A SIUDY OF THE SYMMETRY OF THE RELATIVISTIC EQUIVALENT OSCILIATOR AND ITS APPLICATIONS

By
EUGENE FRANKLIN CHAFFIN Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma
1970

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF =SGIENCE
May, 1972

$$
\begin{aligned}
& \text { Thesis } \\
& 1972 \\
& \text { C433s } \\
& \text { cop. } 2
\end{aligned}
$$

AUG 311972

A STUDY OF THE SYMMETRY OF THE RELATIVISTIC EQUIVALENT OSCILLATOR AND ITS APPLICATIONS

Thesis Approved:

PREFACE

The mathematical symmetries of the relativistic equivalent harmonic oscillator are studied. It is shown that the relativistic equivalent oscillator Hamiltonian possesses an SO(4) $\times S U(2)$ invariance group and an $S O(4,1) \times S U(2)$ dynamical symmetry group. A nuclear model based upon this relativistic equivalent oscillator is used to calculate the Coulomb energies of nuclei. The relativistic corrections to the results of the non-relativistic harmonic oscillator shell model are shown to be of the order of one per cent.

I would like to thank Dr. N. V. V. J. Swamy for his suggestion of the problem and his patient guidance during the course of this work. I would like to thank the National Science Foundation for a fellowship which enabled me to complete the work. I would also like to acknowledge the financial support of the OSU Research Foundation;

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. CONTINUOUS GROUP THEORY 3
III. GROUP STRUCTURE OF THE RELATIVISTIC EQUIVALENT OSCILLATOR 22
IV. REVIEW OF COULOMB ENERGY CALCULATIONS 39
V. APPROXIMATE, RELATIVISTIC COULOMB ENERGY CALCULATIONS 49
VI. CONCLUSIONS 58
REFERENCES 60
APPENDIX A 64
APPENDIX B 71
Table Page
I. Coulomb Energies Divided by $e^{2} \lambda_{\text {. }} .$. 65
II. Coulomb Energies in MEV. 66III. Theoretical and Experimental Coulomb Displacement Energies
IV. Exact Expressions for the Slater Integrals F° (v1; $v^{\prime} l^{\prime}$) Divided by $e^{2} \lambda \sqrt{\frac{2}{\pi}}$68
V. Exact Expressions for the Slater Integrals $G^{k}\left(v 1 ; v^{\prime} I^{\prime}\right)$ Di-

VI. Exact Expressions for the Slater Integrals $R^{k}\left(v 1, v \overline{1} ; v^{\prime} 1^{\prime}\right.$, , $v^{\prime} \overline{1}^{\prime}$) Divided by $e^{2} \lambda \sqrt{\frac{2}{\pi}} \cdot$.70

LIST OF FIGURES

Figure
 Page

1. Symmetric Root Diagrams of (a) $S O$ (4) and (b) SU(3). (c) Weight Diagram of the 3 Representation of SU(3). 10
2. The Allowed Values of j_{1} and j_{2} Within the Irreducible Representation $\pi_{\frac{1}{2}, \frac{1}{2}}^{+}$of $\operatorname{SO}(4,1) \ldots \ldots 37$

CHAPTER I

INTRODUCTION

The first part of this work is a study of continuous groups and their relation to the mathematical symmetries of the relativistic equivalent oscillator proposed by Swamy (1). The second part is an application of the relativistic equivalent oscillator in an attempt to see what light the Coulomb energies of nuclei throw on the existence of relativistic motion of nucleons in a nucleus.

The motivation for studying the group structure of the relativistic equivalent oscillator is in keeping with the interest of physicists in recent years in the symmetries and dynamical groups of simple quantum mechanical Hamiltonians which possess exact solutions (2, 3, 4). Study of these happens to be useful in the context of certain symmetries occurring in elementary particle physics. Several papers have appeared on the invariance and non-invariance groups of the non-relativistic hydrogen atom, the approximately relativistic Symmetric Coulomb Hamiltonian, the exact Dirac Coulomb problem, and the non-relativistic harmonic oscillator ($5,6,7,8$) . Of particular interest is the group SO (4, 1). It has been shown that the $\nu_{0, \sigma}$ and $\nu_{\frac{1}{2}, \sigma}$ representations of the continuous class of irreducible representations of this group are realized by the bound states of the non-relativistic hydrogen atom and the exact Dirac Coulomb problem, respectively, In this thesis, it is shown that the $\pi_{\frac{1}{2}, \frac{1}{2}}^{+}$representation of the discrete class can be realized by the solutions of the relativistic equivalent oscillator problem. The

Dirac Hamiltonian for this latter problem possesses exact solutions, and reduces in the non-relativistic limit to an isotropic harmonic oscillator with spin-orbit coupling of the Thomas-Frenkel form. It is therefore likely to provide an interesting alternative to the hydrogen atom for the study of symmetry groups.

A calculation of Coulomb energies uṣing this equivalent oscillator model is carried out with the hope of finding nuclei for which relativistic corrections are not negligible. To enable comparisons to be made, similar calculations are carried out using both the non-relativistic oscillator and the relativistic equivalent oscillator shell models. Models based on these Hamiltonians relate the Coulomb energy to the nuclear radius. The nuclear radius is determined from experiments, to within a certain uncertainty, for example by electron scattering or μ-mesonic atom X-ray experiments. On the other hand, since the mid1930's the experimental Coulomb energy differences of mirror nuclei have been taken from β-decay data, or from the Q-values of nuclear reactions. These data were then used to estimate the size of the nucleus. Within the last ten years, isobaric analog states have been discovered in heavy nucleị, resulting in an increase in available data on Coulomb energies and nuclear sizes (9,10). This explains the recent interest in the study of Coulomb energies and gives a motivation for the application of the relativistic equivalent oscillator.

CHAPTER II

CONTINUOUS GROUP THEORY

In this chapter, we discuss continuous groups, and in particular, those aspects of the subject which are relevant to the symmetries of the various quantum mechanical Hamiltonians, and their applications in physics: The concepts of semisimple Lie algebras, root diagrams, weight diagrams, and irreducible representations will be discussed. Since the groups $S O(4)$ and $S U(3)$ are of particular relevance to non-relativistic, single particle quantum mechanics, and also have connections with the relativistic equivalent oscillator, they will be given special attention.

By continuous groups, we mean groups of transformations defined by continuous, differentiable functions

$$
\begin{array}{r}
x_{i}^{\prime \prime}=f_{i}\left(x_{1}, x_{2}, \ldots, x_{n} ; a_{1}, \ldots, a_{r}\right) \\
i=1,2,3, \ldots, n \tag{1}
\end{array}
$$

The numbers $a_{1}, a_{2}, 00, a_{r}$ are parameters, fixed values of which define a particular group element. If, starting from the set $a_{1}, a_{2}, \ldots, a_{r}{ }^{0}$ of parameters defining the identity transformation, we can reach any element of the group by a continuous path in the parametrization space, then the group is said to be connected to the identity. For such groups there exist differential operators X_{i}, called the infinitesimal generators, by means of which the finite transformations can be built up by repeated application, starting from the identity transformation. The
connection between the infinitesimal generators and finfte transformations was first studied by S. Lie (11), who showed that

$$
\begin{equation*}
\phi\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right)=e^{a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{r} X_{r}}{ }_{\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)} \tag{2}
\end{equation*}
$$

as a part of his first fundamental theorem.
An example of this is the two dimensional, proper rotation group with transformations defined by

$$
\begin{align*}
& x_{1}^{\prime}=x_{1} \cos \phi+x_{2} \sin \phi \\
& x_{2}^{\prime}=-x_{1} \sin \phi+x_{2} \cos \phi \tag{3}
\end{align*}
$$

From the fact that

$$
\begin{equation*}
x_{1}:=e^{\phi\left(x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}\right)} x_{1} \tag{4}
\end{equation*}
$$

we see that one of the generators is

$$
\begin{equation*}
x_{1}=x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}} \tag{5}
\end{equation*}
$$

The generators form a mathematical algebra (12), called a Lie algebra. To define a Lie algebra, we first give the condition that there exists a basis set of linearly independent elements such that any other element X is a linear combination

$$
\begin{equation*}
X={ }_{i=1}^{r} C_{i} X_{i} \tag{6}
\end{equation*}
$$

Secondly, we require the definition of a rule of combination which satisfies the closure condition

$$
\begin{equation*}
\left[x_{k}, x_{1}\right]={\underset{m}{\sum} \sum_{1}^{r} c_{k 1}^{m} x_{m}}^{m} \tag{7}
\end{equation*}
$$

where the $C_{k I}{ }^{m}$, called structure constants, are numbers. Thirdly, the structure constants must satisfy

$$
\begin{equation*}
c_{k I}^{m}=-c_{1 k}^{m} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\sum_{i}}^{\mathrm{r}}\left(C_{1 n}^{k} c_{m j}^{n}+C_{m n}^{k} c_{j 1}^{n}+c_{j n}^{k} c_{1 m}^{n}\right)=0 \tag{9}
\end{equation*}
$$

The second and third fundamental theorems of Lie show that the infinitesimal generators form a Lie algebra; with the rule of combination taken as the commutator. In particular, Lie was able to prove conversely that if the above relations hold, the X_{i} are the infinitesimal generators of a continuous group.

In quantum mechanics, Lie algebras are formed by Hermitian operators on Hilbert space. Generally speaking, the operators are not represented by homogeneous functions of first derivatives. They are not, therefore, generators in the sense used by Lie. However, the commutation relations, and the Hermiticity conditions are usually enough to ensure that the operators have matrix elements which are equivalent to those of the Lie generators of a continuous group. Which group and which irreducible representations are realized is determined by the values of certain invariant operators which commute with all the elements of the Lie algebra. For a semisimple Lie algebra, defined in the next paragraph, one of these is the Casimir invariant (13)

$$
\begin{equation*}
\underset{\sim}{C}=\sum_{\mu, v} g^{\mu v} x_{\mu} X_{v} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{\mu v}=\alpha_{\alpha, \beta}^{\Sigma_{\beta}} C_{\mu \beta}^{\alpha} C_{v \alpha}^{\beta} ;\left[\underset{\sim}{c}, X_{\mu}\right]=0 \tag{11}
\end{equation*}
$$

When we consider the application of different types of Lie algebras, it turns out that a certain type called a semisimple Lie algebra is of most importance. A semisimple Lie algebra is defined as a Lie algebra which possesses no Abelian invariant subalgebras. An Abelian invariant subalgebra is defined as a subalgebra whose elements commute among themselves and whose commutators with other elements of the Lie algebra are contained in the subalgebra. If the requirement that the elements of the subalgebra commute among themselves is relaxed, the subalgebra is called simply an invariant subalgebra. The very special type of algebra possessing no invariant subalgebras is called a simple Lie algebra.
E. Cartan (14) gave a necessary and sufficient condition for a Lie algebra to be semisimple (Cartan's theorem). The condition is that the matrix formed by the metric tensor of Equation (11) be non-singular.

$$
\begin{equation*}
\operatorname{det}\left(g_{\mu v}\right) \neq 0 \tag{12}
\end{equation*}
$$

He also showed that all semisimple Lie algebras can be written as a direct sum of simple Lie algebras. Hence, the problem of classifying semisimple Lie algebras is reduced to one of classifying simple Lie algebras.

The problem of classifying simple Lie algebras was solved by E. Cartan (12) and B. L. van der Waerden (15). Modern discussions of the problem have been given by G. Racah (16) and C. Fronsdal (17).

The first step is to give the largest number of mutually commuting, linearly independent elements. This number is called the rank of the
algebra, and it is obviously at least one. In standard notation, we then write

$$
\begin{equation*}
\left[H_{i}, H_{j}\right]=0 \quad i, j=1,2, \ldots, 1 \tag{13}
\end{equation*}
$$

Cartan proved that the remaining basis elements of the simple Lie algebra can be chosen so that they satisfy the relations

$$
\begin{align*}
& {\left[H_{i}, E_{1}\right]=r_{i}(1) E_{1}} \\
& {\left[E_{1}, E_{-1}\right]=\frac{\sum_{i=1}^{2}}{1} r_{i}(1) H_{i}} \tag{14}\\
& {\left[E_{1}, E_{\beta}\right]=N_{1 \beta} E_{1+\beta}}
\end{align*}
$$

It is customary to label the H^{\prime} s with numbers for subscripts, and the $E^{\text {t }} \mathrm{s}$ with Greek letters. The $r(\alpha)$ are called root vectors and they play an important role in the classification: If we imagine a set of coordinate axes, with the number of axes equal to the rank of the algebra, then an 1-dimensional graph showing all of the root vectors is called a root diagram. When the E 's are properly normalized, the angle between neighboring root vectors is constant and the diagram is called the symmetric root diagram.

For example, we consider the Lie algebras of the special unitary group in three dimensions, $S U(3)$, and the special orthogonal group in four dimensions, $S 0(4)$. Both of these groups have Lie algebras of rank two. However, $S 0(4)$ does not have a simple Lie algebra, since its Lie algebra is isomorphic to that of a direct sum of two simple Lie algebras

$$
\begin{align*}
& {\left[J_{k}, J_{1}\right]=i \varepsilon_{k 1 m} J_{m}} \\
& {\left[K_{k}, K_{1}\right]=i \varepsilon_{k 1 m} K_{m}} \tag{15}\\
& {\left[J_{k}, K_{1}\right]=0 \quad k, 1, m=1,2,3 .}
\end{align*}
$$

The defining representation of the group $\$ 0$ (42 is made up of all four by four real matrices with determinant plus one (this is why it is called special) which leave invariant the form

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}
$$

The infinitesimal generators of this group have been given, for example, by Thomas (18) or Bargmann (19). They are

$$
\begin{align*}
D_{\alpha \beta}=-i\left[x_{\alpha} \frac{\partial}{\partial x_{\beta}}-x_{\beta} \frac{\partial}{\partial x_{\alpha}}\right] & \tag{16}\\
& \alpha, \beta=1,2,3,4
\end{align*}
$$

and they obey the commutation relations

$$
\begin{equation*}
\left[D_{\alpha \beta}, D_{\gamma \delta}\right]=i \delta_{\alpha \gamma} D_{\beta \delta}+i \delta_{\beta \delta} D_{\alpha \gamma}+i \delta_{\alpha \beta} D_{\gamma \beta}+i \delta_{\beta \gamma} D_{\delta \alpha} \tag{17}
\end{equation*}
$$

If we define pseudovector operators by the relations

$$
\begin{array}{lll}
D_{23} \rightarrow L_{1} & D_{31} \rightarrow L_{2} & D_{12} \rightarrow L_{3} \\
D_{41} \rightarrow M_{1} & D_{42} \rightarrow M_{2} & \mathbf{D}_{43} \rightarrow M_{3} \tag{18}
\end{array}
$$

then we get a more transparent form for the commutation relations

$$
\begin{align*}
& {\left[L_{i}, L_{j}\right]=i \varepsilon_{i j k} L_{k}} \\
& {\left[M_{i}, M_{j}\right]=i \varepsilon_{i j k} L_{k}} \tag{19}
\end{align*}
$$

$$
\begin{equation*}
\left[L_{i}, M_{j}\right]=i \varepsilon_{i j k} M_{k} \quad i, j, k=1,2,3 . \tag{19}
\end{equation*}
$$

$\varepsilon_{\text {ijk }}$ here is the Levi-Civita symbol, antisymmetric in interchange of any two indices. The local $S O(3) \times S O(3)$ structure is brought out by the transformation

$$
\begin{equation*}
\vec{J}=\frac{1}{2}(\vec{L}+\vec{M}), \quad \vec{K}=\frac{1}{2}(\overrightarrow{\mathrm{~L}}-\vec{M}) \tag{20}
\end{equation*}
$$

giving the commutation relations (15).
The symmetric root diagram is shown in Figure la, and corresponds to the generators

$$
\begin{align*}
& H_{1}=J_{3} \quad E_{\alpha}=\frac{J_{1}+i J_{2}}{\sqrt{2}} \quad E_{-\alpha}=\frac{J_{1}-i J_{2}}{\sqrt{2}} \\
& H_{2}=K_{3} \quad E_{\beta}=\frac{K_{1}+i K_{2}}{\sqrt{2}} \quad E_{-\beta}=\frac{K_{1}-i K_{2}}{\sqrt{2}} \tag{21}
\end{align*}
$$

The group SU(3) is defined as the group formed by all unitary three by three matrices with determinant plus one:

$$
\begin{equation*}
\mathrm{U}^{+} \mathrm{U}=\mathrm{UU}^{+}=1 ; \text { det } \mathrm{U}=1 ; \mathrm{U}^{+}=\tilde{\mathrm{U}}^{*} \tag{22}
\end{equation*}
$$

These matrices happen to leave invariant the form

$$
|x|^{2}+|y|^{2}+|z|^{2}
$$

The infinitesimal generators which give the symmetric root diagram are

$$
\begin{equation*}
H_{1}=\frac{1}{2 \sqrt{3}}\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right) ; \quad H_{2}=\frac{1}{6}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-\frac{1}{3} z \frac{\partial}{\partial z} \tag{23}
\end{equation*}
$$

