements are the same as for the full rank case.

When the package is used to perform IVOR, the number of operations necessary to add the k-th variable to the regression equation is $2m(n-k+\frac{mn}{2}\cdot3nk+n^2)$. The total number of operations would be $4m^2n^2+mn^3-n$. Approximately $(n+2)^2(m+\frac{3n}{2})$ operations are required for stepwise regression using the normal equations (19). If double precision calculations are necessary to obtain single precision accuracy, the comparison is more favorable.

The user of the LLCR package should consider putting all the floating point variables in double precision when solving an ill-conditioned system of equations. Refinement of the initial solutions would be ineffective so no more storage would be required than would be when the calculations were done in single precision with the initial solutions being refined. δ should be chosen so that $1.D0 + \delta > 1.D0$ when doing all calculations in double precision. The solution process is slower when all calculations are done in double precision; the results should be more accurate, however.

There are advantages to being able to solve the system of equations for a range of ranks during one run of the LLCR package instead of using a routine like Björck's. Beginning with a guess, several runs might be necessary to find the ε to produce the desired rank. In addition, if the results were sought for a range of ranks, Björck's routine would require that the first h-1 columns of the coefficient matrix be orthogonalized for each rank h for which the solution was desired. The LLCR package requires that only one column of the coefficient matrix be orthogonalized after the solution vector for the first rank is found. $2n^2$ additional words are required for this feature, however.

Table VI contains a list of the various uses of the package, and the method of column selection, the ranks for which the system is solved, and the extra storage required for each use.

Summary

Routines have been written that use modified Gram-Schmidt orthogonalization to solve the generalized linear least squares problem. Both a basic approximate solution and the least squares solution of minimum Euclidean norm are found. Improvement in the accuracy of the solutions by means of iterative refinement of the initial solutions is available to the user of these routines. Full single-precision accuracy in the solutions is obtained when iterative improvement of the solutions is performed and the parameter that is used to determine the numerical rank of the system is at least as great as the relative accuracy of the computer on which the package is run. The error matrix, $(A^TA)^{-1}$, is returned for systems of full rank.

The routines can be used to determine efficiently and accurately the generalized inverse of an arbitrary matrix, A. This is accomplished by solving the system of equations

AX = I

for the matrix X. I is an m by m identity matrix, where n is the number of rows in the matrix A. The generalized inverse, X, is an n

Problem	Method of Column Selection	The Solution will be found for Ranks	Amount of Extra Storage Needed
To calculate the generalized inverse of A, an m by n matrix	Osborne pivoting	the numerical rank of A	m(m-1)
To find the solution of an arbitrary system of equations, Ax = b	Osborne pivoting	the numerical rank of A	none
To perform step- wise regression without the dele- tion of variables	IVOR	1 to the numerical rank of the coeffi- cient matrix	2n ²
To study the effect of decreasing the reliability of the entries in the coefficient matrix (solve the system for a range of ranks)	Osborne pivoting	l≤j≤numerical rank of A (a range for j is chosen by the user)	2n ²
To find the best trade-off between the length of the solution vector and the residual vector	IVOR and Osborne pivoting	l to the numerical rank of A	2n ²
To fit a polynomial to a set of data points	Sequential selection	l to the degree of the polynomial	2n ²

USES OF THE PACKAGE CONSISTING OF LLCR AND LLSQ

by m matrix, where n is the number of columns in A.

IVOR, or forward selection, has been implemented. IVOR corresponds to stepwise regression without the deletion of variables from the regression equation. The package appears to be the first accurate stepwise regression package for ill-conditioned problems. The coefficient matrix can be treated as if it had a user-specified rank, k. This corresponds to increasing the value of the parameter that is used to determine the numerical rank of the coefficient matrix until the rank is k. This facility can be used to test the sensitivity of the solution vector to decreased precision of the entries in the coefficient matrix.

A SELECTED BIBLIOGRAPHY

- Osborne, E. E. "Smallest Least Square Solutions of Linear Equations." J. <u>SIAM Numer. Anal. Ser. B.</u>, Vol. 2 (1965), 300-307.
- (2) Gauss, C. F. "Theoria Combinations Observationum Erroribus Minimis Obnoxiae." Werke, Vol. 4 (1873), 3-93.
- (3) Forsythe, G. and C. B. Moler. <u>Computer Solution of Linear Systems</u>. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.; 1967.
- (4) Abt, K., Gemmill, G., Herring, T. and R. Shade. "DA-MRCA: A FORTRAN IV Program for Multiple Linear Regression." Naval Weapons Laboratory Report No. 2035, 1966.
- (5) Cooper, L. and D. Steinberg. <u>Introduction to Methods of Optimiza-</u> tion. Philadelphia: W. B. Saunders Company; 1970.
- (6) Hadley, G. Linear Algebra. Reading, Massachusetts: Addison-Wesley; 1961.
- (7) Penrose, R. "On Best Approximate Solutions of Linear Matrix Equations." <u>Proc. Cambridge Philos. Soc.</u>, Vol. 52 (1956), 17-19.
- (8) Rosen, J. B. "Minimum and Basic Solutions to Singular Linear Systems." J. Soc. Indust. Appl. Math., Vol. 12 (1964), 156-161.
- (9) Fox, L. <u>An Introduction to Numerical Linear Algebra</u>. New York: Oxford University Press; 1965.
- (10) Longley, J. "An Appraisal of Least Squares Problems for the Electronic Computer from the Point of View of the User." JASA, Vol. 62 (1967), 819-841.
- (11) Wampler, R. "A Report on the Accuracy of Some Widely Used Least Squares Programs." JASA, Vol. 65 (1970), 528-532.
- (12) Osborne, E. E. "On Least Squares Solutions Linear Equations." J. Assoc. Comput. Mach., Vol. 8 (1961), 628-636.
- (13) Businger, P. and G. Golub. "Linear Least Squares Solutions by Householder Transformations." <u>Numer. Math.</u>, Vol. 7 (1965) 269-276.
- (14) Golub, G. "Numerical Methods for Solving Linear Least Squares Problems." Numer. Math., Vol. 7 (1965), 206-216.

- Björck, A. and G. H. Golub. "Iterative Refinement of Linear Least Squares Solutions by Householder Transformation." <u>BIT</u>, Vol. 7 (1967), 323-337.
- (16) Hanson, R. J. and C. L. Lawson. "Extensions and Applications of the Householder Algorithms for Solving Linear Least Squares Problems." Mathematics of Computation, Vol. 23 (1969), 787-812.
- (17) Bauer, F. L. "Elimination with Weighted Row Combinations for Solving Linear Equations and Least Squares Problems." <u>Numer</u>. <u>Math.</u>, Vol. 7 (1964), 338-352.
- (18) Björck, A. "Iterative Refinement of Linear Least Squares Solutions II." BIT, Vol. 8 (1968), 8-30.
- (19) Efroymson, M. A. "Multiple Regression Analysis." in <u>Mathematical</u> <u>Methods for Digital Computers</u> (Ralston, A. and H. S. Wilfe, Ed.). New York: John Wiley and Sons, Inc.; 1960.
- (20) Dixon, W. and F. Massey. <u>Introduction to Statistical Analysis</u>. New York: McGraw-Hill; 1957.
- (21) System/360 Scientific Subroutine Package (360A-CM-03X) Version III Programmer's Manual, IBM H20-0205. White Plains, New York: IBM Corporation Technical Publications Dept.; 1971.
- (22) <u>BMD Biomedical Computer Programs</u> (Dixon, W. J., Ed.). Berkeley, California: University of California Press; 1968.
- (23) Summers, D. L. and D. D. Babb. "Unfolding Pulse-Height Distributions by Vector Analysis." in <u>Applications of Computers to</u> <u>Nuclear and Radiochemistry</u>. Washington, D. C.: Atomic Energy Commission; 1962.
- (24) USA Standard FORTRAN. ANSI Standard X3.9-1966. New York: American National Standards Institute; 1966.
- (25) Weiss, R. F. "The Solubility of Nitrogen, Oxygen, and Argon in Water and Seawater." Deep-Sea Research, Vol. 17 (1970), 721.
- (26) Björck, A. "Solving Linear Least Squares Problems by Gram-Schmidt Orthogonalization." BIT, Vol. 7 (1967), 1-21.
- (27) Golub, G. "Matrix Decompositions and Statistical Calculations." in Statistical Computations. New York: Academic Press; 1969.

APPENDIX A

COMPUTER LISTINGS OF LLCR AND LLSQ

	SUBROUTINE LLCR (A,LA,R,LRE,SAVE,LSAV,X,RHD,RHOM,SA,ERR,RES,V,XOLD,	LL CR0010
	*SALPH+LSAL,NR+NC+BASIC,NRHS,XSAVE)	LLCR0020
с	AUTHOR JOANNA C. HWANG	LLCR0030
č		LLCR0040
	DATE MARCH 1. 1972 VERSION 1.1	
č	DATE MARCH 1, 1972 VERSION 1.1	LLCR0050
-	BRIEF DESCRIPTION OF THIS PROGRAM	LLCR0060
č		LLCR0070
č	THIS ROUTINE WILL GIVE THE SOLUTION OF MINIMUM NORM TO THE	LLCR0080
-	GENERAL LINEAR LEAST SQUARES PROBLEM. MODIFIED GRAM-SCHMIDT ORTHOG-	LLCR0090
	ONALIZATION IS USED TO OBTAIN THIS SOLUTION.	LLCR0100
ç	THE FOLLOWING OPTIONS HAVE BEEN INPLEMENTED.	LL CR 0110
	1. THE SOLUTIONS FOR MULTIPLE RIGHT HAND SIDES WITH A SINGLE	LLCR0120
C	COEFFICIENT MATRIX CAN BE FOUND DURING ONE CALL TO THE ROUTINE.	LLCR0130
	2. REFINEMENT OF THE INITIAL BASIC APPROXIMATE AND INITIAL MINIMUM	LLCR0140
ç	NORM SULUTIONS IS AVAILABLE.	LLCR0150
	3. THE ERROR MATRIX, THE INVERSE OF THE PRODUCT OF THE COEFFICIENT	LLCR0160
ç	MATRIX AND ITS TRANPOSE, IS CALCULATED FOR SYSTEMS OF FULL RANK.	LLCR0170
	4. THE BASIC SOLUTIONS CAN BE PRINTED.	LLCR0180
Č.	ASSUME THAT THE RANK OF THE COEFFICIENT MATRIX IS IRANK, WHERE	LLCR 0190
ç	IRANK IS LESS THAN THE NUMBER OF COLUMNS IN THE COEFFICIENT MATRIX.	
ç	THE BASIC SOLUTION OBTAINED IS THE SOLUTION WITH AT MOST IRANK	LLCR0210
ç	NONZERO COMPONENTS THAT GIVES THE MINIMUM EUCLIDEAN NORM.	LLCR0220
	5. THE USER CAN REQUEST THAT IVOR, INDEPENDENT VARIABLE ORDERING	LLCR0230
ç	BY REGRESSION SUM OF SQUARES, BE PERFORMED. IVOR CORRESPONDS TO	LLCR0240
Ċ	PERFORMING STEPWISE REGRESSION WITHOUT REMOVING A VARIABLE FROM	LLCR0250
C	THE REGRESSION EQUATION ONCE IT HAS ENTERED THE REGRESSION	LLCR0260
ç	EQUATION.	LLCR0270
	6. THE USER CAN REQUEST THAT THE COEFFICIENT MATRIX BE TREATED AS IF	LLCR0280
č	IT HAD A RANGE OF RANKS, KRBEG THROUGH KREND. IF THE RANK	LLCR 0290
ç	REQUESTED IS GREATER THAN THE NUMERICAL RANK OF THE SYSTEM	LLCR0300
C	(DETERMINED BY THE RELATIVE ACCURACY EPS), A MESSAGE IS PRINTED.	LLCR0310
ç	FOR A MORE COMPLETE DESCRIPTION OF THIS ROUTINE, SEE THE WRITE-UP	
	IN THE AUTHOR-S M.S. REPORT (DEPARTMENT OF COMPUTING AND INFORMATION	LLCR0330
ç	SCIENCES, OKLAHOMA STATE UNIVERSITY, MAY, 1972).	LLCR0340
ç	REFERENCES	LLCR 0350
č	E. E. OSBORNE, JOURNAL OF THE SIAM 12 (1965) 300	LLCR0360
č	J. B. ROSEN, JOURNAL OF THE SIAM 12 (1965) 500	LLCR0370 LLCR0380
č		LLCR 0390
č		LLCR0400
č	A. BJORCK, BIT 7 (1967) 257	LLCR 0410
č	A. BJORCK, BIT 8 (1968) 8	LLCR0420
č	A. BJORCK, BIT 7 (1967) 1	LLCR0430
č		LL CR 0440
	DESCRIPTION OF SUBROUTINES CALLED	LLCR0450
č	LLSQ THE INITIAL BASIC APPROXIMATE SOLUTION AND LEAST	LLCR 0460
č	SQUARES SOLUTION- OF MINIMUM NORM FOR EACH RIGHT HAND	
č	SIDE IS FOUND.	LLCR0480
č		LLCR 0490
	DESCRIPTION OF VARIABLES	LLCR0500
	INPUT VARIABLES	LLCR0510
č	A THE NR BY NCOLS AUGMENTED MATRIX	LLCR0520
č	THE NRHS RIGHT HAND SIDES ARE CONCATENATED WITH THE	LLCR 0530
č	NR BY NC COEFFICIENT MATRIX TO FORM THE AUGMENTED	LL CR 0540
č	MATRIX.	LLCR0550
č	THE FIRST IRANK COLUMNS OF A ARE MADE MUTUALLY	LLCR0560
č	ORTHOGONAL. THE NEXT (NC-IRANK) COLUMNS ARE	LLCR 0570
č	CONSIDERED TO BE ZERD VECTORS. THIS TRANSFORMED	LLCR 0580
Ċ	MATRIX IS REFERRED TO BELOW AS A .	LLCR 0590

.

