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PREFACE 

This thesis contains the new calculations made on F+++ Oscillator 

Strengths using wavefunctions which describe symmetry projected states 

and contain non-dynatl).ical electronic correlations. These results are 

much more accur~te than those.obtained with.simple Hartree Fock wave­

functions. 

The Z dependence·· of oscillator strengths of different· transitionei 

in carbon isoelectronic sequence is exatl).ined by showing them graphically. 

This helps in predicting oscillator strengths for six electron ions with 

large z. The improvement.in the numerical values of oscillator, strengths 

through the inclusion of correlation effects ia strikingly shown in the 

graphs; 

I would sincerely' like to thank Dr. P. A •. Westhaus for his. sugges.;... 

tion of the problem and his patient guidance throughout'the course of 

this research work. 

Discussions and comments made by D. J, Mickish were very helpful in 
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progralllll;ling, 

I would als.o like to thank the officials of University Computer 

Center, Oklahoma State University, Sti;l.lwater, Oklahoma, for their co­

operation andgeneroushelpgiven to me. 

The financial support'in the form of teaching assistantship provided' 

by. the Physics, Department. of Oklahoma State University is also ackp.owl­
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CHAPTER I 

INTRODUCTION TO THE PROBLEM 

Calculations of oscillator strengths and transition probabilities 

have been_done before; using wavefunction, which are not.rigorous eigen­

functions of L2 and s2• These wavefunctions are obtained by using the 

configuration int~raction method, as described by ~ksiiz and Sinanoglu 

(1). 

It is possible to have wavefunctions which are.exact eigenfunctions 

2 2 of L and S , if the wavefuncti~ns are project;ed out'using Lowdi11's (2) 

projector -operato·rs or, if .they are formed out· of :a closed set of de-

terminants. This·wi~l be ,explained in detail later on. 

1 It was realized that·a pure state was needed in.order to make a 

computation o:f oscillator strengths and·the electric dipole.transition 

probability. Then a comparison may be.made.of these results with those 

2 obtained when the.functions used are.not exact :eigenfunctions of L and 

s2. 

Oksiiz and Sinano~lu. (1) have.made CI calculations'of energy and 

wavefunctions using determinants <;1.escJ;"ibing coJ;"r.elations depicted by one 

and two paJ;"ticle excitations from Hartree-Fock state. The important 

point here is that·the wavefunction, 'which is a ·linear combination of 

1 .. ' The states obtained after Lowdin s projectoJ;" operator has operated 
on the conf igµration interaction (CI) wavefunction will be referred to 
as pure states. The simple CI expansion will also be referred to as 
superposition of configuration. 

1 
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determinants in which just one and two particles excitations are.con-. 

si.dered may not be sufficient to give the· required symmetry of the state. 

Qne,metnod used.to get a.function of required symmet:ry is the ol;>taining 

of .a closed set .of ·determinant.a. That is, one obtains an extended set 

of determinatns by operating with ·the CM/fJ operator (this does not 

change ~ and M8 value of determinants) Qn.all the ·determinants obtained 

byone and.two particles excitations from the HF state. This operation 

of (M+M_) is continued pn the. newly obtained set until no new set of· 

determina~t is obtained, This· final se.t of deteminants is called a 

"closed, set''. This is a closed· set of de.terminants which has t~e ~ and 

~S val,.ue with which we sta:rte4. It al,so has-in .it terms which have more 

than two particles excitations. This closed set of detetminants·guaran.,. 

tee~ that a pure s ta.te can be obtained. from. a line11r combination of . some. 

or all of these determinants. Oksii:z and Sinanoglu found that. the energy 

calcula.ted using a set of determinants with at most ori.e, and tw.o particle 

exc.itations from Hartree.,.Fock sea and a. clOsed set of determinants dif-'­

fered; by· an .. a'.lllotmt ·less than.005 eV. 

On tb,e other hand, if ·one uses an unproJected'CI wavefunction ;and a. 

pure. state CI wavefuncti.on obtained by using Lowdin 's proj.ector opera­

tors on .. that. _CI wavefunctions, the energy ca:lculations wou],d show· the 

same result. This·· will ·become' clear using a ·set .. of ·equations. Hamil­

tonian will be set up in a truncated basis. Then this approxil!late. 

Hamiltonian matrix will be diagonalized, This 'will·yield eigenvalue of 

approxiJJiate Hamiltonian. A wavefunction can.be written as sum of HF 

part and corcelation part, therefore let_ 

ljJ = cpHF + X· [l] 
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such that. 

<cpHF l<PHF> = l [2] 

and 

[3] 

Equation [3] implies that co~related part is orthogonal..t~ HF part. 

If [2] and [3] are sa~isfied, then 

H[cp + x> 
0 

= 

these are.certainly true for ex:act x and H'but are also true for any 

approximate· x ·and H, where H is a matrix .. obtained in truncated basis 

set (ref (1) footrtote 15). For eigenvalue of approximat;:e·non-relativis-

tic Hamiltonian, when the·wavefunction is.expanded in a truncated basis 

set, we have: 

[4] 

Next we try to write E in terms of a projected function. ProJ"ection . app 

operator has the following properties: 

(A) p = Pt, p is Hermitian 

(B) p2 = p 
' 

p is idempotent [5] 

(C) HP = PH, p commutes with Hamiltonian 

In terms of projected wavefurtctions. expectation .value of eQergy becomes. 

E. 
app = [6] 



= <~HFIPHl~HF + x> 

= <Pt~HFIHl~HF + X~ 

= <P~HFIHl~HF + x> 

= <~HF I HI ~HF + x> 

= E • Same as given by Eqn. [4]. app 

4 

[7] 

[8] 

[9] 

[10] 

Four types of electron-correlation terms are·incluc;led in x in.addi"."' 

tion to HF part (1) to get a wavefunction as.expressed by Eqn. [l]. 

These.are: 

1) Internal correlatio~, 

2) Semi-internal.c9rrelation, 

3) Single particle a;\l external .. cort"elation, als·o called polari.,. 

zati.on effect, · 

4) Two or more,part::l.~le all external. 

First two types.of correlations occur in ope~ shell only. Single. parti-

cle all external correlations, occur in.both, closed and open 'Shell. · 

Howev.er, within· the first order correctio~s to HF orbitals in ._the per-

turbation ,theory, the ·contriqutions from polar:f,zation effects in._the 

closeq. shell are zero~ As we·go.to second and higher order perturbations 

they are·formally present. The fourth type viz ·two or more particle all 

external -correlations are important in .both, open ._and closed shell sys-

tems. 

Correlation Energies 

The total correlation energy is defined as ·(l) 
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= 

where ETOT =,.total energy of atom and ion can ·be obtained experimentally. 

and·· E = relativistic energy correction including. spin ·o.rbit cqupling, 
REL. 

which can, be caJ,.ctilated using a semie'lllpirical proce·t;lute : (1) • This de-

termines ECORR.' If we have·the exact·correlation function x then: 

where xF includes ~emi-internal and polarization part of correlation. 

x is all external correlation function. 
u 

= 

ENON-REL - EHF = 

or EU= ECORR. - (Eint +-EF) and this·now gives an·exP;licit'expression 

for all external correlation ep.ergy •. We ·saw through Eqn~ [10] and [4] 

that·energy does.not c~ange when using a projected wavefunction. In· 

th,e 'closed set!. method the difference.in energy.may be atti:ibuted tp 

diagonalizing the Hamiltonian matrix in a different basis.set before and 

after the· set is closed. It is neces.sary in the above discussion to in-

elude the correlation, effects.in·the wavefunction to make the wavefunc-

tion lllQre accurate~ . As the formula .. stands, f<;lr transition -probability, 

it ·is .. proportional, to a matrix element .which require~ evaluation between 

two eigenfunctic;n;1s, An eigenfuncti.on can be obta~ned .if we .expand a 

wavefunction in terms of .HF part·and incl,ude an infinite Cl expansion, 
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For all ·practical purp1oses; it -is very ha-td to comprehend the term 'in-

finite CI expansion':. At the.same time, just the.HF part'of the wave,_ . . ' 

function is insufficient.to compute accurate oscillator strengths for 

many important, transition •. 

Therefore for the practical purposes one.JD.uSt.decide to.what ~xtent' 

he l(ants to inclucle electronic correlations while trying to·improve a 

wayefunctic;m. In this work we include first three. types of correlations 

only. Thus, the ,total wavefunction will consist,of ·the sum.of HF part, 

correlation function arising from excitation of one or two part·icles 

frolll-. tqe HF sea :-to orbitals previously unoccupied in.· the sea (internal 

correlat:l.c;>n), correlat:i,on fl,mction ai:ising from ex;cita~ion of one parti-

cle from the sea.to an.orbital outside the sea:and one particle from the 

sea.to an.orbital inside the:sea (semi-int~rnal part), and finally., terms 

coming from excitation of a single-particle.from the sea to an'orbital 

outside.the sea (polarization). 

Two or more·particle all external, correlatione are.not included in 

this work, It has been previously. argued· (3) that -in :the ca.lcu~ations 

of traQ.aiti:on probability the.se may not be very important. Moreover. in 

the polarizatic;m, semi-internal. _and interal correlation function, only 

one.and two pa~ticle excitations from RF state are considered in obtain-

ing a wavefunction. 

There .are infinite m.i.mbe-r; of orbit~ls outside HF sea, th,erefore, 

limit:ing the excitation to. 4f as it is done in ~is thesie wot'k one is 

truncating the CI expansion to a certain. term. and thus on.e is negle.cting 

all. the virtual excitation that could occur to orbitals beyond 4f. The 

correlation functions·are expanded in terms of Slater determinants which 

differ from HF-state in one'and two particle.excitations, In general, 
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2 2 functions thus obtained are not eigenfunctions of 1 and S (are not 

pure states). We make them a pure state by applying projector operator 

technique, In the projector operator met'Qod, all one does is to feed 

the output of a CI wavefunction to a specially designed projector opera-

tor program. The result is a pure state. 

The difference in.the oscillator strengths and the dipole transition 

probability using pureand impure states inspired this work. 

To further stress the importance of a wavefunction which is eigen­

function of 12 and s2 in obtaining the oscillator strengths, one should 

take a glance at the two expressions of multiplet absorption oscillator 

strengths for 

dipole· length 

electric dipol~ transitions. 

N 
lperator ! = i~l ri 

First, in terms of the 

fg.(.\>1 S + v' 1 'S') 2 E(v'1'S') - E (v1S) 
= ~ (21+1)(2S + 1) 

1 S 1 1 S' 
~ M ~ S '~ 1 1 '~ S' ~=-1 s=- M.j_,=- Ms=-

N 
and second, in terms of dipole velocity operator y_ = i~l Vi 

L. s L s' 
~~-1 Ms,g-s ~,g-1, M~g-s'' l<tjl\!1SM_M l2ltjl\),1'S'M!M'>l2 

2 - --i. S -L S 
f (v1S + v'1'S') = -
1 3 (21+1)(2S + 1) [E(v'1'S') - E (v1S)J 

this equiyalently can also be written in terms of acceleration operator. 

These.expressions give exactly the same result if the wavefunctions tjls 

and energies Es are eigenfunctions and eigenvalues respectively of the 

non-relativistic, electrostatic Hamiltonian 

H = 
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Here atomic units have been used, therefore .ft = 1, me = 1, qe = 1. This 

will hold true for the rest of the treatment too. With approximate• 

functions, dipole velocity and dipole position results are not necessar­

ily equal, bt,it one expects betteragreementbetween the two, the "nearer" 

the wavefunctions are to. the exact ones. 

At places a quantity gotten by taking square root of products·of 

oscillator strengths obtained using position .and momentum operators will 

be used for certain kind of comparisons. 

Osc:J,llator strengths and transition probabilities are also compared 

when wavefunctions used have and do not have the electron correlation. 

This is essentially an extension of work done by Westhaus and Sinanoglu 

(3). 

Dt,iring the process of these studies one could also see nature, 

properties and advantages. of obtaining a wavet:urtction ·.which has been 

approximated such that it includes the electron correlation in addition 

to Hartree-Fock part. 

Finally, to make an important point here, one sees that the Z­

depencence of oscillator strengths cannot be set aside. A graphical 

representation ,of oscillator strengths versus ·~ · will be given for dif-

ferent transitions, which will be helpful in examination and ;i.nterpre-:-: 

tation of some trends of variation in oscillator strengths. 

A new seraes of calculations are shown for the iD + 1D, 18 + 1P, 

and 1D + 1P transitions from the configurations ls2 2s2 2p 2 2 2s 2p3 + ls 

for F+++ using pure states obtained from projector operator. Also some 

new calculations. on the triplet-state transitions will be shown~ 



CHAPTER II 

HARTREE FOCK THEORY AND ELECTRON CO~LATION 

Definition: Hartree Fock orbital,s are those orbita~s which satisfy 

the HF equations. 

HF equat;:ions are ob.tained using varii;i.tional principle on the ex-

pectation value of Hamiltonian when the trial function is restricted to 

a single configuration. An equation.gives one electron orbital energy 

for .a particular orbitaL These orbitals are then explicitly obtained 

using self consistency. Tnen, they are eigenfunctions of one electron 

HanJ,ilto.nian. For a system of N electrons, a linear combination of anti-

symmetric product of these orbitals ca~ be formed which will be eigen-

functions of N el.ectrons HF Hamiltonian. 

One.particle bare nucleus Hamiltonian is (4); 

0 1 2 
1..l.. :;- - v 
·~ 2 i 

[l] 

First term is knietic energy and second term is potential energy of ith 

electron. N particle HF Hamiltonian is: 

= [2] 

First term is sum.of bare nucleus Hamiltonian and second term is average 

potential of ith electron in the field of rest of (N-1) electrons. 'V'i 

is said to be HF potential of entire .N electrons medium acting on elec-

tron i• 

9 
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Non· relativisti.c, electrostatic ~ltonia~ for N electron problem 

can be written as: 

[3] 

This Ham:f,.ltonian can be. broken into two parts as follows:. 

[4] 

N 
Where i~l Vi has been added to first term and.subtracted from second 

term, with no net change. in th,e HaJJ.7.iltonian. Let us label,this as 

[5] 

where H0 is defined by Equa~ions [2] and. [l] , H1 is now defined as the 

qua,ntity in the second aqua.re bracket·in.Equation .[4]. 

Expression .for Vi, the HF potential 1is obtained from writing the .HF 

eq¥ation for a HF orbital Ui as follows (5). 

[6]. 

P12 = two part~clei;; permuta~ion. 

The quantity in square bracket in Equation [6] is sum of differences.of 

two terms viz couloiti:~ (direct) and exchange potentials acting on electron 

in orbital i. The integral terms can be written as: 

dX · 
1 ri~ u~(2) [uj C,2) ui (1) - P12 (Uj(2) ui(l)] 

dX2 * = J - uj (2) 
rl2 



= 

= 

II 

s. (1) ui (1) - Rj (1) ui (1) 
J . 

11 

[6a] 

II 
where Sj and Rj denote the direct and exchange terms respectively. Note 

here that for i = j the direct and exchange potentials yield equal re-

sults when acting on a particular HF orbital Ui and they subtract out to 

zero. The summation term i = j is not included in Eqn. [6] •.. For a HF 

orbital u1 we have: 

[7] 

For electron 1 in orbital i and electron 2 in orbital j. Summation goes 

over all j, except .j = i. More explicitly for i = 1 and i = 2, Eqn •. 

[7] can be written as 

[8] 

[9] 

InEqns. [8] anc;I. [9] j = 1 and j = 2 terms are excluded. However, if we 

include those terms, the potential .terms are identical in both Equations 

[8] and [9]. That is including the missing terms in v1 and v2 yields 

another expression whose action on u1 and u2 is the same. In that case 

Eqns. [8] and [9] may be written as follows: 

v1(1) u1 (1) = V(l) u1 (1) 

v2(1) u2(1) = V(l) u2(1) 

[10] 

[11] 

where V(l) is the potential expression without any restriction ,on the 
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orbitah. Thus- HF. potential without any re.strictic;>n on, the orbitals can 

be,written a~ 

V(l) [12] 

N.ow HF potential 'may be defined in two ways viz through Eqn. [6] or Eqn. 

[12J. This .does not a:efect H in.Eqn. [4], however, B0 ,and H1 are affect.., 

ed independently. 

Two expressions' fo_r HF pote"Q.tial, are: 

N -
vi (1) = j~i sj (1) ·and 

N -
V(l) i: f~l sj (1) 

where Sj (J.) ia dif f~rence of coulomb and excl'lanie potenti,@-l1S. 

* _ = !x2 u j (2) (1 ... p l?~·, trj (2) ·. 
sj _(l) . 1 . . . . rl2 - .. - . - . with sj (1) uj (1) = 0 

From Eqrt,• [5], we have H ""' H0 + H1 

• • 

wher~ <jl is antisymmetric product .. of HF orbitals 0 . 

