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PREFACE 

Over the past several years there has been an ever-increasing 

emphasis on the development and use of man-machine interactive terminals 

in computer systems which has brought the power and flexibility of the 

computer to more effective use in many applications areas. One of the 

most attractive, if not yet the most economical, of these terminals has 

been the various combinations of alphanumeric and graphic input devices 

using a cathode ray tube (CRT) display as the primary output means. 

Such terminals, together with appropriate software and communications 

networks, have been used or proposed for computer-aided design, time­

sharing, information retrieval, computer assisted instruction, and a 

variety of other man-machine tasks. 

The literature indicates that industrial experience with such 

devices in process systems under computer control is limited. Appli­

cation of these systems has been generally limited to implementation 

of more or less conventional process operator functions. The writer 

has been convinced for several years that CRT terminals hold great 

promise for improving efficiency in the experimentation with and study 

of industrial processes, as well as in operator control. "Process 

study" includes all means by which improvement in knowledge of an 

industrial process is attained; i.e., a total systems approach to 

process analysis observation, calculation, analysis, control, and 

optimization. It is to the "analysis" function that this work is 

directed. 
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This study is concerned only with the software fo~ carrying out 

interactive analysis of the process and, in parti~ular, the basic 

operating system functions, data acquisition, data handling, and data 

analysis. Control and optimization techniques, while dependent on the 

analysis, are not treated in the present work. Although this study is 

based on a software (functional) approach, the results can aid in 

establishing hardware requirements as well as in specifying an efficient 

set of primitive operations for the implementation. 

The central theme taken is that man must play an important part at 

many stages in the data collection, handling, and analysis to interject 

selection, direction, and ideas to the repetitive calculations and data 

handling which is best done by computer. The faster graphic input­

output terminal (with appropriate software) can obviously provide 

quicker and more effective communication than can a typewriter terminal. 

However, there are many more subtle questions involved. For example, 

can process computer systems be programmed to adequately support such 

a terminal in addition to the data collection and control functions, 

what are the requirements for such analysis, and what, if any, advan­

tages are there in doing on-line analysis with the process computer? 

As these questions imply, it is not clear whether on-line data analysis, 

even interactive data analysis, is practical using the process computer. 

There is little doubt that the efficiency of analysis work can be 

improved significantly; what is in question is whether a complete job 

can be done on-line, and how effectively the results of such analysis 

can be applied to the process in real or near-real time. This investi­

gation was µndertaken to provide the necessary framework for answering 

these questions. 
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CHAPTER I 

INTRODUCTION 

The general problem area to which this work is directed is shown 

in Figure 1. Process, Data Acquisition, and Models for Control (Blocks 

1, 2, and 5) form the "inner" loop which implements computer control of 

the process. An "outer" loop contains the Process, Data Acquisition, 

Data Analysis and Reduction, and Model Identification (Blocks 1, 2, 3, 

and 4). This loop implements a path for systems information analysis. 

Data analysis and model updating are generally carried out in a 

remote off-line environment. For example, in a typical case, a fairly 

complex test design may be carried out in a few days, while thorough 

analysis of the data at a remote site may require several weeks or even 

months, depending upon the sophistication of the remote analysis 

facilities. Because of time delays and associated environmental changes 

in industrial plants, problems inevitably arise in application of the 

analysis results. One such problem occurs because delayed analysis 

results from plant testing have limited applicability; i.e., the 

process, controls, or product specifications may have been modified in 

the interim. Another problem arises when several series of tests are 

planned to study different aspects of the process. With the analysis 

results from each series lagging behind, subsequent series must be 

carried out with limited benefit from previous work. This often leads 

to repetition of test series or failures in the analysis due to 

1 
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unforeseen experimental control problems which must be solved before 

valid tests can be run. With the rate of generation of test data 

much greater than the rate of analysis, this problem of incomplete or 

late analysis reduces the value of the extensive and costly testing. 

Productivity of testing is also adversely affected by the anticipation 

of results of past work. 

Such problems could b,e avoided, and at the same time significant 

analysis productivity benefits realized, if data analysis functions 

could be put on-line. Since analysis requires thinking as well as 

computer calculations, a high degree of man..:computer interaction is 

indicated. This investigation is an attempt to outline and evaluate 

necessary functional specifications of such an on-line information 

analysis system, as applied to the study of industrial processes. 

A graphic display terminal has been chosen for the interactive 

device because, in many cases, graphics are more efficient for man­

machine communication. Many commercial models with more than adequate 

speed are now available and, when desired, hard copy can be obtained 

through alternative means from the same source data. 

3 

Coons (1) has outlined the general requirements for computer-aided 

design, many of which apply here, and has summarized very well, in 

general terms, the reasoning behind joining man and the computer (2). 

Van Dam (J) has written a summary which traces the history of display 

hardware technology and man-'machine interaction. Extensive references 

to pertinent literature and bibliography are included. Requirements 

for "technically and economically feasible" man-'machine interaction 

were outlined, the classic works with very large systems summarized, 

and several other applications mentioned. Essentially all references 



were directed to multiterminal design systems or complex picture 

generation and manipulation tecnniques, such as in (1). 

The literature on the application of interactive devices in 

industrial process control is limited. Aronson (4) surveyed current 

installations in industrial process control. He pointed out that the 

power industry is leading the way in CRT display uses with the obvious 

applications of graphics for power transfer and distribution diagrams. 

Pipeline and process flow displays are similar applications in the 

petroleum and petrochemical industries. Typical uses of displays in­

clude setting valves in distribution systems, for large graphic panels, 

for computer control consoles, instrument displays, etc. Some emphasis 

is given to available hardware, but virtually nothing is said about the 

magnitude of the software effort needed to implement such applications, 

or the required sophistication of the computer hardware to drive the 

displays. 

Currently, most of the interactive data analysis functions indi­

cated in Figure 1 are carried out, using off-line techniques. However, 

"on-line analysis" is being done where extensive hardware/software 

facilities and manpower exist. For example, Abraham, Betyar, and 

Johnston (5) describe a specialized system for collection and analysis 

of neurophysiological data using a 32K SDS 9300 computer augmented by 

an eight million character disc, CRT display, seven magnetic tape units, 

two plotters, and other assorted data processing peripheral devices. 

Lockemann and Knutsen (6) outlined a multiprogramming environment for 

on-line data acquisition and analysis implemented on IBM System/J6o 

Models 44 and 50 with CRT display, disc, and presumably a normal 

complement of peripherals. A good summary of the characteristics of 



data analysis is given, but the description betrays a fundamental in­

consistency common to both of these systems: The interactive console 

language is simple, yet "cascaded" to extremely complex large-computer 

operating systems. The former paper admitted to a factor of up to 
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JO slowdown over FORTRAN programs for some console interpreter routines. 

And FORTRAN code is considered inefficient as used on process control 

computers. 

Moreover, the computer mainframe cost is a relatively small part 

of the total on-line system. In this view, one may question the economy 

of many users sharing a single complex large scale processing system, 

compared to what might be done in data reduction with relatively small 

dedicated parallel processors and a simple, direct interaction language 

allowing efficient programming. Ball et al.,(7) described a small­

computer display system, but the application work was done on a larger 

system. 

The objective of the present work is to investigate the organi­

zational and functional requirements of a software system to implement 

the data analysis loop in Figure 1 (Blocks 1, 2, 3, and ~). The 

proposed system would use the capabilities of an on-line industrial 

process control system dedicated to one or more units in a petroleum, 

chemical, or other manufacturing plant. Such systems are "on-line" to 

the industrial process in that they are directly connected through 

appropriate data acquisition hardware to various digital or analog 

instruments measuring such variables as flow rates, temperatures, 

pressures, product quality, etc. 

There are several factors which discourage the use of present 

process computer·software systems ~or combining data acquisition, 



6 

control, and process analysis (8) (9) (10). 

First, the objectives of these already very complex systems are 

different from the objectives here. For example, manufacturers are 

committed to provide systems which allow sales to users often not 

familiar with the detailed characteristics of computers. Moreover, of 

great importance to manufacturers is the simplicity of their own imple­

mentation across many installations with various hardware configura­

tions. These objectives have resulted in unnecessarily large, complex, 

over-generalized operating systems which require an inordinately large 

proportion of the process system resources. There are usually many ways 

for users to accomplish the same results with such systems. Languages 

(such as FORTRAN) provide user programming convenience at the expense of 

system efficiency and simplicity. Because such systems have evolved 

over a number of years through efforts of many people, the investment 

is too great to correct fundamental errors made early in the develop­

ment. Thus, unnecessary programming complexity is added to minimize 

the effect of these errors. 

Second, because the analysis system objectives require interaction, 

duplication of many existing batch translation language functions with 

similar interpretive functions is indicated if these existing systems 

are used without modification. 

Third, interactive analysis system hardware requirements are 

different from the configurations assumed in the design of existing 

operating systems. 

And fourth, there is a law of diminishing return in efficiency as 

separate, large, modules of complex software are added to other such 

modules, as would be the case here using the extant systems. 



Consequently, these operating systems are considered of limited 

suitability as a starting point for this work. Development of a 

simpler operating system, with emphasis upon the functional process 

analysis requirements rather than nonfunctional system requirements, 

is needed. This, of course, does not preclude use of input-output or 

other appropriate basic functions directly from such systems. 

7 

Therefore, the major objective of this thesis is to outline 

operating system and functional requirements for applying a CRT display 

to interactive process analysis using an on-line process computer. 

This general objective is organized into the following problem areas: 

1. Overview and Notation. To accomplish the thesis objective, 

it is necessary first to carefully outline the general 

functions to be included which requires development of 

appropriate definitions and a notational basis for use in 

the description. This problem is dealt with in Chapter II. 

2. Data Basis. One of the most difficult to define problems in 

software is to determine the organization for system data and 

parameter structures to best serve the various routines 

operating with these structures and still retain as much 

flexibility, efficiency, and simplicity in documentation as 

possible. This problem, as it relates to the process 

computer system with interactive data analysis, is approached 

in Chapter III. With consideration for machine storage 

efficiency, subroutine structuring, and process flexibility, 

the best structure for storing and documenting the many 

parameters characteristic of this system is the simplest, 

i .. e .. , the matrix. Variable length parameter elements and 



system identification of these elements are found to be 

necessary for the application. A special case of linked 

allocation list structuring is used to define the matrix 

identifying structure. 

8 

J. Priority Structure and Scheduling. Using the data basis and 

notation of Chapters II and III, Chapter IV outlines in some 

detail a formalization of the types of priority structures 

used in real-time systems, and a rationale for selection of 

the formal lattice structure. A data basis for the parameters 

of this lattice structure is developed, and the logic of the 

program scheduler is discussed. A working core organization 

for efficient but simplified multiprogramming using this 

structure is proposed. The concept of the re-entrant level 

executive to further simplify application program scheduling 

is introduced. 

4. Other Process System Functions. Within the framework of the 

priority structure of Chapter IV, a general discussion of how 

the data acquisition, process calculations, data handling, 

input-output, and error-alarm control may be organized to 

facilitate interactive manipulations is given in Chapter V. 

5. ~ Interactive Analysis Subsystem. In Chapter VI, the 

functions of the interactive analysis subsystem are described 

and related to the previously outlined operating system. 

These functions generally consist of procedure definition, 

data definition, procedure execution, procedure or data 

modification, and verification of results. 



6. Example ~ Conclusions. A comprehensive example of the 

application of the interactive analysis system is given in 

Chapter VII. The concepts given in Chapter VI are used 

assuming the system described in Chapters II through V to 
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tie together and illustrate the power of interactive analysis 

functions. The conclusions and significance of this work are 

given in Chapter VIII. 



CHAPTER II 

OVERVIEW OF SYSTEM FUNCTIONS 

Formalization 

In the development of a science, one of the most significant steps 

occurs when large volumes of specific observations, analyses, and 

conclusions are classified into laws, species, or theories, which 

organize, simplify, and generalize the technol'ogy into a more compact 

and manageable form. This is referred to as the formalization of the 

science. Of significance in formalization is the adoption of notations 

for the structural units such that the science may be applied by use of 

the notation to observe and describe relationships between the basic 

structural units. Thus new knowledge "fits" into the old formalization. 

Formalization also makes available an efficient organization from the 

fundamental to the more complex, which facilitates teaching as well as 

new discovery in the science. 

In a similar manner, there is recognized a need for some formali­

zation of the languages, procedures, data, and structures used in the 

collection, manipulation, and output of data in industrial process 

computing systems. From such formalizations, one hopes to simplify 

existing functions and, perhaps, provide a more reliable means for 

evaluating system resource requirements for new functions. The extent 

to which new functions can be described by the basic formalization 

would be a measure of success of the formalization. 

10 
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Language Basis 

The first step in formalization of experimental on-line analysis 

is the selection of a suitable notation or language. Knuth (11) out­

lined in the Preface page x, the general reasons for adopting a machine­

oriented language rather than a more sophisticated compiler language 

for his classic work. At least two of those principles apply extremely 

well to the present problem. 