Figure 1. Symmetric Root Diagrams of (a) SO (4) and (b) SU(3). (c) Weight Diagram of the 3 Representation of SU(3)

$$
\begin{array}{ll}
E_{\alpha}=\frac{1}{\sqrt{6}} \times \frac{\partial}{\partial y} ; \quad E_{\beta}=\frac{1}{\sqrt{6}} \times \frac{\partial}{\partial z} ; \quad E_{\bar{\beta}}=\frac{1}{\sqrt{6}} z \frac{\partial}{\partial y} \tag{23}\\
E_{-\alpha}=\frac{1}{\sqrt{6}} \text { y } \frac{\partial}{\partial x} ; \quad E_{-\beta}=\frac{1}{\sqrt{6}} z \frac{\partial}{\partial x} ; \quad E_{-\bar{\beta}}=\frac{1}{\sqrt{6}} y \frac{\partial}{\partial z}
\end{array}
$$

When we say that these operators are the generators, a certain parametrization is assumed. Finite transformations are generated by

$$
\begin{align*}
U= & e^{i\left(\varepsilon_{1} H_{1}+\varepsilon_{2} H_{2}+\varepsilon_{\alpha} E_{\alpha}+\varepsilon_{+\alpha}^{*} E_{-\alpha}\right.} \tag{24}\\
& \left.+\varepsilon_{\beta} E_{\beta}+\varepsilon_{\beta}^{*} E_{-\beta}^{*}+\varepsilon_{\bar{\beta}} E_{\bar{\beta}}+\varepsilon_{+\bar{\beta}-\bar{\beta}}^{*}\right)
\end{align*}
$$

where ε_{1} and ε_{2} are real and $\varepsilon_{\alpha}, \varepsilon_{\beta}, \varepsilon_{\bar{\beta}}$ are complex.
Now that we have this example, we are in a position to explain the $N_{\alpha \beta}$'s of Equation (14). The root diagram of SU(3) is shown in Figure 1b. All the commutation relations are given by this diagram, by reading off the root vectors and a knowledge that

$$
\begin{equation*}
N_{\alpha, \beta} \equiv \pm \frac{1}{\sqrt{6}} \text { or } 0 \quad \alpha \neq-\beta \tag{25}
\end{equation*}
$$

If the vector $\vec{\alpha}+\vec{\beta}=\vec{\gamma}$ is on the root diagram, then $N_{\alpha \beta} \neq 0$. The $\alpha=-\beta$ cases are given by the root vectors as

$$
\begin{align*}
& {\left[\mathrm{E}_{\alpha}, \mathrm{E}_{-\alpha}\right]=\frac{1}{\sqrt{3}} \mathrm{H}_{1}} \\
& {\left[\mathrm{E}_{\beta}, \mathrm{E}_{-\beta}\right]=\frac{1}{2 \sqrt{3}} \mathrm{H}_{1}+\frac{1}{2} \mathrm{H}_{2}} \tag{26}\\
& {\left[\mathrm{E}_{\left.\bar{\beta}, \mathrm{E}_{-\beta}\right]}=\frac{1}{2 \sqrt{3}} \mathrm{H}_{1}-\frac{1}{2} \mathrm{H}_{2}\right.}
\end{align*}
$$

We now go to the irreducible representations of semisimple Lie groups, and their pictorial labelings by means of weights and weight diagrams.

Let us recall the case of the $\operatorname{SU}(2)$ group. There the irreducible representation is specified uniquely by giving the value of f, which may take on integer or half integer values. The Iinearly independent basis functions are $2 j+1$ in number, and may be taken to be eigenfunctions of $H_{1}=J_{z}$. If we take $h=1$, the largest eigenvalue of H_{1} is equal to j. Eigenvalues $-\mathrm{j},-\mathrm{j}+1,-\mathrm{j}+2, \ldots \mathrm{j}-\mathrm{j}-\mathrm{j}$ also exist. $\mathrm{SU}(2)$ has a simple Lie algebra of rank one。

If the rank of the Lie algebra is some number $\ell>1$, we generalize this by saying that there exists a highest weight vector ($\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}$) which specifies the irreducible representation uniquely (up to equivalence). Other weight vectors are the labels for basis functions besides the one corresponding to the highest weight vector. The components of the weight vectors are defined by the relations

$$
\begin{equation*}
H_{i} \psi(\vec{\lambda})=\lambda_{i} \psi(\vec{\lambda}) \tag{27}
\end{equation*}
$$

where ψ is a basis function.
For a given irreducible representation, a graph showing the weight vectors is called a weight diagram. Figure 1c, for example, shows the weight diagram for the defining three by three irreducible representátion of $\mathrm{SU}(3)$, and this representation is sometimes denoted 3 。

A more detailed discussion of weights and weight diagrams can be found in the articles by Fronsdal (17), Racah (16), or van der Waerden (15)

Let us now discuss the examples $S O$ (4) and $S U(3)$, that is, their
irreducible representations.
Suppose we have a set of Hermitian operators which satisfy the commutation relations (19) of SO(4). Finding the matrix elements of these operators is equivalent to the problem of finding matrix representations of the Lie algebra of the group $S O(4)$. These matrices then generate representations of the group $S O$ (4) (but not necessarily single valued representations). If we require each basis function to be connected to all the others by the operators of Equation (19), then we are finding "irreducible" representations. The solution of this problem for $\operatorname{SO}(4)$ has been discussed by a number of authors, including Paulị (20).

We first find matrix elements of the subalgebra

$$
\begin{equation*}
\left[L_{k}, L_{1}\right]=i \varepsilon_{k 1 m} L_{m} \tag{28}
\end{equation*}
$$

This can be done, as is well known, by appealing to
(1) Commutation relations
(2) Hermiticity conditions
(3) The value of the Casimir invariant:

$$
\begin{equation*}
L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}=L_{z}^{2}+\frac{1}{2}\left(L_{+} L_{-}+L_{-} L_{+}\right) \tag{29}
\end{equation*}
$$

where

$$
L_{+}=L_{x}+i L_{y} ; L_{-}=L_{x}-i L_{y},
$$

the well known step up and step down ladder operators in the quantum mechanical theory of angular momentum. The derivation can be found in the book by Merzbacher (21) or the paper by Nelson (22). The result is that, with standard choices of phases, the only non-vanishing matrix
elements are

$$
\begin{gather*}
\langle j, \mu| L_{z}|j, \mu\rangle=\mu \tag{30}\\
\langle j, \mu \pm 1| L \pm \mid j, \mu>=\sqrt{(j \pm \mu)(j \pm \mu+t)}
\end{gather*}
$$

where $j=0, \frac{1}{2}, 1, \ldots$ and $\mu=-j,-j+1, \ldots, j-1, j$, and the $S U(2)$ Casimír invariant is

$$
\begin{equation*}
\langle j, \mu| L^{2}|j, \mu\rangle=j(j+1) \tag{31}
\end{equation*}
$$

In order to find the non-vanishing matrix elements of the operator \vec{M} (defined as a Hermitian operator satisfying Equation (19), we now observe that the Casimir invariant and the second invariant of the $S 0(4)$ algebra are:

$$
\begin{align*}
& C(1)=\frac{1}{2}(\vec{M} \cdot \vec{M}+\vec{L} \cdot \vec{L}) \\
& C(2)=\vec{M} \cdot \vec{L} \tag{32}
\end{align*}
$$

One method, used by Condon and Shortley (23), is to now take advantage of the identity

$$
\begin{equation*}
\left(L^{2},\left[L^{2}, \vec{M}\right]\right)=2\left(L^{2} \vec{M}+\vec{M}_{L}^{2}\right)-4 \vec{L}(\vec{M} \cdot \vec{L}) \tag{33}
\end{equation*}
$$

or

$$
\begin{equation*}
L^{4} \vec{M}-2 L^{2} \vec{M} L^{2}+\overrightarrow{M L}^{4}=2\left(L^{2} \vec{M}+\vec{M} L^{2}\right)-4(\vec{M} \cdot \vec{L}) \tag{34}
\end{equation*}
$$

Using the fact that the invariant $C(2)$ must be diagonal within an irreducible representation we then get the result

$$
\begin{equation*}
\left[\left(j+j^{\prime}+1\right)^{2}-1\right]\left[\left(j-j^{\prime}\right)^{2}-1\right]\langle\alpha j \mu| \vec{M}\left|\alpha^{\prime} j^{\prime} \mu^{\prime}\right\rangle=0 \tag{35}
\end{equation*}
$$

Which implies that the only non-vanishing matrix elements occur for

$$
\begin{equation*}
j^{\prime}=j \pm 1 \quad \text { Or } \quad j^{\prime}=j \tag{36}
\end{equation*}
$$

With this knowledge, we next use the commutation relation

$$
\begin{equation*}
\left[\mathrm{M}_{-}, \mathrm{J}_{-}\right]=0 \tag{37}
\end{equation*}
$$

to get the identity

$$
\begin{equation*}
\frac{\langle\alpha j \mu| M-\left|\alpha_{j}^{\prime} j-1, \mu+1\right\rangle}{\sqrt{(j-\mu-1)(j-\mu)}}=\frac{\langle\alpha j \mu-1| M-\left|\alpha_{j}^{\prime} j-1, \mu\right\rangle}{\sqrt{(j-\mu)(j-\mu+1)}} \tag{38}
\end{equation*}
$$

Since each side of this equation is independent of μ, we conclude

$$
\begin{equation*}
\langle\alpha j M| M-\left|\alpha^{\prime} j+1, \mu+1\right\rangle=-\left\langle\alpha j\|\vec{M}\| \alpha^{\prime} j+1\right\rangle \sqrt{(j+\mu+1)(j+\mu+2)} \tag{39}
\end{equation*}
$$

where $\langle\alpha j||\vec{M}||\alpha!j+1\rangle$ is a reduced matrix element, independent of μ.
Similar commutation relations such as

$$
\begin{equation*}
\left[L_{+}, M_{-}\right]=2 M_{z} \tag{40}
\end{equation*}
$$

and the Hermiticity conditions can be used for other matrix elements. In order to finally fix the reduced matrix elements we use the commutation relation

$$
\begin{equation*}
\left[M_{+}, M\right]=2 L_{z} \tag{41}
\end{equation*}
$$

and the value of $C(2)$. This gives, for example, the equation

$$
\begin{equation*}
|\langle j\|\vec{M}\| j-1\rangle|^{2}=\frac{1}{4 j^{2}-1}\left[2 C(1)+1-\frac{(C(2))^{2}}{j^{2}}-j^{2}\right] \tag{42}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left.|<j||\vec{M}||j-1\rangle\right|^{2} \geqslant 0 \tag{43}
\end{equation*}
$$

and hence this, together with the fact that the right hand side of the above Equation (42) becomes negative for large j, implies that there must exist a maximum value of j within an irreducible representation. If we therefore choose the phases appropriately, and write the Casimir invariants as

$$
\begin{equation*}
C(1)=\frac{1}{2}\left(j_{1}^{2}-\frac{3}{4}\right) ; \quad C(2)=j_{\alpha}^{2} j_{1}^{2} \tag{44}
\end{equation*}
$$

$$
\begin{align*}
& \text { then we get } \\
& \begin{aligned}
M_{ \pm}|j, \mu\rangle= & \pm \sqrt{(j \mp \mu)(j \mp \mu-1)} C_{j}|j-1, \mu \pm 1\rangle-\sqrt{(j \mp \mu)(j \pm \mu+1)} A_{j}|j, \mu \pm 1\rangle \\
& \pm \sqrt{(j \pm \mu+1)(j \pm \mu+2)} C_{j+1}|j+1, \mu \pm 1\rangle
\end{aligned} \\
& \begin{aligned}
M_{z}|j, \mu\rangle= & \sqrt{(j+\mu)(j-\mu)} C_{j}|j-1, \mu\rangle-\mu A_{j}|j, \mu\rangle \\
& -\sqrt{(j+\mu+1)(j-\mu+1)} C_{j+1}|j+1, \mu\rangle
\end{aligned}
\end{align*}
$$

where

$$
A_{j}=\frac{-j_{0} j_{1}}{j(j+1)} \quad c_{j}=\frac{i}{j} \sqrt{\frac{\left(j^{2}-j_{0}^{2}\right)\left(j_{1}{ }^{2}-j^{2}\right)}{4 j^{2}-1}} \quad i=\sqrt{-1}
$$

Here j_{0} becomes the lowest value of j within an irreducible representation and j_{1} is one plus the highest value. The label α has been dropped since we postulate no higher symmetry than $S O(4)$, hence there can be no extra labels:

The dimensionality of an irreducible representation is now easily seen to be the sum

$$
\begin{equation*}
\mathrm{d}=\underset{j=j_{0}}{\mathrm{j}_{1}-1}(2 j+1)=\left(j_{1}-j_{0}\right)\left(j_{1}+j_{0}\right)=j_{1}^{2}-j_{0}^{2} \tag{46}
\end{equation*}
$$

If we define new variables k and l by the equations

$$
\begin{equation*}
j_{1}=k+\ell+1 \quad j_{0}=|k-l| \tag{47}
\end{equation*}
$$

we get

$$
\begin{equation*}
d=(2 \mathrm{k}+1)(2 \ell+1) \mathrm{k}, \ell=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \tag{48}
\end{equation*}
$$

This result could have been expected from the fact that SO(4) has a Lie algebra which is isomorphic to that of $\mathrm{SU}(2) \mathrm{x} \operatorname{SU}(2)$.

We have thus constructed the Hermitian irreducible representations of the Lie algebra of $S O(4)$. These representations were found in a basis in which L_{z} and the invariant operators $C(1)$ and $C(2)$ were diagonal. Alternatively, we could have diagonalized the operators H_{1} and H_{2} which correspond precisely to the decomposition suggested earlier in the discussion of weights. However, we would not then have a basis which is the same as the one needed in Chapter III.

Now consider the $\operatorname{SU}(3)$ example. We could follow a procedure similar to that outlined above for $S O(4)$. This has been done, for example, by Nelson (22), who chose a basis in which the isospin operators T^{2}, T_{z} and the hypercharge operator U were diagonal. Instead, we choose the following procedure, which has a closer connection with weight vectors and basis functions.

The highest weight of an $\operatorname{SU}(3)$ representation is given by (Carruthers (22))

$$
\begin{equation*}
\left(\frac{p+q}{2 \sqrt{3}}, \frac{p-q}{6}\right) \tag{49}
\end{equation*}
$$

where p and q are positive integers or zero. It has been shown by
various auchors (Weyl (25), de Swart (26), Faldt (27) that there exists a simple scheme of tensor basis functions; with p upper and q lower indices, for the irreducible representations of $S U(3)$. We first define a vector by the transformation

$$
\begin{equation*}
\bar{x}^{i}=\sum_{i=1}^{3} \alpha_{i j} x^{j} \quad i=1,2,3 \tag{50}
\end{equation*}
$$

where α is any of the three dimensional irreducible representation matrices. The complex conjugate is then denoted by

$$
\begin{equation*}
x_{i}=\left(x^{i}\right)^{*} \tag{51}
\end{equation*}
$$

It happens that these complex conjugate vectors form a basis for the conjugate representation 3^{*} of $\mathrm{SU}(3)$, as do the pseudovectors
where

$$
\begin{equation*}
\xi_{i}=\frac{1}{2} \epsilon_{i j k} C^{j k} \tag{52}
\end{equation*}
$$

This means that

$$
\begin{equation*}
\bar{\xi}_{j}=\alpha_{i j}^{*} \xi_{j}=\alpha_{j i}^{-1} \xi_{j} \tag{53}
\end{equation*}
$$

With this notation in mind, we develop rules for constructing tensor basis functions for irreducible representations of higher dimensionality. The rules are:
(1) The tensor must be totally symmetric in all p upper indices.
(2) The tensor must be totally symmetric in all q lower indices.
(3) The tensor must be traceless ((1) and (2) imply that there must be only one trace, that is, contraction of only one lower and one upper index).

The rigorous proof will not be given here but it is based upon the following arguments. Given a tensor A with p upper and q lower indices, we define new tensors B, C, and D by the relations

$$
\begin{align*}
& B_{j \cdots l}^{\beta \cdots \delta}=\delta_{\alpha}^{i} A_{i j \cdots l}^{a \beta \cdots \delta} \\
& C_{\mu i j \cdots l}^{\gamma \cdots \delta}=\frac{1}{2} \epsilon_{\mu \alpha \beta} A_{i j \cdots l}^{\alpha \beta \gamma \cdots \delta} \tag{54}\\
& D_{k \cdots l}^{m a \beta \cdots \delta}=\frac{1}{2} \epsilon^{m i j} A_{i j k \cdots l}^{\alpha \beta \cdots \delta}
\end{align*}
$$

The representation formed by the subset of the components of A which are linearly independent is reducible unless B, C, and D are identically zero. Hence, if we mind our p^{\prime} s and q 's; we are led to the rules (1), (2), and (3).

These rules lead to formulas for the reduction of direct product representations, For example,

$$
\begin{equation*}
x^{i} y^{j} z^{k}=S^{i j k}+F^{i j k}+G^{i j k}+A^{i j k} \tag{55}
\end{equation*}
$$

where

$$
\begin{align*}
& S^{i j k}=\frac{1}{6}\left[x^{i} y^{j} z^{k}+x^{i} y^{k} z^{j}+x^{j} y^{i} z^{k}+x^{k} y^{j} z^{i}+x^{j} y^{k} z^{i}+x^{k} y^{i} z^{j}\right] \\
& F^{i j k}=\frac{1}{3}\left[\left(x^{i} z^{k}-x^{j k} z^{i}\right) y^{j}+\left(y^{i} z^{k}-y^{k} z^{i}\right) x^{j}\right] \tag{56}\\
& G^{i j k}=\frac{1}{3}\left[\left(x^{i} y^{j}-x^{j} y^{i}\right) z^{k}+\left(y^{j} z^{i}-y^{i} z^{j}\right) x^{k}\right] \\
& A^{i j k}=\frac{1}{6}\left[x^{i} y^{j} z^{k}-x^{i} y^{k} z^{j}-x^{j} y^{i} z^{k}-x^{k} y^{j} z^{i}+x^{j} y^{k} z^{i}+x^{k} y^{i} z^{j}\right]
\end{align*}
$$

is equivalent to the reduction formula

$$
\begin{equation*}
3(x) 3 x=10+8+8+1 \tag{57}
\end{equation*}
$$

Here the numbers denote dimensionalities of irreducible representations, and the numbers on the right hand side of the equation are the numbers of linearly independent components of the tensors S, F, G, and A, respectively.

