GENERAL-SOLUTION OF TAYLOR AND EDMISTER FOR

 MULTICOMPONENT, MULTISTAGE SEPARATIONSBy
GHANSHYAM Co SHAH
Bachelor of Science
Maharaja Sayajirao University
Baroda, India
1969

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE

July, 1971
 MULTICOMPONENT, MULTISTAGE SEPARATIONS

Thesis Approved:

PREFACE

The "General-Solution" of Taylor and Edmister was applied to various distillation problems. The "General-Solution" can be applied easily with digital computers. In connection with K value and enthalpy expressions, new forms for K and H were incorporated in the computer program for "General-Solution".

Appreciation is expressed for the advice and direction of the members of the Masters Committee, Professors W. C. Edmister, J. H. Erbar, B. L. Crynes, and J. M. Jobe. The guidance of Professor W. C. Edmister, the author's thesis adviser, and Professor J. H. Erbar, has been especially helpful. The advice and guidance of Professor D. L. Taylor, from the University of Puerto-Rico, were very valuable.

The financial support of the School of Chemical Engineering of this Institution is gratefully acknowledged. The author is grateful to Velda Davis, who directed the production of this thesis, with the typing assistance of Marilynn Bond and Margaret Estes.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. REVIEW OF PREVIOUS WORK 3
Direct Calculation Procedure 3
Indirect Calculation Procedure 4
Matrix Techniques 5
Amundsen's Technique 5
Wang \& Henke Method 5
Tomich's Method 6
Burman's Method 6
General-Solution of Taylor and Edmister 7
III. GENERAL-SOLUTION OF TAYLOR AND EDMISTER 9
Component Material Balances 9
Tridiagonal-Matrix Formulation 12
Over-all Material Balances 13
Heat Balances and Equilibrium Relationships 14
Combination of Equations 15
Heat Balance and Equilibrium Functions 15
Newton-Raphson Technique 16
Round-off Errors 17
IV. THERMODYNAMIC PROPERTIES 20
Holland's Equations 20
Proposed New Forms of Equations 22
Basis for New Forms of K \& H Equations 22
V. APPLICATION RESULTS 25
Application of Integral Technique to General-Solution 26
The Use of Simpson's Rule 27
Example Number 1 29
Example Number 2 33
Example Number 3 37
Example Number 4 41
Example Number 5 50
Conversion of Pseudo-Compositions of Products Into Real Compositions 54
Hypothetical Component Method 59
Chapter Page
V. (CONTINUED)
Solution to Example Number 5 60
VI. CONCLUSIONS AND RECOMMENDATIONS 65
Conclusions 65
Recommendations 66
A SELECTED BIBLIOGRAPHY 69
APPENDIX A - THE NEWTON-RAPHSON ITERATION TECHNIQUE 71
APPENDIX B - ERBAR'S LINEAR REGRESSION CURVE-FIT 77
APPENDIX C - NGPA-K \& H PROGRAM 81
APPENDIX D - TAYLOR'S COMPUTER PROGRAM 84
APPENDIX E - INPUT AND OUTPUT FOR TAYLOR'S PROGRAM 93
APPENDIX F - NOMENCLATURE 105

LIST OF TABLES

Table Page
I. Initial and Final Temperature and Flow-Rate Profiles for Example Number 1 30
II. Final Product-Distributions for Example Number 1 31
III. Initial and Final Temperature and Flow-Rate Profiles for Example Number 2 34
IV. Final Product Distributions for Example Number 2 35
V. Initial and Final Temperature and Flow-Rate
Profiles for Example Number 3 38
VI. Final Product Distributions for Example Number 3 39
VII. Initial and Final Temperature and Flow-Rate
Profiles for Example Number 4 42
VIII. Final Product-Distribution for Example Number 4
(Via K \& H Equations (4.1), (4.2), and (4.3)) 43
IX. Final Product-Distribution for Example Number 4
(Via K \& H Equations (4.4), (4.5), and (4.6)) 。. . . . 44
X. A Typical K-Value Comparison ($\mathrm{T}=101.42^{\circ} \mathrm{F}$) 45
XI. K-Value Comparison $\left(T=177.95^{\circ} \mathrm{F}\right)$ 46
XII. K-Value Comparison ($\mathrm{T}=3560^{\circ} \mathrm{F}$) 47
XIII. Temperature and Flow-Rate Profile for Example Number 5 Via the Application of Simpson's Rule for Complex- Fractions 53
XIV. Product Distribution for Example Number 5 Via Simpson's Rule Application 56
XV. Temperature and Flow-Rate Profile Comparison for Example Number 5 61
XVI. Product Compositions by "Hypothetical-Component Method" for Example 5 62

