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TOPOILOGICAL VECTOR LATTICES
CHAPTER I
INTRODUCTION

The theory of vector spaces of functions has been
developed along two distinct lines. In the first of these
the space is endowed with a topology which is compatible
with the wector space structure; in the second a compatible
order relation is given. A compatible topology is one for
which the vector space operations are continuous. The in-
terest in this case has been largely in those spaces which
are Hausdorff and for which the neighborhoods may be taken
to be convex sets. A compatible order relation is one in
which the elements > O form a cone. Here, the interest has
been largely in the case where the space is a lattice. These
two types of spaces are called convex topological vector
spaces anc vector lattices, respectively.

iside from the early work of Hilbert, much of the
credit for introducing both ideas must be given to F. Riesz
who, in z paper [28]l on integral operators, mentioned the

idea of a2 topological vector space in which the neighborhoods

.
“Kumbers in brackets refer to the bibliography.
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2
are given by = single norm. In an zddress at the Inter-
national Conzgress of Kethematicians zt Belegna in 1928, the
same Riesz introduced the idea of wector lattice and indi-
cated its role in linear analysis.

The theory of normed vector spaces was developed
in great detzil in the twenties and thirties. These spaces,
when they are complete, are called Banach spaces, after
S. Banach who had the most to do with their development.
The more géneral topological vector spaces were introduced
in 1935 by Xclmogoroff [20] and von FReumann [27], but little
of great interest occurred in their development until the
basic papers of Dieudonné [8] and of Mackey [24] [25] on
duality appeared some ten years later. ZEven so, the theory
had normnatural impetus to urge its development until its
importance for the theory of Radon measures and for the
theory of distributions became evidernt around 1950. 1In
this connection, attention should be called to the work of
Dieudonné and Schwartz, Kothe, Bourbaki, and Grothendieck.

The material of Riesz's addéress was not published
until 1940 [29]. In the meantime, contributions to the
theory of vector lattices were made ty Freudenthal [10] and
Kantoroviteh [18]. It was noticed tkhzt most of the vector
svaces of analysis are both normed vsctor spaces and vector

lattices. This led to the idea of Bzrach lattice, intro-

v

duced by Kantorovitch, and developed iargely by him and his

ccilaborators. A Banach lzttice is toth a Banach space and




-

2

a vector lattice in which the compatibility condition
Ixt < 1yl implies lxIl < Hyl

holds. Among the many contributions to the development of
Banach lattices, the representation theorems of Bohenblust
of abstract L' spaces [5] and of Kakutani [16] [17] of ab-
stract I and abstract M spaces deserve mention. Attention
also must be called to the recent representations of Kothe-
Toeplitz spaces given by Luxembourg [23] and, independently,

by Lorentz [22], and of abstract 1\_ spaces by Lorentz and

Eisenstadt [9]. An interesting property of Banach lattices,

not possessed by Banach spaces in general, has been noted

éby Goffman [11].

Although Banach lattices have been the object of

a large amount of attention, the same cannot be said regard—
ging topological vector lattices. The interest in this thesis
Eis only in the locally convex case. Here the space is a lo-
fcally convex Hausdorff space, given by a collection Py of

‘semi-norms, or equivalently by a set of convex nuclei, and

at the same time a vector lattice, where the two structures
3

are tied by the compatibility conditions

Ixl < Iyl dmplies p (x) < p (7)

for all «.

The main contributions to this topic are those of
Nakano [26] and Roberts [30], but it must be said that both
treatments are partial and zre not pointed toward exhaustive

completeness such as exists for the other topics mentioned
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above. 1In line with such a program there seem to be two
main issues:

l. To determine conditions on a vector lattice
which allow it to have compatible collections of semi-norms.

2. If such conditions hold, to give an analysis of
the compatible topologies and of the related problem of dual
spaces. |

The first problem has been treated by Goffman [13],

who has found conditions for which such collections exist,

and also conditions for which they do not exist.

This thesis is concerned with the second problem.

In this connection, Goffman found that every vector lattice

has at most one compatible Banach space topology, a resultf

:which must have been known to Nakano, Roberts, and,Nachbin{

as indicated by certain allusions in their work. Roberts

‘also shows by means of a devious argument that the finest
.compatible topology is always a lackey topoclogy. These re-

;sults indicate that further developments might take form in

the direction of the work of Dieudonné, Schwartz, and of
Grothendieck. This thesis is devoted to establishing the
basis from which full development of these relationshits may
be made.

Chapter II gives the basic information on loczally

convex itopologies which is needed in The development in

Chapter III. Also Chepter 1I discusses the existence of 2

lattice homomorphism from the lattice of topologies teo th
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lattice of vector subspaces of the algebraic dual. It is
feund that such mappings are complete lattice homomorphisms

c

-y

nd

r the case of topologies other than Hausdorff and are lzt-
tice nhomomorphisms for Hausdorff topologies on finite dimen-
sional spaces. For infinite dimensional Hausdorff spaces,
the topologies never form a lattice. Chapter II alsc dis-
cusses the classes of topologies on a vector space which
have the same continuous linear operatéors into a normed
space.

Chapter III is the most important chapter. It is
found that a necessary and sufficient condition for a sub-
-space of the algebraic dual to be a topological dual for a
Ecompatible topology is that the subspace be a total order-
jclosed subspace of the order dual. The finest compatible
topology is found to be the bornological topology for'which
all order-closed sets form a basic system of bounded sets.
It follows then that the finest compatible topology is the
Mackey topology for the order dual. It is found that when
& compatible complete bornological topology exists, it is
unigue. This generalizss the above result of Goffman on
compatible Banach space topologies.

Chapter IV dezls with a different topic. Seversl
pavers of Henry Blumberg deal with the derivation of prorer-
ties possessed by arbitrary sets of real numbers and arbi-
trary real functions. 4in interesting theorem of his in this

girection is that every rezl function on the real continuuzm
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is continuous on a dense set relative to the set. L4 key
lemma in the proof of this theorem is that every set of real
numbers which is locally of the first category is of the
first category. Banach proved this same theorem, later,
for metric spaces. A space will be said to possess the
Banach-Blumberg property if every set in the space which

is locally of the first category is of the first cétegory.
Spaces in which the topology has the property that the in-
tersection of two néighborhoods is a neighborhood, or in
wkich the topology has a countable basis, have the Banach-
Blumberg property. Examples show that these conditions are

not necessary but that a general topological space does not

ipossess the Banach-Blumberg property.