First, the programmer is greatly influenced by the language in 

which he writes his programs, and will select constructions best in the 

language rather than those which might be best for the machine. The 

truth in this principle has been demonstrated to the writer many times 

in his own experience with various versions of FORTRAN and machine 

languages. The FORTRAN language introduces numerous restrictions to 

data and program structural efficiency, primarily in the logic and 

input-output statements. Moreover, selecting constructions best for 

the machine obviously simplifies the translation function. The 

opposite view, of course, is that machine resources are less expensive 

than programming resources, compilers conserve programming resources, 

thus the compilers are justified. The complex tradeoffs are unique to 

each situation, and the correct solution actually depends as much upon 

the skills of the people involved as on the application. Since this 

work is concerned with a system which allows conservation of machine 

resources, a language directly relatable to machine language is con­

sidered highly desirable. 

Second, today's high-level languages, particularly in process 

control, are not suitable for input-output buffering, problems 



involving packed data, searching, recursion, and multiple-precision 

arithmetic, all of which are needed both to write and use the inter­

active analysis system. 
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A third significant factor is that compact notations, particularly 

in an engineer-computer interactive environment, are actually an ad­

vantage in use, compared to the bulky English language words of most 

compilers. An excellent example of a compact notational language is 

Iverson's APL language (12), which is built from extremely basic (one 

character stroke) primitives, but accepts and operates upon complete 

vectors. From such primitives, one familiar with the notation can 

build and execute complex functions in a short period of time. Unfor­

tunately, it is more difficult to learn such extremely compact notation, 

and documentation is similarly difficult to read. A compromise between 

compactness and readability is indicated. 

The compromise preferred here is to apply the time-tested macro­

coding principle at the assembly language level. Use of mnemonic 

abbreviations simplifies learning. As Kent (1J) points out in his 

survey of assembly level macro techniques, the use of macros written 

in assembler language provides a tool powerful enough so that programs 

for a given application area can be written using only macros. 

Benefits such as reduced coding effort, flexibility, fewer bugs, and 

standardized coding conventions are realized; specific machine charac­

teristics need not be considered. 

This last point is an important point to consider in the over-all 

compiler versus assemb.ler question. For, once an (assembler) language 

level is reache.d which sufficiently isolates the programmer :rrom 

hardware or undue format restrictions peculiar to the machine or 
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assembler, then the compiler level has, in a very real sense, been 

reached. That is, there is an appropriate assembler language macro to 

implement any desired function of the compiler language; only the 

questions of arrangement of symbols (format) and definition of macros 

from predefined macros down to the primitive or machine language level 

(translation) remain. This approach to system programming has the added 

advantage of limiting the "compiler language'' to only those functions 

desired for the current application. 

The memory efficiency of the macro system will depend, in large 

measure, upon the number and extent of reuse of each macro in building 

new macros. There is as yet no scientific approach which will insure 

optimum reuse; therefore, it is considered desirable that redefinition 

and other updating of macros be made as easy as possible, so that 

improved definitions can be introduced as they are discovered. 

There is much said in support of high level languages for the 

purpose of allowing process and control engineers without a detailed 

knowledge of computers to implement computer control schemes (see, for 

example, reference (14:)). Yet, machine language principles are funda­

mental to all computing if not engineering. If one who does: not know 

fundamental principles uses a high level language, this has the effect 

of encouraging the inefficient use of the system. Hence, if machine 

resources are a consideration;(as well as programming resources), users 

should be familiar with fundamental principles. The language need is 

for relief from tedious, non-functional hardware peculiarities and 

unnecessary format detail. 

In describing the system and the operational notation for macro­

code, terms are used which have various meanings in the literature. 



Therefore, the particular usage applicable here is defined in the next 

section. The reader may find it preferable to skip the following 

section until a need for the specific meaning of terms or notation is 

apparent. 

Definitions and Notation 

The process is a real, operating chemical-physical complex of 

materials and equipment, characteristics of which can be measured 

instrumentally and sensed by the process computing system. Parameters 

are needed by system programs to identify and format data, direct 

programs, or perform needed modifications upon data. Measurements and 

parameters are stored as data units, each consisting of (a) a single -
real number, or (b) an element of an ordered sequenc~ of packed data 

(n-tuple), often called a control word, data parameter, or code word. 

! ~ ~ may require less ~ .2!. ~ ~ ~ hardware ~ .2!. 

byte length. Where appropriate, each data unit can be referred to by 

its name. By establishing a systematic mnemonic naming scheme, the 

name can be used associatively to identify the meaning, class, or use 

of tbe data unit to man. By accepting these names, the interactive 

operating system can assume at execution time, a simple but important 

function of the compiler or assembler. 

Memory data units are classified and referred to in groups (~), 

or collections, of any manageable number of elements. Names of data 

units or collections are underlined in the text to distinguish them 

from names of programs; collections are capitalized while data units 

are usually lower case (x from!)• Elements of collections are not 

necessarily physically related in memory. A block of data units is a 
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collection whose elements are physically related, i.e., contained in a 

single physical array in memory. A.vector is a block with a particular 

sequence, mathematically a column vector. Blocks may be considered 

vectors which may have null elements in order to apply operations 

(below) to them. Physically, a matrix is a vector of vectors. Ia 

schematic drawings data group M is shown 

CD . 

An operation macro, or operation, is a basic unit of a computer 

program, or procedure, and is a closed subroutine-algorithm. When man 

is on-line to the computer, he is concerned with: procedures, which 

are stand-alone sequences of procedural elements (operations or sub-

procedures), and data input-'output ( I/O) of procedures. · Operations/ - . 

procedures are analogous to closed subroutines/computer programs without 

the latter's ambiguity. For instance, an operation differs from a 

subroutine in the FORTRAN sense in that it must always be available by 

name without special provision in the interactive environment of the 

user, regardless of time or priority. 

An operation or procedure may be parameterized by internal or 

external data parameters. Internal parameters are associated with 

named system data previously defined from the console; external 

parameters are entered from the console at execution or procedure 

build time as part of the definition of the operation. External 

parameters may become internal parameters as an operation or procedure 

is defined. In this manner, relatively inconvenient parameter. lists 

arising from generalization may be 11buried11 for frequently used 
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specific instances of the operation. This tends to reduce programming 

redundancy, a primary objective here. 

Since consideration is being given in this study to "on-line" 

environment, procedures and operations may be scheduled, or executed 

at certain times, on different levels .2!,priority. Such scheduled 

procedures are called system programs or real-timb programs. Higher 

levels interrupt (and delay) lower levels; if the same data (same name) 

are generated on different levels, the user is responsible to see that 

procedures do not logically conflict. The system must be responsible 

to see that procedures do not cause system break-down. An operation 

or procedure which may be used correctly on any priority level is re­

entrant. Classify the 1/0 of operations and procedures into real 

numbers, names (alphanumeric) and n-tuples according to the internal 

format of control words. Note an integer may be a 11 1-tuple. 11 

Functions, or functional procedures, are process-dependent procedures 

(e.g., a process model) and may be restricted to some priority level. 

~ treatments are process-independent procedures for general data 

analysis, display, or optimization, and may be similarly restricted. 

Let 2l!., operations be re-entrant. 

Define mathematical operations: 

(a) explicitiy, e.g., 

OPN (A, !!) : A +:- B N 

meaning: 11B postmul tiplied by !i is moved to 

(replaces) !" by the operation OPN11 , or 

(b) as operators, e.g., 

OPN (A, !!_), 

meaning: 110PN operates with A and B as external, N as 
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internal, parameters." 

A schematic symbol for this operation would be 

The triangle shape of the symbol for operation:, (or procedure) is 

selected in preference to other shapes primarily because it allows. 

attaching internal parameters into the sides of the block, without 

confusion of block diagram flow, and implies direction of flow without 

arrows. Other blocks are used more conventionally. 

A vector sample of data taken at points in time from a process 

status vector X in order to relate a subset of valid, controlled, 

independent variables to a subset of response (dependent) variables 

in the face of a subset of measured uncontrollable variables is called 

a~ point. 

One final term, used later, is introduced here. In the practical 

environment of industrial process computer data sampling and inter­

pretation, ~ccuracy and validity are of fundamental importance to 

reliable results, yet plant measurements are often of low quality, 

especially in absolute accuracy. An error analysis, verified by 

experience, will demonstrate the dangers of relying upon data as 

obtained. A basic function of process computers has traditionally been 

to check limits of observed input process data. Here, the requirement 

will be added that the system provide feedback to determine or help 

determine that response variables,. functions of many measured variables, 
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are within prescribed error tolerances and if possible what may or may 

not be correct about the measurements. A process so checked and found 

to be within tolerances is said to be in a state of process calibration. 

Overview 

Using the above schematic notation, the over-all data handing 

functions of the interactive analysis system may be outlined as an 

informative example of the use of this scheme. Refer to Figure 2. 

Inputs to the process system in the form of analog (,!!) and digital (Q) 

signals are converted to engineering units values.!. by data acquisition 

procedures DAQ under control of a system data parameter group ~· All 

procedures are scheduled from a program scheduler parameter set P which 

controls the times of entry into each program. A series of process 

calculation or model functions f operate on the system current status 

block .,!, which may include some manually entered data !!_, to extend the 

system data base with!• ~ is a set of calculated outputs from f. 

X would be identified and controlled by system data parameters SDP. 

Sampling from ,! takes place using data sample and data point functions 

DSF and/or DPF, built to produce a matrix of data points MDP consisting 

of subsets of ,! defined by vector definitions .Y.• 

From ~' build matrix functions BMD would be interactively defined 

to obtain sample matrices~' the input to (interactively) selected 

interfaces to provide necessary preprocessing and final entry to data 

treatments (XIA) which produce results observable on the display 

console. Modifications of this procedure would be reiterated until 

functions g are obtained from the data which, when executed on current 

data, predict values similar to functions f (or direct measurements .!,) 
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which may be compared through CMP functions to obtain verification of 

the analysis results. 

20 

The non-computer oriented reader may observe at this point the 

difficult problem of description in depth of this system. Natural 

questions are, why all this abstraction, and what is the necessity for 

and content of all these data parameters? The former question can only 

be answered by further study of this thesis or similar descriptions of 

computer logic and software in the literature. Being electronic 1mple­

mentations of mathematical and logical mental processes, computers are 

abstract by nature and require precise and highly detailed rules by 

which to operate. Each computer application, thus, leads to its own 

complex set of abstractions. To describe such a system, precise 

abstractions are infinitely more suitable than imprecise abstractions, 

and these are, unfortunately, the only choices available. As for the 

necessity of the application data parameters, each is ultimately 

justified (or not justified) by the reward of its availability and the 

flexibility it offers in eventual use of the system. At this design 

stage,. therefore, each parameter is included on the basis of designer 

experience, judgment, and reason as to the desired flexibility, simplic­

ity, and expected need. While prepared to justify the parameters 

included, the writer's view is that the important contribution of the 

present work is not so much which application parameters are included 

as it is the fundamental data structure for their specification and 

organization into similar matrix groups which lead to common data 

manipulation operations and a compatible, unified, whole. This speci­

fication results in both a simpler over-all programming task and a 

structure which is easier to improve upon in the early design stages. 
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However, if only to avoid intolerable abstraction, one must list 

the parameters and their use in this application. Therefore, a data 

parameter basis for the interactive analysis system is described in 

Chapter III, immediately following. Unfortunately its structural value 

may not be fully apparent until study of Chapter VII, the example, is 

completed. Chapters IV through VI, (primarily Chapter VI), provide the 

necessary background for understanding the example. 



CHAPTER III 

DATA BASIS FOR THE OPERATING SYSTEM 

Since the computer is on line to the process, the data and language 

structures begin with the "conventional" process computer functions at 

the process interface. A formal data base for the operating system is 

developed in this chapter; this formal organization must meet all basic 

requirements for the interactive analysis subsystem as well. Some of 

these conventional process computer functions are also outlined .. 

Let N be a vector containing conventional analog input signals. 

Then a linear input conversion function would conveniently be written 

Y+-AN+B 

·where A is a diagonal scaling matrix, !!, is an offset vector, and .! is 

the storage vector for the results in engineering units. This function 

·would norm~lly be scheduled periodically by a scheduler (Chapter IV), 

such that .! always contains the latest values of process inputs in 

engineering units. There are, of course, several other sources of data: 

pulse frequency and other digital inputs, manual inputs, and inputs 

which must undergo nonlinear conversion (flows) to engineering units .. 

Moreover, process calculations may generate many additional results. 

To include capacity for these, let X be the current status block, which 

contains the subsets.! (converted analog and digital inputs), !:! (manual 

inputs), and~ (other calculated values). X then becomes the only 
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source of current (real time) data input to system programs, and 

represents the basic data characterization of the process. Because of 

its importance and wide use, ,! should remain in permanent core (primary) 

storage and is the most extensively "parameterized," or coupled, data 

in the system. All functional operations, procedures, and data treat­

ments will operate from or to X, or recorded instances of subsets of X. 