LIST OF FIGURES

Figure Page

1. A General-Equilibrium Stage for a Distillation Process 10
2. Comparison of Temperature Profile for Example No. 1 32
3. Comparison of Temperature Profile for Example No. 2 36
4. Temperature Profile for Example No. 3 40
5. K-Value Deviations 48
6. Temperature Profile Comparison for Example No. 4 49
7. TBP Assays of Products (Via Simpson's Rule) for Example 5. 58
8. TBP Assays of Products (Via Hypothetical-Component Method) for Example 5 63
9. Temperature Profile Comparison (Example No. 5) 64
10. Geometric Interpretation of Newton-Raphson Method 75
11. Typical Extreme Cases for Newton-Raphson Technique 76

CHAPTER I

INTRODUCTION

Distillation is one of the most common and convenient methods for performing separation of a liquid mixture. Thus, design and evaluation of distillation columns is of paramount importance in the chemical process industry. The word "design" refers to either one or the other of the following:

1. Determination of number of theoretical stages for a given separation.
2. Determination of the operating reflux ratio for a given separation.

Thus, there are three primary variables in distillation calculations:

1. Number of theoretical stages.
2. Reflux and boil-up rates.
1.3. Product compositions and amounts.

The objective of rigorous stage-wise calculations is to find one, given the other two.

For rigorous calculation methods, the thermodynamic properties used are of great importance. The thermodynamic properties used in distillation calculations are K and H values. K is defined as equilibrium vapor/liquid distribution ratio, $K_{1}=y_{1} / x_{1} . H$, the enthalpy (heat content) for a mixture is defined as $H^{b}=\sum x_{1} \bar{H}_{1}$ and $H^{V}=\sum y_{1} \bar{H}_{1}^{V}$. H^{\dagger} and H^{\vee} refer to enthalpies of vapor and liquid mixtures, respectively.
\bar{H}_{1}^{\prime} and $\bar{H}_{1}{ }^{V}$ are the partial molal enthalpies of the components of liquid mixtures and vapor mixtures, respectively. Thus, K_{1}, \bar{H}_{1}, and \bar{H}_{1}^{V} are the component properties which are functions of temperature, pressure, and compositions of the coexisting equilibrium vapor and liquid phases. In this work, the K_{1} and \bar{H}_{1} values have been obtained from NGPA-program (27) with the use of Chao-Seader (6) correlation. These values are then employed with "General Solution for distillation processes" developed by Taylor and Edmister (21, 22).

Since complex-hydrocarbon fractions are encountered frequently along with the "discrete" components (e.g., methane, ethane, etc.), it is also essential that a general calculation method have the capability of handling both types of mixtures simultaneously in distillation calculations. The use of Simpson's rule proposed by Taylor and Edmister for making distillation calculations for complex-fractions (i.e., petroleum mixtures that are defined by a laboratory batch distillation assay) has been extended to handle "hybrid-mixtures" in this study. Hybrid mixtures are the mixtures which contain both types of components, i.e., discrete and complex.

Chapter II reviews the previous stage-wise calculation methods and Chapter III presents the discussion of General Solution of Taylor and Edmister.

REVIEW OF PREVIOUS WORK

The objective of this chapter is to review briefly the background and present the current status of several multi-component stage-wise calculation procedures. In the presentation that follows, an effort has been made to arrange the discussion of developments in chronological order with an aim to show the gradual improvements in calculational procedures.

Direct Calculation Procedure

In 1932, Lewis and Matheson (16) proposed a direct equilibrium stage calculation procedure in which the objective was to find the number of theoretical stages for a desired separation and given reflux ratio. Equilibrium and material balance calculations were made from the top toward the feed plate and from the bottom toward the feed plate, starting with assumed distillate and bottom compositions. As the calculations proceed from the two terminals, the non-distributed components were introduced so that all the components would be present at the feed-plate mesh (8). The initial product assumptions and the introduction of the non-distributed components affect the convergence significantly. The Lewis-Matheson procedure is sometimes referred to as a "design" method, because of its objective, i.e., calculation of the number of equilibrium stages.