Other results connected with these tensors include the dimensionality formula for irreducible representations of highest weight given by p and q . This is found by first considering a symmetric tensor with only upper indices. The indices can only be $1,2,3$. Suppose that m of them are equal to one. Then because the tensor is symmetric, the number of linearly independent components is $\mathrm{p}-\mathrm{m}+1$, which is true since $0,1,2, \ldots$, or $p-m$ of the remaining indices may be 2 . The total number of linearly independent components is then given by

$$
\begin{equation*}
N_{1}=\sum_{m=0}^{p}(p-m+1)=\frac{1}{2}(p+1)(p+2) \tag{58}
\end{equation*}
$$

If we now allow the tensor to have q lower indices, and temporarily ignore the restriction that the tensor must be traceless (or actually be a trace in the case of one dimensional representations), the number becomes.

$$
\begin{equation*}
N_{2}=\frac{1}{4}(p+1)(p+2)(q+1)(q+2) \tag{59}
\end{equation*}
$$

The trace has $\mathrm{p}-1$ upper indices and $\mathrm{q}-1$ lower indices, hence, we have to subtract

$$
\begin{equation*}
N_{3}=\frac{1}{4}(p)(p+1) q(q+1) \tag{60}
\end{equation*}
$$

This finally gives the dimensionality formula

$$
\begin{equation*}
d=(1+p)(1+q)\left(1+\frac{1}{2}(p+q)\right) \tag{61}
\end{equation*}
$$

This result was given by de Swart (26) by this method, but it has been obtained by other authors by other methods: For example, Nelson (22) derived it after constructing irreducible Hermitian representations of the Lie algebra of $\mathrm{SU}(3)$ 。

CHAPTER III

GROUP STRUCTURE OF THE RELATIVISTIC

EQUIVALENT OSCILLATOR

This chapter is devoted to the invariance and noninvariance groups of the relativistic equivalent oscillator. We begin by discussing the meaning of these terms, and the related problems that have been solved previously, The work of Fradkin and Kiefer (7) on the one hand, and Malkin and Manko $(6,28)$ on the other, will be discussed in detail. These authors discussed the relativistic hydrogen atom, hence their work will serve as an introduction to the results presented in the final sections of this chapter, that is, the group structure of the relativistic equivalent oscillator。

It is well known that the existence of degenerate energy levels for various quantum mechanical systems can be connected with the fact that certain operators commute with the Hamiltonian. In addition, the basis functions belonging to any given energy level usually can be shown to realize an irreducible representation of a Lie group, which is called the invariance group of the Hamiltonian. A set of operators then exists which have the commutation relations of the Lie algebra of this group.

When slight perturbation terms are added to the Hamiltonian, the invariance group is usually destroyed. However, as a part of a larger non-invariance group, it is still very relevant to the problem. In
their discussion of the problems of applying group theory to elementary particle physics, Barut (29) and Bohm (3) introduced the idea of a dynamical symmetry group. As used by them, the term applies to a Lie group for which the set of all eigenfunctions of the Hamiltonian provides a basis for one irreducible representation. In addition, the invariance group is required to be a subgroup of the larger group. If the number of energy levels is infinite, it follows that the dynamical symmetry group is non-compact (a compact Lie group is a lie group whose parameters vary over a finite range). This fact follows from the theorem which states that the unitary irreducible representations of a Lie group cannot be finite dimensional unless the group is compact.

The Lie algebra of the dynamical symmetry group is constructed, of course, by including operators which do not commute with the Hamiltonian. These usually involve non-invariant (ioe., not commuting with the Hamiltonian) generators which take degenerate set of eigenfunctions belonging to a given energy level. into these of another level. These thus help mapping of one subspace of the Hilbert space into another subspace. The commutation relations of the Lie algebra may be realized, not identically, but only on functions which are linear combinations of eigenfunctions of the Hamiltonian. That is, the Lie algebra is realized only when the commutators operate in the space for which the solutions form a complete set. This point has been discussed by Malkin and Manko (2).

There does not seem to exist a general, infallible method for finding these invariance and non-invariance groups. Hence, we have to discuss different cases. In non-relativistic quantum mechanics, invariant operators can be found by (A) generalizing classical integrals of the
motion or (B) picking out the operators which enable a separation of variables to be made. The first method is based upon the correspondence between Poisson brackets in classical mechanics and commutators in quantum mechanics.

$$
\begin{equation*}
\{F, G\} \rightarrow \frac{1}{i \not i n}[\hat{F}, \hat{G}] \tag{1}
\end{equation*}
$$

The second method corresponds, for example, to the existence of the invariant operators

$$
\begin{equation*}
A_{i j}=\frac{1}{2 m} p_{i} p_{j}+\frac{1}{2} m_{o} w^{2} x_{i} x_{j} \quad i, j=1,2,3 \tag{2}
\end{equation*}
$$

which exist for the non-relativistic isotropic harmonic oscillator due to separability in Cartesian coordinates.

Neither of these methods works for the relativistic equivalent oscillator. This is connected with the fact that the Dirac matrices do not have a classical analog.

Malkin and Manko (6) discussed the discrete spectrum ($\mathrm{E}<\mathrm{m}$) for the exact Dirac Coulomb problem and the symmetric Coulomb problem of Biedenharn and Swamy (5). In a second paper, they discussed the continuous spectrum ($E>m$) (28). They showed that $0(4,2) \times \operatorname{SU}(2)$ is a dynamical symmetry group for the discrete spectrum of both problems. For the continuous spectrum, $\mathrm{SL}(2, \mathrm{c}) \mathrm{x} \operatorname{SU}(2)$ was shown to be an invariance group of the Biedenharn model.

As an alternative, Kiefer and Fradkin (7) showed that $0(4,1)$ is a dynamical symmetry group for the bound state solutions of both problems.

The difference between the two problems lies in the fact that the SO(4) subgroup is an invariance group only for the symmetric Coulomb problem. For both problems, the $\operatorname{SU}(2)$ generators

$$
\begin{equation*}
\vec{J}=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}+\frac{1}{2} \vec{\sigma} \tag{3}
\end{equation*}
$$

commute with the Hamiltonian. For the exact Dirac problem, however, we have in addition only the Lippman-Johnson operator

$$
\begin{equation*}
S=-\left[i k p_{1}\left(H-p_{3}\right)+q(\vec{\sigma} \cdot \hat{r})\right] \frac{1}{\sqrt{k^{2} H^{2}-\gamma^{2}}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\rho_{3}(\overrightarrow{\sigma L}+1) \tag{5}
\end{equation*}
$$

When $|k| \neq N$, this operator causes a doubling of the degeneracy. For the Biedenharn-Swamy problem there exists a "helicity" operator analogous to the above, but there exist in addition other invariant operators (5).

The Malkin and Manko treatment of the discrete spectrum of these two problems was based upon a generalization of their earlier treatment of the nonrelativistic Coulomb problem. This, in turn, was based upon the pioneer work of Fock (30) and Bargman (19). In this approach, we write the Schrodinger equation in momentum space, and then use the Fock variables (defined in a subspace of the Hilbert Space corresponding to $\mathrm{H} \rightarrow \mathrm{E}$)

$$
\begin{equation*}
\vec{\zeta}=\frac{2 p_{0}}{p_{0}^{2}+p^{2}} \vec{p}, \zeta_{4}=\frac{p_{0}^{2}-p^{2}}{p_{0}^{2}+p^{2}}, p_{0}=\sqrt{-2 E} \tag{6}
\end{equation*}
$$

The solutions of the Schordinger equation then correspond to harmonic polynomials of the four variables ζ_{i}, that is, they are also solutions of the four dimensional Laplace equation

$$
\begin{equation*}
\Delta_{4} \varphi=\frac{\partial^{2} \phi}{\partial \zeta_{1}^{2}}+\frac{\partial^{2} \phi}{\partial \zeta_{2}^{2}}+\frac{\partial^{2} \phi}{\partial \zeta_{3}^{2}}+\frac{\partial^{2} \varphi}{\partial \zeta_{4}^{2}}=0 \tag{7}
\end{equation*}
$$

Malkin and Manko showed that fifteen operators corresponding to generators of the $0(4,2)$ group existed, and these operators commuted with the above four dimensional Laplacian when operating on solutions. The next step was the addition of the Pauli spin matrices, which gives the dynamical symmetry group $0(4,2) \times \operatorname{SU}(2)$, because the $\operatorname{SU}(2)$ generators (Pauli Spin Operators) commute with the generators of the $0(4,2)$ group. The generalization of the above to relativistic problems consists of first writing the iterated symmetric Hamiltonian in the form

$$
\begin{equation*}
Q \phi_{E}=O_{+} O_{-} \oplus_{E}=\left(\Delta+\frac{2 \alpha Z E}{r}+E^{2}-m^{2}\right) \phi_{E}=0 \tag{8}
\end{equation*}
$$

When this equation is transformed to momentum space, the substitution

$$
\begin{equation*}
p_{0}=\sqrt{m^{2}-E^{2}} \tag{9}
\end{equation*}
$$

leads to an equation of the same form as the Schrodinger equation in momentum space. Since all the Dirac matrices commute with this new equation, the new equation has dynamical symmetry $0(4 ; 2) \times \operatorname{SU}(2,2)$. The $\operatorname{SU}(2,2)$ is generated by the Dirac matrices as against the Pauli matrices which generate SU(2). This similarity of equations enabled Malkin and Manko to conclude that the solutions for the discrete spectrum of both the Biedenharn model and the exact Dirac equation must provide a basis for irreducible representations of the $0(4,2) \times S U(2)$ dynamical symmetry group.

The success of the method of Fradkin and Kiefer was based upon a familiarity with the irreducible representations of $0(4,1)$, especially in the basis given by Strom (31). We first observe that the quantum numbers take on the values

$$
N=1,2,3, \ldots
$$

$$
\begin{align*}
& K=-N_{1} N+1, \ldots,-1,+1, \cdots, N-1 \tag{10}\\
& \mu=-|K|+\frac{1}{2}, \cdots,|K|-\frac{1}{2}
\end{align*}
$$

We next note that these quantum numbers have a one to one correspondence with the numbers used by Strow to label the irreducible representation $\nu_{\frac{1}{2}}, \sigma^{\circ}$

$$
\begin{align*}
& p=\frac{S(K)}{2}=+\frac{1}{2},-\frac{1}{2} \\
& n=N-\frac{S(K)}{2}=\frac{3}{2}, \frac{5}{2}, \cdots \\
& j=|K|-\frac{1}{2}=\frac{1}{2}, \frac{3}{2}, \ldots, N-\frac{S(K)}{2}-1 \tag{11}\\
& m=\mu=-|K|+\frac{1}{2}, \ldots,|K|-\frac{1}{2}
\end{align*}
$$

By looking at the matrix elements of the Lie algebra we verify that these values are actually assumed by the Strum parameters. Hence, based on this correspondence between the Hilbert space of solutions and the Hillbert space for the irreducible representations, we conclude that the $O(4,1)$ group is a dynamical symmetry group.

The next step followed by Fradkin and Kiefer was to proceed with an explicit construction of the generators. These generators are to satisfy the commutation relations of the $S O(4,1)$ Lie algebra

$$
\begin{align*}
& {\left[J_{k}, J_{l}\right]=i \epsilon_{k l m} J_{m} ;\left[J_{k,} T\right]=0 ;\left[N_{k}, M_{l}\right]=i \delta_{k l} T} \tag{12}\\
& {\left[J_{k}, N_{l}\right]=i \epsilon_{k l m} N_{m} ;\left[J_{k}, M_{l}\right]=i \epsilon_{k l m} M_{m} ;\left[N_{k}, T\right]=i M_{k}} \\
& {\left[M_{k}, M_{l}\right]=i \epsilon_{k l m} J_{m} ;\left[N_{k}, N_{l}\right]=-i \epsilon_{k l m} J_{m} ;\left[M_{k}, T\right]=i N_{k}} \tag{13}
\end{align*}
$$

Since the explicit representation of these operators is complicated and not too relevant for our purpose, we will not go into this here.

We now take up the discussion of the relativistic equivalent oscillator: In the notation of Swamy (1) and with the help of the oscillator "helicity" operator (32) the Hamiltonian can be made to simulate free particle Hamiltonian

$$
\begin{equation*}
\underset{\sim}{H}=\rho_{1} \vec{\sigma} \cdot \vec{b}+\rho_{3} m_{c} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{\sigma} \cdot \vec{b}=\vec{\sigma} \cdot \vec{p}+i \lambda^{2} \vec{\sigma} \cdot \vec{r} \frac{\vec{\sigma} \cdot \vec{L}+1}{|\vec{\sigma} \cdot \vec{L}+1|} \tag{15}
\end{equation*}
$$

The normalized solutions are

$$
\Phi_{v k \mu}=\left[\begin{array}{c}
\sqrt{\frac{E+m_{0}}{2 E}}|v k \mu\rangle \tag{16}\\
S(k) \sqrt{\frac{E-m_{0}}{2 E}}|v-k \mu\rangle
\end{array}\right]
$$

where $\quad|V K \mu\rangle \rightarrow F_{V \ell} X_{K}^{\mu} ; \quad|V-K \mu\rangle \rightarrow F_{V \ell(-K)} X_{-K}^{\mu}$
The $F_{v 1}$ are the non-relativistic isotropic harmonic oscillator radial

$$
\begin{align*}
& \text { wave functions } \\
& F_{V l}(r)=\sqrt{\frac{2 \lambda^{2 l+3} \Gamma(V+l+3 / 2)}{V![\Gamma(l+3 / 2)]^{2}}} r^{\ell} e^{-\frac{(\lambda r)^{2}}{2}} F_{1}\left(-V, l+\frac{3}{2} ;(\lambda r)^{2}\right) \tag{17}
\end{align*}
$$

normalized $\quad \int_{0}^{\infty} F_{v e}^{2} r^{2} d r=1 \quad$ and we have used the confluent hypergeometric funstion

$$
\begin{equation*}
F_{1}(a ; b ; x)=1+\frac{a}{b} x+\frac{a(a+1)}{b(b+1)} \frac{x^{2}}{2!}+\cdots \tag{18}
\end{equation*}
$$

The χ_{k}^{μ} spin-angle functions (33) are given by the Clebsch-Gordan sum

$$
\begin{equation*}
X_{K}^{\mu}=\sum_{\tau=-\frac{1}{2}, \frac{1}{2}} \zeta_{\mu-\tau, \tau, \mu}^{l(K) \frac{1}{2} j} Y_{\rho(K)}^{\mu-\tau}(\theta, \phi) X_{1 / 2}^{\tau} \tag{19}
\end{equation*}
$$

where

$$
x_{1 / 2}^{1 / 2}=\binom{1}{0}, \quad x_{1 / 2}^{-\frac{1}{2}}=\binom{0}{1}
$$

We note in passing that the momentum space transformations of the problem happen to provide no further insight into the group structure. In fact, if we transform the wave functions to momentum space; we get

$$
\psi_{v k \mu}(\vec{p})=(-1)^{v} i^{-l}\left[\begin{array}{c}
\sqrt{\frac{E+m_{\Theta}}{2 E}}|v k \mu\rangle \tag{20}\\
-i \sqrt{\frac{E-m_{0}}{2 E}}|v-K \mu\rangle
\end{array}\right]
$$

Except for different phases for the small and large components, the solutions have the same form.

The energy is given by

$$
\begin{equation*}
E=\sqrt{m_{0}^{2}+4 \lambda^{2}\left(V+|K|+\frac{1}{2}\right)} \quad v=0,1,2, \ldots, \tag{21}
\end{equation*}
$$

Since $2 j+1=2|k|$, the degeneracy of an energy level is given by

$$
\begin{align*}
d & =\sum_{k=-1}^{-n-1} 2|k|+\sum_{k=1}^{n+1} 2|k|=2 \sum_{k=1}^{n+1} 2|k| \\
& =4 \frac{(n+1)(n+2)}{2}=2(n+1)(n+2) \tag{22}
\end{align*}
$$

This formula suggests the invariance group of the Hamiltonian. We first
find the dimensionality formulas for the irreducible representations of the groups $S p(2 n), S U(n), S O(2 n), S O(2 n+1), G_{2}$, and the other exceptional semisimple Lie groups. These formulas have been given by Weyl (34), Neéman (35), Fronsdal et. al. (36) and other authors. From looking at these formulas, we eliminate all groups except $\mathrm{SU}(3)$ and $\mathrm{SO}(4)$. The degeneracy of the energy levels happens to be four times the dimensionalty of the $(p, q)=(n, 0)$ irreducible representations of $S U(3)$ (Equation (61), Chapter II), and twice the degeneracy of a certain series of irreducible representations of SO (4) (Equation (48), Chapter II). Hence, we suspect that $\operatorname{SU}(3) \times \operatorname{SU}(2) \mathrm{x} \cdot \mathrm{SU}(2)$ or $\mathrm{SO}(4) \times \mathrm{SU}(2)$ is the invariance group of this Hamiltonian.