The simple organization of all current data into one permanent 

block has several important advantages over alternate organizations: 

1. Because it is in fixed primary memory it insures fast and 

direct availability to all functions of current data, 

regardless of time or priority. System resources are not 

required for non-functional fetches of needed data. 

2. Within_!, elements have a fixed position, allowing simple 

one-for-one coupling of system parameters for identification, 

scaling, limiting, lagging, etc., to!• 

3. It enforces the scheduling of data sampling functions on an 

efficient, coordinated basis, and consideration of the 

effects of different instrument cycles or process lags on 

system functions f. 

~. It is directly translatable into machine resource (memory) 

requirements. 

If X contains a subset ;! of significant size, it may not be 

desirable to execute a process-calculations function(s) 

on as high a frequency as ,! is generated. This may. relax the necessity 

for having ~ in permanent core. Therefore, a subset ~ of,! may reside 
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on a bulk or secondary, memory (disc, drum, tape, etc.) and be generated 

only when f is called. In this case nonfunctional system resources 

(bulk transfer) must be used to supply! to all functional procedures 

requiring elements from !• 

Consider the various system ~ parameters which may be needed 

for each element of X. For interactive references and identification 

of data, a data name is required. Lower and upper limits, lag param­

eters, scaling constants, alarm instructions, and output formats, are 

other parameters which may be needed in various programs for each 

element of X. None of the current process operating systems provide 

a direct capability for mnemonically referring to process data at 

execution or interactive procedure-build time; and, therefore, compila­

tion or assembly is required. Interpretative translation of names is 

a key factor in adapting the process system to interactive analysis. 

Significant memory may be required to store so many parameters one-for­

one with x. The following paragraph will illustrate how the notation 

can be used to evaluate data storage requirements for such parameters. 

Consider a typical linear operation 

CLS: P ~ C X + D , 

where .£ is a diagonal parameter scaling matrix and Q an offset 

parameter vector to project ! onto f• Depending upon the nature of 

! and CLS, there may be enough redundancy in .£ and Q to evaluate an 

alternative approach. For example, packed indirect references i 0 and 

ict (requiring fewer bits than.£ and Q) might be used for access to 

smaller C and D blocks. The CLS operation would then be 

CLS: !:_ ~ .£.(ic ) ,! + Q (ict ) 
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where the diagonal scaling matrix £(i 0 ) and £(i4 ) denote vectors 

generated by the relative indirect addresses i 0 and i 4 • In some cases 

auxiliary memory for£ and£ might be eliminated altogether by making 

.£and£ direct functions of i 0 and i4 (where f(i 0 , i 4 ) does not require 

real parameters unique to each c and d), or the packed integers i 0 and 

i 4 might be used directly for some operation. The reader may imagine 

other alternatives. The point is that generally real number storage 

versus n-tuple packed storage and some speed can be traded for memory 

conservation where the notation relates directly to hardware structure. 

This would be impractical for a process system using a compiler 

language such as FORTRAN, because it is not possible to efficiently 

handle packed data and indirect addressing in such languages. 

After having introduced these parameters into the system defini­

tion, a fundamental software design consideration is the location of 

these system data parameters in the core/bulk memory system. As 

pointed out above, these parameters involve considerable memory for 

large _!, indicating they should reside on bulk memory and be called 

when needed. On the other hand, parameters from this group are 

essential or highly desirable to several system and functional programs, 

e.g., man-machine interaction (names, formats), process model and con­

trol programs (limits, lags, etc.), alarm programs (direction of action 

on alarm), and data handling routines (names, formats, scaling 

constants). Furthermore, as procedures are added, the inefficiencies 

multiply in the storage of system programs without a common organi­

zation. The tradeoff, therefore, is in the relative size and speed of 

the several functional programs for the two basic storage alternatives 

(in core, or on bulk with and without internal storage of parameters) 
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and the various priority structures. An efficient compromise would 

seem to be to organize the functional programs around desired sub­

groups of the needed data parameters and, using system efficiency as a 

criterion, link these subgroups to their parent programs as internal 

parameters. That is, where parameters are needed for a given routine, 

queue the singly stored subgroups whenever the routine is queued. 

The above discussion leads into the specification of a standard 

data and parameter base for the process operating system. This 

operating system, in contrast to most, if not all, process computer 

operating systems provided by manufacturers, revolves not about the 

non-functional hardware options, compilers, assemblers, and peripherals, 

but about the functional process data. A simplified, yet more 

functional, system results. 

Let the sex-tuple 

sdp: (s, t, r, i(xv), bo, b:i.} 

represent the following system data parameters needed for appropriate 

disposition of X: 

where 

s = the name of x 

t, r = the number of characters to left (t) and right (r) of 

decimal when formating real numbers for manual input or 

output. Let r also contain codes for defining variables 

in an integer or alphanumeric format. 

i(xv) =addresses of the triplet (g, h, n 0 }, 

g, h = lower and upper boundary, respectively, for projection of 

x into class intervals and n 0 is the number of 

(1) 



classification intervals between g and h for x. See 

Appendix A. 
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lower (b0 ) and upper (bi l operating limit for x; used on ,! 

to allow use of constraints where f may not be applicable 

outside certain ranges. 

The set theory notation used in (1) above shall be used throughout 

this thesis to describe data bases having a common physical structure. 

How this structure relates to operations and procedures is shown in 

Figure J. The names (e.g., s, t, etc.) in a data base definition refer 

to data units of any length making up the row definition of the matrix 

containing the actual parameters. Some parameters may be link addresses 

to other system matrices with a similar structure. Link addresses are 

used primarily to keep the matrices down to core-manageable sizes by 

separating logically-related and perhaps less frequently used subsets 

of parameters. Any system matrix may be either an input (~), an 

internal parameter (as shown), or output (~) to interactively defined 

procedures, which use closed, re-entrant, macro-operations. It is in 

these primitive macro-operations that the underlying bit structure of 

the packed matrix is found by reference to the appropriate (sdp) matrix 

definition. The matrix defining system matrices is itself a system 

matrix. 

In this manner, only the name of large groups of parameters need 

be used at the man-machine interface, while the~~ of primitive, 

most efficient, macro-operations may be used for manipulating either 

data or system parameter matrices. Moreover, maximum storage efficien­

cy is assured by allowing packed data structures. At the same time the 

user building procedures is concerned with data and parameters only 



sdp: 

VARIABLE 
NAME 

{s,l,r, (xr), b0 , 
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AS INTERNAL PARAMETER 

INPUT OUTPUT 

MACRO- OPERATIONS 

sdp MATRIX DEFINITION 

Figure J. Relation of Data Basis Notation to System 
Storage and Use 
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at the highest functional level. 

For_!, the process signal input subset of_!, additional input and 

scaling parameters would be defined, e.·g., as the 12-tuple 

where 

ydp: [s, n, i('TT), i(ao), i(a.i. ), b2 , b3 , i(k), e~, w, <\, d 2 }, (2) 

s = 

n = 

i('TT) 

the symbolic name of y in ! (and in the sub block .! of _!) 

for the result of the process input sampling and scaling, 

the value of the input signal before scaling, 

the relative (to 'TT) indirect address of suboperations for 

frequently encountered linear, quadratic, flow, etc., 

scaling of process input signals, 

i(ao), i(a1 ) = the relative indirect addresses of offset (ao) and 

scaling (a1 ) constants for linear input conversion. 

For i('TT) not a linear conversion suboperation, ao and a1 may be unique 

constants or references defined by the appropriate suboperation. 

b2 , b3 = low and high signal (instruments) limits, respectively, 

i(k) indirect address to lag constant k for RC filtering of 

noise components of x (i(k) = O; none), 

s 1 =a code for disposition of alarm events (e.g., ignore, 

normal typeout, out and in limits, with or without X 

storage of the alarmed value, set buzzer or bell, etc.), 

w = input source of n. 

Actually w may be an n-tuple defining various hardware parameters 

necessary for obtaining n: e.g., analog multiplexer address, gain 

selection, pulse accumulation, etc. Since w is unique for a particular 

hardware design and input signal, it will be sufficient for the purposes 
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of this writer to define was an address of the raw signal. d_i_(dJ:=low 

(high) limit alarm switches. 

With X and the associated SDP defined as the data base of the 

process system, all process data groups handled by the system may be 

considered to be derivatives of X. In this manner, the writer obtains 

a formalization which has significance to efficiency in both set-up 

and operation of the system: the data matrix (and vector) definitions. 

A physical data matrix or vector is identified by the matrix-name 

sep-tuple 

SVy: f!, .!!!.Y, .!!Y, Cy, dy, ey, 9y, ~Y, ~Y}, v = 1, 2, ••• , no. of (3) 
vectors 

where ! is the vector name (v is the index, or position, of V in this 

system vector definition matrix), my and ny are the row and column 

dimensions, respectively, Cy is a link address to a core or bulk memory 

area where the matrix (or vector) !:2!. definition (below) is stored, 

dy is a link address to the area where the matrix column definition 

(below) is stored, ey is a link address to the first data unit, 9y is 

the system assigned currently active column number for updating 

matrices, SY is a retrieval code calculated from the vector definition, 

and ~Y refers to the general data type: system data (floating point, 

integer, or alpha according to (t, r} c SDP), or system data parameters --
(e.g.,~). If system data parameters, the binary packing parameters 

are stored in the Cy area. A data matrix or parameter definition (cy) 

contains a vector of ~-indices defining the rows of the matrix or 

vector in terms of variables (or packing parameters). A column defi-

nition is an arbitrary list of sequence (observation) numbers assigned 

by the operating system and used to identify and retrieve data in the 
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interactive environment. A vector definition (nv = 1) contains no 

column definition (dy =~). With this form of definition each physical 

data collection may be uniquely identified, while links from different 

data matrices to their common vector definitions preclude redundant 

storage. Sv serves as an abbreviation of the variable definition for 

efficient matrix updating. This is a special combination of linear and 

linked-allocation list structuring, the generalization for which would 

be too inefficient .for practical use here. See Chapter II of (11) for 

a sound general discussion of list processing approaches, and particu­

larly the Introduction to tha~ Chapter, for when to intelligently use 

them. 



CHAPTER IV 

PRIORITY STRUCTURE AND SCHEDULING 

Introduction 

The priority structure of most process operating systems, while 

very "flexible," is vague, complex, and filled with exceptions and 

duplications (8) (9) (10). For example, complexity is added to one 

system to allow full multiprogramming and relocatability of all pro­

grams from discs. Yet, frequently, exceptions occur when one must run 

a program using unavailable or fixed core features, or with interrupts 

inhibited to avoid problems introduced by the complexity of the multi­

programming design. In another case, the user has to remember what 

ki.nd (interrupt core load, main line, core resident, etc.) of interrupt 

program he is in in order to properly set up and exit his program. 

A common error is to describe the "batch" (variously called the 11non­

process, 11 "background," or "free time") mode as a special feature 

worthy of extensive influence in the design of the systems. As a 

consequence, the complexity of system set-up and execution (but not 

necessarily operation) is increased significantly and, in this view, 

artificially. The driving forces behind this common approach seem to 

be: (:1J the desire to put relatively large, resource-consuming 

compilers (FORTRAN) and assemblers, with various degrees of debug 

capability, on-line and (2) the influence of the data processing 
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"job-shop" computing room carrying over to the large process systems. 

While this writer does not immediately propose complete elimination of 

these forces, the guiding principles here are more to the point: 

(1) devoting system resources primarily to the process data and 

operations on the data, (2) formalizing primitive and procedural data 

handling functions such that system set up and execution will require a 

minimum of system resources, and (3) providing a man-machine inter­

active mode through which most (eventually all) functional procedures 

leading to optimization of the process may be set up and executed 

without batch compilation and debug, i.e., in an interpretive mode, 

using fast alphanumeric and graphic capability. 

While much attention has been paid to the process computer's need 

to respond quickly to external events presumably signaled through 

switches around the process tied to system hardware interrupts, there 

rarely has been, in the writer's experience with systems on several 

petrochemical processes, a clearly defined need to signal a system 

program directly through a process interrupt (alarms are usually 

connected directly to enunciators, and the obvious system interrupt 

needs for operating peripheral equipment, clock signals, etc., are·. 

excepted). :Most functional procedures on-1 ine can be handled by execu­

tion either on a demand or cyclic basis. One reason for this is the 

state of the art: 11fast 11 response with respect to the process is often 

"slow" response with respect to the computer speed. It is remarkable 

that operating systems do not provide for efficient, direct set up of 

cyclic scheduling while going to great lengths to allow process­

interrupt or programmed scheduling of functional programs. 



Formal Priority Structures 

Formal priority structures may be vertic~.l (GE R'IMOS), horizontal 

(IBM TSX), or have a combination, or lattice structure. Vertical 

structure refers to priority and implies that each functional program 

operates at a different (higher or lower) priority level t. Note that 

high priority corresponds to a numerically low t and vice-versa. 