Concerning Blumberg's continuity theorem, Goffman

‘showed that the correspcnding theorem for homeomorphisms

does not hold [14]. Cargal and Block [3] showed that the

theorem holds in a Hausdorff space with a countable basis

of neighborhoods and which is of homogeneous second category.
Ezhn [15] proves Blumberg's theorem for a Young space, that
is, a separable metric space which is a G6 space. The
theorem is here proved for meppings of a metric space of

hozogeneous second category into a separable metric space.
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CHAPTER II

LOCALLY CONVEX TOPCLOGIES AND THEIR DUALS

A. By a locally convex topology on a vector spzce

is meant a tovology which has a basis consisting of convex
sets. Because of the continuity of the group operation, a
topology may be specified by giving a base for the neighbor-
hoods of ©. The neighborhoods of & will be called nuclei.
vaery vector space has a set of linear real functions, called
élinear forms, which themselves make up a vector space called

the algebraic dual EX of E. When E is given a topology,

certain of the forms of E ¥ are continuous. These contin-—

uous linear forms also make up a2 vector space called the

topological dual, denoted by E!. Each topological duzl is

iQi’, a subspace of E * . TFor every subspace E' of E X there
is a topolegy induced on E, called the weak topology EE’
zssociated with E'!'. This topology is the weakest topoiozy
on E for which every linezr form in E! is continuous.
WE'

of the form [ x € EI 1£(x)t < 113, where f € E'. Tre

is given by a sub-bzse of nuclei of all the sets in E

weak star topology W”%, cz E' 1is the topology given oy

the sub-base of nuclei corsisting of all the sets in Ef

(

of the form [ f € E" 1£2{x)1 < 1 ], where x € E. The

7
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. * . o < y
weak star topology W kel induces W'y, on ezch subspace
—
E'. UNow, since only the zerc function in E ¥ vanishes at

every x € E, there is, foreach f # O in E ', a nucleus

t

of W** which does not contain f. Thus the topology WfE.

E

is always a Hausdorff topology. However, the weak topology

WE, on E 1is not Hausdorff unless E' iz toctzl in the

sense that for eack x # O in E, there is an f € E!

such that f(x) # O. Dieudonneé [8] has shown that the to-

tal subspaces of E' are exactly those subspaces which form

topological duals for Hausdorff topologies on E. The dual

of each Hausdorff topology must be total by the Hahn-Banach

‘theorem. Dieudonné shows that for a total E! +the topo- |

logical dual given by Wy, is just EB' itself.

’ In general, there are many topologies on E all

;having the same topological dual E!., In order to describe

fall such topologies, the concept of the polar of a set will

‘be very useful. For a set S in E (in B'), the polar s°

of S istheset [ fe€EB'| If(x)] < 1 forall x&S5 ]

;([ X € E‘ 1f(z)1 < 1 for all f e S ]). The polar re-

lationship has the fcllowing well-known properties:

1) If 4 <B, then B° < A°

2) (Us)® = Nna°

2) 8° is always convex and symeetric.

4) 8° is always closed in the wezk cr weak-star
topology.

5) 8°° . = (8%°° is the weak or weziz-star closed
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convex hull of S. The proef of this property
recuires the Hahn-Banach theorenm.

6) If S absorbs, then S° 1is compact in the
weak or weak-star topology. If S is bounded
in the weak or weak-star topology, then s® zb-
sorbs. The proof of the first statement requires
the Tychonoff theorem.

The following known theorem is included because of

its importance for later work [25] [1].

Theorem 2.1, (Mackey-Arens Theorem) A necessary and suffi-

cient condition that a total E' be the topological dual

.for a Hausdorff topology t on E is that +t have a sub-

‘base of nuclei consisting of polars of convex symmetric sets

*

‘of E' which are compact in the weak-star topology W B

iand which form a covering of E!.
vggggg. Necessity. Let V Dbe a closed convex symmetric nu-
cleus. Then 7° is a convex symmetric weak-star compact
set in E®. V°C.E' since f €V® implies that f 1is
continuous with respect to t. The V® cover E! since
every f € E' must belong to the polar of some nucleus.
Sufficiency. Let +t have a sub-base consisting
of polars as described, and let I be continuous with re-
spect to t. It must be shown that f €E'. That f is
continuous means that f € (fﬁ&cio)o where the C, are com-

vex symmetric weak-star compact subsets of Et. Then f be~

longs to the weak-star closed convex hull of the C;. Since




10

the convex hull of a union of compact sets is compact, the
closure of the hull is the hull. But the hull belongs to
E! so that fe&€&XE'.

The above theorem characterizes all the topologies
which have a given E! as dual. There is a strongest in
this class, namely the one with sub-base consisting of po-
lars of 211 weak-star compact convex symmetric sets of E!'.

This topology will be called the Mackey topology of E!.

The weak topology WE' is, of course, the weakest topology
with dual E!'. The class of all topologies with dual E!

will be called the Mackey class associated with E'., ZEvery
‘topology has a nucl;ar basis consisting of convex symmetric
%absorbing sets. Such sets ére called balls. Because a loé
;cally convex Hausdorff topology is regular, there is always
‘a2 nuclear base consisting of closed balls. An important kind
of topology, a tonnelé topology, is a kind of maximal topol-
‘0gy in this respect. A Hausdorff topology is said to be a

:tonnelé topology if every closed ball is a nucleus [6].

Every tonnelé topology is a Mackey topology, but the con-

verse is not true. Only the Mackey topologies for specizal

kinds of duals are tonnelé. Thecoren 2.2 [6] below shows

Jjust what Xinds of duals are allowed. The theorem will be

used later.

Proposition 2.1. If C is a wesk~-star closed and bounded

set in E ‘E then C 1is compact in the weak-star topology.

Proof. It is sufficient to prove the nroposition for 2
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symmetric convex set in E " . Since € is symmetric, closed

. 00 . . :
and convex, C = C. However, since C 1is bounded, c®

absorbs so that (CO)O = C 1is compact.

Theorem 2.2. (Bourbaki) A topology t on E is tonneld
if and only if it is the Mackey topology for an E' which
has the property that every subset of E'!' which is closed
and bounded in W g, is compact.

Proof. Sufficiency. Let V be a closed ball. VOE, is a
weak-star closed and bounded set in E'!'. Therefore VOE,
is compact. Then V = (VOE,)O is a Mackey nucleus.

Necessity. First, the tonnelé topolecgy is always

‘the Mackey topology for its dual. TFor, the Mackey topology
has a basis of closed balls and since closed convex sets are
%the same for all topologies in the same Mackey class, they
are nuclei in the tonnelé topology. Now let C be a convex
:symmetric set which is closed and bounded in the weak-star

-topology on E!, c® is a closed ball therefore a nucleus.

