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TOPOLOGICAL VECTOE LATTICES 

CHAPTER I 

INTRODUCTION

The theory of vector spaces of functions has been 
developed along two distinct lines. In the first of these 
the space is endowed with a topology which is compatible 
with the vector space structure; in the second a compatible 
order relation is given. A compatible topology is one for 
which the vector space operations are continuous. The in­
terest in this case has been largely in those spaces which 
are Eausdorff and for which the neighborhoods may be taken 
to be convex sets. A compatible order relation is one in 
which the elements > 0 form a cone. Here, the interest has 
been largely in the case where the space is a lattice. These 
two types of spaces are called convex topological vector 
spaces and vector lattices, respectively.

Aside from the early work of Hilbert, much of the 
credit for introducing both ideas must be given to P. Eiesz 
who, in a paper [28]^ on integral operators, mentioned the 
idea of a topological vector space in which the neighborhoods

■^Numbers in brackets refer to the bibliography.
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are given by a single norm. In an address at the Inter­
national Congress of Mathematicians as Bologna in 1928, the 
same Riesz introduced the idea of vector lattice and indi­
cated its role in linear analysis.

The theory of normed vector spaces was developed 
in great detail in the twenties and thirties. These spaces, 
when they are complete, are called Banach spaces, after 
S. Banach v/ho had the most to do with their development.
The more general topological vector spaces were introduced 
in 1935 by Solmogoroff [20] and von Eeumann [27] , but little 
of great interest occurred in their development until the 
basic papers of Dieudonne [8] and of Mackey [24] [25] on 
duality appeared some ten years later. Even so, the theory 
had no natursul impetus to urge its development until its 
importance for the theory of Eadon measures and for the 
theory of distributions became evident around 1950. In 
this connection, attention should be called to the work of 
Dieudonne and Schwartz, Eothe, Bourbaki, and Grothendieck.

The material of Eiesz * s address was not published 
until 1940 [29]. In the meantime, contributions to the 
theory of vector lattices were made by Ereudenthal [10] and 
Kantorovitch [18]. It was noticed that most of the vector 
spaces of analysis are both normed vector spaces and vector 
lattices. This led to the idea of a Banach lattice, intro­
duced by Kantorovitch, and developed largely by him and his 
collaborators. A Banach lattice is both a Banach space and
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a vector lattice in which the compatibility condition 

Ixl < I y I implies 11x11 < liyll
holds. Among the many contributions to the development of
Banach lattices, the representation theorems of Bohenblust

Pof abstract L spaces [53 and of Ksdrutani [16] [173 of ab­
stract L and abstract M spaces deserve mention. Attention 
also must be called to the recent representations of Kothe- 
Toeplitz spaces given by Luxembourg [23] and, independently, 
by Lorentz [22], and of abstract spaces by Lorentz and 
Bisenstadt [93. An interesting property of Banach lattices, 
not possessed by Banach spaces in general, has been noted 
;by Goffman [11].

Although Banach lattices have been the object of 
ia large amount of attention, the same cannot be said regard­
ing topological vector lattices. The interest in this thesis 
is only in the locally convex case. Here the space is a lo­
cally convex Eausdorff space, given by a collection p^ of 
semi-norms, or equivalently by a set of convex nuclei, and 
at the same time a vector lattice, where the two structures 
are tied by the compatibility conditions

1x1 < fyl implies Pg{x) < p^Cy)
for all a.

The main contributions to this topic are those of 
Hakano [26] and Eoberts [30], but it must be said that both 
treatments are partial and are not pointed toward exhaustive 
completeness such as exists for the other topics mentioned



above. In line with such a program there seem to be two 
main issues:

1. To determine conditions on a vector lattice 
which allow it to have compatible collections of semi-norms.

2. If such conditions hold, to give an analysis of 
the compatible topologies and of the related problem of dual 
spaces.

The first problem has been treated by Goffman [15] , 
who has found conditions for which such collections exist, 
and also conditions for which they do not exist.

This thesis is concerned with the second problem.
In this connection, Goffman found that every vector lattice 
has at most one compatible Banach space topology, a result 
which must have been known to Nakano, Eoberts, and Eachbin,: 
as indicated by certain allusions in their work. Eoberts 
also shows by means of a devious argument that the finest 
compatible topology is always a Mackey topology. These re­
sults indicate that further developments might take form in 
the direction of the work of Dieudonne, Schwartz, and of 
Grothendieck. This thesis is devoted to establishing the 
basis from which full development of these relationships may 
be made.

Chapter II gives the basic information on locally 
convex topologies which Is needed in the development in. 
Chapter III, Also Chapter II discusses the existence of a 
lattice homomorphism from the lattice of topologies to the
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lattice of vector subspaces of the algebraic dual. It is 
found that such mappings are complete lattice homomorphisms 
for the case of topologies other than Eausdorff and are lat­
tice homomorphisms for Eausdorff topologies on finite dimen­
sional spaces. For infinite dimensional Eausdorff spaces, 
the topologies never form a lattice. Chapter II also dis­
cusses the classes of topologies on a vector space which 
have the same continuous linear operators into a normed 
space.

Chapter III is the most important chapter. It is 
found that a necessary and sufficient condition for a sub­
space of the algebraic dual to be a topological dual for a 
compatible topology is that the subspace be a total order- 
closed subspace of the order dual. The finest compatible 
topology is found to be the homological topology for which 
all order-closed sets form a basic system of bounded sets.
It follows then that the finest compatible topology is the 
Mackey topology for the order dual. It is found that when 
a compatible complete homological topology exists, it is 
unique. This generalises the above result of Goffman on 
compatible Banach space topologies.

Chapter IV deals with a different topic. Several 
papers of Eenry Blumberg deal with the derivation of proper­
ties possessed by arbitrary sets of real numbers and arbi­
trary real functions. An interesting theorem of his in this 
direction is that every real function on the real continuum



is continuous on a dense set relative to the set. A key 
lemma in the proof of this theorem is that every set of real 
numbers v/hich is locally of the first category is of the 
first category. Banach proved this same theorem, later, 
for metric spaces. A space will be said to possess the 
Banach-Blumberg property if every set in the space which 
is locally of the first category is of the first category. 
Spaces in which the topology has the property that the in­
tersection of two neighborhoods is a neighborhood, or in 
which the topology has a countable basis, have the Banach- 
Blumberg property. Examples show that these conditions are 
not necessary but that a general topological space does not 
possess the Banach-Blumberg property.

