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PREFACE

This thesis contains the new calculations made on F+++ Oscillator
Strengths using wavefunctions which describe symmetry projected states
and contaln non-dynamical electronic correlations. These results are
much more accurate than those obtained with simple Hartree Fock wave-
functions.

The Z dependence of oscillator strengths of different transitions
in carbon isocelectronic sequence is examined by showing them graphically.
This helps in. predicting oscillator strengths for six electron ions with
large Z. The improvement in the numerical values.of oscillator strengths
through the inclusion of correlation effects ia strikingly shown in the
graphs.
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CHAPTER I
INTRODUCTION TO THE PROBLEM

Calculations of oscillator strengths and transition probabilities
have been done before, using wavefunction, which are not . rigorous eigen-
functions of L2 and'Sz. These wavefunctions are obtained by using the
configuration interaction method, as described by Oksiiz and Sinanoglu
(1).

It is possible to have wavefunctions which are exact eigenfunctions
of L2 and Sz, if the wavefunctions are projected out using Lowdin's (2)
projector operators or, if they are formed out of .a closed set of -de~
terminants. This-will be explained in detail later onm.

It was realized that'a purel state was needed in . order to make a
computation of oscillator strengths and the electric dipole tramsition
probability. Then a comparison may be made of these results with those
obtained when the functions used are not exact eigenfunctions of 1 and
s2,

Okstiz and Sinanoglu.(l) have made CI calculations of energy and
wavefunctions using determinants describing correlations depicted by omne

and two particle excitations from Hartree-Fock state. The important

point here is that the wavefunction, which is a linear combination of

The states obtained after Lowdin's projector operator has operated
on the configuration interaction (CI) wavefunction will be referred to
as pure states. The simple CI expansion will also be referred to as
superposition of configuration. '



determinants in which just one and two particles excitations are.con-.
sidered may not be sufficient to give the required symmetry of the state.
One ‘method used to get a function of required symmetry is the obtaining
of .a closed set of ‘determinants. That is, one obtains an extended set
of determinatns by operating with ‘the (M+M_) operator (this does not

change ML and M, value of determinants) on.all the determinants obtained

S
by one and two particles excitations from the HF state. This-operation
of (M+M_) is continued on the newly obtained set until no new set of -
determinant 1s obtained. This-final set of determinants is called a
"closed .set'. This is a closed set of detérminants which has the ML and

M, value with which we started: It also has in it terms which have more

S
than two particles excitations. This closed set of determinants guaran-
tees that a pure state can be.obtained. from a linear combination of -some.
or all of these determinants. Oksiiz and Sinanoglu found ‘that the energy
calculated using a set of detérminants with at most one and two particle
excltations from Hartree-Fock sea and a.closed set of detérminants dif-
fered.by an.amount less than .005 eV.

On the other hand, if one uses an unprojected CI wavefunction ;and a.
pure.state CI wavefunction obtained by using Lowdin's projector opera-
tors on.that CI wavefunctions, the energy calculations would show the
same result, This will become clear using a éet.of-equations. Hamil-
tonian will be set up in a truncated basis. Then this approximate .
Hamiltonian matrix will be diagonalized. This will yield eigenvalue of ‘

approximate Hamiltonian. A wavefunction can be written as sum of HF

part and correlation part, therefore let

Y= bt X [1]



such.that:

> =1 [2]
and

<grh>= 0 [3]

Equation [3] implies that correlated part is orthogonal te HF part.

1f [2] and [3] are satisfied, then

Hl¢o + §> = E¢ + )-(-[d)o + §>\and'E + S(. = <¢OIHI¢O> + <¢0|H|)_(>

s

(o] [oX

these are.certainly true for exact X and H but are also true.for any.
approximate x -and H, where H is a matrix obtained in truncated basis

set (ref (1) footnote 15). For eigenvalue of approximate non-relativis-
tic Hamiltonian, when the wavefunction is expanded in a truncated basis

set, we have:.

Eapproximate = <turlHlégy + [4]

{

Next we try to write Eapp in terms .of a projected-function. Projection

operator has the following properties:

@A) P = P+, P is Hermitian
(®) P2 = P, P ig idempotent [5]
(C) HP = PH, P commutes with Hamilteonian

In.terms of projected wavefunctions expectation value of energy becomes.

Boop = typlERlegy + x> [6]



= <bpplPH|byp + %> [7]
_ ot

= <P ¢pn|H|o + x> | [8]
= <Poo|H|on + x> [9]
= <¢HF|H[¢HF + x> [10]
= Eapp" Same as given by Eqn. [4].

Four types of .electron.correlation terms are included in y in addi-
tion to HF part (1) to get a wavefunction as expressed by Eqn. [1].
These are:

1) 1Internal correlation,

2) Semi-internal correlation,

3) Single particle all external correlation, also called polari-

zation effect,

4) Two or more particle all external.

First two types.of correlations ocecur in open shell only. Single parti-
cle all external correlations occur in.both, closed and open shell, -
However, within the first order corrections to HF orbitals in.the per-
turbation theory, the contributions from polarization effects in.the
closed shell are zero, As we go . to second and higher order -perturbations
they are formally present. The fourth type viz two or more particle all
external correlations are important in both open and closed shell sys-

tems.

Correlation Energies

The total correlation energy is defined as (1)



Boore = Fror ~ Frer) ~ Fwr = Enon-rer Eur
where ETOT =.total energy of atom and. ion can be obtained experimentally.
andvEREL = relativistic energy correction including spin orbit coupling,

which can.be calculated using a semiempirical procedure (1). This de-

termines E If we have the exact correlation function y then:

CORR"

Eyon-rer = “OuplBlOmp ¥ Xqne *Xp X

where Xp includes semi-internal and polarization part of correlation.

XU is all external correlation function.

Evon-reL. = Bmp T Eine P BT Ey
Eyon-rer ~ Bmr = (Byge tEp) tEy
Ecore = CBine T ER) T Ey

or E +>EF) and this now gives an explicit expression

v = Ecorr = Bine
for all external correlation energy. We saw through Eqn: [10] and [4]
that energy does not change when using a projected wavefunction. In

the 'closed set' method the difference. in energy may be attributed to
diagonalizing the Hamiltonian matrix in a different basis seﬁ‘before and
after the set is closed. It is necessary in the above discussion to in-
clude the correlation effects in the wavefunction to make the wavefunc-
tion more accurate, As the formula.stands, for transition -probability,
it ‘1s.proportional to a matrix element which requires evaluation between
two eigenfunctions. An eigenfunction can be obtained»if'we:expand a

wvavefunction in terms of ‘HF part'and include an infinite CI expansion.



For all practical purposes, it -is very hard to comprehend the term 'in-
finite CI expansion'. At the same time, just the. HF part of the wave-
function is insufficient to compute accurate oscillator strengths for
many important transition.

Therefore for the practical purposes one must decide to what extent’
he wants to include electronic correlations while trying to improve a
wavefunction. In this work we include first three types of correlations
only, Thus, the total wavefunction will consist of the sum.of HF part,
correlation function arising from excitation of one or two particles
from the HF sea.to orbitals previously unoccupied in the sea (internal
correlation), correlation function arising from excitation of one parti-
cle from the sea.to an orbital outside the sea and one particle from the
sea.to an.orbital inside the sea (semi~internal part), and finally, terms
coming from excitation of a single particle from the sea to an ‘orbital
outside the sea (polarization).

Two or more particle all external correlations are not included in
this work, It has been previously argued (3) that in the calculations
of transition probability these may not be very important. Moreover. in
the polarization, semi-internal.and interal correlation function, only
one and two particle excitations from HF state are considered in obtain-
ing a wavefunction.

There are infinite number of orbitals outside HF sea, therefore,
limiting the excitation to 4f as it 1s done in this thesils work one is
truncating the CI expansion to a certain.term and thus one is neglecting
all the virtual excitation that could occur to orbitals beyond 4f. The
correlation functions are expanded in terms of Slater determinants which

differ from HF .state in one ‘and two particle excitations. In general,



functions thus obtained are not eigenfunctions of L2 and S2 (are not
pure states). We make them a pure state by applying projector operator
technique., In the projector operator method, all one does is to feed
the output of ‘a CI wavefunction to a specially designed projector opera-
tor program., The result is a pure state.

The difference 1in. the oscillator strengths and the dipole transition
probability using pure and impure states inspired this work.

To further stress the importance of a wavefunction which is eigen-
function of L2 and»S2 in obtaining the oscillator strengths, one should
take a glance at the two expressions of multiplet absorption oscillator
strengths for electric dipole transitions. First, in terms of the

N
dipole length lperator R = iél ry

t11g1y - 2 E(v'L'S') - E (VLS) L S §'
BROLS > VLIS =3 T+ D@ + D mEnubs ML=—L' MiE-s"

I<‘”vLSMLM B[4y s*MLM'>|

N
and second, in terms of dipole velocity operator V = iél Vi
L s L’. s’ 2
by § Lo '_
fv(vLS + v'L'sY) = 3

(2L + 1) (28 + 1) [E(v'L'S') - E (vLs)J

this equivalently can also be written in terms of acceleration operator.
These . expressions give exactly the same result if the wavefunctions ys
and energies Es are eigenfunctions and eigenvalues respectively of the

non—felativistic, electrostatic Hamiltonian

_ _1 X 2 N -z 1
= m2dh % Tah T 1§j Tl



Here atomic units have been used, thereforef =1, mg = 1, qe = 1. This
will hold true for the rest of the treatment too. With approximate:
functions, dipole velocity and dipole position results are not necessar-
ily equal, but one expects better-agreement between the two, the "nearer"
the wavefunctions are to the exact ones.

At places a quantity gotten by taking square root of products of .
oscillator strengths obtained using position .and momentum operators will
be used for certain.kind of comparisons.

Oscillator strengths and transition probabilities are also compared
when wavefunctions used have and do not have the electron correlation.
This 1s essentially an extension of work done by Westhaus and Sinanoglu
(3.

During the process of these studies one could also see nature,
properties and advantages.of obtaining a wavefuriction which has been
approximated such. that:it includes the electron correlation in addition-
to Hartree~Fock part.

Finally, to make an important point here, one sees that the Z-
depencénce of oscillator ‘strengths cannot be set aside. A graphical

representation of oscillator strengths versus %~ will be given for dif-

ferent transitions, which will be helpful in examination and interpre-
tation of some trends of variation in.  oscillator strengths.

A new serdes of calculations are shown for the 1D - 1D, {s » 1P,
and ID > 1P transitions from the configurations ls2 2s‘2 2p2 - 152 2s 2p3

for F using pure states obtained from projector operator. Also some

new calculations on the triplet-state transitions will be shown.



CHAPTER IT

HARTREE FOCK THEORY AND ELECTRON CORRELATION

Definition: Hartree Fock orbitals are those orbitals which satisfy
the HF equations.

HF equations are obtained using variational principlée on the ex-
pectation value of Hamiltonian when the trial function is restricted to
a single configuration. An equation gives one electron orbital energy
for a particular orbital: These orbitals are then explicitly obtained
using self consistency. Then, they are eigenfunctions of one electron
Hamiltonian., For a system of N electrons, a linear combination of anti-
symmetric product of these orbitals can be formed which will be eigen-
functions of N electrons HF Hamiltonian.

One. particle bare nucleus Hamiltonian is. (4);

°o 1 _2 z
hy =73 % r, [1]

First term 1s knietic energy and second term is potential energy of ith
electron., N particle HF Hamiltonian is:
N o

N
Hy = 3y (g #V) = 4By by [2]

First term is sum of bare nucleus Hamiltonian and second term is average
potential of ith electron in the field of rest of (N~1) electroms. *qi
is said to be HF potential of entire N electrons medium acting on elec-

tron 1.
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Non relativistic, electrostatic Hamiltonian for N electron problem

can be written as:

N 1.2 _ 2 1
_ i .2 r 1
i O T *rage Y [3]

This Hamiltonian can be broken into two parts as follows:

N v |
= I S L ,
B = Z, ( r tv ) * [i<i<]<N r, 13 i*l i] [4]

1=1 2 1

N
Where igl Vi has been added to first term and subtracted from second

term, with no net change in the Hamiltonian. Let us label this as-

H = H +H [5]

where Ho is defined by Equations [2] and [1], H1 is now defined as the

quantity in the second square bracket -in Equation [4].
Expression for Vi,'the HF potential 1s obtained from writing the HF

equation for a HF orbital U, as follows (5).

i

) z N dx, U] u* (2) (1B, )UJ(Z)
- %"Vl_ U, () - r—i-vUi(l) + [j-.§1 _

=7 ]U 1 = eiUi(l)

- (6]

P12,= two particles permutation.

The quantity in square bracket in Equation [6] is sum of differences of
two terms viz coulbﬁh (direct) and exchange potentials acting on electron
in orbital i. The integral terms can be written as:

dX

== j(2> [U (2) v, @) - (Uj (2) .Ui'(l)]

dX2 * dX2 .
= f ;—i—z—Uj(z) Uj(2) v, @) =7 ;-I-Z-Uj(z) Py (Uj(z) U, (1))
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- [s,@) - R, (W]o, (1) = 5,)v, (D) [6a]

where Sj and;R; denote the direct and exchange terms respectively. Note
here that for i = j the direct and exchange potentials yield equal re-
sults when acting on a particular HF orbital Ui and they subtract out to
zero. The summation term 1 = j is not included in Eqn. [6]. For a HF

orbital U, we have:

i
g dx Uj(2) (1&p )Uj(2)
Vi(l) Ui(l) = i1 / Ty - Ui(l) [7]

For electron 1 in orbital i and electron 2 in orbital j. Summation goes
over all j, except .j = 1. More explicitly for 1 = 1 and 1 = 2, Eqn..

[7] can be written as

N dx Uj(2) (1~ PlZ)U (2)

vl(;) U, (1) = 581 i) ” U, (1) [8]
§ dx Uj(2) (1~ p12>uj<z>
v, (1) U,Q1) = g2 ! = U,(1) [9]

In Eqns. [8] and [9] j = 1 and j = 2 terms are excluded. However, if we
include those terms, the potential terms are identical in both Equations

[8] and [9]. That is including the missing terms in Vl and V2 yields

another ‘expression whose action on Ul and‘U2 is the same. In that case

Eqns. [8] and [9] may be written as follows:

v, @) Ul(l) v@a) u 1) [10]

v, (1) U,(1) V(1) U,(1) [11]

where V(1) is the potential expression without any restriction .on the
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orbitals. Thus HF potential without any restriction on.the orbitals can

be written as

*
dx, Us(2) (1-P.,;) U;(2)
vy = b r—2.477 1t 3¢

hy : . [12]
i=1 T

Now HF potential may be defined in two ways viz through Eqn. [6] or Egqn.
[12]. This does not affect H in .Eqn. [4], however, H and H, are affect-
ed independently.,

Two expressions for HF potential are:

N - .
v, = jgi Sj(l) and [13]

1 - 3§ 1 [14]
V(1) = jgl sj( ) 1

where §5(l) is difference of coulomb and excliange potentials.

* .
§xzhuj(2)‘§1-P}2)‘?j(2)-

r

Sj(l) =[ with Sj(l) Uj(l) =0

12

From Eqn. [5], we have H = Ho + Hl.
Coo<e lule > = <o |H[g > + <o [H |4 > [15]
where ¢0 is antisymmetric product of HF orbitals

', E = E + E [16]

In the following lines we try to evaluate Eo and-El. [A] Evalua-
tion of Eo: we.know_that;-Ho is N particle HF Hamiltonian, therefore,
N
expectation value in HF orbital basis should yield Eo = iél €y that is

total sum of one electron orbital energy, summed over N electrons. This
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will be proved below.

We have
<4, [0,> = <A (DU, @)===-Uy (D |2 b, | AU, W)V, @)Uy ®)>  [17]

A 18 N particle antisymmetrizer, is Hermitian and has the following

property:
1 o
A= AT 1>§(-1) Pp [18]
At = 4 _ [19]
afa= a2 = AT a [20]

Ceo<ol|H | ¢ >

o a0

| o Iats (x -
<V, (1)U, (2)=-U W) |A ihilA(Ul(l)Uz(z) U (N))>

t T
But  A'Zh Th A zhA

<¢OIH§ [4,> <u, ()Y, (2)---U (V) 'i“iAlA(Ul 1)U, (2)---U, ())>

But  AA = A% = /AT A
<4 IHO | 6> = <U (1)U, (2)---U (V) |§hi ‘/IT[-IA(Ul(l)---UN(VN)-)>
= AL 0, (U, @)U, M [AGQ) +h(2) + -
H@) U, (1)U, (2)~--Uy (1)>
| ._.1'_. c’p
= YNL/c U, (1)U, (2) -V, D) | mg(_l) P h(l) +
h(2)=---h(N) [Ul(l)—-—UN(N)>
/AT

. g
N P ( o —_— . _——
= —-—NI_ <Ul(l)UZ(Z)——fUN(N)IZ(—l) P (egte) + eN)IUl(l)UZ(Z)

UN(N)>
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s
=

g
< U, (DU, (2)-=-U (M |2(-1) Pp|U, (1)U, (2)---

€ + €, +,€3 + -—- &N
UN(N)‘>-
N
= g + €y + €q + = ey = i§1 e f Eo [21]
[B] Evaluation of E,*
We have
El‘ N <‘#callill(”o)
1
_<M%umgn~"%mﬂgi§;-§wnMwﬁnanm»

[22]
Now proceed on the same lines as [17] through [21]. Note that in [22]

Eqn. [14] has been used.