Horizontal structure puts all "main-line" programs on essentially one 

level, with a minimum of vertical levels interrupting for scheduling, 

control, input-output, etc. Usually all interrupts are inhibited while 

a given interrupt is serviced. In each case peripheral equipment is 

driven from within the operating system without on-line control by the 

user, and nearly always the user can achieve vertical structure from 

horizontal, and vice-versa, by specification and/or programming. The 

lattice structure allows both vertical and horizontal structuring 

directly from the operating system. 

Vertical structuring involves relatively simple priority decisions 

but requires extensive overhead in re-entrancy techniques and unneces­

sary shifting from one program to another. "Executives" often end up 

being written by the user to provide some horizontal structuring. 

Horizontal structuring simplifies priority decisions still further but 

imposes unnecessary complexity or restrictions in scheduling of higher 

level programs, and problems with response time may arise as the system 

becomes loaded. This results in system resources being spent on 

various ways for scheduling core-resident programs and achieving 

vertical structuring for bulk-resident programs. The lattice structure 

offers a single solution for all alternatives, but introduces some 

complexity into priority decisions. The advantages of the lattice in 
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system and programming resources saved will tend to grow as system 

functions are changed or added. Therefore, the lattice structure is 

selected. A simplification, or at least, early burial, of· the priority 

decision problem, will be necessary. 

Data Basis for Lattice Structure 

Let the control word parameter matrix PQ for the lattice program 

scheduler be defined by the primary pentuple 

P: ln1,,, A, Ap, tx, :xp } p = 1, 2, ••• 

coupled to the pentuple 

q: (t, i(b), T, sc, ~} 

where p contains scheduling parameters and q is the queued program 

parameters which are stored in the priority bulk transfer queue; 

( q,) 

(5) 

np = the program name, h = the time interval between iterative (cyclic) 

executions of ~ (or a code for "no cyclic execution"), Ap = reference 

to a hardware interrupt to activate this program or a digital switch to 

allow or inhibit cyclic execution from one console, tx = scheduler­

updated time for next execution of np, and Xp = link to next program 

execution for chaining programs. In q, l =the priority level of np, 

i(b) = indirect reference to the bulk storage address and length (or 

coreaddress if permanent core), T = current relative entry location 

for llj), sc =current starting core location for n,, and~= system­

updated state code for current status of np: 

State ~o = program locked out and not executable on schedule; 

~1 = ~ has been scheduled or demanded, and queued, but is 
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not in core; 

':1:'2 = lip is queued and in core at sc (entry at rr)';: 

':1:'3 lip has been entered bµt not completed; 

':1:'4 = n~ has entered but not completed execution and has been 

transferred, to disc for higher priority work; 

'±'s = n~ has been completed and is presently inactive. 

As expected, the lattice structure requires some system attention 

to relative priority decisions in queueing bulk transfers. The data 

for these decisions may be provided by a currently active program list 

XPL: [I>0 (t)}, t = 1, 2, ••• ,no. of levels, (6) 

and a currently active level cell ~· These data point to the currently 

active system program f.Eg_, ~J. for use by the operating system. Now, 

every transition in level takes place through a hardware interrupt 

response (the hardware interrupt may be program generated) which 

consists of a conventional save registers routine (all interrupts 

inhibited; masking of lower level interrupts) during which 

'T(po, .to) ~ 'T(A.) - sc(.to, Po) , (7) 

takes place, where 'T(A.) is the location of the instruction to be exe­

cuted on .to when interruption to the higher level occurred. Equation 

(7) insures the retention of the relative point of interruption of each 

program on each level so that tp0 , .to} may be transferred to disc in 

case the interruption queues a program with t <: lt,. 

Following execution of (7) the level transition normally takes 

place: 

(8) 



The Scheduler 

The scheduler, operating at a high priority from a clock interrupt 

1. Updates the system clock tn (and date). 

2. Scans PQ and executes Steps J. - 5. for all tXii ~ tn and 

~5 = 1 (1 means state is true, 0 means state is false); 

otherwise exits~ 

J. tXii +- tXii + A, A I 0 (reset for next cyclic execution). 

4. Changes state ~Ct 0-1-,.a)p +- ~5p and A~ +- ~a P where A.~ is a 

single hardware priority interrupt for each priority level. 

This interrupt causes entry (following a typical system 

register save) into the level executive (below). 

5. If np is bulk resident, a bulk priority queue BQ is linked 

to qn (~1 = 1) and A.b, the queue for the bulk transfer control 
p 

routl.ne, is set. 

Also in the scheduler package are routines for user calls, such as 

11 turn onp,11,"schedule pat---," "cancel p, 11 etc., which update the 

appropriate elements of PQ. 

Working Core Organization 

Available process operating systems organize working core storage 

all the way from single programs sequentially loaded and executed into 

one, fixed address, binary "core load" area (9), to completely relo-

eatable programs simultaneously loaded into various groups of fairly 

small memory blocks which are dynamically mapped to provide a flexible 

multiprogramming capability (8). The former seems to limit rather 
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severely the number of effective priority levels (horizontal structure), 

especially for the interactive system, and the latter seems too complex 

for effective implementati~n where system resources must be conserved. 

Additionally, observe that the throughput advantages of multiprogranuning 

are concentrated in software - overlapped I/¢, including bulk transfer 

operations, so that other (even lower priority) programs may proceed 

when one program is waiting for completion of an I/¢ operation. A 

compromise approach is suggested which allows significant I/¢ overlap 

and limits the dynamic mapping problem. This will facilitate efficient 

integration of the on-line and the interactive subsystems. 

Divide working core.!£. into!!!. unit areas chosen for their favorable 

comparison in size to most functional programs. That is, most programs 

will fit into one area but some programs may require two or more (up to 

all) areas of working core. This is a "rough cut" between using all 

we for one program, and the fine division of we into areas too small 

for most programs. This division is defined by the triplet 

we: l.!!!!, ln, p} , i = 1, 2, ••• , m , (9) 

where ad and ln are the starting address and length, respectively, of 

each core area, and p is the number of the program currently occupying 

each area. By dividing working core into only two or three areas, I/¢ 

overlap (loading of one area while another is in execution) can be 

achieved, which is sufficient for attaining substantial advantages of 

multiprogranuning without many of its complexities. 
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Bulk Transfer Control 

The bulk transfer control routine may be a part of or queued by the 

scheduler, or may operate independently on its own cyclic schedule. It 

also contains response routines for "transfer complete" interrupts. 

This routine, operating at high priority (no level transition): 

1. Checks busy status of the bulk transfer control channel(s), 

and, when a transfer is complete, sets: 

m ~ m (new program p into core) • 
"tap "tlp 

2. Whenever a bulk transfer channel is not busy and BQ (format 

of pentuple q, Equation (~)) is not empty, this routine: 

a. Scans BQ for (t ~ BQ) < ..e.o from highest to (;to - 1) 

priority. If found, initiates transfer (deletes q from 

BQ) of the associated p to core. If all core is busy, 

initiates transfer of any p' in core with ,tp •> <.t ~ BQ) to 

make room for pt' t < if.o. At the same time that· trans-

fer of p' to bulk is initiated, changes state of p' 

('!'4 ~ '1'3 ), updates XPL, and requeues p' into BQ ('!'4 :::: 1) 
P• P' - P1

' 

so that p 1 may be returned to core ( '!'3 ~ '!'4 ) when 
p' p' 

priorities allow. 

b. Scans remainder of (t~ BQ) from to to lowest priority. 

When found, check core for a working area wc with 

t(.E.) = ¢ (null). If found, initiate transfer to core. 

Otherwise, exits. 
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Level Executives 

The level executive routine, diagrammed in Figure 4, is a t-

parameterized call to a single, common, re-entrant scan executive which 

simply finds each ~2 
ll 

1 and enters (~3 +-~2)1> program p. Upon comple-

tion of each Po execution, the chained program Xp (if any).is queued. 

Control then returns to the ~ scan loop so that all programs queued 

and in core on the same level at the same time are executed in turn. 

When all programs on a level are completed, the executive exits through 

a level transition scan to +-t+ 1, .t+ 2, until a level t + i is 

reached for which ~2 (p (t + i)) = 1. The Q parameters sc and 'T" are then 

used to (re) enter p (t + i). 

The above scheme is believed to be unique; it offers a highly 

efficient means for the priority structure of a complete real time 

system to be organized and executed by formal specification of data 

parameters. The three most frequently encountered methods for queueing 

real time process programs are built directly into the operating system 

with no calls necessary in the programs themselves. These methods are 

cyclic execution, chaining, and interrupt-queueing. Modification is 

simple, I/¢ overlap can be used where needed without multiprogramming 

complexity, the display allows visual on-line monitoring for debug and 

operational 11 feel, 11 and any desired combination of horizontal or verti-

cal structuring may be specified, allowing maximum effectiveness of a 

given process application. With the "rough cut" of working core, it is 

suitable for interactive analysis during on-line execution. 
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CHAPTER V 

ORGANIZATION OF OTHER PROCESS FUNCTIONS 

With the data and scheduling basis outlined, the next step is to 

organize conventional system functions into formal program sections. 

This will provide some insight on good ways to define the interactive 

primitive operations. 

Data Acquisition 

Process input, checking, and conversion to engineering units may 

be categorized into one section, or procedure, data acquisition. The 

data basis for data acquisition was given in Chapter III, Equation (2): 

The computational elements of this program are: 

1. Given a ydp, set n~f(w), i.e., sample the signal (depending 

upon hardware, DAQ may exit at this point with recall through 

an analog signal ready interrupt 1a when n ready). 

2. If b2 ~ n ~ b3 , go to Step 3, otherwise to Step 7. 

J. Set ~ = Yydp. 

4:. Given n, i(TT), i(a0 ) and i(a1), execute Tl': 

y = f(n, a0 , a1) [conversion to engineering units]. 

5. Given i(k) and y, lag y according to 

y = ky + (1 - k) (PAST). 



6. Continue (usually loop to scan all inputs). 

7. Set d1 = 1 (alarm code) if n < ba or da = 1 if n > b3 , and 

turn on input-output alarm program if the limit violation 

has occurred for the first time this scan. Go to Step 6. 

Process Calculations, Models 

There may be any number of process-oriented procedures for opera­

tion on the process inputs to produce response variables. Such pro­

cedures assume the implicit forms 

! +- f(_!, t) or ( 10) 

! +- g(_!, t) (11) 

where ! may be any previously defined system data vector or matrix, 

such as! (including.! and~), for on-line computations, or some data 

point matrix ~' of historic subset samples from X. The parameter t 

implies f and g may be functions of time. E may be resident on bulk 

storage. If MDP is resident on an input device (paper tape, cards), 

a system data input function (see Input~·output) must first be. executed. 

Note that f is limited to operations from! to_!; i.e., to real time, 

on-line process calculations, while g may be a function of any system 

vector. f is the class of real time process functions written by the 

user; g may be user written, or generated by interactive analysis, 

below. 

Data Handling 

The total process status block! contains independent, dependent 

(or response), and control variables representing the present state of 



the process and the quality of process calibration. Most data sampling 

will take place directly from _!, but a significant amount of memory of 

past process conditions will be required for interactive learning about 

the process to take place. The primary tool for sampling and storing 

history is the data point function DPF, in conjunction with a system 

vector definition. A data point was defined in Chapter II. The 

function would take the form 

DPj (V) <- DPF (~) (12) 

j= 1, 2, ••• , nv, 1, 2, ••• , 

where DPj is a column of ~' nv is the maximum number of columns of 

~' and .Y. is the name of a system vector. A system vector was defined 

by Equation (3). The purpose of a data point is to select a reliable 

and relevant subset from X for later use. Of course, .Y. may specify all 

of X. However, one important function of the analysis system is to help 

reduce data insofar as possible. Moreover, the system may be connected 

to more than one process unit and only one is of interest at a particu­

lar time. Thus, several different such subsets may be desired; 

therefore, several data point vector definitions may be stored. 

In order to increase the reliability of the data point selection, 

an average of several samples of ! may be desired (when the data point 

is steady-state). Here the data point would be 

1. ~ (j, .Y,) <- DSF (.Y,) (cyclic) j = 1, 2, ••• , n, 1, 2, ••• (13) 

2. ~ (j, .Y,) <- DPF (~) (14:) 

where the Data Sample Function DSF has! and~ (s, 1, r, g, h) as 

internal parameters and is simply a sampling of ! with time into a 

circular by-column matrix. DPF is executed upon external demand to 
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call for retention of the row-by-row averages of ~ in the current 

column of DP. Other possible modifications of the data point function 

might be implemented in more specific applications. For example, 

dynamic data sampling might transfer only changes of x-values with time 

(a common dynamic data reduction technique). 

An important function of the data point is to provide a flexible 

interface for input of process data to various data treatments, i.e., 

process-independent display, analysis, or optimization techniques which 

may be applied through the interface to provide data for display at the 

man....:machine console for the learning process, decisions, modification 

of data or analysis, and conversion of the results to permanent form 

usable by both computer and man. 