Concerning Blumberg's continuity theorem, Goffman 
showed that the corresponding theorem for homeomorphisms 
does not hold [14j. Cargal and Block [$] showed that the 
theorem holds in a Eausdorff space with a countable basis 
of neighborhoods and which is of homogeneous second category. 
Eahn [153 proves Blumberg’s theorem for a Young space, that 
is, a separable metric space which is a Ĝ  ̂ space. The 
theorem is here proved for mappings of a metric space of 
homogeneous second category into a separable metric space.



CHiPTEE II

LOCALLY COTOX TOPOLOGIES ALL THEIE DUALS

A. By a locally convex topology on a vector space 
is meant a topology which has a basis consisting of convex 
sets. Because of the continuity of the group operation, a 
topology may be specified by giving a base for the neighbor­
hoods of &. The neighborhoods of 0 will be called nuclei. 
Every vector space has a set of linear real functions, called 
linear forms, which themselves make up a vector space called 
the algebraic dual E *  of E. When B is given a topology, 
certain of the forms of E * are continuous. These contin­
uous linear forms also make up a vector space called the 
topological dual, denoted by E ‘. Each topological dual is 
a subspace of E *. For every sub space E' of E * there 
is a topology induced on E, called the weak topology W^, 
associated with E ’. This topology is the weakest topology 
on E for which every linear form in E' is continuous.
Wg, is given by a sub-base of nuclei of all the sets in E 
of the form C x 6 sj lf(x)l < 1 ], where f e E'. The
^eak star topology W on E ’ is the topology given by 
the sub-base of nuclei consisting of all the sets in E' 
of the form [ f € S'j lf(x)l < 1 ], where x c E. The



weak star topology induces on each subspace
E'. Now, since only the zero function in E *  vanishes at
every x € E, there is, for each f / 0 a nucleus

g* which does not contain f. Thus the topology W g *of W
is always a Eausdorff topology. However, the weak topology
Wg, on E is not Eausdorff unless E ' is total in the
sense that for each x / 0 in E, there is an f e E'
such that f(x) / 0. Dieudonne [8] has shown that the to­
tal subspaces of S' are exactly those subspaces which form 
topological duals for Eausdorff topologies on S. The dual 
of each Eausdorff topology must be total by the Eahn-Banach 
theorem. Dieudonne shows that for a total S' the topo­
logical dual given by Wg, is just S' itself.

In general, there are many topologies on E all 
having the same topological dual E>. In order to describe 
all such topologies, the concept of the polar of a set will 
be very useful. For a set S in E (in B'), the polar S° 
of S is the set [ f 6 E'j lf(x)l < 1 for all x 6 8 ]
([ X € e [ If(x)l < 1 for all f e S ]). The polar re­
lationship has the following well-known properties:

1) If A Cl B, then B° c  A°
2) ( u A )° = n  A°
3) S° is always convex and symmetric.
4-) 8° is always closed in the weak or weak-star

topology.
5) Soo (S°)° is the weak or weak-star closed
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convex hull of S. The proof of this property 
requires the Hahn-Banach theorem.

6) If S absorbs, then S° is compact in the 
weak or weak-star topology. If S is bounded 
in the weak or weak-star topology, then S° ab­
sorbs. The proof of the first statement requires 
the Tychonoff theorem.

The following known theorem is included because of 
its importance for later work [25] [1].
Theorem 2.1. (Mackey-Arens Theorem) A necessary and suffi­
cient condition that a total E' be the topological dual 
for a Eausdorff topology t on E is that t have a sub­
base of nuclei consisting of polars of convex symmetric sets 
of E ‘ which are compact in the weak-star topology W 
and which form a covering of E ’.
Proof. Necessity. Let 7 be a closed convex symmetric nu­
cleus. Then is a convex symmetric weak-star compact
set in E *. 7° C. E' since f € 7° implies that f is
continuous with respect to t. The 7° cover E' since 
every f e  E' must belong to the polar of some nucleus.

Sufficiency. Let t have a sub-base consisting 
of polars as described, and let f be continuous with re­
spect to t. It must be shown that f € E'. That f is

n
continuous means that f g  ^iQi^i^^^ where the are con­
vex symmetric weak-star compact subsets of E'. Then f be­
longs to the weak-star closed convex hull of the C^. Since
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the convex hull of a union of compact sets is compact, the
closure of the hull is the hull. But the hull belongs to
E ' so that f €  E ' .

The above theorem characterizes all the topologies 
which have a given E' as dual. There is a strongest in
this class, namely the one with sub-base consisting of po­
lars of all weak-star compact convex symmetric sets of E'. 
This topology will be called the Mackey topology of E ‘.
The weak topology W^, is, of course, the weakest topology 
with dual E'. The class of all topologies with dual E' 
will be called the Mackey class associated with E ’. Every 
■topology has a nuclear basis consisting of convex symmetric 
absorbing sets. Such sets are called balls. Because a lo­
cally convex Eausdorff topology is regular, there is always 
a nuclear base consisting of closed balls. An important kind 
of topology, a tonnele topology, is a kind of maximal topol­
ogy in this respect. A Eausdorff topology is said to be a 
tonnele topology if every closed ball is a nucleus [6].
Every tonnel^ topology is a Mackey topology, but the con­
verse is not true. Only the Mackey topologies for special 
kinds of duals are tonnel^. Theorem 2.2 [6] below shows 
just what kinds of duals are allowed. The theorem will be 
used later.
Proposition 2.1. If C is a weak-star closed and bounded 
set in E then C is compact in the weak-star topology. 
Proof. -It is sufficient to prove the proposition for a
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symmetric convex set in E . Since C is symmetric, closed
and convex, = C. However, since C is bounded, C°
absorbs so that (C°)° = C is compact.
Theorem 2.2. (Bourbaki) A topology t on E is tonnele
if and only if it is the Mackey topology for an E ' which
has the property that every subset of E' which is closed 
and bounded in W is compact.
Proof. Sufficiency. Let V be a closed ball. B»
weak-star closed and bounded set in E ’. Therefore

xs a

E'
is compact. Then V = (V g, ) is a Mackey nucleus.