[13] 

[14] 

[15] 

[16] 

In the following lines we try to evaluate E0 and E1 • [A] Evalua­

tion of E0 : we .know that>H0 is.N particle HF Hamiltonian, there:eore, 
N 

expectation v1;1.lue in HF orb:f,.~al basis ·should yielq E0 = i~l e:i that is 

total sum of one electron orbital energy, summ.ed over N electrons. This 
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will be proved below. 

We have 

A is N particle antisymmetrizer, :is Hermi tia,n l!nd has the :following 

preperty: 

••• <<1>'IHl<1>> 
0 Q • 0 

But 

But 

1 (1 

A = /NT I:(-1) p p 
p 

[18] 

At = A [19] 

AtA = A2 = . INT A [20] 

= <lJ1 (1)U2 (2)-:--~UN(N) jAt thi jA(Ul (l)U2 (2)---UN(N) )> 

At Eh = I:h At . = I:ihiA 
i i i i 

2 ·r.=;-AA • A = vNl A 

'"' IN[ -Ol (l)U2(2)---UN(N) jA(h(l) + h(2) + --­

H Gff)) I uil (1) u 2 (2 )---u14 (N) > 

h(2)---h(N)lu (1)---u (N)> 1 N 
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Cf 

• e1 + e2 + e3 + --- ~N < U1 (l)U2 (2)--•UN(N)l~(-l) Pplu1(l)U2(2)---

UN(N)'> · 

N 
= el + €2 + €3 + --- EN • i~l ei • Eo [21] 

[B] Evaluation of E1 : 

We have 

El ' = ~ 0 I Hl I <I> 0 > 

= <A(u1 (l)U2(2) ..... --uN(N) li~j- r~j - J V(j) IACu1 (1)---uN(N))> 

[22] 

Now proceed on the same lines as [17] through [21]. Note that in [22] 

Eqn. [14] has been used. 

- /Ni" <U (l)u (2)---u (N) IEV(j) II;(-l)crP Pu (l)U (2)----u (N)> INT 1 2 N j p 1 2 N . 
[24] 

The first term has ··two electron operator between two N electron ·functions, 

and. the second term has one el,ectron operator. Because of orthogonality 

of ot'bitals .we know that all the matrix elements . with more, than .two 

particle penn.ut~tions will be zero in the first term and all the mat;:rix, 

elements.~ith:more.than one parti.cle permutation will be zero in the 

second term. This simplifies ~valuat,ion of -[24] as :the first term.re.:.. 

dq.ces.to·sum of one·and two particle matt'ix elements and second term to 
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sum of one particle matrix elements •. Rewriting [24] as follows: 

' E . .., . . 1 . 
cr 

<Ul(l)---u (N)I E ..1_ - EV(j)jE(-1) p P(U (1)---u (N))> [25] 
N i < j r ij j p 1 N 

[26] 

The first term in expansion [26] is; 

These are simply differecnes of coulomb (direct) and exchange integrals. 

Denoting them by. (Jij - K1j) we get first term of Equation [26] as 

i~j[Jij - K1j]. Now look at second term in Eqn. [26]. It can be ex-

panded as follows: 

N . * 
i~l f axl Ui(l) V(l) Ui(l). 

_ N * N dX2 U~(2) (1 - P12)Uj(2) 
- i~l f dXl ui(l) [j~l f . . r . ]ui(l) 

12 

= ~ ~ ! dX ! dX2 U~(l) uj(2) (1-P12) 
i=l j=l. 1 U:j (2)Ui (1) 

r12 

Any term with i=j is zero. 

1-P 1-P 
= i~[<U1 (1)Uj(2)1 r1~2 1u1 (l)Uj(2)> + <Uj(2)U1 (l)I r1~2 1uj(2)u1 (1)> 

l..;.p· 
= 2i~[<Ui(l)Uj(2)1 r1~2 1ui(l)Uj(2)>] 



Putting a.11 the terms together of Eqn.\.[2~J we get 
·, 

E • 1 

' 

i~j - (Jij-Kij) 

Equations [5] and [16] combined together.give. 

H - EHF = (Ho + Hl~ - (Eo + El) 

= (Ho -Eo) + (H1-E1>. 

~ 1 
= [i~l (hi-€i)] + [i~j<-;--+ Jij 

ij 

16 

[27] 

[28] 

[29]· 

[i9A] 

It .. is the secQnd term in Eqn. [29AJ th~t ·is responsible for. corre-. 

lation effects and is·known as fluctuation potential (4). This can.be 

expressed in t;wo ways depeIJ.ding upon how V is .chosen. For V given by 

[14], fluctuation potential will be defill,ed by: 

[30] 
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Collecting the terms Equation [30] can be.written as: 

1 II 11 

i~j mij '"' i~j((rij + Jij - Kij) - (Sj (i) - Rj (i) - (Si (j) - Ri (j) 

(N:l) {(Si(i) - R~(i)) + (Sj(j) - R;1(j))}] [31] 

This is the expree;sion (9) for fluctuation potential that is responsible 

for electron correlation. 



CHAPTER III 

CONTIGURATION INTERACTION IN MULTIELECTRON ATOMS 

The aim o~ ·this· chapter may be .s,ummarized in bri.ef, as that of 

finding eigenfunctions of a ~iltonian of N'electrons system. The 

Hamiltonian may· be.written as 
;aN .2 N 2 ___.._ ~ 

H =- -j}_ 2: "'t - L: g +- 'L ~ [l] 
:2n"l i..;:1 . 1 /(,t . • . 1c.1.I 

1,.= l ~L<J-"N "1 

where a.is nuclear charge and. Hartree's atomic.units have been used. 

There exist certain Hermitian operators which c9nunut~ with one another-, 

and w:l,th the Hamiltonian described in [l]. These are L2 , s2, Lz' sz, 

Parity, etc, More explicitly 

L2 ~ L 2 + L 2 + L 2 
x y z 

s2 = s2+s2+s2 
x y z 

L and S are c9mponent;s of Land, S operators· on-the Z-axis respectively. 
Z· Z 

N 
For a'complex atom consisting of N electrons, Lx • i~l Lxi and similarly 

N 
L , L • Al. so S y z x =· 1~1 sxi·and 

satisfy the following algebra: 

= 

similarly S , S • 
y z 

= 

10 

These operators 

0 [2] 

[3] 

[4] 



19 

[5] 

[Sa] 

Equation [2] through.[4] are examples of. operators which are said to 

commute, Eqn, [5] and [6] ai;e exaJllPle of operators which do not .commute. 

The components of the total angular momentum L of any number of parti-

cles satisfy the same commutation relations as those of the angular 

momentum of a single particle (6). 

Two commuting operators helve many simultaneous eigenfunctions (6), 

in fact as many as, that·they fom a complete set, A 'complete set' will 

be defined little-later, This means corresponding to .Equation [3] we 

can find ,µ 1, $2, $3 such that 

where all operators are· N electron operatots, $1 , $2, $3 are eigen­

functions of corresponding operators. 

The operators t 2, L , s2, S are known'as.symmetry operators; 
z z 

They all commute with the Hamiltonian given by ;Eqn •. [l] and they 

commute among thems~lves. Eigenfunctions of such a Hamiltonian are also 

eigenfunctions of the-above mentioned symmetry operators. 

As -we know it 'is hard to calculate exact eigenfunctions of Hamil-
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tonian,,. we mq.st ca;Lcul.ate app.roxi.mate eigenfunctions of. Hamiltonian, how-

ever, we will demand that .these .approximate eigenfunctions'of Hamiltonian 

be exact eigenfunctions of the symmetry.operators. 

The problem here is to find a basis vectors or basis.set of func.,.. 

tions for the expansion of.eigenfunctions of.Hamiltonian. At·this ·point 

we may define the basis vectors. 

Definition:. In an n dimensional. s.ubs.pace 0£ Hilbert space any n 

-+ -+ -+ 
vectors u1 , u2 ~, ,Un are said to form a set of 'basis .vecto.r' or a com-

-+ plete set in that subspace if any vector :ic in that subspace is expres-

-+ 
sible as a linear combination of the .vectors Ui, Formation of basis 

vectors is not·unique.however any number·of·bases for this·finite di .... 

mensional, subspace. have .. the same number of basis vectors. viz n. For 

more detail a book in Linear Algebra (7) may be consulted. ·Amore gen-

eralized form of the above treatment applies to entire 'Hilbert spaces, 

To .expand an eigenfunctipn of one elect.ron Hamiltonian one could choose 

complete set of one e1ectronorbitals. For a many electron system one 

could.consider complete set of determitl,ants ;made up of antisymmetric. 

products of these one electron orbitals. One could also choose a linear . 

combination of these determinants with speci'f ied properties.. These 

linear combinat;ions will be call.ed synnnetry'adapted.unperturbed functions 

and will be explained later, . The symmetry ad,apted basis or the deter-

mintal basis will ;be "complete" for N electron problem provided the 

basis for one electron problem was chose!). to be- 'complete'. Complete-

ness of tl:te basis·set is necessary for.the expansion.of eigenfunction of 

Hamiltonian. The HF one electron spin orbitals are eigenflinctions·of one 

electron m~.m±ltoni1:1.n. They form a complete basis set ,for .. th,e expansion 

of any one electron-functions in one particle Hilbert space. For a 
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multielectron system we have to choose .a basis set irt a .. different vector 

space viz N particle space for N part·icles problem. We .. c.a.Q. construct a 

set of . functionei spanning the N-particle space by taking all. possible 

antisymmetrized products. of one pai;:tiele·orbitals. One choice of basis 

functions in this N-particle space would be determi12ants.made up of 

antisymmetric product of one electron HF spin orbitals, If we make an 

approximation~that we have K basis furi.ct;ions in one partic].e space, we 

K _ Kl 
can form (N) - Nl(K-N)! antisymmetric products of one particle orbitals 

to give (~) determinants having N number of orbitals in each one of 

K them. These determinants s.pan a (N) dimensional subspace of the entire 

N particle Hiibert Space, Therefore, we ca,n now expand approximate 
. K 

eigenfunction of Hamiltonian :in the sett {Ai} i = 1, 2, •••••• • ••• (N). 

These determinants can always ~e Illa.de eigenfunctions of L and S 
z z· 

i~e.j they will have a fixed value of Mi, and MS. 

The· second• choice of basis functi.ons spanning the truncated N par-

ticle space is that formed by taking line.ar combinations of the above 

mentioned ·determinant.s such that· linear .combinations are eigenfunctions 

2 2 of synnnetry operators.L, S , L, .S • In forming this·basis., known as 
z z 

synnnetry adapted, we shall take linear combination of determinants, all 

of which in any one linear combination belong to the same configuration, 

and have the same~ and MS value. This·gives a .basis in which the 

f'Unctfons are·symmetry ad,apted. 

, . ~i = J bij Aj .where all the A's belong to same .configuration 

and.have a fixed~' Msvalue in a particular linear combination. There­

fore, a new basis set'is: {~i} = i = 1,2, ••• ~(~) provided the set A's 

was closed in the sense .of description of Chapter I. The basis sets 

{~i} and {Ai} span the same (~) dimensional space, Thus the choice of 
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the basis function depends on the type of the problem one is dealing 

with. Changing the.basis function from determinantal form to certain 

linear combinat;ions of determinants is equivalent to rotation of a co­

ordinate system in (~) dimensional space. 

One electron spin orbitals we will use are simple products of a. 

spin.function ,and an orbital function. They are assumed to be ortho-

gonal to each other (orbital part and spin part, both). General form 

of a single particle orbital may look like as: 

4?.. (~,o-) = 
fl,trt'l~YY\5 

where n, Jl, m.Q,, ms are the usual quantum·numbers with 

n = 1, 2, ••• an integer 

Jl = o, 1, 2, • , • < n · 

s 

m s 

= 

-
= 

JI, • ' • • -JI, 

1/2 

± 1/2 

cr is spin variable of spin function space·, 
mJl 

YJl are usual normalized 

[6] 

spherical harmonics. x is the spin function of the spin orbital. The 

radial part RnJl(r) is expanded in terms of Slater type orbitals as 

follows: 

Ine.(t) -~na.(i.) tc. 
Rne..Cir.) = t AnQ.(t) 7t. e 

i. 
[7] 

AnJl are the expansion coefficients. InJl are integers indicating which 

STOs were.considered in the basis when expanding. ~nJl are optimizing 

parameters chosen·such as to give minimum energy of the·state under con-

sideratio:p,., The detail of methoµ of obtaining the radial part is de...; 
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scribed in tables of atomic'function (8). As an example consider Table 

01-03 which describes on the top line 2p state of Boron from configura-

2 2 tion ls 2s 2p. The radial part of , ls HF orbital in te.rms of STO is: 

= .92109 r 0 e-4 •4661r + .07847 r 0 e-7.BSr - .00036r e-.B32r 

+ .00085r e-1 ' 1565r + .00002r e-1 •91197r + .01146r e~3 • 5213r 

where as the radial part of 2p HF orbital in terms of STO is 

= .54005r e-.S 7S3r + .38245r e-1 ~ 3543r + .13208r e-2 •2296 

-5 37 + .00957r e ' and so on, 

Thus An.Q.' InQ,' 'snQ, ar,e liste·d ,in the table for the expansion with STO Is ' 

as the basis furict,ions, Consider a two electron system.Hamiltonian for 

a two electron syst~m can be written down as 

H(f .2) = 

(Z =nuclear charge, Hartree's atomic.units. have been used). Suppose 

we want an exact eigenfunction of this Hamiltonian, with the help of 

2 
configuration interaction fo,r the configuration ls • The simplest pos-

sible configurations one can think of for a two electrons system are 

2 2 2 
ls , ls2s, 2s , 2s2p, 2~ , ls2p 

Using the rules of vector coupling model and Hund's rule for equivalent 

electrons one can find the different possible states that come out of 

these cortfigurations 

Configuration 

ls2 

ls2s 

2s 2 

Possible States 

1 s 
1 3s s, 
1 s 
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2s2p 1. 3P, p, 

2p 2 1 3 lD S; P, 

ls2p 1 3p p, 

In order to construct a wavefunction of a given symmetry (for e~ample 

1 
S) one has to consider the contribut,ion .from all configuration .to the 

wavefunctions which give 1s synnnetry. Then an approximate wavefurict;ion 

of a particular symmetry will be a linear combination of the symmetry 

adapted wavefunctions which have.that symme,try present. 

15 15 Ls ls is 

••• ~s' = C1 cp152 + C"' cfis2s + C5 ¢as2 + C4 cp..:2p2 [8] 

(For given~ and MS' both are zero here) 

This is an approximate eigenfunction because the expansion is in terms . 

of a basis set wbich is finite ,in dimension. In other words it'is a 

truncated basis expansion of an eigenfunction. There are as many ap~ 

proximate.wavefurictions as are the number of basis set functions• Num-

her ·Of symmetry adapted basis function of a given symmetry comirtg from 

dif fe,rent configurations may be labeled as follows 

1 
<I> s i = 1,2,3, e • o • nl i 

s 
1 

<I> p i = 1,2,3, •• '! • ni i p 

and so on. i denotes the configurations. Thus in the above notation 

Eqn. [8] can be written as 

=~ [9] 
L=1 

The coefficient 'Cl will have highest value in comparison.to c2 , c3, ••• 

etc~ This method of obtaining a wavefun,cticm in. terms of linear com-

bination of another·basis set of functions is called the method of con-
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figuration interaction. · The method of obtaining the expansion coeffi-

cients whether a func ti.on is being expanded in terms of { t.. } or { Cl>.} 
1. 1 

is exactly the same viz that of diagonalizing th,e Hamiltonian matrix. 

An example of obtaining symmetry adapted function from Q.eterminantal. 

functions may be described here. 2 Determinanal function~ for p config-

uration .are given by Slater (5) as 

with~ = 0 and MS = O. Symmetry adapted wavefunctions of .symmetry 

3P, lD., 1 S can be formed using a linear combinations of the following 

determinants with. ~ = 0 and MS = 0 

op c:p = ~ c~, + 42) 

: i (A1 - 42 +.2L)..3) 
../6 

4'1s = _l... ( "'' - Aa- A~) 
.J3 

These functions are in no way eigenfunctions of two particle Hamiltonian 

but are exact eigenfunctions of symmetry operators. Determinants.as 

such have no symmetry property, but a linear combination can give a 

function which has a given symmetry. The coefficeints in front of the 

linear combinations are obta.inable from group theory and symmetry 

properties or by using a projector operator to. get a symmetric state. 

Expansion of eigenfunction in terms of {¢i} and the advantage, will be 

discussed now. To begin with, we write the Hamiltonian matrix of tlie 

problem in ¢ basis. H .. is a matrix element of the H,amiltonian .matrix 
1.J 

between symmetry. adapted states <l>i and Cj) j ~ The Hamiltonian ,matrix will · 



now look like 

H -,....., 

<<!ilHlct>) 
I 
I 
I 
I 
I 
I 
I 

The Ham;f.ltonian consists of one and.two particles operators and f?s are 
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synnnetry adapted functions; therefore, an element Hij of the Hamiltonian 

matrix vanishes if any of the symmetry indicating quantum numbers (L, S, 

Mt' M8) differ in ¢Ii and ~j . 

e.3 
:0 I l: .1-----IJ,15 j j = 1----- lj:5 :s 

, t,j =- i----------n15 

This means formation of Hamiltonian matrix in a ,symmetry adapted basis 

gives a number of off diagonal terms as.zero to begin with. That is to 

say :aamiltonian mat.rix is obtained in a block diagonal form. It is much 

easier to diagonalize a matrix which is in blo.ck diagonal form than one 

which has all the off diagonal elements nan zero. In·the symmetry 

adapted basis it will look like 



27 

That is a number of off diagonal elements will be zero to begin with. 