С		N / ·	LLCR0600
С	LA -	- THE FIRST DIMENSION OF THE A ARRAY	LLCR 0610
Ċ		(LA MUST BE .GE. NR.)	LLCR0620
č	LRE -	- THE FIRST DIMENSION OF THE R AND ERR ARRAYS	LLCR0630
č		(LRE MUST BE .GE. NC.)	LLCR0640
č	LSAV -	- THE FIRST DIMENSION OF THE ARRAY SAVE	LLCR0650
č	COAV	(LSAV MUST BE .GE. NR IF ITERATIVE IMPROVEMENT OF THE	
č		SOLUTION IS REQUESTED. LSAY SHOULD EQUAL 1	LLCR0670
č		OTHERNISE.)	LLCR0680
č	LSAL -	THE FIRST DIMENSION OF THE ARRAY SALPH	LLCR0690
č	L'SAL -	(LSAL MUST BE .GE. NC IF THE PROBLEM IS TO BE SOLVED	
č		FOR MORE THAN ONE RANK. LSAL SHOULD EQUAL 1	LLCR0710
č		OTHERWISE.	LLCR0720
č	EPS1 -	- THE CONVERGENCE CRITERION FOR THE ITERATIVE IMPROVE-	
č	EP31 -	MENT OF THE SOLUTION	
			LLCR0740
Č		EACH COMPONENT IN THE FINAL SOLUTION VECTOR WILL	LLCR0750
Ċ		DIFFER FROM THE CORRESPONDING COMPONENT IN THE	LLCR0760
ç		PREVIOUS SOLUTION VECTOR BY NO MORE THAN EPSI	LLCR0770
ç		TIMES THE COMPONENT IN THE FINAL SOLUTION VECTOR.	LLCR0780
Ç	EPS -	- THE VALUE USED TO DETERMINE IF A COLUMN IN THE	LLCR0790
C		CDEFFICIENT MATRIX IS A LINEAR COMBINATION OF OTHER	
Ċ		COLUMNS IN THE COEFFICIENT MATRIX	LLCR0810
Ċ		NEITHER EPS NOR EPS1 SHOULD BE LESS THAN THE PRODUCT	
C		OF THE BASE AND THE RELATIVE ACCURACY OF THE MACHINE	LLCR0830
C		BEING USED.	LLCR0840
Ċ	NR -	- THE NUMBER OF EQUATIONS IN THE SYSTEM	LLCR0850
¢		(NUMBER OF ROWS OF A)	LLCR0860
C	NC -	 THE NUMBER OF INDEPENDENT VARIABLES 	LLCR0870
C		(NUMBER OF COLUMNS OF A BEFORE IT IS AUGMENTED)	LLCR 0880
C	NRHS -	- THE NUMBER OF RIGHT HAND SIDES	LLCR0890
C		(NRHS MUST BE .GE. 1.)	LLCR 0900
C	IPIV -		LLCR 0910
C		= O OSBORNE PIVOTING IS PERFORMED.	LLCR0920
C		= 1 IVOR IS PERFORMED.	LLCR 0930
C		SEE THE ARTICLE BY OSBORNE FOR A DESCRIPTION OF	LLCR 0940
C		OSBORNE PIVOTING.	LLCR0950
C	ISW -	- =1 IF THE SQUARE OF THE NORM IS TO BE RECOMPUTED USING	GLLCR0960
С		INNER PRODUCTS	LLCR0970
C		OTHERWISE, THE SQUARE OF THE NORM IS RECOMPUTED	LLCR 0980
C	•	USING THE METHOD PROPOSED BY OSBORNE.	LLCR0990
Ċ	IREF -	- = 1 IF THE INITIAL SOLUTION IS TO BE REFINED	LLCR1000
Č		# O IF THE SOLUTION IS NOT TO BE REFINED BUT THE	LLCR 1010
č		RESIDUAL VECTOR IS TO BE CALCULATED	LLCR 1020
Č		=-1 THE SOLUTION IS NOT TO BE REFINED AND THE RESIDUAL	
č		VECTOR CANNOT BE CALCULATED	LLCR 1040
ē		(SAVE AND A ARE THE SAME MATRIX.)	LLCR1050
č	NTRAC -	1 ERROR MESSAGES ONLY ARE PRINTED.	LLCR1060
č		= 0 THE FINAL SOLUTION VECTORS AND THE RANK OF THE	LL CR 1070
č		COEFFICIENT MATRIX ARE PRINTED IN ADDITION TO THE	
č		ABOVE .	LLCR 1090
č		■ 1 THE INTERMEDIATE SOLUTION VECTORS, THE RESIDUAL	LLCR 1100
č	•	VECTORS FOR EACH INTERMEDIATE SOLUTION AND THE	LLCR1110
č		FINAL SOLUTION, AND THE ERROR MATRIX ARE PRINTED	LLCR 1120
č		IN ADDITION TO THE ABOVE.	LLCR1130
č		■ 2 THE ORIGINAL COEFFICIENT MATRIX, THE ORIGINAL	LLCR1140
č		RIGHT HAND SIDES, AND THE DECOMPOSITION MATRIX AR	
č		PRINTED IN ADDITION TO THE ITEMS LISTED ABOVE.	LLCR 1160
ں د	KW -	THE STANDARD OUTPUT UNIT NUMBER	LLCR1170
č	KRBEG,KREND -		LLCR 1180
c	RADEUSKKENU -		
L		EQUATIONS AS IF THE COEFFICIENT MATRIX HAD A RANK OF	LLUK1190

.

•

С			KR8EG, KR8EG+1,, KREND. IF THE TRUE RANK OF THE	LLCR 1200
č			SYSTEM IS LESS THAN THE RANK THE USER REQUESTS, A	LLCR1210
č			MESSAGE IS PRINTED.	LLCR 1220
č			KRBEG MUST BE SET GREATER THAN OR EQUAL TO ONE. ' IF	LLCR 1230
č			THE RANK OF THE COEFFICIENT MATRIX IS ZERO, THE	LLCR1240
č			CORRECT SOLUTION WILL BE RETURNED, HOWEVER.	LL CR 1250
č			SEE THE DEFINITION OF KRANK BELOW.	LLCR1260
č	MAXIT		THE MAXIMUM NUMBER OF ITERATIONS ALLOWED FOR THE	LLCR1270
Ċ			ITERATIVE IMPROVEMENT PROCEDURE	LLCR 1280
Ċ			MAXIT SHOULD BE GREATER OR EQUAL TO ONE IF ITERATIVE	
c			IMPROVEMENT OF THE SOLUTION IS NOT DESIRED.	LLCR1300
С				LLCR1310
C	OUTPUT VARIA	BLES	•••	LLGR1320
С	R		AN NC BY NCOLS MATRIX THAT INITIALLY HOLDS AN	LL CR 1330
C			IDENTITY MATRIX IN ITS FIRST NC COLUMNS AND ZERO	LLCR 1340
C			COLUMNS FOR THE REMAINING (NCOLS-NC) COLUMNS	LLCR 1350
С			THE FIRST NC COLUMNS OF R ARE TRANSFORMED INTO THE R	LLCR 1360
С			-1	LLCR1370
С			OF THE DECOMPOSITION A=A R . THE REMAINING COLUMNS	LLCR1380
С			NON NO.	LLCR1390
С			HOLD THE SOLUTIONS TO THE SYSTEMS OF EQUATIONS.	LECR 1400
С	XSAVE{I,J,K}		IF IPIV.EQ.1, THE I-TH COEFFICIENT OF THE REGRESSION	
C			EQUATION FOR RIGHT HAND SIDE NUMBER J WHEN KRBEG	LLCR1420
C			+K-1 VARIABLES HAVE ENTERED THE REGRESSION EQUATION	LLCR 1430
C			OTHERWISE, THE I-TH COMPONENT OF THE SOLUTION VECTOR	
C			OF MINIMUM LENGTH FOR RIGHT HAND SIDE NUMBER J WHEN	LLCR1450
c	D46764 + 1		RANK KRBEG+K-1	LLCR1460
C C	BASIC(J)		THE LENGTH OF THE BASIC APPROXIMATE SOLUTION VECTOR For the J-TH Right Hand side	LLCR1470 LLCR1480
č	· x		THE SOLUTION VECTOR FOR EACH RIGHT HAND SIDE	LLCR1490
č	· •		IS PLACED IN X PRIOR TO THE ITERATIVE IMPROVEMENT OF	
č			THE SOLUTION FOR THAT REGHT HAND SIDE. ITERATIVE	LLCR 1510
č			IMPROVEMENT IS PERFORMED ON THE SOLUTION VECTOR FOR	LLCR1520
č			ONE RIGHT HAND SIDE AT A TIME.	LLCR1530
Č	RES		THE RESIDUAL VECTORS FOR THE RIGHT HAND SIDES	LLCR 1540
Ċ	ERR		THE INVERSE OF THE TRANSPOSE OF THE COEFFICIENT	LLCR1550
C			MATRIX TINES ITS TRANSPOSE	LLCR1560
С			THIS IS CALCULATED ONLY IF THE COEFFICIENT MATRIX IS	LLCR 1570
С			OF FULL RANK. THIS IS AN NO BY NO ARRAY.	LLCR1580
С			(A IS THE UNAUGMENTED COEFFICIENT MATRIX IN THIS	LLCR 1590
С			CASE.)	LLCR1600
C	IRANK		THE SMALLER OF THE NUMERICAL RANK OF THE COEFFICIENT	
C			MATRIX AND KRANK	LLCR1620
c	NFAIL		=0 IF ITERATIVE IMPROVEMENT FAILS TO PRODUCE RESULTS	LLCR1630
C			OF THE DESIRED ACCURACY WITHIN MAXIT ITERATIONS	LLCR1640
°C		:	=1 OTHERWISE	LL CR1650
c	THTEOMEDIATE	VAD		LLCR 1660
C C	INTERMEDIATE SAL PH	VAK	HOLDS R IN THE STATE IT IS IN AFTER THE BASIC	LLCR1670
č	346 PH		APPROXIMATE SOLUTION IS FOUND FOR A GIVEN RANK	LLCR1680 LLCR1690
č			THIS MATRIX IS NOT NEEDED IF KRBEG.EQ.KREND.	LLCR1700
č	SAVE		HOLDS THE ORIGINAL AUGMENTED MATRIX' A	LLCR1710
č	3410		THIS MATRIX IS NOT REFERENCED IF ITERATIVE IMPROVE-	LLCR1720
č			MENT OF THE SOLUTIONS IS NOT DESIRED.	LL CR 1730
č	XOLD		THE SOLUTION VECTOR FOR EACH RIGHT HAND SIDE FOUND	LLCR 1740
č			DURING THE PREVIOUS ITERATION OF THE IMPROVEMENT	LLCR 1750
č			PROCEDURE IS PLACED IN XOLD.	LLCR1760
č	RHO(K)		THE SQUARE OF THE NORM OF THE K-TH COLUMN OF A	LLCR1770
C	RHOM (K)		THE SQUARE OF THE NORM OF THE K-TH COLUMN OF R	LLCR1780
Ċ	KRANK		AN ATTEMPT IS MADE TO FIND THE SOLUTION	LLCR1790

.