(CO)OEA'? therefore, belongs to the topological dual E!.
Thus (c“’)°E * = C which, being the polar of an absorbing
set, is compact.

Another important kind of topology which is a
Mackey topology is the bormological topology. A Hausdorff

topology is bormological if every set which absorbs all the

bounded sets is a nucleus [6]3. It is clear that the borno-

logical topology is the strongest of a class all of which

‘have the same bounded sets. By a theorem of Mackey [24] [25]
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all topologies in a Mackey class have the same bounded sets,
so that the bornological is the lMackey toroclogy for its dual.

For each topology t on E, there is the associated borno-

logical topology [7] which hazs as nuclei all sets which ab-
sorb all the Lounded sets of t. However, it is not neces-
sary toc start with a topology. The following proposition
shows that if a class of sets which covers E 1is considered
as a basic class of bounded sets for a topology in a certain
way, then the torology resulting will satisfy all the re-
quirements for a bornological topology except the Hausdorff

requirement.

Proposition 2.2. Let @, be a class of subsets of E which

covers E. Then if =t 1is the class of all balls in E, each
of which absorbs every B €@, and if for each x € E there
isa V in 1 such that x ¢ Y, then 7t forms a nuclear
base for a bormological topology on E.

Proof. It is clear that <t forms a nuclear base for a

Hausdorff topology on E. Zvery set B in 63 is bounded

since i% 1s zbscrbesd by every nucleus. Suppose V is ball

a
which abscrbs every bounded set. Then in particular., V ab-
sorbs every set in GB so that V ¢ 7.

B. The set of topologies on a vector space forms
a lattice under tke usual ordering of !"stronger thaz' or
"finer than.' Tke sup of z set of topologies is the topology
which has as a sub-base all the neighborhoods of the given

topologies. The inf of a set of topologies is one whese
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nuclei are those balls which are nuclei of each of tke given
torologies. Similarly, the subspaces of E *'form z lattice
ordered by inclusion. The sup of a set of subspaces is the
smallest subspace containing the given subspaces. It con~
sists of all finite sums of elements in the union of the
subspaces. The inf of a set of subspaces is their inter-~
section. There is a natural mapping between topologies and
duals, namely, let each topology correspond to its topolog-
ical dual. Many topologies may correspond to the same dual.
If Hausdorff topologies are considered, only total subspaces
correspond as duals. Any subspace may qualify if Hausdorff
topologies are not required. If E is finite.dimensional,
éit has only one Hausdorff wvector space topology and only oﬁe
5dual, E itself. The following theorems discuss the mapping
:of topologies to duals as regards sup and inf preservation.

Proposition 2.3. Let (ta) be a class of topologies and

let (Da) be the corresponding class of duals. Then if ¢+
is the sup of the ta and D 1is the sup of the Da’ then

I is the dual of +.
Proof. First, since t is stronger than ta for ezekr «,

Dt--the dual of t--contains Da’ for each a, so thzat Dt

contains sup Da = D. Next, since D contains Ba for

2ll «, the Mackey topology T for the dual D is stronger

o

than ta for 2all «a. Thus by the sup property of =, T

is stronger than + so that D contains Dt'

Proposition 2.4. If the dual of ta is Da and if izf ta
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is t and inf Da is D, then D 1is the dusl of +%.
Proof. OSince t 1s weaker then % for each a, Dt-wthe
dual of +t--is contained in Da for all «. Hence Dtc:D=
infDa. On the other hand, since Dc:Da for all a, WD,
the weak topology given by D, is weaker than ta for all

o so that WD is weaker than +. Hence D CI%.

Proposition 2.5. If E 1is an infinite dimensional space,

there zre two Hausdorff topologies whose inf is not a
Hausdorff topology for E.
Egggi. The proof will lie in showing that there are two to-
tal subspaces of E X whose intersection is the zero func- .
fion. Let (xa) be a Hamel basis for E. Then each linear
form on E is uniquely specified by an arbitrary real func-
%ion on the (xa). A space of these functions is a subspace
bf the algebraic dual. The functions of the X, which are
éero except for a finite number of the a's, form a space iso-
morphic to E itself. Notice that this is a total subspace
oGy
function which maps X, into 1 and all the other X,

1
into zero mzps x into a; # O. Another total subspace

; * 1 - - - - :
of E¥, for if x = aq xal + @ +oa X, then the

of functiorns is that consisting of functions f with the
ty ths = f(x £ ich
property that f(xa+m) ( a+m+z) for every o whic
has no immediate predecessor, for Zixed n, and for m =
0, 1, 2, - -« .. Such functions mzF also be described as

recursive or periodic over all sets of ordinels a, o + 1,

&+ 2, +« s =y +n, » - « Where o 1is an ordinsl with no



izmediate predecessor. This is also a total subspace of
functions. For, if x 1is written as a finite sum as above,
wnere the ql's are in their natural order, tzer the function
wnich 1s zerc for 211 o < o, and recursive for all other
a beginning with f(xd ) = 1 maps x ontec a, A O.
The inf or intersectionnof the two above spaces of functions
is the zeroc function alone. For, the first space consists
of functions which are zero except on a finite set, while
the second space consists of functions which take on each

of their values an infinite number of times.

The above remarks and propositions are summarized

in the following theorem.
Theorem 2.3. The mapping of Hausdorff topologies on a vector
space E +to thelr duals is a lattice homomorphism if and |

only if E is finite dimensional; the mapping is always sup

preserving. ZPFor topologies not necessarily Hausdorff the

’mapping is always & lattice homomorphism.

C. et E Dbe a vector space and F =z normed
space. Let I (B, F) (or just L) Dbe the vector space of
linear operators cn E into F. For a ?opology t on E,
let z(Et, F) (or just £) be the subspace cf L consist-
ing of the ccziinucus operators. L and L zre just E
eand E! when F Zis the space of real numbers. If I =
[ye Flllyn < 1 1, then a relationship anzlogous to the
polar relationshiy za2y be defined. For S €E, let I (8)

N feLi £{x) € I for all x e S ]. Now it is clear
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that an operator f 1is continuous if and only if f €I (V)
for some nuclileug YV in I,

Lemma 2.1. or C a closed convex set in E, and i; ¢ C,
there is a cerntinuocus operator f € Zf such that NHLf(x)ll <1l
for x €C =znd NE(EIN > 1.

Proof. By the Hahn-Banach theorem, there is a continuous
linear form ¢ omn E for which 1o (x)I < 1 on C zand
to ()1 > 1. Then if n # O 4is any element of F, the

operator

) = lsﬁn

has the desired property.