1

B = AT 0 U@ty @] 7 2= = VOAC T, @)---u,00)>
13 [23]
e c
- % <UL (1)U, (2)==-Uy () |iEj»r—1'j-|§€"1)‘ ? P U (U, (2)----Up (W)
g
© OO O IOIECD T 2 0y @@y

[24]
The first term has two electron operator between two N electron functions
and the second term has one electron operator. Because of orthogonality
of orbitals we know-that all the matrix elements with more than two
particle permutations will be zero in the first term and all the matrix,
elements with more, than one particle permutation will be zero in the.
second term. This simplifies evaluation of [24] as the first term re-

duces . to 'sum of one and two particle matrix elements and second term to
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sum of one particle matrix elements, . Rewriting [24] as follows:

AR AGEE OIS rlj §V(j)|2(-l) ° P (U, (1)---U (¥))> [25]
EARLACOLN G —I; | §<-1> Bpp Uy (DU, (2)>]
N
& vy v @) [26]

The first term in expansion [26] is:

[« (1>U (2)|-———h1 (1>U (2)> - <U (l)U (2)[———4U (2)U (1)>]

<] T3 i3

These are simply differecnes of coulomb (direct) and exchange integrals.

Denoting them-by.(Jij - Kij) we get first term of Equation [26] as

- K Now look at second term in Eqn. [26]. It can be ex-

1517y = Kyl

panded as follows:

N
i *
(Ep /@ U@ V@) U Q).

%
= ;I SdXg U (D) [351 / ‘

3 Ju, (1)

* *
dX2 Ui(l) Uj(2) (1-p

r

12)

N
T, S ax S )
Z, /ax - U3 (), (1)

121 j21

]
{2

12

. UI(l)U;(Z)(l—PlZ) i

=5 1Ay s ™ Ui(l)Uj(Z) * % Ioax, S oax,
*

qi(l)Uj(2)(1—P12)Ui(1)Uj(2)

r

. Any term with i=j is zero.
12

1-F 12
(2)] |U (1)U, (2)> + <U (2)U (1)|

|U (2)u, (1)>
3 12 J 0)

= .Z<.[< U (l)U

SERACRCIN (2)| 12IU L (DU, @]
1o



2

2,5,L<v;

1240344 -

1
;—-ﬂUi(l)U

(l)Uj(Z)l
12

3

1.

Kij

(2)> - <, (V)|

1

S———r

T12

Putting all the terms together of Eqn.&[26] we get

= . - - - -
1 = g 5l@R ) - QK )+ K O]
o_ (1 -
1" 1< T Uiy [27]
Equations [5] and [16] combined together .give.
B - Bgp = G, +H) - (B +E)
= (HO-EO) + (Hl-El) [28]
LY e[t -k - > v ] [29]
121 T8y R E e A
N .
"iél ey + 1<4 mij [294]
It is the second term in Eqn. [29A] that is.responsible for corre-.

lation effects and is known as fluctuation potential (4).

expressed in two ways depending upon how V is chosen,

[14], fluctuation potential will be defined by:

L
14 ™13

N
153 (¥;;' gy T Ryy) Tk 3k
5 (i N
1< 'ty o3y TRy T gE gk
(L. - - . -
154 (rij + Jij, Kij) igj_(sj(i) R

" N "
Ry - I (8, (1) = Ry (1))

"

3

_Sj(i)

1)) -

F

16

|, (21, (1)>]

This can be

or V given by

(Sj(i) - Rj(i))

4568, -

[30]
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Collecting the terms Equation [30] can be written as:

1

1<y Pyy " 1§jE(r_iJT+ Ty~ Kyy) - (8,0 - Ry() - (8, (1) - R, (5)
l " LIS ,
- w16 - R+ (s, - Rj(J))}] [31]

This is the expression (9) for fluctuation potential that is responsible

for electron. correlation.



CHAPTER III

CONTIGURATION INTERACTION IN MULTIELECTRON ATOMS

The aim of this chapter may be summarized in brief, as that ‘of
finding eigenfunctions of a Hamiltonian of N'electrons system. The

Hamiltonian may be written as

N N '
2 2 2 —
He -2 5.5 28 5 &
- - 2, = [1]
2™ iag LY i Y

where Z is nuclear charge and Hartree's atomic units have been used.

There .exist certain. Hermitlan operators which commute with one another

and with the Hamiltonian described‘in,[l].,,These are Lz, Sz,'Lz, Sé’-

Parity, ete. More explicitly

= L2+L2+L2‘

Lz‘and Sz are components of L and. S operators on .the Z-axis respectively.

For a complex atom consisting of N electrons, L and similarly

3L
x: 1=1 "xi

N
L., L. Also Sx 151;Sx14a“d similarly.Sy, Sz' These operators .

y* Tz
satisfy the following algebra:
L] = [yl = L] = o (2]
e = MLl ML) = el o [3]

2 ‘ 2
[Sz .52] z [Sa N S ] = ESZ :5 J = O [4]
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n

L Lyl = Lz | [ly,Lz)- Rl , [z.l=] = iAly [5]

(S, 5y

L}

S, , [59.5]- thSe , [52.5]= (hSy (58]

Equation [2] through.[4] are examples of operators which are said to
commute, Eqn. [5] and [6] are example of operators which do not.commute.
The components of the total angular momentum L of any number of parti-
cles satisfy the same commutation relations as those of the angular
momentum of a single particle (6).

Two commuting operators have many simultaneous eigenfunctions (6),
in fact as many as, that they form a complete set, A 'complete set' will
be defined little later, This means corresponding to Equation [3] we

can find wl,l%, u§vsuch that

Hy = Ey , |_'2'\,|)1 = L,(L1+1)'l|a]>, Lz'lp.::ML,’lp. ,§l|.'/=. 5,(5.+|)Qpl ,Sz’q’ﬁMs;’LPI

2
H w:.: E2 wz > L '\'PZ = L2 (Lz+|)1’»’z ’ Lzl\luz:MLl(q’Z ’qu‘rzi 52(52."")(1,)2 ,SZ’LPZ_-;MSZQPZ

MY - Esly, b Y = La(las) ¥y | LY = Mgy, Sy = Ss(BsvDy, Sz sy

where all operators are N electron operators, qi. wé, w3 are eigen-
functions of corresponding operators. -

The operators Lz, Lz’ SZ, Sz are known ‘as. symmetry operators.

They all commute with the Hamiltonian given by Eqn. [1] and they
commute among themselves. Eigenfunctions of such a Hamiltonian are also

eigenfunctions of the above mentioned :symmetry operators.

As we know. it 'is hard to calculate exact eigenfunctions of Hamil-
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tonian, we must calculate approximate eigenfunctions of Hamiltonian, how-
ever, we will\demand.that'these~approkimate.eigenfunctions“of Hémiitonian
be exact eigenfunctions of the symmetry operators.

The problem here is to find a basis vectors or basis set of func-
tions for the expansion ofueigenfuﬁgtions'of»Hamiltonian. At -this ‘point
we may. define the basis vectors.

Definition:. In an n dimensional subspace of Hilbert ‘space any n
vectors ﬁl’ ﬁZ"’ﬁn are said to form a set of 'basis vector' or a com-
plete set in that subspace if any vector ; in that subspace is. expres-~

sible as a linear combination of the vectors i Formation of basis

1"
vectors is not unique however any number of bases for this finite di-~
mensional subspace. have the same number of basis vectors.viz.n. For

more detail a book in Linear ‘Algebra (7) may be consulted. A more gen-
eralized form_of the above treatment applies to entire Hilbert spaces.

To .expand an eigenfunction of one electron.Hamiltonian one could choose
complete set of one electron orbitals. For a many electron system one
could consider complete set of determinants :made up of antisymmetric.
products of these one electron orbitals. One could also .choose a linear .
combination of these determinants with specified properties. These
linear combinations will be called symmetryfadapfed]unperturbed functions.
and will be explained later, The symmetry adapted basis or the deter-
mintal basis will be "complete'" for N electron problem provided the

bagis for one electron problem was chosen té be. 'complete'. Complete-—
ness of the bagis set is necessary for the expansion of eigenfunction of
Hamiltonlan. The HF one electron spin orbitals are.eigenfunctions of one
electron Hamitltonian. They form a complete basis set for .the expansion

of any .one electron-funictions in one particle Hilbert space. For a
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multielectron system we have to choose a basis set in a.different vector
space viz N particle space for N particles problem. We.can construct a
set of .functions spanning the N-particle space by taking all possible
antisymmetrized products. of one particle orbitals. One choice of basis
functions in this N-particle space would be determimants.made up of
antisymmetric product of one electron HF spin orbitals. If we make an
approximation:that we have K basis functions in one particle space, we
can form (ﬁ) = fﬁ?%éﬁjT antisymmetric products of one particle orbitals
to give (ﬁ) determinants having N number of orbitals in each one of
them. These determinants span a'(g) dimensional subspace of the entire

N particle Hilbert Space. Therefore, we can now expand approximate

K
N)'

These determinants can always ﬁe made eigenfunctions of Lz and Sz‘

eigenfunction of Hamiltonian :in the.set{'{Ai} i = 1,2,00000000ef

i.e.; they will have a fixed value of ML and’MS.

The second choice of basis functions spanning the truncated N par-
ticle space is that formed by taking linear combinations of the above
mentioned determinants such that linear combinations are eigenfunctions
of symmetry operators:Lz, SZ, Lz,,Sz. In forming-thiS'basia; known as
symmetry adapted, we shall téke'linear combination of determinants, all
of which in any one linear combination belong to the same ¢onfiguration,

and have the same ML and M value., This gives a basis in which the

S
functions are symmetry adapted.

e ¢i = § bij Aj‘where all the A's belong to same.configuration
and have .a fixed ML,>MSVa1ue\in a particular linear combination. There-~
fore, a new basis set is: '{¢i} = 1= 1,2,..r.(§) provided the set A's

was closed in the sense of description of Chapter I. The basis sets

{¢i} and'{Ai}‘span the same~(§) dimensional space. = Thus .the choice of
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the basis function depends on tlie type of the problem one is dealing
with, Changing the basis function from determinantal form to certain
linear combinations of deteérminants is equivalent to rotation of a .co-
ordinate system in (g) dimensional space.,

One electron spin orbitals we will use are simple products of a.
spin. function and an orbital function. They are assumed to be ortho-
gonal to each other (orbital part and spin part, both). General form

of a single .particle orbital may look like as:

_ e :
P o) - R (o) Y, (09) KER, [6]

hﬂ.mams

where n, &, m, ms are the usual quantum’numbers with

n = 1, 2, ... an integer
L = o,_l; 2, ..o <n
m2l= 24.9-- "2:
S = 1/2

= +
m +1/2

)
0 1s spin variable of spin function space, Y2 are usual normalized

spherical harmonics. x ‘is the spin function of the spin orbital. The
radial part.Rnl(r) is expanded in terms of Slater type orbitals as

follows:

I Eg@
Rre(= 3 A £ e [71
L

An2 are the expansion coefficients. Inl are integers indicating which .

S5T0s were considered in the basis when expanding. £ _ are optimizing

nf

parameters chosen such as to give minimum energy of the state under con-

sideration. The detail of method of obtaining the radial part is de-
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scribed in tables of atomic' function (8). As an example consider Table
01-03 which describes on the top line 2p state of Boron from configura-

tion 1522522p. The radial part of ‘1s HF orbital in terms of STO isy

R = .92109 ro-e-4.466lr + .07847 t° o~7-85T _ 000361 o+832r

10

-1.1565r -1.91197r

+ .00085r e + .00002r e + .01ll46r e 3+3213r

where ‘as the radial part of 2p HF orbital in terms of STO is

R21 =- ,54005r e—°8783r + .38245r e_l;3543r + .13208r e_2‘2296
+ ,00957r e—s'37 and so on,
Thus A, I _, & are listed in the table for the expansion with STO's
nl nl nl

as the basis functions. Consider a two electron system.Hamiltonian for

a two electron .system can be written down as.

2 = 2 2
_ -h 2 Ze 4
HU2)= -2_51,21 Vi Zi T * Xz
= L:

(Z = nuclear charge, Hartree's atomic.units have been used). Suppose
we want an exact eigenfunction of this Hamiltonian, with the help of
configuration interaction for the configuration lsz. The simplest pos-

sible configurations one can think of for a two electrons system are

lsz, 1ls2s, 232,'232p, 2p2, 1s2p
Using the rules of vector coupling model and Hund's rule for equivalent
electrons one can find the different possible states that come out of

these configurations

Configuration Possible States
lS2 lS
1s2s s, %
2 1

2s S
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1
282p Py 3P,
2 1 3 1
1
1s2p P, 3p

In order to construct a waveéfunction of a given symmetry (for example
lS) one has to consider the -contribution from all configuration to the
wavefunctions which give lS symmetry. Then an approximate wavefunction
of a particular symmetry will be a linear combination of the symmetry

adapted wavefunctions which have.that symmetry present.
15 15 i 1 1
S s 5
. +C d> 2
" r\ksz = C1¢152 + G c’>1':72S+ Cs 43252 4 'ep [8]

(For given ML and M_, both are zero here)

S?
This is an approximate eigenfunction because the expansion is in terms
of a basis set which is finite .in dimension. In other words it 'is a
truncated basis expansion of an eigenfunction. There are as many ap-
proximate wavefurctions as are the number of basis set functions, Num~-

ber of symmetry adapted basis function of a given symmetry coming from

different configurations may be labeled as follows

1

¢is 1=1,2,3, .o ny
S

lP

¢i i = 132,3, --‘30 nl

P
and so on, i denotes the configurations. Thus in the above notation

Eqn. [8] can be written as.

15 nl 15
. = oftoN [9]

s .
=1

The coefficient‘Clbwill have highest value in comparison.to C,, C3, coe
etc. This method of obtaining a wavefunction in terms of linear com-

bination of another basis set of functions is called the method of con-
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figuration interaction. The method of obtaining the expansion coeffi-
cients whether -a function is being expanded in terms of {Ai} or {¢£

is exactly the same viz that of diagonalizing the Hamiltonian matrix.,
An example of obtaining symmetry adapted function from determinantal
functions may be described here. Determinanal functionsg for p2 config-

uration are given by Slater (5) as

Bi=(2pp 2px) @2 (2B 3ep)  @s=(RP 2R«)

with ML = 0 and MS = 0. Symmetry adapted wavefunctions of symmetry

3P, lD, lS can be formed using a linear combinations of the following

determinantswith,ML = 0 and MS =0

="
q)P: é. (o1+az)

{

CPD - _j;_ (A1-42+2A5>

]

CPLS - 1 (A.-Az-As)

J3
These functions are in no way eigenfunctions of two particle Hamiltonian
but are exact eigenfunctions of symmetry operators., Determinants.as
such have no symmetry property, but a linear combination can give a
function which has-a given symmetry. The coefficeints in front of the
linear combinations are obtainable from group theory and symmetry -
properties or by using a projector operator to. get a symmetric state.
Expansion of eigenfunction in terms of'{¢i} and the advantage, will be
discussed now. To begin with, we write the Hamiltonian matrix of the
problem in ¢ basis. - Hij is a matrix element of the Hamiltonian matrix

between symmetry adapted states ¢i and ¢j, The Hamiltonian matrix will
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now look like

H = (BIHIE> RIHIGD GIBIgD -~ — EIHIRS
&Hld)  (BHIR> (BHIg> - .———<43\H|}¢.<>

l | l I ! |

A

| | | I : |

I ' I I | [

| } | I i ]

| ! ] | |

T R
P (17 SR S NP I S’ 1

The Hamiltonian consists of one and two particles operators and ¢s are

symmetry adapted functions; therefore, an element H . of the Hamiltonian

1]

matrix vanishes if ‘any of the symmetry indicating quantum numbers (L, S,

My, M) differ in ¢, and ¢

5
€5 [ 3g

<4>L |H|43. > =0 y A= :l--—--—l’\is s J= 1_-“__055

3, ‘

<O IHI® > =0, b=t N, Jslo . Nap

But,
) is -
LB HIDY O, Li= e Nig

This means formation of Hamiltonian matrix in a symmetry adapted basis
gives a number .of off diagonal terms as.zero to begin with. That is to
say Hamiltonian matrix is obtained in a block diagonal form. It is much
easier to diagonalize a matrix which is in block diagonal form than one
which has -all the off diagonal elements non zero., In-the symmetry

adapted basis it will look like
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15 Motrix )
nisx n‘s

1F’F4Qxﬁx
nip’( nip

A matrix
: KX K
— e

That is a number .of off diagonal elements will be zero to begin with.