AS IF THE COEFFICIENT MATRIX HAD A RANK OF KRANK. С LLCR1800 С KROLD THE PREVIOUS SOLUTION OF THE SYSTEMS OF EQUATIONS LLCR1810 С WAS MADE AS IF THE RANK OF THE COEFFICIENT MATRIX LLCR 1820 С WAS KROLD. LLCR 1830 THE NUMBER OF INDEPENDENT VARIABLES PLUS ONE THE NUMBER OF INDEPENDENT VARIABLES PLUS THE NUMBER Ċ NC P LLCR1840 NCOLS ---LLCR1850 OF RIGHT HAND SIDES C LLCR1860 C LLCR 1870 C USE OF THIS PROGRAM. 11 CR 1880 TO USE THIS PROGRAM, A CALLING PROGRAM THAT CALLS THE SUBROUTINE С LLCR1890 LLCR MUST BE WRITTEN. THE CALLING PROGRAM MUST DEFINE THE VARIABLES A, LA, NR, NC, NRHS, LRE, EPSI, EPS, IBAS, ISW, NTRAC, KRBEG, KREND, С LLCR 1900 С LLCR 1910 С KW. IREF. LSAV. LSAL. AND MAXIT. LLCR1920 THE FOLLOWING STATEMENTS MUST APPEAR IN THE CALLING PROGRAM. С LLCR 1930 DIMENSION A(LA,NCOLS),R(LRE,NCOLS),SAVE(LSAV,NCOLS),X(MC),RHO(NC),LLCR1940 С С ISA(NC), ERR (LRE, NC), RES(NR), V(NC), XDLD(NC), SALPH(LSAL, NCOLS), LLCR 1950 С 2RHOM(NC), BASIC(NRHS), XSAVE(NC, NRHS, KREND-KRBEG+1) LLCR 1960 С COMMON/BETA/EPS, EPS1, IPIV, ISW, NTRAC, NCOLS, KRBEG, KREND, KRANK, KROLD, LLCR 1970 С 1IREF,KW,NCP, IRANK, MAXIT, NFAIL, IRGT LLCR1980 С LLCR 1990 С (DEFINITION OF VARIABLES) LLCR2000 Ċ LLCR 2010 CALL LLCR(A,LA,R,LRE,SAVE,LSAV,X,RHO,RHOM,SA,ERR,RES,V,XOLD,SALPH,LLCR2020 C С 1LSAL, NR, NC, BASIC, NRHS, XSAVE) LLCR2030 С CALL EXIT LLCR2040 END LLCR2050 С LLCR2060 С THE NUMERICAL VALUES OF THE VARIABLES USED TO INDICATE THE LLCR 2070 C DIMENSIONS OF THE ABOVE ARRAYS MUST APPEAR IN THE DIMENSION STATEMENT LLCR2080 IN THE CALLING PROGRAM. THE DIMENSIONS INDICATED IN THE DIMENSION С LLCR2090 C STATEMENT ARE MINIMUM DIMENSIONS. LA MUST BE EQUAL TO OR GREATER THANLLCR2100 LRE MUST BE EQUAL TO OR GREATER THAN NC. IF ITERATIVE C NR -**LLCR 2110** C INFROVEMENT OF THE SOLUTION IS NOT USED, SAVE SHOULD BE DIMENSIONED C (1,1) IN THE CALLING PROGRAM, AND LSAV SHOULD BE SET EQUAL TO ONE. C OTHERWISE, LSAV SHOULD BE EQUAL TO OR GREATER THAN NR. IF THE LLCR2120 LLCR2130 C OTHERWISE, LSAV SHOULD BE EQUAL TO OR GREATER THAN NR. IF THE C PROBLEM IS GOING TO BE SOLVED FOR ONLY ONE RANK, SALPH SHOULD BE LLCR 2140 LLCR 2150 DIMENSIONED (1,1) IN THE CALLING PROGRAM., AND LSAL SET EQUAL TO ONE. LLCR2160 OTHERWISE, LSAL SHOULD BE EQUAL TO OR GREATER THAN NC. С C IF THIS PROGRAM IS RUN UNDER A COMPILER THAT CHECKS SUBSCRIPTS OR LLCR2180 C DOES NOT PERMIT VARIABLE SUBSCRIPTING. THE DIMENSION STATEMENTS IN THELLCR2190 SUBROUTINES LLCR AND LLSQ WILL HAVE TO BE CHANGED. LLCR2200 С С IF THE MACHINE ON WHICH THE PROGRAM IS BEING EXECUTED DOES NOT LLCR 2210 С HAVE LABELED COMMON, THE COMMON STATEMENT WILL HAVE TO BE CHANGED. LLCR 2220 С LLCR 2230 DOUBLE PRECISION DRES, DINT, DINTP, DSAVE LLCR 2240 С LLCR 2250 IF SINGLE PRECISION DOES NOT GIVE THE ACCURACY DESIRED, ALL C LLCR2260 CALCULATIONS MUST BE DONE IN DOUBLE PRECISION. TO DO THIS, REMOVE THE C IN COLUMN ONE FROM THE FOLLOWING STATEMENT. I THIS CASE, ITERATIVE IMPROVEMENT OF THE SOLUTIONS WOULD BE LLCR 2270 С С IN LLCR 2280 С LLCR 2290 INEFFECTIVE AND SHOULD NOT BE REQUESTED. С LLCR 2300 DOUBLE PRECISION A, R, RHO, SA, RHOM, SALPH, EPS, DENOM, DOT, ALPHA, С LLCR2310 С IVZERO, ONE, EPS1, BASIC, QSQRT LLCR 2320 С LLCR2330 DIMENSION A(LA,1),R(LRE,1),SAVE(LSAV,1),X(NC),RHO(NC),SA(NC), LLCR 2340 *ERR(LRE,NC),RES(NR),V(NC),XOLD(NC),SALPH(LSAL,1),RHOM(NC), LLCR 2350 *BASIC(NRHS),XSAVE(NC,NRHS,1) LLCR 2360 COMMON/BETA/EPS, EPS1, IPIV, ISW, NT RAC, NCOLS, KRBEG, KR END, KRANK, KROLD, LLCR 2370 *IREF,KW,NCP,IRANK,MAXIT,NFAIL,IRGT LLCR 2380 С LLCR2390

275

276

277

60

	С		•	CHANGE QSQRT(Y)=SQRT(Y) TO QSQRT(Y)=DSQRT(Y) IF	LLCR 2400
	́С		•	ALL COMPUTATIONS ARE DONE IN DOUBLE PRECISION.	LLCR 2410
	С				LLCR 2420
278			QSQRT(Y)=SQRT(Y)		LLCR2430
	С				LLCR 2440
279	•		IF(NTRAC)20,10,10		LLCR2450
280		10		EPS,NR,NC,ISW, IREF, MAXIT, KRBEG, KREND	LLCR 2460
281			NCP=NC+1	CI STARTAGTISHTICC TARTITRADEGTAREAD	LLCR2470
282		20	IRGT=0		LLCR2480
283					
			VZERO=0.		LLCR2490
284			KROLD=-1		LLCR2500
285			ONE=1.		LL CR 2510
286			IRANK=NCP		LL CR 2520
287			NFAIL=1		LL CR 2530
288			NCOLS=NC+NRHS	•	LLCR2540
289			EPSQ=EPS+EPS		LLCR 2550
	С			SAVE THE ORIGINAL COEFFICIENT MATRIX AND RIGHT	LLCR2560
	С		•	HAND SIDES.	LLCR2570
290			IF(IREF)50,30,30		LLCR 2580
291		30	00 40 IR=1.NR		LLCR2590
292			DO 40 IC=1,NCOLS		LLCR 2600
293		40	SAVE(IR,IC)=A(IR,I	(C)	LL CR 26 10
	C			PRINT THE ORIGINAL COEFFICIENT MATRIX AND RIGHT	
				HAND SIDES.	LLCR 2630
294	C	- 6 0	IF(NTRAC-2190,60,6		LLCR 2640
295			WRITE(KW.750)		LL CR 2650
295		00			
		70	DO 70 I=1.NR	11 I-1 AC	LLCR2660
297		70	WRITE(KW,810)(A(I,	JJ+J=L+NC)	LL CR 2670
298			WRITE(KW,760)		LLCR2680
299			DO BO IC=NCP+NCOLS		LLCR2690
300	-		WRITE(KW,810)(A(I		LLCR 2700
	С			NEGATE EACH RIGHT HAND SIDE.	LLCR 2710
301		90	DO 100 I=1,NR		LLCR2720
302			DO 100 J=NCP+NCOLS		LLCR2730
303		100	A(I,J)=-A(I,J)		LLCR 2740
	С		•	FIND THE SOLUTIONS TO THE PROBLEM	LLCR2750
	Ç			FOR RANKS KRBEG THROUGH KREND.	LLCR 2760
304			DO 730 MRANK=KRBEG	, KREND	LLCR2770
305			KRANK=MRANK		LLCR 2780
	С		· · · · · ·	WRITE A MESSAGE IF THE RANK ASKED FOR IS	LLCR2790
	č			KNOWN TO BE LESS THAN THE RANK OF THE SYSTEM.	LLCR2800
306	•		IF(IRANK-KROLD)110		LLCR 2810
307		110	WRITE(KW+850)		LLCR 2820
308			GO TO 740		LLCR2830
100	c			FIND THE INITIAL SOLUTION TO THE PROBLEM.	
309	C	120			LLCR2840 LLCR2850
507				D.RHOM, SA, SALPH, LSAL, NR, NC, R, LRE, BASIC, NRHS,	
210		4	SAVE LSAV, XSAVE }	•	LLCR2860
310			IF(IRGT)740,130,74		LLCR 2870
311	-		KROLD=KRANK		LLCR2880
	C	• • • •		PRINT THE DECOMPOSED MATRIX.	LLCR2890
312			IF(NTRAC-2)170,140		LLCR 2900
313		140	WRITE(KW,840)IRANK		LLCR 2910
314			DO 150 I=1+NR		LLCR2920
315		150	WRITE(KW,810)(A(I,	J),J=1,NC)	LLCR 2930
316			00 160 I=1,NC		LLCR 2940
317		160	WRITE(KW,810)(R(I,	J),J=1,NC)	LLCR 2950
	С			FIND THE FINAL SOLUTION FOR EACH RIGHT HAND	LL CR 2960
	č			SIDE.	LLCR 2970
318		170	DO 670 K=NCP,NCOLS		LL CR 2980
319			KSW=-1		LLCR2990
			-		

320		DO 180 I=1.NC		LLCR
321		180 X(I)=R(I,K)		LLCR:
322		KNT ≠0		LLCR
	С		CHECK IF REFINEMENT OF THE SOLUTION IS DESIRED.	LLCR
323		IF(IREF-1)510,190	•510	LLCR
324		190 KNT=0		LLCR
	С	• • • •	CHECK TO SEE IF THE BASIC APPROXIMATE OR THE	LLCR
	С		MINIMUM NORM SOLUTION IS TO BE ITERATED.	LLCR
325		IF(KSW)200,220,67		LLCR
326		200 WRITE(KW,900)		LLCR
327		KK=K-NC		LL CR
328		NO=KRANK-KRBEG+1		LLCR
329		DO 210 I=1,NC		LLCR
330		210 X(I)=XSAVE(I+KK+N	0)	LLCR
331		GO TO 240		LLCR
332		220 WRITE(KW,910)		LLCR
333		DO 230 I=1.NC		LLCR
334		230 X(I)=R(I,K)		LLCR
335		240 KNT=KNT+1		LLCR
	С	••••	CHECK FOR TOO MANY ITERATIONS TO ACHIEVE THE	LLCR
		••••	DESIRED ACCURACY.	LLCR
336	v	IF(KNT-MAXIT)260		LLCR
337		250 ND=K-NC	2004250	LLCR
338		230 NO=K-NC WRITE(KW.790)NO.M		LLCR
339		NFAIL=0	MA11	LLCR
340		GO TO 740		LLCR
540	с		CALCULATE THE RESIDUAL VECTOR FOR THE (K-NC)-TH	
	c	and the second	RIGHT HAND SIDE.	LLCR
341	C	260 DO 280 I=1,NR	NINUI HANN SIVES	LLCR
342				LLCR
343		DRES=VZERO		
-		DD 270 J=1,NC		LLCR
344		DINT=X(J)		LLCR
345		DINTP=SAVE(I,J)	TNT	LLCR
346 347		270 DRES=DRES+DINTP=D		LLCR
348		DSAVE=SAVE(I,K) 280 RES(I)=DSAVE-DRES		LLCR
240	С		CALCULATE THE SQUARE OF THE NORM OF THE RESIDUAL	
		••••	VECTOR.	LLCR
349	C	DNORM=VZERO	TLUIONT	LLCR
350		DO 290 I=1+NR		LLCR
351		290 DNORM=DNORM+RES()	1#0 5 5 (1)	LLCR
221	с		CALCULATE THE LENGTH OF THE RESIDUAL VECTOR.	LLCR
352	C	SNORM=DNORM	CALCOLATE THE LENGTH OF THE REGIDUAL VECTOR.	LLCR
353		DNORM=QSQRT (DNORM	n	LLCR
353 354				
334	~	NO=K-NC	DOTHT THE DECIDING VECTOR AND THE LENGTH OF THE	LLCR
	C	••••	PRINT: THE RESIDUAL VECTOR AND THE LENGTH OF THE	
355	С	KNTM1=KNT-1	RESIDUAL VECTOR.	LLCR
			200	
356		IF(NTRAC)310,300		LLCR
357		300 WRITE(KW,860)KNTM		LLCR
358		WRITE(KW,770)NO,(LLCR
359	~	WRITE(KW+920)DNOF		LLCR
240	С			LLCR
360	~	WRITE(KW,800)NO,(LLCR
•	-		SOLVE THE PROBLEM COMPOSED OF THE	LLCR
		••••	ORIGINAL COEFFICIENT MATRIX AND THE RESIDUAL	LLCR
	С		VECTOR FOR THE RIGHT HAND SIDE.	LLCR
24.5		310 DO 320 I≠1,NC		LLCR
361		220 8471-47500		
361 362 363		320 V(I)=V2ER0 DO 330 IR=1,NR		LLCR