Necessity. First, the tonnele topology is always 
the Mackey topology for its dual. For, the Mackey topology 
has a basis of closed balls and since closed convex sets are 
the same for all topologies in the same Mackey class, they 
are nuclei in the tonnele topology. Now let C be a convex 
symmetric set which is closed and bounded in the weak-star 
topology on B'. C° is a closed ball therefore a nucleus. 
(C°)°g *, therefore, belongs to the topological dual E*.
Thus * = C which, being the polar of an absorbing
set, is compact.

Another important kind of topology which is a 
Mackey topology is the homological topology. A Eausdorff 
topology is homological if every set which absorbs all the 
bounded sets is a nucleus [6]. It is clear that the h o m o ­
logical topology is the strongest of a class all of which 
have the same bounded sets. By a theorem of Mackey [24] [25]
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all topologies in a Mackey class have the same bounded sets, 
so that the homological is the Mackey topology for its dual. 
For each topology t on E, there is the associated h o m o ­
logical topology [?] which has as nuclei all sets which ab­
sorb all the bounded sets of t . However, it is not neces­
sary to start with a topology. The following proposition 
shows that if a class of sets which covers E is considered 
as a basic class of bounded sets for a topology in a certain 
way, then the topology resulting will satisfy all the re­
quirements for a homological topology except the Eausdorff 
requirement.
Proposition 2.2. Let he a class of subsets of E which 
covers E. Then if t is the class of all halls in E, each 
of which absorbs every B cCB , and if for each x £ B there 
is a V in T such that x ̂  7, then x forms a nuclear 
base for a homological topology on E.
Proof. It is clear that x forms a nuclear base for a 
Eausdorff topology on E. Every set B in (3 is bounded 
since it is absorbed by every nucleus. Suppose 7 is a ball 
which absorbs every bounded set. Then in particular. 7 ab­
sorbs every set in (3 so that 7 £ x.

B. The set of topologies on a vector space forms 
a lattice under the usual ordering of " stronger than” or 
” finer than.” The sup of a set of topologies is the topology 
which has as a sub-base all the neighborhoods of the given 
topologies. The inf of a set of topologies is one whose
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nuclei are those halls which are nuclei of each of the given 
topologies. Similarly, the subspaces of S * form a lattice 
ordered by inclusion. The sup of a set of subspaces is the 
smallest subspace containing the given subspaces. It con­
sists of all finite sums of elements in the union of the 
subspaces. The inf of a set of subspaces is their inter­
section. There is a natural mapping between topologies sind 
duals, namely, let each topology correspond to its topolog­
ical dual. Many topologies may correspond to the same dual. 
If Eausdorff topologies are considered, only total subspaces 
correspond as duals. Any sub space may qualify if Eausdorff 
topologies are not required. If E is finite.dimensional, 
;it has only one Eausdorff vector space topology and only one 
dual, E itself. The following theorems discuss the mapping 
of topologies to duals as regards sup and inf preservation. 
Proposition 2.3« Let (t^) be a class of topologies and
let (Dg) be the corresponding class of duals. Then if t
is the sup of the t^ and D is the sup of the then
D is the dual of t.
Proof. First, since t is stronger than t^ for each a,

— the dual of t— contains D^, for each a, so that
contains sup D = D. Eext, since P contains D fora a
all a, the Mackey topology Tjj for the dual D is stronger
than t^ for all a. Thus by the sup property of t,
is stronger than t so that D contains D^.
Proposition 2.4. If the dual of t is D and if inf t c-------  a a a
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is t and inf is D, then D is the dual of t.
Proof. Since t is weal:er than t^ for each a, — the
dual of t— is contained in D for all a. Hence D . cD=a t
infD^. On the other hand, since for all a, W^,
the weak topology given by D, is weaker than t^ for all 
a so that is weaker than t. Hence D CD^.
Proposition 2.5* If B is an infinite dimensional space, 
there axe two Eausdorff topologies whose inf is not a 
Eausdorff topology for E.
Proof. The proof will lie.in showing that there are two to­
tal subspaces of E *  whose intersection is the zero func­
tion. Let (x^) be a Hamel basis for E. Then each linear 
form on E is uniquely specified by an arbitrary real func­
tion on the (x^). A space of these functions is a subspace 
of the algebraic dual. The functions of the x^ which are 
zero except for a finite number of the a's, form a space iso­
morphic to E itself. Notice that this is a total subspace 
of E , for if X = an x + - • • + a x then theX uC*i HX n
function which maps x into 1 and all the other x
into zero maps x into a^ / 0. Another total sub space
of functions is that consisting of functions f with the
property that f(x for every a which
has no immediate predecessor, for fixed n, and for m =
0, 1, 2, • • •. Such functions may also be described as
recursive or periodic over all sets of ordinals a, a + 1,
a + 2, • • a + n, • • • where a is an ordinal with no
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iImmediate predecessor. This is also a total subspace of 
functions. Tor, if x is written as a finite sum as above, 
where the a.'s are in their natural order, then the function 
which is zero for all a < a and recursive for all other 
a beginning with f(x^ ) = 1 maps x onto a^ / 0.
The inf or intersection of the two above spaces of functions 
is the zero function alone. For, the first space consists 
of functions which are zero except on a finite set, while 
the second space consists of functions which take on each 
of their values an infinite number of times.

The above remarks and propositions are summarized 
in the following theorem.
Theorem 2*3* Ehe mapping of Eausdorff topologies on a vector 
space E to their duals is a lattice homomorphism if and 
only if E is finite dimensional; the mapping is always sup 
preserving. For topologies not necessarily Eausdorff the 
mapping is always a lattice homomorphism.

C. Let E be a vector space and F a normed 
space. Let L (S, F) (or just L) be the vector space of 
linear operators on E into F. For a topology t on E, 
let (E^, F) (or just ) be the subspace of L consist­
ing of the ccntinucus operators. L and are just E
and E' when F is the space of real numbers. If I =
[ y 6 f | llyfl < 1 ], then a relationship analogous to the
polar relationship may be defined. For S CE, let I (S)
= [ f é l | f(z) € I for all X 6 S ]. Now it is clear
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that an operator f is continuous if and only if f e I  (V)
for some nucleus V in E.

Lemma 2.1. For G a closed convex set in E, and ^  ^ 0, 
there is a continuous operator f € such that llf(x)il <1 
for X 6 0 and II f ( ̂  ) || >1.