Indirect Calculation Procedure

In the "indirect" procedure, developed by Thiele-Geddes (24) in 1933, the objective is to find the product-compositions for a column with a given number of equilibrium stages and a known reflux ratio. Calculating the component distributions requires using assumed temperature and flow-rate profiles. With these as starting information, the method permits calculating the products and checking the primary assumptions.

Equilibrium and heat balance considerations are used to revise the temperature and flow-rate profiles. All the necessary equations have been presented (8). This method is sometimes referred to as an "analysis method" because of its objective, i.e., product compositions. Convergence is usually slow by this indirect method.

In a later work, Holland (12) claimed to improve the convergence of Thiele-Geddes method by combining it with a so-called " θ-method." Essentially θ is a multiplier that relates the calculated and converged product•distribution. It may also be viewed as an arbitrary multiplier, introduced to force the calculations to give the desired total product distribution. θ is incorporated in the material balance equations which are then written in functional form. The solution of the function yields the value of θ, which is used in the revision of the temperature and flow-rate profiles. The proposed revision procedure is repeated until final calculated product rates match with the required rates within a specified tolerance. Detailed discussion appears in Holl and (12).

Matrix Techniques

The Lewis-Matheson (16) and Thiele-Geddes (24) calculation procedures are inherently slow to converge. Because of these slow and awkward convergences, the computer techniques based on these methods were never very successful. In the Lewis-Matheson procedure, it was the "introduction of non-distributed components" that made this method slow. Thiele-Geddes procedure suffered from large round off errors. Besides, both these methods shared a common weak-point; i.e., they required that all components appear in both products and that none can be zero. To overcome some troubles, the use of matrices has been proposed.

Amundsen's Technique

Amundsen et al. (1) were the first to propose the use of matrices in distillation calculations. The usual over-all material balances, component-material balances, and heat balances were written around each stage. Combination of component-material balances and equilibrium relationships yields a matrix with $x_{y^{\prime}} s$, the liquid compositions on $j^{\text {th }}$ stage, as unknowns. With an assumed set of temperature and vapor-flow profiles, the matrix is solved for the compositions. Equilibrium functions $\Phi_{\mathrm{J}}\left(\Phi_{\mathrm{j}}=\Sigma \mathrm{K}_{\mathrm{f}_{1}} \mathrm{x}_{1}\right)$, were used to revise the temperatures on each stage. The heat balance equations are used at the revised temperatures to update the vapor-flow rate profile. The procedure is repeated until the equilibrium functions are satisfied on all of the stages.

Wang and Henke Method

Wang and Henke (26) used the Muller's (17) method to revise the stage temperatures by the solution of summation functions ($s_{\mathcal{y}}=\Sigma \mathrm{x}_{\mathfrak{y}_{i}-1}$).

Muller's (17) method is, in a sense, generalization of the method of false position. The vapor-flow profile is corrected in a way similar to that of Amundsen.

Tomich's Method

The method developed by Tomich (25) uses Broyden's (4) technique to solve the heat balances and summation functions, $S_{j}=\sum_{i=1}^{c} y_{d_{1}}-\sum_{i=1}^{c} x_{d_{1}}$. The over-all material balances, component-material balances, and heat balances are written for a loop enclosing the top and any stage, j. The component material balances are combined with equilibrium-relationships, $y_{j_{1}}=K_{j_{1}} X_{y_{1}}$, to form a tridiagonal matrix with liquid compositions as unknown vectors.

With this method, the solution is also started by assuming temperature and vapor-flow profiles. Substituting the temperatures and vaporflow rates in the over-all material balance equations gives the liquid flow rates, L_{g}. Knowledge of T_{g}, V_{g}, and L_{j} enables one to solve a tridiagonal matrix to obtain $x_{j_{1}}^{\prime} s$, the liquid compositions on $j^{\text {th }}$ stage. Vapor compositions on $j^{\text {th }}$ stage can be calculated with $y_{11}=K_{11} x_{11}$. Knowing x, y, L, V, and T, one can solve the summation and heat balance functions. Broyden's (4) technique is used to solve these functions to get ΔT_{j} and ΔV_{j} which are used to revise the temperature and vapor-flow profiles. Broyden's technique is a "modified Newton-Raphson technique." The method is claimed to be numerically stable and fast in converging. Burman's Method