We now show that $S O(4)$ happens to be applicable. To do this; we look for invariant operators which correspond to the generators:

The angular momentum operator

$$
\begin{equation*}
\vec{J}=\vec{L}+\frac{1}{2} \vec{\sigma} \tag{23}
\end{equation*}
$$

commutes with the Hamiltonian. There is thus an SU(2) subgroup which accounts for $2 \mathrm{j}+1$ of the degenerate states.

In addition, the "helicity" operator given above commutes with the Hamiltonian, and

$$
\begin{equation*}
\vec{\sigma} \cdot \vec{b} \Phi_{v k \mu}=S(K) \sqrt{E^{2}-m_{0}^{2}} \Phi_{v-k \mu} \tag{24}
\end{equation*}
$$

If we define a set of operators

$$
\begin{equation*}
X_{1}=\frac{1}{\sqrt{H^{2}-m_{0}^{2}}} \vec{\sigma} \cdot \vec{b} ; \quad X_{2}=i X_{1} \rho_{3} \frac{\vec{\sigma} \cdot \vec{L}+1}{|\vec{\sigma} \cdot \vec{L}+1|} ; \quad X_{3}=\rho_{3} \frac{\vec{\sigma} \cdot \vec{L}+1}{|\vec{\sigma} \cdot \vec{L}+1|} \tag{25}
\end{equation*}
$$

we get a second $\operatorname{SU}(2)$ algebra

$$
\begin{equation*}
\left[x_{k}, x_{l}\right]=2 i \epsilon_{k \ell m} x_{m} \quad \vec{x} \cdot \vec{x}=3 \tag{26}
\end{equation*}
$$

It is easy to see that this accounts for the degeneracy with respect to the sign of k 。

There still remains some degeneracy to be accounted for, and the next problem is to find the remaining operators. From the Lie algebra. of the generators of the SO (4) group

$$
\left[J_{k}, J_{l}\right]=i \epsilon_{k l m} J_{m},\left[J_{k}, M_{l}\right]=i \epsilon_{k \ell m} M_{m} ;\left[M_{k}, M_{l}\right]=i \epsilon_{k \ell m} J_{m}(27)
$$

we know that the operator which we seek should be a vector operator. By a vector operator we mean three operators satisfying the commutation relations

$$
\begin{equation*}
\left[J_{k}, A_{l}\right]=i \epsilon_{k \ell m} A_{m} \tag{28}
\end{equation*}
$$

Analogously, a second rank tensor operator would be defined by

$$
\begin{equation*}
\left[J_{k}, A_{l m}\right]=i \epsilon_{k \ell n} A_{n m}+i \epsilon_{k m n} A_{l n} \tag{29}
\end{equation*}
$$

The operator

$$
\vec{\sigma} \times \overrightarrow{\mathrm{L}}
$$

is a pseudovector operator which changes the value of k by one For instance

$$
\begin{equation*}
(\vec{\sigma} \times \vec{L})_{z} X_{-K}^{\mu}=-i \sqrt{\left(l+\mu-\frac{1}{2}\right)\left(l-\mu-\frac{1}{2}\right)} X_{K-1}^{\mu} \tag{30}
\end{equation*}
$$

for $j=\ell-\frac{1}{2}, K=\ell$. However, it only changes the angular part of the wave function, and needs to be multiplied by an operator which changes the radial part. With the help of the ladder relations

$$
\begin{align*}
& {\left[\frac{d}{d r}+\frac{\ell+1}{r}-\lambda^{2} r\right] F_{v e}=2 \lambda \sqrt{v+1} F_{v+1, \ell-1}} \\
& {\left[\frac{d}{d r}+\frac{\ell}{r}-\lambda^{2} r\right] F_{v \ell}=-2 \lambda \sqrt{v} F_{v-1, \ell+1}} \tag{31}
\end{align*}
$$

and the representation

$$
\begin{equation*}
\vec{\sigma} \cdot \vec{p}=-i \vec{\sigma} \cdot \hat{r}\left[\frac{d}{d r}+\frac{1}{r}-\frac{\overrightarrow{0} \cdot \vec{r}+1}{r}\right] \tag{32}
\end{equation*}
$$

we introduce the operators

$$
\begin{equation*}
\vec{\Omega}=(\vec{\sigma} \times \vec{L}) \vec{\sigma} \cdot \vec{a} \quad \vec{\Omega}=\vec{\sigma} \cdot \vec{a}(\vec{\sigma} \times \vec{L}) \tag{33}
\end{equation*}
$$

where

$$
\vec{\sigma} \cdot \vec{a}=\overrightarrow{\sigma^{\prime}} \cdot \vec{p}-i \lambda^{2} \vec{\sigma} \cdot \vec{r} \frac{\vec{\sigma} \cdot \vec{L}+1}{|\vec{\sigma} \cdot \vec{L}+1|}
$$

Then either

$$
\frac{1+p_{3}}{2} \vec{\Omega}+\frac{1-p_{3}}{2} \vec{\Omega} \quad \text { or } \quad \vec{\Omega}+\vec{\Omega}+
$$

is an invariant operator. When these operators act on the spinors |vo>, we obtain

$$
\begin{align*}
& \Omega_{0}^{+}|v K \mu\rangle=2 \lambda \sqrt{(V+1)(j-\mu)(j+\mu)}|V+1, K-1, \mu\rangle \\
& \Omega_{-}^{+}|V K \mu\rangle=2 \lambda \sqrt{(V+1)(j-\mu)(j-\mu-1)}|V+1, K-1, \mu+1\rangle \\
& \Omega_{+}^{+}|V K \mu\rangle=-2 \lambda \sqrt{(V+1)(j+\mu)(j+\mu-1)}|V+1, K-1, \mu-1\rangle \tag{34}
\end{align*}
$$

The matrix elements do not correspond to those of the irreducible representations of $S O(4)$ given in Equation (45), Chapter II, Hence, it is not surprising that the commutation rules are not the same

$$
\begin{equation*}
\left[\Omega_{k}+\Omega_{k}^{+}, \Omega_{l}+\Omega_{l}^{+}\right]=-4 i \lambda^{2} \epsilon_{k \ell m} J_{m}\left[H^{2}-m_{0}^{2}-3 \lambda^{2}|k|\right] \tag{35}
\end{equation*}
$$

Having realized this, it is a straightforward task to construct operators having the correct matrix elements, and hence the correct commutation relations. The result is

$$
\begin{align*}
\vec{M} & =-i \frac{\sqrt{\frac{H^{2}-m^{2}}{4 \lambda^{2}}+|K|-\frac{1}{2}}}{2 \lambda(2|K|-1)} \frac{1}{2}\left[\left(\vec{\Omega}+\vec{\Omega}^{\dagger}\right)+\frac{K}{|K|}\left(\vec{\Omega}^{\dagger}-\vec{\Omega}\right)\right] \\
& +\frac{1}{2} i\left[\left(\vec{\Omega}+\vec{\Omega}^{\dagger}\right)+\frac{K}{|K|}\left(\vec{\Omega}-\vec{\Omega}^{\dagger}\right)\right] \frac{\sqrt{\frac{H^{2}-m^{2}}{4 \lambda^{2}}+|K|-\frac{1}{2}}}{2 \lambda(2|K|-1)} \tag{36}\\
& -\frac{1}{2} \frac{H^{2}-m^{2}}{4 \lambda^{2}\left(|K|-\frac{1}{2}\right)\left(|K|+\frac{1}{2}\right)}
\end{align*} \vec{J} \quad l
$$

A check of the commutation rules then shows that

$$
\begin{align*}
& {\left[M_{k}, M_{l}\right]=i \epsilon_{k e m} J_{m}} \\
& {\left[J_{k}, M_{l}\right]=i \epsilon_{k l m} M_{m}} \tag{37}\\
& {\left[X_{k}, M_{l}\right]=0}
\end{align*}
$$

We notice that the Lie algebra of $S 0(4) \times S U(2)$ is realized and the invariants \vec{M}, \vec{J}, and X exhaust the degeneracy.

Now that the $\operatorname{SO}(4) \times \operatorname{SU}(2)$ invariance has been established, the question remains as to what happended to the SU(3) invariance group of the non-relativistic oscillator . Since the radial wave functions are the same we might expect the $\operatorname{SU}(3)$ group to survive. However, two points show that this argument is wrong. First, the non-relativistic limit of the Hamiltonian is (1)

$$
\begin{equation*}
H_{N R}=\frac{1}{2 m_{0}}\left(P^{2}+\lambda^{4} r^{2}\right)+\frac{\lambda^{2}}{m_{0}}\left[(\vec{\sigma} \cdot \vec{L}+1)+\frac{1}{2}\right] \frac{\vec{\sigma} \cdot \vec{L}+1}{|\vec{\sigma} \cdot \vec{L}+1|} \tag{38}
\end{equation*}
$$

Hence, there is a spin-orbit coupling which has shifted the energy levels. If we replace λ^{2} / m by the some number z , then there would be no degeneracy except that of the $\operatorname{SU}(2)$ group, $2 \mathrm{j}+\mathrm{I}_{\mathrm{o}}$. In letting z go from zero to λ^{2} / m, we replace one "accidental" degeneracy by another. We cannot, in general, expect the group to be the same. The second point has to do with degeneracy also: The relativistic Hamiltonian possesses a degeneracy which is four times that of $\operatorname{SU}(3)$. In order to split the states of an energy level into four equal parts, we have to split up the SU(2) subgroup formed by the angular momentum operators. In doing this, we defeat the original purpose of the splitting.

It now remains to establish the non-invariance group for the problem. For this purpose, we follow the example set by Kiefer and Fradkin (7). We first show that the states with fixed sign pf k realize an irreducible representation of the group $S(4,1)$ and then give the noninvariance generators of this group. Ström has given the irreducible representations of $S O(4,1)$ in the basis applicable here (31). The states with fixed sign of k form a basis for the infinite dimensional irreducible representation $\pi_{\frac{1}{2}, \frac{1}{2}}^{+}$in the notation of Ström. This representation belongs to the discrete class, contrary to the cases discussed by Kiefer and Fradkin. To show this, we proceed as follows. The Casimir invariants of the SO(4) group are

$$
\begin{align*}
& C(1)=\frac{1}{2}(\vec{M} \cdot \vec{M}+\vec{J} \cdot \vec{J})=\frac{1}{2}\left[\frac{\left(H^{2}-m^{2}\right)^{2}}{16 \lambda^{4}}-\frac{3}{4}\right] \tag{39}\\
& C(2)=\vec{J} \cdot \vec{M}=\frac{1}{2}\left[\frac{H^{2}-m^{2}}{4 \lambda^{2}}\right]
\end{align*}
$$

In the appropriate basis, we get the eigenvalues of the above invariant operators as

$$
\begin{align*}
& C(1)=\frac{1}{2}\left[\left(V+|K|+\frac{1}{2}\right)^{2}-3 / 4\right] \tag{40}\\
& C(2)=\frac{1}{2}\left(V+|K|+\frac{1}{2}\right)
\end{align*}
$$

Following the discussion of Chapter II, we have

$$
\begin{align*}
& K^{2}=\frac{1}{2}[C(1)+C(2)]=j_{2}\left(j_{2}+1\right) \\
& L^{2}=\frac{1}{2}[C(1)-C(2)]=j_{1}\left(j_{1}+1\right) \tag{41}
\end{align*}
$$

Hence, we find that

$$
\begin{equation*}
j_{1}=\frac{v+|k|-1}{2} ; \quad j_{2}=\frac{v+|k|}{2} \tag{42}
\end{equation*}
$$

and the dimensionalities of the $S O$ (4) irreducible representations realized are

$$
\begin{equation*}
d^{\prime}=\left(2 j_{1}+1\right)\left(2 j_{2}+1\right)=(n+1)(n+2) \tag{43}
\end{equation*}
$$

where

$$
\mathrm{n}=\mathrm{v}+|k|-1, \quad n \quad 0,1,2,3, \ldots
$$

Comparing Equations (43) and (22) we see that the doubling of states in d is due to the degeneracy in the sign of k. The equivalence of the $\left(j_{1}, j_{2}\right)$ parametrization to the irreducible representation $\pi_{r, q}^{+}$of strom is seen as follows. According to Strow, we have

$$
\begin{align*}
& r=\min \left(j_{1}+j_{2}\right) \\
& q=r, r-1, \ldots, \frac{v_{2}^{2}}{2} \tag{44}\\
& n=j_{2}-j_{1} \\
& 1=j_{1}+j_{2}+1
\end{align*}
$$

We therefore get

$$
\begin{align*}
& r=n=q=\frac{1}{2} \\
& I=v+|\dot{k}|+\frac{1}{2} \tag{45}
\end{align*}
$$

The allowed values of j_{1} and j_{2} are shown in Figure 2. This shows that the states with fixed sign of k span an irreduoible representation of SO $(4,1)$ 。

We now proceed with the explicit construction of the relevant operators. In addition to the $S O(4)$ generators; there exist also a scalar operator T and a vector operator \vec{N} which obey the commutation retations of equation (12)。

For the irreducible representation of interest, the scalar operator Thas the matrix elements specified by

$$
T|v j \mu\rangle=\frac{1}{2} \sqrt{(v+2 j+2)(v+1)}|v+1, j, \mu\rangle+\frac{1}{2} \sqrt{(v+2 j+1) v}|v-1, j \mu\rangle_{(46)}
$$

This operator is represented for positive k by

$$
\begin{equation*}
T=\frac{1}{4 \lambda}\left[\sqrt{\frac{H^{2}-m_{0}^{2}}{4 \lambda^{2}}+|K|-\frac{1}{2}} \frac{\vec{\sigma} \cdot \vec{b}}{\sqrt{H^{2}-m^{2}}} \vec{\sigma} \cdot \vec{a}+\vec{\sigma} \cdot \vec{a} \frac{\vec{\sigma} \cdot \vec{b}}{\sqrt{H^{2}-m^{2}}} \sqrt{\frac{H^{2}-m^{2}}{4 \lambda^{2}}+|K|-\frac{1}{2}}\right. \tag{47}
\end{equation*}
$$

The operator forlthe other sign of k is given by interchanging

$$
\frac{\vec{\sigma} \cdot \vec{b}}{\sqrt{H^{2}-m^{2}}} \text { and } \vec{\sigma} \cdot \vec{a}
$$

The projection operators

$$
\frac{1}{2}\left(1+\frac{k}{|k|}\right) \quad \text { and } \quad \frac{1}{2}\left(1-\frac{k}{|k|}\right)
$$

then enable us to construct. T in general. The vector operator \vec{N} is then

Figure 2. The Allowed Values of f_{1} and f_{2} Whthin the Irreducible Representation $\pi_{3}^{+}, \frac{1}{2}$ of
SO $(4,1)$
constructed by means of the relation

$$
\begin{equation*}
\vec{N}=-i[\vec{M}, T] \tag{48}
\end{equation*}
$$

This completes the set of $S O(4,1)$ operators. The $S U(2)$ operators \vec{X} in Equation 25° afe easily seen to commute with T, and hence with \vec{N}. Hence, all the operators of the $S O(4,1) \times S U(2)$ group have been realized.

CHAPTER IV

REVIEW OF COULOMB ENERGY CALCULATIONS

The Coulomb energies of nuclei have been under investigation since the mid-1930's. In the early days, Coulomb energies were used to estimate radii of mirror nuclei (isotopic $\operatorname{spin} T=\frac{1}{2}$). The experimental energy difference between the nuclei of a mirror pair was taken from β decay data; or from the Q values of nuclear reactions. The models used then yielded the nuclear sizes necessary to obtain these differences in Coulomb energy. In modern times, however, there are more accurate. methods for determining nuclear sizes. These include $\mu-m e s o n i c$ atom $X-$ ray data, and electron scattering data (Hofstadter (37)) 。 Recently, the discovery of isobaric analog states in heavy nuclei has added another source of data (10), besides increasing the interest in Coulomb energy calculations: The calculations are so far in agrement with charge independence of nuclear forces (38), and the interest in Coulomb energies is based in part upon a desire to provide a more stringent test of this point Other nuclear structure effects, such as the differences between neutron radii and proton radii; as well as the effects of deformations have also been studied (39).

In the present chapter, we review the methods of calculation that have been used, as well as the interpretations which have been given to the results. In the next chapter, the relativistic equivalent oscillator will be applied in an attempt to see what modifications of the Coulomb
energy originate from an assumed relativistic motion of nucleons.
The simplest model for calculating Coulomb energies is that of a uniformly charged sphere. This model was considered by Weizsacker (40) and Bethe (41). In this model, we suppose that the charge density due to a single proton is distributed uniformly inside a sphere of radius R. This gives the mutual electrostatic potential energy of one pair as

$$
\begin{equation*}
W=\frac{6}{5} \frac{e^{2}}{R} . \tag{1}
\end{equation*}
$$

Since the total number of pairs of protons is $\frac{1}{2} Z(Z-1)$, then the total Coulomb energy is given by

$$
\begin{equation*}
E_{c}=\frac{3}{5} \frac{z(z-1) e^{2}}{R} . \tag{2}
\end{equation*}
$$

If we next accept the saturation property of nuclear densities, i.e.s that the volume of the sphere is proportional to the number of nucleons, we get

$$
\begin{equation*}
R=r_{0} A^{1 / 3} \tag{3}
\end{equation*}
$$

and experimental data then tell us that $r_{0}=1.2 \times 10^{-13} \mathrm{~cm}$ gives about the right Coulomb energy.