Therefore, obviously it is advantageous to work in symmetry adapted un-
perturbed functions as basis functions. Once agreed on this, let us

see how to obtain the CI coefficients in the expansion of .y in terms of
K
CP. We ‘had v ='i§l'cfpi in (N) dimensional space. Expectafion value of

energy can be written down as

{YIHI Y
{Yivp

CECRIFGS D
T TCC < lnleD
TECG <&ldd

$s form an orthonormal basis function.

Z; Ci@; <(EJH|45>
F GG &
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[ * % . e
. ES CiCéy = 7, Cigi Hy
L3 i
or transfering the terms on one side we get

»*
_%:CLCJ' (&3 E- H':J) = 0O

or

?—:% CLC‘SUE'Hi:i)C_J'= o

*
note here that Ci are arbltrary coefficiepnts,  For a fixed value of i
we get
> { 2 [ 4
ZCL(SI,JE—H13>CJ=O =22, 09
Jd
This gives a .set of Eqns in which CI'or Cj could be used as a variational.

parameter to minimize energy. Considering CI as the variational para-

meter differentiate each Eqn of -the set by corresponding CI we .get

5 (ByE-Hy)G = ©
J

This is a set of (E) homogeneous ‘equations. The (E) sets of Cj's and
E's are to be determined simultaneously. Written out explicitly they

have the form:

(E-Hi)C + HieCa+ HisCap————mm— - tHigp Gy = ©
Hat Ci +(E-He2)Ga#—————— ————— +Haep Cry = ©

| ! =0

I ' =0

| | =0
H(.;,MQ + H(§)2c2+ ————————— +(E’H('\5)(ﬁ))C(§)=o

This set of Eqn. has a solution Cj =0, j =v1,h(§) which 1s trivial.

Neglecting that, these also have a:solution when.determinant of coeffi-
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cients 'of Cs equals zero. In other.words.when.dét|§ Gij E - Hijl =0
i=1,2 ... More explicitly,
T(E-Hn) Haz  Ha — — — H1(\;)
Hag (E-Ha2) Hza — — — Hagg
- - - - — - — | =0 0o
Heor  Heoz Hoos———— —- B-Hoge)

In this determinant everything is known except E. Solving the equation
(known as secular equation) we come out'with’(ﬁ) solutions as the deter-
minant on expansion, will give a polynomial of the;(ﬁ)th degree in E

therefore,hgp-(ﬁ) roots. Label them as-Eo, El’ EZ’ e in as-

(E)‘l
cending order of magnitude. The lowest energy Eo is an upperbound to.
lowest energy obtained from an infinite CI expansion for the wavefunc~
tion which would have been an exact wavefurction. Substitute .the
lowest ernergy viz Eo in the (ﬁ) set .of Equations [10], we are left with
(ﬁ) equations and (5) unknowns. Solve these equations simultaneously

to get C,s the CI expansioncoefficients. Associate them with the cor-

|
responding ¢ to get y. This was the method of expansion .of approximate
eigenfunction of Hamiltonian in.the(ﬁ$i} basis. One could also set up
the Hamiltonian matrix on exactly the same lines as described above, in
the determinantal basis.

Use of determinantal basis for expansion of approximate eigenfunc-
tion: of Hamiltonian of appropriate. symmetry requires that'the-set~{Ai}
be closed in the sense of description of Chapter I. If we do not have:
.a closed set of determinants. then we first form an approximate eigen-

function of Hamiltonian and project out the appropriate symmetry using

a.projection operator. This is the -approach used in this work..
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MET calculations ((1l); note 26) gives determinants which have one
and  twoe particie excitation from HF sea. These determinants.do not
necessarily form a closed set. Therefore, an approximate eigenfunction
is obtained from this non closed set of detérminants and then a pro-
jection operator 1s operated on this function to. get a symmetric, ap-

proximate ‘eigenfunction of Hamiltonian or -a pure eigenstate,



CHAPTER IV
CORRELATION EFFECTS IN CLOSED AND OPEN SHELLS
Closed Shell System

A subshell will be said to be closed if all of the available or-
bitals in it are occupied by electrons. That is to say if M orbitals.
are available -in a subshell and if it is a P particle problem, then the
subshell will be closed if P = M.

A closed shell system is comparatively easy as far as description.
of correlation function is concerned. This is mainly because, according
to.many electron.theory (MET) descriptions (1), only external correla-
tions occur in a closed shell. - Generally speaking one and more parti-
cles can.be virtually excited from HF Sea to orbitals outside the HF
Sea. However, dominant contributions come from pair excitations and
unlinked clusters of pair excitations.

This and other details will be explained in.the chapter as we pro-
ceed. Therefore, external correlations predominatly consist of virtual
excitations of even numbeér.of electrons outside HF Sea.- The external
correlations in closed shells are said to be dynamical, as they depend
upon' fluctuation potential.

In -the last chapter the method of finding an approximate eigen .
function -of Hamiltonian using a configuration interaction method was:.

discussed.. In this chaptet we will show that ‘such-a wavefunction can

also be written in terms of electron correlation functions. The coef-

31
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ficients in the expansion of the correlation functions may be determined

by comparing the wavefunction with that obtained from CI, or by comparing
the wavefunction with the expansion .of the wavefunction in terms of per-

turbation theory.

A word regarding HF Sea is in order. It is the minimal set of
symmetry orbitals that are necessary to construct 'a set of N particle
basis functions for one or more irreducible representations of the
symmetry group of the Hamiltonian. Minimal set refers to the set of -
minimum orbitals that must be included to close the irreducible repre-
sentation arising from a particular configuration:. For Be with config-
uration 182 232'the minimum orbitals needed to congstruct HF Sea-are four
viz (1sa 1sB 2sa 2sB). One could include other orbitals in this, but .
they are not ‘needed.

Consider another example; that.of a carbon atom in the ground state
configuration 1322522p2. One needs.a complete set.of 6 particle, basis
functions constructed from the set of orbitals1 (1sa, 1sB, 2sa, 2sB,
2p_a, 2p_8, 2poa, 2poB, 2p+u, 2p+B).

Therefore, a set of the 10 orbitals given above forms HF sea for C

atom. Considér the ground state of the Be atom for .a closed shell.

lIn the above and the discussion to follow we put the orbital labels-

in.one to one correspondence with integers.

1 - 1sa 6 - 2p B
2 - 1sB 7 - 2pou
3 - 2s0 8 - 2poB
4 - 2sB 9 - 2p.a

5~ 2p_a 10 - 2p 8
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Ground. state configuration can be written'as.lsZZS2 with ‘the term symbol

13. The HF determinant is

q_)o = (15 15p 25« 25p) = D, = L1224
An exact wavefunction of lS symmetry for the ground state of Be atom in-

terms of CI would be:
v ~
rLlJ = @DO + C1<1>1 +C’aq>2+-———~——————— [1]

¢0 i1s the HF function and & ¢4, etc., are the symmetry adapted

1 %2 %3
functions which have 1S symetry but arise from different configurations
of four electrons. The different configurations come from one, two,
three, etc., particles' excitations from HF sea to orbitals outside the
sea. Symmetry adapted functions from all such configurations will have
to be considered in expansion [1]. The ¢'s in Equation [1] are. linear
combinations of Slater determinants. We can collect all the determinants
in the expansion [1] which come from one particle excitation, two parti-
cle excitation, three particle excitation, etc., and correspondingly
label the coefficients. Then, the CI expansion [1] can be written as

sum over infinite virtual. orbitals, i.e.,

is
poo= Lo +CAL + Calg e

or
1
Y S Ao + o% Cizag Aa (PO R > )+ ()

_.--(%
Other terms of this kind Z Aq. (CPL (15<-6 () P )) N (2
5<i<]

[~ ] -
Other ‘terms of this kind ¢+ Z CLJIQ4 A4_ (q{'(')ceo)(ﬁz(s)cp4<4))+ @)
BEl<j<R

Other terms of this kind -+ 2 C kQ,A4- (C‘P (1) (2)@(5)%(4)) [2]
5<L5J
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There are.4 infinite sums of the kind of the second term, (g) infinite

sums of the kind of the third term. (g) of that of the fourth term and
-y = N -

so on in the expansion [2]. Here NC (n) ET?E:ETT-A4.antisymmet.

n

rizes the product. of four orbitals in the paranthesis: Henceforth, A4

will be called simply an antisymmetrizer, In -terms of correlation .

corrections, the approximate wavefunction can be written as (4)(1):

4

For a four particle system. X will be given by:

G+ X with (B0, (Bld>=! [3]

poy
1

4 A Ay Ay
=3 {f} %({4% -2 {UL kf + § Usazaf [4]

i=1 1<y 1<o<3< <4

Where'{fi},'{Uij} {Uijk} are one, two, three electron correlation parts

and . {U1234}-is the correlation part in which all of the four particles-

are virtually excited. More explicitly, the correlation functions appear .

as follows:
{fi} = IA4. { (¢i¢£q%C&.) figsg] . [5]

This is a symbolic notation indicating that the ith orbital (i = 1,2,3,4)
is virtually excited to orbitals outside the HF sea and is replaced by

A A
fiC£i), a one particle function. As an example, look at'{fl} and {fz}'

A A ~
{fit = 'J_]-Ti {(Cpisp(a) 2 B ))-ﬂm)} = {{15«} Lé]

16 22 0L B B )i} - Tl 1
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and so on. Thus, {?i} are four particle furictions, where as fi are one

particle functions. The two particle correlation function looks like:

Ay ~
(Ugl= 22 [ (hasme) Uglom %"“"ﬂ 8]

This is again.in terms of a very symbolic notatiom, meaning that : two
orbitals, i and j, are miséings Symbolically denoted by division by ijv
and'Uij, a two particle function, replaces them; so that the quantity
inside the large rectangular bracket is again a function of 4 particles,
As an example look at'{ﬁiz}:
A / 3

{Uilz} =§_(\Jiso< |sp} = %:' C'Pzé:) CPZG) 1(:;(123?5 } [9]
Thus,»eléctron correlation discussion is one way of interpreting the CI
terms. The correlation functions can be related to the coefficients in.
Ci‘expansion as follows. Let us,:for example, express a one particle

correlation .function in terms of‘CIt, Comparing [6] to the second term

of expansion [2] we get

11}

[<%) i
Lg's Cizaz+ A4 CASLASEXOIZIOY (0]

(=]
= Aq— (3:5 Cirza<h (0)902(2)%(3)%(4) [11]

The quantiﬁy iéS C1234CPi(l) is expression for one particle functi_on._fla
To express two electron correlation functions in terms of CI, equate

the .third term of [2].to»[8] so that
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Ay 0
(Ui} = S CuseAs [R@WB@e R @]

5&i¢]

= Aa [( \- QUB4¢p<1)cp<z>)cpcs) (4):’

BT [12]

Let us expand the two particle function U, appearing in [9] in terms of

12
virtual orbitals:

Uiz (x1,%2) = A.? 2 dtg.aA-CP(i) (2) [13]

5gi¢y

and substitute. this in Eqn. [9]

A
%.UIZ} = %14 Az (Z .d-Lja‘tC&(i)C%(z))c%@)c&(ﬂ [14]

gk
where
1 Sp
Aq— =—-f:l— PZ('I) P [15]
___1__ -
= ZU) P (16]
op = number of Permutation
- -1) P (U-P
ALAz - e Za ) ( 12) [17]

P are all possible four particle permutations and P., is particle 1 and

12
o
2 permutation. E(—l) P P 15 .the sum of. the identity plus 2, 3 and 4

particle permutation. The group of .elements A, are contained in the

2
group of elements A4. When multiplied, we get the elements. of group A4.

In -general,
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AuAn = 0T An N<N [18]
S, A'4.A2 = JE—! A4

Al A o 3
s, {UQ} - {2 7-5_—?-|:(5\<Zt<jdu 34 CQﬁk@(z)) QI (4) 101

Comparing [12] and [19] we get.

Ciy36 = 94434 [20]

Therefore, writing a wavefunction in terms of MET functions is equiva-
lent to summing CI expansion, and the coefficients of expansion of MET
functions are CI expansion coefficients. A similar case can be discussed
when three or more excitations are .considered.

The importance of the pair correlation becomes clear when one tries
to obtain the expansion coefficdefits in terms of first -order perturbation

theory. From the first order non-degenerate perturbation theory we know

(10) that:

Nkm
Q‘/ = 430 +Rz,—€:_—k€: lAR> [21]

where V is perturbation part of the four particle Hamiltonian and m = 0
for ground state. The prime denotes that k = m term is to be omitted

in the series expansion of ¥y in terms of the linear combination of un-.
perturbed wavefunction. Thus; now one to one correspondence can be made
between first order CI coefficients and the first order perturbation
theory coefficients. A general expansion coefficient in [21]*méy:look

like:
(1) Biiigs |V ]A1229)
31ldsds T (Ej1 €4+ E5ut GJ",_)—(Eﬁ' €2t €+€4)

[22]



where c's are eigenvalues of one electron Hamiltonianhi = -%Vi - %-+Vf
' i

1)
SEEERER P
dicates that it is a first order perturbation theory coefficient, as

Therefore, €'s are the orbital energies. Superscript 1 on C

[21] is expansion of wavefunction in accordance with first order ‘pertur-.
bation theory. In fact, if one wants to be rigorous at this stage, he

will -note that a coefficient in CI expansion can be.expended as:.

O (2) (3)
Cjﬂ‘zjb‘h = Cvjﬂ'zjg'iq, + Cjij‘i'ja'jq + Cj,j,jaj 4+ ——————— [23]
where subscripts .1, 2, 3, -etc. on C indicdte that they are first, second,
etc., order perturbation theory contributions -to C. Similarly, the

correlation functions will have sums coming from different ‘order correc-

tions, that is to say

_________ [24]

) (2 (3)
X=A+A+X+
W Lo )
where. X = 2 S.-F‘} +Z. {ULJ }'I- _____ —
L=1 1€i<j& 4
and similarly.x(z); X(3) »e0 ete,

Let us look at the general matrix element [22] when one particle
excitations take place from HF sea., In the first order perturbation

theory, for one particle excitation the CI coefficient, for example is-

(L
: Dyt V| 41234
Cgi 1Sp2Sx28p = S spzsxzsﬁ[ I 2 [25]
(ejl" el)
where ®1234_is the function denoting the HF determinant for Be viz

A4(lsa 1sB 2sa 2sB). ji denotes thlie orbital to which an.electron has
been virtually excited outside the HF sea from lsa. The matrix elements

on the R+H'S of [25] have determinants which differ from each other in
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one orbital.‘ One particle excitation orbitals try to correct
the occupied orbitals, but according to Brillouin's theorem if we have
HF orbitals (which is the case here) these matrix elements vanish.
Next, look at ‘the genéral.matrix element [22] when three or more
particle excitations take place from HF sea. In this case .the matrix
elements [22] have determinants which differ from each other in three.
or more orbitals. Note here that V is made up of one and two particle
operators . and the orbitals we are working with are orthonormal.

Orthonormality of the orbitals implies that a matrix element in which.
.£wo determinants differ by three or more orbitals on the two sides of

v, vaﬁishes. Thus in the first order perturbation theory for the elec-
tron correlation corrections, we are left with pair correlation terms
only.
LW A3z 4|V L9234
Y rx- - Z_ . e‘ e.
5<3; <5 [€5,€5.) - (€1+€2)]

|[Bapse == [26]

(1)

totally there will be (%) such terms in first order X series,

In this method of series expansion, second and higher order per-.
turbation tHeory corrections are not included. As we go to higher
order perturbation theory one and. three particle correlation corrections
are small, - Sinanoglu (4) has shown . that main contribution to four
particle correlation correction comes. from unlinked products of two

particle correlation. At this point unlinked clusters may be described

briefly.
Unlinked Clusters

After the above treatment a natural question arises is that:do we

necessarily have to consider more than two particles virtually excited
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in the original determinant? The answer to this is yes -and so one
describes many particle collision in terms of Unlinked Clusters (4).
A four particle correlation function may. be-looked upon,.as four particle
collision. . This includes all four particles colliding at thé same time,
two binary.collision, three at a time, etc. That is to say actual
many electron collisions are linked clusters and products.of independent
but simultaneous ceollisions. These in terms,:can be looked upon pre~
dominantly as Unlinked Clusters of pair collisions.  Pair collisions are
the most 'important ones in correlation theory, as the fluctuation po-
tential is a two particle function which causes electron correlation.
Two, three, four particle collisions can be represented as sum of
one, two, three and four particle collisions taking place at a time.
In Sinanoglu's (4) notations let small circles with no lines
£

i

A
clusters will be denoted by U's by straight lines .drawn between.the

attached to them, represent s, the one eléétron function. The linked

linked particles.