Proof. By the Eahn-Banach theorem, there is a continuous 
linear form (? on E for which l(p (x)l < 1 on C and
I (p ( X ) I > 1. Then if T| / 0 is any element of F, the
operator

has the desired property.
Proposition 2.6. If two topologies s and t on E are
• such that ^  (E^, P) = F) then the same convex
sets are closed under each topology.
Proof. If C is closed and convex under t, then there is 
a set J of elements of (E^, F) for which C = ^^^f"^(I) 
= [ xj llf(x)ll < 1 ]. But then J also is a subset
of (Eg, F) so that [ x{ II f (x) II : < 1 ] is closed with
respect to s for each f g J. Hence C is closed with re­
spect to s.
Corollary 2.1. If two topologies have the same ^  , then 
they have the same dual.
Proof. Suppose ^(E^, F) = F). Then s and t
leave the same convex sets in E closed. In particular the 
same hyperplanes are closed so that the same forms are con­
tinuous, Thus s and t have the same duals.
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The last corollary shows that the class of all to­

pologies having the same ^  is contained entirely within a 
Mackey class. The following generalization can he made. 
Proposition 2.?. Pet E he a vector space and let and
?2 be normed spaces for which there is a homeomorphic linear 
operator (p on into Eg. If T()f(E^, E)) is the class
of all topologies on E having the same (E, E) as t, 
then T(((E^, Ê _) = T^^TCjfCE^, Eg)) = Tg.
Proof. Let s and t he two topologies on E having the
same ^ g .  It will he shown that s and t have the same

Let f € L(E, Eĵ ) he continuous with respect to s.
Then <p»f is a linear operator on E into Eg which is
continuous with respect to s. Therefore tp«f is continuous

—  1with respect to t. so that f = <p” o(p»f is continuous
with respect to t. Hence s and t have the same contin­
uous linear operators on E into F^.



CEÂPTEfî III 

TOPOLOGICAL VECTOR LATTICES

A vector lattice or Riesz space E is a vector 
space which is a lattice for which the following condition 
holds. If X >, 0, y > 0, a > 0 then x + y > 0 
and ax > 0, It is proved in the elementary theory of vec­
tor lattices that every element a g E may he decomposed 
into the difference of two positive elements: a = a+ - a", 
where a^ = sup C a, 0 j, and a~ = sup [ -a, 0 ]. Then 
it also follows that lal ^  sup [ -a, a ] = a"*" + a".
The set of elements greater than zero, by the above postu­
lates, forms a cone, called the positive cone. The above 
elementary result shows that the positive cone generates the 
space. Furthermore, just as the ordering determines a cone 
which generates the space, the designation of a generating 
cone determines the order relation. For, let P be a set 
closed under addition and positive sealar multiplication for 
which P/i - P = 6 and E = P + (-P). Then x < y
whenever y - x € P induces a lattice structure on E 
for which P is the positive cone.

A linear form f on E is said to be a positive 
linear form whenever x > 0 implies f(x) > 0. A linear

18
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form is boimded whenever f (y) ! < oo for every
:c > 0-. The set of all bounded linear forms is a subsoace
of E called the order dual E CO In all that follows,
it will be assumed that E is total. This condition im­
plies that the ordering is archimedean. The converse is 
false as there are archimedean vector lattices (Eoberts [^0]) 
which have no non-trivial bounded linear forms. The general 
problem has been considered by Goffman [153• By the well- 
known Eiesz theorem [293 » a linear form is bounded if and 
only if it is the difference of two positive linear forms. 
Then the set of positive linear forms forms a generating cone 
in E ̂  thereby determining an ordering for E The order 
relation is that f < g whenever f(x) < g(x) for all 
X > 0. With this ordering B ̂ i s  a lattice and f"̂  = 
sup [ f, 0 3 is given by

for X > 0 and
f+(x) . f*(x+) -

for all other x. From these equations follow two important 
relations which will be used in the sequel. If IfI = 
sup [ f, -f 3, then
(3«1) IfI (Ixl) = |^Y2;x|f(7)'
(3.2) IfI (1x1) = ||Y^|^jg(x).
(5.1) is seen by the following argument :

If I (Ixl) = sup (f, -f) (Ixl)
= sup (2f, O) (Ixl) - f(Ixl )
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= f^(2lxl ) - f C ! >:l )

*

= 8%ÿ<xf(y - '%')-
Nov/ putting z = y - Ixl ,

Ifl (ixl) = ' |êyg,x|f(:)-
Equation (3.2) is proved by considering x as a bounded 
linear form in (E***)'*’ where x(f) has the numerical 
value f(%). Then

IfI (Ixl) = Ixl (Ifl) = ;gY^|f|X(s)

A set S in a vector lattice is said to be order-bounded 
whenever there is an a > 0 such that Ixl < a for all x 
in S. A set is said to be order-closed whenever a*S,
Ibl < lal iBçlies b 6 8. There is always a smallest order- 
closed set containing a given set A, called the order 
closure A ^  of A, and a largest order-closed set contained 
in A, called the order interior A %  of A. It is clear 
that A y  is the union of all order-closed subsets of A, 
and that

^  [ y| lyl < Ixl 3.
Definition 3*1* A locally convex topology on a vector lat­
tice B is said to be compatible if it has a nuclear basis
of order-closed balls.

This definition of compatible topology is equiva­
lent to that given by Goffman [12] which uses the notion of 
compatible semi-norm. A compatible semi-norm p is a
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semi-norm with the property that lyl < Ixl implies p(y)
< p(x). The following proposition, due to Eoberts [301, is 
included for completeness and because of its importance in 
the conceptual basis of this chapter.
Proposition 3.1. If a linear form f is continuous with 
respect to a compatible topology, then f is bounded.
Proof. That f is continuous means that it belongs to the 
polar of some compatible ball V. Then for x > 0, there 
is an a > 0 such that ax 67. Then for y < x, ay 6 7.
Hence ^
so that lf(y)l < 1/a for lyl < x.
Proposition 3«2. There is a strongest compatible topology y. 
Proof. Y has a nuclear base consisting of all order-closed 
balls.

The significance of proposition 3.1 is that every 
topological dual of a compatible topology is a subspace of 

Thus E *** forms a maximal superspace for compatible 
topological duals just as E *  does for topological duals 
for a vector space.