In order to make a quantum mechanical estimate, we use the Hartree approximation, writing the total nuclear wavefunction describing the notion of Z protons as a Slater determinant (in order to satisfy the Pauli principle). The Coulomb energy is then

$$
\begin{align*}
& E_{c}= \frac{1}{2} \sum_{i=1}^{z} \\
& \sum_{j \neq i}\left[\int\left|\psi_{i}\left(\vec{r}_{1}\right)\right|^{2} \frac{e^{2}}{r_{12}}\left|\psi_{j}\left(\vec{r}_{2}\right)\right|^{2} d \vec{r}_{1} d \vec{r}_{2}\right. \tag{4}\\
&\left.-\int \psi_{i}^{*}\left(\vec{r}_{1}\right) \psi_{j}^{*}\left(\vec{r}_{2}\right) \frac{e^{2}}{r_{12}} \psi_{i}\left(\vec{r}_{2}\right) \psi_{j}\left(\vec{r}_{1}\right) d \vec{r}_{1} d \vec{r}_{2}\right]
\end{align*}
$$

We notice that the restriction $i \neq j$ on the sum can be dropped since those terms are zero. This corresponds to adding self energy terms to the first part, called the direct energy, and adding the negative of these self energy terms to the second part; called the exchange energy. Probably the first estimate of these direct and exchange energies was made by Flugge (42). His direct energy (not including self energy) was

$$
\begin{equation*}
E_{0}=\frac{1}{\sqrt{\pi}} \frac{z(z-1) e^{2}}{R} \tag{5}
\end{equation*}
$$

and was obtained by assuming angle-independent single particle wave functions of the form

$$
\begin{equation*}
\psi(r)=A e^{-r^{2} / R^{2}} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{2}=\left(\frac{2}{\pi}\right)^{3 / 2} \frac{Z}{R^{3}} \tag{7}
\end{equation*}
$$

His evaluation of the exchange energy, however, was erroneous, resulting in zero total Coulomb energy for Helium nuclei.

Bethe (44) evaluated the direct and exchange energies using the statistical model. In this model, the single particle wavefunctions are taken as plane waves inside the nucleus, and zero outside corresponding to motion inside a constant square well with rigid walls. The boundary condition on the surface restricts the values of the particle momentum, and in addition, a maximum allowed momentum is imposed consistent with the total number of occupied states. If we define ordinary and mixed
densities by the equations

$$
\begin{gather*}
\rho_{p}(\vec{r})=\sum_{i=1}^{2}\left|\psi_{i}(\vec{r})\right|^{2} \tag{8}\\
\rho_{p}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\sum_{i=1}^{2} \psi_{i}^{*}\left(\overrightarrow{r_{1}}\right) \psi_{i}\left(\vec{r}_{2}\right) \tag{9}
\end{gather*}
$$

then, if we have an even Z nucleus, and average over the spins, we get

$$
E_{c}=\frac{1}{2} \int \frac{e^{2}}{r_{12}} \rho_{p}\left(\vec{r}_{1}\right) \rho_{p}\left(\vec{r}_{2}\right) d \vec{r}_{1} d \vec{r}_{2}-\frac{1}{4} \int \frac{e^{2}}{r_{12}}\left|\rho_{p}\left(\vec{r}_{11} \vec{r}_{2}\right)\right|^{2} d \vec{r}_{1} d \vec{r}_{2}
$$

Bethe evaluated the exchange density by approximating the sum in Equation (9) by an integral, with the result

$$
\begin{equation*}
\rho_{p}\left(\vec{r}_{1}, \vec{r}_{2}\right)=\frac{\sin k_{o} r_{12}-k_{0} r_{12} \cos k_{o} r_{12}}{\pi^{2} r_{12}^{3}} \tag{10}
\end{equation*}
$$

Bethe then obtains the Coulomb energy as

$$
\begin{equation*}
E_{c}=\frac{e^{2}}{r_{0} A^{1 / 3}}\left(0.600 z^{2}-0.460 z^{4 / 3}\right) \tag{11}
\end{equation*}
$$

Much later, Sengupta (43) pointed out that there is an error in the above derivation if Z is odd (resulting from an unpaired spin). The correct equation is then

$$
\begin{equation*}
E_{c}^{.}=\frac{e^{2}}{R}\left[0.60 z^{2}-0.46 z^{4 / 3}-\left[1-(-1)^{2}\right] 0.15\right] \tag{12}
\end{equation*}
$$

In 1938, Bethe calculated the Coulomb energies of light nuclei (44), in which the last nucleon's wavefunction was allowed to extend beyond
the radius of the residual nucleus

$$
\begin{align*}
& \psi(r)=\frac{\alpha}{R} \quad r<R \\
& \psi(r)=\frac{\alpha}{r} e^{-(r-R) / b} \quad r>R \tag{13}
\end{align*}
$$

The constant b was estimated using experimentally measured binding energies. Alternatively, by using the results of the statistical model for the Coulomb energy, the binding energies of unknown nuclei was estimated. Bethe thus was able to draw conclusions about the stability of unknown nuclei, and he pointed out that this had applications in astrophysics.

Following the supermultiplet theory of Wigner using LS coupling (45), Feenberg and Goertzel (46), tried to study the variation of Coulomb energies from even Z to odd Z nuclei. By assuming that nuclear forces were not strongly spin dependent, they were able to demonstrate the importance of a "pairing effect". This effect is due to the fact that nuclear forces are short ranged, and favor paired spins, so that the total proton $\operatorname{spin} S$ is $\frac{1}{2}$ for odd Z nuclei and zero for even Z nuclei. The Pauli principle then causes a larger probability for two protons to be close together if they have paired spins, and hence a symmetric spatial wave function. In quantitative terms, Feenberg and Goertzel. . showed that the Coulomb energy expression is of the form

$$
\begin{equation*}
E_{c}=\frac{1}{2} Z(Z-1) L_{c}+\frac{3}{8}\left(Z-\frac{1}{2}+\frac{1}{2}(-1)^{Z}\right) L_{c} \tag{14}
\end{equation*}
$$

In the late 1940 's and early 1950's, various calculations were made using finite and infinite square; wells, and diffuse boundary potentials. Cooper and Henley (47) attempted to explain the small radii, $r_{0}=1: 20$
fermis, of light nuclei which had been found by extrapolation from μ mesonic atom experiments. Jancovici (48), calculated the Coulomb energy differences of the $0^{17}-\mathrm{F}^{17}$ and $0^{15}-\mathrm{N}^{15}$ pairs and showed that the radii needed to match the experimental differences were in serious disagreement with mirror nuclei data. It was later pointed out by Sood and Green (49) that the discrepancies were not so bad, since electron scattering data gave larger radii, $r_{0}=1.30$, for light nuclei than the μ-mesonic X-ray data。

Calculations based on an infinite oscillator well and jj coupling were carried out by Carlson and Talmi (50). Their calculations showed a pairing effect in mirror nuclei, similar to that considered by Feenberg and Goertzel. However, they used jj coupling, and took correlations into account, that is, they assumed that proton seniority was a good quantum number. The seniority, introduced by Racah (51), is an additional quantum number used to 1 abel many particle wave functions. If we consider a configuration j^{n} of n equivalent particles, the seniority is the smallest number of particles, v, which possess a state transforming under the group $\mathrm{Sp}(2 \mathrm{j}+1)$ exactly like the state for the n particles. Here $S_{p}(2 j+1)$ is the symplectic group in $2 j+1$ dimensions, which is the group which leaves invariant a bilinear antisymmetric form of two vectors (52). The Carlson and Talmi assumption of lowest proton seniority then amounts to assuming that the total angular momentum of the protons in the j^{2} configuration is $J=0$ (seniority $v:=0$) and $J=j$ for the j^{3} configuration (seniority $\mathrm{v}=1$). For nuclei, in which the forces are. short ranged, this happens to be a reasonable assumption, whereas in atomic physics it would not be reasonable. The application of the above theory leads to the expression for the contribution of the j^{n} configura-
tion to the interaction as

$$
\begin{equation*}
E_{c}\left(j^{n}\right)=\frac{n(n-1)}{2}\left(\frac{2(j+1) \bar{V}_{2}-V_{o}}{2 j+1}\right)+\left[\frac{n}{2}\right] \frac{2(j+1)}{2 j+1}\left(V_{o}-\bar{V}_{2}\right) \tag{I5}
\end{equation*}
$$

Here $\overline{\mathrm{V}}_{2}$ and V_{0} are given in terms of Slater integrals (23), and $\left[\frac{\mathfrak{n}}{2}\right]$ stands for the largest integer not exceeding $n / 2$. There is a pairing effect since the above expression depends on whether n is even or odd.

Carlson and Talmi evaluated the Coulomb energy differences between mirror nuclei using the above theory. For light nuclei, they found that the radius parameter r_{0} needed to match the experimental Coulomb energy was too large compared to the experimental values. This discrepancy persists even today, as has been discussed by Goldhammer (53), who concluded that $r_{0}=1.25$ is the best experimental value for light nuclei. For Helium, the effect of the hard core potential of nucleons has been used to get agreement, as has been discussed by Ohmura et: al. (54).

On the other hand, the correction for the center of mass motion of the nucleus is also of importance, and has been used by Wilkinson (38) in his studies of the $1 p$ shell. This effect enters through the determination of the oscillator constant λ. which appears in the oscillator Hamiltonian。 It is eustomary to determine this parameter by the "equivalent uniform radius" criterion。 In this method, the equivalent uniform radius is defined as the radius of a uniform spherical mass distribution having the same expectation value of r^{2} as the shell model result. This leads to the result (Elton (55))

$$
\begin{equation*}
R=\left[\frac{5}{3 A} \Sigma\left\langle r^{2}\right\rangle\right]^{1 / 2}=r_{0} A^{1 / 3} \tag{16}
\end{equation*}
$$

where the sum is over all nucieons. If the center of mass is in its lowest allowed state, then the correction for its motion amounts to the substitution (Elliott and Skyrme (56))

$$
\begin{equation*}
\left\langle\mathrm{r}^{2}\right\rangle \rightarrow\left\langle\mathrm{r}^{2}\right\rangle-\frac{3}{2 \mathrm{~A}} \frac{1}{\lambda^{2}} \tag{17}
\end{equation*}
$$

For light nuclei, this correction happens to bring the calculations into better agreement with experiment. For $A>20$, it is negligible.

In an attempt to obtain better estimates of the contributions of the direct and exchange Coulomb energies to Weizsacker nuclear mass formula, Green and Swamy (57), calculated the total Coulomb energies of light nuclei. Both oscillator potential and diffuse boundary potentials were used. As a follow up to this work, Swamy, Kembhavi, and Galgali (58) used oscillator wave functions to calculate the Coulomb energies of closed shell nuclei in the medium to heavy mass range. Comparing calculations with the statistical model and the trapezoidal model of Cameron (59), they found that the direct energies were model independent, for practical purposes. However, the exchange energies were model dependent. The $Z^{4 / 3}$ variation of Bethe's statistical model agrees with the results of the oscillator calculation, but the coefficients are different

The Coulomb energy terms in the Weiracker mass formula have also been studied by Mozer (60). The direct and exchange terms were considered, as well as the effects of nuclear deformations. Numerous authors have used the Bohr-Wheeler liquid drop model to study this deformation effect (61, 62).

Returning to the subject of mirror nuclei, there have been calculations by Unna and Unna et. al. $(63,64)$ which have tested Carlson and

Talmi's assumption of lowest proton seniority. Since some nuclei have neutrons as well as protons outside closed shells, it is conceivable that they might cause proton seniority to be a poor quantum number. Unna's calculations were less approximate, since they considered isospin and combined neutron-proton seniority to be good quantum numbers. The results showed that Carlson and Talmi's calculations were not appreciably modified, the differences being less than 1% in all cases. In addition, for nuclei with $29<A<64$, it was shown that calculations using harmonic oscillator wave functions are capable of yielding close quantitative agreement with the experimental results.

It should be noted, however, that configuration mixing हecomes more important in heavy nuclei. For instance, studies of the Hartree-Fock approximation (65) have shown that occupied states of Pb^{208} are appreciably different from pure oscillator functions.

Besides these oscillator calculations, there have been attempts to use the real part of the Woods-Saxon potential (66)

$$
\begin{equation*}
V(r)=\frac{V_{0}}{e\left(\frac{r-R}{a}\right)+1} \tag{18}
\end{equation*}
$$

A charge distribution $\rho_{p}(x)$ giving an electrostatic potential is also assumed, and the wave functions are generaced by putting these potentials into the Schroedingex equation. The problem cannot be solved analytically, and requires the use of a computer.

Calculations using this technique have been reported by Wilkinson, et. al. (38), and by Nolen, Schiffer, et. al. (67). They calculated Coulomb energy differences between isobaric analog states.

In the version of Nolen, Schiffer, et. al., which was applied to
medium and heavy nuclei, one of the excess neutrons of a state is replaced by a proton to give the analog state. In other words, the proton is assumed to have the same density distribution as the neutron excess. The direct integrals contribute to the Coulomb energy difference the amount

$$
\begin{equation*}
\Delta E_{e}=4 \pi e \int_{0}^{\infty} \rho_{n e}(r) V(r) r^{2} d r \tag{19}
\end{equation*}
$$

where $V(r)=\int_{\infty}^{r} \frac{4 \pi Z e}{r^{\prime}}\left[\int_{0}^{r^{\prime}} p_{p}\left(r^{\prime \prime}\right) r^{\prime \prime 2} d r^{\prime \prime}\right] d r^{\prime}$
and

$$
\begin{equation*}
\rho_{n e}(r) \equiv \rho_{n}(r)-\rho_{p}(r) \tag{21}
\end{equation*}
$$

The exchange term is evaluated independently using the wave functions. In addition, a spin-orbit term, which arises partly from the Thomas precession and partly from the difference between the neutron and proton magnetic moments, is included.

The results show close agreement with experiment provided the parameters in the charge distribution are allowed to vary within the limits allowed by the experimentally measured binding energy and expectation value of r^{2}. For instance, in Pb^{208} the Coulomb energy difference can be adjusted to 18.980 MEV , in agreement with experiment. Conclusions are. drawn concerning the radius of the neutron excess as compared to the radius of che nucleus as a whole. In addition, studies are made of the shift of the nuclear radius from isotope to isotope, such as in the series Ca^{40} to Ca^{49}.

CHAPTER V

APPROXIMATE, RELATIVISTIC COULOMB ENERGY CALCULATIONS

In reviewing Coulomb energy calculations (Chapter IV), we found no calculations which have attempted to correct for relativistic motion of nucleons. This was probably due to the conclusion of most investigators that non-relativistic calculations agree close enough with experiment. Twenty or thirty years ago, various relativistic calculations were made of the binding energies of light nuclei, such as the deuteron, triton, or alpha particle. Blochinzew (68) and Margenau (69) applied the KleinGordan equation to a study of the deuteron binding energy. In 1936, Feenberg (70) looked at relativistic corrections to the deuteron kinetic energy, which led to a 25% change of the kinetic energy predicted by the non-relativistic, single particle theory。 Primakoff (71), Breit (72), Siegel (73), and Blatt and Weisskopf (74) have noted that ralativistic corrections to magnetic moment and binding energy calculations are not entirely negligible. There thus seems to be a need for estimating the magnitude of the relativistic corrections to the Coulomb energies. We therefore turn to the relativistic equivalent oscillator, and the predictions of the approximate, relativistic shell model of Braun and Swamy (32) 。