ﬁij = two electron correlation function -
A A A
= A, (£, £.) + U
.0
,O + ‘8
A, :
Uijk = 3 particle correlation function
2 A A A A A U A= + A
- As Fbﬂfh+ﬂ%+—%%+’ﬂ' R Uik
- =+& 0 R
o O o ° 020
+ + + +
o o
A
and similarly U! will have the folléwing diagram: .

13kl .
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o o 6 - o—0 - . o
o o o} ] —o0 [ o [:::jl
This is the simplest .possible-treatment of many particle excitation
and will not be dealt with in ,any further detail. The most important
point 1is.that many particle excitation can be broken down into products

of unlinked clusters of two particle excitation terms and the treatment’

can be given on the basis of closed shell theory.
Open ‘Shell System

Open shell ‘has more correlations coming hecause of presence. of
electrons outsideé the closed shell, Thg correlations that arise in.
open.shell may. be .classified as-

1) 1Internal Correlation

2) Semi-internal Correlation * > Non dynamicai =iXF

3) One particle all external correlations
4) All external (two ‘and more particles) - dynamical = XU
The non~dynamical correlations are.chdracteristic of open.shellé only
while dynamical occur in both open and closed shells (1)(3). The non~
dynamical correlation corrections can be expanded in terms-of,a:finite
CI expansion.

These .are described by (a) yavefunctions which have two orbitalsl

excited to préviously unoccupied orbitals in the HF sea. Let a circle

denote a HF sea. The shaded half-circle denote the orbitals occupied

l$wo particle excitation are the most important.
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in the sed.

Internal All ext.

f\mlm? %

=0T ===
\?’E’\@/

. ol
Non :DHHQMICCL‘ Dynamica

Picture (a) denotes virtual excitation of two orbitals within the sea.
Such terms give rise to internal correlation. (b) Excitations involving
one particle being expelled outside the sea and another being virtually
excited to an orbital previously unoccupied in the sea gives rise to
semi-internal correlation., This is shown in picture (b).  (c)  When.one
particle 1s excited to ‘orbitals outside HF sea, this gives.terms which
give rise to polarization effect, as shown in picture  (c) and finally
(d) Two particle excitation of orbitals to orbitals outside HF sea gives
terms which cause all external correlations. A wavefunction for .an

open shell canh be written as
(q) = % +% [28]

y AT 3 > v
Where X xinternal + xsemi*internal + xpolarization + xall.external[29]

How different correlation terms arise from scrambling of orbitals is
described .below.  For this discussion consider carbon atom with its:
ground 'state configuration,lsz, 252, 2p2,‘ There are 6 electrons in.the

atom and 10 orbitals availgblémfor;them. The HF sea consists of the-

orbitals [lsa, 1s8, 2sa, 2s8, 2p_a, 2p_B, 2p o, 2p B> 2p 0, 2p+B]. Exact -
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wavefunction for carbon .of a given symmetry can be written as-

Y= CdragsCadr - bl

Where ¢s are symmetry adapted unperturbed wavefunctions. ¢o is HF
part of the entire wavefunction. Equation [30] can be written in.terms

of a model operator (11)

Vo= & [31]

[0
with N % = 11 Gl L22]

— -

where a is the number of .determinants needed from the set of (12) de-
terminants to.*form RHF state. *The-sumlis“ovér‘(u);deggr?inats for

carbon  atom.

-

o< e(
Lp= Al E G sGBag gy

The modél operator.operates on linear .combination of determinants to
give another gseries of determinants. The problem is- that & 1s not
uniquely defined by Equation [31], there could be several other operator
which would give y from ¢s.. Consider one such operator on a particular

determiﬁant

QAk = Z d_(_,@,,____,Q,N AL.L;...-CN
Li<le&N [34]
the result is a linear combination of determinants with scrambled orbi-
tals. In the resulting determinants.some orbitals will be in.the sea
which were unoccupied in Ak and some will not be in the sea. This is
where the classification of correlation terms comes in..
Suppose Q operates on one of .the carbon determinants to give the

following linear combination
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(D A (1Sx 4SPp RS 25p2fx 2Rp) = A, (1S LIPRRP2RX2HP R )

+ OIS 15pRRARRP 45X D5 ) + C (15% I5p25P 2R 2R p 35X)

+d (1S¥15p 2RX2RPRRX2PP) + €(— —— — — — )+

fle— — = — ) [3s]
In Equation [35] the determinant with coefficient a:is-an.exémpie of
semi-internal‘correlation, 2sa and 2sB 'in the original determinant are
excited to orbitals 2p B and 3p+a. 2p B 1s in the HF sea but 3p+a is
outside the sea. Therefore it is a semi-internal correlation térm,

The determinant with coefficient b is an.example of all external. corre-
lation .terms, Here 2sa, 2sf in the original determinant go to 4so, 5sB
both are outside the sea, The determinant with coefficient ¢ is an
example of one particle all external correlation term. 2so from the
original determinant goes to 3sa, an orbital outside.séa. Electrons in
other orbitals are not altered, Finally in the determinant with coeffi-
clent d two particles are in the orbitals 2p+a, and 2p+8.one in each.
These come from 2so, 2sf being excitedvin,the original determinants to
orbitals inside the HF sea., This is an.example of internal correlations.
Present work neglects the dynamical correlationms. Thé ﬁdn—dynamical
correlations can be. expressed in terms of a finite CI, this is precisely

done here, Inclusion of non-dynamical terms .is important in calculation

of transition probabilities.



CHAPTER V
PROJECTOR OPERATOR TECHNIQUE
Any operator P with the following properties

i) P= Pf (Hermitian Conjugate) [1a]

i1) - p2 = p (Idempotent) [1b]

is a projector operator (12).
This means if p is eigenvalue of P with |u>\as its -eigenvector,

then -

@? - P)luw = (2 - p)|u> [2]
= 0 from [1b]

Since |u> #.0, P2»_ p=20

or \ p(p - 1) =0

p=0orps=1 [3]

Therefore P has eigenvalues 0 or 1. Eigenvalue O corresponds to an
eigenvector which 1s completely annihilated when operated on by P and
eigenvalue 1. corresponds to an eigenvector which 1s left as it was.
originally when~operate& on.by P. The vector resulting from -the action
of projector operator on.a given vector lies in-a subspace of Hibert
Space.. This subspace 1s characterized by the projection operator.. Geo-.
metrically speaking this-is orthogonal projection of -an arbitrary vector

onto a.subspace.

45
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A projection operator on a particular symmetric suﬁspacé, when it
operates on a function of no symmetry, gives out that part of the func-
tion which has definite symmetry or annihilates the function completely
if it did not have the symmetry we are looking for. By using projector
operator -technique, we can now obtain pure state functions which are
useful in calculating transition probabilities,

Construction of projection operator is based . on a simple idea that
only that part.of'the function be projected out which has the required
gymmetry and the rest of it Be annihilated. For example, angular-
momentum projection operator‘bnto the subspace of eigenvectors of.f.2
with the eigenvalue L(L + 1) may be constructed as follows: Consider a

wavefunction ¥ which is an eigenfunction of £2 so that

izwL = L(L + 1)y, [4]

AN s A A A D [5]

The operator in the square Bracket annihilates a wavefunction with or-
bital angular momentum. quantum number L. When a wavefunction is-a linear
combination of several terms of various symmetries, we have to consider:
several factors of the form [5] so that all terms with different L
values except .one with the required L can be. annihilated one after
another ag the factors in the operator, operate on different parts of
functiond.

In other words; if

n[f2 -1, @ +D]v=0
3 3

]

and we desire to produce a wavefunction with quantum number Li we have-
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to operate on the wavefunction with an'operator

22
% (L% - 15y + 1)]* |
(L, @+ -1, + D]

i.e., product of factors containing all Ljs except L, = L The factor

] i
in the denominator makes thte operator idempotent. The result of the
operation gives either zéro or an eigenfunction of £2 with eigenvalue

Li(Li + 1),

On the satie lines, a projector operator foruﬁz with an eigenvalue

ML. would be
i

[L - M, ]
Lt 2z
j#i et [6]
(MLi - MLj)
which 1s again a product.of factors.

Lowdin has defined the projector operators for-f.2 and ﬁz as follows

(2).

a2
2 L g _EE -2+ D] ;
Og () LA R(K + 1) - 2(0 + 1) 7]

PR
N 18]

Y
Equation [7] can also be written as

~2-
2. L™ - KK+ 1)

The: values of £ are determined by using the.addition theorem of angular .

momentum, Thus & goes from £ =.ML to & = Kmax (determined from addition
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theorem)., Let Kmax - ML = n and in Eqn. [7] replace L'by L + ML’ then

) P2 @+m)@+M +1)
oK(f.z) = I _ ML ,ML_ — [10]
=o,n KX+ 1) - (4 + ML)(l Mo+ 1)

As suggested by Léwdin Eqn.’[10] is most convenient form of angular mo-
mentum projection operator for practical purposes and a.computer program
has been written for the same.. On exactly the .same lines, one could
treat §2 and §z_operators. This-is mainly because, as we know; angular
momentum and spin momentum operators have similar properties., The same
computer program can project out wavefunctions which are eigenfunctions
of&ﬁz and ié as well as 52 and éz’

A brief description of program written for Léwdin's projector
operator is in order: The proéram consiats of four subroutines'apart
from main program. A given wavefunction is fed in as a linear.cdmbina~
tion of determinants with their proper coefficients.

In writing the algorithm for the computer code we,have:introduced
two new-definitions of "subshells". In the orbital angular momentum
projection, spin orbitals having the same n, £ and ms‘arevclassified,in
the same '"subshell". While in the spin projection, spin orbitals having
the same n, £ and m, are classified in the same ''subshell". Clearly
what we term a "subshell" and the "occupation of a subshell" depends on
which projection, spin or orbital angular momentum we are considering.
With the ,unorthodox ‘definition of subshell we also introduce a new
designation of the word "configuration'".based or our redefinition of .
subshells. For example, consider a set of orbitals lso 1sB 2so 2s8 2poav
ZPOB 2p_q 2p_8 2p+a 2p+B. Form the following three determinants.from.

these orbitals.
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1: (lso 2sB 2p o 2poB 2p+a)
2: (1sa 2sB 2p_«a 2p°B 2p°a)

3:  (1sa 2sa 2p_B 2p o 2p,0)

The usual term configuration as availlable in literature 1s ‘specified by
the occupation of gubshells i denoted by the quantum numbers n,, zi;»
that is to say determinant NO 1, NO 2 and NO 3 belong to.same .cornfigura-
tion viz 1ls 2s 2p3. The work undertaken separates the subshells with

respect to m, and m_ . In classifying these determinants for spin pro-

&

jection we have

a: (s ) (2s )b ) ap ) el
b: (s )t (2e ) 202 (20 )%

e: (s )t 2s ) 2p ) 2p ) (200 )

The determinants a and c ‘belong to the same configuration,
On the otlier hand, in classifying these determinants-for orbital

angular momentum projection, we have-

x: ((lsa)l(ZsB)l(Zpa)z(ZPB)l)
y: (Qsedt 288 2poy 2 (2p8) 1)

2t (Wsa)l(2sa)  (2pa)? (2p8)Y)

whereby c;assifying these determinants for orbital angular momentum
projection we find determinant NO x and NO y belong to the same con-
figuration. In a given wavefunction, determinants belong to different
configurations. - A subroutine in the projector operator program checks

the configurations these determinants belong to. That i1s to say con-
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figuration of each determinant is tested and a configuration number .is -
assigned to -them.

First -thing that projection operator does is to reorder the orbi-
tals in a determinant,and separate the open subshells to the left hand.
side and closed subshell to the right hand side. A proper phasefactor
is put din front of each detérminant depending .upon.how the reshuffling
of orbitals takes place. The projection operator then operates on each
of the ‘determinants of .a given configuration in order. Several other
determinants are produced during this process and all the determinants .
which are alike have their coefficients added up. Determinants which
have coefficients zero or whose coefficients add to zero are eliminated
during the process of projection. The-final projected determinants-
and their respective coefficients are then printed out in the main pro-
gram; next to each other. Successive configurations are treated one,
after anpother. The linear combination then gives a symmetry adapted
wavefunction which has L and ML values; § and MS values ‘as were . speci-
fied or required.

This i1s projection operator=metho& of 6btaining a pure state or a

symmetrized wavefunction.



CHAPTER VI

ELECTRIC DIPOLE -TRANSITIONS PROBABILITY :AND

MULTIPLET . OSCILLATOR STRENGTHS

A formula for electric -dipole transition probability can be derived.
based on the semi-classical treatment of :interaction of radiation ﬁith
mattar. Several . approximations will be used in the process of deriva-
tion of formula. It may be .said here that this formula can be satié-
factorily used for finding effect of rahiation}field on the particles, .
i.,e., 80 called absorption and induced emission,'bu; cannot be used for
spontaneous processes.

Hamiltonian for a system particles of mass m and charge e in'an.

electromagnetic field described by vector and scalar potentials is given
by Schiff (13):as
-216
'_2-5- A +3 &= +Z
<] L
+ T A(rit +LT\A(FL,U Vi
N
+ 2 = <A (fot)- A(&fc)) 21 ed (L)
L-
where'K(;i,t) is vector potential of electromagnetic field evaluated at
;i at time t. ¢Kri,t) is scalar potential at the position of ith parti-
cle at time t. Hamiltonian as expressed by Eqn..[1] is sum of two parts

and can be written as.



52

where .

= 2
Hy = SR VL +Z% +3 2 [2]
U

L—l <
and H' is sum of rest of .the teims in Eqn. [1]. A close look at H and
H' will show that Hb ig time-in dependent Electrostatic Hamiltonian of
the isolated atom;-and‘H/is interaction .of particles with time dependent -
Electromagnetic field. Therefore the 'entire problem can be.expressed in

terms of time dependent Schrddinger Equation
LT\ HY [3]

and then to calculate transitions probabilities between atomic¢ states
(bound) of the particle. Therefore Hamiltonian describes a system com-
pletely at different times, that is to say it unfolds the system with
respect to time. Here we may also speak of the time development of the
state in.Schrddinger and interaction pictures. Interaction picture is’
defined as follows (13):

\Xz > = ook g

-tHo £
L) = "H° % Nse 51‘\ [4]

where Hamiltonian in.two plctures is written as
}
%45 = H05>+HS

[5]
H]’_ = HOI + H;

The two pictures are equivalent if there is no perturbation part in the
Hamiltonian., Assume a Unitary operator Dx(t’té) such that it takes a
state of system described in. the interaction pilcture at time t = t, toa

state at time t = t.
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qu1Cfi> = LE:(t't°>|Nﬁ(t°i> [6]

To .obtain an explicit expression for UI(t’to)' the Unitary operator con-

sider ‘first the equation of motion of‘]aI(t)> of [4]. We have

'“ri-{ Host
_EL_ _j_t locg & - —_’E\_ %JE [e |xs ) ] [7]
‘ %L_ Hogt __\F;_ Hogt
:__-% ]:"IE Hoge o) + e %‘%&}J
L Hogt L Hogt

= —Hog € N lsed - e _j_\“s&»
L t

-1’% st L Hog t
——Hog e |oe@®) + eh Hg lxst)
i.. Host “'.TI%— l"lOs‘t

- Hog e-h s> + € ( Hosf H/s> |xs(+)>

L : .
'ﬁ Hos t .L. H(>5 t %[_ Ho’s‘t
- Hoge |asad+ e Hoglxsa+€ HE I

i/h Hy t
Note here that e™ 8 and H; commute and therefore
g -
% Hog T;:'\’ Hogt %Hos't
B oAb e (s 4 Hee Iepge HglXeD
L dt
The first two terms cancel out and thus .
-S'- HOs't

_hdeed e HE e

Lot L oot -l Hoot + Hagt
F\ OS/ —_- Os % Os
- e M, e’ e R O¥

/
= H1 )zt
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Equation of motilon for [aI(t)>~is

_ ‘TE‘ 5%0(1(“:» — H/I ‘°<I (:U> [8]

This is the equation of motion for any state function lwI(t)> given by

Equation [6]. In interaction picture this will give

- HT EJI(’C.*°>WI¢°>>] ~ HT U oy ) (9]
or
_h [ Q—Ulct'to)]%@ob = Hp U; (8ol [10]
L dt .