Burman (4) started with the developments of Rose et al. (19) and Ball (2) and obtained a set of equations for each component in a
fractionator in which the plates are numbered from the bottom toward the top. The unique feature of the method is that the equations are written for unsteady-state. Introduction of a multiplier, β, is said to yield a faster convergence. The β is related to transient-composition changes on a general stage n, in the following way.

$$
\begin{equation*}
\left.x_{n, 1}\right|_{\varphi+\Delta \varphi}=\left.x_{n, 1}\right|_{\varphi}+\Delta \varphi\left[\left.\beta\left(\frac{d x_{n, 1}}{d \varphi}\right)\right|_{0+\Delta \varphi}+\left.(1-\beta)\left(\frac{d x_{n}, 1}{d \varphi}\right)\right|_{0}\right] \tag{2.1}
\end{equation*}
$$

where

$$
0 \leq \beta \leq 1.0
$$

In Equation (2.1), φ indicates the time. Thus, it could be realized that β performs the function of averaging the slope of "composition versus time curve" in the interval φ and $(\varphi+\Delta \varphi)$. Burman (4) concluded that β should be set equal to unity until steady-state has been reached. It has been claimed by that author that this method is superior to some other methods which require all the components to be present in both the products (4). All the Lewis-Matheson type procedures and the ThieleGeddes procedure used by Holland et al. (12) require the assumptions that all the components are present in both the products.

General Solution of Taylor and Edmister

Recently Taylor and Edmister (21, 22) have developed a rigorous, general method for the solution of distillation processes.

Over-all material balances, component material balances, equilibrium relationships, and heat balances are written for a general stage, j. The stages are numbered from the top toward the bottom. The component material balances are arranged in a tridiagonal matrix form
which is solved for $\ell_{j 1}$ and $v_{g i}$ values, the component flow rates in liquid and vapor streams respectively on the stage j. The equilibrium relationships and the heat balances are cast in the functional form. The $\ell_{j_{1}}$ and $v_{1 i}$ values obtained previously are used in evaluation of these functions. The Newton-Raphson technique is used for these functions to get ΔT_{y} and ΔL_{j}, required to revise temperature and flow rates, respectively. Gauss elimination was employed for simultaneous solution of the set of equations.

For a fixed number of stages, the "General Solution" strives to find product distributions at a given reflux ratio. Alternatively a reflux ratio for a desired key component distribution may be found.

The method has been successfully applied to multi-feed and multiside draw distillation columns. An integral technique for applying this method to petroleum fractions has also been developed by the same authors (22). Convergence on all types of problems solved by this method is rapid and reliable. Mathematical details of the technique appear in Chapter III。

CHAPTER III

GENERAL SOLUTION OF TAYLOR AND EDMISTER

Since this study is based on "General-Solution of Taylor and Edmister", it is essential to have a full understanding of the derivation and application of the equations of this method. The following presentation follows that of Taylor and Edmister (21).

Component Material Balances

Making a component-material balance on the general stage ($j^{\text {th }}$ stage) is shown in Figure 1, at steady-state,

$$
\begin{equation*}
\ell_{y-1,1}-w_{j-1,1}^{L}+f_{y_{1}}^{L}+v_{g+1,1}-w_{j+1,1}^{V}+f_{j_{1}}^{V}=v_{g_{1}}+\ell_{y_{1}} . \tag{3.1}
\end{equation*}
$$

Equilibrium relationship on $j^{\text {th }}$ stage $i s$,

$$
\begin{align*}
& y_{g 11}=K_{g_{1}} x_{g_{1}} \tag{3.2}\\
& \ell_{g_{1}}=A_{g_{1}} v_{g_{1}} \tag{3.3}
\end{align*}
$$

For liquid and vapor side streams,

$$
\begin{align*}
& w_{j-1,1}^{L}:=\left(W_{j-1}^{L} / L_{j-1}\right) l_{j-1,1} \tag{3.4}\\
& w_{j-1,1}^{V}=\left(W_{j+1}^{V} / V_{j+1}\right) v_{j+1,1} \tag{3.5}
\end{align*}
$$