Propogition 2.6. If two topologies s and t on E are

-such that Z?(Et, F) = Zf(ES, F) then the same convex
'sets are closed under each topology.

Proof. If C is closed and convex under +, then there is
a set J of elements of Z (Et’ F) for which € = é;Bf"l(I)
= Al L Xl H£(x)it < 1 1. But them J also is a subset

feJ
of P (B, F) so tzat [ x| HE()W < 11 is closed with
respect to s for each fgd. Hence C is closed with re-
spect to s.
Corollary 2.1. If two topologies have the same X , then
they have the szme duzal.
Proof. Suppose }f{ES, F) = Jf(Et, F). Then s and %
leave the sgme convex sets in E closed. In partvicular the

same hyperplanes are closed so that the same forms are con-

+tinuous,. Thus s =znd t have the same duals.
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The last corollary shows that the class of all to-
pologies having the same x is contained entirely within =2
Hackey class. The following generalization can be made.

-

Proposition 2.7. Let E be a vector space and let Fy and

1)

2 be normed spaces for which there is a homeomorphic linear
operator ¢ on F; into F,. If T(X(Et, F)) is the class
of 211 topologies on E having the same z (E, F) as ¢,
then T(J&(Et, F) = Ti DT(L(E,, F,)) = T,.

Proof. Let s and t be two topologies on E having the
same x2. t will De shown that s and t have the same
'rl. Let fe L(E, Fl) be continuous with respect to s.
Then ¢ef 1is a linear operator on E into F2 which is
continuous with respect to s. Therefore ¢ef is continuous
with respect to %. so that f = (p—lo ¢ef 1is continuous

with respect to t. Hence s’ and t have the same contin-

uous linear operators on E into Fl.




CEAPTER III

TOPOLOGICAL VECTOR LATTICES

A vector lattice or Riesz space E 1is a vector

space which is a lattice Ior which the following condition
holds. If x > O,y > O, a > O then x + y > O
and ax > O, It is preved in the elementary theory of vec-
tor lattices that every element a € E may be decomposed
into the difference of two positive elements: a = al - a ,
where a = sup [ a, 03, and a = sup [ -a, O ]. Then
it also follows that lal = sup [ -a, a] = a¥ + am.
‘The set of elements greater than zero, by the above postu~

lates, forms a cone, called the positive cone. The above

-elementary result shows that the positive cone generates the
space. Furthermore, just as the ordering determines a cone
which generates the space, the designation of a generating
cone determines the order relation. For, let P be a set
closed under addition and positive sealar multiplication for
which PA - P = €& epd E = P+ (-P). Then x < J
whenever 7 - X € P induces a lattice structure on E
for which P 1is the positiwve cone.

n B is said to be a positive

O

4 linear form <2

(@]

linear form whenever x > implies I(x) > 0. 4 lipezr

|
0




x > O. With this ordering

TG
-~ J
form is bounded whenever §9?<Y!f(y)! < oo for every

¥ > 0. The sttt of 21l bounded linear forms is a subspace
of & ™ called the order dual E®’. 1In all that follows,

it will be assumed that E * is total. This condition im-
plies that the ordering is archimedean. The converse is
false as there are archimedean vector lattices (Roberts [30])
which have no non-trivial bounded linear forms. The general
problem has been considered by Goffman [13]. By the well-
known Riesz theorem [29], a linear form is bounded if and

only if it is the difference of two positive linear forms.

Then the set of positive linear forms forms a generating cone

in E‘“’thereby determining an ordering for E“°. The order

relation is that f < g whenever £(x) < g(x) for all

E“is a lattice and £ =

sup [ £, O ] is given Dby

¥ (x)

L}

68P<x’ (¥

for x » O and
fx) = (&) - £

for all other x. From these equations foliow two important

-relations which will be used in the sequel. If IfiI =

sup [ £, -f ], then

(3.1) £t (ixt) = ,§?§'le(y).
(3.2) 1f1 (Ixt) = !%YEIfIg(X>'
(3.1) is seen by the following argument:

(£1 {ixt) = sup (£, -f) (1x1)

= sup (2f, ¢) (Ix1) - £(1=xr)




L)

= fY(21x1) - £(1=1)
= 88Beoyfly) - £lix)
= 82?05‘5(}' - ixli ) .

Now putting z = ¥y - Ixl,

1£1 (1xi1)

i

FaEfB = 81R 1020

Equation (3.2) is proved by comnsidering x as a bounded
linear form in (E* )% where =x(f) has the numerical

value f(x). Then
£t (1xt)

Ixt (1£1) = 1&?91f|x<g)
18R 21 8(%)-

A set S 1in a2z vecter lattice is said to be order-bounded

whenever there is an a > O such that I=xI < a for all x

in S. A set is said to be order-closed whenever aeS,

1 < lal implies be€S. There is always a smallest order-

closed set containing a given set A, called the order

closure A of A, and a largest order-closed set contained

in A, called the order interior Ay of A. It is clear

that Ay is the union of all order-closed subsets of A4,

and that
x_ U
AT = xeA[y‘ Iyl < Ixt J.
Definition 3.1. A locally convex topology on & vector lat-

tice ¥ is szid to be compatible if it has & nuclear basis

of order-closed balls.
This definition of compatible topolcgy is equiva-

lent to that given by Goffman [12] which uses the notion of

compatible semi-norm. 4 compatible semi-norm p is a
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semi-norm with the property that Iyl < Ixl implies bp(y)
< pf{x). The following proposition, due to Roberts [30], is
inclucded for completeness and beczuse of its importance in

the conceptual basis of this chepter.

Provosition 3.1. If a linear form £ 4is continucus with

respect to a compatible topology, then f 1s bounded.
Proof. That f 1is continuous means that it belongs to the
polar of some compatible ball V. Then for x > O, there
is an a > O such that axe€V. Then for y < X, ayeV.
Hence l§?gxlf(ay)l < 1

so that 1I£(y)t < 1/a for Iyl < x.

Proposition 3.2. There is a strongest compatible topology ¥.

iggggg. Y has a nuclear base consisting of all order-closed
iballs .
| The significance of proposition 3.1 is that every
ftopological dual of a compatible topology is a subspace of
E“., Thus E “ forms a maximal superspace for compatible
topological duals just as E¥® does for topological duals
for a vector space.

The following proposition, d&ue to Roberts [30],
is given with a new proof.

Provesition 3.3. 1) If S CE is order-closed, $°pw is

order-closed,

2) If S cE* 1is order-closed, then

o ,— .
C E is order~-closed.