Therefore, obviously it is advantageous to work in symmetry adapted uri-

perturbed functio~s as basis functions. Once agreed on this, let us 

see how to obti;lin the CI coefficiemts in the expans·ion of. iµ in terms of 

q;. 
(~) 

We had 1jJ = i~l Cf i in (~) dimensional spaGe~ 

energy can be written down as 

E = 

= 

= 

( '4'1 HI 'ljJ) 
("fl!\¥) 

(f C~cj)dHlfCj43) 
zfCtcpl \fCJ4J) 

* ff Ct.Cj <~IHIQj:) 

t _f QC_; (4f_l4j) 

cps form an orthonormal basis function. 

:. E = 

Expectation.value of 
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* * E~ C~C·6u = ~CtC·i-1~ •• ~'-' •• :.1 
t.j l.j 

. . 
or transf;ering the terms on one side we get 

or 

* F f Ct ( 5{:; E - H0) Cj = 0 

* note her~ that;. Ci are arbitrary coefficiepts. Fo?C a fixed value of i 

we get 

* This gives a .. set of Eqns in which Ci . or C j could be used as a variational 

parameter to minimize energy. * Considering c1 as the variational para~ 

meter dif ferent:Late each Eqt1 of the set by correspondi"Q.g c{ we get 

K K This is a set of (N) homogeneous·equations. The (N) sets of Cj's and 

E's a+e·to be determined simultaneously. Written out explicitly they 

have the form 

( E- H11)C1 t H12C.2 + HisC~+------ ---+ H tt•;p C(~) = O 

Hat C1 +(E-l-l2~)C.2+------ -----+Haq~) C(~) = o 

::. 0 

:0 

I I ~o 

H<~>1C1 + \-\~)2..C..2.+---------+(e-H<~>( ~>)C(~)= o 

This set of Eqn. ha..s a solution C. = O, j = ·1,~--(~) which is. trivial. 
J 

Neglecting that, these also have a .solut.ion .when _determinant of coeffi-



cients 'Of .. Cs equals zero. In othe:r words whe~ detlj aij E - Hij I = 0 

i = 1, 2 • • • More explicitly, 

'(E-1-111) H1.2 His 

H.21 (E-H22) l-l2a 
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= 0 [10] 

H(~H H(~).2. H<~)3------(E-1-1(~/(~>) 

In this determinant everything is known except E. Solving the equatiol). 

(known as secular equation) we come out with (~) solutions as the deter­

minant on expansion, will give a polynomial of the_(~)th degree in E 

therefore.has·(~) roots! 
e 

Label them as E0 , E1 , E2 , ••• ' E in as-
(~) -1 

cending order Q~ l!lagnitude! The lowest energy E is an, upperbound to 
0 

lowest energy obtained from an infinite CI expansion for the wavefunc-

tion which would have been a"Q. exact wavefurlc;.tion. Substitute the 

lowest energy viz E in.the (~) set of Equations [10], we are left with 
0 

(~) equations and (~) unlmowns.. Solve these equations. simultaneously 

to get Cjs the CI expansioncoeffic;i.ents. Associate them with the cor-

respond_ing <P to get tjJ. This was the method of expansion of approximate 

eigenfunction of Hamiltonian in the ,{q:>i} basis. One could also set up 

the Hamiltonian .. matrix on exactly the Sallle lines as described above, in 

the determinantal bas,is. 

Use of determinantal basis for expansion of approximate eigenfunc-

tionr of Hamiltonian ,of ·appropriate symmetry requires that the. set {Ai} 

be closed in the sense of description of ,Chapter I. If we do not have 

a closed set of determinants.then we·first form aP. approximate eigen-

function of Hamiltonian and project out.the appropriate symmetry us:l,ng 

a projection operator.. !his is the approach used in· this work •. 
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M~T calculations ((l); note 26) gives,detetminants which have one 

and twc:> particle excit~tion from HF sea. These determinants.do not 

necessarily form a closed set• Therefore,. an. approximate eigenfunction. 

is obtained from this non closed set of determinants and then a pro~ 

ject·ion operator is operated on this function to get a symmetric, ap­

proximate ·eigenfunction of Hamiltonian or·a pure· eigenstate. 



CHAPTER IV 

CORRELA,TION EFFECTS IN CLOSED AND OPEN SHELLS 

Closed Shell.System 

A subshell will. be said to be closed if all of the available or-. 

bit:als in it are occupied by electrons. That·is to say if M.orbitals. 

are available in a sub'shell and if it is a P particle problem, then the 

subshell will be closed if P = M. 

A closed· shell. system is comparative],y easy as. far as description 

of correlation function is concerned. This is mainly because,. according 

to'.many elect,ron theor\Y (MET) descriptions (1), only external correla­

tions occur, in a closed shell. Generally speaking one and more parti,­

cles can.be virtually excited from HF S'ea to orbitals outside the HF 

Sea, However~, dominant ·contributions come from pair excitations and 

unli;nked clusters of pair excita.tions. 

This and other details will be .expleiined in.the chapter as we pro,­

ceed.. Therefore, external correlations predominatly consist of virtual 

excitations. of even number. ,of electrons ou.tside HF Sea •. The external 

correlations in closed shells are said to be dyni;i.mical, as they depend 

upon fluctuation potential. 

In ·the last chapter the me.thod of finding an approximate eigen 

function ·Of Hamiltonian. using a configuration .interaction me.thod was 

discussed.. In this chap.tet we will show that ·such a wavefunctipn ci;i.n 

als,o be written in terms of electron correlation functions. The coef-

~1 
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ficients in the expansion' of the correlation functions may be determined 

by comparing the wavefunction with that obtained from CI, or by comparing 

the wavef:unct.ion with the expansion .of the wavefunctiot1 in terms of per-

turbation theory. 

A word regarding HF Sea is in order. It is the minimal set .of 

symmetry orbitals that are necessary to construct a set,of N particle 

basis functions for one or more irreducible representations. of the 

symmetry group of. the Hamiltonian. Minimal set 'refers to the set of · 

minimum orbitals that must be included to. close the irreduc:i,.ble repre-

sentation arising from a particular configuration~ For Be with config-

2 2 uration ls. 2s the minimum orbitals·needed to construct HF Sea are four 

viz (lsa lsS 2sa 2s6). One could include other orbitals in this, but. 

they are not·needed. 

Consider another example; that.of a carbon atom in the ground state 

2 2 2 configuration ls 2.s 2p • One needs. a complete set .of 6 particle, basis 
i: 

1 functions constructed from the set of orbitals (lsa, lsS, 2sa, 2s6, 

2p_a, 2p_S, 2p0 a, 2p 0 S, 2p+a' 2p+S). 

Therefore, a set of the 10 orbitals given above forms HF sea for C 

atom. Consider the ground state of the Be atom for .a closed shell. 

1 In the above and the discussion to follow we put the orbital labels· 

in one to one correspondence with integers. 

1 - lsa 6 - 2p_S 

7 - 2p a 
0 

2 - lsS 

3 - 2sa 8 - 2p 6 
0 

4 - 2s6 9 - 2p a + 

5 - 2p_a 10 - 2p+S 



33 

2 2 Ground.sta.te configuration can be written as ls 2s with ·the term symbol 

1s. The HF determinant is 

.A1234 

1 An exact wavefunction of S symmetry for the ground state of Be atom in· 

terms of CI would be 

is 
l"f = C:l?o +Ci <P1 +c.a c:p,2. + - - - ------ [l] 

~o is the HF function and ~l' ~ 2 , ~ 3 , '1> 4 , etc., are the symmetry adapted 

f ' 1 d unctions whicl); have S symmetry but·arise from ifferertt configurations 

of four electrons. The different configurations come from one, two, 

three, etc., par,ticles' excitations from HF sea to orbitals outsfde th.e 

sea. Symmetry adapted functions from all such ce>nfigurations will have 

to be.cons;J.dered in expansion [l]. The tl>'s in Equation [l] are.linea,r 

combin~tions of Slater determina11ts• We can collect al.l the determinants 

in the expansion [l] which come from one,parUcle.excitation, two parti-

cle excitation, three particle excitation, etc., and correspondingly 

label the coefficients. · Then, the CI expansion [l] can be written as 

sum over infinite 

15 

virtual orbitals, i•e., · 

'lp ,D.o + C1'°'1 + C~ /::.z + ---------

or 

Other terms of this kind 

Other·terms of this kind 

+ ~ Ct234 A4 ( cp-\. <1) <-P.t<2 ) c.,c;c~)~<~> )+----(1) 
i=-5 

+ ~ Cy34 A4- (cf[ (1) <-E C2) 'Pe'3) 'P4 (4 > )-+ ----< ~) 
5~~<j 

+ 1: c~jk 4 A4 (~(t)Clj<:l)Cfk<3)cp4<4))+·c1:> 
s~L<J < k. 

Other terms of this kinq + i c~ ke..A..,. ( cfi (i)~ (.2) ~(?>)'ft ( 4-)) [2] 

5~t~ 
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There. are 4 infinite. sums. of the kind of the second term, (~) infinite 

sums of the 1kind of .the th.ird tetm. (~) of that of the fourth term· and 

N NI 
so on in the expansion [2]. Here Nc = (n) = n!·(N~n) ! •A4 antisymmet.,.. 

n 
rizes the product. of four orbitals in the paranthesis. Henceforth., A4 

will be called simply an antisymmetrizer ~ In ·terms of correlation . 

corrections~ tne approximate wavefut;lction can be written as. (4)(1): 

(~let>= .1 [3] 

For a four particle system,X will be given by: 

[4] 

Where di}, {i) ~j}, {fl ~j k} are one, two, three elect ton correlation parts 

/(, 
and {u1234} is the correlation part in which all of the four particles· 

are virtually excited. More.explicitly, the correlation func,tions appear 

as follows: 

[5] 

This is a symbolic notation .indicating that the ith orbital (i = 1,2,3,4) 

is virtually excited to orbitals outside the HF sea and is replaced by 
A A 

fi(?Ci), a one particle function. As -an example, look at {f1} and {f2} 

= ~114 {r<.P. (.2) c.p., <3> CP.. <4)) r ('Xi) 1 = 
~ll \ 1'5/0 aso< as~ 11-0o< J [6] 

[7] 
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and so ori~ Thus, {~i} are.four particle.functions, where as fi are one 

particle functions. 'l'lie two particle correlation function Jooks like: 

[8] 

'l'his is again in,terms of a very symbolic notation, meaning that·two 

orbitals, i and j, are missing, Symbolically denoted by division by ii 

and Uij, a two particle funct.i_on, replaces them; so that the quantity. 

inside the large rectangular bracket is again a function of 4 particles.· 

. "' As an example look; at {U 12}: 

[9] 

Thus, electron correlation discussion is one way of interpreting the CI 

terms. The correlat;ion .functions. can. be related to the coefficients in. 

CI expansion as foL].ows. Let us,:. for example, express a one particle 

corr.elation function .in terms of CH . Comparing [6] to the second term 

of expansion [2] we get 

co 

00 

= r_ C.t-2.34 A4 (~(i)%_(2>cp3<.5)'P4(4)) 
l= 5 [10]. 

[11] 

The quanti~y i~S Ci234 cpi(l) is expression for one particle.function f 1 , 

To express two electron correlation functions in terms of CI, equate 

the,third term of [2] to [8] so that 
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00 

:: 2=_ c~j* A4 [ c.p~(1)'4Jc;z)c.p~(3)<.f4(4)] 
5~ t<.j 

Let us expand the two particle function u12 appearing in.[9] in terms of 

virtual orbitals: 

U12 (x1.~) ~ A2~ t. dij~4 <ft (1l 43cJ [13] 
L:>~A.<;1 J 

and substitute this in Eqn, [9] 

... 1 u:~ 1 = ~2!4 1A2 c22 .dij~4-q/i.(1)~(2))cp3(~)<R.C-t~ [14] 
1=1 L 5~L<.j J 

where 

()p 

A+=-k2:C-1)P 
-v 4-l p 

[15] 

[16] 

a = number of permutation 
p i - 6"'p 

A4 A2 = :2: C-1) P (1- P12) 
J4!2! p [17'] 

P are all possible four particle permutations and P12 is particle 1 and 
a 

2 permqtation. E(-1) P P is the sum of the identity plus 2, 3 and 4 
p 

particle permutation. The group of .elements A2 are contained in the 

group of elements A4• When multiplied, we get the eleme.nts of group A4 • 

In·general~ 
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n~N [18] 

•• 

Comparing [12] and [19] we get. 

= [20] 

Therefore, writing a wavefunction iQ. terms of MET functions is equiva"".' 

lent to summing CI. expansion, and the coefficients of expansion ,of MET 

functions· are CI expansi.on coefficients. A similar cas~ can be discussed 

when three or more excitations. are considered. 

The importance.of the pair correlat:ion becomes· cl.ear when one tries 

to obtain the expansion,coeffic~en~s in·terms of first ·order perturbation 

theory. From the first order non-degenerate pertµrbation theory we know 

(10) t:hat: 

[21] 

where V is perturbation part·of t'he four particle Hamiltonian and m = 0 

for ground state. ·The prime denotes that k = m term is to be.omitted 

in the series expansion of ~ in terms of the linear combination of un-

perturbed wavefunction. Thus; now one to one correspondence can be made 

between first order CI co~fficients and the first order perturbation 

theory coefficients. A general expansion coefficient in [21} may look 

like: 

[22] 
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where e:'s.are eigenvalues of one electron Hamiltonian hi 

Therefore, e:'s are the ·orbital, energies. (1) 
Superscript 1 on c. 1 . 2 .3 .4 in­

J J J J 

dicates that it is a first order perturbation theory coefficient~ as 

[21] is ex;pansicm pf wavefunction in accordance with first order 'perttir"".' 

bation theory. In fact, if one wants to be rigorous at this stage, h'e 

will ·note that a coeffi.cient in CI ex:pansion can be expended as: 

(1) (~) (3) 

C···· +C····+C + J "'I ., ., "I ... ., " ••• - -------
.IJ:IJ,3 4 <It ~:a. 3 'It Jj.:l-.'J3 :l.+ 

[23] 

where subscripts 1, ·2, 3, ·etc. on C indicate that they are first, second, 

etc., order perturbation theory cont;ributions·to C. Simila]:\ly, the 

correlation functions will have sums coming from different order correc-

tions, that.is to say 

(1) (2.) (.;)) = 7... + 'X + '"X- + ________ .;.. [24] 

(i) 4 f (i) ~1) 
where 'A = .L l t} + ! t LJ(.j ]+------

vi l'L<j~4-
and similarly x(2), x<3> ••• etc. 

Let us look at the general matrix; element [22] when one particle 

ex:c:(.taticms take .place from HF sea. In the first order· perturbation 

theory, for one particle excitation, the.CI coefficient;, for ex:ample is 

(1) 

Cj11s,:,2.sr.<:C6f0 
<-6Jtt¥.2Sl<RS,6l vi ~ 12.:i4 > 

(E'j1 - E1) 

where <P1234 is the function denoting the HF determinant. for Be viz 

[25] 

A4 (ls~ lsS 2sa 2sS). ji denotes the orbital to which an.electron has 

been virtually ex:cited oq,tSide the HF sea from lsa. · The matrix; elemen.ts 

on theJ.~.·H·S of [25] have determinants which differ from each other in 
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one orbital. One particle excitation orbitals try to correct 

the occupied orbital.s ~ but ·according to Brillouin's. theorem if we ha.ve 

HF orbitals (which is the case here) these ·matrix .elements.vanish. 

Next, look at ·the general matrix element [22] when three or more 

particle excitations take place from HF sea. In this case .the matrix 

elements [22] have determinc!!.nts which differ from each other in three. 

or more orbitals. Note here that V is made up of one and two particle 

operators and the orb.itals we are working with are orthonormal. 

Orthonormality of the orbitals implies that a matrix element; in which . 

. .two determi.nants differ by three or more orbitals on the two sides of 

V, vanishes. Thus in the first order perturbation theory for the elec­

tron correlation corrections, we are left'with pair cort:elation terms 

only. 

[26] 

totally there will be (~) such terms in first order X(l) series~ 

In ·this met.hod. of· series expansion, second and higher order per-. 

tutbation theory corrections·are not included. As we go to higher 

order pertt.Jrbation ,theory one and.· three particle correlation .corrections 

are small. Sinanoglu. (4) has shown. that main contribuUon to four 

particle correlation correction comes.from unlinked products .of two 

particle correlation. At this point unlinked·clusters may be described 

briefly. 