For the normalized, single parcicle wave functions, we take

$$
\Phi_{v K \mu}=\left[\begin{array}{c}
\sqrt{\frac{E+m_{0} c^{2}}{2 E}}|v K \mu\rangle \tag{1}\\
S(K) \sqrt{\frac{E-M_{0} c^{2}}{2 E}}|v K \mu\rangle
\end{array}\right]
$$

with the various quantities in this equation defined as in Chapter III. For closed shell nuclei, or nuclei with one particle outside a closed shell, the shell model wavefunctions (with lowest proton seniority) are given by a single Slater determinant. In other cases, because of coupling and many body effects, a more complicated linear combination of Slater determinants is necessary. The expectation value of Coulomb energy is then evaluated using Racah algebra, as in the book by Talmi and de Shalit (52). In this jj coupling model, the Coulomb energy due to the interaction of the $2 j \pm 1$ particles in the j shell with the $2 \mathrm{j}{ }^{\prime}+1$ particles in the j^{\prime} shell is

$$
\begin{aligned}
E_{c}\left(j j^{\prime}\right) & =\frac{1}{2}(2 j+1)\left(2 j^{\prime}+1\right)\left[\frac{E+m_{0} c^{2}}{2 E} \frac{E^{\prime}+m_{0} c^{2}}{2 E^{\prime}} F^{0}\left(v l ; v^{\prime} l^{\prime}\right)\right. \\
& +\frac{E-m_{0} c^{2}}{2 E} \frac{E^{\prime}+m_{0} c^{2}}{2 E^{\prime}} F^{0}\left(v l ; v^{\prime} l^{\prime}\right)+\frac{E+m_{0} c^{2}}{2 E^{\prime}} \frac{E^{\prime}-m_{0} c^{2}}{2 E^{\prime}} F^{0}\left(v \bar{l} ; v^{\prime} l^{\prime}\right) \\
& \left.+\frac{E-m_{0} c^{2}}{2 E} \frac{E^{\prime}-m_{0} c^{2}}{2 E^{\prime}} F^{0}\left(v \bar{l} ; v^{\prime} l^{\prime}\right)\right] \\
& -\frac{1}{2}\left(2 j^{\prime}+1\right) \sum \sum_{-\frac{1}{2}}^{2} 0-\left.\frac{1}{2}\right|^{\prime} \frac{1+(-1)^{l+l^{\prime}+k}}{2} \times \\
& x\left[\frac{E+m_{0} c^{2}}{2 E} \frac{E^{\prime}+m_{0} c^{2}}{2 E^{\prime}} G^{k}\left(v l ; v^{\prime} l^{\prime}\right)+\right.
\end{aligned}
$$

$$
\begin{align*}
& +\sqrt{\frac{\left(E^{2}-m_{0}^{2} c^{4}\right)\left(E^{\prime 2}-m_{0}^{2} c^{4}\right)}{16 E^{2} E^{\prime 2}}} S\left(K^{k}\right) S\left(k^{\prime}\right) R^{k}\left(v l, v \bar{l} ; v^{\prime} l^{\prime}, v^{\prime} \bar{l}^{\prime}\right) \\
& +\sqrt{\frac{\left(E^{2}-m_{0}^{2} c^{4}\right)\left(E^{\prime 2}-m_{0}^{2} c^{4}\right)}{16 E^{2} E^{\prime 2}}} S(k) S\left(k^{\prime}\right) R^{k}\left(v \bar{l}, v l ; v^{\prime} \bar{l}^{\prime} ; v^{\prime}\right) \\
& +\frac{E^{\prime}-m_{0} c^{2}}{2 E} \frac{E^{\prime}-m_{0} c^{2}}{2 E^{\prime}} \tag{2}\\
& \left.G^{k}\left(v \bar{l} ; v^{\prime} \bar{l}^{\prime}\right)\right]
\end{align*}
$$

Here the F°, G^{k}, and R^{k} are Slater integrals, in the notation of Condo and Shortly (23). In the non-relativistic limit, the energy of a particle is approximately equal to its rest energy, and this reduces to

$$
\begin{align*}
E_{c}(j j)= & \frac{1}{2}(2 j+1)\left(2 j^{\prime}+1\right) F^{0}\left(v e ; v^{\prime} l^{\prime}\right) \\
& -\frac{1}{2}\left(2 j^{\prime}+1\right) \sum_{k}\left|\begin{array}{ll}
\sum_{-\frac{1}{2}} & 0-\frac{1}{2}
\end{array}\right|^{2} \frac{1+(-1)^{l+l^{\prime}+k}}{2} G^{k}\left(v l j^{\prime} l^{\prime}\right) \tag{3}
\end{align*}
$$

The Slater integral F^{k} is given by

$$
\begin{align*}
F^{k}\left(v_{1} l_{1} ; v_{2} l_{2}\right) & =e^{2} \int_{0}^{\infty} \int_{0}^{r_{7}}\left|F_{v_{1} l_{1}}\left(r_{1}\right)\right|^{2} \frac{r_{1}^{k}}{r_{2}^{k+1}}\left|F_{v_{2} l_{2}}\left(r_{2}\right)\right|^{2} r_{1}^{2} r_{2}^{2} d r_{1} d r_{2} \\
+ & e^{2} \int_{0}^{\infty} \int_{0}^{r_{2}}\left|F_{v_{1} l_{1}}\left(r_{1}\right)\right|^{2} \frac{r_{2}^{k}}{r_{1}^{k+1}}\left|F_{v_{2} l_{2}}\left(r_{2}\right)\right|^{2} r_{1}^{2} r_{2}^{2} d r_{1} d r_{2} \tag{4}
\end{align*}
$$

where the $\mathrm{F}_{\mathrm{vl}}{ }^{\text {s }} \mathrm{s}$ are the radial solutions

$$
\begin{equation*}
F_{v e}(r)=\lambda N_{v e}(\lambda r)^{l} e^{-\frac{1}{2}(\lambda r)^{2}}, F_{1}\left(-v, l+\frac{3}{2} ;(\lambda r)^{2}\right) \tag{5}
\end{equation*}
$$

To evaluate this expression we use the identity

$$
F_{1}\left(-v_{1}, l_{1}+\frac{3}{2} ;(\lambda r)^{2}\right), F_{1}\left(-v_{2}, l_{2}+\frac{3}{2} ;(\lambda r)^{2}\right)=
$$

$$
\begin{equation*}
=\sum_{n=0}^{v_{1}+v_{2}}\left[\sum_{k=0}^{n} \frac{\left(-v_{1}\right)_{k}\left(-v_{2}\right)_{n-k}}{k!(n-k)!\left(l_{1}+\frac{3}{2}\right)_{k}\left(l_{2}+\frac{3}{2}\right)_{n-k}}\right](\lambda r)^{2 n} \tag{6}
\end{equation*}
$$

From this we obtain, using the abbreviation

$$
\begin{equation*}
A\left(V_{1} V_{2} l_{1} l_{2} n\right)=\sum_{k=0}^{n} \frac{\left(-V_{1}\right)_{k}\left(-V_{2}\right)_{n-k}}{k!(n-k)!\left(l_{1}+\frac{3}{2}\right)_{k}\left(l_{2}+\frac{3}{2}\right)_{n-k}} \tag{7}
\end{equation*}
$$

the result

$$
\begin{align*}
& F^{k}\left(v_{1} l_{1} ; v_{2} l_{2}\right)=\frac{1}{\lambda}\left(N_{v_{1} l_{1}} N_{v_{2} l_{2}}\right)^{2} \sum_{n=0}^{2 v_{1}} \sum_{m=0}^{2 v_{2}} A\left(v_{1} v_{1} l_{1} l_{1} n\right) x \\
& \quad \times A\left(v_{2} v_{2} l_{2} l_{2} m\right)\left[\frac{1}{2 l_{1}+2 n+k+3} \int_{0}^{\infty} u_{2}^{2\left(l_{1}+l_{2}+n+m+2\right)} e^{-2 u_{2}^{2}} F_{1}\left(1 ; l_{1}+n+\frac{k+5}{2} ; u_{2}^{2}\right) d u_{2}\right. \\
& \left.\quad+\frac{1}{2 l_{2}+2 m+k+3} \int_{0}^{\infty} u_{1}^{2\left(l_{1}+l_{2}+m+n+2\right)} e^{-2 u_{1}^{2}} F_{1}\left(1 ; l_{2}+m+\frac{k+5}{2} ; u_{1}^{2}\right) d u_{1}\right] \tag{8}
\end{align*}
$$

Using the formula (75)

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s t} t^{b-1}, F_{1}(a, c ; k t)=\Gamma(b)(s-k)^{-b} F_{1}\left(c-a, b, c ; \frac{k}{k-s}\right) \tag{9}
\end{equation*}
$$

we get ${ }^{\text {. }}$

$$
\begin{gathered}
F^{k}\left(v_{1} l_{1} ; v_{2} l_{2}\right)=\frac{e^{2}}{4 \lambda^{2}}\left(N_{v_{1} l_{1}} N_{v_{2} l_{2}}\right)^{2} \sum_{n=0}^{2 v_{1}} \sum_{m=0}^{2 v_{2}} A\left(v_{1} v_{1} l_{1} l_{1} n\right) \times \\
\times A\left(v_{2} v_{2} l_{2} l_{2} m\right) \frac{\Gamma\left(l_{1}+l_{2}+n+m+\frac{5}{2}\right)}{2^{l_{1}+l_{2}+n+m+5 / 2}} x .
\end{gathered}
$$

$$
\begin{aligned}
& x\left[\frac{1}{l_{1}+n+\frac{k+3}{2} F_{1} F_{1}\left(l_{1}+l_{2}+n+m+\frac{5}{2} ; 1 ; l_{1}+n+\frac{k+5}{2} ; \frac{1}{2}\right)}\right. \\
& \left.\left.\quad+\frac{1}{l_{2}+m+\frac{k+3}{2}}{ }_{2} F_{1} l_{1}+l_{2}+n+m+\frac{5}{2} ; 1 ; l_{2}+m+\frac{k+5}{2} ; \frac{1}{2}\right)\right]
\end{aligned}
$$

We have been using the normalization factor

$$
\begin{equation*}
N_{v e}=\left[\frac{2 \lambda}{v!} \frac{\Gamma(v+e+3 / 2)}{[\Gamma(l+3 / 2)]^{2}}\right]^{1 / 2} \tag{11}
\end{equation*}
$$

It is apparent that the Slater integrals are directly proportional to $\epsilon^{2} \lambda$ 。

The other Slater integrals G^{k} and R^{k} can be evaluated by the same method, the result of which is suitable for computer programing. These results were originally given by Swamy, Kembhavi, and Galgali (58).

In order to use these equations to calculate the Coulomb energy of a nucleus, we have to assign values of v, k, and μ to the states of the particles. These assignments must be consistent with experimentally measured spins and parities of nuclei, and this can be done by using the quantum numbers v, k, and j which have been used in the non-relativistic shel1 mode1.

Next, the oscillator constant λ must be determined. This is accomplished by using the usual equivalent uniform radius criterion (Chapter IV)

$$
\begin{equation*}
\left[\frac{5}{3 A} \Sigma\left\langle r^{2}\right\rangle\right]^{1 / 2}=r_{0} A^{1 / 3} \tag{12}
\end{equation*}
$$

The values of r_{0} are taken either from electron scattering data (37), or alternatively, adjusted to match the experimentally measured Coulomb energy differences. If ψ_{A} is the antisymmetric determindemel proton wavefunction, then

$$
\begin{equation*}
\int \psi_{A}^{\dagger} r_{1}^{2} \psi_{A} d \vec{r}_{1} d \vec{r}_{2} \cdots d \vec{r}_{z}=\frac{1}{z} \sum_{V k \mu}\left\langle r^{2}\right\rangle_{v k \mu} \tag{13}
\end{equation*}
$$

If r_{1} were a neutron coordinate, we would get instead

$$
\begin{equation*}
\frac{1}{N} \sum_{V K \mu}\left\langle r^{2}\right\rangle \tag{14}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\frac{1}{A} \sum_{i=1}^{A}\left\langle r_{i}^{2}\right\rangle & =\frac{1}{A}\left[z \cdot \frac{1}{Z} \sum_{\substack{\text { kan } \\
\text { protons }}}\left\langle r^{2}\right\rangle_{v k \mu}+N \cdot \frac{1}{N} \sum_{\substack{v \mu \mu \\
\text { neutrons }}}\left\langle r^{2}\right\rangle_{v k n}\right] \\
& =\frac{1}{A} \sum_{v k m}\left\langle r^{2}\right\rangle_{v k \mu}
\end{aligned}
$$

where the final sum applies to the quantum numbers of all the nucleons. This shows that the sum is replaceable by a sum over single particle matrix elements. Putting this in the relativistic single particle wave functions then gives.

$$
\begin{equation*}
\left\langle r^{2}\right\rangle_{v k \mu}=\frac{1}{\lambda^{2}}\left[\left(2 v+l+\frac{3}{2}\right)+(\bar{l}-l) \frac{E-m_{0} C^{2}}{2 E}\right] \tag{16}
\end{equation*}
$$

where $\quad \bar{l}=l+1$ for $j=l+\frac{1}{2}, \quad K<0$

$$
\begin{aligned}
& I=l-1 \text { for } j=l-\frac{1}{2}, k>0 \\
& E=\sqrt{m_{0}^{2} c^{4}+4 \lambda^{2}(\hbar c)^{2}\left(v+|k|+\frac{1}{2}\right)}
\end{aligned}
$$

We notice that if we have a closed sheil in the sense of the exact equivalent oscillator, then the number of single particle wavefunctions with $k>0$ equals the number with $k<0$, and the expression gives the same result as

$$
\begin{equation*}
\left\langle\mathrm{r}^{2}\right\rangle_{\mathrm{vK} \mu}=\frac{1}{\lambda^{2}}\left(2 \mathrm{~V}+\ell+\frac{3}{2}\right) \tag{17}
\end{equation*}
$$

which is the non-relativistic result. Hence, the value of λ determined by this method would be the same. However, as we go toward heavier nuclei, studies show that the $k<0$ levels are filled before the $k>0$ levels. For instance, the $\mathrm{ld}_{5 / 2}$ levels are filled before the $2 \mathrm{~s}_{1 / 2}$, but the $\mathrm{lf}_{5 / 2}$ levels are usually filled afterwards. Hence, in practice there is a relativistic correction to λ even for closed shell nuclei。

The above methods were used to calculate Coulomb energies. Tables of results and the computer program are given in Appendices A and B.

For the non-relativistic calculations; when we divide the total Coulomb energy by $e^{2} \lambda$, we have a quantity which is independent of λ 。 However, in the relativistic case, there remains a slight, second order dependence on λ due to the dependence of E on λ. As we go to heavier nuclei, the general trend is for the differences in the non-relativistic and relativistic direct Coulomb energies divided by $e^{2} \lambda$ to increase according to

$$
\begin{equation*}
\left.\frac{E_{\text {DIRECT }}}{e^{2} \lambda}\right|_{\text {REL }}-\left.\frac{E_{\text {DIRECT }}}{e^{2} \lambda}\right|_{\substack{\text { NON- } \\ \text { REL. }}}=-0.0093 A \tag{18}
\end{equation*}
$$

However, when λ is calculated relativistically, the non-relativistic

Coulomb energy becomes more nearly equal to the relativistically calculated value. Whether it is smaller or larger generally depends on the nucleus and the value of r_{0}

Since the differences in the relativistic and non-relativistic Coulomb energies happen to be usually less than 1% as can be seen from the tables in Appendix A, it appears that the neglect of relativistic corrections by earlier workers is justified; at least for medium sized nuclei.

In the excited states of nuclei, it is conceivable that the kinetic energy of a nucleon might become abnormally large. However, the shell model becomes less valid for these states, generally as the energy increases, which can be explained as due to configuration mixing。 Calculations were made for the first excited states of F^{19} and S^{41}. The. results show the usual 1% differences.

In light nuclei, center of mass motion is an important correction to consider (see Chapter IV). Relativistically, it is the center of momentum and not the center of mass which is well defined. However, Bethe and Salpeter (75) have shown that, in the two particle problem, a substitution of the reduced mass into the Dirac equation yields the first approximation. It therefore seems permissible to use the nonrelativistic approximation for this correction in the relativistic expression. This means the substitution

$$
\begin{equation*}
\left\langle r^{2}\right\rangle \rightarrow\left\langle r^{2}\right\rangle-\frac{3}{2 A \lambda^{2}} \tag{19}
\end{equation*}
$$

in the equation for determining λ_{0} Ic is found that this substitution enables the ${ }_{2} \mathrm{He}^{3}$ coulomb energy to be placed in better agreement with
experiment. This also applies to the $7^{N^{13}}--{ }_{6} C^{13}$ Coulomb energy difference. In addition, the difference between relativistic and nonrelativistic calculations becomes larger, but is still less than 2% 。

The largest relativistic corrections occur for heavy nuclei. For lead, the direct energy differs by 1%, but the exchange enargies differ by a comparatively large 3%. It may be significant to note that 3% happens to be 1 MEV in this case. It is also interesting to note that these simple non-relativistic and relativistic models, with $x_{0}=1.20$ fermis, give good agreement with experiment. The relațivistic and non-relativistic Coulomb energy differences between Pb^{208} and its analog state are found to be 19.4 MEV and 19.3 MEV , respectively, in agreement with the experimental value 18.980 MEV . By adjusting r_{o} slightly we could obtain exact agreement.

CHAPTER VI

CONCLUSIONS

In the first part of this work, we were able to draw some conclusions concerning the group structure of the relativistic equivalent oscillator. These results add to the knowledge of group theory as related to relativistic quantum mechanics. It has already been mentioned that such knowledge happens to be useful in elementary particle physics, where the interactions are not explicitly known and the equations not established. In the second part, we applied the shel1 model of Braun and Swamy (32), which is based upon the relativistic equivalent oscillator, to the study of Coulomb energies. It has been shown that relativistic corrections are smal1, but are most important in heavy nuclei.

In the last part of Chapter III, the solutions of the relativistic equivalent oscillator Hamiltonian were shown to provide a basis for one infinite dimensional irreducible representation, $\pi_{\frac{1}{2}, \frac{1}{2}}^{+}$, of the group $S O(4,1) \times \operatorname{SU}(2)$ 。 Operators corresponding to the Lie algebra of this group have been given. These operators convert a wavefunction corresponding to one energy level into one corresponding to another.

It was also shown that $S O(4) \times S U(2)$ is an invariance group of the same Hamiltonian. This meant that there exist certain irreducible representations under which the wavefunctions corresponding to a given energy level are transformed among themselves. The irreducible representations of $S O(4)$ were derived in Chapter II from the commutation re-
lations, the Casimir invariants, and the requirement that the operators which represent the Lie generators be Hermitian. Hence, the energy spectrum may be derived from these requirements.

Our simple shell model, based upon the relativistic equivalent oscillator, gives results which are almost identical with the non-relativistic shell model results. Both models give exchange and direct energies which vary only locally from the Z, A dependence found by Bethe from the statistical model (41). In addition, a small pairing effect can be seen in a graph of exchange energy versus $Z^{4 / 3} / A^{1 / 3}$.