Figure 1. A General-Equilibrium Stage for a Distillation Process

Substituting Equations (3.3) through (3.5) into (3.1),

$$
\begin{equation*}
-\left(1-\frac{W_{j-1}^{L}}{L_{j}-1}\right) A_{j-1}, 1 \quad v_{j-1,1}+\left(1+A_{j_{1}}\right) v_{g_{1}}=\left(1-\frac{W_{j+1}^{V}}{V_{j+1}}\right) v_{j+1}=f_{j_{1}}+f_{j_{1}}^{V} \tag{3.6}
\end{equation*}
$$

Now define

$$
\begin{array}{ll}
\mathrm{B}_{\mathrm{j}}=1-W_{j}^{V} / \mathrm{V}_{\mathrm{g}} & 2 \leq j \leq \mathrm{N} \\
\mathrm{~b}_{\mathrm{j}}=1-\mathrm{W}_{\mathrm{j}} / L_{\mathrm{g}} & 1 \leq j \leq \mathrm{N}-1
\end{array}
$$

It should be noted that both B_{j} and b_{g} can have values from 0 to 1. Very small values of B_{j} or b_{j} indicate large amounts of withdrawal: one cannot withdraw such that the other passing streams would have negative flow rates.

Let

$$
\begin{align*}
\Phi_{J_{1}}^{L} & =\mathbf{f}_{J_{1}}+\mathbf{f}_{J_{1}}^{V} \tag{3.9}\\
& =\text { total component-feed rate on } j^{\text {th }} \text { stage. }
\end{align*}
$$

Substitution of Equations (3.7), (3.8), and (3.9) into Equation (3.6) yields,

$$
\begin{equation*}
-b_{j-1} A_{j-1,1} \quad v_{j-1,1}+\left(1+A_{j 1}\right) v_{j 1}-B_{j+1}, \quad v_{j+1,1}=\Phi_{j 1} \tag{3.10}
\end{equation*}
$$

Note that there is no $(j-1)$ stream when stage j is the condenser. Likewise, there is no $(j+1)$ stream when j is the reboiler.

Tridiagonal-Matrix Formulation

Extending Equation (3.10) for the whole column,

$$
\begin{align*}
& \left(1+A_{1_{1}}\right) v_{1_{1}} \quad-B_{2} v_{2_{1}} \quad=\Phi_{1_{1}} \\
& -b_{1} A_{1_{1}} v_{1} \quad+\left(1+A_{2_{1}}\right) v_{2_{1}} \quad-B_{3} v_{3_{1}} \quad=\Phi_{2_{1}} \\
& \left.-b_{2} A_{2_{1}} v_{21} \quad+\left(1+A_{31}\right) v_{31} \quad-B_{4} v_{41} \quad=\Phi_{31}\right\} \tag{3.11}\\
& -b_{j-1} A_{j-1,1} v_{g-1}+\left(1+A_{j 1}\right) v_{j 1} \quad-B_{j+1} v_{j+1,1} \quad=\Phi_{j 1} \\
& \left.-b_{N-1} A_{N-1,1} v_{N-1,1} \quad+\left(1+S_{N 1}\right) \ell_{N 1} \quad=\Phi_{N 1}\right] .
\end{align*}
$$

The equation set (3.11) can be written in matrix notation as

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{V}=\Phi \tag{3.11a}
\end{equation*}
$$

where A is the matrix that involves absorption factors, b_{y} and B_{y} values; v is the matrix for vapor-component flow rates; and Φ is the matrix for the entries on the right hand side of Equation (3.11). Equation set (3.11) can also be written in terms of $\ell_{g_{1}}$ by the use of an expression to relate v_{11} in terms of $\ell_{g_{1}}$, i.e.,