Unlinked Clusters 

After the above treatment a natu.ral question .arises is that• do we 

necessarily have to cons-ider more than two particles virtually excited 
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in the original determinant? The answer to, this is yes and so one 

describes many particle collision in terms of Unlinked Clusters (4). 

A four particle correlation function may. be -l0oked upon, as ·.four· particle 

collision •. This .includes all four particles ,colliding at the same· time, 

two binary.collision, three at a time, etc~ That is to say actual 

mat1.y electron collisions. are linked clusters and products .of independent 

but simultaneous.collisions~ These in.terms, can be looked upon pre .... 

dominantly as. Unlinked Clusters of pair collisions .• · Pair ·collisions are· 

the most important ones in correlation tqeory, as the fluctuation po,.. 

tential is a two particle function which causes electron correlation, 

Two, three, four particle collisions·can be represented as sum of 

one, two, three and four particle collisions taking place.at a time. 

In Sinano~lu's (4) notations let small circles with n0 lirtes 

I\ / 
attached to them, represent £i's, the one electton function. The linked 

.A 
clusters Will be denoted by U's by straight l~nes drawn between the 

linked particle.a. 

I\' U. . = two electr0n correlation function· 
1J 

0 
·<·· 0 + 

= 3 particle correlation functic:m 

- Ag_ ~~ {. fR + ~ U;jk + Ud~ ~ + Uij. f"~ 
- " <., J r.::i ~ ./21 

~2l . . 

0 0 

+ 
0 0 

I\' and similarly Uijkl will have the following diagram: 

+ 
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0 0 . 0--0 

0 0 

This is the simplest.possible-treatment. of many particle excitation 

and will not be dealt with in,any fu.rther detail. The .most important 

point is, that ,many particle excitatio.n can be broken. down into products 

of unlin~ed clusters of two particle excitation terms and the treatment 

can be given on the basis of .closed shell theory. 

Open ·Shell System. 

Open shell 'has more corr.elations. coming because of pres,ence. of 

electr.ons . outside the clo.sed shell. The correla1;ions that ai;-ise in. 

open .. shell may. be .classified as· 

1) Internal Correlation 

2) Semi-internal Correlation , + .Non dynamical = XF 

3) One'pai;ticle all extern;ll correlations 

4) .A..11 external (two and.. more part.ich.s) .+ d.ynamical • Xu 

The non-dynamical correlations are characteristic of open.shells only 

while dynamical.occur in both open and closed shells (1)(3). The non-

dynamical correlation corrections can be expanded in terms of a finite 

CI expans:ic;m. 

These .. are· described by· (a) ~avefunctions which have two orbitals1 

excited to pravi0usly unoccupied ,orbitals in·the HF sea~ Let a circle ,, 

denote a HF sea. The shaded half-circle den,ote the orbitals occupied 

1 
'fwo particle excitation are the most important~ 
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in the sea •. 

Interna.I All ext. 

l (Q,) (d) 

Non D~p1Qmiccd ~namica..I 

Picture (a) denotes virtual excitation of. two crrbit~ls within the sea. 

Such .te:r~ give rise to internal correlation. (b) Excitatfons. involving 

one part;icle being expelled outside the sea and another being vir.tually 

excited to. an' orb.itai previously uqoccupie~ in tne sea gives rise ·to 

semi-internal .~orrelation. This· is shown in pict:ure. (b). (c) When ".one 

particle is exci.ted to orl;>ita],s ·outside HF sea; this gives. terms which 

give rise ta polarization effect, as shown in picture (c) and finally 

(d) Two pa+ticle excitation .of orbital,s ·to orbitals. outside HF sea. gives 

tei;ms which cause all external correlations. A wavefunction for.an 

open she.11 c•fl 'be written as 

[28]. 

t..here x"" xi t 1 + x i 1 + x 1 . i + x ·11 . . 1[29] n erna sem ..:..interna · po arizat on a·· extern.a ·· 

How different correlation terms arise from scra,mbling of orbitals is 

described below. · For this discussion consider carbon atom with its 

2 2 2 ground'state configuration ls·, 2s , 2p ~ There are 6 electtons·in the 

atom and 10 orbitals ,avail.able_ for th.em. The .HF sea com~ists. of tl;l.e 

orbitals· [lsa, lsf3, 2sa, 2sf3, 2p_a, 2p;..f3, 2p0 a, 2p0 f3, 2p+a; 2p+f3]. Exact 



wavefunction for carbon .of a given symmetry.can be written as 

Whe.re · <l>s are.· symmetry .adapted unperturbed· wavefUl').cti9ns. 
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[30] 

~ is HF 
0 

part·of .the entire wavefunction. Equation [30] can be written in.terms 

of a model operator (11) 

'\jJ = .D. q,o 
[31] 

a 
[32] with. cf>o = E e A k:o:l k k 

;·"'.':!'--;w 

10 where a is the.number of -determinants needed from the set of ( 6) de-

terminants fo~form RHF state. The.sum.is'over (a)· determinats for 
"~·· -·':!'" ... 

carbon· atom. 

[33] 

The model operator ,operates on linear combinati.on of determinants to 

give another series of determinant.s. The problem is that Q iS not 

uniquely defined by Equation [3.1], there could be several other·operator 

which would.give 1jJ from cf> •. Consider one.such operator on a particular 
s 

determinant 

_fl '6.k .: 2:- dt,tz. .... Q..N ,6._1,.,t., ••• f..t-1 
ll.,<Q.,_C:N [34] 

the result is a linear combination of determinants with scrambled orbi~ 

tals. In the result:ing determinants.some orbitals.will be in,the sea 

which were unoccupied in Ak and some.will .not be in the sea~ This is 

where the classification of correlation terms comes in. 

Suppose.Q operates on one of"the carbon determinants to give the' 

following linear combinat;ion . 
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f (- - - - )+------ [35] 

In Equation [35] the determinant with coefficient a .is an example of 

semi-internal.correlation. 2sa and 2sS in the ori_ginal determinant are 

excited to orbitals 2p_S and 3p+a• 2p_S is in.the HF sea but 3p+a is 

outside the sea• Therefore.it'is a semi-internal·correlati:on term. 

The determinant .with coefficient b is an .. example of all external. corre-

lation .terms~ Here 2sa,, 2sS in the original determinant. go to 4sa, 5sS 

both. are outside the. sea. The determinant with coefficiet;Lt c is an 

example of one particle all external correlation term. 2sa from the 

original determinant goes to 3sa, an orbital outside sea. Electrons in 

other orbitaJis are not altered, Fina,l,ly in the d,etel;'minant with coeffi-

cient d two particles are in the,orbitals 2p+a' and 2p+S one in each. 

These come from 2sa, 2sS being excit~d in.the original detern;iinants to 

orbitals inside the HF sea. This is an.example of internal correlatibns. 
: J • 

Present'work neglects the dynamical correlations~ The lion-dynamical 

correlations can be expressed in terms of a finite CI~ this is precisely 

done here~ Incl'u~ion .of non-dynamical terms is important in calculation . 

of transition ,probabilities. 



QHAPTER V 

PROJECTOR OPERATOR TECHNIQUE 

Any operator P with the following properties 

i) P = Pt (Hermitian Conj_ugate) 

ii) P2 = P (Idempotent) 

is a proj~ctor ~perator (12). 

This m~ans if ·pis eigenvalue of P with [u> as its·eigenvector, 

then· 

(P2 - P) lu> = (p2 - p) lu> 

= 0 frem [lb] 

Since [ u:> :{: o. 2 
0 p .... p = 

or p(p - 1) = 0 

p = 0 or p = 1 

[la] 

[lb] 

[2] 

[3] 

Therefore P has eigenvalues·O or 1. Eigenvalue 0 corresponds to an 

eigenvector which is completely annihilated when operated on by P and 

eigenvalue l.cor:re.sponds to an eigenvector which is left as it was 

originally when operated on.by P. The vector resulting fro.m the action 

of projector operator on a give.n vector lies in ·a subspace of Hibert 

Space. This subspace is characterized by the projection operator. Geo­

metrically speaking this·is.orthogonal projection of an arbit;:rary vector 

onto a·. subspace. 

45 
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A ·projection opera.tor -on a particular symmetric su'bspace, when it 

opetates on a function of ;no symmetry, give·s. out that part of the func~ 

tiori. which has. definite symmetry or annihilates the function completely 

if ;Lt did not have the symmetry we are looking for. By using projector· 

opera.tor technique, we can now obtain.pure state functions which are 

useful.,in calculating transition probabilities. 

Construc;:tion of projection operator is based:on ·a simple idea that 

only that part. of the functicm be projected out :which has .the required 

symmetry and the rest of it be ai;i.n:lhilated. For example;' angular-

·. . 2 
~omentum projection oper.ator, onto the subspace of eigenvectors of .. t 

with the eigenvalue .L(L + 1) may be constructed as follows:, Consider a 

--2 wavefunction 1jl which is·an eigenfunction of L so that. 

[4] 

.\~ (f.2 - L(L + 1)] ljlL •,O [5] 

The operator in the square bracket annihila.te·s a wavefunction with or-

bital angular momentum quantµm number L. When a wavef1,Jliction is·a linear 

combinat:t.on . of·· several terms of . various symmetries, we . have to consider 

several factors of· the form [5] so that all tenu; with, different L . 

valu~s except. one with the requi;-ed L can be. aJinihilated cme after 

an()ther ·as t~ fa.ctors in the op.erator, operate on different ·parts of 

func t.ions ~ 

In ~ther wor4s; if 

and we desire to produce.a wavefunctio11 wi1;1J. quantum.number Li we·have· 
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to. opera.te ·on the wavefuriction .with an, operator 

i.e,, product·of factors conta;ning all Ljs except Lj =Li. The factor 

in the denominator.makes th"e operator ic;lempotent. The result of ·the 

"2 operation giyes either zero or a~ eigenfunction of L with eigenvalue 

.. 

"' On the same lines, a projector operator for .. L with an eigenvalue 
z 

[L - Mt ] z j 

which is again.a product.of factors. 

[6] 

...2 ... 
LiSwdi'l;l hai;.defined the projector operators for L and L as follows z 

(2). 

[7] 

[Q] 

Equa~ion [7] ca:n also be.written a$ 

"2 "2 'IT [ L - K(K + 1) ] 
OK (L ) = R,r/•K l - (R. - K) (R. + K + 1) [9] 

The. values of .· R. are . de t~rmined ·by . using the. addition th,eorem of angula-r , 

momentum. Thus R. goes fro'!ll R. =~to R. = Kmax(determined from addition 
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theorem). Let I<.max - ~ = n and in Eqn. [7] replace .Q. 'by t + ~' then 

=· 

R.#K-Mt 
'IT 

.Q.=o,n 

"2 
L - (.Q. + ~)(.Q. + ~ + 1) 

[10] 
K(K + 1) - (t + ~) (R. + ~ + 1) 

As suggested by Lowdin Eqn. [10] is most convenieQ.t form'of angular mo-

mentum project,ion ·operator for pra~tical purposes and a computer program 

has been wri.tten for tl\e same. . On exactly the. same lines, one could 

treat 82 and S operators. This·ia mainly because, as we know; angular z 

momentum and spin momentum operators have similar properties. The same 

computer program can project out wavefunctions which are eigenfunctions 

"2 " "2 " of .L and L · as well as S and S • 
z z 

A brief description of program written for Lowdin's projector 

operator is in order~ The program consists of four subroutines'apart 

f:r;-om main program. A given wavefunction is fed in as a linear combina..,. 

tion of determinants with their proper -·coefficients• 

In writing the· algorithm for the computer code we have.introduced 

two new-definitions of "subshells". In the.orbital angular momentum 

projection, spin orbitals having tl;le sal"(le n, .Q. and ms. are: classified .in 

the same ''subshell''. While. in the spin prqject,ion,. spin orbitals having 

the same n, .Q. and m.Q. are classified in the same "subshell". Clearly 

what we term a "subshell" and the "occupation ,of a subshell" depends on 

whieh project,ion, spin or orbital angular momentum we are conside:r:ing •. 

WitQ.. the ,unorthod9:x ·definition of· subshell we also introduce a new 

designation o:f the.word "configuration".based ort 01,1r redefinition of 

subshells. For example, consider a set of orbitals lsa lsS 2sa 2sS 2p 0 a 

2p 0 S 2p..,.a 2p_S 2p+a 2p+S· Form the following tl;lree determinants.from. 

these orbitals. 
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1: (lsa 2sa 2p a 2p a 
- 0 

2p+a.) 

2: (lsa 2sa 2p a 2p.S 
·- 0 

2p.a.)' 
o· 

3: . (+sa 2sa Zp_a 2p0 a 2p+a.) 

Theus~l te'tlll·corifiguration as available in·literature.is·specified by 

the occupation of .sub shells i denoted by the quantum. numbers n1 ~ R. i; · 

that·is.ta·say determinant NO 1, NO 2 and NO 3 belong to same cotifigura:-

3 
tion viz · 1s 2s 2p • The- work under.taken separates the sub shells with 

respect ·to mR; and m9. In classifying these determinants f<~r spin pro­

jection we have 

a: ((ls0 )+(2s0 )f(2p_)+(2p0 )+(2p+)l). 

1 i 1 2 b: ((ls ) (2s ) . (2p ) ' (2p ) ) 
0 . 0 - 0 . 

1 1. i 1 1 
c: ((ls0 ) (2s0 ) (2p_) (2p0 ) (2p+) ) 

The determinants a and c·belong to the same configuration. 

On the other ha:nd., in classifying th.ese determinants· for orbital 

.;lngular. momentum projection~ we hi'i,ve · 

x: ((lsa.) 1 (2sS) 1 (2pa) 2 (2pS) 1) 

y: .((lsa) 1 (2sa) 1 (2pa.) 2 (2p~) 1 ) 

z: ( (lsa) 1 (2sa)\2pa) 2(2pS) 1) 

whereby cla.ssifying these determinant.s ·for orbital angular momentum 

projection we find determinant·NO x and NO y belong to the same con-

f::l.guration.. In a givel_l wavefunction, ·determinant.a belong to different 

CCi?ttfig'\}raUoru:~. ··A subroutine in the projector operator program checks 

t~e co:nfigurations the~e determinants belong to. That is to say con-
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figuration ,of each determinant is t~sted and a config.u~ation number ·.is 

assign~d to them• 

First thing th.at proj·ection operator does is to reorder the orbi­

tals in a determina~t\ and separate the open subshells to the left hand .. 

side and closed $Ubshell to the right htmd s:hde. A proper phasefactor 

is put 1.n front of each d~terminartt depending .upon how the reshuffling 

of orbitals takes.place. The projection operator then operates on each 

of the determinants of .a given configuration in order. Several other 

determinants are produced during this process and all the .. determinants 

which are alike have their coefficients added up. Determinants which 

have coefficients z~ro or whos,e coefficients add to zero' are eliminated 

during the proc.ess of projection. The final projected determinants· 

and. their respect,ive coefficients. are then printEld out in the main pro.­

gram; next to each other~ Successive configurations ar.e treated one. 

after another •. The· linear combination then gives a symmetry adapted 

wavefunction which has. L and ~ values; S a~d Ms values as were speci~ 

fied or required. 

This is projection operator meth,od of obtaining a pure state or .a 

symmetrized.wavefun:ction. 



CHAPTER VI· 

ELECTRIC DIPOLE TRANSITIONS PROBABILITY.AND 

MULTIPLET OSCILLATOR STRENGTHS 

A. formula for electri,c dipole transition probab:f,.lit:y can be derived 

based on the semi-classical tre~tment of interaction o~ radiation with 

ma~tar. Several approximations will be used in the process of deriva~ 

t:l:on of formula. It. may be.said here that this·formulacan be satis.-

factorily used. for finding effect of radiation,field on the particles,. 

i.e., so called absqrpt~on and inQ.uced emission, but cannot be used for 

spontaneous proces.ses. 

Ham:Utonian for a system particles of mass m and charge e in an 

elec~romagneUc field described by vector and scalar potentials is given 

by Schiff (13) .as 

++ 
where A.(ri,t) is vector potential of eleetromagnetic field e~aluated at· 

+ 
ri at time t. <P<ri,t) is scalar potential at the position of ith parti-

cie .at time t. Hamiltonian as expressed by Eqn •. [l] is sum of two parts 

and can be written as. 

H = H + H' 
0 
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where 

Ho= ~ -1?' ~f + L e~ + L: ze2 

. i 2rn . l"i:; "t L= L<j ti L 
[2] 

and H' is sum.of rest of ,the te,rms in Eqn. [l]. A close look at H and 
0 

H.' will show tha~ H, iE;J time-ill dependent Electrostati.c Hamiltonian of . 0 . . ' . . 

I . tl:ie isolated atom,· aQ.d H is intE7raction ,of partic~es with time dependent . 