This must -be true for all IwI(t°)>.. In general, as an operator equation

this . can be written as

/
5. Ux?"»‘b) _ Hr Uy (tto) [11]

d
Jt

this -can be solved formally to give
: /
-+ { at’ HpCt)
UI (tte) = e & [12]

with UI(td’to) = 1

This describes.U, in the interaction picture for Equation [6].UI given

I

by Equation [12] is a series expansion of exponential operator viz

t .,
L (it H )
eﬂto = 1 'i

t ;7 _
= gdt/ He (6) + ngkev order {erms (131
to

Therefore.the state lwI(t)> is now.completely specified for all

times.

lpce)d = Ultto) |4t = .Z_'Ch(e)[h) o [1e]
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and‘lwl(t)> can be expanded in .terms of complete set of states., Inter-
pretation of coefficients in thevexpansion:,|Ct(t)|2 is ‘the probability
that.at time t a state vector will be found in a basis state L. The

basis set is assumed to be complete and orthonormal., Equation [14]

giVes-CL(t) = .<Llw(t)> which is a complex number.and is amplitude,'
or C @) = <L]U1(e k) Ylto)) [15]
|CL(t)|2 = [<L|UI(t,to)¢(to)>[2 is the probability of a ‘state

function being found in state L at time t when . initially, it was in state’

w(to) at time t,: Note.thatlZ|CL(t)]2'= 1 if initial state was normal-
L‘.

ized, ie

N @)Y

il

(fq) (*o) UT(t, o) |U(tte) W(to))

4GOI

. T

andl <<L|')L‘q'h<> = 8!—\(

also

@y = LEGE Y | F@g>
- GG <%

= L{ Cl e Sk

= sl
.

All this means is that the system has got to be in some stdte at all the

times:
Consider two atomic, states 'a and b which .are eigen: states of Ho
such that H |a> = E |a> H |[b> =" Eb’b>. Let us calculate the
o a o

transition probability of going from atomic state a at time t = t0 to

. <
t
an atomic state b at time t = t. That is to calculate. Kjébdﬁg|
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(t,tg) -

Look at the coefficient G/ * <a|UI(t,t°)|b> in the limit as [16]

t > = and t; + =o, This is done in accordance with Heisenberg's uncer-
tainty relation that energy transferred during the transition and the
time of transition cannot be determined precisély simultaneously. There-
fore one has to lgok in the time duration of -« to «, assuming erergy of
transitions are:precisely known, To the first .order we retain only

first two terms in the expansion of-

t
i far @)
UI (t,ts) = e-h 1 :

. t VAR
1__L_Sdt|—‘1c't)
LI

LR

. t !, .
)
L Gl (o,|1-%t§odtH1"° FN

. ¢ / ’
= a1l -.%tjo dt’ {a|H (&) 1> -

/ ’
The first ‘term is § .. The integrand in second term'is,<3L|H1(t)\ti>
‘ab / 'L /
Vs / L Hob't ’ _% Host
where HI_(‘t )= eh Hs € 3 therefore writing it in

interaction picture in terms of Schrddinger .operator gives'
. / .
'% Host /o '% Host/
QW I = Lale HsCt) e 6> [18]

|a> and |b> are atomic states of the unperturbed part of the Hamil-

tonian and therefore;

e

L EQt/ ’ -
QIHiEN = (qle®  HsW) e o>
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L (EqpEu)t
e (| Hy (DIB = e13 LalH &) (0> [19]

Next, we have to plug in H' from Equation [1] with proper approximations.

We have

N e in
0+ 2%‘* [vL (AMJ)+AVL’1£,+Z___A“-P+Z€¢’&|) .

:

N
-> 2 d‘w[W AYWH+AT W+ & - ﬂ-\—z > Ay +Ze¢”’

. 2m

L-L

[20]

The vector and .scalar potential A(?;t) and<P(¥,t) can be gauge trans-
formed so that .the new potentials satisfy the Lorentz condition. 1In
completely empty space (charge. and current 'densities equal, to zero) it
is possible to choosé the gauge transformation (13) such that,ﬁ-z =0 and’

¢ = 0. Under these conditions Equation [20] becones

y N . _ ’ N
l__HP - Z % LR (A-VL\P > +‘ZL 5%; A‘:Z’LF [21]
(=1 o

2
The term (%EQAZ leads to physical processes in which two protons are
emitted or absorbed during transitions. This term can be omitted in the

first order corrections (15), when we are considering only one photon

emission and . absorbtion between the states a and b such that
E -E = A [22]
Thus [21] gives

1 - =
iy =z hg (Ra) 23]
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This should hold good for any state function and therefore
/ N x ALD
(R € . ¥,
H= 3 RE(A%) [24]
t=1
Let us.take a monochromatic, linearly polarized plane wave for the

> > ) >
i(wt=k+r) + e-—i(wt-k°r)} where & is

vector potential, i.e., X= A8{e
polarization vector, usually the direction in which electric field is
aligned and K.is propogation vector -such.that é-i =0 i.e., they are
mutually orthogonal. This then completely specifies ‘the perturbed part

of the Hamiltonian., Equation [19] now becomes:
L (Eu-ta) 't

L wt|<*0 . Lot k*t>
o) H () b) = eﬁ <a|‘~ £ Z( ¢ e( )

[25]
v e
, / -
L(EBe+hd)t N ikeTO
_ ke A| eF = <a“|-§1€ R A
< :
L (Bp-Bomh0)t, N el o ] [26]
teh < [56 ' >

Substituting this back in Equation [17] we get a quantity whose absolute
square is proportional to transition probability. In Equation [17] con-

sider that state a.,is different from state b. Then-

i Eq-Eb +H0 t/ N (T & =
C (tte) = —L Sdt dﬁe A [eﬁ(a ><¢|% 2 e e
P VR A [27]
-‘(ta Eb—Rw)t <a12 Q“ ¢ e-qélb>]
+ € =1

Arranging the constant fagtors proberly and taking limit of this quantity

as t + == and t '+ « we get the following
(Ea.sbmw)t Uik 25
C (0,-) = EA fC)‘t <QJ|Z€ |b>

KT oo —
L (EQ—Eb-—‘F)LO>'t/<Q,, gi €L R I b>
+ e‘h =1
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On the time dependent part of integration use the property that:

T (Erp)t
§x-p) = 2—'-,'-[ _Ldt € Thus.[28] gives
C (:rw) = 29r€ A EarEu-h N jde e
o m (o (= R )<QE16 e [29]

N Lgtﬁ;A —
1Bttty (a5 e €T D
+ =1
The § function determines a condition under which transition probability
is non-vanishing, In»Equation,[29] either ‘the first § equals zero or
the second. They cannot be non-zero.simultaneously. In other words we

have either induced emission or absorption. The transition probability

of emission equals zero unless .
(Ea-E5)-(h)
1)

:vo e (Ba-Eo) =

and the transition .probability of absorption equals zero unless

(EO..' Eb) - (;Rw) = O ie Bo- Ba =FRw

A
Ee These two conditions show that energy
absor pton is conserved i.e., the difference in’
energy between initial and final
o states equals that ‘due to emissior
emission Eb

or absorption of one photon. Note
here that of the two terms in the summation in-Equation‘[29]

one term need be considered at a time. For the further;discussion we,
will consider the process of emission in the dipole approximation and .

the discussion for .absorption will be very similar to that.
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N —iKop, A =
Now consider the quantity <a|,I. e ik rl(é-V,) b> in Equation [29].
i=1 i’

Here |a> and |b> are the kets for atomic states a.and’b.-<a|xlx2..oxn>,
K] e xﬁlb> therefore are functions of coordinates. When any of ‘the
electrons 'is.far away from nucleus, the magnitude of that function is
very small and contributions to the matrix element from these regions of
configuration space are insignificant. The major contribution to the.
matrix element comes from those regions of configuration space where
wavefunction is large. That is a region of atomic space in which all N
electrons are within the 'radius" r of the atém., In this region of
space,_fi < r << A where A = wavelength of radiation =~ 1000 K in UV
region and r = "radius'" of -the atom =z 10_8 cm, Thus for large enough

wavelengths only first term is to be retained in the series expansion

> >
of emlk'r =1 - 1k-r + ..,. which corresponds to electric dipole term.

Therefore electric dipole transition probability is proportional to

|<a| e~Vi|b>[2.

N
i 1

. Cer®) 2 2me A [ (EQ;EﬂEJ-‘-‘))quéE;' |o>
. -G,

m

[30]

+§( T8 — E;"“ ) <alZ >éw Ib>}

where %'<7i

°_ 2 [31]
(E’l 3ZL+ ea,%gb-}- Ez 3zt)

While obtaining the transition probability expression, omit the § func-
tion which determines the conditions under which transition probability
is non-vanishing. Thus the atomic transition probability will now be

given ‘by:
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Céwy-w)

2N

2 2 N _ N X
—4amAE Qe 3 %18 <l ez w1k
L= L=

M - ~ N »*
e AR ALY R A
m2 [E3) 2

N _
2 4 A
4;n%;2A\ ‘ e <ZL %1 \b>}
m2 &
[32]
The transition probability is directly proportional to A2, i.e., in-
tensity and square of modulus of the matrix element of velocity (V;)

- ML
-; operator, Other operators that can

HD L=< -1 replace 7, are position and acceler-

i
o

ation operator and one can get al-

1 ternate forms of the transition pro-

2 bability formula (14). A dimension-
less quantity proportional to
transition probability formula is
also sometimes defined as oscilla-
tor strength. It is well known that
each atomic term has a degeneracy of
(2L + 1)(es + 1). lD > lP transi-

tion is shown in the diagram.

Multiplet splitting is also shown

here, When we consider a transition

from one term to another we have to
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Sum up all the transitions from each multiplet and welghted average
taken over the degeneracy. The wéighted average 6f oscillator strengths
is called multiplet oscillator strength and explained in Chapter VII,
Note here that -non-vanishing of the matrix elements in the expression
for transition probability defines. the selection .rules for electric.
dipole allowed- transitions.

Al t1
AS = O

OSM =0,11 For dM_=0 , M.=0 |5 Jorbidden
?

AMs= o, %1 ) Foy &Mo=20 , ™Mez0 {8 Lovbidden



CHAPTER VII
RESULTS AND CONCLUSIONS

-
F- energy level diagram with allowed absorption transitions from
lower states of 2822p2 to upper states of 252p3 are presented in .the

following diagram,

P
2
15725%2p"
The wavelengths of the transitions are listed in Table'I. In the
energy level diagram each level consists of (2L + 1)(2S + 1) degenerate

states. When we speak of transitions from one level to another we take

into account the degeneracy of .each level. 1In this respect we define

A2
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TABLE I

DATA ANALYSIS OF ELECTRIC DIPOLE TRANSITIONS 1IN

THE ARRAY 1s22522p2'+ 1822s2p3 FOR BT 1Y

<) —>

o " theoretical
ls22522§24152252p3 Aexperimental in A RHE HF + INT MET
REF e MET
3, -3 678.18 693.404  664.616  664.978
b -3 572.00  582.05 561.63  549.55
3, - 3 420.38 409,33 399,124  411.527
-1 491.00 474,67 461.035  482.39
-1 430,76 421.0 410,24 414,49
11
s - p

490.57 507.2 453.07 479.63

A are the experimentally observed wavelengths of tran-
experimental -

sitions and were obtained from: Atomic Transition probabilities - Hy-
drogen through Neon ¢ Wiese, Smith, Glennon. NSRDS - NBS4, Vol. I,

Atheoretical are the.wavelengths-of transition c§§i§%ated by

Westhaus ‘and Sinano§lu's (3) program. For example AEHF =

HF+INT

> and this can be converted into?\HF

Our| Elogpi e = <ogplBl ogg

through constant terms and so on, The details of this was described in

Chapter I.
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multiplet oscillator strengths. Recalling the expression (14) for oscil-
lator. strength in terms of dipole length operatorvﬁ for a transition de-

noted by oL SML LS ch'S'Mi'MS' we have

/1! 2
2 X'LS)-FE(XLS | IRy, ,
-Fo( LSMLMSSO(’L/SIML’MS:: Y g ( ) E( )<1Fo(|_5b1,_)\15ll+dl_'sl‘1,1l*45’>l [1]
or -in terms of dipole velocity operator as

‘Fb(

where

2 1

by - - ~ — 2
LSMMs XLSM/ML = 3 E(ﬂ(’L’SI)— E(O(Ls> KII'PO(LQMLMJVl {]'PO(/LI.S/M;:M5’>‘

N N
R = 2, % and T =S v
D=i LrL

The multiplet oscillator strength will now be defined as-

1
- (2L+l><25+1) M\.M\: McMg’

, :
-Fe(l-s; '<‘I_’5 : ’(LSM\_Mss W,LISIMI:Ms’ [2]

(2L + 1) (28 + 1) is degeneracy of lower.state, folLs;a'L'S' is a di-
mensionless quantity. All the tables in . this chapter describing f's are
multiplet oscillator strengths defined by Equation [2]. Multiplet
oscillator strengths are calculated using the electric dipole transition
program of Westhaus and Sinano¥lu.(3). One needs to feed the wavefunc-
tion and energy of each state involved in a transition corresponding to
one non-vanishing term of Equation [2]. The remaining terms in the
summation are obtdained from this given. term by group theory. Wavefunc-
tion and energy of eachi state are first computed using Okstlz .and
Sinanoglu's. (1) program, projected out using our projector operator pro-
gram and then fed to Westhaus's transition probability program. The
transition probability program converst the.energy difference between
two states to wavelength of transitions, and will be called the theoreti-

cal wavelengths for the transitions. This program can also use directly
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the wavelength of transitions found out experimentally., f valuesl have
also been calculated using this experimental wavelength of transition
denoted by A experimental in the Tables II.and III,

The approximate wavefuritions for two different states under con-
sideration are used by the transition probability program. In general,
as predicted by MET each state can be approximated by four types of
wavefunctions which contain various parts of non-dynamical correlatiomns.
Four types of wavefunctions are restricted Hartree Fock, HF + CI part,
HF + SEMI INTERNAL part and HF + INTERNAL part and each approximate
wavefunction has corresponding energy. However, in the states coming
from ls2 2s 2p3 there are no internal correlations considered. The
program computes f values using each type of approximate wavefunctions
for two states in terms of dipole length, velocity and acceleration op~-
erators. The output of the program also gives a quantity denoted by fV"
this is square root of proddét of £ values calculated in terms‘of length
and velocity operators. The square root results are kind of averaging
of oscillator strengths and do not depend explicitly upon the energy
difference of the two states (14). It may be noted here that the oscil-
lator strength formulas given in Chapter I in terms.of dipole velocity
operator is as fundamental as it is in terms of dipole length operator.
In fact they are derivable from each other (14). The length, velocity
and acceleration formula would give the same result for f value if we are
working with a pure eigenfunction of electrostatic Hamiltonian.

f values for different transitions in F in the array 1322522p2-+

lf values, oscillator stréngths and transition probability are
being used interchangeably throughout the text of -this chapter, as
several other-.authors have done so,
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TABLE II
P~ 3D (a)
A )
Experimental = 678,184
RHF HF+INT MET HF HF+INT MET
Type fRHF £ HF fMET fHF £ HF fMET
Lengfh .1695 .1308 .0931 1734 .1282 0913
Velocity .1798 .2172 .0959 .1758 .2216 .0978
Square root’ 1746 .1686 .0945 .1746 .1686 »0945
3? > 3? (b) AExperimental = 5728
Length 1212 .1583 1161 .1233 1554 1116
Velocity .0905 .0646 .1284 .089 .0658 .1337
Square root. .1048 L1011 1221 .1048 L1011 .1221
3? - 3S (e) AExperimental = 420,38
Length .2298 1743 .1578 2237 .1655 . 1545
Velocity .0849 .1043 .1621 .0872 .1099 .1656
Square root .1397 .1349 .1599 .1397 .1349 .1599
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TABLE III
EQ_:_EP;SEl A ‘ = 4912
Experimental
RHF HF+INT MET RHF HF+INT MET
Type £RHF ¢ HF ¢MET ¢RHF ¢ HF GMET
Length 4506 . 3429 .2699 4356 .3220 .2652
Velocity .2336 .2861 .2874 .2417 .3046 .2925
Square root . 3244 .3132 .2875 3245 .3132 .2785
1 1
D - “P (b) N o
- AExperimental . 430.76A
Length .1693 .2191 .1884  .1655 .2086 ,1813
Velocity .0691 .0498 ,1751 .0707 .0522 .1820
Square root .1081 1044 .1817 .1081 1044 .1817
1 1
S - P (C) =
' AExperimental 490.57
Length .5613 .3283 .2622 - ,5803 .3032 2564
Velocity .3340 4458 . 3046 .3231 4827 .2689
Square root .4330 .3825 .2826 ,4330 .3825 .2826




69

152252p3 are listed in Tables II and Iil for triplet and Singlet transi-
tions respectively. In these tables fB will mean that the f value was
computed in terms of dipole length or velocity operator when the function
for lower state wag A and that for the upper state was B. Each of the
Tables II and III is divided into two parts showing oscillator strength
results for theoretical and experimental wavelengths of corresponding
transitions. The first column in these tables is the type of operator
which 1is considered to evaluate the oscillator .strength. These are
length and velocity operator -and the third item is square root value,
The second column is.f value evaluated with lower state consisting of
HF + INTERNAL correlation and upper state .consisting of HF part only.
(Recall that- the upper .state does not have .internal correlation.) In
the third column are listed f values when both upper and lower states
are made up of MET wavefunctionsz. The other half of these tables gives
the similar information when experimentally obtained wavelengths of
transitions are used.