- . . - ; e & o o
roof. - 1) First it will be shown tzat for fesS, Ifle S”.

'y m




For x € S,
PEEL ()1 = 1 (xXT) - af1 (x5
< () o+ oan (7
= = Pl
= If1 (1x1) = l??glxl““)'
But, since [ 7 Iyl < Ix1 ] Dbelongs to S axd f € SO,

this last sup is less than or equal to 1. Hence 1Ifi € S°.
By relation 3.2 1g(x)1 < 1gl (Ixl) so that for f & s°,
Igi < Ifl a2nd x € 8, it follows that

1g(x)1 < 1gl (x1) < If1 (Ux1) < 1
since Ifl € S°. This implies g € s°.

2) et x € 8°. Again it will first be shown that

1x1 € 8° For £ es,

lf((xl)l < I1f1 (ix1) = lgyg‘fig(x).
‘This last expression is less than or equal to 1 since S
is order-closed znd x & S°. Thus Ix! € S°. Now let
glyl < Ixi and f € S. Then
k 1£(y)1 < 1f1 (lyl) < I1f1 (ixt) < 1,
since Ifl&€ S and 1Ixl € s°.
Definition 3.2, If E'!' is an order-clesed subspzce of EY,

the absolute ¥eak topology 4,, on E associated with E!

is the compatidle tovology which has as a nuclear sub-base
the compatible balls [ x| 11 (1x1) < 1 1.

Lemma 3.1. The A, nucleus U, given by £:

T. o= [x| 151 (x) < 1]

is (i?x)o—-the polar of the order closure of £f.

Proof. TLet =z e T and let 1Igl < Ifi. Then
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fgl O1=t) < 1 f1 (ixt) < 1
h

':\X\O
- /

. . . 0 .
which implies x € - en Uf c (£ %)%, Now let

x € (£ *3°. Then Is{(x)1 < 1 for'all g for which

lgl < Ift. Then ft (1xt) =,§1,12‘ﬂg(x) < 1. Thus

X € Uf.
Lemma 3.1, skhows that AE' is actually a compat-

ible topology since the Uf, being polars of crder-closed

sets, are order-closed.

X

Lemma %.2. For fe€ Ew, £ is compact in the weak-star

topology on E *,

Proof. First f X is weak-star bounded. For if x € B,

and ge 2%, 1g(x)1 < gl (ixl) < 1fl (Ixl) so that
1£1 (1x1) is a bound for X at x.

To show thet i‘x is closed in the weak-star to-

,:pology, let (:;oc) be a net on fX which converges in the

weak-star topology to E € E*. Then 1lim ta (x) = ; (x)

for all x € E and in particular for x > 0. Now since

¥ _efX, it follows that for x > O:

-1 (x) < ¥, (0 < 151 ()
hence -I171 (x) < inf ia(x) < ¥(x) <Lsup {\l(x) < If1(x)
for all x > O. Thus ¥ 1is a boundeé form and rg ! (x)
< If1 (z} for all x > O so that &l < I(fl, that
is perX.
£ X is then closed and bounded in the weak-star
topology on E ¥ 5o it is compact by procosition 2.1.

Theorem 3:Z. A necessary and sufficient condition that a
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subspace E! of EX be the tepclogical dual for a compat-
ible Hazusdorff topology on E 1is that E' Dbe a total order-~
closed subspace of E®,.
Proof. The totality of E' 1is necessary to insure the
Hausdorsf property. That E' ¢ E™, follows from proposi-
tion 3.X. E' mnust be order-closed since f € E!' implies
f € V° where V is an order-closed ball. But them V°
is order-closed so that for Igl < Ifl, g & Ve E'.

To show that the condition is sufficient, suppose
that E' possesses the above properties and let E be given
the absolute weak topology Ap,. By lemma 3.2, Ap, has a

sub~-base consisting of polars of weak-star compact convex

:symmetric covering sets in a total E! so that by theorem

2.1, the topological dual associated with AE' is E!,

The above theorem shows just what subspaces of EX

:qualify gs compatible topological duals. For each such E!,

there is a strongest and weakest compatible topolegy: AE'

is obviously the weakest compatible topology. The strongest

is that consisting of all order-closed balls whose polars

! By use of theorem 2.1 and proposition 3.2 it

s

lie in

is easy %o see that every compatible topology is given by a

[V

sub-base consisting of polars of a set of wezk-star compact
symmetric convex order-closed sets of E! wkich cover BE!,
For the case where E' = EW, it will be shown that the

finest compatible topology is the Mackey topology for EW,

Lemma 3.5. The order-bounded sets of £ 2re bounded for
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z1]l topologies whose duals lie in EW,
froof. Let f telong to the dual in question. £ Ybeing a
bounded linear form is bounded on every order-bounded set in
Z. Therefore f£° absorvs every order-bounded set. Hence
the order-~bounded sets are bounded in the weak topology and
therefore by a theorem of Mackey [25] bounded in zll the to-
pologies with the same dual.
Theorem 5.2. The finest compatible topology is bornological.
Proof. The order~-bounded sets form a basic system of bounded
sets as in proposition 2.2. Then the finest topology for
which these sets are bounded will be a bornological topology
B if it is Hausdorff. Since by lemma 3.3, the order—bounded
sets are bounded feor all compatible topologies, the finest
;compatible topology ¥ is weaker than B. Since v 1is
‘Hausdorff, B is Hausdorfif hence bornological. All that
remains is to show that B is compatible. Let U be a
nucleus of B. Then U absorbs all order-bounded sets.
For each x €E there isan a > 0 such that [ ¥ Iyl
< Ixl ] «aU. Then
(1/a) [yl 1yt <=t 1 = [y Iyl < 1(1/a)xt]

which is contained in U so that (1/a)x € Ux . Then Uy
absorbs, that is, Uy 1s an order-closed ball so Ux € Y.
Corollary 3.1. The finest compatible topology is the kackey
topology for EW.

Proposition 3.4 below is a theorem of Nakano [26],

-although the -restrictiveness of Nakano's topologies is not
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needed. Proposition 3.4 is used to prove theorem 3.3 which
generalizes a remarkable result of Goffzan [12] that if there
is a compatible Banach space topolegy on a vector lattice,

then it is the finest compatible topology, hence unigue.

Proposition 3.4. (Nakano) TIf B is bounded with respect
to a complete compatible topology +, then B is bounded
for every compatible topology.