Electrom~gnetic field. Therefore the entire problem can be expressed in 

terms of time dependent Schrodinger Equation 

[3] 

and then to calculate transitions. probabilities between atomiC states 

(bound) of the particle. There;ore.Hamiltonian describes a system com-

pletelr at.different times; that is to say it unf9lds the system with 

respect tq time. Here we may also sp.eak of the time develOpment of the 

state in.Schrodinger and interaction picuures. Interaction picture.is· 

defined as follc;>ws (13): 

\o<1(1:.)) = 

where Hamiltonian in. two pictures is vr±tten as 

= 
I 

Ho1 + Hr 

[4] 

[5] 

The two pictures are equivalent if there is no perturbation part in the 

~miltonici.n, Assume a Unitary operator u1 (t, t~) such that it takes a 

state of system described in.the interaction picture at time t = t to a 
0 

state at time t = t. 
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[6] 

To o?tain an explicit expression fc;>r u1 (t~t0 ), the Uni.tary operator con­

side.r 'first the equation of motion of·· I a 1 (t)> of [4]. We have 

~ -1. Host J 
_ :h, d lo<l (t)) = -.:0.. ~ e "h I O<s(t)) 

L dt t.. dt 
[7] 

l Ho5t i Ho5 t 
:.... - Hose "R lo<s<.t)) -$ e ~ _dd IO<'s(-i:)) 

L. t 

L Ho5 t · - LH 1') 1) Ost 
!=.- Ho5 e \°"s(*)) + e H5 \o<s<.t)) 

.i Ho5 t l Ho5 t 
i) n I 

:::::- Ho5 e \o<s<t))+ e (Ho5+Hs)lo<s(-l)) 

i/h H0 t. 
Note.here.that e- s and H0 commute and therefore 

s· 

l Host -:k- Hes t .1 Hos -t 
"f\ r \ "f\ ,. ·'--t !lc(1 tt.)) = _ H05 e \ o< s(t)) +Hes e \Ol'sCt)) + e Hs lo<s<.t)_.... 

The· first two terms, cancel out and thus . 
, lHos1 . 

1' dtor1ttD _ en Hs lo<s(t)> 
~ l dt 
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Equation of ,motion for [a.1 (t)> is 

[8] 

This is the equation ,of ·motion for any state functi.on 11jJ 1 ~t)> given by 

Equation [6]. In in,teractiQn picturEl- this will give 

[9] ' 

or 

[10] 

This must ,be true for all 11jJ1 (t0 )>. In genei;-al, as .an operator equation 

this.can be written as 

[11] 

this· can be solved formally. to give t 
' (' I I I 

-~ jdt. HI(t) 
U1 CtJto) = e to [12] 

with 

This describes ,.u1 in the interaction picture for Equation [6]. u1 given 

by Equation [12] is a series expansion of exponential operator viz 

t 
_1_J'd.tH~(-I/) t / I 

en to = i _ _i S dt H:r (-t) + ~-\i 0her ol"'Ck,r ~€.rrns [l3] 

n to 

Therefore the state l¢1 (t)> is now completely specified for all 

times. 

11\pCt)) = U(t,to) \'lf(to)) [14] 
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and· 11"1 (t)> can be expanded in .terms of complete set of states. Inter­

pretation of coefficients in the expansion: . I CL (t) 12 is the probability 

that at time ta.state vector will be found in a basis·state L. The 

basis set. is assumed to be complete and orthonormal~. Equation [14] 

givesCL(t) =. <Lll/l(t)> which is a complex number,aµd is amplitude, 

or [15] 

function being founc:l in· st.ate L at time t. when ;i.nitially ~ it was in state 

1jJ ( t ) at time t • 
0 0 

Note that rlcL(t)i 2 = 1 if initial, state was normal­
L .. 

ized. ie 

also 

<~ (t)\ ~(t)) :. (~(to) ut (ti to) lu(t)to) 'Lj.i(to)) 

;. ('41 (to) \ri..,.( to)) 

• 1 
cmd (4t.1 '1¥11:) = 81..1( 

(~I \jl> = < t- Ct. (-1:) 'lfL. I f c'< (-c) '1-K > 
::. L. c: Ck < 14',_I \f-1<) 

LK 

::. 2 c~ ck ~LK 
LK 

= :E;' I CLlt) 12 
L 

= i 
All.this means is that the system.has got to .be in.some state at all the 

times• 

Consider two atomic, states ·a and b which are eigen: states of H 
0 

such that ll0 la> = Eala>: H0 ib> =·~lb>. Let us calculate the 

tra:r;isit:l.on probability of going from atomic state a at time t • t to 
2.0 

an atomic·state bat time t = t. That is to calculate IC1:i\~to)I . 
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Look at the coefficient q~.:~to) = <aJ u1(t,t0 ) lb> in the limit as [16] 

t +co and t -+-co. This is done in.accordance with Heisenberg's uncer­o 

tainty relation th~t energy transferred during the transition and the 

time· of transition cq.nnot be determined. precisely simultaneously. There-

fore one has to l,qok in the time . duration _of - co to ... , assUJlling energy of 

transitions are preciaely_known. To the first .order we retain only 

first two terms in _the expansion of· 

t 

... 

-lSdt'H~(-{) 
u l ( t I to) ;. e ""' tO 

C ( t,tc) = 
b~~ 

1 ..1. 
. - °t) 

t I I I S dt H1 (.t) 
t.o 

The first te~m is ob• The int~graQd in 
.a I 'l- ti 

[17] 

second term is. ( Q,I \-l~ (t) \ b) 
/ I .!: l-lo5t / - "fl Hos 

where Hi (t:) = e"'"' Hs e ; therefore writing it .in 

interaction picture in terms of Schrodinger operator gives· 

l Hos{ I I _j,_ 1-\o.5 t/ 
(a.,IH~(t)lb) = <o.le""" ~s(t) e1' lb) [18] 

la> and jb> are at;omic states of the unperturbed part of the Hamil-

tonian and therefore; 
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[19] 

Next, we have to plug in H' from Equation [l] with proper approximations. 

We have 

( -+' ..h -+ The vector and scalar potential A r, t) and T (r, t) can be gauge trans-

formed so that .the new potentials .satisfy the Lorentz conditiqn. In 

completely empty space (charge.and current 'densit:l.eS!. equal, to zero) it. 

- -+ is possible to choose the ·gaµge transf.ormation. (13} such 1;hat .'i/ •A = 0 an4 

ct> = O. Under these cond.itions Eqtiation [20] becomes 

I 

H 'l\' 
N 

=~ /_ 
L=-i 

- ) tJ 2 2 (A· 'YL \P + I ~ A 'llJ 
. i 2.n1 T L= 

2 
Th t (~)A2 leads t h i 1 i h. ht· t e erm 2m op ys ca processes n w .ic. wo pro ons are 

[21] 

emitted or absorbed during transitions. This term can be omitted in the . 

first order corrections (15)~ when we are considering only one photon 

emission and absorbtion between the states a.and b such that 

E - E = .fiw 
b a 

[22] 

Thus [21] gives 

I 

H~ = 
f\I 

. -1- e 
L LI! m 

[23] 

l.= 1 



This should hold good for any state function and therefore 

I 

H = 
N 
2:. 

L=- 1 

Let us.take a monochromatic, linearly polarized plane wave for the 
+ + ' ' + + 

+ A i(wt-k•r) -i(wt-k•r) ~ vector potential, Le., A = Ae{e + e } where e is 
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[24] 

polari?:ation vector, usually the direction ip which electric field is 

+ A+ , 
aligned. and k, is propagation vector sµch that e • k = 0 Le. , they are 

mutually orthogonal. This then completely specifies the pertur'bed pai;-t 

of the Hamiltonian. 

[26] 

Substituting this back in Equat:ion [17] we get a quantity whose absolute 

square is proportional to transition prpbability. II). Equation [17] con-

sider that state a.is di:t;ferent from state b. Then 

( (t,to) 
b->- CL 

...... 
- Lk.rl ,-._ -. \b-' e e.'VL / 

[27] 

Arranging tb.e constant fac,tors proberly and taking limit of this quan,tity 



On the time dependent part of integration use the property that· 

"° s dt ~ (C>(-)Q )t 

C (o0,-oo) 
b-':> C\ 

2IT -o6 
Thus .. [28] gives 
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[29] 

The o function determines a condition under which transition prc>bal?ility 

is non-vanishing, In Equation [29] either the first o equals zero or 

the second. They cam~ot be non7zero, simultaneously. In other words we 

have either induced emission or absorption. The transition probab.ility 

of, emission equals zero unless . 

(ta, - E_b )- ( °F) 0) 

1-i 
-::. 0 

and the transit.ion probability o~ absorption eqµals zero unless 

0 

These two conditions. show that energy 

absorption is conserved i.e., the difference in 

energy between initial and final 

states equals thc:it due to emission 
em'1ssion 

--'~~---~-Eb or absorption of one photon. Note 

here that of the two terms in the summation in;Equation [29] 

one term need be coneidered at, a·time, For the further.disc4ssion we, 

will consider the process of emission in the dipole approximation and 

the d:tscussio~ for .absorption will be very similar to that. 
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I N -iko~, A - I [ ] Now consider the quantity <a ;i.~l e 1.(e•Vi) b> in Equation 29 , 

Here I a> and jb > are the kets for atomic states a .and b. <a I x1 x2 ., ,xn>, 

••• x , lb> therefore are functions of coordinates. 
n 

When any of the 

electrons is far away from m;icleus, the magnitude of that function is 

very small and contributions .to the matrix element from these regions of 

configuration space are insignificant. The major contribution to the 

matrix element comes from those regions of configuration space where 

wavefunction is large. That is a region of atomic space in which all N 

electrons are with.in the "ra,dius" r of the atom, In this region of 

+ 0 
space r. ~ r « A. where A. = wavelength of iradiation "' 1000 A in UV 1. 

region and r ="radius" of .the atom::: 10-S cm. Thus for large enough 

wavelengths only first term is·to be retained in the series expansion 
++ 

-ik•r + + 
of e = 1 - ik•r + .... which corresponds to electric dipole term. 

Therefore.electric dipole transition probability is proportional to 

I <a li~l @.vijb>j2. 

. . c (c.o,- OCl) -
b+a. -

where A­
e.V'( = 

[30] 

[31] 

While obtaining the transiti.on probability expression, omit the o func-

tion which dete~ines the.conditions under which transition probability 

is non-vanishing. Thus the .atomic transition probability will now be 

given by: 



A 
e. 
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[32] 

The transition probability is directly proportional to A2, i.e., in-

tensity and square of 

11 

I' 

\' 

modulus of the matrix element of velocity (V.) 
1 

~L 
-2 

-1 

0 

1 

0 

i 

operator. Other operators that can 

replace V. are position and acceler-
1 

ation operator and one can get al-

ternate forms of the transition pro-

bability formula (14). A dimension-

less quantity proportional to 

transition probability formula is 

also sometimes defined as oscilla-

tor strength. It is well known that 

each atomic term has a degeneracy of 

(21+l)(es+1). 
1 1 

D + · P transi-

tion is shown in the diagram. 

Multiplet splitting is also shown 

here. When we consider a transition 

from one term to another we have to 
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Sum up all the transitions from each multiplet artd weighted average 

taken over the degeneracy. The weighted average of oscillator strengths 

is called multiplet oscillator strength and explained in Chapter VII. 

Note here that,non-vanishing of the matrix elements in _the expression 

for transition probability defines. the selection .rules for electric. 

dipole allowed transitions • 

.6L :. 1 i 

.6.5 = 0 

D.ML: O, ii 

AM 5 ::. o, ti 

\:oy ...::::11'11... = O , 1'11-~ o i :s .f'ol'"6idden 
) 



CHAPTER VII 

RESULTS AND CONCLUSIONS 

+++ F · energy level diagram with allowed absorption transitions from 

2 2 3 lower states of 2s 2p to upper states of 2s2p are presented in the 

following diagram. 

15 _ _.'-r---+--F-

1 D _ __.__....___,,_ 

3p _ __._-I-_,__ 

15~S~2p< 

--+----....- ~s 
-;..------1n 

The wavelengths of the transitions are listed in Table·I. In the 

energy level.diagram each level consists of (2L + 1)(2S + 1) degenerate 

states. When we speak of transitions from one level to another we take 

into acc.ount. the degeneracy of. each level. In this respect we define 



64 

TABLE I 

DATA ANALYSIS OF ELECTllI:C DIPOLE TRANSITIONS IN 

2 2 2 2 3 THE ARRAY ls 2s 2p + ls 2s2p FOR F+++ 

"' :\~ .. 1 ~ 
0 t eoret1ca 2 2 .2 2 3 :\ in A RHF MET ls 2s 2p -ls 2s2p experimental RHF HF + INT MET HF 

3 3D 678.18 693.404 664~616 664.978 p -
3 3 572.00 582.05 561.63 549.55 p - p 
3 3 420.38 40.9. 33 399.124 411.527 p - s 
1· D - lD 491.00 474.67 461.035 482.39 
1· 1 430.76 421.0 410.24 414.49 D - p 
1 1 490.57 507.2 453.07 479.63 s - p 

:\ are the experimentally observed wavelengths of tran-experimental 
sitions an_d wei;-e obtained from: Atomic Transition probabilities - Hy­
drogen through Neon ~ Wiese, Smith, Glennon. · NSRDS - NBS4, Vol. I. 

:\ h ti 1 are the wavelengths of transition calculated by 
t eore ca . HF+NT 

Westhaq:s and Sinano~lu' s (3) program. For example ~EHF · = 

I I I I . HF+INT 
<"' H "' > - <"' H "' > and this can be converted int. o )_,HF ~HF ~HF+INT ~HF ~HF 

through constant terms and so on, The details of this was described in 

Chapter I. 
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multiplet oscillator strengths• Recalling the expression (14) for oscil-

-+ lator, strength in terms of dipole length operator R for a·transition de-

111 1"""1 2. E ( o( L s )- E c 0( L 5 )1<11..J K 'lY. I I I 'I 
• IC><'LSM._1"15 D(LSMlMs'/ 

or in terms of dipole velocity operator as 

whet:e 
N 

ond ~ "' ~ ~l 
L.-1 

The multiplet oscillator strength will now be defined as 

[1] 

[2] 

(2L ,+ 1) (2S + 1) is degeneracy of lower-state. faLs;a'L'S' is a di-

mensionless quantity. All the tables in this chapter describing f's are 

multiplet oscillator strengths defined by Equation [2]. Multiplet 

oscillator strengths are calculated using the electric dipole transition 

program of Westhaus and Sinanoglu.(3). One needs to feed the wavefunc-

tion and energy of each state involved in a transition corresponding to 

one non-vanishing term of Equation [2]. The.remaining terms in.the 

summation are obtained from t~is given tetm by group theory. Wavefunc-

tion and energy of eacli state are first computed using ~ksilz and 

Sinanoglu's. (1) program, projected out using our projector operator pro-

gram and·then fed to Westhaus's transitio~ probability program. The 

transition probability program converst the.energy difference between 

two states to wavelength of transitions, a11d will be called the theoreti-

cal wavelengths for the transitions. This program can.also use directly 
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the wavelength of transitions found out experimentally. 1 
f values have 

also been calculated using this experimental wavelength of transition 

denoted by A experimental in the Tables II.and III. 

The approximate wavefuritions for two different states under con-

sideration .are used by the transition probability program. In general, 

as predicted by MET each state can be approximated by four types of 

wavefunctions which contain various parts of non-dynamical correlations. 

Four types of wavefunctions are restricted Hartree Fock, HF + CI part, 

HF + SEMI INTERNAL part and HF + INTERNAL part and each approximate 

wavefunction has corresponding energy. However, in the states coming 

2 3 from ls 2s 2p there are no internal correlations considered, The 

program computes f values using each type of approximate wavefunctions 

for two states in terms of dipole length, velocity arid acceleration op-

erators. The output of the· program also gives a quantity denoted by flf"'' 

this is square root of product of f values calculated in terms of length 

and velocity operators. The square root results are kind of averaging 

of oscillator strengths and do not depend explicitly upon the energy 

difference of the two states (14). It may be noted here that the oscil-

lator strength formulas given in Chapter I in terms of dipole velocity 

operator is as fundamental as it is in terms of dipole length operator. 

In fact they are derivable from each other (14). The length, velocity 

and acceleration formula would give the same result for f value if we are 

working with a pure eigenfunction of electrostatic Hamiltonian. 