Numerical values. of oscillator strengths show a tremendous consis-
tency calculated in dipole length and velocity operators, when non-
dynamical correlations are included in the wavefunctions and the wave-

3

functions are pure states., For example consider the transition 3P— S.

RHF
In this case‘fRHF under length and velocity formula.differs by about’
MET

63% where as fMET differ by about 2.71%. This is just an example. The

degree of variation differs from state to state. The above percentages

2Large CI wavefunction containing non-dynamical correlation, which
has been cglled as MET wavefunction is also termed as charge density
function by Nicholaides, Sinanoflu, Westhaus (Phys. Rev., to be pub-
lished).
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are calculated as follows:

lflength " fﬁelocityl

% difference = x.100

f1ength

In certain cases e.g., in,3P - 3D transitions we have calculations in
F+++'that the oscillator strengths calculated using the dipole length
and dipole velocity operators agree with one another surprisingly well
when 'we use the HF wavefunctions for both the lower and upper states,
Indeed one might be tempted to conclude. from such consistency that the
HF calculations represent accurate oscillator strengths. However, when
all the non-dynamical correlation effects are included in both the lower
and upper states, the MET results for the dipole length and dipole veloc-
ity operators again agree among themselves but ‘are substantially differ-
ent from.the HF results (in the example under consideration by almost a.
factor of two). Hence the temptdation to conclude that consistency be-

RHF RHF
RHF

£ and fRHF is a guarantee of accuracy must be avoided, on the other
vel len

MET
hand'fMET calculated in terms of length and velocity operator are con-
sistent throughout 'the Tables IIa,b,c through IIla,b,c. £ values in
MET basis may not be anywhere close to those in RHF basis but -their con-
sistency throughout the calculations of different types of transition
may be taken for implying their absolute numerical accuracy.

X +H+ ,
This will become more clear when this F data will be plotted

with some of the already existing calculation of the members of carben

isoelectronic science. This will be done in graphs for Tables V

through X.

In Table IV are compared the f values computed by Bolotin et al,
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TABLE IV
HF+INT
COMPARISON OF DOUBLE CONFIGURATION DATA AND f ™  FOR F.._ IN

v
DIFFERENT TRANSITION STATES IN THE ARRAY ls22s22p2 - ls22s2p3

Transitions ; B HF+INT
Is22322p2'- ls22s2p3 Double Configuration Data £ HF
B .3 .13 .1308
B -3 .16 .1583
3 _ 35 .16 1743
o1 .31 .3492
-1 21 .2191
11
& - b .30 .3283

N ,
This is Bolotin, Levinson and Levin's data as listed in NBS tables,



72

HF + INT

(18) in the double configurational approkimation with our f HF

value, In the double configurational approximation they have mixing of
1522522p2 - 1522p4. This is very simlilar to our mixing of HF -~ INTERNAL
CORRELATION. This-is mainly because states arising from the configura-
tion ls22s22p‘2 do not mix with those arising from the configuration
152252p3 as they have different parities. Therefore, in the internal
correlation part we.are left with only 1822822p2 - 1322p4 mixing which
is exactly Bolotin's double configuration approximation. Their orbitals:
for each state are linear combinations of Slater type probitals, each
orbital containing four parameters all of which were obtained. by mini-
mizing the energy in the single .configuration approximation,

In our calculations the orbitals data for %§,3P,3D from the 152252p3
configuration is approximated by the HF orbitals data for 3P from

ls22522p2 configuration and the orbitals data for lP,lD in the ls2252p3

2

configuration is approximated by that for lD in the 1s 2822p2 configura-
tion. HF orbital data for lower states was taken from Clementi's tables

of atomic.functions (8).
MET

To see the consistenéy in the fMET values for length and velocity
operator, we will plot the results of F+++ with those of large CI cal-
culations (16) for CI and MET calculations (3) for NII and 0111 obtained
from other sources., The extrapolation of these graphs will help in the
prediction of f wvalues.of highly ionized atoms. For this purpose we need
to investigate the systematic dependence of oscillator strengths on
nuclear charge Z. Consider Hamiltonian for an atomic system of N elec-

trons

[3]



73

H = B +H [4]

where we now treaE_Hl = igj ;l—-as the perturbing part of the Hamilton-—
ij

ian., Here we define a quantity P, = Zr, in order to obtain Z dependence

i
in the perturbed part of the Hamiltonian. Rewrite H as follows (19):

N 2 ! Z
2 -t Ve, —_ < e
H= 2z (Z z 7%ty )+ <= e [5]
vel O 7Y
Now divide Equation [3] throughout by,Z2 we get
2 L ! N
HE? = (Z-39%+5 *7 S0 6]
=1 ¢ w "I

Let H' =>HZ_2 then the problem reduces to finding eigenfunctions and
eigenvalues of H'., The eigenvalues of H are then obtained by multiply-

ing a constant (22) to the eigenvalues of .H'.

H-/= H: + —é—HL - [7]

/ /
The Schrddinger equation for N electron system becomes (Ho*'-,‘g Hl)% €Y

where by € and Y may be. expanded in power series of ln

Z
z Fa ToooC (8]
b =<f+Pgz +AK+7z2 T
€= éo+ elé -+ €2-2L2+ ————— | [9]
where Y and € are eigenfunction and eigenvalues of H'., Eigenvalues of
H are given by
2
E = EOZ + €1Z+€2+ ——————— [lo]

Recalling that £ value for a transition from lower state i to upper -state
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k is given by
fu = 2 Gt 1z B0

Making use of Equations [8] [9] [10] it can be shown. that oscilla-

tor strength f can be expanded in power of %-as follows

t

I
_F:CL°+Q;2+G2_-E;+""""‘ [ll]

Note that as Z > «, the second term in Equation [4] - 0 and we are left
with sum of hydrogenic Hamiltonians on the R<H-§ of Equation [6]. In
Equation [9], then ¢ = e, are the sum of eigenvalues of hydrogenic Ham-
iltonian. From elementary quantum mechanics we know that hydrogen atom
has: energies which are.degenerate in 4 for a given n, i.e., 2s,2p have

some energy. Therefore, when we consider transitions in . the array.

ls22522p2 —'ls2252p3 in the limit Z - « we have that the states.coming

from two configurations have same energy and (Ek - Ei) = 0, Therefore,

fik + 0 as %-+ 0 and that gives an .additional point on the.plot of -

oscillator strength versus %u Graphs for Tables V through X are the
1
plots of oscillator strengths versus z-for CI’ NII’ OIII’ FIV' FIV

data is entirely ours, where as the data for other species was.obtained
from other sources. With the.help of these data points, graphs have
been extrapolated to origin.(0,0) of axes. (0,0) is a‘'point .to be con-
sidered as explained before. The extrapolated region of the graphs
helps in predicting f values in highly ionized atoms. To avoid too

RHF MET

. f{_ , as they

are averaging values of f obtained in terms of length and velocity

many curves orn the graphs the lines drawn are for £

operators., NBS data is also shown on the graphs for comparison purpose,

As seen numerically, through the tables that MET data is by far the best
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MET _MET

becomes more clear through these graphs. Some of 'the fq_ , flength and
MET .
and fvel points lie over each other whereas the same points for HF basis

are scattered far away from each other.
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TABLE V
3P _
1
Species 7 Type HF NBS MET
Length .286 16 .102°
¢ 167  Velocity .332(16) C.oon)" 117°
Square root .308 .109
Length +236 .100
leﬁ, 143 Velocity .268 (.17) »105
Square root .251 .102
Length .2 .100
OIII® 125 Velocity 225 (.15) .104
Square root 212 .102
Length .1695 .093
FiV 111 Velocity .1798 (.13)+ .096
Square root 1746

§Actually they are not MET results but large C

by A. W. Weiss, Phys. Rev. 162, 71-80 (1967).

.095

calculations made

+Bolotin, A. B., Levinson, I. B., and Levin, L. I.,, Soviet Phys. .

JETP 2, 391-395 (1956).

Their method of -calculation is essentially
analogous to our method in which we have (HF + INT) correlation.

#Experimentally obtained value [Boldt, G., Z. Naturforsch. 18a,

1107-1116 (1963)].

®

Data forvN+ and O++'is obtained from (3).
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TABLE VI

3 -3

P P
Species Z %. Type HF NBS MET
~ Length .202(16) .097°
¢ 6 167  Velocity ,17116) .oy’ .105°
Square root .186 .100
Length .170 .137
NII() 7 2143 Velocity .138 (.22) .155
: Square root .153 .146
Length .143 127
OIIIGa 8 .125 Velocity .117 (,18) .135
Square root .129 .131
Length 121 .116
Fry 9 111 Velocity .090 (.16)" .128
Square root .105 .122

For symbols, see Table V.
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TABLE VII
3'P-+ 3S
Species Z %- Type HF NBS MET
. Length 4
CI 6 .167 Velocity (.27)
Square root
Length .334 .218
lea 7 143 Velocity .110 (.23) .203
Square root .192 .210
Length 272 .183
Ollfg 8 .125 Velocity .092 (.19) 173
Square root .158 .178
Length .229 .1578
ARA 9 111 Velocity .085 .16)" .1621
Square root .139 »1599

For symbols, see Table V.
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TABLE VIII
lD - 1D
1
Species Z Z Type HF NBS MET
Length
C 6 .167 Velocity
I
Square root
Length .651 .314
NI§:> 7 .143 Velocity .310 (.45) .327
Square root 449 .320
Length .534 .297
0iI§:> 8 125 Velocity .263 (.37) .303
Square root .375 .300
Length 450 .269
Fiv 9 111 Velocity 234 (.31)+ .287
.324 .278

Square root

For symbols, see Table V.
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TABLE IX
s Ty
T .
Species Z 7 Type HF NBS MET
Length
CI 6 167 Velocity
Square root
Length . 245 .298
NIfa 7 .143 Velocity .094 (.30) .261
Square root .152 .279
Length .202 .219
OIIf:) 8 .125 Velocity .080 (.25) .193
Square root 127 .206
Length .169 .188
Fry 9 111 Velocity 069 (2t \175
Square root- .108 .182

For symbols, see Table V,
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TABLE X
st
Species Z -% Type HF NBS MET
: Length
CI 6 167 Velocity
Square root
Length .817 <259
lea 7 .143 Velocity 457 (.40) .309
Square root 611 .283
Length .669 .294
OII§) 8 .125 Velogity .388 (.35) .337
Square root .509 .315
Length - .569 .262
Py 9 111 Velocity .334 (3ot 305
Square root 433 .283

For symbols, see Table V.
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APPENDIX

PROGRAM FOR THE PROJECTION OPERATOR

This includes subroutines ORDER, CONTES, COMPAR and RALO apart from
main program.

This program is based on Ldwdin's projector operator method. Ref:
Rev, Mod. Phys. 36, 966 (1964). Let us take these subroutines one by
one and see how they work.

ORDER: This subroutine separates the orbitals in every determinant
into closed-open subshells and reorders the §rbit1as in each subshell in
ascending order. Precise manner of separation depends upon.whether spin
or angular momentum projection is being considered. It 1s.convenient to
separate. closed subshell orbitals from open subshell orbitals and allow
‘the projection operator to operate .only on the open,subshell.orbitais°

CONTES: Subroutine CONTES tests and classifies the configurations
of the determinants.in a way descriBed in the chapter on "Projector:
OpgratorrTechnique". Bach configuration is numbered. Once a particular -
configuration number has been assigned to a determinant it does not
change in a projected determinant because the projected determinant re-
maing within the. irreducible representation, fhat-isito say the parent-
and daughter determinant belong toléome configuration. The projection
operation treats all the determinants in a particular configuration at a
time.

RALO: Each factor in the projection operator as expressed in Eqn.
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[23] and [24] of reference (2), is essentially in terms of the identity
operator and the products of dtep up (M+) and step down (M_) operators.
This subroutine brings about these operation:.in a desired order. The
determinants resulting from applying the RAfsing and LOwering operators
to a given determinant are computed in this routine, The corresponding
coefficients. of the resulting determinants are also calculated here.

COMPAR: The determinants -computed in RALO along with that result-
ing from the identity operator are compared step by step in subroutine
COMPAR., The coefficients of two identical determinants are combined
together, Determinants whose coefficients add to zero are eliminated.
Each successive factor in the projection operator is applied to the-
result of -the preceeding operations.

Finally the coefficients and the determinants are written next to

each other with assigned configuration numbers in the output.



(¥ X s N e s XaN2 e XXX XaXaXxa Xz nkaXn)

92

PROGRAM FOR PROJECTOR- OPERATOR

IMPLICIT REAL*B(A-HoG‘Z)
DIMENSION COE(99)

: CIJSLDET (2.259lO).COFF(Z'Z5)“SLAG(Z)'SHLAG(Z).DOE(ZS).CDET(ZS.ZS)
’C.CDPP(ZS).lTAH(ZO)nlSLDET(QQ.lODoNRO(éZl.LORB(42).MORB(§Z)n

- N
N O

21

52

22

24
801

CIREP(2,42) yNREP(2,21) yLREP(14)yNCOM(25) ,KSLDET(25) 4yNPR{21),IP(21),
CIQE21),LSLDET(25,10) yNELCSI25)9NELOSI25) ¢ EISLD(25¢25410) yNDCF(25) 4
CKMAX{25) yNPAR(25,21) 4 APRCD (25)

COMMON COE,PHASE, XMULT yCOFF yCDET, SLAG s SMLAG s DOE o ISLDET yNRO,
CLORByMORBy IREP+ NREPy LREP 5 INDET ¢ ICFT.¢ 1JSLO¢NPART, JSLDET,LSLDET,
CNELCSyNELOS ¢ NOCF s KMAX s LMAX yNPAR 4 LORS 4K 1 ¢ K2 o NPROD, KREP, NTOTA

READ(5,20) (IREP(1yI1)y I=1442)

READ(5,20) [IREP(240)y Ix1,42)

READ(5,20) (NREP(1,I)y Ix1,14)

READ(5520) (NREP(2s1)y I=1,21)

READ(5,20) (LREP(I),I=1,14)

FORMAT(1615)

READ (5,12) (NRO(I)4LORB(I),MORB(I),1=1,42)

FORMAT (315)

LRI I IR R 22 2R RS RS2 R 2233 PR RS 832323 2 8332332883438 8 Y12 Y3
-k kkkkkskkkskss® SHORT EXPLANATION *&kksxsks kbbb krkihkk

NTRYAL= # OF STATES 10 BE PROJECTED GUT

NPART= # OF PARTICLES IN THE PROBLEM

NFUNC = #OF TYPES OF FUNCTIONSoNFUNC=1 IS HF,NFUNC=2 IS TOTAL CI

NFUNC=3 IS SEMI-INT PART,NFUNC=4 IS INTERNAL PART

SLAG(1)= TOTAL L VALUE OF THE STATE DESIRED

SMLAG(1)= TOTAL ML VALUE OF THE STATE DESIRED

SLAG(2)= TOTAL S VALUE OF THE STATE DESIRED

SMLAG(2)= TOTAL MS VALUE OF THE STATE DESIRED

LORS=1 [S L PROJECTICN GNLY

LORS=2 1S S PROJECTICN ONLY

FIRST ITAM READS STATEE CONFIGURATION(E.G THIS IS 1P STATE OF N+ FROM

152 25 2P3 ETC)

SECOND ITAM READS KIND OF FUNCTION(E+G. *#% TOTAL Cel*** ETC)