$$
\begin{equation*}
v_{j_{1}}=S_{j_{1}} l_{j_{1}} \tag{3.12}
\end{equation*}
$$

Substituting (3.12) in (3.11) set, to eliminate v_{ji} terms,

$$
\begin{aligned}
& \left(1+S_{1_{1}}\right) \quad-B_{2} S_{2_{1}} \ell_{2_{1}} \\
& -\mathrm{b}_{1} l_{1_{1}} \quad+\left(1+\mathrm{S}_{2_{1}}\right) l_{2_{1}} \quad-\mathrm{B}_{3} \mathrm{~S}_{3_{1}} l_{31} \\
& -\mathrm{b}_{2} \ell_{2_{1}} \quad+\left(\mathrm{a}+\mathrm{S}_{31}\right) \ell_{31} \quad-\mathrm{B}_{4} \mathrm{~S}_{4} \ell_{4_{1}} \\
& -b_{j-1} l_{j-1,1} \quad+\left(1+S_{j 1}\right) l_{j 1} \quad-B_{j+1} S_{j+1,1} l_{j+1,1}=\Phi_{j 1} \\
& -\mathrm{b}_{\mathrm{N}-1} \ell_{\mathrm{N}-1}, 1 \quad+\left(1+\mathrm{S}_{\mathrm{N} 1}\right) \ell_{N_{1}} \\
& \left.\begin{array}{l}
=\Phi_{1_{1}} \\
=\Phi_{2_{1}} \\
=\Phi_{3_{1}} \\
=\Phi_{1_{1}} \\
=\Phi_{N_{1}}
\end{array}\right\} .
\end{aligned}
$$

Equation set (3.13) can also be cast in tridiagonal matrix form similar to Equation (3.11a).

Over-all Material Blances

For $j^{\text {th }}$ stage,

$$
\begin{align*}
& L_{j-1}-W_{j-1}^{L}+F_{j}^{L}+V_{j+1}-W_{j+1}^{V}+F_{j}^{V}=L_{j}+V_{j} \tag{3.14}\\
& \mathrm{~V}_{1}-\mathrm{V}_{2} \quad=\mathrm{F}_{\mathrm{I}}+\mathrm{F}_{2}^{V}-\mathrm{L}_{1}-\mathrm{W}_{2}^{V} \\
& v_{2}-V_{3}=F_{2}^{\frac{b}{2}}+F_{2}^{v}-L_{1}-W_{1}^{h}-W_{3}^{h} \\
& v_{j}-V_{j+1}=F_{j}+F_{j}^{V}+L_{j-1}-L_{j}-W_{j-1}-W_{j+1}^{v} \tag{3.15}\\
& \mathbf{V}_{\mathrm{N}} \quad=\mathrm{F}_{\mathrm{N}}^{\mathrm{L}}+\mathrm{F}_{\mathrm{N}}^{\mathrm{V}}+\mathrm{L}_{\mathrm{N}-1}-\mathrm{L}_{\mathrm{N}}-\mathrm{W}_{\mathrm{N}-1}^{\mathrm{L}}
\end{align*}
$$

Heat balance on stage, j, is,

$$
\begin{gather*}
\sum_{i=1}^{c} \ell_{j-1} h_{j-1, i}-\sum_{i=1}^{c} w_{j}^{L}-1, i h_{j-1,1}+\sum_{i=1}^{c} f_{j_{1}}^{L} h_{j 1}^{f}+\sum_{i=1}^{c} v_{j+1} H_{j+1} 1 \\
-\sum_{1=1}^{c} w_{j+1,1}^{v} H_{j+1, i}+\sum_{i=1}^{c} f_{j 1}^{v} H_{j 1}^{p}+Q_{j}=\sum_{i=1}^{c} \ell_{j i} h_{j 1}+\sum_{i=1}^{c} v_{j 1} H_{j_{1}} \\
1 \leq j \leq N \tag{3.16}
\end{gather*}
$$

where Q_{j} is the amount of heat added to the $j^{\text {th }}$ plate from an external source. Generally Q_{j} is zero except for the condenser and the reboiler. The equilibrium on a stage is given as

$$
\begin{equation*}
\sum_{i=1}^{c} K_{j_{1}} \ell_{j_{1}}=L_{j} \quad 1 \leq j \leq N_{1} \tag{3.17}
\end{equation*}
$$

Equation (3.17) is the bubble point equation for the liquid leaving the $j^{\text {th }}$ tray. Its equivalent dew point form for the coexisting equilibrium vapor is

$$
\begin{equation*}
\sum_{i=1}^{c}\left(v_{j 1} / K_{j i}\right)=v_{j} \quad 1 \leq j \leq N \tag{3.18}
\end{equation*}
$$

Equation (3.18) is obtained from (3.17) by writing

$$
\begin{equation*}
\ell_{\mathfrak{j 1}_{1}}=\mathrm{A}_{\mathrm{H}_{1}} \mathrm{v}_{\mathrm{di}} \tag{3.19}
\end{equation*}
$$