+++ 2 2 2 f values for different transitions in F in the array ls 2s 2p + 

1 
f values, oscillator strengths and transition probability are 

being used interchangeably throughout the text of this chapter, as 
several other.authors have done so, 
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TABLE II 

3p + 3D (a) 

A o 
ExEerimental = 678.18A 

RHF HF+ INT MET HF HF+ INT MET 

Type fRHF f HF fMET f HF f HF i1ET 

Length .1695 .1308 .0931 .1734 .1282 .0913· 
Velocity .1798 .2172 .0959 .1758 .2216 .0978 
Square root· .1746 ,1686 .0945 ,1746 .1686 .0945 

3 ... 3 
r ~ JI Cb> 

A . . 
. Exeerimental = 572i 

Length .1212 .1583 .1161 .1233 .1554 .1116 
Velecity .0905 .0646 .1284 .089 .0658 .1337 
Square root. .1048 .1011 .1221 .1048 .1011 .1221 

3P-+ 3s (c) A ExEerimental = 420.38 

Length .2298 ,1743 .1578 .2237 .1655 .1545 
Velocity .0849 .1043 .1621 .0872 .1099 .1656 
Square root .1397 .1349· .1599 .1397 .1349 .1599 
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TABLE J;II 

1 1n 0 D- (a) A . = 491A ExEerimental 

RHF HF+ INT MET RHF HF+ INT MET 

Type fRHF f HF f MET fRHF f HF f MET 

Length .4506 .3429 ,2699 .4356 .3220 .2652 
Velocity .2336 .2861 .2874 .2417 .3046 .2925 
Square root .3244 .3132 .2875 .3245 .3132 .2785 

lD - lp (b) 0 

AExEerimental = 430.76A 

Length .1693 .2191 .1884 .1655 .2086 .1813 
Velocity .0691 .0498 .1751 .0707 .0522 .1820 
Square root .1081 .1044. .1817 .1081 .1044 .1817 

ls - lp (c) 
A . . = 490.57 ExEerimental 

Length • 5613 .3283 .2622 . .5803 .3032 .2564 
Velocity .3340 .4458 .3046 .3231 .4827 .2689 
Square root .4330 .3825 .2826 .4330 .3825 .2826 
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2 3 ls 2s2p are listed in Tables II and III for t~iplet and Singlet transi-

t tions respectively. In these tables f will mean that the.f value was 

computed in terms of dipole length or velocity operator wh,en the function 

for lower state was A and that for the upper ··state was B. Each of the 

Tables II and III is divided into two parts showing oscillator strength 

results-for theoretical and experimental wavelengths of corresponding 

transitions~ The first column in these tables is the type of operator 

which is considered to eva;Luate the oscillator-strength. These are 

length and velocity operator and the third item is square root value, 

The second column·. is. f value evaluated w:i,tli lower. state consisting of 

HF+ INTERNAL correlation and upper state .consisting of HF part only. 

(Recall th,at the upper-state does not have inte:t'nal correlation,) In 

the third column are'listed f values when both upper.and lower states 

are made.up of MET wavefuiictions2• The other half of these tables gives 

the similar information when experimentally obtained wavelengths of 

transitions are used. 

Numerical values.of oscillator strengths show a tremendous consis-

tency calculated in dipole length and velocity operators, when non-

dynamical correlations are included in the wavefunctions and the wave~ 

functions are pure states. 
RHF 

3 3 For example consider the transition P- S. 

RHF In this case .f under length and velocity formula.differs by about' 

MET 
MET 63% where as f differ by about 2.71%. This is just an example. The 

degree.of variation differs from state to state. The above percentages 

2 Large CI wavefunction containing non-dynamical correlation, which 
has been called as MET wavefunction is also termed as charge density 
function by Nicholaides, Sinano~lu, Westhaus·(Phys. Rev., to be pub­
lished). 
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are·calculated as follows: 

% difference = lflength - fvelocityl 
. f .. x 100 

length 

3 3 In certain cases e.g., in P - D transitions.we·have calculations in 

F-t++.that the oscillator strengths calculated using the dipole length 

and dipole velocity operators agree with one another surprisingly well 

when ·we use the HF wavefutfctions for both the lower and upper states. 

Indeed one .might be tempted to conclude from .. such consistency that the 

HF calculations represent accurate oscillator strengths. However, when 

all t~e non~dynamical correlation effects are included in both the.lower 

and upper states, the MET results for the dipole: length and dipole veloc-

ity operators again agree.among themselves but·are substantially differ-

ent from.the HF results (in the example under consideration by almost a. 

factor of two). Hence the temptation to conclude that consistency be-
RHF RHF 

f RHF ·and fRHl F is. f b id d h h a guarantee o accuracy must e avo e , on t e ot er 
vel MET en 

hand fMET calculated in terms of length and velocity operator are con-

sistent throughout'the Tables IIa,b,c through IIIa,b,c. f values in 

MET basis may not be anywhere close to those in RHF basis but their con-

sistency throughout the calculations of .different types of transition 

may_ be taken for implying their absolute numerical accuracy. 

This will become.more clear when this F+t+ data will be plotted 

witn some of tne already existing calculation of the members of carbon 

isoelectronic science.· This will be done, in graphs for Tables V 

through X. 

In Table IV are compared the f values computed by Bolotin et al. 
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TABLE IV 
HF+INT 

COMPARISON OF DOUBLE CONFIGURATION DATA AND f HF FOR FIV IN 

DIFFERENT TRANSITION STATES IN THE AR,RAY ls 22s22p2 - ls22s2p3 

Transitions HF+INT 
2 2 2 2 3 Double Configuration Data* f HF ls 2s 2p - ls 2s2p 

3p - 3D .13 .1308 

3p - 3p .16 .1583 

3p - 3s .16 .1743 

lD - lD .31 .3492 

1D - lp .21 .2191 

1 1 .30 .3283 s - p 

* This is Bolotin, Levinson and Levin's data as listed in NBS tables, 
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HF + INT 

(18) in the double configurational approximation with our f HF 

value, In the double configurational approximation they have mixing of 

2 2 2 2 4 
ls 2s 2p - ls 2p , This is very similar to our mixing of HF - INTERNAL 

CORRELATION, This is mainly because states arising from the configura­

tion ls22s 221/ do not mix with those arising from the cqnfiguraticm 

2 3 
ls 2s2p as they have different parities. Therefore, in the internal 

2 2 2 2 4 correlation part we are left with only ls 2s 2p - ls 2p mixing which 

is exactly Bolotin's doubl,e configuration approximation, Their orbitals· 

for each state are linear combinations of Slater type probitals, each 

orbital containing four parameters all of which were obtained by mini-

mizing the energy in the single configuration approximat;ion, 

3 3 3 2 3 In our calculations the orbitals data for S, F, D from the ls 2s2p 

3 configuration is approximated by·the HF orbitals data for P from 

ls22s 22p2 configuration and the orbitals data for 1F,':LD in the ls22s2p3 

configuration is approximated by that for 1n in the ls22s22p2 configura-

tion. HF orbital data for lower states was taken from Clementi's tables 

of atomic functions (8), 
MET 

To see the consistency in the fMET values for length and velocity 

operator, we will plot the results of F+I+ with those of large CI cal-

culations (16) for CI and MET calculations (3) for NII and OIII obtained 

fr.om other. sources, The extrapolation of these graphs will help in the 

prediction of f values.of highly ionized atoms. For this purpose we need 

to investigate·the systematic dependence of oscillator strengths on 

nuclear charge Z. Consider Hamiltonian for an atomic system of N elec-

trans 

[3] 
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H = [4] 

N 1 
where we now treat H1 = E ~ as the perturbing part of· the Hamilton-

i<j rij 

ian. Here we define a quantity pi = Zri in order to obtain Z dependence 

in the perturbed part·of the Hamiltonian. Rewrite Has follows (19): 

[5] 

Now divide Equation [3] throughout by z2 we get 

[6] 

Let H' = Hz-2 then the problem reduces to finding eigenfunctions and 

eigenvalues of H'. The eigenvalues of Hare then obtained by multiply­

ing a constant (Z2) to the eigenvalues of .H'. 

[7] 

1 I 

The Schr6°dinger equation for N electron system becomes (l-lo+i HJ.)'lf = E. 'lf> 

1 
where by e: and 1jJ may be expanded in power series of z• 

where 1jJ and e: are eigenfunction and eigenvalues of H'. Eigenvalues of 

H are given by 

2 
E :. E:0 z + € 1 z + t:2 + - - - - - . - [10] 

Recalling that f value for a transition from lower state i tQ upper state 
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k is given by 

Making use of Equations [8] [9] [10] it can be shown.that oscilla-

1 tor strength f can be expanded in power of Z as follows 

f = Q,o+ O.t~ + 0.2.~:2.+------- [11] 

Note that as Z + ~, the second term in Equation [4] + 0 and we are left 

with sum of hydrogenic Hamiltonians on the R•H•S of Equation [6]. In 

Equation [9], then e:: = e:: are the sum of eigenvalues of hydrogenic Ram-o . 

iltonian. From elementary quantum mechanics we know that hydrogen atom 

has energies which are degenerate in Q, for a given n, i.e., 2s .. 2p have 

some.energy. Therefore, when we consider transitions in the array. 

2 2 2 2 3 ls 2s 2p - ls 2s2P in the limit Z + 00 we have that the states coming 

from two configurations have same energy and (~ - Ei) = O. Therefore, 

fik + 0 as ~ + 0 and that gives an additional point on the plot .of 

1 oscillator.strength.versus z• Graphs for Tables V through X are the 

1 
plots of oscillator strengths versus Z for CI' NII' OIII' FIV' Fiv 

data is entirely ours, where as the data for other species was.obtained 

from other sources. With the help of these data points., graphs have 

been extrapolated to.origin. (O,O) of axes. (O,O) is aipoint .to be con~ 

sidered as.explained before. The extrapolated region of the graphs 

helps in predicting f values.in highly ioriized atoms. To avoid too 

many curves on the graphs the lines drawn are for f~HF, f:;T, as they 

are averaging-values off obtained in terms of length and velocity 

operators. NBS data is also shown on the graphs for comparison purpose. 

As seen numerically, through the tables that MET data is by far the best 
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b . 1 h h th h S f h fMET fMET and ecomes more c ear t roug ese grap s. ome o 't e · · · v ' length 

MET and f 1 points' lie over each other whereas the same points for HF basis ve · 

are.scattered far away from each other. 



Species 

@ 
0 III·· 

z 

6 

7 

8 

9 

1 
z 

.167 

.143 

.12:5 

.111 

TABLE V 

Type 

Length 

Velocity 

Square root 

Length 

Velocity 

Square root 

Length 

Velocity 

Square root 

Length 

Velocity. 

Square root 

HF 

.286(16) 

.332<16> 

.308 

.236 

.268 

.251 

.2 

.225 

.212 

.J,695 

.1798 

.1746 

NBS 

c.o~n/ 

(.17) 

( .15) 

76 

MET 

.102§ 

.117§ 

.109 

.100 

.105 

.102 

.100 

.104 

.102 

.093 

.096 

.095 

§Actually they are not MET results but large CI calculations made 
by A. W. Weiss, Phys. Rev. 162, 71-80 (1967). 

t Bolotin, A. B., Levinson, .I. B., and 'Levin, L. I., Soviet Phys. : 
JETP 2, 391-395 (1956). Their m.ethod·of.calculation is essentially 
analogous to our method in which we have (HF .+ INT) correlation., 

II Experimentally obta:f,.nedvalue [Boldt, G~, z. Naturforsch. 18a, 
1107-1116 (1963)]. 

€)Data for N+ and o++·is obtained from (3). 
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TABLE VI 

Species z 1 Type HF NBS MET z 

Length .202<16> .097§ 

CI 6 .167 Velocity .171 (16) c.o3e>11 .105§ 

Square root .186 .100 

Length· .170 .137 

NII 
© 7 .143 Velocity .138 ( .22) .155 

Square .root .153 .146 

Length .143 .127 

OIII 
@ 8 .125 Velocity .117 ( .18) .135 

Square root .129 .131 

Length .121 .116 

FIV 9 .111 Velocity .090 ( .16) t .128 

Square root .105 .122 

For symbols, see .Table V. 
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TABLE VII 

3P + 3 8 

Species z 1 Type HF NBS MET z 

Length 
(. 27) II CI 6 .167 Velocity 

Square root 

Length .334 .218 
@ 

NII 7 .143 Velocity .110 (.23) .203 

Square root .192 .210 

Length .272 .183 
@ 

OIII 8 .125 Velocity .092 (,19) .173 

Square root .158 .178 

Length .229 .1578 
F+++ 9 .111 Velocity .085 (.16)t .1621 

Square root .139 .1599 

For symbols, see Table V. 
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Species z 1 Type HF NBS MET 
4 

Length 
CI 6 .167 Velocity 

Square root 

Length .651 .314 

N@ 
II 

7 .143 Velocity .310· (. 45) .327 

Square root .449 .320 

Length ,534 .297 
@ 

OIII 8 .125 Velocity .263 (. 37) .303 

Square.root .375 .300· 

Length .450 .269 

FIV 9 .111 Velocity .234 (.3l)t .287 

Squ.;i.re root .324 .278 

For symbols, see Table V. 
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TABLE IX 

Species z 1 Type HF NBS MET z 

Length 
CI 6 .167 Velocity 

Square root 

Length .245 .298 
@ 

NII 7 .143 Velocity .094 (.30) .261 

Square root .152 ,279 

Length .202 ,219 
@ 

OIII 8 .125 Velocity .080 (.25) .193 

Square root .127 .206 

Length .169 .188 

FIV 9 .111 Velocity .069 (.2l)t .175 

Square root .108 .182 

For symbols, see Table V. 
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TABLE·X 

1 1 . s -+ p 

Species z 1 Type HF NBS MET z 

Length 
CI 6 .167 Velocity 

Square root 

Length .817 .259 
@ 

NII 7 .143 Velocity .457 (.40) .309 

Square root .611 .283 

Length .669 .294 
® 

OIII 8 .125 Velocity .388 (.35) .337 

Square root .509 .315· 

Length .569 .262 

FIV 9 .111 Velocity .334 (.30)t ,305 

Square root .433 ,283 

For symbols, see Table V. 
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APPENDIX 

PROGRAM FOR THE· PROJECTION OPERATOR 

RALO: Each factor in the projection operator·as expressed in Eqn., 
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[23] and [24] of reference (2), is ess~ntially in terms of the identity 

operator and the,products of Step Jp (M+) and step down (M) operators. 

This subroutine brings about these operation~. in a desired order. The 

determinants resulting from applying the RAfsing and LOwering operators 

to a given determinant are computed in this.routine. The corresponding 

coefficients of the resulting determinants-are also calculated here. 

CO:MPAR: The determinants computed in RALO along with that result­

ing from.the identity operator are compared step by step in subroutine 

CO:MPAR. The coefficients of two identic;:al determinants ai;-e combined 

together. Determinants whose. coefficients. add to. zero are eliminated. 

Each su<;!c·essive factor in the projection operator is applied to the· 

result of ·the preceeding operations. 

Final,ly the coefficient;s and the determinants.are written next.to 

each other with assigned configuration numbers in the output. 



PROGRAM FOR PROJECTOR· OPERATOR 

iMPLIC IT REAl.•8 lA-He 0-U . 
DIMENSION CDEl9~1,. .: . •y.-.• -.: · ... · . 

· CJSLDET · 12125110 I eCOFFU, 251:;"5\'.AGI 21, SMLAGI 2 I eDDEl251eCOETl25 1251 
C,COPPl25 I e IT AHl20IeISLDET199; 1'0·1,NRD I 42I1LDR8l 421eMDRBl421 1 
C IREPI Ze42IeNREPl21211, LREP I 141eNCDMl251, KSLDETI 251 1NPRl211e1Pl 211 1 
Cl.QI 211 eL SLOEH 25, 101eNELCSl251 eNELDSI 251eIJSLDI251251101 1NDCFl25 J, 
CKMAXl251 eNPARl25e211 el>.PRCOl251 . 