Several of these data treatments may require significant machine 

resources. For example, steady-state treatments may include linear 

(or non-linear) regression and correlation, analysis of variance, 

parametric plotting, factor analysis, etc. Dynamic data techniques 

might include Laplace, Fourier, or other frequency response analysis, 

or adaptive controllor tuning techniques. It is very important, 

therefore, to arrive at this interface with significant machine re­

sources remaining if such techniques are to be accomplished with the 

on-line system. The accomplishment of data treatment functions with 

the on-line computer will require very efficient man-machine inter­

action, since the effectiveness of the on-line system will be measured 

by the degree of useful feedback to the process accomplished through 

the data system. Figure .2 outlined this "outer loop" the writer is 

trying to "close." Both man and computer must work together in this 

outer loop. The writer knows of no instance where this interactive 



analysis loop has been effectively closed in a practical environment 

using a process computer. 

Input-Output Control (1¢C) 
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Conventional input_;output has always required a substantial portion 

of system resources and, with this requirement for interactive 1¢c as 

well, there is substantial motivation for system economies here. 

Process input is handled by the DAQ procedures (above); it is to be 

expected that process output would be treated in a similar fashion; 

however, due to its complexity, the output function is outside the 

scope of the present work. lnput;--output from bulk storage is con­

sidered under the operating system techniques. Therefore, the main 

concern here is with system input;--output from the primary man;--machine 

devices, including the terminal. Such devices already have fairly 

standard (ASC II - code) interfaces for acceptance of alphanumeric 

data; moreover, magnetic tape units or cassettes, line printers, type­

writers, paper tape punches, and (with some logic) cards, can accept 

similar alphanumeric records, the differences being in the hardware and 

timing. For alphanumeric output, then, one can gain considerable 

simplicity by demanding that all alphanumeric output devices be code­

compatible such that a record may be sent from memory to any of these 

devices by simply addressing the desired device(s). It is not too 

much for a system to be compatible with itself. Where necessary, page 

or file control may be built into the actual hardware driver routine, 

and any codes not possible on one device may be formally interpreted 

in the software drivers. 



The most likely "hard copy" device(s) on this relatively small 

process system are (interactive) typewriters. A good tutorial discus­

sion of human factors and functional specifications for such devices 

used in a similar (time-sharing) application is given in (15). 

Input~output devices are generally single-level devices; i.e., 

interruption of an incomplete operation to a particular device to 

execute another operation to the same device is rarely necessary or 

desirable. The single exception might be if the same typewriter is 

used for alarms as well as routine output. This, of course, causes 

alarms to be intermixed with logs. In this system, the relatively fast 

display with appropriate buzzers or blinking functions may be preferred 

for alarms. Therefore, drivers for other input'.'"output devices may be 

restricted to one level. 

Input'.'"'output coding, formating and checkout is a major part of any 

complete programming job, even (particularly) when compilers such as 

F¢RTRAN are used. From this formalization of data structures, a 

standardization of typing functions and formats is suggested. 

Routine process tracking logs may be defined by the simplest 

possible specification: a list (vector definition of the names (in­

ternally, indices) of variables desired in each output vector. Thus, 

the tracking log function TLF (for subsets of _!) is 

~Gl +- TLF (,!) ( 15) 

where ~G1 addresses the output device. L, .!!,, and _§. (from SDP) are 

internal parameters used to format the output. The actual ,shape of the 

log on the page may be a standard form with a row of variable headings 

followed by the row of data values in (t, r} format. Note that 
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alphanumeric variables may also be logged in the same manner (.!:, may 

contain a code for "alpha," in which case t may be the number of 

characters). From this basic and simple fonnat, any desired data log 

may be built. There is no need for the tedium of FORMAT statements, 

recompilation, and associated checkout. Additionally, formating and 

identifying information is stored permanently only once; there is no 

redundancy. 

Other vector logs may take advantage of the same standard format 

and software, but the source of the data, as well as the vector defi-

nition, is specified, and it is called a vector log function VIF: 

~G1 ~ VLF (~) ( 16) 

where .Y. is the name of the data vector to be output. A column (e.g., 

Observation Number 2) of a matrix may be logged 

~G1 ~ VLF (!!EE(2}) • 

Matrix printout (Matrix Log Function MLF) would be similar, except 

here it is usually better to output columns across the page, and use 
I 

the vertical dimension for variables: 

(17) 

Output of data vectors and matrices to other output devices would 

have similar fonns; e.g., to a magnetic tape (WMT - Write Magnetic Tape) 

MT1 ~ WMT (.Y,) (18) 

or 

( 19) 



Input of data vectors and matrices is defined as the reverse of 

output; e.g., from paper tape (RPT - Read Paper Tape): 

V E- RPT 

~9 

(20) 

The binary packing format for each system data parameter collection 

is identified in its vector definition, Equation (3). Thus, these 

packing parameters may become internal parameters in output of system 

data parameter blocks: 

J.,f6G1 E- MlF (~) , (21) 

or 

C.RT E- MlF (~) (22) 

for display. 

Error - Alarm Control 

Consider here only the process input limit alarm, turned on by 

Step 7 of DAQ (above). However, the Error Alarm Control program in 

practice isolates the source of any alarm and takes appropriate action. 

The process input limit alarm examines [d1, d2 , ~J and takes the 

specified action. When display is required, the triplet [s, 1, r} is 

used to identify the y out of limits. 



CHAPTER VI 

FUNCTIONS OF THE INTERACTIVE ANALYSIS SUBSYSTEM 

The operating environment described above provides a formal data, 

scheduling, and input-output framework for the interactive analysis 

subsystem. It can be shown that this framework is simple enough and, 

at the same time, sufficiently symbolic that the interactive analysis 

language may be expressed in terms directly related to this framework. 

In such a manner, a compact, mnemonic, notation may be used (desirable 

to man); yet much translation may be done using existing tools of the 

operating system (desirable for machine resource efficiency). 

Several facts support the contentions of simplicity and high 

efficiency. In the first place, the exact, complete, priority structure 

of the system may be displayed or typed in a single matrix. For 

example, a core-bulk interactive system with several programs distrib­

uted over six priority levels is given in Figure 5. This system is 

used in the following chapter for illustration. System data structures 

may be similarly documented by one table per system data parameter 

matrix. Updating is a relatively simple task of loading data into 

appropriate tables (equivalent to complex "fill in the blanks" systems 

without the software overhead). Secondly, most functions may be built 

from more primitive, common, functions which have their basis in oper­

ating system code, which is the most efficient code. For example, the 

same table lookup functions are used in the scheduler, bulk-transfer 

50 
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control, and interactive translation. Thirdly, the system vector 

concept allows extensive internal parameter references, which preclude 

many inefficiencies generated in more conventional systems through 

redundant storage and handling of data in different programs, and 

passing data through external argument lists. 

The general sequence for interactive analysis is given in Figure 6. 

Procedures and data are first defined in the language of the operating 

system (Blocks 1 and 2). Following execution of a procedure (Block J), 

various results of this execution are displayed in a form which may 

suggest modification or redefinition of the data or procedure (Block q). 

Re-execution and remodification follows until a result is obtained 

which must then be independently verified by further experimentation 

(Block 5). This "Procedure Execution Mode" is the primary operational 

mode for the interactive analysis. Following a brief discussion of this 

writer's interactive terminal operation and concepts, these functions 

will be discussed in more detail. 

Interactive Terminal Operation 

Interactive operation begins with an ENTER key depression to call 

and initialize the Interactive Analysis Executive. Whenever interactive 

terminal operation is indicated, error correction capability is implied: 

i.e., entry of characters from the CRT terminal keyboard appear immedi­

ately on the face of the display, but no translation of the information 

takes place until: 

1. A complete interactive function (e.g., a procedure or data 

definition) has been defined and 

2. An EXECUTE function key is punched from the keyboard. 



I. 

2. 

3. 

-
PROCEDURE 

~ EXECUTION I 
MOOE 

=-r-
- ' 

DEFINE 
PROCEDURE 

OR 
OPERATION 

DEFINE 
DATA 

•• 

EXECUTE 
PROCEDURE 

4. , 

MODI FY 
DATA OR 

PROCEDURE 

5. , 

VERIFY 
RESULTS 

Figure 6. Interaction in 
Procedure 
Execution 
Mode 

53 



Thus, corrections of any part of the displayed information may take 

place at any time before EXECUTE by moving the CRT cursor to the 

erroneous data, and replacing it with correct information. In some 

operations, such as those when the light pen is used to successively 

point to displayed information, errors can be corrected by a DELETE/ 

RESTART function key whose effect is described below. 
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Once a graph has been obtained from the interactive data analysis 

which illustrates a verification of experimental work, or optimization 

of some process objective, a hard copy of the display would undoubtedly 

be desired. Several hardware devices are available which perform the 

translation from the display buffer to hard copy simply by pressing a 

PRINT key on the keyboard. For this logically simple function, such 

hardware would probably be preferred over software techniques. 

Interactive Programming Concept 

For understanding the following discussion, it is well to care­

fully point out the distinction between object procedures and source 

procedures. (The terms object and source are used because of the 

similarity to conventional batch computing functions of assembly or 

compilation from a source language to an object language.) Execution 

of object procedures generatesanobject output from a source input; 

the object output may be ~.2!:..!:. procedure, depending upon the 

function of the executed object procedure. All executable procedures 

must be object; i.e., they must first have been defined by a procedure 

definition. 

Several procedures and operations involve basic modifications to 

system data parameters. These require careful checkout. Such 



procedures are denoted by an asterisk (*) below to indicate a status 

which may demand a special "System Generation Mode" to enable them. 

Procedure Definition 
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An operation or procedure is defined by identifying a name and, 

optionally, a parameter (argument) - list with a group of previously 

defined (object) operations or procedures. Such a definition may take 

the form 

or 

Define System Operation DS¢ (¢PR (list)), 

Define System Procedure DSP (PRC (list)), 

¢P1 (list), 

¢P2 (list), 

This procedure when executed, accepts the sequence of operation 

(23) 

(24) 

(or procedure) calls with optional parameters and associates the new 

operation ¢PR or procedure PRC with this sequence of calls. The princi­

pal differences between operations and procedures are (a) an operation 

is re-entrant and (b) the (macro) operation is organizationally a more 

permanent and widely used fixture, while a procedure may be a task set 

up to be executed only once. Thus, operation definitions require the 

system to provide volatile data usage information so that re-entrancy 

and register use requirements may be checked. An operation may not 

call a procedure. 

An objective beyond the present work is to fit the basic program­

ming languages into the body of these definitions to allow insertion of 



assembly or other language code where necessary. In this case, an 

option would allow insertion of prepared paper tape or cards in the 

appropriate reader and specifying this in the body of the DSP or DS~. 

Procedures may be purged from system files after a predetermined 

period of time, or by a Purge System Procedures function 
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PSP (list), (25) 

where the list is of those procedures being deleted. Any procedure in 

on-line use would not be deleted by this function. 

Each procedure defined by interaction is assigned a [p, q} record 

(Chapter IV) on the background (lowest) level with a code for "no cyclic 

execution." The general operation to do this is the LEM given below in 

Equation (J~). A more frequent special case of LEM for assigning 

procedures to the real time lattice structure is 

Assign to Real Time ART (np, t, 6, xp) , (26) 

where xp is optional. A procedure to be assigned to real time must use 

internal parameters only. 

Data Definition 

The matrices of data points (MDP, etc.) become the primary source 

of input to data treatments, the objective being to reduce, from 

collections of experimental observations, data to a form which can be 

used to improve performance of the process. However, a data point will 

often contain more elements than needed for a given treatment. For 

example, only independent and dependent variables are necessary for 

input to a linear regression analysis, but the data point includes 
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other experimentally controlled variables as well. Moreover, the 

necessity for randomizing the sequence or obtaining some points outside 

of an experimental design, the need to size MDP for many experimental 

series, and the vagaries of the complex plant environment combine to 

establish the necessity for easy selection and manipulation of data 

points. Therefore, the first step in selecting input to a treatment is 

usually to sample an input submatrix from one or more data point 

matrices. A completely flexible scheme for combining various MDP 

subsets can be a very large retrieval problem. At its simplest, such a 

scheme would require listing all rows and columns, together with any 

matrix concatenating information desired. This is a tedious chore 

except for very small matrices. With a light pen and the CRT display, 

this task can be reduced to a relatively quick "pointing" operation, 

which leads to the interactive functions 

Display System Matrix CR'lM (~), (27) 

and 

Build Sample Matrix from Display BMD (~), (28) 

which would be followed by a light pen function pointing sequentially 

to each row and column to define variables and observations desired for 

the submatrix sample. A matrix definition for S results from this 

function, but is purged when a new matrix is built in S. BMD is 

"executed" twice; once after all rows and columns have been selected. 

At this time, ~replaces~ on the display, allowing visual verifi­

cation of a correct sample matrix. 

Note that keying in the BMD (which requires the display) with ~ 

already on the display poses a housekeeping problem. One immediate 



solution would be to avoid the problem by combining CR'IM and BMD into 

one function. However, operating on displayed data from the keyboard/ 

light pen combination is a basic and very applicable interactive 

function to be encountered repeatedly. Thus, one might as well face 

the problem here. Another solution would be to divide the display into 

two sections, but this would further limit the capacity of the display, 

which already limits the size of data matrix handled at any given time. 