The following proposition, due to Eoberts C30], 
is given with a new proof.
Proposition 3-3. 1) If S C I  is order-closed, 8°gW is
order—closed.

2) If S C  E ̂  is order-closed, then 
8° (CE is order-closed.
Proof. 1) Pirst it will be shown that for f 68°, If I 6 S''.
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For X €. S,

I IfI (x)l IfI (x^) - IfI (x“)

f e s°,

< un (x+) + If I (x")
= ifi (ixi) =

But, since [ y| |yi < 1x1 ] belongs to S and
this last sup is less than or equal to 1. Hence IfI € S°. 
By relation 5.2 lg(x)l < igl (ixl) so that for f t S°,
Igl < If! and x 6 S, it follows that

Ig(x)i < Igl (ixl) < IfI (Ixl) < 1
since IfI fe 8°. This implies g € S°.

2) Let X € 8°. Again it will first he shown that 
Ixl € 8°. For f e 8,

l f ( l x l ) l  <  I f  I ( I x l )  =  | | Y ; ^ j ^ j g ( x ) .

This last expression is less than or equal to 1 since S 
is order-closed and x 6 8°. Thus Ixl 6 8°. How let 
lyl < Ixl and f € S. Then

lf(y)| < Ifl (lyl) < Ifl (Ixl) < 1,
since Ifl 6 S and Ixl 6 8°.
Definition 5*2. If B ’ is ah order-closed suhspace of
the absolute weak tocology Â ,, on S associated with E' 
is the compatible topology which has as a nuclear sub-base 
the compatible balls [ xj Ifl (Ixl) < 1 ].
Lemma 5*1* The Ag, nucleus given by f:

= [ x{ Ifl (Ixl) < 1 ]
is (f ̂ )°— the polar of the order closure of f.
Proof. Let x € and let Igl < Ifl. Then
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I El (Ixl) < ifl (Ixi) < 1

which implies x g  (f^)°. Then C  (f ̂ )°. Now let 
X €  (f ̂ )". Then ls(x)i < 1 for'all g for which 
Igl < Ifl. Then Ifl (ixl) = jSy^l^,jg(x) < 1. Thus
X € U^.

Lemma 5.1. shows that Ag, is actually a compat­
ible topology since the U^, being polars of order-closed 
sets, are order-closed.
Lemma 5*2. For f € E f * is compact in the weak-star 
topology on B *  .
Proof. First f * is weak-star bounded. For if x c  E, 
and g IE f * ,  lg(x)l < Igl (Ixl) < Ifl (ixl) so that 
Ifl (Ixl) is a bound for f *  at x.

To show that f *  is closed in the weak-star to­
pology, let ( ̂ ^) be a net on f ̂  which converges in the
weak-star topology to ^  £ E ̂ . Then lim (x) = ̂  (x)
for all X ê  B and in particular for x  > 0. Now since 

E f ̂  > it follows that for x > 0:
-Ifl (x) < (x) < Ifi (x)

hence -Ifl (x) < inf%^(x) < ^(x) <sup ^(x) < Ifl(x)
for all X > 0. Thus \  is a bounded form and I ^I (x)
< Ifl (x) for all X > 0 so that I ̂ 1 < Ifl, that
is

f % is then closed and bounded in the weak-star 
topology on E *  so it is compact by proposition 2.1.
Theorem 5.i- A necessary and sufficient condiuion that a



24
subspace E' of E* be the topological dual for a compat­
ible Hausdorff topology on S is that E ' be a total order- 
closed subspace of E**̂ .
Proof. The totality of B' is necessary to insure the 
Hausdorff property. That E ' c E ***, follows from proposi­
tion 3.1. E ' must be order-closed since f 6 E ' implies 
f € where 7 is an order-closed ball. But then 7° 
is order-closed so that for Igl < Ifl, gft7°CE>.

To show that the condition is sufficient, suppose 
that E ’ possesses the above properties and let E be given 
the absolute weak topology Ag,. By lemma 3*2, Ag, has a 
sub-base consisting of polars of weak-star compact convex 
symmetric covering sets in a total E' so that by theorem 
2.1, the topological dual associated with is E'.

The above theorem shows just what subspaces of E* 
qualify as compatible topological duals. Eor each such E' , 
there is a strongest and weakest compatible topology: Ag,
is obviously the weakest compatible topology. The strongest 
is that consisting of all order-closed balls whose polars 
lie in E'. Bj use of theorem 2.1 and proposition 3.2 it 
is easy to see that every compatible topology is given by a 
sub-base consisting of polars of a set of weak-star compact 
symmetric convex order-closed sets of E ’ which cover E'. 
Eor the case where E' = E ***, it will be shown that the 
finest compatible topology is the Mackey topology for E 
Lemma 3»3. The order-bounded sets of E are bounded for
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ail topologies whose duals lie in E
Proof. Let f belong to the dual in question. f being a 
bounded linear form is bounded on every order-bounded set in 
S. Therefore f° absorbs every order-bounded set. Hence 
the order-bounded sets are bounded in the v/eak topology and 
therefore by a theorem of Mackey [25] bounded in all the to­
pologies with the same dual.
Theorem 3.2. The finest compatible topology is bornological. 
Proof. The order-bounded sets form a basic system of bounded 
sets as in proposition 2.2. Then the finest topology for 
which these sets are bounded will be a bornological topology 
P if it is Hausdorff. Since by lemma 3*3? the order-bounded 
sets are bounded for all compatible topologies, the finest 
compatible topology y is weaker than p. Since y is 
Hausdorff, p is Hausdorff hence bornological. All that 
remains is to show that P is compatible. Let U be a 
nucleus of p. Then U absorbs all order-bounded sets.
For each x € E there is an a > 0 such that [ y| lyl 
< Ixl ] c  aU. Then

(1/a) [ yj lyl < Ixl ] = [yj lyl < l(l/a)xl]
which is contained in U so that (l/a)x € U% . Then 
absorbs, that is, H *  is an order-closed ball so e y. 
Corollary 3.1. The finest compatible topology is the Mackey 
topology for E*^.