The relativistic corrections become largest for lead, where the relativistic exchange energy is found to be about 1 MEV less than the non-relativistic, which may be interpreted as meaning that the nucleons in more tightly bound nuclei may move with relativistic speeds.

REFERENCES

1．Swamy，N．V．V．J．，Phys．Rev．180， 1225 （1969）．
2．Malkin，I。 A．and V。 I。 Manko，Soviet J．Nuc1。Phys。 3， 267 （1966）．
3．Böhm，A．，Nuovo Cimento 43， 667 （1966）．
4．Mukunda，No，L。 ${ }^{\prime}$ Raiferteaịgh，and E。G。G。Sudarshan，Phys。Rev。 Lett．15， 1041 （1965）。

5．Biedenharn，L．C．and N．V．V．J．Swamy，Phys．Rev。133，B1353 （1964）．

6．Malkin，I．A．and V．I。Manko，P。N。 Lebedev Physical Institute， Moscow，USSR，Report No．N 9， 1968 （unpublished）．

7．Fradkin，D．M．and H．M．Kiefer，Phys．Rev．180， 1282 （1969）．
8．Bacry，H．，Lectures in Theoretical Physics，vol．9A．Boulder： University of Colorado Press， 1966.

9．Anderson，J．D．and C．Wong，Phys．Rev．Lett．7， 250 （1961）．
10．Anderson，J．D．，C．Wong，and J．W．McClure，Phys．Rev．138，B615 （1965）。

11．Lie，S．，Vorlesungen uber Continuerlichen Gruppen．Leipzig： Teubner，1893．

12．Dickson，L．E．，Linear Groups．New York：Dover Publications，Inco， 1958。

13．Casimir，H．B．Go，Proc．Roy．Soc．Amsterdam 34， 144 （1931）．
14．Cartan，E．，Sur 1a Structure des Groupes Transformations Finis et Continus，These，Paris，1894，second edition 1933.

15．van der Waerden，B．L．，Math。Zeit．37， 446 （1933）。
16．Racah，G．，CERN notes（originally given 1951）．
17．Fronsdal，C．，Brandeis University Summer Institute Notes．New York：W．A。Benjamin，Inco，1962。

18．Thomas，L．H．，Annals of Math。 42， 113 （1941）．

19．Bargmann，V．，Zeits．Phys：99， 576 （1936）．
20．Pauli，Wo，Ergebnisse der Exakten Naturwissenschaften 37， 85 （1964， based on notes given at CERN in 1955）．

21．Merzbacher，E．，Quantum Mechanics．New York：John Wiley and Sons， Inc．， 1970 ．

22．Nelson，T．J．，Ames Laboratory，U．S．Atomic Energy Commission， contribution no． 2316.

23．Condon，$E_{0} U_{0}$ and $G_{0} H_{\text {a }}$ Shortley，The Theory of Atomic Spectra。 Cambridge：University Press，1951．

24．Carruthers，Po，Introduction to Unitary Symmetry．New York：Inter－ science， 1966 ．

25．Weyl，H．，The Theory of Groups and Quantum Mechanics ．New York： Dover Publications，Inc．，1931．

26．de Swart，J．Jo，Rev，Mod．Phys．35， 916 （1963）．
27．Fäldt，G．，Physics 3， 47 （1967）。
28．Malkin，I．A．and V．I．Manko，Zh．Eksp．Teor．Fiz．55， 287 （1968）． （Sov．Phys．JETP 28， 151 （1969））．

29．Barut，A．O．，Phys．Rev．139，B1433（1965）；135，B839（1964）．
30．Fock，V．，Zeits．Phys．98， 145 （1935）．
31．Strôm，So，Arkiv för Fysik 30， 455 （1965）。
32．Braun，J．J．and No V．V．J．Swamy，Nuclear Phys．Al60， 641 （1971）．
33．Biedenharn，L．C．M．E．Rose，and G．B．Arfken，Phys．Rev．85， 5 （1952）．

34．Wey1，H．，Math．Zeit．23， 271 （1925）；24， 328 （1925）．
35．Neéman，Yo，Algebraic Theory of Particle Physics．New York：W．A。 Benjamin，Inc．，1967，p．19．

36．Fronsdal，C．，R．E．Behrends，J．Dreitlein，and W．Lee，Rev c Mod． Phys．34， 1 （1962）．

37．Hofstadter，Ro，Annual Reviews of Nuclear Scịence 7， 231 （1957）．
38．Wilkinson，D．H．and W．D．Hay，Phys．Lett．21， 80 （1966）；Wilkin－ son，D．H．and M。E．Mafethe，Nucl，Phys．85， 97 （1966）； Wilkinson，$D_{0} H_{c}$ ，Conference on Isobaric Spin．New York： Academic Press，1966，p． 30 （J．Do．Fox and D．Robson，editors）．

39．Schiffer，J．Po，Annual Reviews of Nuclear Science 19， 471 （1969）。

40．von Weizsacker，C．Fo，Zeits．Phys．96， 431 （1935）。
41．Bethe，H．and R．F．Bacher，Rev．Mod．Phys．8， 162 （1936）．
42．Flugge，S．，Zeits．Phys．96，459（1935）．
43．Sengupta，S．，Nuclear Phys．21， 947 （1937）．
44．Bethe，H．，Phys．Rev．54， 436 （1938）．
45．Wigner，E．，Phys．Rev．51， 947 （1937）．
46．Feenberg，E．and G．Coertze1，Phys．Rev．70， 597 （1946）．
47．Cooper，L。N．and E．N．Henley，Phys。 Rev。 92， 801 （1953）。
48．Jancovici，B．G．，Phys：Rev．95， 389 （1954）．
49．Sood，P．C．and A．E．S．Green，Nuclear Phys．5， 274 （1958）．
50．Carlson，B．C．and I．Talmi，Phys．Rev．96， 436 （1954）．
51．Racah，Go，Phys．Rev．62， 438 （1942）．
52．de Shalit，A．and I．Talmi，Nuclear Shell Theory．New York： Academic Press，1963．

53．Goldhammer，P．，Rev．Mod．Phys．35， 40 （1963）．
54．Ohmura，0．，Progress of Theor．Phys．（Kyoto）15，222；17， 326 （1961）．

55．Elton，L．R．B．，Nuclear Sizes．London：Oxford University Press， 1961.

56．Elliott，J．P．and T．H．R．Skyrme，Proc．Roy．Soc．（London）A232， 561 （1955）．

57．Swamy，N．V．V．J．and A．E．S．Green，Phys．Rev：112， 1719 （1958）。
58．Swamy，N。V。V。J。，V。K。Kembhavi，and D。G。Galgali，Phys．Rev． 120， 2069 （1960）。

59．Cameron，A．Go Wo，Canadian J．Phys．35， 1021 （1957）。
60．Mozer，F．S．，Phys．Rev．116， 970 （1959）．
61．Roy，R。R．and B．P．Nigam，Nuclear Physics．New York：John Wiley and Sons，Inc．，1967．

62．Bohr，N．and J．Wheeler，Phys．Rev．56， 426 （1939）．
63．Unna，I．，Nuclear Phys．$\underline{8}$ ， 468 （1958）．

64：Harchol，Mo，A．A。 Jaffe，J。Miron，I。Unna，and Jo Zioni，Nuclear Phys．A90，459．（1967）．

65．Tarbutton，R。Mo and K。T．R．Davies，Nuclear Physo A120， 1 （1968）。
66．Woods，R．D．and D．S．Saxon，Phys．Rev。 95， 577 （1954）．
67．Schiffer，J。P。，J．A．Nolen，and N．Williams，Physics Lett．27B， 1 （1968）；Schiffer，J．P．，Conference on Nuclear Isospin。 New York：Academic Press，1969，p． 733 （J．D．Anderson，S．D． Bloom，J．Cerny，W．W．True，editors）。

68．Blochinzew，D．，Physik Zeit．Sowetunion 8， 270 （1935）．
69．Margenau，H．，Phys：Rev．50， 342 （1936）．
70．Feenberg，E．，Phys．Rev．50， 674 （1936）．
71．Primakoff，H．，Phys。Rev。72； 118 （1947）。
72．Breit，G．，Phys．Rev．53， 153 （1937）．
73．Siegel，A．，Phys．Rev．82， 194 （1950）．
74．Blatt，J．and V．Weisskopf，Theoretical Nuclear Physics．New York： John Wiley and Sons，Inc。， 1952.

75．Slater，L．J．，Confluent Hypergeometric Functions．Cambridge： University Press， 1960 。

76．Bethe，H．A．and E．E．Salpeter，Quantum Mechanics of One and Two Electron Atoms：New York：Academic Press，1957．

APPENDIX A

Abstract

Tables showing the results of the Coulomb energy calculations of the present work are given. The symbol CM beside the name of a nucleus means that the correction for center of mass motion is included. The Slater integrals were evaluated by computer, but exact expressions for the first few of these quantities were found and checked with the results of the computer analysis. These Slater integrals are given here in separate tables.

TABLE I

COULOMB ENERGIES DIVIDED BY $\mathrm{e}^{2} \lambda$

Element	Non-relativistic		ro	Relativistic	
	Direct	Exchange		Direct	Exchange
He^{3}	1.5976	0.79788	1.33	1.57432	0.78716
$\mathrm{He}{ }^{4}$	1.5976	0.79788	1.20	1.57400	0.78700
c^{13}	11.702	2.660	1.20	11.597	2.636
			1.28	11.608	2.638
N^{13}	15.426	2.926	1. 20	15.321	2.871
			1.28	15.332	2.877
0^{17}	20.346	3.790	1.29	20.270	3.725
$0^{17}\left(2 \mathrm{~s}_{\frac{1}{2}}\right)$	20.346	3.790	1.29	20.270	3.725
F^{17}	24.721	4.036	1.29	24.619	3.966
$\mathrm{F}^{17}\left(2 \mathrm{~s}_{\frac{1}{2}}\right)$	24.901	4.006	1.29	24.804	3.935
Ca^{40}	109.355	10.784	1.22	109.084	10.576
Ca^{41}	109.335	10.784	1.18	109.070	10.564
Ca^{49}	109.335	10.784	1.24	109.101	10.590
Sc^{41}	118.850	11.128	1.18	118.538	10.913
Sc^{49}	119.196	11.092	1.24	118.930	10.890
Pb^{208}	1442.68	54.610	1.20	1440.71	52.907
($\left.\mathrm{Bi}^{208}\right)^{*}$	1475.50	55.079	1.20	1473.55	53.356

TABLE II
COULOMB ENERGIES IN MEV

Element	Non-relativistic		fermis	Relativistic	
	Direct	Exchange		Direct	Exchange
He^{3}	1.8940	0.9470	1.33	1.8938	0.9469
$\mathrm{He}{ }^{3}$ (CM)	1.5464	0.7732	1.33	1.5535	0.7767
$\mathrm{He}{ }^{4}$	1.9069	0.9534	1.20	1.9095	0.9547
C^{13}	10.702	2.432	1.28	10.689	2.429
$\mathrm{C}^{13}(\mathrm{CM})$	10.416	2.367	1.28	10.408	2.366
N^{13}	14.107	2.675	1.28	14.118	2.649
$\mathrm{N}^{13}(\mathrm{CM})$	13.731	2.604	1.28	13.746	2.590
0^{17}	17.381	3.238	1.29	17.389	3.196
$0^{17}\left(2 \mathrm{~s}_{\frac{1}{2}}\right)$	17.381	3.238	1.29	17.385	3.195
F^{17}	21.119	3.448	1. 29	21.119	3.402
$F^{17}\left(2 s_{\frac{1}{2}}\right)$	21.272	3.422	1.29	21.274	3.375
Ca^{40}	84.372	8.322	1.22	84.282	8.171
Ca^{41}	87.043	8.585	1.18	86.959	8.422
Ca^{49}	81.066	7.996	1.24	81.063	7.868
Sc^{41}	94.618	8.859	1.18	94.508	8.690
Sc^{49}	88.378	8. 224	1.24	88.366	8.091
Pb^{208}	861.856	32.624	1.20	861.788	31.647
$\left(B i^{208}\right) *$	881.465	32.904	1.20	881.433	31.916

TABLE III
THEORETICAL AND EXPERIMENTAL COULOMB DISPLACEMENT ENERGIES IN MEV

PAIR	STATE	$\begin{gathered} \mathrm{r}_{\mathrm{o}} \\ \text { fermis } \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\mathrm{c}} \\ \text { non-re1. } \end{gathered}$	$\begin{gathered} e^{2} \lambda \\ \text { non-re1. } \end{gathered}$	$\begin{aligned} & \Delta \mathrm{E}_{\mathrm{c}} \\ & \mathrm{xe} \mathrm{I}_{0} \end{aligned}$	$\begin{aligned} & \mathrm{e}^{2}{ }_{\lambda} \\ & \mathrm{rel} \end{aligned}$	$\begin{aligned} & \Delta E_{c} \\ & \exp \\ & \hline \end{aligned}$
$\mathrm{He}^{3}-\mathrm{H}^{3}$	ground	1.33	0.773	0.969	0.777	0.983	0.76
(CM)		1.20	0.857	1.074	0.862	1.092	
$\mathrm{He}^{3}-\mathrm{H}^{3}$	ground	1.20	1.0496	1.315	1.049	1.337	3.003
$\mathrm{N}^{13}-\mathrm{C}^{13}$	ground	1. 28	3.078	0.890	3.123	0.896	
(CM)		1.20	3.283	0.950	3.337	0.957	
$\mathrm{N}^{13}-\mathrm{C}^{13}$	ground	1. 20	3.373	0.975	3.387	0.983	
$\mathrm{F}^{17}-\mathrm{O}^{17}$	ground	1.29	3.527	0.854	3.524	0.858	3.545
$C a^{41}-\mathrm{Sc}^{41}$	$2 s_{\frac{1}{2}}$	1.29	3.706	0.854	3.710	0.858	3.174
	ground	1.18	7.300	0.796	7.281	0.797	7. 28
	ground	1.22	7.060	0.770	7.043	0.771	
	$2^{2}{ }_{3 / 2}$	1.18	7.606	0.796	7.594	0.797	6.99
$C a^{49}-5 c^{49}$	ground.	$1,24$	7.083	0.741	7.080	0.743	7.09
		1.18	7.444	0.779	7.439	0.781	
$\begin{aligned} & \left(\mathrm{Bi}^{208}\right)^{*} \\ & -\mathrm{Pb}^{208} \end{aligned}$	analog ground	1.20	19.329	0.597	19.376	0.598	18.980

TABLE IV
EXACT EXPRESSIONS FOR THE SLATER INTEGRALS $\mathrm{F}^{\circ}\left(\mathrm{v} 1 ; \mathrm{v}^{\prime} 1^{\prime}\right)$ DIVIDED BY $\mathrm{e}^{2} \lambda \sqrt{\frac{2}{\pi}}$

15	$1 p$		$1 d$	$1 f$	25
15	1	$\frac{5}{6}$	$\frac{43}{60}$	$\frac{177}{280}$	$\frac{19}{24}$
$1 p$		$\frac{3}{4}$	$\frac{27}{40}$	$\frac{1027}{1680}$	$\frac{11}{16}$
$1 d$			$\frac{151}{240}$	$\frac{1963}{3360}$	$\frac{299}{480}$
17				$\frac{1241}{2240}$	$\frac{3863}{6720}$
$2 s$					

TABLE V

EXACT EXPRESSIONS FOR THE SLATER INTEGRALS
$G^{k}\left(v l ; v^{\prime} I^{\prime}\right)$ DIVIDED BY $e^{2} \lambda \sqrt{\frac{2}{\pi}}$

TABLE VI
EXACT EXPRESSIONS FOR THE SLATER INTEGRALS

$$
\mathrm{R}^{\mathrm{k}}\left(\mathrm{v} 1, \mathrm{v} \overline{\mathrm{l}} ; \mathrm{v}^{\prime} 1^{\prime}, \mathrm{v}^{\prime} \overline{\mathrm{l}}^{\prime}\right) \text { DIVIDED BY } \mathrm{e}^{2} \lambda \sqrt{\frac{2}{\pi}}
$$

APPENDIX B

PROGRAM FOR CALCULATION OF COULOMB ENERGIES

This program, written in the FORTRAN IV language, will print out the relativistic and non-relativistic oscillator constants λ, and calculate simultaneously the relativistic and non-relativistic Coulomb energies for closed shell nuclei (IHA $=1$) or nuclei with ane particle outside a closed shell (IHA $=2$) 。 The data cards must give the quantum numbers v, $1, \overline{1} ;$ and the sign of k for each set of protons with the same values of these numbers, the total number of protons in the nucleus, the total number of neutrons, as well as certain numbers necessary for calculating the oscillator constants and for the READ and WRITE statements. The two cards giving the variables RO and SUM must be changed to correspond to the nucleus for which the calculation is to be made. The program prints out the Coulomb energy divided by $e^{2} \lambda, e^{2} \lambda$, and the Slater integrals and reduced matrix elements used to get the results.