Proof. Let B Dbe as above and suppose there is a compatible

semi-norm ©p which is not bounded on B. Then there is a

sequence (xi) i = 1, » . « such that »p (xi) > i2i
with x. € B. Now the sequence (y_)
1 n n
‘ i
Iy, = E (172%) 1%
-converges in +t. For, if ¢ 1is a semi-norm of +:
: n+k .
¢ (Fpope = ) = © (3 (/2% 1x1)
i=n+l ik .
< supe(ix 1) ¥ (1/2%)
i=n+l1

< supp(ixg1) (1/27)
which is small for n large enough. Note that supw(xi)

exists because B is t-bounded and hence supp(1x; 1)
exists because ¢ being compatible implies m(xi) = @([xi|).

Now by completeness, there is an a € E such that a =

20 .

S (1/2h) Ix;1. Thus p(a) exists. Noting that p(ixl) =
i=1 .

p(x), it follows that p(a) > (1/2%) »p (1x;1) which is

the same as (1/21) D (xi) > 1 for i=1, « « ., Thus
p(a) does not exist--a contradiction.

Theorem 3.% If there is a complete compatible bornological
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topology « on E, it is the finest compatible topology vy

hence unique.

Proof. For each B bounded by o, B 1is bounded for every
compatible topology by proposition 3.4. In particular every
nucleus of vy absorbs every such B so that each nucleus
of ¥ ©belongs to «.

The following example illustrates the foregoing
relationships and points out new problems. Let S be an
arbitrary set and let the vector space E consist of all
real functions on S which are zero except on a finite sub-
fset of S. E becomes a vector lattice with the usual func-
?tion ordering x > O whenever x(t) > O for all teS.
;(Every vector space can be represented as such a space of
;functions. However, the representation of a wvector lattice

is made in terms of functionoids or Caratﬂ%odory functions

fby Goffman L13]). The set S forms (at least isomorphically)
Ta Hamel basis for E. Since a linear form on E 1is given
juniquely by an arbitrary real function on S, ZE*—uthe alge-

braic dual--is the space of sll real functions on S. An

tx)

order-bounded set M in always has associated with it

a-firite subset tl’ e + <, T, of 5 and a set of positive

real mumbers a,, . - -, &, such thet Ix (t;)1 < a; for

all z & M. For each resl function I on S8, the sup of

1f1 oz M 1is less tharn or equal to
n
a; 12(%.)1.
i=1 -~ -
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Thus every linear form on E is bounded on each order-
bounded set. Therefore, E* = E“,

An order-closed subspace o:;‘Z E" must contain all
the functions on S which are zero except at a single point
of S. Thus the weakest compatible dual D,y is that given
by all functions on S which are zero except on a finite
subset of S. The weakest compatible topology W is that
given by a sub-base of balls U, = [ xl Ix(t)1 < 1 1.
This topology is also the strongest for this dual for suppose
U 1is bounded at an infinite set, say the sup of the absolute

values at ti is a, i =1, - « .. Then the function
£(6) = 1/(@Y18;1), £(8) = 0 for t £ t, is con-
ftinuous.

; The finest topology T on a vector space is given
iby the balls which are bounded at each element of the Hamel
Ebasis and every element is a convex combination of the values
zat the basis elements. The balls may alternately be de-
scribed by a function f on S where U, is the convex
'hull of all the elements xd(t) = C for t £ ¢t  and
:lx&(ta)l < lf(ta)l. T is complete (Xaplan [19]). EX
.satisfies the conditions of the theorem 2.2 so that =t is
tonnelé. The balls Uf are closed wita respect to the weak-
est compatible topology so that they are closed for all com-
patibie topologies. Therefore <t 1is the only compatible
tocology. Thus, this vector lazttice has exactly one

compatible tonnelé Hepology, and it is the finest compatible
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torclogy. The weakest compatible topology for the duzl g%
is composed of the same kind of balls as Uf except that

the defining functions may be infinite at some places. More
exactly, for f € EI*, g = 1/f 1is the defining function

for an absolute weak nucleus whose polar contains f.

There is also on E a norm topology, the norm
being the max of 1Ix(t)l for t € S. This is a compatible
topology. The dual D 1is given by functions on S which
vanish off a denumerable set in S and which take values
of an absolutelj convergent series on that denumerable set.
Since every norm topology is bormological, this shows that

a vector lattice may have more than one compatible borno-

logical topology.
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‘dense. P 1is of the second category (2¢) if P is not of

CEAPTER IV

THE BANACH-BLUMBERG PROPERTY AND THE BLUMBERG THEOREM

A general topology t on an arbitrary set S is

a collection of subsets of S which form a covering of S.

A general topology t will be said to have the inbersection

property if for U € t, Vet and x € UMYV, then there
isa We&+t such that xe€ W UAYV., A topology will be

'said to have the countability property if there is a sequence
of sets of fb:(wi) such that for Ve t, x €7V, there is

‘an i such that x e Wi c V.

A set N 1is nowhere dense if for each W€ t,

there is aVet, VC&€W and VAN = @F. M 1is of the
0
first category (le) if M = iL=Jl Ni where N, is nowhere

the first category. R is residual if S - R is 1le. H is

of the first category at =x (lc at x) if there is a ¥ € %,

x € W such that HA W 1is 1lc. L is locally of the first

category if L is 1lc¢ &%t each of its points. H 1is of the

second category at x (2¢c at x) if for every We t, xe¢ W,

HA W is 2c. H is homogeneously of the second category

at x (h2c at x) if there is a2 ¥ e t, x €W such that

8

Vet, VoW implies VA is 2¢. A space is bh2c¢ if

2¢
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it is h2c¢ at every point. A function f on S8 is 2c

at x (b2¢ at x) if for every general neighborhood V of

£(x), f-l(v) is 2¢ at x (h2c at x).

4 space S 1is szid to have the Banach-Blumberg

property if every set in S which is locally of the first
category is of the first category. Proposition 4.1 below
uses essentially Blumberg's proof [4] to show that a space
which possesses the countability property always has the
Banach~Blumberg property. Banach showed that every metric
space has the Banach-Blumberg property [2]. Xuratowski gave
a proof for a less general topological space than is dis-
cussed here [21]. Proposition 4.2 uses Sierpinski's proof
_[31] for metric spaces to show that a general topological
jvspatce with the intersection property has the Banach-Blumberg
jproperty.

‘Proposition 4.1. If S bas the countability property, and

1 L&S 1is locally of the first category, them I is of

-the first category.

Proof. For each x € I, there is a V€t such that VAL

is of the first category. By the countability procperty there

is, for each x ¢ L, a Wi € t such that x € Wi and Wif\L
. n ) n n

is of the first category. Now L = éﬁl[Wir\jL] which is

a countable union of sets each of which is o? the first cate-~

gory. Thus L 1is of the first category.