Proposition 3.4- below is a theorem of Nakano [26], 
although the restrictiveness of Hakano's topologies is not
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needed. Proposition 5.4 is used to prove theorem 5.3 which, 
generalizes a remarkable result of Goffman [12] that if there 
is a compatible Banach space topology on a vector lattice, 
then it is the finest compatible topology, hence unique. 
Proposition 5*4. (Nakano) If B is bounded with respect 
to a complete compatible topology t, then B is bounded 
for every compatible topology.
Proof. Let B be as above and suppose there is a compatible
semi-norm p which is not bounded on B. Then there is a
sequence (x^) i = 1, • • • such that p (x^) > i2^
with x^ 6 B. Now the sequence (y^)

y = Z  (1/2^) IX.I 
^ i=l ^

converges in t, For, if cp is a semi-norm of t:
n+k

(p (yn+Tj. - y^) = <P ( z  (1/2 ) Ix.l)

< sup(p(lx. I) Z  (1/2^)
i=n+l

< supcpClx^l) (1/2^)
which is small for n large enough. Note that supcpCx^)
exists because B is t-bounded and hence sup(p(iXĵ l )
exists because <p being compatible implies (pCx^) = ç(lx^l).
Now by completeness, there is an a 6 E such that a =
®o .
2  (1/2 ) Ix.l. Thus p(a) exists. Noting that p(lxl) = 

i=l ^ .
p(x), it follows that p(a) > (1/2 ) p (Ix^l) which is
the same as (1/2^) p (x^) > i for i = 1, • . .. Thus
p(a) does not exist— a contradiction.
Theorem 5.3 If there is a complete compatible bornological
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topology a on S, it is the finest compatible topology y 
hence unique.
Proof. For each B bounded by a, B is bounded for every 
compatible topology by proposition 3.4-. In particular every 
nucleus of y absorbs every such B so that each nucleus 
of y belongs to a.

The following example illustrates the foregoing 
relationships and points out new problems. Let S be an 
arbitrary set and let the vector space E consist of all 
real functions on S which are zero except on a finite sub­
set of S. E becomes a vector lattice with the usual func­
tion ordering x > 0 whenever x(t) > 0 for all 1 6 8.
(Every vector space can be represented as such a space of 
ifunctions. However, the representation of a vector lattice 
is made in terms of functionoids or GarathSodorv functions 
by Goffman [[13]). The set S forms (at least isomorphically) 
a Hamel basis for E. Since a linear form on E is given 
uniquely by an arbitrary real function on 8, E * — the alge­
braic dual— is the space of all real functions on S. An 
order-bounded set M in E always has associated with it 
a. finite subset t^, » - », t^ of S and a set of positive 
real numbers a^, • * *, such that Ix (t^)l < â  ̂ for
all % €  M. For each real function f on S, the sup of
Ifl on M is less than or equal to

n
H  (f(t.)I. 
i=l -



28
Thus every linear form on E is bounded on each order- 
bounded set. Therefore, E *  = E ***.

WAn order-closed subspace of E must contain all 
the functions on S which are zero except at a single point 
of S. Thus the weakest compatible dual D ̂  is that given 
by all functions on S which are zero except on a finite 
subset of S. The weakest compatible topology V/ is that 
given by a sub-base of balls = [ xj lx(t)l < 1 ].
This topology is also the strongest for this dual for suppose 
U is bounded at an infinite set, say the sup of the absolute 
values at t^ is a^, i = 1, • • •. Then the function
f(t^) = l/(2^la^l), f(t) = 0 for t / tu is con­
tinuous .

The finest topology t on a vector space is given
by the balls which are bounded at each element of the Hamel
basis and every element is a convex combination of the values 
at the basis elements. The balls may alternately be de­
scribed by a function f on S where is the convex
hull of all the elements x^(t) = 0 for t / t^ and 
Ix^(t^)I < lf(t^)l. T is complete (Kaplan [19]). E * 
satisfies the conditions of the theorem 2.2 so that x is 
tonnele. The balls are closed with respect to the weak­
est compatible topology so that they are closed for all com­
patible topologies. Therefore t is the only compatible 
tonnele topology. Thus, this vector lattice has exactly one 
compatible t-onnele topology, and it is the finest compatible
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topology. The weadcest compatible topology for the dual E *  
is composed of the same kind of balls as except that
the defining functions may be infinite at some places. More 
exactly, for f 6 g = 1/f is the defining function
for an absolute v/eak nucleus whose polar contains f.

There is also on E a norm topology, the norm 
being the max of ix(t)l for t € S. This is a compatible 
topology. The dual D is given by functions on S which 
vanish off a denumerable set in S and which take values 
of an absolutely convergent series on that denumerable set. 
Since every norm topology is bornological, this shows that 
a vector lattice may have more than one compatible borno­
logical topology.



CHAPTER IV

THE BAHACH-BLTOBERG PROPERTY AND THE BLUMBERG THEOREM

A general tocolo&y t on an arbitrary set S is
a collection of subsets of S which form a covering of S.
A general topology t will be said to have the intersection
•property if for U € t, V ^ t and x 6 TJ o  V, then there
is a W € t such that X €  W c U r s V .  A topology will be
said to have the countability property if there is a sequence
:of sets of t:(W^) such that for Y e t ,  x 6 V, there is
■ an i such that x 6 c. V.

A set N is nowhere dense if for each W € t,
there i s a V e t ,  Y C W  and V n  H = 0. M is of the•o
first category (Ic) if M = where is nowhere
dense. P is of the second category (2c) if P is not of 
the first category. E is residual if S - E is Ic. H is 
of the first category at x (Ic at x) if there is a W € t.
X 6 W such that H W is Ic. L is locally of the first 
category if 1 is Ic at each of its points. H is of the 
second category at x (2c at x) if for every W Ê t, x 6 W,
S W is 2c. H is homogeneously of the second category 
at X (h2c at x) if there is a W € t, x £ W such that 
V € t, 7 <2 W implies V rv H is 2c. A space is h2c if

3C
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it is h2c at every point. A function f on S is 2c 
at X (h.2c at x) if for every general neighborhood V of 
f(x), f ^(V) is 2c at X (h2c at x).

A space S is said to have the Banach-Blumberg 
property if every set in S which is locally of the first 
category is of the first category. Proposition 4.1 below 
uses essentially Blumberg's proof [4] to show that a space 
which possesses the countability property always has the 
Banach-Blumberg property. Banach showed that every metric 
space has the Banach-Blumberg property [2]. Euratowski gave 
a proof for a less general topological space than is dis­
cussed here [21]. Proposition 4.2 uses Sierpinski*s proof 
[31] for metric spaces to show that a general topological 
space with the intersection property has the Banach-Blumberg 
property.
Proposition 4.1. If S has the countability property, and 
if L C  S is locally of the first category, then L is of 
the first category.
Proof. For each x € L, there is a Yfit such that V r\L

is of the first category. By the countability property there
is, for each x L, a € t such that x 6 and W.