00000000011111111112222222222333333333344444444445555555555663666666571777717771
2345078901234567890123456789012345678901234567890123456789012345678901234567490

```
PROGHAM FOR CALCULATICN OF COULOMB ENERGIE
    omension
```



```
        OLMENSICN (I2), NMAXLITC, LMAXI2), AXA(20), AYBI2O)
    READ(5,100)(2)(1),I=1,2)
    FODMATIZF5:1) THE RATIONAL NUMBER -SUM. MUST BE INSERTED
        A CARD GIVING THE RATIONAL NUMBER SUM' MUSY BE INS 
        RO= 1.28
        SUM= 54.11 26.)
        AMSOxSUM/AMSO
        LAMSOESUM/AAMSO
    5 FDRMAT [2x,1/,ix, COULOME ENERGIES FOR THE ELEMENY HITHZ Z *',FF5,1,'
        1,N =%,F5.1.1/1,1X,TTHE OSCILLATOR CONSTANT LAMEDA SQUARED IS',EI4
        2.7.1/:1x| 
        MBE=XBB*(4.803)*(4.803)/1 16.021)
        HRITEC6;11)XBB
    11 FORMATIIX,SCALE = ',E14.7,'MEV'1
        XMP=(1.0545)*! 2.997925)/(! 1.60
        READ(5;6) NAX
        READ(5,7)(AXAII!,AYBI!),I=1,NAX)
    FORAIII = OF PARTICLES wITH ENERGY Characterized by aybili, WITH SIGN
        AXAII) = *OF PARIICLE
        MDS=SUM
        SUM=ADS
        SO&& I=1, MAX
        FAC= 4.*LAMSE*XMP*XMP
        MXYZ= 1.+FAC*AYB(I)
    9 EX=1./(HXY(** 0.5) (.-EX)*( 0.501)
        XCA=LANSC-SUM/AAMSO
        XCA=ABS(XCA)
        AMS O= SUM/AAMS
        IFPXCA.GE. 1.E-04,GO TO 8
```



```
        XBB= LAMSO** 0.5
        B8=x88*(4.803)*{ 4.803)/( 16.021)
    13 FORMATIIX,RELATIVISTIC SCALE =',ER4.7,0 MEV':
        FAC= 4.*LAMSQ*XMP*XMP
        BEGIN MAIN PART GF COULOMB ENERGY CALCULATICN
        IHA=1 FOR CLOSED SHELL NUCLEI, 2 FOR MIRROR NUCLEI
        NJ is the number of sets of particles having the same J and v
        INOT COUNTING THE ODD PARTICLE, IF ANYI
```

 0600000001111111111222222222233333333334444444444555555555566666686657177771777

nno
0000000001111111112222222222333333333444444444455555555556666666667717777778
12345678901234578901234551890123456789012345678901234567890123456789012345.1897
21 formatizi3)
$\mathrm{NHA}=0$
$\mathrm{FOE}=0$.
$E C E=0$.
$E X E=0$.
$E N D=0^{2}$
$E \times N E=0$

22 format (4012)
23 fopmat 231 (xJ(1),I $=1$, NJ)
23 formaticgrs.11

READ (5,23) \times JO
$24 \begin{gathered}k K=1 \\ J K=1\end{gathered}$
25 VIRIVGKK)

$$
(=I L(K K)
$$

$\mathrm{LJ}=\mathrm{IL}(\mathrm{Jk})$

EFIKK.EQ.JKigC TC 26
$26 \mathrm{XJA}=\mathrm{XJ}(\mathrm{KK})$
$X J B=X J(J K)$
$W X Y Z=1 .+F A C *(V I+X J A+1$.
WXYZ $=1 .+F A C *(V I+X J A+1.1$
MOVERE
$W \times Y Z=1+1 W Y Z * * 0.5)$
$W \times Y=1 .+F A C *(V J+\times 1 B+1.1$
MOVREP= 1./(WXYZ** 0.5)
CALCULATION OF OIRECT ENERGIES
$\mathrm{IM}=2 \neq \mathrm{IV}(\mathrm{KK})+1$
$\mathrm{IN}=2 * \mathrm{~V}(\mathrm{~K})$
CALL F(VI,VJ,LI,LJ,IM,IN,FK)
28

$F K=0.25 *(1++M O V E R E) *(1,+M O V R E P) * F K$
$E D E=E D E+F K$
EJ=ILB(JK)
CALL F(VI,VJ,LI,CJ, TM,INi,FK)
HRTTEI6,28)IVIKKI, iVIJKI:LI,LJ,

EDE=EDEFFK

LITLEKKK
LJThLSK)
CALL F(VI,VJ,LI,LJ,IM,IN,FA)
WRITE
FK $=0,28)$ IVVKK
2

$F K=F K * 1 \times J A+$
$E D E=E D E+F K$

00000001111111111222222222333333333444444444455555555556666066661771771177
1234567890123456789012345678901234567890123456789012345678901234567890123456789

LJZILB(LK)
CALL $F(V I, V J, L /, t J, I M, I N, F K)$

WRITE(6,29)XJI,XJB,ENDE,EDE
29
 2LATIVISTIC1;
CALCULATICN OF EXCHANGE ENERGIES CALCULATICN
$X K=X J A-X J B$
$X K=A B S(X K)$
${ }^{30}$ $1 J=111 \mathrm{l}$

XLBELJ
CALL REOMAT $X L A, X L S, X K, X J A, X S$

31
32 CALI SKLYI IV(JK) $L(K, L L, T M, X K, S L K I$

33 FORMATIX, /, 1X, GY,613,
EXNEEXNE+0.S*SLX*R*PAIRS
SLK $=0.12 S *(1 .+M O V E R E) *(1 .+M Q V R E P) * S L K * R$
EXE EXXE SLK KPAIRS
LK=1 $18(\mathrm{KK})$
CALL SLIVI,VJ,LT,LJ,LK,LL,IM,XK,SLKI
URITEL6,33)IVIKKI.IVIJKI,LI,LJ:LK,LL,SLK
SLK=0.25*(11 1.-MOVERE* MOVERE)*1 $1 .-$ MOVREP*MOVREP) $) * * 0.51 * S L K * R$

LI=LK
CALL SLIVI,VJ,LI,LJ,LK,LL,IM,XK,SLKI
 WRITE 16,331 IVIK
SLK $=0.125 * 11-M O V E$
$E X E=E X E+S L K * P A I R S$

$\quad \begin{aligned} & x=x k+1 \\ & y k=x J A+X J B-x k\end{aligned}$
IF(YK-LT,-L.E-06)GO TO 36
36 IFKKK.GE.NJ.AND.JK.GE.NJIGO TO 38

0000000001111111111222222222233333333334444444445555555555666666666671111771778 12345578901234567890123456789012345678901234567890123456789012345678901234567890

$37 \begin{gathered}\text { KK }=K K+1 \\ 1 F I N H A . E Q .17 G O \\ \text { IC } \\ 25\end{gathered}$ IFINHA.E
JK $=$ KK
GOTOA 25
IFIIHA.EQ. IICALL EXII NHA $=$ NFA Finha.EO. 21 go ro 39 WRITE
JK $=J K+1$
 IL(JJK1=1L0
ILBt JKI=ILBO

$A=E N D E$
$B=E O E$
0
$\mathrm{C}=\mathrm{EXNE}$
OEEXE
$K K=1$
$\begin{array}{lll}\mathrm{KK}=1 \\ \mathrm{GO} \text { to } & 25\end{array}$

KRITETS, 40 OENDE, EXNE, EOE, EXE
40 FORMATIXXI/IX,'THE FINAL COULOMB ENERGIES AREA, $/ \%, 1 x, E 14,7, \cdot$ TOIR

${ }^{311011}$
 $\underset{\text { CNOLL }}{\text { CNO }}$

CHANGE INTEGRAL hipergenmetric functicn for the exchange integrals OI WENSION AlICOI EGF=1
$i=1$
$y=10$
$x=1 \times L A+X L B+\times L C+X L D 1 / 1+2.01+\times N+X K+2.5$
$X Y=(X L A+X L 8+2-* X N+X K+5) / 1+2.0$. AXOH=X-XY
AXOH=ABSIAX
IFlAXQN.L?. 1.E-061G0 TO 45
41
 IFIN $=$ EQ.1) 160 TO 42
A(IN) $=A(I N 1+A(I N-1)$
$42 \begin{aligned} & \text { CINTINUE } \\ & A X=A(J) \\ & \text { A. }\end{aligned}$
$80 / 80^{\circ} \mathrm{L} 15 \mathrm{~T}$
2000000001111111112222222223333333333444444444455555555566666666601171771778

F(AX.LT. S.E-CBIGO TO 43
$t=1+10$
$j=j+10$
$\mathrm{J}=\mathrm{J}+10$
60
10
$430044 \mathrm{JN}=1, J$
RETURN
$45 \begin{gathered}\text { REGFRN } \\ \text { RETURN }\end{gathered}$
END

$21 * 2!$
$2 J=L J$

$1=0$
$10 \begin{gathered}\mathrm{C}=0 \\ \mathrm{~F}=\mathrm{O}=\mathrm{M}\end{gathered}$
$10 \begin{gathered}\mathrm{XM}=\mathrm{M} \\ \mathrm{XN}=\mathrm{N} \\ \mathrm{N}\end{gathered}$
$X N=N$
$X N C=X M+X N$
AR $G=21+2 J+2,5+\times N C$
$Y=G A M M A(A R G)$
$Y=Y /(+2$.**ARG)
CALL
$Y=Y \neq A F$
CALL
(
CALL OHGFI
FAKKHGA/($2 J+X N+1,5)$

THE ARGUMENTS ARE STAGGERRED ON PURPOSE
THE ARGUENTS
FAK F FAK
$Y=F A K * Y$
$M=M+1$
$M=M+1$
$F K=F+Y$
IFIN.EG.IN.AND.M.EQ.IMIGO TO 11
$\mathrm{IF}(\mathrm{M}+\mathrm{NE}, \mathrm{IM}$) MO TO 10

GO 11.10
11. $F K=F K \neq(+0.25)$
$A R G A=V I+Z I+1,5$
ARGB $=V J+2 J+1.5$
$A R G C=2 I+1.5$
ARGC $=21+1.5$
ARGD $=2 I+1$.
ARGYI $=1+1$.
$A R G V J=\forall J+1$.
AB=GAMMA(ARGB)
AB=GAMMA (ARGB)
$A C=G A M M A(A R G C)$
AD=GAMAA(ARGD)
AVI $\times G A M M A(A R G V I)$
$80 / 80$ List

0000000011111111122222222213313333334444444445555555556666666667777717178
12345678901234567890123456789012345678901234567890123456789012345678961234567890

```
Avj=camMa/argvj)
x.NORM= 4.*AA*AB/(AVI*AVJ*AC*AC*AD*AD)
```

END
C
c
c
SUBROUTINE SLIVI,VJ,LI,LJ,LK,LL, [M,XK,SLK]
SHIS SUBREUTINE ASSEMBLES THE SLATER iNTEGRALS for the ExChange energ
$X L A=L!$
$X \perp B=!J$
$\times \mathrm{XLA}=\mathrm{L}$
$\mathrm{XLC}=L K$
$X L D=L L$
$14 \begin{gathered}\mathrm{SLK}=0 \\ \mathrm{XM}=\mathrm{M} \\ \mathrm{XN}\end{gathered}$
$\mathrm{XN}=\mathrm{N}$
$X N C=X M+X N$
$A R G=(X L A+X L B+X L C+X L D) /(+2.0)+X N C+2.5$
$Y=G A M M A(A R G)$
$Y=Y / 12 . * * A R G$

$Y=Y \neq A$
$C A L L$
$Y=Y(V I, V J, L K, L L$
Y
$Y=Y * B$
$C A L L$
EHGF $X L A, X L B, X L C, X L D, X M, X N, X K, E G F$
FAK $=E G F /(X L A A+X L B+2, * X N+X K+3.1$
CALL EHGF (XLC \times XLD, XLA, XLB, XN, XH, XK, AGF)
THE ARGUMENTS ARE STAGGERRED ON PURPDSE
THE ARGUMENTS ARE STAGGERRED ON PU
$F A K=F A K+A G F /(X E C+X L O+2 . * X Y+K K+3$.
$\begin{array}{r}Y=F A K * \\ N=N+1 \\ \hline\end{array}$
$\mathrm{N}=\mathrm{N}+\mathrm{I}$
$\mathrm{IN}=\mathrm{I}+\mathrm{H}+$
SLK
SLK $=S L K+r$

IFIN.NE. INIGD TO 14

SLK=SLK*!
XNORMX 1.
$\mathrm{IC}=0$
$\mathrm{CL}=\mathrm{C}$
$16 \begin{aligned} & \mathrm{y}=\mathrm{V} \text { I } \\ & \mathrm{I}=1 \mathrm{IC} \\ & A\end{aligned}$
ARGA=v+XL+1.5
ARGA $=V+X L$
ARGB $=\mathrm{L}+1$
ARGV $=V+1$
ARGV $=V+1$
$A A=G A M M A$
$A A=G A M M A(A R G A)$
$A B=G A M M A(A R G B$
$A B=G A M M A(A R G B)$
$A V=G A M A A(A R G Y)$
$A V=G A M N A(A R G V)$
$x Z=12 * A A / I A V * A B * A B 11$
$x Z=x Z * * 0.5$

80/80 LIST

X NOR $\mu=X N C R P * X Z$

$18 \begin{gathered}\mathrm{XL}=\mathrm{x} \text { LO } \\ \mathrm{GO} \mathrm{IO} \\ 16\end{gathered}$
19 SLK= SLK*XNORM RETURN
ENR
c
c
SUBROUTINE DHGF (XLA, XLB, XH, XN,LB,N,HGF:
dimpergiom atric function for the direct integrals $H G F=1$
$1=L B+M$

IF $1, E 0.0160$
00
$32 J J=1,1$
Do $32 J=1,1$
$x J J J$
$A(J)=(-1.0) *(-(X L A+X A)+X J-1) /.(1 \times(B+X N+2.5+X J-1)$.

32 CONTINUE
OO $34 \mathrm{~J}=1,1$
HGF=HGF+A(J)
RGFIGGG
RETURN
RETU
ENO
$\stackrel{c}{c}$
SUBROUTINE AFIVI,VJ,LI,IS,AC,AFGI
OIMENSION A(SO), B(SOR
BAILEY COEFFICIENTS FDR THE SUMS
BAILEY COEFFICIEN
AFG $=1$.
INC.EQ.OIRETURN
xLI $=11$
$x\llcorner J=\lfloor J$
$\mathrm{XNC}=\mathrm{NC}$
$\mathrm{DO} 52 \mathrm{~J}=1, \mathrm{NC}$

GJ GENERATES THE FACTORIAL
IFJ.EQ-1IG TO S2
A(J) $=A(J-1) * A(J)$
$52 \begin{gathered}\text { BiJint } \\ \text { CONIINUE }\end{gathered}$
AFG=8(NC) + A A MC)
IF

NA=NC-1
0053 IJ
$I W=N C-1 J$
53 4 FGxAFG+A(IJ)*BItW)
RETURN
END
Subroutine reomatixla, XLB,XK,XJA, XJB,RI

IT IS IS
RES
KN
T

$\mathrm{Y}=\mathrm{XN}-(\mathrm{XL}(\mathrm{A}+\mathrm{X}(8+\mathrm{XK})$

$5=-5$
60 TO 32
33 GOTSO. 32.160 IC 34
if $L+L^{\prime}+K$ is nod then the reouced matrix element is iero
peturn is mace tc statement 35 to avoio usfless steps
RETURN
R $=0.0$
RETURM
$34 A A=X J A+X J B-X K+1.0$
$A A=X J A+X J B-X K+1$
$A A A=G A M M A(A A)$
$A B=X J A+X K-X J B+1.0$
$A B=X J A+\times K-X J B+1.0$
$A B=G A M M A B A$
$A C=X J B * X K-X J A+1.0$
$A C C=G A M M A C A C)$
$A 0=X J A+X J B+x K+2.0$
$A D D=G A M M A A D I$

$x^{N}=0$.

FiY.LT- L.E-06)GO TO 36
$\mathrm{XN}=\mathrm{XN+1}$. .
60 TO 350.100 .37
$A D=0.5 *(x \times+x J B+x J A+3.0)$

$G O$ TO
$A B=0.5(X K+X J A+X J B+2.0)$
$A C=0.5 *(X X B+X K-X J A+1.0)$
$A B=0.5 *(X J A X K-X J B+1.0)$
$A A=0.5 *(X J A X J B-X K+2.0)$
38
acc=cama(ad)
CC=GAMMAC $A C$
$A B=G A M A S A B$
$A A A=G A M M A(A A)$
$F D=A O D /(A A A * A B B * A C C$

80/80 LIST
0000000001111111111122222222223333333333444444444455555555555666666566677177777778

CARD	
0433	FO=FO*FO
0434	R= 4:0*OELTSO*FO
0435	RETURN
0436	END
0437	
0438	sentry
0439	7.06 .0
0440	2
0441	0.23081 .50000 .61542 .5000
0442	$0^{2} 2^{2}$
0443	$001-1012-1$
0444	0.51 .5
0445 0446	${ }_{0} 1.51$
04.67	sibsys

```
                                    I
VITA
    Eugene Franklin Chaffin
Candidate for the Degree of
    Master of Science
```

Thesis: A STUDY OF THE SYMMETRY OF THE RELATIVISTIC EQUIVALENT OSCILLATOR AND ITS APPLICATIONS

Major Field: Physics
Biographical:
Personal Data: Born in Fort Wayne, Indiana; June 12, 1948, the son of Frank S. and Maxine M. Chaffin.

Education: Graduated from Glencoe High School, Glencoe, Oklahoma, in May, 1966; received Bachelor of Science degree in physics from Oklahoma State University in January 1970; completed the requirements for the Master of Science degree in May, 1972.

Professional Experience: Employed as a Graduate Assistant in physics at Oklahoma State University from 1970 to 1971.