364	330 RES(IR)=-RES(IR)	LLCR 3
365	IF (IRANK)400,400,340	LL CR 3
366	340 DO 380 I=1, IRANK	LLCR3
367	DOT=VZERO	
368		LLCR 3
	DO 350 J=1,NR	LLCR3
369	350 DOT=DOT+A(J,I)+RES(J)	LLCR 3
370	ALPHA=DOT/RHO(I)	LLCR 3
371	DO 360 J=1,NR	LLCR3
372	ALPHA=DOT/RHO(I) DO 360 J=1,NR 360 RES(J)=RES(J)=ALPHA=A(J,I) DO 370 J=1,NC	LLCR 3
373	DO 370 J=1.NC	LLCR 3
374	370 V(1)=V(1)-AI PHA+R(1,1)	LLCR 3
375		
376		
377		
	570 IT(IKANK-NC)400;440;400	LLUKS
378	400 IRNRP=IRANK+I	LLCK3
379	D0 360 J=1,NR 360 RES(J)=RES(J)=ALPHA*A(J,I) D0 370 J=1,NC 370 V(J)=V(J)=ALPHA*R(J,I) 380 CONTINUE IF(KSW)440,390,390 390 IF(IRANK=NC)400,440,400 400 IRNKP=IRANK+1 D0 430 I=IRNKP,NC D0T=VZER0 D0 410 J=1,NC 410 D0T=D0T+R(J,I)*V(J) C RHON(I) CAN NEVER BE ZERO THEORETICALLY OR	LLCR3
380	DOT=VZERO	LLCR 3
381	DO 410 J=1.NC	LLCR3
382	410 DOT=DOT+R(J,I)=V(J)	LLCR3
	C RHON(I) CAN NEVER BE ZERO THEORETICALLY OR	LLCR3
	C NUMER ICALLY.	LLCR3
383	ALPHA=DOT/RHOM(T)	LLCR 3
384	C NUMERICALLY. ALPHA=DOT/RHOM(I) DO 420 J=1,NC	LLCR3
385		LLCR3
386	420 V(J)=V(J)=ALPHA*R(J,I) 430 CONTINUE C CALCULATE THE NEW SOLUTION VECTOR.	
300	430 CONTINUE	LL CR 3
		LLCR 3
387	440 DO 450 I=1,NC XOLD(I)=X(I) 450 X(I)=X(I)+V(I)	LLCR3
388	XOLD(I)=X(I)	LLCR3
389	450 X(I)=X(I)+V(I)	LLCR 3
	C CHECK FOR CONVERGENCE.	LLCR3
390	DO 500 I=1.NC	LLCR3
391	DIF=X(1)-XOLD(1)	LLCR3
392	IE(DIE)460+470-470	LLCR 3
393		LLCR 3
394	450 X(I)=X(I)+V(I) C D0 500 I=1,NC DIF=X(I)-X0LD(I) IF(DIF)460,470,470 460 DIF=-DIF 470 X0LD(I)=X(I) IF(X0LD(I))480,490,490 480 X0LD(I)=-X0LD(I) 490 IF(DIF-EPS1*X0LD(I))500,500,240 500 CONTINUE	
		LLCR3
395	1+(XULD(1))480,490,490	LL CR 3
396	480 XOLD(I)=-XOLD(I)	LLCR3
397	490 IF(DIF-EPS1*XOLD(1))500,500,240	LLCR3
3 98	500 CONTINUE	LLCR 3
399	IF(KSW)540,510,540	LLCR 3
400	510 IF(IPIV-1)520,540,520	LLCR4
401		LLCR 4
402		LLCR4
403		LLCR4
404		
-	<pre>490 IF(DIF-EPS1*X0LD(I))500,500,240 500 CONTINUE IF(KSW)540,510,540 510 IF(IPIV-1)520,540,520 520 ND=KRANK-KRBEG+1 KK=K-NC DD 530 KL=1,NC 530 XSAVE(KL,KK,ND)=X(KL) 540 IF(NTRAC)670,550,550 550 WRITE(KW,860)KNT ND=K-NC IF(IREF)630,560,360 C CALCULATE THE RESIDUAL VECTOR. 560 DD 580 I=1,NR DRES=VZER0 DD 570 J=1,NC DINT=X(J) DINTP=SAVE(I,J)</pre>	
405	240 IFINIKACJO/05204220	LLCR4
406	SSU WKIIE(KW+860JKNT	
407	NO≖K−NC	LLCR4
408	IF(IREF)630,560,560	LLCR4
	C CALCULATE THE RESIDUAL VECTOR.	LLCR 4
409	560 DO 580 I=1.NR	LLCR4
410	DRES=VZERO	LLCR4
411	D0 570 J=1+NC	LLCR4
412	DINT=X(J)	LLCR4
413	DINTP=SAVE(I,J)	LLCR4
414	570 DRES=DRES+DINTP+DINT	LLCR4
415	DSAVE=SAVE(I,K)	LLCR4
416	580 RES(I)=DSAVE-DRES	LLCR4
417	IF(NTRAC-2)600,590,600	LLCR4
418	590 WRITE(KW,770)NO,(RES(I),I=1,NR)	LLCR4

		C CALCULATE THE LENGTH OF THE RESIDUAL VECTOR.	LLCR 4200
	419	600 DNDRM=VZERO	LLCR 4210
	420	DO 610 I=1,NR	LLCR4220
	421	610 DNORM=DNORM+RES(I)=RES(I)	LLCR 4230
	422	SNORM=DNORM	LLCR4240
	423	DNORM=QSQRT (DNORM)	LLCR4250
	424	WRITE(KW,780)DNORM,SNORM	LLCR4260
	425	IF(DNORM-BASIC(NO))630,620,620	LL CR 4270
	426	620 WRITELKW,880)	LLCR4280
	427	630 WRITE(KW+830)NO+(X(I)+I≠1,NC)	LLCR4290
	428	DOT=V2ERO	LLCR4300
	429	D01=V2ER0 D0 640 I=1.NC 640 D0T=D0T+X(I)*X(I) D0T=QSQRT(D0T) WRITE(KW.890)D0T	LLCR4310
	430	640 DOT=DOT+X(I)*X(I)	LLCR4320
	431	DOT=QSQRT(DOT)	LLCR4330
	432	WRITE(KW+890)DOT	LLCR4340
	433	IF(KSW)650,670,670	LLCR4350
	434	650 DD 660 KL=1,NC 660 XSAVE(KL,KK,ND)=X(KL)	LLCR4360
	435	660 XSAVE(KL,KK,ND)=X(KL)	LLCR4370
	436	KOH-KOHTI	LLCR4380
	437	GO TO 190	LLCR4390
	438	670 CONTINUE C CALCULATE THE ERROR MATRIX, THE INVERSE OF A	LLCR4400
		C CALCULATE THE ERROR MATRIX, THE INVERSE OF A	
		C TRANSPOSE TIMES A, IF THE RANK OF THE SYSTEM IS C NC.	LLCR4420
	439		LLCR4440
	440	<pre>1F(IRANK-NC) 730,680,730 680 D0 700 I=1,NC D0 700 J=1,NC D0T=VZER0 D0 690 K=1,NC 690 D0T=D0T+R(I,K)*R(J,K)/RH0(K) 700 ERR(I,J)=D0T IF(NTRAC-1)730,710,710 710 WRITE(KW,820) D0 720 IR=1,NC 720 WRITE(KW,810)(ERR(IR,IC),IC=1,NC) 730 CONTINUE</pre>	LLCR4440
	441		LLCR4460
	442		LLCR4470
	443		LLCR4480
	444	690 D0T=D0T+R(I=K)+R(.4=K)/RH0(K)	LLCR4490
	445	700 ERR(1, J) = DDT	LLCR4500
	446	IF(NTRAC-1)730.710.710	LLCR4510
	447	710 WRITE(KW-820)	LLCR4520
	448	DO 720 IR=1.NC	LLCR 4530
	449	720 WRITE(KW+810)(ERR(IR+IC)+IC=1+NC)	LLCR4540
	450	730 CONTINUE	LLCR 4550
	451	740 RETURN	LLCR4560
		C CHANGE 5E20.7 TO 4D25.14 IF USING DOUBLE PRECISION	LLCR 4570
			LLCR4580
	452	750 FORMAT(/32H THE ORIGINAL COEFFICIENT MATRIX)	LLCR4590
	453	760 FORMAT(/30H THE ORIGINAL RIGHT HAND SIDES)	LLCR 4600
	454	770 FORMAT(/48H THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER , 15,3H	LLCR4610
		*IS/(1X,5E20.7))	LLCR4620
	455	780 FORMAT(/61H THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUT	
		★ON IS ↓E20.7/75H THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR 	LLCR4640
		★OR THE FINAL SOLUTION IS ,E20.7)	LLCR4650
	456	790 FORMAT(/72H THE CONVERGENCE CRITERION FOR THE SOLUTION WITH RIGHT	
		*HAND_SIDE_NUMBER +15/20H_WAS_NOT_REACHED_IN_+15+12H_ITERATIONS+/	
		*85H THE VALUE OF EPS IS TOO SMALL FOR THE MACHINE ON WHICH YOU AR	ELLCR4680
		* RUNNING THIS ROUTINE./40H INCREASE EPS AND RUN THE ROUTINE AGAIN.	
			LLCR4700
	457	800 FORMAT(/55H THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER	
		$*_{1}15/(1X,5E20.7))$	LLCR4720
	458	810 FORMAT(/(1X,5E20.7)) 820 FORMAT(/174 THE EDROR MATRIX)	LLCR4730
	459 460	820 FORMAT(/17H THE ERROR MATRIX) 830 FORMAT(/65H THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND S	LLCR4740
	460		
	461	*DE NUMBER ,15/(1X,5E20.7)) 840 Format(/44H THE DECOMPOSITION MATRIX FOR RANK EQUAL TO ,15)	LLCR4760 LLCR4770
	462	850 FORMAT(758H THE RANK REQUESTED IS GREATER THAN THE RANK OF THE SY	
	172	*TEM)	LLCR 4790
		OF A FORMAT (1) H ATERATION 13	LL CR 4800
	463 444	860 FORMAT(/11H ITERATION ,I3) 870 FORMAT(1H1,5HEPS1=,E10.3,5X,4HEPS=,E10.3,5X,3HNR=,I5,5X,3HNC=,	LLCR4810
•	464	*15,5X,4HISW=,12/1X,5HIREF=,12,5X,6HMAXIT=,15,5X,6HKRBEG=,15,5X,	LLCR4820
		+15,5%,4H15W=,1271%,5H1KEF=,12,5%,6HMAA11=,15,5%,6HKBEG=,15,5%, +6HKREND=,15)	LLCR4830
	465	880 FORMAT(/76H THE BASIC APPROXIMATE SOLUTION IS A BETTER SOLUTION TH	
	400	*AN THE FINAL SOLUTION)	LLCR4850
	466	890 FORMAT(/44H THE LENGTH OF THE FINAL SOLUTION VECTOR IS , E20.7)	LLCR4860
	467	900 FORMAT(///35H START ITERATING THE BASIC SOLUTION)	LL CR 4870
	468	910 FORMAT(///42H START ITERATING THE MINIMUM NORM SOLUTION)	LLCR 4880
	469	920 FORMAT(/38H THE LENGTH OF THE RESIDUAL VECTOR IS .E20.7/	LL CR 4890
	-	*52H THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS , E20.7)	LLCR 4900
	470	END	LL CR 4910

. .

\$ENTRY

•

87			LA, RHO, RHOM, SA, SALPH, LSAL, NR, NC, R, LRE, BASIC,	LLSQ0010
		VE, LSAV, XS		LLSQ0020
	C AUTHOR	JOANNA C	HWANG	LLSQ0030
	C C DATE	MADCH 1		LL SQ0040
	C	MARCH 1,	1972 VERSION 1.1	LLSQ0050
			THIS PROGRAM	LLSQ0060 LLSQ0070
			S THE INITIAL BASIC APPROXIMATE SOLUTIONS AND	LLSQ0080
			JM NORM FOR A GENERAL LINEAR LEAST SQUARES	LL SQ 0090
			A IS AN NR BY NC MATRIX. X IS AN NC BY NRHS	LLSQ0100
	C MATRIX, AN	B IS AN N	R BY NRHS MATRIX. A IS CONSIDERED TO HAVE A RANK	LLSQ0110
	C SPECIFIED	BY THE USER	•	LLSQ0120
			ESCRIPTIONS OF METHODS USED, AND DESCRIPTIONS	LLSQ0130
•		S, SEE THE	SUBROUTINE, LLCR.	LL SQ0140
88	C		DEC DINTO DINT DEAVE	LLSQ0150
00	C	PRECISION	DRES DINTPOINT DSAVE	LLSQ0160 LLSQ0170
	•	TNGLE PRECI	ISION DOES NOT GIVE THE ACCURACY DESIRED, ALL	LLSQ0180
			JST BE DONE IN DOUBLE PRECISION. TO DO THIS,	LL SQ0190
			N COLUMN ONE FROM THE FOLLOWING STATEMENT. IN	LL SQ0200
	C THIS	S CASE, ITER	RATIVE IMPROVEMENT OF THE SOLUTIONS WOULD BE	LLSQ0210
			D SHOULD NOT BE REQUESTED.	LL SQ0220
			A, R, RHO, SA, RHOM, SALPH, EPS, DENOM, DOT, ALPHA,	LLSQ0230
		JNE . TMAX . TRY	(,TEMP,EPS1,BASIC,QSQRT	LL SQ0240
89	C			LLSQ0250
07			<pre>,RHD(NC),RHOM(NC),SA(NC),SALPH(LSAL,1),R(LRE,1), _SAV,1),XSAVE(NC,NRHS,1)</pre>	LLSQ0270
90			PS1, IPIV, ISW, NTRAC, NCOLS, KRBEG, KREND, KRANK, KROLD,	
			MAXIT,NFAIL, IRGT	LL SQ 02 90
	C			LLSQ0300
	C		CHANGE QSQRT(Y)=SQRT(Y) TO QSQRT(Y)=DSQRT(Y)	LL SQ0310
	C		IF ALL CALCULATIONS ARE BEING DONE IN DOUBLE	LLSQ0320
	C		PRECISION.	LLSQ0330
91	C	() = SQRT(Y)		LLSQ0340
92	EPSQ=E	CTCDC		LLSQ0350 LLSQ0360
93	ONE*1.	JELIS		LLSQ0370
94	HUGE#1	E50		LLSQ0380
95	VZERO#			LL SQ 0390
	С		CHECK TO SEE IF THIS IS THE FIRST TIME THE	LLSQ0400
	C		SUBROUTINE HAS BEEN ENTERED.	LLSQ0410
96		D)30,30,10		LLSQ0420
97	10 KROP=KI C	ULUTI	IF THE SUBROUTINE HAS BEEN ENTERED PREVIOUSLY,	LLSQ0430 LLSQ0440
	C		RETURN THE AUGMENTED MATRIX TO THE STATE IT WAS	
	C		IN PRIOR TO ORTHOGONALIZING THE LAST NC-KROLD	LL SQ0460
	C		COLUMNS OF R.	LLSQ0470
98	DO 20	IR=1,NC		LLSQ0480
99		[C=KROP+NCO		LLSQ0490
100		C)=SALPH(IR	, IC)	LLSQ0500
101	K=KROP			LLSQ0510
102	GQ TO (50	SET UP AN NC BY NCOLS MATRIX R SUCH THAT THE	LL SQ0520 LL SQ0530
	C C		FIRST NC COLUMNS FORM AN NC BY NC IDENTITY	LLSQ0540
	C		MATRIX AND THE LAST NRHS COLUMNS ARE ZERO	LLSQ0550
	č		VECTORS.	LL \$90560
103	30 DO 50 1	[=1,NC		LL SQ0570
104		J=1+NCOLS		LL SQ 05 80
105	40 R(I.J)	=VZERO		LL SQ 0590