Hardware "window" techniques (horizontal and vertical step) for stepping 

through matrices too large for display all at once would be preferred 

in this limited-resource system; purely software techniques would 

probably require too much housekeeping in themselves. Moreover, the 

interactive mode and nature of the application limits the size of most 

matrices to thos·e whichc can be easily handled all at once. 

A remaining solution is to build the necessary logic for two 

separate interactive display buffers into the interactive control 

program: an "Executed Display Output" ~ buffer and "Display Keyboard 

Input" E!!. buffer. Interactive display procedures are executed through 

XD¢ while keyboard entry of a new procedure uses E!!.· Edit-display 

functions change or update the displayed data in E!!.' and other inter­

active functions referring to displayed data cause the E!!. buffer to 

be loaded from XD¢ as they are executed. The above sequence in more 

detail would therefore be: 

1. The CR'IM (~) is entered into DKI (causing display of DKI), 

2. DKI is corrected if necessary, 

J. CR'IM (~) is executed, causing storage of~ into ~and 

display of ~' 

~. BMD (~) is entered into E!!.' causing display of E!!.' 
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5. BMD (~) is corrected if necessary i~ E!!,, and 

6. BMD (~) is executed, causing.!?!£. ~ ~ (changing display back 

to~), and a change of state of the display input routine 

to identify, in DKI, the light pen inputs as rows and columns 

of the displayed data. 

7. The light pen is used to point to the desired rows and 

columns. If an error is made. during input from: light pen­

keyboard, the DEIETE/RESTART key causes reinitialization 

(DKI ~ XD~) and, thus, the matrix definition may start again. 

8. A second EXECUTE for ~ causes termination of the light pen 

inputs and the matrix definition, followed by selection and 

display of ~ through !!?&· 
Analysis of data from various system matrices often leads to a 

need for improved definition of system data matrices or parameters. 

In conventional systems recompilation would be required. Here the 

simple translation needed is built in. System macro-o,perations to 

accomplish data vector definition and generation are 

Define Vector in X: DVX (_!, s-list), (29) 

or 

Define System Vector: DSV (_!, s-list), (JO) 

or 

" Define Parameter Vector DPV (V, spf-list). (Ji) 

V is a new vector name and s-list is a list of variable names from SDP 

to define V. Both DVX and DSV generate a vector name septuple ~ 

(Chapter III) and vector definition list. However, for DVX, V refers 

to data in _!, while for DSV space on bulk is reserved for _!, and data 
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must be transferred there by GCM, below. DPV refers to definition of 

data parameter lists (such as sdp, sv, pq, etc.), and spf-list, there­

fore, includes a parameter name, number of bits, and format code (alpha­

numeric, integer, binary, etc.) for each data unit. This structure, 

again, allows most system built functions to be accomplished inter­

actively without recompilation. 

For matrix definition, a previously defined vector name V is used: 

Define System Matrix DSM (~ (.!,, .!!.) ) , (32) 

which loads a matrix name septuple under~ using vector definition! 

and column dimension n to assign storage. Normal sampling from X is 

done with 

Generate Column of Matrix GCM (MDP), (JJ) 

which uses the MDP matrix definition to transfer a data vector to MDP 

from .!_, and 

Load Element of Matrix LEM (MDP (!:,, ~), ~), (Jli:) 

where r and k are the row name and column number of the system data or 

parameter matrix~' and u is the data unit value in the defined 

format. A special r or k code may refer to an entire row or column, 

in which case u is a list. Deletion of definitions may be done by 

Purge System Data Definition PSD (~), 

which causes release of storage for ~ and elimination of the sv 

septuple. The associated vector definition is also deleted if 

S.11.D.f.f Sv(v = 1, 2, ••• , nv)' after~ deletion. 

(35) 
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Procedure Execution 

Once a name has been assigned to a specific procedure using DSP, 

and data are defined, this new object procedure may be executed in the 

same manner as are the interactive executive functions; i.e., by 

entering the name of the procedure with arguments, if any, and pressing 

EXECUTE: 

ENTER 

PRC (list) (36) 

EXECUTE 

If the procedure obtains all its data from the argument list andfor 

internal definition, this is all that is required to obtain the PRC 

output. However, if PRC requires that, for example, external options 

be supplied, the interactive analysis executive may contain query-

response subroutines which can be called upon to generate multiple-

choice or direct response questions on the display of the form 

or 

where 

[mch, a, qt, na, a1 t, a~3t , • • •, ~ t} 
& 

[md, a, qt , la, r a} , 

mch .and md are unique names of the respective query parameters, 

(37) 

(38) 

a is a (dummy) data-unit field for returning the answer, 

is a one-line alphanumeric text for the query, 

is the number of choices for multiple-choice queries, 

a1t, aat, ••• , ant are the alphanumeric lines of text for identi­
a 

fication of multiple choice responses, and 
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defines the left and right (or alpha code) format for a. 

Thus, the main system overhead for interactive queries (in addition 

to these query-response subroutines) is the storage for the query itself 

and the call from the procedure requesting an interactive response. 

In execution, the query is displayed through the DKI buffer and 

the interactive analysis executive is switched to a wait state. The 

response is made either by light-pen pointing to a multiple choice 

answer displayed on the console, or by keying direct answers, followed 

by an EXECUTE, which transfers the ~ - stored answer back to the 

calling procedure. As above, any mistake made before EXECUTE may be 

corrected using DEIETE/RESTART. 

The query-response subroutines may be accessed interactively 

through the following pair of operations: 

ENTER 

Define Query Parameters DQP (~,~'qt, !!a' a1t, .!:!;.at' ••• ,ant) 
a 

or 

DQP (~, ~' .9..t ' .!.a' !:.e. ) (39) 

EXECUTE 

ENTER 

Query Call: (40) 

QC (mch) 

EXECUTE 

The answer a from mch is returned to the calling procedure during 

execution; ~ is used in this procedure to determine the option selected. 

Examples of use are given in Chapter VII. 
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Once an object procedure is executed, the primary output is dis­

played for immediate inspection. A procedure (e.g., a data treatment 

such as regression) may have several output displays; the first one is 

designated as primary. A keyboard "PAGE" function causes display of 

each succeeding output, back to primary. Procedure outputs are gener-. 

ated into bulk-resident common scratch areas (interactive analysis 

procedures should be limited to unique priority levels, such as one of 

the two lowest, to make efficient use of scratch storage). These areas 

are defined in the system matrix definition parameters. Therefore, if 

output is in the fonn of a floating point or data-parameter matrix, 

the standard display matrix operation (CR'IM) may be used for output. 

However, a most valuable characteristic of the CRT in interactive appli­

cation is its graphic capability; outputs would, therefore, be graphic 

where possible. 

The required graphic capability for this application need not be 

highly sophisticated; for example, full graphic input, which requires 

most of the software sophistication and complexity (1), is not essential 

since the application is 11 discovery11 rather than "design." Three­

dimensional output capability, while applicable, requires far too many 

complexities for the benefits it holds. Two-dimensional graphics 

(parametric plots) are in wide use for physical systems; and any graphic 

method loses its effectiveness beyond three dimensions anyway. Hence, 

the great majority of our graphic requirements may be summarized into: 

1. Plots of variables versus time (an xy - plot), 

2. Plots of y versus x1, parameterized by x2 , x3 , ••• , 

3e Two or more plots superimposed for comparison. 
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In each case, alphanumeric identification of the plots would be 

necessary, and in each case, modification of variables and/or parameters 

in the analysis environment is often necessary. 

The data for plotting may exist in any system data matrix, or may 

have to be generated from a model (g). A plot of data from a system 

matrix superimposed upon model predictions is a highly desirable capa­

bility in verification. Using procedures for executing g on arbitrary 

inputs (using b 0 and b1 parameters for ranging), and sampling and 

storing history, one may obtain model outputs for various values of 

inputs, and, therefore, data matrices for plots using these previously 

defined procedures. 

Scaling of plots may be accomplished using either (b0 , b1 }, or 

(g, h, n~} parameters of SDP (Chapter III), as well as the magnitude of 

the data itself in some cases. With these alternatives and interactive 

response, it is not necessary to go through the tedium of scaling; a 

plot may be displayed and then adjusted if necessary using interactively 

entered offsets and scale factors. Some display hardware may also have 

linear vertical and horizontal adjustments useful for limited scaling. 

Scaling thus becomes a system function using internal parameters. 

Reference (3) outlines the various hardware methods for command 

decoding and generation of lines and symbols on the CRT. With its 

limited system resources, and process and data analysis software, the 

process computer cannot provide very extensive direct character and 

line display generation. Therefore, hardware character generators, a 

combination random scan mode display format for line generation, and a 

typewriter mode for character generation, with appropriate control codes 

for switching modes, are necessary. In this manner, a single block of 
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display commands may be transmitted to the CRT control logic (through 

the E!S,!, or~ buffer) for any desired display, including superimposed 

plots. 

The following procedure provides the basic functions for generating 

xyli!i - plots: 

Plot from a Matrix s 1 versus sa by s3, according to~: 

PMP (§., ~' S1' sa' S3) ( 41) 

S any system matrix containing all the variables, 

~ code for plotting style: point-by-point, solid line, or 

dotted line, 

s 1 = system symbol for the y-axis variable, 

sa system symbol for the x-axis variable, 

s3 = optional system symbol(s) of desired parameter(s). 

An example of a point-by-point display from this procedure for the 

variables s 1 = yobj, sa = xfrr, and S3 = sfra is shown in Figure 7. 
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Figure 7 • . Point Plot of Yobj Versus XFRR 
with XFRA as Parameter 
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To obtain superimposed plots, an 11Add 11 option is added to the above 

procedure and one has 

"Add Parametric Matrix Plot: APMP (~, 11, s1 , S:a, S3) • 

As indicated above a limited amount of interaction with plots is 

desirable: 

1. Function keys to cause tracking and display of light pen 

trace across the CRT face. 

2. Keyboard additions to plots for inserting additional infor­

mation before printing a hard copy. 

3. Light pen function keys to allow moving or deleting specific 

points on the plot. A different symbol (or color) for moved 

points would be used. The matrix ! data would be changed so 

that modified input to analysis of variance, regression, etc., 

could be accomplished, but the original system matrix (from 

which S was built) would not be changed. 

~. Adjustments to plot scale factors and offsets by function key 

and light pen manipulation of ordinate, abscissa, or groups 

of points having same symbol (for s 3 parameter scaling). 

Data and Procedure Modification 

Several of the operations to accomplish modification of data and 

procedures have been discussed above under data and procedure defi­

nition. Of interest here are some of the mathematical manipulations 

useful in applying data analysis programs to experimental data. 

Many data modifications needed for data analysis are transforma­

tions on entire rows (variables) of matrices. For example, in fitting 
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linear regression models to process variables, nonlinear terms such as 

x2 , log x, x1, x 2 , etc., are often used to obtain satisfactory linear 

descriptions of process responses. Because difficulties arise in 

matrix inversion using dependent variables, such variables are often 

coded by normalizing; i.e., by subtracting the mean and dividing by the 

standard deviation of each variable. These modifications would be in 

addition to simple linear transformations, including exchanges of 

variable positions. Such transformations change the matrix definition; 

therefore, modified matrices should be built from "scratch" areas not 

used by on-line programs. Thus, modification begins with a transfer 

or sampling of the matrix into the scratch area, followed by step-by­

step execution of the desired modify operations; e.g., 

ENTER 

S E- MDP 

CRTM (~) 

EXECUTE 

to move and display the matrix from its scratch area. Definition of 

each new variable within S makes use of the procedure 

Define New Variable DNV ( s1 ' r' OPN ( Sa ) ) ' 

(43) 

(44) 

where s1 is any symbol for assignment to the new variable row position 

r. OPN(s2 ) is a defined operation for obtaining each value of s1 from 

the variable(s) listed as OPN arguments. Note that r may be a pre­

viously defined variable position, in which case that variable is 

replaced and redefined by s1 E- OPN(s2 ). Following each execution of 

DNV, the modified S is displayed. Other matrices may be modified by 

operations more general than DNV, but these would be system generation 
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procedures involving too much risk of the uncontrolled consequences of 

human error for use in on-line interactive analysis with a process 

control computer. If an erroneous DNV is executed, all that is 

necessary is to repeat the sequence in (4J). 