CDHMDN COE,PHASE,XMULTeCOFF,CDETeSLAG,SHLAG;DOE 11SLOET 1NRO, 
Cl,.ORBt MORBt lREP, NREP, LREP, INDET, ICFT e IJSLO,NPART, JSLOET 1LSLDET, 
£NELCSeNELOS,NOCF,KMAX,LMAX,NPAR 1 LORS 1 Kl 1 K2 1 NPR00 1 KREP~~TDTA 

READl5e201 llREPllellt lal,421 
REAOl5e20 I ( IREPl2e I I, .1•1,42·1 
READl5e201 INREPllel It 1•1,141 
REAOIS,201 INREPI 2t I J, l•l,211 
READl5e201 CLREPlll11•1,l41 

20 FORHATI 16151 
READ 15,121 INROlll•LDRBCll,MOR8lllel•lt42~ 

12 FORHATC3151 . 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C ·••••************* SHORT EXPLANATION *********************** 
C NTRYAL• # OF STATES TO BE PROJECTED OUT 
C NPART• # OF PARTICLES IN THE PROBLEM 
C NFUNC • IOF TYPES OF FUNCTIONS.NFUNC•l IS HFeNFUNC•2 IS TOTAL CI 
C NFUNC•3 IS SEMI-INT PART,NFUNC•4 JS INTERNAL PART 
C SLAGlll• TOTAL L VALUE OF THE STATE DESIRED 
C SMLAGlll• TOTAL ML VALUE OF THE STATE DESIRED 
C SLAGl21• TOTAL S VALUE OF THE STATE DESIRED 
C SMLAGl21• TOTAL HS VALUE OF THE STATE DESIRED 
C LORS•l IS L PROJECTICN ONLY 
C LORS•z IS S PROJECTION ONLY 
C FIRST ITAH READS STATE& CONFIGURATIONIEeG THIS IS lP STATE OF N+ FROM 
-C 1S2 2S 2P3 ETC I 
C SECOND ITAM READS Kll>.D OF FUNCTIONIE.G. *** TOTAL Cel*** ETCI 
C EHFDe INDET READ THE ENERGYCONTRIBUTION FROM THAT KIND OF FUNCTION&NUMBER 
C OF DETTS IN THAT KIND OF FUNCTION••••••THEN COE&ISLOET ARE READ 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

REAOl5e91 NTRYAL 
DO 11570 ITRY•leNTRYAL 
READC5191 NPART,NFUNC 
READl512lllSLAGCLDRSl1SMLAGILORSl1LORS•l121 

21 FORMATC4F5.21 
READl5e52J llTAMlll1l•l1201 
WRITEC61521 CITAMCll1l•l1201 

52 FORHATC20A41 
WRITEl7e521 CITAMIJl,1•11201 
DO 11570 JTRYAL•11NFUNC 
READCS,221 llTAMllt,l•l,201 

22 FORHAH20A41 
WRITEl6,241 llTAHlllel•le20J 
WRITEl71221 llTAMlltel•l1201 

24 FORMATC'l'e20A41 
READ15180lt EHFD1INDET 

801 FORHATIF13e91121 
DO 3 l•lelNDET 
REAOl5e9031 COEIJl,llSLDETIJ,Jl,J•l,NPARTI 

3 CONTINUE 
9 FORMATl4151 
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11 FORMATC 06151 
911 FORMATC10flle91 

NTP•INDET 
DO 4000 LORS•l,2 
IF CLORS-11 l001710t720 

700 WRITEl6,l01) 
701 FORHATC 1 LORS IS LESS THAN l IN MAIN PROGRAM'I 

STOP . 
710 WRITEl6,9051 SLAGCU1SMlAGUI 
905 FORMAT(' FOLLOWING ARE WRITTEN AFTER L PROJECTION WITH L••,f5e2t 

C1AND ML•1 ef5e21 
GO TO 725 

720 WR1TEC6,9061 SLAGl21,SMLAGl21 
906 FORMATl 1 FOLLOWING WRITTEN AFTER L-S PROJECTION WITH s-•,f5e2 1 

C1 AND MS• 1,F5.21 
725 .CONT lNUE 

SLANG•SLAGILORSI 
SMLANG•SMLAGILORSI 
NTOTA•NTP 
CALL ORDER 

C ICFT • TOTAL # Of •CONFIGURATIONS•INTO WHICH THE SET OF DETTS MAY 
C BE DIVIDED. 

IPR=O 
NTP"'O 
IF llCFT.EQ.01 GO TO 5000 
DO 3000 ICF•l,ICFT 
NTOP• NDCFCICFI 
NPARTP• NELOSl1CFI 
NPAAT= NELOSIICFl+NELCSCICFI 
X•2 .OD•O•SLANG 
IX•X 
DO 823 I • lt NTOP 
DO 822 K • 11 NPARTP 

822 JSLDETlltl1KI • IJSLDllCF,l1KI 
823 COFFll,JI • CDETllCF,11 · 

KLAST "' 1 
LZ • NTOP 

C THE FOLLOWING STATEMENT IS A SPECIAL CASE OF ALL CLOSED "SUBSHELL• 
IFllKMAillCFJ-IXJ.LTeOI GO TO 600 
IFCKMAXI ICFJ eEQeOeANDeSLANG.EQ.O.OD•OI. GO TO 601 
y .. z.oD•O•SMLANG 
IYsY 

50 LMAX•IKMAXllCFl-IYl/2+1 c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C *IN THE 500 DO LOOP liE APPLY LOWDIN1S PROJECTOR OPERATOR IN PRODUCT 
C * FORM, EACH VALUE OF DO LOOP PARAMETER INDEXES AFACTOR IN THE PRODUCT 
C * REFERENCE FOR THIS PROGRAM IS : PER-OLOV LOWDIN1REVeMOD.PHYSe 36 
c • 966,976 119641 
c ...................................................................... , ••••• 

DO 500 LLal,LMAX 
SLA•DFLOATILL-11 
Kl • 13•C-ll**LL>/2 
K2 • 13+1-ll**ILL+lll/2 
NDET•LZ 

C IN THE PRODUCT1THE FACTOR, CORRDSPONDING TO THE VALUE OF DESIRED L-ML 
C OR S-MS IS UNITY AND STATEMENT 80 THROUGH 400 ARE OMITTED. 

IFCSLA.EQ.CSLANG-SMLANGll GO TO 400 
80 XMULT•leOD+O/CISLANG-SMLANG-SLAI* ISLANG+SMLANG•SLA+l.OD+Oll 
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·u•o·. 
C IN THE PO LOOP 100 A GIVEN FACTOR IN, JHE PROJECTION OPERATOR JS APPLIED 
C TO ALL THE DETTS JN A GIVEN CONflGURATiON WH·ICH HAVE ARISEN JN APPLYING 
C PR~VIOUS FACTORS IN ·T~E.~ROJECTICN OPERATO~. 

DO 100 l•ltND.ET 
LY•U 
FMULT•.,.C SLA+$HLANG l•ISLA•SHLANG•leOD•O I •SHLANG•C SHLANG-leOO•OI 
IF (FHULT.E(l.o.oo+OIGO TO 30' . . 
LY•LZ•l . ' 
DO 25KK•ltNPARTP . 

25 JSLQETCK2tLV,KIU • JSLDETIKltltKKI 
COFHK2eLY ) • FHULHXMULT*COFFCKltll 

30 CALL RALO ILYtLZtleNPARTPJ 
100 CONTINUE 

ISIH•l . 
IFIUJ 550.,600,50.0 

550 WRITEl6,555J . 
555 FORHATC •LZ JS N.EGATlllE' J 

STOP 
400 DO 450 l•leNDET 

DO 440 J•l1NPARTP 
440 JSLDETIK2,J,JJ • JSLDETIKleJ,JJ 
450 COFFIK21IJ • CDFFCKl,JJ 
500 CONTINUE . 

KLAST a !<2 
IF CLZeGT.OJ GO TO 606 

600 WRITEt6,605J ICF 
605 FDRHATC• JN THE CONFIG SYMMETRY ABSENT JS •,J4J 

NPRODCICFJ.-o 
c;o TO 3000 

601 Ll•NDCFC JCFI 
COfFCKLAST, 11 • CDETCICfell 
NDD•l ' 
IFILZ.EQ.11 GO TO 606 

602 =~~~!{~: 6~~~p~~D AT 602 HAIN PROG., LZ••,151 
606 NPRODCICFl•LZ 

WRITEl619901 JCF,NPRCCIJCFt 
990 FORMATI' IN CONFIGURATION •,12,• THERE ARE 1 ,13,1 PROJECTED DETTS• 

Cl 
DD 1000 Jal,LZ 
IPR•IPR•l 

C THE PROJECTED PETTS ARE NOW FORMED AND ARE STORED IN ISLOET .FOR EACH 
C OETT DD LOOP 950 ENTERS THE OPEN SUB-SHELL ORBITALS AND DO LOOP 975 
c ENTERS CLOSED suB~SHELL ORBITALS . 

If CNPARTP.EQ.OI GD TO 970 
00 950 K•l1NPARTP 

950 JSLDETllPR,KI • JSLDETIKLASTelekl 
NDO•NPARTP•l 
IFINDO.GT.NPARTI GO TO 980 

970 DO ~75 K•NDO,NPART 
975 l.SLDEHIPReltl• IJSLDC ICF,l1K) 
980 CONTINUE 

COEllPRJ a COFFIKLAST,lt 
PHASE•l.OD•O 
DO 982 K•ltNPART 
IFCK.EQ.NPARTJ GO TD 983 
KP•KH 
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C DO t.OOP 982 RECORDS THE'OETTS WITH THE PROPER PHASE SO THAT THE ORBITALS 
C OCCUR IN ASCENDING ORDER. 

DO 'i82 KK•KP,NPART · . 
IFCISLDETCIPR,Kl~ISLDETCIPR,KKll 9B2,9Bl,98S 

981 WRITEC6,95ll 
9Sl .FORMATC 1 TWO ORBITALS SAME IN PROJECTED DETTSTOPPED BEFORE 982 

CIN MAIN PROGRAM.' I 
STOP 

985 MP.lSLOETIJPRaKI 
lSLDETllPRtKl•ISLOET llPR,KKJ 
ISLDETllPRtKKJ•MP 
PHASE•l-leOl*PHASE 

982 CONTINUE 
983 CONTINUE 

COECIPRl•PHASE•COECIPRI 
WRITEl6t903J COEllPRJ,llSLDETCIPR,KJ,K•l,NPARTJ 
WRITEC7,903J COECIPRJ,llSLDETIIPR,KJ,K•l,NPARTJ 

903 FORMATCfll.9110131 
1000 CON Tl NUE 

NTP:aNTP+LZ 
3000 CONTINUE 

IFINTP.EQ.OJ GO TO 5000 
ltOOO CONTINUE 

WRITEl6 9 551J EMFD,NTP 
WRITEC7t551J EMFD,NTP 

551 FORHATCF13.9,121 
GO TO 11570 

5000 WRITEC 6, 701 
10 FORMAT( ' NO COMPONENT OF THIS SYMMETRY' J 

11570 CONTINUE 
STOP 
END 
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SUBROUTINE RALOILY 1 LZ, l,NPARTP) 
IMPLICIT REAL*8JA-H,C-Z) 
DIMENSION COEC99), 

CJSLDET c2,25,lOJ,COFFl2t25),SLAGC21tSMLAG(211DOEl2511CDETC251251 
C 1COPPI 25 J, IT AMC 201 1ISLDETC99110 I 1NROC.42) 1LORB142 It HORBl42), 
CIREPl2,421,NREPC2o2lloLREP1141oNCCMl25),KSLDETl2511NPR(21)11Pl2111 
CIQ(211 1 LSLOETl25olOl,NELCSl2511NELOSl25l~IJSLDC251251l0)1NOCFC2511 
CKMAXl2511NPARl2512111NPRCDl251 

COMMON COE,PHASE,XMULT,COFF 1CDET 1SLAG 0SMLAG 000E11SLDET,NR0 1 
CLORB 1MORB,IREP,NREP,LREP, INDET, ICFT, IJSL00NPART1JSLOET,LSLDET, 
CNELCS~NELOS,NDCF1KMAX,LMAX,NPAR,LORS1Kl1K21NPROD0KREP1NTOTA 
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c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C * STANDARD RAISING AND LOWRING OPERATORS .OPERATIONS ARE BROUGHT UP IN 
C * DESIRED ORDER. 
C * THIS PROGRAM OPERATES ON A OETT MSLDET WITH THE OPERATOR M+M-oTHE 
C * RESULTING 06TTS ARE PUT IN JSLDET AND THE RESULTING COEFFICIENTS TIMES 
C * A NORMALISING DENOMINATOR. ARE PUT IN COFFo c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C THE FOLLOWING BRINGS ABOUT M- OPERATION 

LYlaO 
00 118 K=l,NPARTP 
LYlaLYl+l 
00 135 KK=l1NPARTP 

135 LSLOETILYl1KKI a JSLDETIKl,J,KKI 
L•lSLDETCLYl 1KI 
IFILORS.EQ.21 GO TO 125 
MH=MORBCLI 
LL=LORBILI 
MHN=MM-1 
LSLDETCLYl1KI= L-2 
If IMMN.LT.C-LLtl GO TC 137 
IFCKoEQol I GO TO llb 
KP=K-1 
lflLSLOETILYloKloEQ.LSLOETCLYloKPtt GO TO 137 

116 LlalLL+MMI . 
L2•C Ll-MH+l I 
GO TO 139 

125 IFl12•1L/21-LloEQ.OI GC TO 137 
LSLDETILYltKl=l+l 
L l=l 
L2al 

139 COPPCLYll •OSQRTCDFLCATCLl•L211*COFFIK11II 
GO TO 138 

137 LSLDETCLYl,KlaL 
LYlaLYl-1 

138 CONTINUE 
If CLYloEQ.OI RETURN 

C THE FOLLOWING BRINGS ABOUT M+ OPERATION ON THE OUT PUT DETTS OF M-. 
DO 150 LLL=loLYl 
00 38Kal 1 NPARTP 
LY=LY+l 
00 35 KK•l1NPARTP 

35 KSLDETCKKJ "' LSLDETCLLL1KKI 
L a KSLDEHKI 
IFCLORS.EQ.21 GO TO 25 
MM•MORBCLI 



ll•LORBCLI 
MMN;::MM+l 
KSLDET(KI • l + 2 
IF CMHNeGT.LLI GO TO 37 
IFtK.EQ.NPARTPI GO TO 36 
KP•K+l 
IFIKSLDET(KJ.EQ. KSLDETCKPll GO TO 37 

36 ll• tLL-.MM I 
l2•CLL+HM+ll 
GO TO 39 

25 IFCC2*1L/21-LleNE.OI GO TO 37 
KSLDETIKlaL-1 
Ll•l 
l2:sl 

39 COFFCK21LYI a DSQRTCDFLOATCLl*L211*XHULT•COPPCLLLI 
DO 30 KK • l 1NPA.RTP 

30 JSLDETCK21LY1KKI • KSLDETCKKI 
GO TO 38 

37 LY "' LY - 1 
38 CONTINUE 

IFCLY.EQ.01 GO TO 1399 
CALL COHPAR ILY1LZ1NPARTPI 

1399 LZ.sLY 
150 CONTINUE 

RETURN 
END 
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. SUBROUTINE COMPAR ILY 1LZ 1NPARTPI 
. IMPLICIT REAL•81A-H10-ZI 

DIMENSION COEl991 1 
CJSLDET 12,25,101,coFF12125J,SLAG121,SMLAGl21,DOEl251,CDETl251251 
C1COPP12SJ,ITAMl2011ISLDETl991lOl1NROt4211LORBl4211MORBl4211 
CIREPl2,4211NREPl212111LREPl1411NCOMl251,KSLDETl2511NPRl21111Pl2111 
CIQl2111LSLDET1251lOl1NELCSl25J,NELOSl251,IJSLDl25125 1101 1NDCFl251 1 
CKMAXl2511NPARl2512111NPRODl251 

COMMON COE1PHASE1X~ULT1CCFF,CDET1SLAG1SMLAG,DOE1ISLDET1NR01 
CLORB1MORB1IREP1NREP1LREP,JNDET1lCFT1IJSLD1NPART,JSLDET1LSLDET1 
CNELCS1NELOS1NDCF,KMAX1LHAX1NPAR,LORS1Kl1K2,NPROD,KREP,NTOTA 
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c, •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C *THIS ROUTINE COMPARES DETTS TO SEE If .SOME ARE IDENTICAL. IF IT IS SO 
C * THEIR COEFFICIENTS ARE ADDED AND IF THE RESULTING COEFFICIENTS TURN OUT 

. C '* TO BE ZERO, THEN THOSE OETTS ARE THROWN AWAY 
c . • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SMALL=O.OOOOOOOlD+O . 
NQaO 
KM=LZ 

,··600 KM•KM+l 
IFIKM-LYI 6011601,799 

601 CONTINUE 
JM=O 

700 JM•JM+l 
IFIJM-KMI 7021600,600 

702 K=O 
701 K•K+l 

IFIK-NPARTPl705 1 705170~ 
705 1FtJSLDETCK2 1KM1Kl-JSLDETIK2,JH1Kll 700, 7011 700 
706 COFFIK21JMI = COFFIK2,JHI + COFFIK21KHI 

NQ=NQ+l 
NCOMI NQI •KM 
GO TO 600 

799 CONTINUE 
NQMAX=NQ 
IK=O · 
MQ=O 
DO 901 J "' l 1L Y 
NQ.,MQ+l 
IFCNQ.GT.NQHAXI GO TO 906 
IFINCOMlNQl-JI 906,9051906 

906 IFICABSCCOFFIK2 1JlleLT.SMALLI GO TO 920 
915 IF IMQ.EQ.O.AND.IK.EQ.01 GO TO 907 
916 LQ• J-Ml.l-IK 

COFFIK21LQI = COFFIK2,JI 
DO 904 K=l1NPARTP 

904 JSLDETIK21LQ1KI • JSLDETIK21J1KI 
GO TO 900 

920 IK,.IK+l 
COFFIK2,JI • o.OD+O 
GO TO 900 

905 HQ,..HQ+l 
907 CONTINUE 
900 CONTINUE 
901 CONTINUE 

1000 CONTINUE 
LY "' LY - HQ - IK 
RETURN 



SUBROUTINE CONTES Clll,IC~I 
IMPLICIT REAL•BIA-H,O-ZI 
DIMENSICN CDEl991t 

CJSLDET 12,2s,101,ccFFC2,251,SLAGC21,SMLAGl211DOEC251tCDETl25,251 
C1COPPC25111TAMC20111SLDETl99,101,NROC4211LORBC42J,HORB(42J, 
CIREPC2,421,NREPC2t2111LREPC141,NCOHl25J,KSLDETC25J,NPRC211tlPl2111 
CIQC21J,LSLDETC251lOl1NELCSl25J,NELOSl251olJSLDl25o251lOJ1NDCFl25J1 
CKHAXC251 1NPARC2512111NPRODl251 
COH~ON COE,PHASE,X~ULT,COFF,CDET,SLAG,SMLAG,DOE,ISLDET,NRO, 