106		50 R(I,I)=ONE		LL SQ0600
			SET UP A VECTOR RHO SUCH THAT RHO(J) IS THE	LLSQ0610
	С		SQUARE OF THE EUCLIDEAN NORM OF THE J-TH COLUMN	LLSQ0620
	C	••••	OF A.	LL SQ0630
107		DO 70 J=1,NC		LL SQ 0640
108		DOT=VZERO		LLSQ 06 50
109		DO 60 I=1,NR		LL SQ0660
110		60 DOT=DOT+A(I,J)*A(I	+ J)	LL SQ0670
111		RHO(J)=DOT		LLSQ0680
			INITIALIZE SA(J) TO RHO(J).	LL SQ 06 90
	С	••••	J=1,NC.	LL SQ 07 00
112		70 SA(J)=RHO(J)		LLSQ0710
	С		INITIALIZE A POINTER K.	LL SQ 072 0
113		K=1		LL SQ 07 30
	C	• • • •	TEST FOR THE COMPLETION OF THE TRANSFORMATION OF	LLSQ0740
	С		A INTO A MATRIX WHOSE NONZERO COLUMNS ARE	LL SQ0750
	С		ORTHOGONAL.	LL SQ 0760
114		80 IF(K-NC)90,90,710		LL SQ0770
115		90 IF(K-KRANK)100,100	,300	LL SQ0780
116		100 MAXP=K		LLSQ0790
. · _	С		SEARCH FOR THE PIVOTAL COLUMN OF A.	LL SQ0800
117		KP1=K+1		LL SQ0810
118		IF(IPIV)110,110,20		LL S Q 08 2 0
119		110 IF(SA(K))120,120,1	30	LLSQ0830
120		120 TMAX=VZERO		LL SQ0840
121		GO TO 140		LL \$Q0850
122		130 TMAX=RHO(K)/SA(K)		LL SQ0860
	С	• • • •	IF IPIV.EQ1, NO PIVOTING IS PERFORMED.	LL SQ0870
123		140 IF(IPIV)290,150,15		LL SQ 0880
124		150 IF(K-NC)160,290,29	0	LL SQ0890
125		160 DO 190 I=KP1,NC		LLSQ0900
126		IF(SA(I))190,190,1	70	LLSQ0910
127		170 TRY=RHO(I)/SA(I)		LLSQ0920
128		IF(TRY-TMAX)190,19	0,180	LLSQ0930
129		180 TMAX=TRY		LL SQ0940
130		MAXP=I		LLSQ0950
131		190 CONTINUE		LL SQ 0960
132		GO TO 290		LL SQ 0970
	C		IF IPIV.EQ.1, IVOR, INDEPENDENT VARIABLE	LL SQ0980
			ORDERING BY REGRESSION SUM OF SQUARES, IS	LL SQ 0990
	С		PERFORMED.	LLSQ1000
133	,	200 TMAX=VZERO		LLSQ1010
134		TMIN=HUGE		LLS01020
135		DO 270 J=K,NC		LLSQ1030
136		IF(RHO(J)-SA(J)*EP	501270,270,210	LL SQ1040
137		210 DOT=VZERO		LLSQ1050
138		DO 220 I=1,NR		LLSQ1060
139		220 DOT=DOT+A(I,J)*A(I	, NCP)	LL SQ 1070
140		DOT=DOT/RHO(J)		LL SQ1080
141		SUM=VZERO		LL SQ 1090
142		DO 230 I=1,NR		LLSQ1100
143		AUX=A(I,NCP)-DOT#A	11401	LLSQ1110
144 145		230 SUM= SUM+ AUX + AUX	. 250	LLSQ1120
145		IF (NTRAC-2) 250, 240		LL SQ1130 LL SQ1140
140		240 WRITE(KW,840)J,SUM 250 IF(SUM-TMIN)260,27		
148			V1610	LLSQ1150 LLSQ1160
148		260 TMIN=SUM MAXP=J		LL SQ1170
150		270 CONTINUE		LL SQ1180
151		IF(SA(MAXP))300,30	0 - 280	LLSQ1190
		1. (Settime / / 500 / 50		

•

152		280	TMAX=RHO(MAXP)/SA(M	(AXP)	LL 501200
	С			IF THE SQUARE OF THE NORM OF THE PIVOTAL	LLS01210
	č			COLUMN DIVIDED BY THE SQUARE OF THE NORM OF	LL SQ1220
	-			THAT COLUMN PRIOR TO ELEMENTARY COLUMN	LLSQ1230
	č			DPERATIONS BEING PERFORMED ON IT IS LESS THAN	
	č				LLSQ1240
				OR EQUAL TO THE SQUARE OF EPS, THE RANK OF A IS	
153	ι.			DETERMINED TO BE K-1.	LLSQ1260
153			IF(TMAX-EPSQ)300,30	JU • 490	LL SQ 1270
154		300	IRANK=K-1		LL SQ 1280
155	-		NO=KRANK-KRBEG+1		LLSQ1290
	C			PRINT THE RANK.	LLSQ1300
156			IF(NTRAC)310,310,31	LO KI	LL SQ 1310
157		310	WRITE(KW,810)IRANK		LL SQ1320
158			DO 320 I=1,NC		LL SQ 1330
159			DO 320 J=NCP, NCOLS		LL SQ1340
160			JJ=J-NC		LL SQ1350
161		320	XSAVE(I,JJ,NO)=R(I		LLSQ1360
	С			CALCULATE THE LENGTH OF THE RESIDUAL VECTOR	LL SQ1370
	С			FOR EACH BASIC APPROXIMATE SOLUTION.	LL SQ1380
162			IF(IREF)370,330,330		LLSQ1390
163		330	DO 360 IND1=NCP,NCC	DLS	LL SQ1400
164			NO=IND1-NC		LLSQ1410
165			DOT=VZERO		LL SQ1420
166			DO 350 IR=1.NR		LL SQ1430
167			DRES=VZERD		LLSQ1440
168			DO 340 IC=1.NC		LL SQ1450
169			DINT=R(IC, IND1)		LLSQ1460
170			DINTP=SAVE(IR,IC)		LLSQ1470
171		340	DRES=DRES+DINTP*DIM	T	LLSQ1480
172		2.0	DSAVE=SAVE(IR, IND1)		LLSQ1490
173			DIF=DSAVE-DRES		LL SQ1500
174		350	DOT=DOT+DIF*DIF	,	LLSQ1510
175			BASIC(ND)=QSORT(DOT	r)	LLSQ1520
	С			SAVE THE STATE OF THE SYSTEM AFTER FINDING THE	LLSQ1530
	-			BASIC SOLUTIONS.	LL SQ1540
176	v		IF (KREND-KRBEG) 400		LLSQ1550
177			DO 390 IR=1.NC	1400000	LL SQ1560
178		200	DO 390 IC=K.NCOLS		LLS01570
179		200	SALPH(IR,IC)=R(IR,I		LLSQ1580
180			IF(IRANK-KROLD)420		
				94109420	LL SQ 1590
181		410	WRITE(KW,800) IRGT=1	· · · · · · · · · · · · · · · · · · ·	LLSQ1600
182					LL SQ1610
183	~		GO TO 740		LLSQ1620
104	L			CHECK IF THE BASIC SOLUTION IS TO BE PRINTED.	LLSQ1630
184			IF (NTRAC) 460,430,43		LLSQ1640
185		430	DO 450 L=NCP+NCOLS		LLSQ1650
186			NO=L-NC		LL SQ1660
187			WRITE(KW, 790)ND		LLSQ1670
188			WRITE(KW,780)(R(IR)	(L) + IN=I+NC)	LL SQ1680
189			DOT=VZERO		LLSQ1690
190			DO 440 IC=1,NC		LL SQ1700
191		440	DOT=DOT+R(IC,L)*R()	(C, L)	LLSQ1710
192			DOT=QSORT(DOT)		LL SQ1720
193			WRITE(KW,820)DOT		LLSQ1730
194			IF(IREF)460,450,450		LLSQ1740
195		450	SOLEN=BASIC(ND) *BAS		LLSQ1750
196			WRITE(KW,830)NO,BAS		LL SQ1760
197			IF(IRANK)470,470,66	0	LLSQ1770
198			DD 480 J=1.NC		LL SQ 1780
199		480	RHOM(J)=ONE		LLSQ1790

200		GO TO 720		LL SQ1800
	С	• • • •	IF MAXP, THE INDEX OF THE PIVOTAL COLUMN, IS K,	LLSQ1810
	С	* * * *	DO NOTHING. OTHERWISE INTERCHANGE THE MAXP-TH	LLSQ1820
	С	• • • •	AND K-TH COLUMNS OF A AND R, AND THE MAXP-TH	LLSQ1830
	С		AND K-TH COMPONENTS OF RHO AND SA.	LLSQ1840
201		490 IF(MAXP-K)500,530,	500	LLSQ1850
202		500 DO 510 I=1.NR		LL SQ1860
203		TEMP=A(I,K)		LL SQ1870
204		A(I,K)=A(I,MAXP)		LLSQ1880
205		510 A(I,MAXP)=TEMP		LL SQ1890
206		DO 520 I=1+NC		LLSQ1900
203		TEMP=R(I+K)		LLSQ1910
207		R(I+K) = R(I+MAXP)		LLSQ1920
208				LLSQ1930
		520 R(I, MAXP)=TEMP		
210		TEMP=RHO(K)		LL SQ1940
211		RHO(K)=RHO(MAXP)		LLSQ1950
212		RHO(MAXP)=TEMP		LLSQ1960
213		TEMP=SA(K)	,	LLSQ1970
214		SA(K) = SA(MAXP)		LL SQ 1980
215	_	SA(MAXP)=TEMP		LL \$Q1990
			USE THE MODIFIED GRAM-SCHMIDT PROCESS TO	LLSQ2000
	С		ORTHOGONALIZE THE NONZERO COLUMNS OF A.	LL SQ2010
216		530 KP1=K+1		LL SQ 20 20
217		DO 640 I=KP1,NCOLS		LL SQ 2030
218		IF(I-NCP)540,550,5	50	LLSQ2040
219		540 IF(RHO(I)-EPSQ*SA(I))640,640,550	LL SQ 20 50
220		550 DOT=VZERO		LL SQ 2060
221		DO 560 J≠1,NR		LL SQ2070
222		560 DOT=DOT+A(J,K)*A(J	(,T)	LLSQ2080
	С	* = * *	DIVIDE THE CALCULATED INNER PRODUCT BY THE	LL SQ2090
	С		SQUARE OF THE NORM OF THE K-TH COLUMN OF A.	LL SQ 2100
223		IF(RHO(K))300,300,	570	LL SQ 21 10
224		570 ALPHA=DOT/RHO(K)		LLSQ2120
	C		SUBTRACT MULTIPLES OF THE K-TH COLUMNS OF A AND	LL SQ 21 30
	С		R FROM THE I-TH COLUMNS.	LLSQ2140
225		DO 580 J=1, NR		LLSQ2150
226		580 A(J,I)=A(J,I)-ALPH	A*A(J•K)	LL SQ 2160
227		DO 590 J=1.NC		LL \$Q2170
228		590 R(J, I)=R(J, I)-ALPH	A*R (J • K)	LL SQ 2180
	С		RECALCULATE THE SQUARE OF THE NORM OF THE I-TH	LLSQ2190
	-	••••	COLUMN OF A.	LLSQ2200
229	•	IF(I-NCP)600,640,6		LLSQ2210
230		600 IF(ISW-1)610.610.6		LLS02220
231		610 RHO(I)=RHO(I)-ALPH		LLSQ2230
232		GO TO 640		LLSQ2240
233		620 DOT=VZERO		LL SQ2250
234		DD 630 J=1.NR		LL SQ 2260
235		630 DOT=DOT+A(J,I)*A(J	- T)	LLSQ2270
236		RHO(I)=DOT	**	LL SQ 2280
237		640 CONTINUE		LLSQ2290
231	r		INCREMENT THE COLUMN COUNTER, K.	LL SQ2300
120	C	· · · · ·	THOREHENI THE COLUMN COUNTERS NO	
238		K=K+1	,	LL SQ 2310
239	~	GO TO 80	CALCULATE THE COULDE OF THE NODE OF THE 4 TH	LLSQ2320
	ç		CALCULATE THE SQUARE OF THE NORM OF THE K-TH	LL SQ 2330
2/2	C		COLUMN OF R.	LL SQ2340
240		650 IF(K-NC)660,660,74	U	LL SQ 2350
241		660 DENOM=VZERO		LLSQ2360
242		KP1=K+1		LL SQ2370
243		DO 670 $I=1,NC$	*0/1.41	LLSQ2380
244		670 DENOM=DENOM+R(I,K)	TR14971	LL SQ 2390

.