Another modification necessary for data treatments such as 

analyses of variance (AOV), as well as for parametric plotting, re­

trieval, or "just looking" at data, is a proper sequencing, or classi­

fying, of matrix columns (observations) according to the values of 

independent variables. Data input to the AOV are normally responses 

only, but the method requires formal information about the independent 

variable settings, or treatment groups, for correct analysis. The 

sequence according to independent variables depends upon the number of 

independent variables, and the number of levels of each variable. The 

former must be obtained from the experimenter, but the latter can be 

determined from the data, given the system parameters g, h, and n 0 , 

(Chapter III, sdp parameters). An auto-classification technique to 

accomplish this task for any matrix is given with an example in 

Appendix Ae Again, for minimizing effects of human error, the tech~ 

nique would normally be limited to a scratch matrix~' but in this case 

moving the matrix to the scratch area may be included in the auto­

classify procedure. The auto-classify specification is: 

Auto-classify MDP to S 

where x1, x2 , ••• are the names of the independent classification 

variables in MDPo The auto-classify parameters (see Appendix A and 

the Example, Chapter VII) are displayed upon execution of ACS for 

verification of a correct auto-classify. The auto-classified ACS 

(45) 



provides a base matrix from which various dependent variables may be 

input to the analysis of variance, as 

A¢V (y) (46) 

where y is the name of the dependent variable, and all other parameters 

needed by A¢V are provided in the auto-classified _2., which is an 

internal parameter. The auto-classify technique is also used in para­

metric plot routines for cross classification of the plot symbols. 

Other steady-state analysis or optimization data treatments re­

quire similar data handling to that above and would be added to this 

open-ended procedural structure as necessary. For the present purpose, 

add the data treatment (on _2.): 

Lin-ear Regression LRG ( y, x1 , Xa, ••• ) (47) 

where y is the dependent variable and x1, x2 , ••• are the independent 

variables. The output from this data treatment is a model g, with 

nesponses line-plotted on the CRT, superimposed upon observed responses, 

(as, e.g., in Figure 8). In this manner, immediate visual observation 

of the quality of the model would be possible. Further, g may be 

defined as a procedure in response to an interactive query response 

upon keyboard stepping to the second "page" of the LRG output displays. 

Verification of Results 

It is clear from the above that independent verification of the 

results of interactive analysis can be accomplished by use of the same 

tools required to obtain initial results. Because the system is on­

line to the physical process which is being described, immediate 
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repetition of experiments is possible to provide independent data by 

which the results of previous experiments can be verified or extended. 

Missing gaps in initial tests can be filled in. It is here that feed­

back of this outer analysis loop begins to make itself felt; not only 

in reduced time and costs of the analysis, but in direct improvements 

to the process using these quickly formalized results. The verification 

takes place, in summary, through: 

1. Comparison of responses between experiments. 

2. Superimposition of models upon their own and independent 

data observations. 



CHAPTER VII 

AN APPLICATION EXAMPLE 

Refer to Figure 5. Assume that measurements from a chemical 

reactor are being sensed by the process computing system, and that two 

Data Acquisition operations (DAQ) operating on independent data are 

assigned to positions P11 and Pal as shown in the figure. The former 

DAQ is chained to a dynamic control program (Pia) operating on the same 

level. The latter DAQ provides for the conversion of all other process 

inputs on a lower frequency and priority, and is chained to a process 

calculations program (Paa), which generates the remainder of the calcu­

lated values needed (g S!_, see Figure 2). An on-stream process 

chromatograph measures feed stream compositions necessary for material 

balances yield calculations, and experimental control. The balances 

are typed out periodically to monitor the state of process calibration 

of the instrumentation on which responses are based. A process analyzer 

control program (AOJ), using a data base similar to that of YDP, is 

required to sample and convert the data as it becomes available from 

this analyzer (programmed cycle). The remainder of the operating 

system programs are set up on priorities as indicated in the figure. 

The data treatments of this example will be the Analysis of Variance 

(A¢V) and Linear Regression (LGR). 

Define a data sample vector EXPQ from the measured and calculated 

values in X: 

72 
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ENTER (In the remainder of this chapter, ENTER will be understood 

wherever necessary) 

DVX (EXPQ, XFR1, XFR2, XTR, YP1, C1R1, C2R1, CJR1, C4R1, C5R1) 

EXECUTE. (See Equation (29).) 

Let XFR1 and XFR2 represent system-sensed and calculated flow rates of 

primary and secondary feed streams to the hypothetical chemical reactor; 

let XTR and XPR be the temperature and pressure of the reactor, 

respectively. Let YP1 be the yield of the primary product, and C2R1, 

C2R1, ••• , C5R1 represent measured compositions of R1 included as data 

for experimental control While EXPQ contains fewer data units than a 

typical real case, all the primary classes of variables are included: 

independent control, dependent (response), and experimental (environ­

mental) control. The EXECUTE keyboard function causes storage of a 

new sv (matrix-name) septuple. The values of sv are: 

V EXPQ; 

mv = 10[number of variables]; 

nv = ![number of observations]; 

cv a system-assigned link address of the sv containing the 

ordered set of indices of XFR1, etc., in X; 

dv =null (¢), i.e., there is no column definition; 

ev = link to XFR1 in 2f, assigned by system but not necessary for 

vectors resident in ,!; 

Sv a retrieval code for EXPQ; e.g., the binary check sum of the 

vector element symbols; and 

~v = code for floating point data. 

Following storage of these system parameters, the interactive sub­

system displays an acknowledgement, e.g., 
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DVX COMPIBTE 

VECTOR SYMBOL EXPQ IN X 

XFR1 FLOATING POINT DATA 
XFR2 
XTR SINGIB PRECISION 
XOR 
YP1 CV B100000 
C1R1 
C2r1 Dv ¢ 
CJlH 
C4:R1 Ev c104:0 
C5R1 

This operation defines all the particular variables in X relevant 

to the study. Suppose a data point for this study is to be defined as 

an average of eight periodic samples from X. Then, a sample matrix is 

defined by 

DSM (~ (EXPQ, 8)) 

EXECUTE. (See Equation (J2).) 

Here, another sv record is generated as above, making use of the 

sv-record of EXPQ. Except here, ev = a link address to separate 

system-assigned storage for ~; and, storage for the column definition 

(observation numbers) is reserved and initialized in the dv area. 

A matrix for the averaged data points is now reserved by 

DSM (DPEXPQ (EXPQ, 12)) 

EXECUTE. - (See Equation (32).) 

To store va~ues into the sample matrix SM on-line, a system pro-

cedure is defined, called "Record Vector in SM, 11 RVS, by 

DSP (RVS). (See Equation (24:).) 

GCM (SM)e (See Equation (JJ).). 

EXECUTE 



This definition simply converts SM to an internal parameter for 

RVS so that RVS may be assigned to the real time lattice priority 

structure. Assuming the desired priority level t = 2 as in Figure 4:, 

results in 

ART (RVS, 2, JOO). (See Equation (26).) 

EXECUTE 
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which assigns RVS to a JOO-second cycle on priority level two, and sets 

the RVS program state If( lo-r, 2) ~ If 0 to unlock the program and start the 

cycle execution. To define the procedure for recording the data point 

as the average of the rows of ~' enter 

DSP (RDP). (See Equation (24:).) 

RAVE (~, DPEXPQ) ( 4:8) 

CRTM (DPEXPQ). (See Equation (27).) 

EXECUTE, 

where RAVE is a previously defined system operation for averaging rows 

of a matrix (~) and generating the result into the current column of 

another matrix (DPEXPQ), as in the GCM, Equation (JJ). CRTM displays 

DPEXPQ. Now, whenever a steady-state data point, defined here as an 

average of eight samples over 4:0 minutes, is required, execute the 

procedure RDP: 

RDP 

EXECUTE 

(56) 

Suppose now that a reactor experimental program is designed and 

executed with the independent variables XFR1, XFR2, and XTR; RDP being 

executed at each point. The matrix DPEXPQ contains the data for 

analysis of the experimental results. As soon as sufficient data are 

available for studying relationships between points, the data would be 



displayed and a sample matrix for analysis generated: 

ENTER 

CR'lM (DPEXPQ). (See Equation (27).) 

EXECUTE, 

which displays the matrix: 1 

~ .!!!!!!!! DPEXPQ 

1. SQNfj 101 102 103 104 105 106 107 to8 109 110 111 112 
2. XFR1 325.lt 300.2 360.1 323.2 3olt.1 356.2 326.1 302.lt 359.8 320.9 298.5 357.5 
3. XFR2 101!25 1198o 11860 10569 91!22 9598 10328 122/to 11946 10450 9600 9725 
4. XTR 465 41!7 435 464 442 44o 460 495 491 462 489 487 
5. XPR 48.90 49.90 51.10 50.24 48.Bo 52.24 49.11 47.99 51.11 48.02 49.50 50.76 
6. !Pl 69.76 72.00 76.06 70.50 67.90 73.42 69.95 67.71! 7'.).54 67.65 65.05 71.60 
7. C1R1 2.34 2.36 2.35 2.33 2.34 2.35 2.36 2.30 2.33 2.36 2.35 2.35 
8. C2R1 5.61 5.71 5.77 5.76 5.81 5.88 5.99 6.24 6.23 6.22 6.21 5.95 
9. C3R1 10.44 10.4o 10.37 10.10 10.07 10.00 10.00 9.76 9.50 10.12 10.15 10.23 

10. C4R1 12.01 12.50 12.23 12.48 12.69 12.48 12.39 12.70 12.65 12.65 12.4o 12.51 
11. C5R1 70.02 70.11 71.24 69.50 70.11 70.15 70.16 70.07 70.11 70.98 70.90 70.11 

The Build Matrix from Display operation is now used to select the 

data point number; the independent variables XFR1, XFR2, and XTR, and 

the dependent variable YP1; and the experimental points for this 

particular 23 factorial design: 

BMD (S). (See Equation (28).) 

EXECUTE 

1In this example, the CRT window size is assumed large enough for 
all displays. 

76 



77 

The light pen is pointed to the row numerals 1, 2, 3, 4, and 6; and the 

column numbers (SQN,r6) 102, 103, 105, 106, 108, 109, 111, and 112, 

followed by another EXECUTE. The sampled matrix ! is then displayed: 

DATA MATRIX S 

1. SQN,f6 102 103 105 106 108 109 111 112 

2. XFR1 300.2 360.1 304.1 356.2 302.4 359.8 298.5 357.5 

3. XFR2 11980 11860 9422 9598 1224o 11946 9600 9725 

4. XTR 447 435 442 44o 495 491 489 487 

5. YP1 72.00 76.06 67.90 73.42 67.74 73.54 65.05 71.60 

To calculate an analysis of variance on YP1 for this experiment, 

auto-classify (see Appendix A) the sample matrix! into a standard 

sequence: 

ACS (.2,, XFR1, XFR2, XTR). (See Equation (45).) 

EXECUTE: 

r.~~~~ 
2. XFR1 

3. XFR2 

4. XTR 
5. YP1 

AUTOCLASSIFIED DATA MATRIX S 

109 103 112 106 108 

359.8 360.1 357.5 356.2 302.4 

11946 11860 9725 9588 1224o 

491 435 487 440 495 
73.54 76.06 71.60 73.42 67.74 

102 

300.2 

11980 

447 
72.00 

8 TREATMENT GROUPS WERE GENERATED 

THE IENGTH OF EACH IS 1• DESIGN IS: 

XFR1 4 4 4 4 0 0 0 0 ' 

XFR2 2 2 0 0 2 2 0 0 

XTR 5 0 5 0 5 0 5 0 

AOV PARAMETERS 

111 105 

298.5 304.1 

96oo 9422 

489 442 
65.05 67.90 

NO. VARIABIES 3 NO. IEVELS EACH: 2, 2 2 
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The dependent variables in ~ (only one is considered in this 

example, YP1) are now in the correct sequence for input to the data 

treatment A¢V, and the A¢V parameters are stored in the ~ area for 

internal input to the A¢V. The data treatment A¢V may now be executed: 

A¢V (YP1). (See Equation (46).) 

EXECUTE 

which provides the A¢V results on the display: 

A¢V - YP1 

VAR D.F. s.s. M.S. 

·t.-XFR1 1 60.11561 60.11561 

2.-XFR2 1 16.15961 16.15961 

3.-XTR 1 16.38761 16.38781 

12 1 0.06301 0.65051 

23 1 0.95911 0.95911 

13 1 0.55651 0.55651 

123 1 0.06301 0.06301 

TOTAL 7 94.85219 

Query calls may be inserted in the A¢V procedure for interactive 

flexibility. For example, stepping through the A¢V output displays, 

one may encounter: 

ENTER ERROR MEAN SQUARE FOR F TEST 
1.0 END [Keyboard Response] 
ENTER DEGREES OF FREEDOM 
20 END [Keyboard Response] 
SEIECT CONFIDENCE IEVEL 
0 .99 [iJ .95 D .90 

[Light Pen Response] 

Upon entering an error mean square value, degrees of freedom, and 

selecting a confidence level with the light pen, an F - test is applied 

in the classical manner and the variables declared significant at the 
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given confidence level, in their order of significance, are added to 

the A¢V output results display: 

A¢V - YP1 

VAR D.F. s.s. M.S. 
SIGNIF'.ICANT 
VARIABLES 

1.-XFR1 1 60.11561 60.11561 (1) 

2.-XFR2 1 16.15961 16.15961 (2) 

3 •. -XTR 1 16.38761 16.38781 (3) 

12 1 0.61051 0.65051 

23 1 0.95911 0.95911 

13 1 0.55651 0.55651 

123 1 0.06301 0.06301 

TOTAL 7 94.85219 

CONF IEVEL = .95 EMS = 1.0 

Entering the error mean square interactively in this manner allows 

independent, previously obtained estimates of experimental error to 

be used. 