CLORB1MORB,IREP,NREP,LREP1INDET,JCFT1IJSLD1NPART1JSLDET1LSLDET1 
CNELCS 1NELOS1NDCF1KHAX1LHAX,NPAR,LORS1Kl,K21NPROD1KREP1NTOTA c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

C * THIS SUBROUTINE TESTS TO SEE If PRESENTLY CONSIDERED DETT WITH PROPERLY 
C * ORDERED ORBITALS BELCNGS TO THE SAME •CONFIGURATION• AS ONE OF THE 
C *PREVIOUS DETT. ICF LABELS •CONFIGRATION• AND NDCFCICFI WILL BE# OF DETT 
C * -S IN CONFIGURATION ICF. c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

ICFl=ICF-1 
IF CICFl.EQeOI GO TO 13 
DO B I• lelCFl 
JJ•O 

4 JJ•JJ+l 
IFCJJ.GTeKREPI GO TO 10 
IFCNPARllCF,JJl-NPARII1JJJIB14,B 

B CONTINUE 
GO TO 13 

10 NDCFCll= NDCFlll+l 
N=NDCFCll 

C *IJSLD(l,N1KKJ: IJSLDICONFIGURATION # ICF,DETT #NIN THE CONFI., ORBITAL 
C * INDEX.J 

DO 11 KK=l1NPART 
11 IJSLDCl,N,KKI• ISLDETllll1KKJ 

CD£TCl 1NI= PHASE•COElllll 
DO 12 J=l1KREP 

12 NPARilCF1Jl=O 
NELOSllCfJ=O 
NELCSllCFI=~ 
ICF•ICF-1 
GO TO 15 

13 NDCFllCFl=l 
N= NDCFCICFI 
DO 14 KK~l, NPART 

14 IJSLDCICF 1 N,KKI• ISLDETCIIloKKJ 
CPETIICF1NI• PHASE* COECllII 

15 CONTINUE 
RETURN 
END 
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SUBROUTINE ORDER 
IMPLICIT REAL*8IA-H1C-l) 
OIMENSION COEl991 1 

CJSLDET 12,2s.101,coFF12.251,SLAGl21,SMLAGl211DOEC251,CDETC25,251 
C,COPPl25),ITAMl20l,JSLDETl99,10),NROl421,LORBl42),MORBl42)1 
CIREPC2,4211NREPl212111LREPC1411NCOMl251tKSLDETl251,NPR12lltlPl2llt 
CIQC211,LSLDET125,10),NELCSl251,NELOSl251,JJSLDl25,25tl011NOCFl251, 
CKMAXl251tNPARl25,2lltNPRODl25) 

COMMON COE,PHASE,XMULT,COFF,CDET,SLAG,SMLAG,DOE,ISLOET,NRO, 
CLORB1MORB,IREP1NREP,LREP1INOET, ICFT1IJSLDtNPART,JSLOET,LSLOET, 
CNELCS,NELOS,NDCF,KMAX,LMAX,NPAR,LORS,KlrK21NPROOrKREP1NTOTA 

C WE WANT COMPUTATION TO BE DONE ONLY ON THE NON CLOSED SHELL 
C THEREFORE KEEP T~E CLCSEO S~ELL AWAAYIN THE BIGINING AND ADD IT 
C LATER 
C THE FOLLOWING CHECKS IF WE HAVE A CLOSED SHELL 

KREP•7*LORS+7 
ICF•O 
111•0 
lfl NTOTAoEOoOI RETURN 
DO 300 JJJ"lt NTOTA 
00 5K=l 1KREP 
IPIKl~O 

IQIKl-=O 
HS•O 
HL=O 

5 NPRIK)=O 
PHASE=l.00+0 
IFCLORS.EQ.21 GO TO 101 

C NOW WE ARE BRANCHING OFF TO EITHER L OR S ORDER.ING 
IJa:O 

C FOLLOWING SEPARATES ThE ORBITALS IN A GIVEN DETT, FIRST ODD ONESIALPHA), 
C THEN EVEN ONES IBETAlo 

DO 120L=112 
DO 10 l=l1NPART 
KK•2*11SLOETIJJJ 111/21-ISLOETIJJJ,I) 
IFIKK.EQ.O.AND.LoEO.l.ORo KK.EQ.-1.ANDoLoEQo2) GO TO 10 
I lzl IH 

KSLOETI Ill= ISLDETIJJJ,I) 
JzK SLOET 111 I 
ML.,ML+MORB(J) 
MS=MS+l-ll**IJ•ll 
IFILoEQ.2) GO TO 10 

14 PHASE•ll-loOl**lll-lll*PHASE 
10 CONTINUE 

IFCL.EQ.21 GO TO 120 
NALPHA:I I 

120 CONTINUE 
lFIOFLOATIHLloNE.SMLA Glll.OR.OFLOATIMSl/2 •• NE.SHLA 61211 GO TO 

C450 
C NCW TO ARRANGE THESE ORBITALS IN ASCENDING ORDER, ODO AMONG ODO ANO EVEN 
C AMONG EVEN. 
C UPTO 92 ORDES FOR L PROJECTION~ 

IF INALPHA.EQ.OI GO TO 90 
00 80 J=l,NALPHA 
IF IJ.EQ.NALPHAI GO TO 90 
JP=J+l 
0080 JJ=JP,NALPHA 
IF CKSLOETIJl-KSLOETCJJll8018l,85 
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.. 81 WRITEC6,50J 
50 FORHATC83H TWO ORBITALS ARE SAME IN THE INPUT DETT ANO COMPUTATION 

CSTOPPEO BEFORE STATEMENT 81) 
STOP 

85 MP•KSLOETC JJ 
KSLOETIJJ=KSLDETCJJ) 
KSLDETCJJJ•MP 
PHASE• 1-loOJ*PHASE 

80 CONTINUE 
90 NBETA•NPART-NALPHA 

IFCNBETA.EQ.OI GO TO 92 
NOBET=NAL PHA+l 
DO 82 J= NOBET,NPART. 
Jf CJ.EQ.N~ARTJ GO TO 92 
JP•J+l 
00 82 JJaJP,NPART 
IFC KSLDETC J 1-KSLDETC JJ J 182,83, 81 

83 liRITEl6,51J 
51 FORMATl'TWO ORBITALS SAME,STOPPED BEFORE STATEMENT 83•) 

STOP 
87 MP•KSLOETCJJ 

KSLDETIJJ=KSLOETCJJI 
KSLDETCJJlsMP 
PHASE= 1-loOl*PHASE 

82 CONtlNUE 
92 CONTINUE 

If CLORS~EQolJ GO TO 94 
C UP TO STATEMENT 102 ORDERS FOR S PROJECTION. 

101 DO .6 J=l,NPART 
6 KSLOETIJI= ISLOETIJJJ,JJ 

DO 180 J• l, NPART 
IFCJ.EQ.NPARTJ GO TO 102 
JP•J+l 
DO 180 JJz JP,NPART 
IFIKSLDETIJl-KSLDETCJJJI 180,1811185 

181 WRlTEC6,1511 . 
151 FORMATI 1 TWO ORBITALS ARE SAME IN THE OETT STOPPED BEFORE 

CSTATEMENT 181 IN ORDER') 
STOP 

185 MP=KSLOETCJJ 
KSLDETIJlzKSLOETCJJ) 
KSLOEHJJJ=HP 
PHASE•l-loO)*PHASE 

lBO CONTINUE 
102 CONTINUE 

94 CONTINUE 

101 

c ,,,,..,........,,,,..,,~~,~,,~,....,...,,,,,~,,,,....,...,,,,...,...,,~~,,, ..... ,~ ...... ,,,,..,,...,..,,, 
C BEGINING OF CLASSIFICATION OF ORBITALS INTO "SUB- SHELLS• ANO DETERMINING 
C WHICH SUB-SHELLS ARE FILLECCCLOSED SUBSHELLI ·AND WHICH ARE PARTIALLY 
C FILLEOlOPEN SUBSHELLJ.ICF WILL LABEL A ·coNFIGURATIONo A CONFIGURATION IS 
C GIVEN BY BY LISTING T~E OCCUPANCY OF THE "SUB SHELLS•. THIS OCCUPANCY IS 
C STORED IN NPARCICF,JJ 
c ••••••*•****~····························································· 

lll=llIH 
ICF=ICFH 
00 lOOJ.al,NPART 
L2 KSLOETC II 
J"'IREP( LORS1 LJ 



NPIHJl•NPR(Jl+l 
100 CONTINUE 

C NPR= # OF ORBITALS IN A PARflCULAR HSUBSHELL•. 
C NPARTP• TOTAL # Of PARTICLES IN OPEN SUBSHELL. 

NPARTPaO 
NC=-0 
KMAXUCFl=O 
DO 175 Jal1KREP 
NPAR(ICF,Jl•NPRIJI 
IF(LORS.EQ.21 GO TO 401 
KMAXllCFI= KHAX11CFl+NPRIJl•C2•LREP(JJ+l-NPR(JJI 
lflLORSoEQ.11 GO TO 400 

401 KHAX(ICFl•KMAX11CFl+NPR(Jl•12-NPRIJll 
400 If lNPR(JJl13011751125 
130 WRITEl6,1351 
135 FORHATl 1X 1 STOPPED BEFORE STATEMENT 130' I 

SJOP 
C IN THE FOLLOWING ,GOING TO STATEMENT 175 MEANS WE HAVE A CLOSED SUBSHELL 

102 

C AND GOING TO STATEMENT 150 MEANS WE HAVE AN OPEN SUB-SHELL,THAT IS THE TY 
C PE hE WANT TO PROJECT. 

125 lffNPR(JJ-NREPlLORS1Jll 150,175,160 
160 WRJTE(6,l651 
165 FORMAT(' STOPPED BEFORE STATEMENT 160 IN ORDER•J 

STOP 
150 NCaNC+l 

NPARTPaNPARTP+NPRCJI 
IPf NCl=J 

C THE ABOVE GIVES ORBITALS NOT IN CLOSED SHELL 
175 CONTINUE 

c If THERE ARE NO OPEN SUB-SHELLS we WANT TO GO AT THE END Of THE PROGRAM 
C WE NOW SEPARATE OPEN AND CLOSED SUB-SHELL. 

Jf(NC.EQ.01 GO TO 952 
IFILORS.EQ.21 GO TO 402 
11•0 
DO 136 L•l,2 
DO 15 l•l,NC 
KK•2•CIP(l 1/21-IPlll 
lf(KK.EQ.O.AND.L.EQoleOR.KK.EQ.-1.AND.L.EQ.21 GO TO 15 
11•11+1 
IQlIJlaIPUI 

15 CONTINUE 
IFIL.EQe21 GO TO 136 
HAX,..11 

136 CONTINUE 
C THE FOLLOWING SEPARATES OPEN SUB-SHELLS & PLACES THEM TO LeHeS AND CLOSED 
C SUB-SHELL TO THE R.H.S. 

402 Jo .. o 
JC•NPARTP 
KKK=O 
K•l 
l•l 

l lffleGTeNPARTI GOTO 95 
L'"KSLOET I 11 
J=IREPCLORS,LI 
If fLORS.EQ.21 GO TO 403 
lf(J.NE.IQIKll GO TO 55 
IFILORS.EQ.11 GO TO 404 

403 IFIJoNE.IPlKll GO TO 55 
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404 KUP•NPR(JI 
JliPaKUP+l-1 
DO 40 LL'"'l1JUP 
JO•JO+l 
PHASE,..PHASE•l-1.0l••KKK 

40 lSLDETCllt,JOl•KSLDETCLLI 
K=K+l . 
GO TO 88 

55 CONTINUE 
KUP=NPRCJI 
JlJPaKUP+l-1 
DO 60 LL•J,JUP 
JC•JC+l 
ISLDETlllltJCt•KSLDETIL~t 

60 CONTINUE 
KKK•KKK+NREPILORS,JI 

88 l=l+KUP . 
GO TO 1 

95 CONTINUE 
GO TO 97 

952 DO 953 JCal,NPART 
953 ISLDETCill1JCl•KSLDETIJCI 

97 CONTINUE 
NELOSllCFl=NPARTP 
NELCSCICFl•NPART-NPARTP 

98 CONTINUE 
CALL CONTESCllltlCfl 
GO TO 300 

450 WRITEl614201 JJJ 
420 FORHATI' DETT•,13,•HAS BEEN THROWN AWAY 1 1 
300 CONTINUE 

ICFT" ICF 
RETURN 
END 

_103 



SAMPLE OUTPUT 

' ·- .. -~ 

***********TOTAL Cl*********** 
FOLLOWING ARE WRITTEN AFTER l PROJECT JON WITH l .. OeO AND Ml• OeO 
IN CONFIGURATION 1 THERE ARE 3 PROJECTED DETTS 
0.408248300 1 2 3 5 8 10 
0.408248300 1 2 3 6 7 10 
o.408248300 1 2 3 6 8 9 

IN CONFIGURATION 2 THERE ARE 3 PROJECTED DETTS , 
-0.408248300 1 2 4 5 8 9 
-0.408248300 1 2 4 5 7 10 
-0.408248300 1 2 4 6 7 9 
IN CONFIGURATION 3 THERE ARE 6 PROJECTED DETTS 
0.000854982 l 2 4 5 10 15 

-0.000854982 1 2 4 7 10 13 
~0.000854982 l 2 4 5 8 17 
~0.000854982 l 2 4 0 9 13 
•0.000854982 l 2 4 6 1 11 

o.oooa54982 1 2 4 6 9 15 
JN CONFIGURATION 4 THERE ARE 3 PROJECTED DETTS 
0.012418971 l 2 5 8 9 12 
0.012418971 l 2 5 1 10 12 
0.012418971 1 ' 2 6 7 9 12 

JN CONFIGURATION 5 THERE ARE 9 PROJECTED DETTS 
0.034923114 1 2 5 8 9 24 

~0.017461557 1 2 5 7 10 24 
0.030244304 1 2 5 1 8 26 

.0.017461556 1 2 6 1 9 24 
~0.030244303, 1 2 5 6 9 26 
.0.010244101 l 2 1 8 9 22 

0.010244304 1 2 5 9 lo 22 
0.042771904 1 2 5 6 7 28 

-0.042771904 1 2 1 9 10 20 
IN CONFIGURATION 6 THERE ARE 9 PROJECTED DETTS 
-0.030244304 1 2 7 8 10 21 

0.017461557 1 2 5 8 10 23 
-0.042771904 l 2 8 9 10 19 

0.030244303 1 2 6 9 10 21 
-0.034923113 1 2 6 7 10 23 
-0.030244304 1 2 5 6 10 25 

0.017461556 1 2 6 8 9 23 
0.030244303 l 2 6 1 8 25 
0.042771904 1 2 5 6 8 27 

IN THE CONFIG SYMMETRY ABSENT IS 7 
IN CONFIGURATION 8 THERE ARE 6 PROJECTED DETTS 

0.000854982 l 2 3 5 8 18 
0.000854982 1 2 3 6 7 18 

-0.000854982 1 2 3 5 10 16 
-0.000854S82 1 2 3 6 9 16 

o.oooa54982 1 2 1 1 lo 14 
0.000854982 1 2 3 8 9 14 

IN THE CONFIG SYMMETRY ABSENT IS 9 
IN CONFIGURATION 10 THERE ARE 3 PROJECTED DETTS 
-0.002974576 1 2 3 6 10 15 

0.002974576 1 2 3 8 lo 13 
0.002974576 1 2 3 6 8 17 

IN THE CONFIG SYMMETRY ABSENT IS 11 
IN THE CONFIG SYMMETRY ABSENT IS 12 
IN THE CONFIG SYMMETRY ABSENT IS 13 
IN CONFIGURATION 14 THERE ARE 3 PROJECTED DETTS 
-0.012416971 1 2 5 8 10 11 
-0.012418971 1 2 6 1 10 11 
-0.012418971 l 2 6 8 9 11 
IN THE CONFIG SYMMETRY ABSENT IS 15 
IN CONFIGURATION 16 THERE ARE 3 PROJECTED DETTS 
-0.002974576 1 2 4 5 1 18 

104 



VITA\ 

Surendra Kumar Shrivastava 

Candidate for the Degree of 

Master of Science 

Thesis: ELECTRIC DIPOLE TRANSITIONS IN CARBON ISOELECTRONIC SEQUENCE 
UNDER PURE STATES OBTAINED FROM SUPERPOSITION OF CONFIGURATION 

Major Field: Physics 

Biographical: 

Personal Data: Born in Jhansi, India, December-17, 1942, the son 
of Mr. and Mrs. J, S. Lal. · 

Education: Graduated from Ramnarain Ruia College of the University 
of .Bombay in.1963 with a Bachelor's degree with physics major 
and mathematics minor and in 1965 with a Master's degree in 
physics. Completed the requirements for the Master of Science 
degree at'Oklahoma·state University in May, 1971. 

Professional Experience: Graduate Teaching Assistant, Department 
of Physics, Oklahoma State University, 1968-1971. 