Lemma 4.1. If, in a space having the intersection property,

there is a2 transfinite sequence (Na) of nowhere dense sets
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with an accompanying sequence of sets (Va), Vaet with
the property that
N,V - Uv
« & B<a P
then the set

v o= Y,
is nowhere dense.

Proof. Suppose N = U N, is not nowhere dense. Then there
is a V€&t such that for every H€ t, HaV, HAN £ ¢.
Since N C‘UVa, VA UVoc # ¢. Let B be the smallest or-
dinal o for which vV # ¢. Then there is a W € t
such that chﬁ AnV. Now, for Y{< B, since Ny <Vy and
Vg N V=9, NqAV=09. For ¥>B, NycVy - agvva,
so that Ngn VB = ¢. Now NAW-= [Wna'z’BNa]u[NEnm WJ
(WA Bl&)a.noc]‘ Since W eV, the first term is empty because
of the minimzl nature of f. Since WCV, the last term
is empty. Then N AW = NB ~W. Now NB is nowhere dense
so that there is a U € t, U&W such that U f\NB = Q.
Then HnU-=9, and UeWe<V. But as stated zbove HET,
&V means EZ AXN ¥ ¢. This is a contradiction.

Proposition 4.2. Let S be a space possessing the inter-

section preoerty and let L &S Dbe locally of the first
category. Then L 1is of the first cztegory.

Proof. Let x € L. Then there isa W e€ t, with x € W and
WAL of the first category. By well-ordering the W's so

used, there is cbtained a transfinite seguence (E*Ia) such

that ~Ka = Wq NnL is first category and each x € I belongs
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to some X . Let J_ = (W - S% w;),\L. I s beigg e sub-

set of Ka’ is of <The first categery. low Ja = ;:{ J;

where J; is nowhere dense. J; c Wa - §\<J‘1 ?.»'Jg so that by

lemma 4.1 %Z, J; = Ji is nowhere dense. Now oo
J=¥3, =¥ [i(ZJiJ = E?(U ) = te

1s then of the first category. L& J, for x € L implies

X e Ka for some o. Then if x & Ka and x € Ja’ then

X € Wg for some ¥ < a. If A is the smallest ordinal

for which x eW.r, then x gdygy € J.

The above two propositions state that if S has
either the intersection property or the countability prop-
erty, then S possesses the Banach-Blumberg property. de
questions then naturally arise:

1) Since the Banach-~Blumberg property holds in such
seeningly unrelated general topologies, do z2ll general topo?
logical spaces possess the property?

2) If the answer to 1) 1is negative, then must
S have either the intersection property or the countability
property in order for S +to have the Banach-Blumberg prop-
erty?

The following two propositions answer t2th of the
above questions negatively.

Provosition 4.3, There is a general topological space S

wnich does not possess the Banach-Blumberg property.
Proof. ZLet the space S be the doubly transfinite sequence

of order e - L) and let t consist of the sets
b
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L a‘ a>% ] and [ a, xa< €.

t doez not have the intersection property since the inter-
section of two sets in t may be of the form [a, B o < v].
A set of this form contains no set of t. t does not have
the countability prorerty. TFor, if (Un}, U, = [a, a > an],
is 2 collection of sets of +t+, then the set of oy has a
sup so that U = [al a > sup,(an)] contzins none of the U .
Let S ©be nowhere dense. Then if U € t 1is of the form
[al < ¥ 1, there is an 7 < § such that SnAla| a < 1l = 4.
Thus 7 1is a lower bound for S. Similarly, S is bounded
from above. Then it is clear that a set is nowhere dense if
and only if it is bounded. To be of the first category a set
must be a countsbtle union of bounded sets which is also
‘bounded from above and from below. Any set We€t is lo—:
‘cally of the first category. TFor let W = [al x> ¥ ] and
let B €W, Then V = [l a < B+ 1] is a set in t+t and
VA W = [a! § <a < B+ 1] is of the first category. Thus
W - is locally of the first category but ¥ is not bounded
from azbove. Hence it is not of the first category.
Proposition 4.4. A general topological srace may have the
Banach-Elumberg property without having either the intersec-
tion property or the countability property.

Proof. The proof consists of an example. Iet P be the

euclidezn plane. Let t consist of the sets U defined
as foliows: for every n, X, U € t 1if ané only if either

U = [ (xy)l n<y<a<n+tl ]
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or

-

U [ (,9){ n-1 < b <y <mnl.

i

The topology <t has neither the intersection vroperty nor
the countability property. To be nowhere dense, it is nec-
essary and sufficient that a set be bounded away from the

= (m an integer). Any set not intersecting the

]

lines 3y
lines y = m 1s of the first category. If the set I 1is

of the first category at every point, then it does not in-
tersect any of the lines y =m so that L is of the first
category.

The following lemmas will be devoted to preparation
for proving the Blumberg theorem for metric spaces. The
proof of the theorem is essentially that of Blumberg. It
has been adapted to remove some of the dependence on count?
ability requirements.

Lemma 4.2. Let S be a set in an h2c space, and let H(S)
be the set of points at which S is 2c¢ but not h2c. Then
H(S) is nowhere dense.

Proof. Let x €H(S), Wet, and x €W. Then since §S

is not h2c at x, there isa U e€ t, U ¥ such that
UN~S is 1lc. No point of U 1is a _2c point of S5 so
that H(S) is nowhere dense.

Lemma 4.3. In a space possessing the Banach-Blumberg prop-
erty, the set K(S) of points which are not h2c points

of S forms a 1lc set.

Pruocf. PFirst, the set E(S) of points of S which are not
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2c points of S forms a2 lc set. For, x € E(3) nmeans
there is 2 W g t, x €W such that SA W 1is 1lc. Thus

(8) 4is locally 1lc, therefore lc. Now X(S) = E(S)uv H(S)

txi

each of wkich is lc.
Lemma 4.4, If f 1is a function or an h2c space S which
has the Banach-Blumberg property to a space T which has
the countability property, then R(f), the set of h2c
points of £, is residual.
Proof. =x &€ R(f) means there is an M;, a general neighbor-
hood, of f(x) such that x is not an h2¢c point of
£7H(u,). Then x € K(£7'(M,)) which is a lc set. Now
S - R(£)C i§lx(-f”l(mi)) which, being a union of 1lc sets,
is 1le.
Sggggg 4,5. In a metric space S, with D dense in S, for
geach € > O there is an isolated g¢~set E C D, that is a
set such that every sphere of radius € contains a point
of E.
Proof. Let D be well-ordered:

iy + 5 ey Xy 0o e
Let X, = Xy ] be the center of a sphere Jl of radius
e/2. Let 3:;2 stand for the first point after x ;l in
the ordering which is not contained in Jl‘ Construct J2
with xsz as center and radius &/2. Continue. Let x;a
stand for the first point not contained in U Ja and con-
struct J_. The result of this total constrﬁggion is a well-

ordered seguence Xy ot x:i , = » . This-sequence
1

o
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is isolated. It is an g-set