Ta.king the significant variables from the analysis of variance, 

one obtains a linear function g from the linear regression procedure 

(on S) 

LRG (YP1, XFR1, XFR2, XTR), 

EXECUTE 

which wou.ld produce the following outputs: 
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80 YPl : .5587980 02+ .9075220-0Hf. XFRl+.1183550-02* X FR2- .5942520-01* XTR 

SIGMA YPl .3681080 01 
STD ERROR YPl .9019150 00 

75 R - SQUARED • 965696 D 00 

65 7- 5- 70 
-o- OBSERVED 
--&- CALCULATED FROM g 

102 103 105 106 108 109 111 112 

OBS. NUMBER SQNO 

The keyboard paging function would step the LRG output display to 

other options or information calculated in the LRG procedure. A query 

of significance to the on-line system is: 

ENTER DISPOSITION OF MODEL 

0 DO NOT RETA IN 

liJ RETAIN 
[Light Pen Response] 

ENTER NAME OF MODEL G (INPUT, OUTPUT) 

PDY (.?£, 2£) [Keyboard Response] 

The procedure PDY (INPUT and OUTPUT are internal parameters) may· 

be put on-line by: 

CRTM (PQ) 
EXECUTE 
LEM (PQ (XP, 22), 2J). (See Equation (J4).) 
EXECUTE 
CR1M (PQ) 
EXECUTE, 

which: 



1. Displays the PQ scheduler table for verification that PDY 

may be chained to the process calculations program (p = 22) 

and to detennine the program number of PDY (e.g., 23); 
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2. Loads 23 into the .!!?.. field of the program 22 pq - record; and 

3. Displays the updated PQ for verification of a correct entry. 

The reader experienced in experimental work, particularly in in-

dustrial plants geared for commercial production, will realize that 

events rarely take place orderly enough, and instrumentation is rarely 

good enough, to presume that the above example is typical. On the 

contrary, unforeseen events, instrumentation errors, and production 

requirements cause many puzzles and digressions from original goals. 

Unexpected behavior of responses will stimulate further experimentation, 

as will the need for verification. It is precisely this environment in 

which the interactive analysis system is of most value. In shortening 

the time lapse from data gathering to the analysis phase, problems may 

be recognized and solved in time to avoid or minimize the high risks 

of error, wherever they occur in the complex plant environment. Since 

there is a high psychological inertia working against experimental 

activities in the industrial plant, tests are usually temporary with 

long periods of more routine operation. With the interactive analysis 

system, and process calibration by computer, the success of an experi­

ment, once run, may be more reliably judged before the test inertia 

relaxes, thus allowing quick repetition of portions of experimental 

work as needed. 



CHAPTER VIII 

CONCLUSIONS 

The main objective of this study was to outline {or evaluation 

functional requirements for applying a CRT display tevminal to inter­

active data analysis using an on-line process computer. Such an out­

line has been given. This study has resulted in a better understanding 

of the software structural requirements, and some of the hardware 

requirements as well, for the interactive analysis system. Perhaps as 

important, a better appreciation of the benefits achieveable by more 

thorough and formal planning of software efforts has been realized. 

Perhaps the most significant outcome of this work is the identifi­

cation of a unifying data and procedural structure which enhances the 

efficiency of both the process and interactive analysis systems while 

allowing simplified specification at the man-machine interface. Using 

this data structure, a single set of matrix-manipulation operations 

satisfies most operating as well as interactive system data handling 

requirements. 

Because the total effort required to implement complete systems is 

typically many man-years, it could not be within the scope of this 

study to demonstrate the approaches outlined. This actually turned out 

to have advantages. For example, interrelationships from the beginning 

to end of the study we~e more easily modified, and it is hoped, im­

proved, as new problems arose in rounding out the study. And, hardware 

82 



peculiarities were not allowed to dictate or influence techniques; 

thus more appropriate hardware may now be specified. 
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While the final level of detail has not been reached, it is 

apparent from this work that considerable power may be concentrated in 

a relatively few, but well-defined operations, which now can be written 

with most of the potential uses in mind. Among these are the masked 

scanning, insertion, deletion and other manipulations of matrix param­

eter and data tables, logging and typing of matrices, display of 

matrices, plots, and queries. 

To facilitate interactive analysis, the operating system for 

scheduling and priority control may be simplified relative to exta:...t 

systems by the formal specification of unifying data, parameter, and 

priority structure given here. Furthermore, a system may be completely 

specified and easily documented by adhering to these formal structures 

throughout the data acquisition, control, sampling, calculation, and 

interactive data analysis phases of industrial process studies. 

Relatively simple parametric plots satisfy the large majority of 

requirements for graphic display in interactive analysis. While of 

great importance to efficient man-machine communication, these graphics 

do not replace tabular data display in interaction. An auto­

classification technique was developed for powerful man-computer 

preparation of process data for analysis treatments, particularly for 

analyses of variance and parametric data plotting. 

The interactive analysis console and software support may replace 

several hardware and software components of present systems; e.g., the 

operators console, input-output and alarm typewriters, and job-control 

languages for batch compilation and execution. Any such language 
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becomes a natural part of the interactive language (as do the program.­

ming languages), and at the same time may be handled through other 

input-output devices as well as the terminal, if desired. However, 

interactive analysis increases the need for large bulk memories with 

fast access and transfer rates to store the data treatments, some of 

which may be large segmented programs. Associative memory, packed data 

instructions (fetch, store, and compare), and sophisticated indirect 

addressing are computer features lendinq higher efficiency to the main 

functions of the interactive analysis system. 

Necessary'CRT features include hardware image refresh, window 

techniques, symbol and vector generation, hard copy printing, and 

random, simultaneous alphanumeric-graphic instruction capability. 

Given more primitive display hardware, a small, inexpensive mini­

computer should be used to provide these functions. Removable serial 

memory (eog., magnetic tape cassettes) are desirable system components 

for handling large data matrices and storing past files for retrieval. 

With formal structuring and appropriate hardware, interactive data 

analysis using the proces~ computer is feasible, and can contribute 

significantly to the productivity and economic benefits of industrial 

process studies. 
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APPENDIX A 

AUTO-CLASSIFICATION OF DATA INTO 

TREA'IMENT GROUPS 

Consider the m x n data matrix SMX, where the n columns represent 

different observations of them variables listed in rows. Partition 

SMX into a k x n submatrix !_, k ~m, where ik = 1, 2, ... ' k are 

indices of the (independent) classification variables for SMX. Define 

the transformation from X into P 

b1 1. t; i = 1, 2, ••• ' k; j 
in 

1, 2, ••• , m; 

such that a k x n integer (int denotes "integer portion of") matrix P 

( 1) 

is formed with elements P13. a 1 = (belongs to) !_and b 1 = ! are fixed 

vector sets chosen such that the integer portion of P1 3 is an element 

of a fixed finite subset of integers! for any value of x13 (Set P 13 = 0 

for P13 < 0 and P1 3 = 0 or h where P1 3 > h; h = the highest integer in 

!). Call each element P13 a projection of X13 into!· Now concatenate 

all P1 3 in each column to form a composite projection c3 over columns 

of~ (one for one with~). Order the column indices of~ according 

to the high-to-low numeric values of the composite projections. From 

this ordering, generate L sets of index subsets 

N3;1 [all j jc3, = c3 , j not already in ~, , j = 1, 2, ••• , n, 

j' = 1, 2, ••• , L] • (2) 
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In other words, order the column indices of ~ in a sequence 

according to their composite projections and group together those with 

identic.al composite projections into L index subsets !!! {j• = 1, 2, ••• , 

L]. The index sets may then be used to rearrange the columns of SMX 

such that response treatment groups T(i0 ) may be written directly from 

any row i 0 of the rearranged SMX: 

Tl (io) = xi J ' j = 1, 2, ... ' n1 
0 

'.19(io) xi J ' j n1 + 1, n1 + 2, ... , n1 + n2 
0 

!(io) (3) 

Ta (i0 ) = xi J ' j n1 + n2 + 1, n1 + n2 + 2, ... ' n1 + n2 + n3 
0 

Xi J, j = n - nL + 1, n - nL + 2, ••• , n 
0 

I 

where Ti (i0 ), T2 (i0 ), ••• , TL(i0 ) are the response treatment groups for 

the variable i 0 , XF J is an element of ~' and n1, n2, ••• , nL are, 
0 

respectively, the number of elements in each response treatment group 

(i.e., the number which had identical composite projections). In 

general, n1 I n2 I ... I nL, but it may be convenient to allow a fixed 

block of memory for each group (block length = max [n3, , j• = 1, 2, ••• , 

L]), and allow for null elements. A list of response treatment groups 

may be obtained by resetting i 0 = [new variable index from a list] and 

reiterating through expressions (3) to generate a~ T3 ~ [j' = 1, 2, 

. . . ' L] set • 

For example, suppose the matrix~ 



1 

k -

m 

SMX 

1 

10 20 JO 1±o 50 60 70 Bo 90 

n = 9 

were partitioned 
at k and projected 

1 5575J5J57 
666666666. 
224442444 
444444444 
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into£: 
K=5 777JJ7JJ7 

j = 1 2 J 4 5 6 7 8 n=9 

The composite projections are the concatenated columns of P, i.e., 

56247 for j = 1, etc. Sorting the column indices by composite pro-

jections gives the column sequence (high· to low), 

J, 9, 4, 8, 1, 2, 6, 7, 5, 

and the groups of identical composite projections form the index sets 

!! l = J, 9 (n1 2), 

!a 4, 8 (na = 2), 

!is 1, 2, 6 (ns = J)' 

N4 = 7, 5 (n4 2), L = 4. 

The response treatment groups from (J) for i = i 0 (see§!!! above) 

is 

T1: JO, 90 

.!,(io) 
Ta: 4o, 80 

Ts: 10, 20, 60 

T4: 70, 50 



APPENDIX B 

DATA PARAMETER NOMENCLATURE 

Symbol Member of Meaning Page No. 
Matrix or Defined 
Set: 

a MCH, MD Answer to query 61 

alt' MCH Multiple choice record of query 61 
a:at ' etc. 

ad WC Starting address of working core area J8 

bo SDP Lower limit, engineering units 27 

bl SDP Upper limit, engineering units 27 

b:a YDP Lower limit, signal n 29 

bs YDP Upper limit, signal n 29 

c sv Link address, matrix name to row JO v 
definition 

d sv Link address, matrix name to column JO v 
definition 

dl YDP Low limit alarm switch JO 

d:a YDP High limit alarm switch JO 

e sv Link address, matrix name to data JO v 
storage area 

g SDP Lower boundary for classification 26 

h SDP Upper boundary for classification 26 

iCao) YDP Link address to off set a 29 

i(a1 ) YDP Link address to scale factor al 29 

i (b) Q Link address to scheduled program J5 
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i(k) 

i(xv) 

i (TT) 

k 

to 

ln 

mch 

md 

n 

p 

r 

s 

YDP 

SDP 

YDP 

SDP 

MD 

WC 

MCH 

MD 

sv 

N 

MCH 

SDP 

p 

sv 

we, 
(Implicit 
in P) 

(XPL) 

MCH, MD 

SDP 

MD 

SDP, RDP 

Link address to lag constant k 

Link address to the triplet [g, h, n~} 

Link address to conversion suboperation 

Lag constant 

Priority level 

Current priority level 

Number of digits to left of decimal 
or alpha for printout 

Same as 1 for direct answer to query 

Length of working core area 

Name of multiple choice query 

Name of direct answer query 

Row dimension of matrix 

Raw digitized analog input 

Number of choices 

Number of classification intervals 
from g to h 

Name of program 

Column dimension of matrix 

Number of program in ad, ln area 

Currently active program number 

Query text 

Specifies whether data is floating 
point, integer, or alphanumeric and 
the number of digits to right of 
decimal for output of floating point 
data 

Same as r for direct answer to query 

Alphanumeric name of data unit 

29 

26 

29 

29 

35 

36 

26 

62 

38 

61 

62 

30 

29 

61 

26 

35 

30 

39 

36 

61 

62 

29 
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SC Q 

tx p 

v sv 

w YDP 

xp p 

YDP 

Q 

p 

sv 

p 

sv 

Q 

sv 

Current starting core location for np 

Time for next execution of ~ 

Name of Matrix 

Hardware address of n 

Number of program chained to program p 

Alarm disposition code 

Current relative entry to np 

Time interval between executions of nP 

Currently active column number for 
matrix updating 

Priority level of np 

Compact abbreviation of the variable 
(row) definition of V 

Code for current state of np 

Code for data type: floating point, 
integer, alphanumeric, or parametric 

92 

J5 

J5 

JO 

29 

J5 

29 

J5 

J5 

JO 

J5 

JO 

J5 

JO 
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