EMFD, INDET READ THE ENERGYCONTRIBUTION FROMTHAT KIND OF FUNCTIONENUMBER

OF DETTS IN THAT KIND OF FUNCTION#**###THEN COEGISLOET ARE READ

13222223231 ER R REI R 23323383 3323333232333 2 2232323232332 33283343333

L2 IR I IR E 33 RS 2332 231223243223 22322222 2222223 3 F3 322222 32 P13 2432333323

READ(5,9) NTRYAL

DO 11570 ITRY=1,NTRYAL

READ(559) NPART,NFUNC

READ(5¢21 }{SLAG(LORS } s SALAG(LORS) ,LORS=142)

FORMAT (4F5.2)

READ(5,52) (ITAM(I),I=1,20)

WRITE(6452) (ITAM(I),I=1,20)

FORMAT(20A4)

WRITE(7,52) (ITAM(I),I=1,20)

DO 11570 JTRYAL=1,NFUNC

READ(5,22) (ITAM(I),I=1,20)

FORMAT(2044)

WRITE(6924) (ITAMCI},Ix1,20)

WRITE(7,22) (ITAMUI),I=1,20)

FORMAT{*1%,20A4)

READ(5,801) EMFO, INDET

FORMAT(F13.9,12)

00 3 I=1, INDET

READ(54903) COE(E), (ISLDETALy4) 4J=1,NPART)

CONTINUE

FORMAT(415)
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700
701

710
905
720
906

125

822
823

50

80
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FORMAT{0615)
FORMAT(10F11.9)
NTP=INDET
D0 4000 LORS=1,2
IF (LORS~1) 700,710,720
WRITEL6,T0X)
FORMAT(® LORS IS LESS THAN 1 IN MAIN PROGRAM')
sTap
WRITEC69905) SLAGUL) +SMLAG(1)
FORMAT(* FOLLOWING ARE WRITTEN AFTER L PROJECTION WITH L=*,F5,2,
CU*AND ML=* 4F5.,2)
GO0 7O 725
WRITE(6,906) SLAG(2),SMLAG(2)
FORMAT(®* FOLLOWING WRITTEN AFTER L-S PROJECTION WITH S=?,F5,2,
CYAND MS=',F5.2)
LONTINUE
SLANG=SLAG(LORS)
SMLANG=SMLAGILORS)
NTOTA=NTP
CALL ORDER
ICFT = TOTAL # OF “CONFIGURATIONS®INTO WHICH THE SET QF DETTS MAY
BE DIVIDED.
IPR=0
NTP=0
IF (ICFT.EQ.0) GO TO 5000
DO 3000 ICF=1,ICFT
NTGP= NDCF(ICF)
NPARTP= NELOS(ICF)
NPART= NELOS(ICF)+NELCSUICF)
X=2.0D+0*SLANG
I1X=X
DO 823 I = 1, NTOP
DO 822 K = 14y NPARTP
JSLDET(1s1¢K) = TJSLDCICF o[ 4K)
COFF(1,1) = CDETUICF,1)
KLAST = 1
LZ = NTOP
THE FOLLOWING STATEMENT IS A SPECIAL CASE OF ALL CLOSED "SUBSHELL®™
IF((KMAXLECF)—IX)}4LTo0) GO TO 600
IF{KMAX(ICF)+EQe 0o ANDoSLANG.EQ.0.00+0) GO TO 601
Y=2,00+0%SMLANG
1y=sY
LMAX=(KMAX{ICF)=1Y}/2¢1
P22 EE RS2SRSS S22 SRR 2222 2222222222222 222 2SR 2RIt Y L]
*IN THE 500 DO LOOP wE APPLY LOWDIN'S PROJECTOR OPERATOR [N PRODUCT
* FORMy EACH VALUE OF DO LCOP PARAMETER INDEXES AFACTOR IN THE PRODUCT
* REFERENCE FOR THIS PROGRAM IS : PER~OLOV LOWDIN,REVe.MODePHYS. 36
¥ 9664976 (1964)
EREA SRR ERREXER R EERE AR RN ER AR AR EE SRR R RR AR AR R R R R A SRR R R kS Rk R R R AR R R Rk kR
DO 500 LL=1,LMAX .
SLA=DFLOAT(LL-1)
Kl = (3¢(=1)*%xLL])/2 -
K2 = (3+(~1)*%(LL*1))/2
NDET=LZ
IN THE PRODUCToTHE FACTOR, CORROSPONDING TO THE VALUE OF DESIRED L-ML
OR S—-MS IS UNITY AND STATEMENT 80 THROUGH 400 ARE OMITTED.
[F(SLA<EQs( SLANG-SMLANG}) GO TO 400
XMULT=1.,0D0407{ {SLANG~SMLANG-SLA}* (SLANG+SMLANG#SLA+1.0D40))



To0o

(XX g}

L2120 o -
IN THE DO LOOP 100 A GIVEN FACTOR IN THE PROJECTION OPERATOR IS APPLIED
TO ALL THE DETTS IN A GIVEN CONFIGURATION WHICH HAVE ARISEN IN APPLYING
PREVIOUS FACTORS IN ThE PRGQJECTICN OPERATOR,
DO 100 I=1,NDET .
LY=L2
FMULT'-(SLAfSHLANG)*lSLA*SNLANGfl.ODfQIOSHLANG‘(SHLANG—I.OD*O)
IF (FHUtT.EQ.0.0DfODGO T0 30.
LY=LZ1+1 .
DO 25KK=1,NPARTP !
25 JSLOET(K2,LY KK} = JSLDET(KI.I;KK)
COFF(K2e¢LY ) = FMULT*XMULT*COFF(K1,I)
30 CALL RALO (LYyLZ4I¢NPARTP)
100 CONTINUE
ISIM=]
IF(LL) 550.600.500
550 WRITE{6,555)
555 FORMAT( *LZ IS NEGATIVE®*)
sSTOP
400 DO 450 I=1,NDET
DO 440 J=1,NPARTP
440 JSLDET(K2.1,4) = JUSLDET{KLl,I,4}
450 COFF(K2,1) = COFF(KI.I)
500 CONTINUE
KLAST = K2
IF (LZ.GT.0) GO TO 606
600 WRITE(6+4605) ICF
605 FORMAT(®* IN THE CONFIG SYMMETRY ABSENT IS *,14)
NPROD(ICF)=0
GO0 1O 3000
601 LZ=NDCF(ICF)
COFF(KLAST, 1) = CDET(ICF-[)
NDO=1
IF(LZ.EQ.1l) GO TO 606
WRITE(6,602) L2
602 FORMAT(* STOPPED AT 602 MAIN PROG., Ll-‘.lSl
606 NPROD(ICF)=L2
WRITE(69990) ICFNPRCL(ICF)
990 FORMAT(* IN CONFIGURATION *y12,* THERE ARE *,13,% PROJECTED DETTS?
C)
DO 1000 I=1,L2
IPR=1PR+]
THE PROJECTED DETTS ARE NOW FORMED AND ARE STORED IN ISLDET.FOR EACH
DETT DO LOOP 950 ENTERS THE OPEN SUB-SHELL ORBITALS AND 00 LOOP 975
ENTERS CLOSED SUB-SHELL QRBITALS -
IF(NPARTP.EQ.0) GO TO 970
D0 950 K=1,NPARTP
950 JSLODET(IPR,K) = JSLDET(KLAST,I,K)
NDO=sNPARTP+1
IF{NDO«GT.NPART) GO TO 980
970 DO S75 K=NDOJNPART
975 ISLOET(IPRyK)= [JSLOCICF;1,K)
980 CONTINUE
COE(IPR) = COFF(KLAST,I)
PHASE=1.00¢0
DO 982 K=1,NPART
IF(K.EQeNPART) GO TO 983
KP=K+1
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981
951

985

982
983

903
1000

3000
4000

551
5000
11570

DO LOOP 982 RECORDS THEviTTS WITH THE PROPER PHASE SO THAT THE ORBITALS
OCCUR IN ASCENDING ORODER

DO $82 KK=KPyNPART -~ .
IFCISLDET{IPRyK)-ISLDET( [PRyKK)) 982,981,985
KRITE(6+951)

FORMAT(®* TWO ORBITALS SAME IN PROJECTED DETTSTOPPED BEFORE 982
CIN MAIN PROGRAM')

sTOP

MP=ISLDET{IPRK)

ISLDET({IPR¢K)=ISLDET (IPRyKK)

ISLDET(IPRKK)=MP

PHASE={~140)*PHASE

CONTINUE

CONTINUE

COE(IPR)=PHASE*COE{ IPR)

WRITE(6+903) COEC(IPR) 4 (ISLDET(IPRyK)oK=1yNPART)
WRITE(7,903) COE(IPR)+(ISLDET(IPR,K) yK=1,NPART)
FORMAT (F13.9,1013)

CONTINUE

NTP=NTP+LZ

CONT INUE

IF{NTP.EQ.0) GO TO 5000

CONTINUE

WRITE(64551) EMFDyNTP

WRITE(T7,551) EMFD,NTP

FORMAT(F13.9,412)

G0 TO 11570

WRITE(6,70)

FORMAT( * NO COMPONENT OF THIS SYMMETRY')
CONTINUE

STGP

END
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135

136

125

139

137
138

35
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SUBROUT INE RALOILY,LZy 1,NPARTP)

IMPLICET REAL*8(A-H,C-2)

DIMENSION COE(99), ’

CJSLDET (2¢25410)9COFF(2425)9sSLAG(2) sSMLAG{2)4DOE(25) 4CDET(25425)
C,COPP(25)yITAM(20) s ISLDET(99,10) ¢NRO{42),LORB(42),MORB(42),
CIREP(2442)yNREP12421)sLREPL14)yNCCM(25) o KSLDET(25) 4NPR(21),yIP(21),
CIQ(21),LSLDET(25,10) ¢NELCSI25))NELOS(25) 2 1JSLD(25425910)4NOCF(25),
CKMAX(25) ¢NPARL25,21) yAPRCD(25)

COMMON COEsPHASE ) XMULT 4COFF yCDET» SLAG 9 SMLAG +DOE » I SLDET ¢NRO,
CLGRB¢MORBy IREP ¢ NREPoLREP INDETy ICFT, IJSLD)NPART JSLDET,LSLDET,
CNELCSyNELOS NDCF o KMAX yLMAX ¢NPAR ¢ LORS yK1 ¢ K2 ¢yNPRODoKREP4NTCTA

[ J3 2232222122 2R E 222 RS RS2 2 2222 R 22 YRR 222 S 222 R iRzt s ]

IEE 2 F 2 E PRS2SR R 22 R RS 22222222 22222222222 R R ot Rt R 2 2 R R 2R 2]

* STANDARD RAISING AND LOWRING OPERATORS <OPERATIONS ARE BROUGHT UP IN

* DESIRED ORDER.

* THIS PROGRAM OPERATES ON A DETT MSLDET WITH THE OPERATOR M+M-.THE

* RESULTING DETTS ARE PUT IN JSLDET AND THE RESULTING COEFFICIENTS TIMES

* A NORMALISING DENOMINATOR ARE PUT IN COFF,.

I EE2 RS 2222 R RS2 22 2 2SR 2R 2 RSt 22222222 iRz 22ttt 2l 2]

FUREREER SRR SRR TR R AR LSRR R AR KRR R KRR R IR R R RS R E R R R R R kR Rk ko ke

THE FOLLOWING BRINGS ABOUT M- OPERATIGN

LY1=0

DO 138 K=1,NPARTP

LYl=LYl+]

DO 135 KK=1,NPARTP

LSLDET(LYLsKK) = JSLDET{K1l,yI14KK)

L=LSLDET{LY1 4K)

IF(LORS.EQ.2) GO TQ 125

MM=MQRBI(L) :

LL=LORB(L)

MMN=MM-1

LSLDET(LY1,K)= L-2

IF (MMNeLTe(=LL}) GO TC 137

IF(KJEQe1 ) GO TO 136

KP=K~1

IF(LSLDET(LY1)K)eEQeLSLDET(LYL,KP)) GO TO 137

Ll=(LL+MM)

L2={LL=-MM+1)

GO 7O 139

IF((2%(L/2)-L)+EQ.0) GC TO 137

LSLDET(LYLlK)=L*+]

Ll=1

L2=]

COPPILYL) =DSQRTIDFLCAT(L1*L2))*COFF(K1+1)

GO TO 138

LSLOET(LYL K)=L

LYl=LY1l-1 ‘

CONT INUE

IF (LY1.EQ.0) RETURN .

THE FOLLOWING BRINGS ABOUT M+ OPERATION ON THE QUT PUT DETTS OF M-,

DO 150 LLL=1,LY]l

DO 38K=14NPARTP

LY=LY+]

DO 35 KK=1yNPARTP

KSLOET(KK) = LSLDET(LLLKK)

L = KSLDET(K)

IF(LORS.EQ.2) GO TO 25

MM=MCRB(L)



36

25

39
30
37
3a

1399
150

LL=LORB(L)
MMN=MM+]

KSLDET(K) = L + 2

IF (MMNeGToLL) GO TO 37
IFIK.EQ.NPARTP) GO TO 36
KP=K+1

IFIKSLOET(K) «EQe KSLOET(KP)) GO TO 37
Li=(LL-MM)

L2={LL+MM+])

GO TO 39

IFL(2%(L/2)-L)«NE.,O) GO TO 37
KSLDET(K)=L~-1

Li=1

L2=1

COFF{K2,4LY) = DSQRT (DFLOAT (L1*L2) ) ®XMULT #COPP(LLL)

DO 30 KK = 1,NPARTP
JSLDETU(K29LYsKK) = KSLDET(KK)
G0 TO 348

LY = LY - 1

CONT INUE

IF(LY.EQ.0) GO TO 1399

CALL COMPAR (LY4LZyNPARTP)
LZI=LY

CONTINUE

RETURN

END
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SUBROUTINE COMPAR (LY-L%;NPARTP)

" IMPLICIT REAL#*8{A-H,C~Z

TOO0OO0O0

“'600

601
700

702
701

705
106

799

906

DIMENSIGN COE(99),

CJSLDET (2425410)yCOFF(24525)9SLAG(2) ¢SMLAG(2)+DOE(25)4CDET(25,25)
Cy1COPP(25) 4 ITAMI20) 4 ISLDET(99,10) +NRO{ 42) yLORB(42) 4 MORB(42),
CIREP(2442)yNREP{2421)4LREPIL4)+NCOM(25)4KSLDET(25)¢NPR(21),1IP(21),
CIQ(21)oLSLDET(25+10) +NELCS(25) ¢NELOS(25)41JSLD(25,25,10)+NDCF(25),
CKMAX(25) 4 NPAR(25,21)4NPROD(25) .

COMFON COEyPHASEsXNULT+CCFF4CDETySLAGySMLAG,DOE, ISLDET4NRO,
CLORByMORByIREPyNREPyLREP 4 INDETs ICFTsIJSLDyNPARTs JSLDET,LSLDET,
CNELCSyNELOS s NDCFyKMAXyLMAXyNPARyLORS yK1yK2yNPROD,KREP,NTOTA

(ARt T IE 2R E 2 22 22 R R R RS R LS RS R SRS R R R RSS2SR RS SR 2222 2 2 2 ]

* THIS ROUTINE COMPARES DETTS TO SEE IF . SOME ARE IDENTICAL. IF IT IS SO

* THEIR COEFFICIENTS ARE ACLDED AND IF THE RESULTING COEFFICIENTS TURN OUT
‘®* TO BE ZERO, THEN THGSE DETVTS ARE THROWN AWAY

(I ST TSR RS SIS S LR PRS2 RS2 2222 2222 R R a2 R RS RS2 SRR 2 d iR YRS

SMALL=0,00000001D+0 ’

NQ=0

KM=L2Z

KM=KN+]

IF(KM=-LY) 601,601+79S

CONTINUE

JM=0

JM=JM+]

IF(JM-KM) 702,600,600

K=0

K=K+1

IF(K~NPARTP)T05,705+706

IF{JSLDET{K2 yKM,K)=JSLDETIK2,JMsK)) T00, 701, 700

COFFIK2yJMN) = COFF(K2,JM) + COFF{K2,KM)

NC=N(+1

NCOM{NQ) =KM

GO TO 600

CCNTINUE

NQMAX=NQ

IX=0"

MQ=0

DO 901 J = 1,LY

NQ=MQ+1

IF(NQsGT.NQMAX) GO TQ 906

IF(NCOMINQ)=~J) 906,905,906

IF(CABS{COFF(K2,J))eLTeSMALL) GO TO 920

915 IF (MQeEQe0.AND.IK.EQs0) GO TO 907
916 LQ= J-MQ~IK

COFF(K2,LQ) = COFF(K2,4J)
D0 904 K=1,NPARTP

904 JSLDETIKZ2,LQsK) = JSLDET{(K24J,K)

GO TO 900

920 IK=[K+1

COFF{K2yJ) = 0,00+0
GO TO 900

905 MQ=MQ+1

907

CONTINUE

900 CONTINUE

901
1000

CONTINUE

CONTINUE

LY = LY - MQ - IK
RETURN
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SUBROUTINE CONTES (l!l ICF)
IMPLICIT REAL*B(A- Zl

DIMENS IGN COE(QQ)-
CJSLDET (2425410} CCFF(2,425)4SLAG(2) ,SMLAGI2),DOE(25),CDET(25425)
CyCOPP(25),ITAM(20)yISLDET{SS,10) 4NRO(42) o LORB(42) yMORB(42),
CIREP(2942)yNREP(2421)LREP(14),NCOMI{25),KSLDET(25),NPR(21),IP(21),
CIQU21)+LSLOET(25910) yNELCS{25) ¢ NELOS(25),1JSLD(25,25410)¢NDCF{25),
CKMAX(25) s NPAR( 25,21) 4NPROD(25)

CCOMHMON COEyPHASE ¢ XMULT 4CCFF,CDET¢SLAGySMLAGsDOE, ISLDET+NRO,

CLORBoMORByIREP ¢y NREPLREP ¢ INDET s ICFT9IJSLD¢NPART 9 JSLDET 4LSLDET,

10

11

12

13

14
15

CNELCS ¢ NELOSyNDCF o KMAX ¢LMAXyNPAR9LORS yK19K2¢+NPRODyKREPZNTOTA

P2t ER TSRS A3 RIS AR RS 2 R 222 2 Rt a2 iR i a2 SRS R SRS 2 S 2
* THIS SUBROUTINE TESTS TO SEE IF PRESENTLY CCNSIDERED DETT WITH PROPERLY
* ORDERED ORBITALS BELCNGS TO THE SAME "CONFIGURATION™ AS ONE OF THE

* PREVIOUS DETTe ICF LABELS “CONFIGRATION™ AND NOCF(ICF) WILL BE # OF DETT
* ~S IN CONFIGURATION ICF.