=4
=

}.J.
!
4o

x; , then x!' € 3; for scze o. If x € S, there
x! é'Da 6(x, x') < g/2 with x'e Ja' Then a sphere with
center x and radius € corctains Xy -

In the following lemmas, S gill be an hzc met-
ric space, P will be a sepesrable metric space, and £ will

be a function on S into Z. & will denote the metric in

either space.
Lemma 4.6. If € > O, there is a set (Ua)’
Ua = [ xl 6(x, xa) <z, < e/2 1,
of non~-overlapping spheres whose union is dense and for which

each Uoc contains a Va dénse in Ua, x, & Va, such that
xe vV, implies &(f(x), f(xa)) < g/2.
jggggg. Choose an isolated e-set, xi, from R(f). Since x}
is an hZc point c¢f f, there is a sphere U& with center
x&, with.radius less than_s/E, such that

U N[ x| 6(£(=), f(x&)) < g/2 ]
is Dh2c. Then if

Vi = RO A TL AL x| 8(2(x), £(x1)) e/2 3,
V& is dense in U& (a residual set is dense in an &Ze
space) and for x e'ﬁx, 6(£{x), f(x&)) < €/2. Further the
U& mzy be made non—overléﬁ;ing by taking U&a S0 thz%
Ul n U&2 = @ whenever a; < a,. To obtain a dernse s2% of
spheres, let the points of E(f) A [ S -—(17737_] e well-

orderec: My Mos = * *s Tgs = o0 e Then there is z sghere

U' with center mn,, radius less than €/2, and Gisjoint




from UZ such that
UAl x| 8(f(x), fny)) < e/2 ]
iz hZ2e. Let Vi’ stand for

R(D AU AL x| 8(5(x), £(n)) < e/2 1.

3 - -3 . 3 1 13} It
Continue thus: if u e,(lJVa‘u o B)’ let U and fd
e netrre 1 U vy - .
be constructed as above such that Ua."( k)Va v 5% JB) [}
Let the stheres U&, U; be re-indexed to be the set Ua’

+ i 1" { -
let the sets Va’ Vﬁ be the Va’ and let the Xy Mg to

gether be the x_ . Then the U

o o? Va have the desired prop-

erty.
Lemma 4.7. XLet €' < & and let (Ua) and <Va) be as
above. Phen there is a set (UaB) of spheres, each UaB
contained in Ud, each having center Xﬁﬁ‘e Vﬁ and radius
less thar €!/2, such that each UaB contains a subset vaB
dense in SccB’ b4 Be v B’ for which =x evocB implies
8(f(x), £z B)) < g!'/2. Further, each x, is to be an Xyp*
Proof. For each «, let an isolated e'-set (X&B) contain-
ing X e chosen from V . As in the above lemma, let
be such that the radius of U'B is less than
g!'/2 anéd such that x € V'B implies (£(x), f(de))<s'/2.
A set of =pheres dense in U 1s obtaired by well-ordering
va - (L}VQB): ol g2y = ° " naB’ ot Uc'x'lcz"Ua is
obtained with radius less than ¢€!'/2 such that

U AL x| 8(5), £(ny)) < €/2 ]
is hZ2c, =znd let V&h stand for

RO AT AL x| 8(25(x), £(ry)) < er/2 1.
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Let U;k and K;E be constructed by inducti

&Kp

1
(U~§_I" = (U&e} y) (U&’E) and (V {d’ = (V' .3 u (V&',) have the

desired properties.

Thecrem 4.1. Let S5 be an h2c metric space znd let P

be a separable metric space. Then if £ is a function on
S into P, there is a dense set D such that f is con-

tinuous on D with respect to D.

Proof. Let g5 be a sequence of positive numbers such that

n
.fi g; < ©©. Construct the Ual, le, x&l of lemma 4.6 for
£ Perform the iteration of lemma 4.7 for €5 to obtain the

U v x . Iterate repeatedly to obtain the

_ alaz’ “1“2’ 0 Qs

U s, vV by for e . If X is the
v alClz-"Cln alaz“'an, alaa“'an n 3

set of all the x's with n subscripts, let D = o1 Xn.

D 1is dense since Xn is an sn-set. It remains to be shown

bthat f is continuous on D relative to D. Let x € D.

‘Then X = X for some n and x € X for all m > n.
al---an i}
Suppose Yy € Udj.. amn D. Then y = “l"'am"'a . By the

triangular inequality

6{£(x),1(y)) = 6(f(xal,__c_ Js f(xal,”oc )) <
: o

6(f(x, ). £ (x D+eee+8(F Y, f(x ).
wlt.oam al-.oam+l al..‘ap—-l al---ap
Since x o v Xy both belong t¢ V_  ~ _ , it
alnath .‘.ak-f.l Cl,l a-k
follows that 6(f(x . ) f(xd . )Y < ek/E so that
&y %y 1 K+ 1

6(£(=),1(y)) < _ez €; This last sum ma—y be made as small
as desired by teking m > n sufficiently large.
In skcwing that the Blumberg thecorem did not hold

for hcmecmorphisms, Goffman [13] used an exz=ple in which
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the inverse was not continuous on a dense set because the
range was not hde. The following vropocgition sheows the ne-
cessity of the ha2c recguirement in the general case.

Proposition 4.5. If S is not h2c¢c and has the intersec-

tion property, and if P contains a denumerable isolated
set, then there is a function f on S inte P such that

f 1is continuous on no dense subset of S.

Proof. That S 1is not h2c means there is a general neigh-

o0
borhood W in S which is 1lc. Then W = .U N. where

i=1 71
Ni is nowhere dense. Now if (yi) is the denumerable iso-
lated set in P, then any function f such that f(x) = ¥s
for =x € Ni has the desired property. ZFor, suppose f is

continuous on a dense set D with respect to D. Let x €

DANW. Then x € Nk for a certain k. Let V be a neigh-

borhood of y, containing no other y.. Let G be a neigh-
k i

:borhood of x such that G €W. BSince Nk is nowhere dense

there is a neighborhood H € G such that z € HA D implies

zéNﬁ. Then z € HAD €G AD implies f(z)4v.
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