~n «  “n n
is of the first category. Now L = r\ L] which is

XX
a countable union of sets each of which is of the first cate­
gory. Thus L is of the first category.
Lemma 4.1. If, in a space having the intersection property, 
there is a transfinite sequence (N^J of nowhere dense sets



32
with an accompanying sequence of sets (V ), t with
the property that

C  V_. - U  V
then the set

is nowhere dense.
Proof. Suppose N = U  is not nowhere dense. Then there 
is a v e t  such that for every S e t ,  HC.V, H r v N / < p .  
Since N O  UV^, V /*» U v ^  / (p. Let P he the smallest or­
dinal a for which V^ n V / cp. Then there is a W € t 
such that W C, Vp n  V. Now, for p, since N ^ ^ V ^ ^  and
V ^  /\ 7 = cp, V = cp. For V  > p, N^C.Vv- - J ^ V ^ ,
so that Vp = cp. Now N r\ W = CWn u  [N^rNl] vj
[WAp^N^]. Since W d V ,  the first term is empty because 
of the minimal nature of p. Since W C. 7, the last term 
is empty. Then N W = N^ W. Now Ng is nowhere dense 
so that there is a S e t ,  Ü ci W such that U N^ = cp.
Then N A  U = cp, and U ciW c-7. But as stated above S 6 1 .
H C.7 means S /\N / cp. This is a contradiction.
Proposition 4.2. Let S be a space possessing the inter­
section property and let L C. S be locally of the first 
category. Then L is of the first category.
Proof. Let x € L. Then there is a W € t, with x € W and
W L of the first category. By well-ordering the W's so 
used, there is obtained a transfinite sequence (W ) such 
that L is first category and each x t L belongs



to some K . Let J = (W - . U  Ww )^L. J , being a sub-CC CX CX C\CC ^ ^ oO
set of K , is of the first category. Now J = .V!a ’ ° a 1=1 a
where is nowhere dense. C  V/ - so that byCX oc oc »
lemma 4-.1 U  is nowhere dense. Now

= a " a = i R ^ a  " iVl"^^
is then of the first category. L C. for % 6 L implies
X e  for some a. Then if x e  and x 6 J^, then
X 6  W ^  for some a. If aT" is the smallest ordinal
for which x €  , then x g 3 ^  C  J.

The above tv/o propositions state that if S has 
either the intersection property or the countability prop­
erty, then S possesses the Banach-Blumberg property. Two 
questions then naturally arise:

1) Since the Banach-Blumberg property holds in such 
seemingly unrelated general topologies, do all general topo­
logical spaces possess the property?

2) If the answer to 1) is negative, then must
S have either the intersection property or the countability 
property in order for S to have the Banach-Blumberg prop­
erty?

The following two propositions answer both of the 
above questions negatively.
Proposition 4.$. There is a general topological space S 
which does not possess the Banach-Blumberg property.
Proof. Let the space S be the doubly transfinite sequence 
of order type jO- snd let t consist of the sets
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[ a j CC > ^ ] and [ a j a < %  ]. 

t does not have the intersection property since the inter­
section of two sets in t may he of the form [aj g< a < y]. 
A set of this form contains no set of t. t does not have 
the countability property. For, if (U^), = [aj a > a^],
is a collection of sets of t, then the set of has a
sup so that U = [aj a > sup.(a^)] contains none of the U^. 
Let S be nowhere dense. Then if U 6. t is of the form 
[aj < ̂  ] , there is an t ^ such that Sr»[a| a < %] = 0 .  
Thus T, is a lower bound for S. Similarly, S is bounded 
from above. Then it is clear that a set is nowhere dense if 
and only if it is bounded. To be of the first category a set 
must be a countable union of bounded sets which is also 
bounded from above and from below. Any set W € t is lo­
cally of the first category. For let W = [aj a > ^  ] and 
let p € W.  Then V = [aj a < p + 1] is a set in t and
7 W = [aj ^  < a < p + 1] is of the first category. Thus
W is locally of the first category but W is not bounded 
from above. Hence it is not of the first category. 
Proposition 4.4. A general topological space may have the 
Banach-Blumberg property without having either the intersec­
tion property or the countability property.
Proof. The proof consists of an example. Let P be the 
euclidean plane. Let t consist of the sets U defined 
as follows: for every n, x, U c  t if and only if either

u = [ (x,y) n < y < a < n+1 3
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or

U = [ (x,y)| n-1 < b < y < n J.
The topology t has neither the intersection property nor 
the countability property. To be nowhere dense, it is nec­
essary and sufficient that a set be bounded away from the 
lines y = m (m an integer). Any set not intersecting the 
lines y = m is of the first category. If the set L is 
of the first category at every point, then it does not in­
tersect any of the lines y = m so that L is of the first 
category.

The following lemmas will be devoted to preparation 
for proving the Blumberg theorem for metric spaces. The 
proof of the theorem is essentially that of Blumberg. It 
has been adapted to remove some of the dependence on count­
ability requirements.
Lemma 4.2. Let S be a set in an h2c space, and let H(S) 
be the set of points at which S is 2c but not h2c. Then 
H(S) is nowhere dense.
Proof. Let x €H(S), W € t, and x £ W. Then since S 
is not h2c at x, there is a U e t, TJ C// such that 
U rk S is Ic. No point of IT is a _2c point of S so 
that H(S) is nowhere dense.
Lemma 4.5. In a space possessing the Banach-Blumberg prop­
erty, the set K(S) of points which are not h2c points 
of S forms a Ic set.
Proof. First, the set E(S) of points of S which are not
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2c points of S forms a Ic set. For, % 6 S(S) means 
there is a W ç t, x € vV such that S W  is Ic. Thus
E(S) is locally Ic, therefore Ic. Now N(S) = E(S)vH(S)
each of which is Ic.
Lemma 4.4. If f is a function on an h2c space S which 
has the Banach-Blumberg property to a space T which has 
the countability property, then E(f), the set of h2c 
points of f, is residual.
Proof. X C  E(f) means there is an M^, a general neighbor­
hood, of f(x) such that x is not an h2c point of
f~^(M. ). Then x €  K(f“^(M. )) which is a Ic set. Now
S - E(f) C  (M^)) which, being a union of Ic sets,
is Ic.
Lemma 4,5* In a metric space S, with D dense in S, for 
each e > 0 there is an isolated e-set E C  D, that is a 
:set such that every sphere of radius e contains a point 
of E.
Proof. Let D be well-ordered:

x^, ■ • * » ’ * ’