E2 21232 2222222 22 22 R R R R 2222 R 2R 2R R RS2 R R E R R R 22 A2 222 2l T ]
ICFL=ICF-1

IF (ICF1.EQ.0) GO TO 13

DO 8 I= 1,ICFl

JJ=0

Jd=JJ+l

IF{JJ«GT.KREP) GO TG 10

IFINPARCICF¢JJ)=NPAR(I+JJ))B4,8

CCNTINUE

GO TO 13

NDCF(I)= NOCF(I)+]l

N=NDCF (1)

*[JSLD{I yNoKK)= [JISLO(CONFIGURATION # ICF,DETT # N IN THE CONFl., ORBITAL
* INDEX.)

DO 11 KK=1,NPART

TJSLDCI ¢ NoKK)= ISLDET(IIIKK)

CDET(I,N)= PHASE*COE(III)

D0 12 J=1,KREP

NPAR(ICF,J)=0

NELOS(ICF)=0

NELCSUICF)=0.

ICF=ICF~1

G0 TO 15

NDCF(ICF)=1

N= NDCF{ICF)

D0 14 KK=1, NPART

IJSLOUICF4NoKK)= TSLDET(III4KK)

CDETU(ICFyN)= PHASE* COE(III)

CONTINUE

RETURN

END
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SUBROUTINE ORDER
IMPLICIT REAL*8(A-H,C-2)

DIMENSION COE(99),

CJSLDET  €2425¢10),COFF(2+25),SLAG(2) ,SMLAG(2),DOE(25) 4CDET(25,25)
C,COPP(25) yITAM(20) 4 ISLDET{99,10) (NRO(42)+LORB(42),MORB(42),
CIREP(2,42) yNREP(2421 )y LREP{14) «NCOM(25) yKSLDETI25) 4NPR{21),1P(21),
CIQ(21),LSLDET(25,10) 4NELCS(25),NELOS{25) 5 1JSLD(25,25,10),NOCF(25),
CKMAX{25) yNPAR(25521) yNPROD(25)

CCMMON COE+PHASE, XMULT 4COFF yCDET,SLAG 9 SMLAG yDOE ¢ I SLDET 4 NRO,
CLORB ¢ MORB ¢ IREP y NREP , LREP ¢ INDET, ICFT, IJSLDsNPART ¢ JSLDET,LSLDET,
CNELCSoNELOS,NDCF s KMAX o LMAX yNPAR o LORS ¢K1 ¢ K2 NPROD KREP,NTGTA

WE WANT COMPUTATION TO BE DONE ONLY ON THE NON CLOSED SHELL

THEREFORE KEEP THE CLCSED SHELL AWAAYIN THE BIGINING AND ADD IT

LATER

THE FOLLOWING CHECKS IF WE HAVE A CLOSED SHELL

KREP=THLORS+7 :

1CF=0

I111=0

IF{ NTOTA.EQ.0) RETURN

DO 300 JJJ=1, NTOTA

DO 5K=1,KREP

IP(K)=0

1QiK}=0

MS=0

ML=0

5 NPR{K)=0

PHASE=1,00+0

IF(LORS.EQ.2) GO TO 101

NOW WE ARE BRANCHING OFF TO EITHER L OR S ORDERING

11=0

FOLLOWING SEPARATES THE ORBITALS IN A GIVEN DETT, FIRST ODD ONES(ALPHA),

THEN EVEN ONES (BETA),

DO 120L=1,2

DO 10 I=1,NPART

KK=2%( ISLDET(JJJ,1)/2)=1SLDET(IJI, 1)

IF(KKeEQsOsANDeLoEQeloORe KKoEQe~14ANDeLoEQe2) GO TO 10

I=1]+1

KSLDET(II)= ISLDET(JJJe1)

J=KSLDETLII)

ML=ML+MORB(J)

MS=MS+ (=1 )%%(J¢1)

IF(L.EQs2) GO TO 10

14 PHASE=((~1,0)%%{ 11-1))*PHASE
10 CONTINUE
IF(L.EQ.2) 60 TO 120
NALPHA=I1
120 CONTINUE

IF(DFLOAT(ML) s NEoSMLA G(1)+OR.DFLOAT(MS) /2,.NEsSHLA G(2}) GO TO
€450 )

NCW TO ARRANGE THESE CRBITALS IN ASCENDING ORDER, QDD AMONG ODD AND EVEN

AMONG EVEN. ,

UPTC 92 ORDES FOR L PROJECTION.

IF (NALPHA.EQ.0) GO TO 90

DO 80 J=1sNALPHA

IF (J<EQ.NALPHA) GO TG 90

FTLENTST

D080 JJ=JP,NALPHA

IF (KSLDET(J)-KSLDET(J4J))80,81,85
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" 81 WRITE{6,50)

50 FORMAT(83H TWO ORBITALS ARE SAME IN THE INPUT DETT AND COMPUTATION
CSTOPPED BEFORE STATEMENT 81)
sTOP
85 MP=KSLDET(J)
KSLDET(J)=KSLDET(JJ)
KSLDET(JJ)=MP
PHASE= (=1.0)*PHASE
80 CONT INUE
90 NBETA=NPART-NALPHA
IF (NBETALEQe.0) GO TO 92
NDBET=NALPHA +1
DO 82 J= NDBET,NPART
IF(J.EQ.NPART) GO TO 92
JP=J+l
D0 &2 JJ=JPyNPART
IF(KSLDET(J)-KSLDET(JJ))82,83,87
83 WRITE(6,51)
51 FORMAT(®TWO ORBITALS SAME,STOPPED BEFORE STATEMENT 83')
- sTOP
87 MP=KSLDET(J)
KSLDET(J)=KSLDET (JJ)
KSLDET{JJD=HP
PHASE= (~1.0)%PHASE
82 CONTINUE
92 CONTINUE
IF (LORS.EQ.1) GO TO 94
UP TO STATEMENT 102 ORDERS FOR S PROJECTION.
101 DO 6 J=1,NPART
6 KSLDET(J)= ISLDETIJJIIsd)
DO 180 J= 1, NPART
IF(J.EQ.NPART) GO TO 102
JP=Jel
DO 180 JJ= JP,NPART
IF (KSLDET(J)~KSLDET(JJ)) 180,181,185
181 WRITE(6,4151) ‘
151 FORMAT( ¢ TWO ORBITALS ARE SAME IN THE DETT STOPPED BEFORE
CSTATEMENT 181 IN ORDER')
sToP

185 MP=KSLDET(J)

KSLDET(J) =KSLDET(JJ)
KSLDET(JJ)=MP
PHASE= (-1,0) #PHASE

180 CONTINUE

102 CONTINUE

94 CONTINUE .
B e e s e e L e L e e e e e e L e e b e e e e e e e e e e e e L D e T Y
BEGINING OF CLASSIFICATION OF ORBITALS INTO “SUB- SHELLS™ AND DETERMINING
WHICH SUB-SHELLS ARE FILLEC(CLOSED SUBSHELL) 'AND WHICH ARE PARTIALLY
FILLED(OPEN SUBSHELL)4ICF WILL LABEL A CONFIGURATION. A CONFIGURATION IS
GIVEN BY BY LISTING THE OCCUPANCY OF THE “SUB SHELLSY. THIS OCCUPANCY IS
STORED IN NPAR(ICF,J) ‘
Rpphpkkkkk kb p Rk p bk kR ok kR Rk ko Rk kR Rk kR kk kS kR kR ko kk Rk k
[II=111+1 ‘
ICF=ICF+1
DO 100I=1,NPART
L=KSLDET(I)
J=IREP(LORS,L)



100

401
400
130
135

OO0

125
160
165

150

175

15

136

402

403

102

NPR(J)=NPR(J|+1
CONT

NPR= # OF ORBITALS IN A PARTICULAR “SUBSHELL™.

NPARTP= TOTAL # OF PARTICLES IN OPEN SUBSHELL.

NPARTP=0

NC=0

KMAX(ICF)=0

DO 175 J=1,KREP

NPAR(ICF ¢ J)=NPR(J)

IF(LORS.EQs2) GO TO 401

KMAX(ICF)= KMAX(ICF)+NPR(J)*(2*%LREP(J)}+1-NPR(J))

IF(LORS«EQ.1) GO TO 400

KMAX(ICF)=KMAX(ICF)+NPR{J)*(2-NPR(J))

IF (NPR(J})1304175,125

WRITE(64135)

FORMAT(1X*STOPPED BEFORE STATEMENT 130°')

stoe

IN THE FOLLOWING ¢GOING TO STATEMENT 175 MEANS WE HAVE A CLOSED SUBSHELL
AND GOING TQ STATEMENT 150 MEANS WE HAVE AN OPEN SUB-SHELL,THAT IS THE TY
PE WE WANT TO PRCJECT.

IF(NPR(J)-NREP(LORS+J)) 150,175,160

WRITE(64165)

FORMAT(' STOPPED BEFORE STATEMENT 160 IN ORDERY)
stTop

NC=NC#+1

NPARTP=NPARTP+NPR(J)

IPINC)=J

THE ABOVE GIVES ORBITALS NOT IN CLOSED SHELL
CONTINUE

IF THERE ARE NO OPEN SUB-SHELLS WE WANT TO GO AT THE END OF THE PROGRAM
WE NOW SEPARATE OPEN AND CLOSED SUB-SHELL.

IF(NC.EQ.0) GO TO 952
IF(LORS.EQe2) GO TO 402
11=0

D0 136 L=1,2

DO 15 I=1,NC

KK=2# (IP(I 1/2)-1P(1)
IF(KKoEQeOoANDoL +EQe 1oOReKKeEQu~14ANDsLoEQe2)} GO TO 15

11=11+1 v
1QUIT)=IPUI) .
CONTINUE

IF(L.EQ.2) GO TO 136

MAX=11

CONT INUE

THE FOLLOWING SEPARATES OPEN SUB-SHELLS & PLACES THEM TO L.H.S AND CLOSED
SUB-SHELL TO THE ReHeSe

Jo=0

JC=NPARTP

KKK=0

K=1

1=1

IF(1.GT<NPART) GOTO S5

L=KSLOET (1)

J=IREP(LORS L)

IF (LORS.EQe2) GO TO 403

IF(J.NE.IQ(K)) GO TO 55

IF(LORS.EQ.1) GO TO 404

IF(JeNELIP(K)) GO TO 55

3



404

40

55

60
88
95
952

953
97

98

450
420
300

KUP=NPR{ 4

JLP=KUP ¢ [~1

D0 40 LL=
J0=J0+¢1

Iy4UP

PHASE=PHASE*(-1,0) #¥KKK

ISLDET(II
K=K+1

GO TO 88

CONTINUE

KUP=NPR( J

14J0)=KSLDET(LL)

JUP=KUP+I~1

D0 60 LL=
JC=JC+1
ISLDET(II
CONTINUE
KKK=KKK+N
[=1+KUP

‘60 TO 1

CONTINUE
60 TO 97

[+JUP

14JC)=KSLDETILL)

REP(LORSyJ)

DO 953 JC=1,NPART

ISLODET(II
CONTINUE
NELOS(ICF
NELCSUICF
CONTINUE
CALL CONT
60 70 300
WRITE(6 4
FORMAT(!
CONTINUE
ICFT=ICF
RETURN
END

[9JCI=KSLDET(JC)

}=NPARTP
1=NPART-NPARTP

ES(IIT.ICF)

20) JJd
DETT*,13,°HAS BEEN THROWN AWAY*)
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SAMPLE OUTPUT

ek idhResdTOTAL CI¥edksrsndoki

FOLLOWING ARE WRITTEN AFTER L PROJECTION WITH L= 0.0 AND ML= 0,0

IN CONFIGURATION

1 THERE ARE

0.408248300 1 2 3 5 8 10
0.408248300 1 2 3 6 710
0.,408248300 1 2 3 6 8 9
IN CONFIGURATION 2 THERE ARE
-0.408248300 1 2 4 5 8 9
~0,408248300 1 2 4 5 710
~0.408248300 1 2 4 6 1 9
IN CONFIGURATION 3 THERE ARE
0,0008545682 1 2 4 5 10 15
-0.,000854982 1 2 4 7 10 13
=0,000854982 1 2 4 5 8 117
+0,000854982 1 2 4 8 913
r0,000854982 1 2 4 & 1 17
0.000854982 1 2 4 6 9 15
IN CONF IGURATION 4 THERE ARE
0.012418971 1 2 5 8 9 12
0,012418971 1 2 5 7 10 12
0.012418971 1.2 6 1 912
JN CONFIGURATION 5 THERE ARE
‘06034923114 1 2 5 8 9 24
#0,017461557. 1 2 5 7 10 24
0.030244304 1 2 5 1 B8 26
»0.017461556 1 2 6 1T 9 24
«0,030244303, 1 2 5 6 9 26
=0,030244303 1 2 7 8 9 22
0,030244304 1 2 5 9 10 22
0,042771904 1 2 5 6 7 28
~0s042771904 1 2 7 9 10 20
IN CONFIGURATION 6 THERE ARE
~0+030244304 1 2 7 8 10 21
0.,017461557 1 2 5 8 10 23
-0.042771904 1 2 8 9 10 19
0.,030244303 1 2 6 9 10 21
~0.034923113 1 2 6 7 10 23
-0,030244304 1 2 5 6 10 25
0,017461556 1 2 6 8 9 23
0,030244303 1 2 & 7 8 25
0,042771904 1 2 5 6 8 27
IN THE CONFIG SYMMETRY ABSENT IS
IN CONFIGURATION 8 THERE ARE
0.000854982 1 2 3 5 8 18
0.000854982 1 2 3 6 1718
-0,000854982 1 2 3 S5 10 1é
-0,000854582 1 2 3 6 9 16
0.,000854982 1 2 3 7 10 14
0.000854582 1 3 8 914

IN THE CONFIG
IN CONF IGURATI
-0.002974576
0,002914576
0.002914576
IN THE CONFIG
IN THE CONFIG
IN THE CONFIG

SYMMETRY ABSENT IS
ON 10 THERE ARE

1 2 3 61015

1 2 3 81013

1 2 3 6 817
SYMMETRY ABSENT IS
SYMMETRY ABSENT IS
SYMMETRY ABSENT IS

IN CONFIGURATION 14 THERE ARE

-0.012418971
-0.012418971
-0.,012418971
IN THE CONFIG

IN CONFEGURATION 16 THERE ARE

-0.002974576

1 2 5 81011
1 2 6 71011
1 2 6 8 911
SYMMETRY ABSENT 1S

1 2 4 5 1718

3 PROJECTED DETTS

3 PROJECTED DETTS

6 PROJECTED DETTS

3 PROJECTED DETTS

9 PROJECTED DETTS

9 PROJECTED DETTS

7 .
6 PROJECTED DETTS

9
3 PROJECTED DETTS

11
12
13
3 PROJECTED DETTS

15

- 3 PROJECTED DETTS
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