245			RHOM (K)=DENOM	LL SQ2400
	С		OF R WITH THE K-TH COLUMN OF R, I=K+1,,NCOLS.	LL \$Q2420
246			DO 700 I=KP1,NCOLS '	LLSQ2430
247			DOT=VZERO	LL SQ2440
248			DO 680 J=1.NC	LL SQ2450
249		680	DOT=DOT+R(J+I)+R(J+K)	LL SQ2460
	С		SUBTRACT MULTIPLES OF THE K-TH COLUMN OF R	LL SQ2470
			FROM THE 1-TH COLUMN OF R.	LL SQ2480
250			ALPHA=DOT/DENOM	LL 502490
251			DO 690 J=1,NC	LL SQ2500
252		690	$R(J \cdot I) = R(J \cdot I) - ALPHA = R(J \cdot K)$	LL S02510
253		700	CONTINUE	LL SQ 25 20
254			K=K+1	LL S02530
255			GD TO 650	LL 592540
	Ċ		THE RANK OF A IS KRANK.	LLS02550
256		710	SUBTRACT HOLITPLES OF THE K-TH COLUMN OF R FROM THE I-TH COLUMN OF R. ALPHA=DOT/DENOM DO 690 J=1,NC R(J,I)=R(J,I)-ALPHA*R(J,K) CONTINUÉ K=K+1 GO TO 650 THE RANK OF A IS KRANK. IRANK=KRANK IF(NTRAC)740,730,730	LL SQ2560
257		720	IF (NTRAC)740,730,730	LL S0 2570
258			WRITE(KW, 810)IRANK	LLSQ2580
259		740	IF(KRANK-NC)770,750,770	LL SQ 2590
260		750	ND=NC-KRBEG+1	LL SQ 2600
261			00 760 I=1+NC	LLSQ2610
262			DO 760 J=1,NRHS	LL SQ2620
263			JNC=J+NC	LLS02630
264		760	XSAVE(1,J,NO)=R(1,JNC)	LLSQ2640
265		770	RETURN	LLSQ2650
	C		CHANGE 5620.7 TO 4025.14 IF USING DOUBLE PRECISION	LLSQ2660
	Ĉ		CALCULATIONS	LL \$02670
266				LL SQ2680
267		790	FORMAT(/47H THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER ,15)	LL SQ2690
268		800	FORMAT(/58H THE RANK REQUESTED IS GREATER THAN THE RANK OF THE SYS	SLL SQ 2720
			FTEN)	LL SQ 2730
269		810	FORMAT(/40H THE RANK OF THE SYSTEM OF EQUATIONS IS .110)	LLS02740
270			FORMAT(/44H THE LENGTH OF THE BASIC SOLUTION VECTOR IS .E20.7)	LLSQ2750
271		830	FORMAT (/85H THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTI	LLSQ2760
_		4	ON FOR RIGHT HAND SIDE NUMBER , 15, 4H IS , E20.7/75H THE SQUARE OF 1	LLSQ2770
			WE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS ,	
			*E20.7)	LLSQ2790
272		840	FORMAT(/21H RESIDUAL FOR COLUMN ,15,4H IS ,E20.7)	LLSQ2800
273			END	LLSQ2810

...

APPENDIX B

SAMPLE OUTPUT FROM THE PROBLEM CONSISTING OF THE FIRST FIVE COLUMNS OF A 6 BY 6 INVERSE HILBERT MATRIX AND A RIGHT HAND SIDE CHOSEN TO GENERATE THE SOLUTION VECTOR

 $(1., \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5})$

÷

EPS1# 0,160E-05 EPS# 0,160E-05 NR# 6 NC# 5 ISW# 2 IREF# 1 MAXIT# 10 KRBEG# 1 KREND# 5 THE DRIGINAL CDEFFICIENT MATRIX

THE URIGINAL CUEFT	-ICIEN	MAIKIX							
0.3600000E	02	-0.6300000E	03	0.3360000E	04	-0.7560000E	04	0.7560000E	04
-0.6300000E	03	0.1470000E	05	-0.8820000E	05	0.2116800E	06	-0.2205000E	06
0.3360000E	04	-0.88200005	05	0.5644800E	06	-0.1411200E	07	0.1512000E	07
-0,7560000E	04	0.2116800E	06	-0.1411200E	07	0.3628800E	07	-0.3969000E	07
0.7560000E	04	-0.2205000E	06	0.1512000E	07	-0.3969000E	07	0.4410000E	07
-0.2772000E	04	0.8316000E	05	-0.5821200E	06	0.1552320E	07	-0.1746360E	07
THE ORIGINAL RIGHT	T HAND	SIDES							•
0.4630000E -0.1164240E		-0.1386000E	05	0.9702000E	05	-0.2587200E	06	0.2910600E	06

THE RANK OF THE SYSTEM OF EQUATIONS IS 1 THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER 1.

0.3601010E 02 -0.0000000E 00 -0.0000000E 00 -0.0000000E 00 -0.0000000E 00 The length of the basic solution vector is 0.3601009E 02

THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER 1 IS 0.3028919E D5 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS 0.1466062E 10 THE DECCMPOSITION MATRIX FOR RANK EQUAL TO 1

DECOMPOSITION	MATRIX	FOR RANK EQUA	NL TO	1						
0.3600000E	02	0.3942717E	03 -	-0.3551730E	04	0.1038025E	05	-0.1220827E	05	
-0.63000005	03	-0.3224754E	04	0.3275525E	05	-0.1022744E	06	0.1254448E	06	
0.336000DE	04	0.73986885	04 -	0.8061488E	05	0.2632230E	06	-0.3330380E	06	
-0.7560000E	04	-0.3417063E	04	0.4026300E	05	-0.1386520E	06	0.18233705	06	
0.7560000E	04	-0.5402938E	04	0.6053700E	05	-0.2015480E	06	0.2586630E	06	
-0.2772000E	04	0.4291125E	04 -	0.4991675E	05	0.1709210E	06	-0.2242040E	06	
0.1000000E	01 .	0.2845200E	02 -	-0.236862ZE	00	0.1341271E-	-01	-0.2026308E-	-02	
0.00000005	00	0.10000005	01	0.6739621E	01	-0.3763733E	00	0.5461901E-	-01	
0.000000E	00	-0.000000E	00	0.100000E	01	0.2539779E	01	-0.3686066E	00	
0.0000000E	00	-0.000000E	00 ~	0.0000000E	00	0.1000000E	01	0.9567620E	00	
0.000000F	00	-0.000000E	00 -	0.0000000E	00	-0.0000000E	00	0.1000000E	01	

START ITERATING THE BASIC SOLUTION

ITERATION THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.8333635E 03 -0.1660400E D5 0.1351636E 05 0.1882363E 05 THE LENGTH OF THE RESIDUAL VECTOR IS 0.38289 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.3828919E 05 0.1466062E 10 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.3601010E 02 -0.0000000E 00 -0.00000 -0.000000E 00 -0.000000F 00 -0.000000F 00 ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 15 -0.8333652E 03 -0.1660387E 05 -0.2397409E 05 0.8826391E 04 0.1351671E 05 0.1882329E 05 0.3828919E 05 TION IS 0.1466062E 10 THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.382891 The square of the length of the residual vector for the final solution is THE BASIC APPROXIMATE SOLUTION IS A BETTER SOLUTION THAN THE FINAL SOLUTION THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT MAND SIDE NUMBER 0.3601015E 02 0.0000000E 00 0.0000000E 00 0.000000E 00 0.000000E 00 THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.3601013E 02 START ITERATING THE MINIMUM NORM SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.3764518E 04 -0.6297304E 02 0.1089738E 04 -0.3243177E 04 0.2665347E 04 0.3240679E 04 THE LENGTH OF THE RESIDUAL VECTOR IS 0.6594492E 04 The square of the length of the residual vector is 0.4348734E 08 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 0.6908472E-04 -0.1744074E-02 0.1176700E-01 -0.3054278E-01 0.3365493E-01 ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.6297322E 02 0.1089743E 04 -0.3764552 -0.6297322E 02 -0.3243138E 04 -0.3764552E 04 0.2665438E 04 0.3240580E 04 0.6594480E 04 TINN IS 0.4348718E 08 THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT MAND SIDE NUMBER 0.6908474E-04 -0.1744075E-02 0.1176700E-01 -0.3054279E-01 0.3365494E-01 THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.46978998-01 THE RANK OF THE SYSTEM OF EQUATIONS IS 2

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0,5434857E 02 -0.2952224E 03 0.2426062E 03 0.2579912E 03 0.1512101E 02 0.5434857E 02 -0.3012573E 03 THE LENGTH OF THE RESIDUAL VECTOR IS 0.5536350E 03 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.3065118E 06 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.3919518E 01 -0.0000000F 00 -0.0000000E 00 -0.000000E 00 0.7271403E-01 ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5434805E 02 -0.2952134E 03 0.2425582E 03 -0.3017175E 03 0.2580994E 03 0.1501286E 02 THE LENGTH OF THE RESIDUAL VECTOR IS 0.5536348E 03 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.3065116E 06 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1

0.3600000E 02 -0.1220827E 05 -0.6808057E 03 0.8523711E 03 0.1363816E 03 -0.6300000F 03 0.1254448E 06 0.3255375E 04 -0.4371688E 04 -0.5748318E 03 0.3635234E 03 0.3360000E 04 ~0.3330380E 06 -0.2296938E 04 0.3305250E 04 -0.7560000E 04 0.1823370E 06 -0.2615789E 04 0.3651938E 04 0.4346638E 03 0.7560000E 04 0.2586630E 06 -0.2907891E 03 0.324125CE 03 0.6111328E 02 -0.2772000E 04 -0.2242040E 06 0.2807582E 04 -0.4057813E 04 -0.445007BE 03 0.100000E 01 -0.5491187E 03 -0.6286052E 02 0.1585388E-01 0.2677550F-02 -0.0000000E 00 0.0000000E 00 -0.000000E 00 -0.000000E 00 0.1000000F 01 0.1000000E 01 0.1109883E 01 0.1456825E 00 0.000000E 00 -0.0000000E 00 0.0000000E 00 -0.000000E 00 -0.000000E 00 0.100000E 01 -0.1102253E 00 0.000000E 00 0.100000E 01 -0.2351623E 00 0.5194420E 00 -0.9915954E-01

THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER 1 IS THE SQUARE CF THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS 0.3065117E 06 0.5536350E 03 THE DECOMPOSITION MATRIX FOR RANK EQUAL TO 2

THE LENGTH OF THE BASIC SOLUTION VECTOR IS 0.3919192E 01

1 -0.3918518E 01 -0.000000E 00 -0.000000E 00 -0.000000E 00 0.7271403E-01

THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER

START ITERATING THE BASIC SOLUTION

ITERATION 0

-0.3918504E 01 0.000000E 00 0.000000E 00 0.0000000E 00 0.7271403E-01 ITERATION 2 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1-15 0.5434805E 02 -0.2952134E 03 0.2425582E 03 -0.3012175E 03 0.2580994E 03 0.1501286E 02 0.5536348E 03 TINN IS 0.3065116E 06 THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.55363 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER -0.3918504E 01 0.0000000E 00 0.0000000E 00 0.000000E 00 0.7271403E-01 THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.3919178E 01 START ITERATING THE MINIMUM NORM SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.1196937E 02 +0.9165155E 02 0.9815402E 02 0.1196937E 02 -0.1245328E 03 0.9341266E 02 -0.2290949F 01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.2059540E 03 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.4241705E 05 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER -0.1122564E-02 0.1701020E-01 -0.49279 -0.4927908E-01 0.7638268E-02 0.9062308E-01 ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.9142877E 02 0.9800777E 02 0.1196851E 02 -0.1243818E 03 0.9377876E 02 -0.2683254E 01 0.2059540E 03 0.4241707E 05 THE LENGTH OF THE RESIDUAL VECTOR IS 0.20595 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.1701017E-01 -0.1122562E-02 -0.4927897E-01 0.7638149E-02 0.9062302E-01 ITERATION 2 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 15 -0.9162712E 02 0.9799654E 02 0.1196846E 02 0.9380801E 02 -0.2715523E 01 -0.1243691E 03 0.2059540E 03 0.4241707E 05 THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.20595 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS
 THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER

 -0.1122562E-02
 0.1701017E-01
 -0.4927897E-01
 0.7638138E-02 0.9062302E-01 THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.1048326E 00 THE RANK OF THE SYSTEM OF EQUATIONS IS 3

THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER

0.5984886E 01 0.5876597E 00 -0.000000E 00 -0.000000E 00 0.8512783E-01 0.6014267E 01 THE LENGTH OF THE BASIC SOLUTION VECTOR IS THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS 0.5 0.7305113E 02 1 15 0.5336465E 04 THE DECOMPOSITION MATRIX FOR RANK EQUAL TO 3 -0.1220827E 05 0.1363816E 03 0.3600000F 02 0.1331047E 03 -0.2807053E 03

1

-0.6300000E	03	0.1254448E	06	-0.5748318E	03	0.4040898E	03	-0.1751582E	03
0.3360000E	04	-0.3330380E	06	0.3635234E	03	0.2850486E	03	-0.1274695E	03
-0.7560000E	04	0.1823370E	06	0.4346638E	03	0.4069238E	02	-0.2176294E	02
0.7560000E	04	0.2586630E	06	0.6111328E	02	-0.1836123E	03	0.73928228	02
-0.2772000E	04	-0.2242040E	06	-0.4450078E	03	-0.3606279E	03	0.1518242E	03
0.1000000E	01	-0.5491187E	03	0.1685228E	02	-0.7022729E	20	-0.1663666E	00
0.000000E	00	-0.000000E	00	0.1000000E	01	-0.8308134E	01	0.1486743E	01
0.000000E	00	-0.000000E	00	-0.000000E	00	-0.000000E	00	0.1000000F	01
0.000000E	00	-0.00000008	00	-0.000000E	00	0.1000000E	01	0.5393688E	00
0.000000F	00	0.1000000E	01	0.2112422E	-01	0 • 604942 OE	00	0.2171915E	00 .

START ITERATING THE BASIC SOLUTION

ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.2579671E 02 0.4256795E 02 0.2908449E 02 -0.3983452F 02 0.2302523E 01 -0.2051759E 02 THE LENGTH OF THE RESIDUAL VECTOR IS 0.7305113E 02 The square of the length of the residual vector is 0.5336469E 04 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 0.5984886E 01 0.5976597E 00 -0.0000000E 00 -0.000000E 00 0.8512783E-01 ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.2580716E 02 0.4262851E 02 0.2894385E 02 -0.2580716E 02 -0.3970796E 02 0.2535038E 01 -0.2078429E 02 THE LENGTH OF THE RESIDUAL VECTOR IS 0.7304846E 02 The souare of the length of the residual vector is 0.5336078E 04 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 0.5986060E 01 0.5877273E 00 0.0000000E 00 0.0000000E 00 0.8512926E-01 0.5986060E 01

ITERATION 2 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 15 -0.2580716E 02 -0.3970796E 02 0.4262851E 02 0.2894385E 02 0.2535038E 01 -0.2078429E 02 THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.730484 The souare of the length of the residual vector for the final solution is 0.7304846E 02 0.5336078F 04
 THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER

 0.5996060E 01
 0.5877273E 00
 0.0000000E 00
 0.000000E 00 0.8512926E-01 THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.6015442E 01 START ITERATING THE MINIMUM NORM SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.1412092E 01 0.7000010E 01 0.4034684E 01 -0.7957222E 01 -0.9714581E 00 -0.4376644F 01 0.1227554E 02 0.1506889E 03 THE LENGTH OF THE RESIDUAL VECTOR IS 0.12275 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.1159034E-01 -0.7548279E-01 0.1005700E 00 0.2888909E-01 0.1428152E 00 ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.1419850E 01 0.7070168E 01 0.3861511E 01 -0.7739984E 01 -0.6887278E 00 -0.4759110E 01 0.1224521E 02 TOP IS 0.1499453E 03 THE LENGTH OF THE RESIDUAL VECTOR IS 0.122453 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.1159722E-01 -0.7553279E-01 0.2893130E-01 0.1006204E 00 0.1428436E 00 ITERATION 2 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.1419912E 01 0.7071811E 01 0.3850997E 01 -0.6624421E 00 -0.4787273E 01 -0.7729140E 01 THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.12245 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.1224554E 02 0.1499532E 03 THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 0.1006204E 00 0.2893132E-01 0.1159722E-01 -0.7553279E-01 0.1428436E 00 THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.1928872E 00 THE RANK OF THE SYSTEM OF EQUATIONS IS THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER 1

-0.7560000E 04 0.1823370E 06 0.4346638E 03 -0.2176294E 02 -0.8973831E 0 0.7560000E 04 0.2586630E 06 0.6111328E 02 0.7392822E 02 -0.1489728E -0.2772000F 04 -0.2242040E 06 -0.4450078E 03 0.1518242E 03 -0.1414307E 0.1000000E 01 -0.5491187E 03 0.1685228E 02 0.3771204E 02 0.1583708E 0.0000000E 00 -0.0000000E 00 0.1000000E 01 0.5967891E 01 0.5311466E 0.00000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 01 0.2282146E 0.0000000E 00 -0.0000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 0.0000000E 00 -0.0000000E 01 0.2112422E-01 -0.1090953E 00 0.3559704E START ITERATING THE BASIC SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5751670E 01 0.1055882E 01 -0.1063993E 01 -0.2833993E 01 -0.2997540E THE SOLUTION TO THE RESIDUAL VECTOR IS 0.6818512E 02 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2993621E 01 -0.8254492E 00 -0.2370200E 00 -0.0000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 -0.2935621E 01 -0.8264492E 00 -0.2370200E 00 -0.0000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 -0.2935621E 01 -0.8264492E 00 -0.2370200E 00 -0.0000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 -0.2935621E 01 -0.8264492E 00 -0.2370200E 00 -0.0000000E 00 0.1109856E ITERATION 1											
-0.2772000F 04 -0.2242040E 06 -0.4450078E 03 0.1518242E 03 -0.1414307E 0.1000000E 01 -0.5491187E 03 0.1685228E 02 0.3771204E 02 0.1583708E 0.0000000E 00 -0.0000000E 00 0.1000000E 01 0.5967891E 01 0.5311466E 0.0000000E 00 -0.0000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 0.0000000E 00 -0.0000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 0.0000000E 00 0.1000000E 01 0.2112422E-01 -0.1090953E 00 0.3559704E START ITERATING THE BASIC SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5751670E 01 0.1055882E 01 -0.1063993E 01 -0.2833993E 01 -0.2997540E -0.3977918E 01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6618512E 02 THE SULUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 -0.2370200E 00 -0.0000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 -0.29535353E 01 0.1082843E 01 -0.1307373E 01 -0.262011E 01 -0.3283153E		-0.7560000E	04	0.1823370E	06	0.4346638E	03	-0.2176294E	02	-0.8973831E	01
0.1000000E 01 -0.5491187E 03 0.1685228E 02 0.3771204E 02 0.1583708E 0.0000000E 00 -0.0000000E 00 0.1000000E 01 0.5967891E 01 0.5311466E 0.0000000E 00 -0.0000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 0.0000000E 00 -0.0000000E 01 0.2112422E-01 -0.1090953E 00 0.3559704E START ITERATING THE BASIC SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.575157070E 01 0.1055882E 01 -0.1063993E 01 -0.2833993E 01 -0.2997540E -0.3979918E 01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.8257427E 01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 THE SULUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 -0.2370200E 00 -0.0000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 -0.29535353E 01 0.1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E		0.7560000E	04	0.2586630E	06	0.6111328E	02	0.7392822E	02	-0.1489728E	02
0.0000000E 00 -0.000000E 00 0.100000E 01 0.5967891E 01 0.5311466E 0.0000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 01 0.2282146E 0.0000000E 00 -0.0000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 0.0000000E 00 0.1000000E 01 0.2112422E-01 -0.1090953E 00 0.3559704E START ITERATING THE BASIC SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.57515670E 01 0.1055882E 01 -0.1063993E 01 -0.2833993E 01 -0.2997540E -0.3979918E 01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.68257427E 01 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 -0.2370200E 00 -0.0000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 -0.29535353E 01 0.1082843E 01 -0.1307373E 01 -0.262611E 01 -0.3283153E		-0.2772000F	04	-0.2242040E	06	-0.4450078E	03	0.1518242E	03	-0.1414307E	02
0.0000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 01 0.2282146E 0.0000000E 00 -0.0000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 0.0000000E 00 0.1000000E 01 0.2112422E-01 -0.1090953E 00 0.3559704E START ITERATING THE BASIC SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5751670E 01 0.1055882E 01 -0.1063993E 01 -0.2833993E 01 -0.2997540E -0.3979918E 01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.8257427E 01 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 -0.2370200E 00 -0.0000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 -0.295353E 01 0.1082843E 01 -0.1307373E 01 -0.262611E 01 -0.3283153E		0.1000000E	01	-0.5491187E	03	0.16852285	02	0.3771204E	02	0.1583708E	02
0.0000000E 00 -0.0000000E 00 -0.0000000E 00 -0.0000000E 00 0.1000000E 0.0000000E 00 0.1000000E 01 0.2112422E-01 -0.1090953E 00 0.3559704E START ITERATING THE BASIC SOLUTION Iteration 0 0 0.3559704E THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5751670E 01 0.1055882E 01 -0.2833993E 01 -0.2997540E THE LENGTH OF THE RESIDUAL VECTOR IS 0.8257427E 01 -0.6818512E 02 -0.2997540E -0.2997540E THE SOLUTION TO THE RESIDUAL VECTOR IS 0.6818512E 02 0 -0.2993621E 01 -0.8268492E 00 -0.2370200E 00 -0.00000000E 00 0.1109856E ITERATION 1 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.57953535E 01 0.1082843E 01 -0.1307373E 01 -0.262611E 01 -0.3283153E		0.000000E	00	-0.000000E	00	0.100000E	01	0.5967891E	01	0.5311466E	01
0.0000000E 00 0.1000000E 01 0.2112422E-01 -0.1090953E 00 0.3559704E START ITERATING THE BASIC SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5751670E 01 0.1055882E 01 -0.1063993E 01 -0.2833993E 01 -0.2997540E -0.39779918E 01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.6257427E 01 THE SOLUTE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6618512E 02 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 -0.2370200E 00 -0.00000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 -0.295353E 01 0.1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E		0.000000E	00	-0.000000E	00	-0.000000E	00	0.100000E	01	0.2282146E	01
START ITERATING THE BASIC SOLUTION ITERATION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5751670E 01 0.1055882E 01 -0.2833993E 01 -0.2997540E THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 -0.2997918E 01 -0.2997540E THE LENGTH OF THE RESIDUAL VECTOR IS 0.68257427E 01 -0.2833993E 02 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 -0.2370200E 00 -0.1109856E ITERATION 1 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.3283153E 0.1082843E 01 -0.1307373E 01 -0.3283153E		0.000000E	00	-0.000000E	00	-0.000000E	00	-0,000000E	00	0.1000000E	01
ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5751670E 01 0.1055882E 01 -0.2833993E 01 -0.2997540E THE LENGTH OF THE RESIDUAL VECTOR IS 0.8257427E 01 -0.6818512E 02 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 0.1109856E THE SQUARE OF THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 -0.20000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 15 0.57953535E 01 0.1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E		0.000000E	00	0.10000008	01	0.2112422E-	01	-0.1090953E	00	0.3559704E	00
ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5751670E 01 0.1055882E 01 -0.2833993E 01 -0.2997540E THE LENGTH OF THE RESIDUAL VECTOR IS 0.8257427E 01 -0.6818512E 02 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 0.1109856E THE SQUARE OF THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 -0.20000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 15 0.57953535E 01 0.1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E							I.				•
THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5751670E 01 0.1055882E 01 -0.1063993E 01 -0.2833993E 01 -0.2997540E 0 THE LENGTH OF THE RESIDUAL VECTOR IS 0.8257427E 01 0.6818512E 02 0.6818512E 02 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 0.6818512E 02 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 THE SQUARE OF THE LENGTH FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 -0.2370200E 00 -0.00000000E 00 0.1109856E ITERATION 1 1 -0.5795353E 01 0.1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E	STAP	RT ITERATING T	HE BASIC	SOLUTION							
0.5751670E 01 0.1055882E 01 -0.1063993E 01 -0.2833993E 01 -0.2997540E -0.3979918E 01 THE LENGTH DF THE RESIDUAL VECTOR IS 0.8257427E 01 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.2953621E 01 -0.8268492E 00 +0.2370200E 00 -0.00000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.57953535E 01 0.1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E	ITER	RATION O									
THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6818512E 02 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 0.0000000E 00 0.1109856E THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 0.0000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 15 0.5795353E 01 0.1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E		0.5751670E	01						01	-0.2997540E	01
-0.2953621E 01 -0.8268492E 00 -0.2370200E 00 -0.00000000E 00 0.1109856E ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5795353E 01 0.1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E								18512E 02			
THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0-5795353E 01 0-1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E	THE							-0.000000E	00	0.1109856E	00
0.5795353E 01 0.1082843E 01 -0.1307373E 01 -0.2626111E 01 -0.3283153E	I T EF	RATION 1		· · ·							
	THE	0.5795353E	01				01 .	-0.2626111E	01	-0.3283153E	01
THE LENGTH OF THE RESIDUAL VECTOR IS 0.8239532E 01 The square of the length of the residual vector is 0.6788991E 02								88991E O2			
THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1 -0.29698888 01 -0.8297057E 00 -0.2375268E 00 0.0000000E 00 0.1110445E	THE							0.0000000E	0 0	0.1110445E	00

THE LENGTH OF THE BASIC SOLUTION VECTOR IS 0.3078319E 01 THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION FOR RIGHT HAND SIDE NUMBER 1 IS 0.8257427E 01 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE BASIC SOLUTION IS 0.6818509E 02 THE DECOMPOSITION MATRIX FOR RANK EQUAL TO 4

0.1331047E 03

-0.1751582E 03

-0.1274695E 03

0.2305908E 02

0.4353271E 01

-0.5855225E 01

-0.2953621F 01 -0.8268492E 00 -0.2370200E 00 -0.0000000E 00 0.1109856E 00 The length of the basic solution vector is 0.3078319E 01

0.1363816E 03

-0.5748318E 03

0.3635234E 03

.