Let X, = XT be the center of a sohere J- of radius 
^ 1

e/2. Let x »  stand for the first point after x » in 
’ 2 _  ^1 

the ordering which is not contained in J^. Construct
with Xt as center and radius e/2. Continue. Let X v

2   a
stand for the first point not contained in U  J and con-

p<a “
struct The result of this total construction is a well-
ordered seeuence X , • • •, X > , *. This sequence

^1
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is isolated. It is an E-set for if x' 6, I) and is net an 
X ^  , then x' € for scne a. If x € S, there is Tir,
x' € D, 6(x, x') < e/2 with x'6 Then a sphere with
center x and radius e contains x j .

a
In the following lemmas, S will be an h2c met­

ric space, P will be a separable metric space, and f will 
be a function on S into ?. 6 will denote the metric in
either space.
Lemma 4.6. If e > 0, there is a set (U^J,

= C x| oCx, x^) < r^ < e/2 ],
of non-overlapping spheres whose union is dense and for which
each Ü contains a V dense in U , x t V , such that

OC oc oc oc oc

xfe 7^ implies 6(f(x), f(x^)) < e/2.
Proof. Choose an isolated e-set, x L  from H(f). Since x ’OC oc
is an h2c point of f, there is a sphere with center
x^, with radius less than e/2, such that

[ x| 6(f(x), f(x^)) < e/2 ]
is h2c. Then if

7Ĵ  = E(f)m x| 6(f(x), e/2 ],
is dense in (a residual set is dense in an h2c

space) and for x €7^, 5(f(x), f(xj,)) < e/2. Further the
TJ’ may be made non-overlanning by taking U' so that a «2

r\ = 0 whenever a, < Ug. To obtain a dense set of 
spheres, let the points of 2(f) a  C S -"Tÿv^l” ] be well- 
ordered: Tî , T|g, . . T|̂ , . . . .  Then there is a sphere

with center , radius less than e/2, and disjoint
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'rom Üv ' such th£

X
Î3 h2c. Let V ” stand for

E(f)r\U{'r\[ x| 6(f(x), < E/2 ].
Continue rhus: if pVa and
be constructed as above such that U ” ^ (  \ J V  ,. v'O = 0.a a p<a pa
Let the srheres Ü', U ” be re-indexed to be the set U ,- a ’ a a
let the sets V*, V" be the V , and let the x \  ti to- a ’ a a ’ a ’ 'a
gether be the x^. Then the U^, have the desired prop­
erty.
Lemma 4-.7. Let s' < e and let (U^) and (V^) be as 
above. Then there is a set (11̂ )̂ of spheres, each 
contained in U^, each having center x^^ € 7^ and radius 
less than s'/2, such that each contains a subset V
dense in x^g e 7^^, for which x €• 7^^ implies
ô(f(x), x(x^p)) < e>/2. Further, each x^ is to be an x^^. 
Proof. For each a, let an isolated e*-set (xĵ )̂ contain­
ing x^ be chosen from V^. As in the above lemma, let

ap

be such that the radius of U'o is less thanap"âp'
e>/2 and such that x € 7^^ implies 5(f(x), /2.

A set of spheres dense in is obtained by well-ordering
V ^ - C U - ’g): ,«1 , a2> ■ • V  ■ ■ ■
obtained with radius less than s'/2 such that

is h2c, and let stand for
R ( f ) n % n [  x| 6(f(x), < E'/2 ]

is
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Let Û'gg and V̂ 'p be constructed by induction as before.

V  and (V^^) = (V^^) u  have the
desired properries.
Theorem 4.1. Let S be an h2c metric space and let P
be a separable metric space. Then if f is a function on
S into F, there is a dense set D such that f is con­
tinuous on D with respect to D.
Proof. Let e. be a sequence of positive numbers such that
n ^

e- < oo. Construct the U , 7 - x of lemma 4.6 for1=1 1 ^1
Perform the iteration of lemma 4.7 for Sg to obtain the

U „ , 7„ „ , ^ . Iterate repeatedly to obtain the
X 2 1 2  1 2Va-'-V Vs-'-f V2-%

set of all the x*s with n subscripts, let D = Z^.
D is dense since is an s -set. It remains to be shownn n
that f is continuous on D relative to D. Let x é D.
Then x = x_ _ for some n and x € X for all m > n.
Suppose y 6 \  a «% D. Then 7 = ...a ' ^1 m I m ptriangular inequality

6(f(x),f(y)) = 6(f(x^^,_^J, <

belong to
follows that &(f(x ), f(x^ ^ )) < 6q/2 so that

Gl'"'"k+1 ^
6(f(x),f(y)) < e^. This last sum may be made as small
as desired by taking m > n sufficiently large.

In shewing that the Blumberg theorem did:not hold
for hcmeomorphisms, Goffman [1$] used an example in which
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the inverse was not continuous on a dense set because the 
range was not h2c. The following proposition shews the ne­
cessity of the h2c requirement in the general case. 
Proposition 4.5. If S is not h2c and has the intersec­
tion property, and if P contains a denumerable isolated 
set, then there is a function f on S into P such that
f is continuous on no dense subset of S.
Proof. That S is not h2c means there is a general neigh-eo
borhood W in S which is Ic. Then W = .M N. where

is nowhere dense. Now if (y^) is the denumerable iso­
lated set in P, then any function f such that f(x) = 
for X 6 Nĵ  has the desired property. For, suppose f is 
continuous on a dense set D with respect to D. Let x 6 
P W. Then x 6 for a certain k. Let V be a neigh­
borhood of ŷj. containing no other y^. Let G be a neigh­
borhood of X such that G C W. Since N^ is nowhere dense
there is a neighborhood H C G such that z ( S D implies
z ^ N^. Then z 6 S y\ P c G  P implies f(z) ^ V.
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