-0.1220827E 05

0.1254448E 06

-0.3330380E 06

0.3600000E 02

-0.6300000E 03

0.3360000E 04

.

ITERATION 2

THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.3768431E 01 -0.2769856E 01 -0.3126715E 01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.8243764E 01 THE SQUARE DF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6795966E 02 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER -0.2375275E 00 -0.2969910E 01 -0.8297095E 00 0.0000000E 00 0.1110445F 00 ITERATION 3 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.5795730E 01 0.1074282E 01 -0.1251246E 01 -0.3768431E 01 -0.2769856E 01 +0.3126715F 01 THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.8243764 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.8243764E 01 TION IS 0.6795966E 02 THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER -0.2969910E 01 -0.8297095E 00 -0.2375275E 00 0.0000000E 00 0.1110445E 00 THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.3094758E 01 START ITERATING THE MINIMUM NORM SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.1576748E 01 0.2459836E 00 0.1041412E-01 -0.1467851E 01 -0.1475101E 01 -0.1892567E-01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.2622519E 01 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.6877613E 01 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.1762071E 00 -0.8600903E-01 0.1B10695E 00 0.1348953E 00 0.1754409E 00 ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.1586388E 01 0.2919084E 00 -0.3293967E 00 -0.1044050E 01 0.1586388E 01 -0.1044050E 01 -0.7901716E 00 -0.8221400E 00 THE LENGTH OF THE RESIDUAL VECTOR IS 0.225846 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.2258464E 01 ECTOR IS 0.5100661E 01 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER -0.8656365E-01 0.1360603E 00 0.17708 0.1770899E 00 -0.8656365E-01 0.1815757E 00 0.1756532E 00 ITERATION 2 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.1586201E 01 -0.1009189E 01 0.2967024E 00 -0.3611898E 00 -0.7083106E 00 -0.9115863E 00

THE LENGTH OF THE RESIDU The Square of the Length			5675E 01		
THE SOLUTION TO THE SYST -0.8656299E-01	EM FOR RIGHT HAND SI 0.1360589E 00	DE NUMBER 1 0.1770889E 00	0.1815751E	00	0.1756529E 00
ITERATION 3					
THE RESIDUAL VECTOR FOR 0.1586201E 01 -0.1009189E 01	RIGHT HAND SIDE NUME 0.2967024E 00	ER 1 IS -0.3611898E 00	-0.7083106E	00	-0.9115863E 00
THE LENGTH OF THE RESIDU The square of the length			0.2255144E OLUTION IS	01	0.5085675E 01
THE FINAL SOLUTION TO TH -0.8656299E-01	E SYSTEM FOR THE RIC 0.1360589E 00	HT HAND SIDE NUMBER 0.1770889E 00	1 0.1815751E	00	0.1756529E 00
THE LENGTH OF THE FINAL	SOLUTION VECTOR IS	0.3481222E 00			
THE RANK OF THE SYSTEM C	F EQUATIONS IS	5			
THE DECOMPOSITION MATRIX	FOR RANK EQUAL TO	5			
0.3600000E 02	-0.1220827E 05	0.1363816E 03	0.1331047E	03	0.2305908E 02
-0.6300000E 03	0.1254448E 06	-0.5748318E 03	-0.1751582E	03	0.4353271E 01
0.3360000E 04	-0.3330380E 06	0.3635234E 03	-0.1274695E	03	-0.5855225E 01
-0.7560000E 04	0.1823370E 06	0.4346638E 03	-0,2176294E	02	-0.8973831E 01
0.7560000E 04	0.2586630E 06	0.6111328E 02	0.7392822E	02	-0.1489728E 02
-0.2772000E 04	-0.2242040E 06	-0.4450078E 03	0.1518242E	03	-0.1414307E 02
0.100000E 01	-0.5491187E 03	0.1685228E 02	0.3771204E	02	0.1583708E 02
0.000000E 00	-0.000000E 00	0.100000E 01	0.5967891E	01	0.5311466E 01
0.000000E 00	-0.000000E 00	-0.000000E 00	0.1000000E	01	0.2282146E 01
0.000000E 00	-0.000000E 00	-0.000000E 00	-0.0000000E	00	0.1000000E 01

START ITERATING THE BASIC SOLUTION

ITERATION 0

 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER
 1 IS
 0.5903137E-01
 -0.2641082E-01
 0.2598023E
 00
 -0.6255484E
 00
 0.6785452E
 00

 -0.4057903E
 00
 -0.6255484E
 00
 0.6785452E
 00

THE LENGTH OF THE RESIDUAL VECTOR IS 0.1043110E 01 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1088079E 01

THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 1

0.9558830E 00 0.4843262E 00 0.3263453E 00 0.2468576E 00 0.1988596E 00 . ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 0.10995866-02 -0.1439452E-01 -0.1110306E 00 1 15 0.9713173E-01 -0.2567983E 00 0.2835846E 00 THE LENGTH OF THE RESIDUAL VECTOR IS 0.4102879E 00 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1683362E 00 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.9997082E 00 0.4999225E 00 0.3333055E 00 0.2499895E 00 0.1999967E 00 ITERATION 2 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.2093315E-03 0.5882978E-02 -0.3905296E-01 0.1000857E 00 -0.1091981E 00 0.4262781E-01 THE LENGTH OF THE RESIDUAL VECTOR IS 0.1591172E THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1591172E 00 0.2531829E-01 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.9999990E 00 0,4999998E 00 0.3333333E 00 0.2499999E 00 0.2000000E 00 ITERATION 3 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.3291368E-03 0.9074807E-02 -D.5993128E-01 0.1531076E 00 -0.1666510E 00 0.6493306E-01 THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.24311 The square of the length of the residual vector for the final solution is 0.2431152E 00 TION IS 0.5910502E-01 THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 0.99999995 00 0.49999998 00 0.3333333E 00 0.2499999E 00 0-2000000E 00 THE LENGTH OF THE FINAL SOLUTION VECTOR IS 0.1209797E 01 START ITERATING THE MINIMUM NORM SOLUTION ITERATION 0 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 15 0.5903137E=01 =0.2641082E=01 0.2598023E 00 -0.6255484E 00 0.6785452E 00 -0.4057903E 00 0.1043110E 01 ECTOR IS 0.1088079E 01 THE LENGTH OF THE RESIDUAL VECTOR 1S 0.104311 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.9558830E 00 0.4843262E 00 0.32634 0.3263453E 00 0.2468576E 00 0.1988596E 00 ITERATION 1 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS 0.1099586E-02 -0.1439452E-01 0.9713173E-01 -0.2567983E 00 0-2835846F 00

.

.

-0.1110306E 00

THE LENGTH OF THE RESIDUAL VECTOR IS 0.4102879E 00 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1683362E 00 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.9997082E 00 0.4999225E 00 0.33330 0.3333055E 00 0.2499895E 00 0.1999967E 00 ITERATION 2 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.2093315E-03 0.4262781E-01 0.1000857E 00 -0.1091981E 00 THE LENGTH OF THE RESIDUAL VECTOR IS 0.15911 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR IS 0.1591172E 00 0.2531829E-01 THE SOLUTION TO THE SYSTEM FOR RIGHT HAND SIDE NUMBER 0.9999990E 00 0.4999998E 00 0.33333 0.3333333E 00 0.2499999E 00 0.200000E 00 ITERATION 3 THE RESIDUAL VECTOR FOR RIGHT HAND SIDE NUMBER 1 IS -0.3291368E-03 0.9074807E-02 -0.5993128E-01 0.1531076E 00 -0.1666510E 00 0.6493306E-01 THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.24311 THE SQUARE OF THE LENGTH OF THE RESIDUAL VECTOR FOR THE FINAL SOLUTION IS 0.2431152E 00 0.5910502E-01 THE FINAL SOLUTION TO THE SYSTEM FOR THE RIGHT HAND SIDE NUMBER 0.99999999 00 0.49999998 00 0.33333338 00 0.2499999E 00 0.200000E 00 0.1209797E 01 THE LENGTH OF THE FINAL SOLUTION VECTOR IS THE ERROR MATRIX 0.2461610E 00 0.7977712E-01 0.3363910E-01 0.1456363E-01 0.5140688E-02 0.7977712E-01 0.4884373E-02 0.2632471E-01 0.1121059E-01 0.1731764E-02 0.2098641E-02 0.7458888E-03 0.3363910E-01 0.1121059E-01 0.4800081E-02 0.1456363E-01 0.4884373E-02 0.2098641E-02 0.9195909E-03 0.3273471E-03 0.7458888E-03 0.3273471E-03 0.1166535E-03 0.5140688E-02 0.1731764E-02

APPENDIX C

٩.,

SETTING THE INPUT VARIABLES FOR

LLCR AND LLSQ

The following flowchart and tables will give the user of the LLCR package the information he needs to set the FORTRAN variables needed by the package. A complete description of the calling sequence is given in Appendix A.

The first group of variables are usage independent. They should be set at the values given below for every problem solved by the package. Table VII contains the FORTRAN variables in the group and the corresponding values.

TABLE VII

FORTRAN Variables	Values
KREND	≤n, ≥ KRBEG
EPS	≥ \$
EPS1	≥ \$
NR	m
NC	n
LA	r≥m
LRE	≥n

SETTING THE USAGE INDEPENDENT FORTRAN VARIABLES NEEDED BY THE LLCR PACKAGE

n is the number of columns in the coefficient matrix, m is the number of rows in the coefficient matrix, and δ is the relative accuracy of the computer.

The values at which the second group of variables are set depends upon the amount of extra storage available for the program, the accuracy desired for the final solutions, and the amount of extra execution time the user is willing to sacrifice. Figure 2 contains a flow chart that

...

The third group of variables are usage dependent; these variables will be set differently for different usages of the package. The appropriate value for each variable in this group for each usage is given in Table VIII.

TABLE VIII

SETTING THE USAGE DEPENDENT VARIABLES NEEDED BY THE LLCR PACKAGE

Program Usage	IPIV	KRBEG	NRHS	LSAL
To solve a system or systems of equations AX®B	0	n	h	1
To perform IVOR or "forward selection"	1	1	1	≥n
To solve AX=B while treating the entries in A as if they had a variable precision	0	≥ 1	h	≥n
To fit a polynomial to data	-1	1	1	≥n
To calculate a generalized inverse	0	n	m	1

The tables and flowchart: given above and the information given in Appendix A should should enable the user to work with LLCR and LLSQ with relative ease. The routines are also documented internally with comment cards.

VITA

Joanna Chamberlain Hwang

Candidate for the Degree of

Master of Science

Thesis: COMPUTER SOLUTION OF THE GENERALIZED LINEAR LEAST SQUARES PROBLEM USING MODIFIED GRAM-SCHMIDT ORTHOGONALIZATION

Major Field: Computing and Information Sciences

Biographical:

- Personal Data: Born in New Castle, Pennsylvania, November 6, 1946, the daughter of Mr. and Mrs. Robert L. Chamberlain.
- Education: Graduated from Shenango High School, New Castle, Pennsylvania, in June, 1964; attended Carnegie Institute of Technology, Pittsburgh, Pennsylvania, and the University of Houston, Houston, Texas; received a Bachelor of Science degree in mathematics from Oklahoma State University in 1969; completed requirements for the Master of Science degree at Oklahoma State University in July, 1972.
- Professional Experience: graduate teaching assistant, Oklahoma State University, Department of Computing and Information Sciences, 1970-1971; instructor, Northern Oklahoma College, Tonkawa, Oklahoma, 1972-present.