Combination of Equations

Equation sets (3.16) and (3.17) contain a total of 2 N equations, N from each set. The total number of unknowns in a general distillation process are 4 N ; however, i.e., $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots . \mathrm{T}_{\mathrm{N}}\right),\left(\mathrm{L}_{1}, L_{2}, \ldots . \mathrm{L}_{\mathrm{N}}\right)$, $\left(W_{1}^{L}, W_{2}^{L}, \ldots W_{N-1}^{L}\right),\left(W_{2}^{V}, W_{3}^{V}, \ldots . W_{N}^{V}\right), Q_{1}$ and Q_{N}, Q_{1} and Q_{N} refer to condenser and reboiler duties, respectively. Since the number of equations is $2 N$, and the number of unknowns, $4 N, 2 N$ quantities, i.e., ($4 \mathrm{~N}-2 \mathrm{~N}$) , must be specified. For a conventional distillation column, no side streams are present and, therefore, $2 N-2$ values of W_{j} and W_{j} are all zero. The two remaining quantities might be reflux rate, L_{1}, and the bottom product rate, L_{N}. Other types of specifications can also be made.

Heat Balance and Equilibrium Functions

For the application of Newton-Raphson procedure, equation sets (3.16) and (3.17) are written in functional form. For a column with a partial condenser and a reboiler.

$$
\begin{align*}
& 2 \leq \mathrm{j} \leq \mathrm{N} ; \quad 1 \leq \mathrm{r} \leq \mathrm{N}-2 \tag{3.20}\\
& \sum^{c} \ell_{y_{1}} K_{j_{1}} \\
& G_{T}=\frac{1=1}{L_{j}}-1 \quad 1 \leq j \leq N \text { and } N-1 \leq r \leq 2 N-2 \tag{3.21}
\end{align*}
$$

Equation sets (3.20) and (3.21) contain b, B, h, H, ℓ, and K as variables: b and B are functions of L and V, respectively. V in turn can be expressed as a function of L from over-all material balance equations, i.e., Equation (3.15), h, H, and K can be expressed as functions of temperature only. ℓ is again a function of L. Thus, in Equation (3.20) and (3.21), L and T are implicit variables.

Newton-Raphson Technique

The chain rule is applied for this technique,

$$
\left.\begin{array}{rl}
\Delta \mathrm{G}_{1} & =\frac{\partial \mathrm{G}_{1}}{\partial \mathrm{~T}_{1}} \Delta \mathrm{~T}_{1}+\ldots++\frac{\partial \mathrm{G}_{1}}{\partial \mathrm{~T}_{N}} \Delta \mathrm{~T}_{N}+\frac{\partial \mathrm{G}_{1}}{\partial \mathrm{~L}_{2}} \Delta \mathrm{~L}_{2} \ldots+\frac{\partial \mathrm{G}_{1}}{\partial \mathrm{~L}_{N-1}} \Delta \mathrm{~L}_{N-1} \\
\quad \cdot \tag{3.22}\\
\quad \cdot \\
\Delta \mathrm{G}_{2 N-2} & =\frac{\partial \mathrm{G}_{2 N-2}}{\partial \mathrm{~T}_{1}} \Delta \mathrm{~T}_{1}+\ldots+\frac{\partial \mathrm{G}_{2 N-2}}{\partial \mathrm{~T}_{N}} \Delta \mathrm{~T}_{N}+\frac{\partial \mathrm{G}_{2 N-2}}{\partial \mathrm{~L}_{2}} \Delta \mathrm{~L}_{2} \ldots+\frac{\partial \mathrm{G}_{2 N-2}}{\partial \mathrm{~L}_{\mathrm{N}-1}} \Delta \mathrm{~L}_{N-1}
\end{array}\right\} \text {. }
$$

Equation (3.22) is the mathematical expression for multi-dimensional Newton-Raphson technique. Simultaneous solutions of Equation (3.22) will yield the values $\left(\Delta \mathrm{T}_{1} \ldots \Delta \mathrm{~T}_{\mathrm{N}}\right)$ and ($\Delta \mathrm{L}_{2} \ldots \mathrm{~L}_{\mathrm{N}-1}$). The $\Delta \mathrm{T}$ and ΔL values are used to revise temperature and flow profiles, respectively. The various derivatives $\frac{\partial G_{1}}{\partial T_{1}}, \frac{\partial G_{r}}{\partial T_{r}}$, etc., are needed before the solutions are possible. In the program, they are evaluated numerically. The program employs "Gauss-elimination and back substitution" for the simultaneous solution of Equation (3.22). This elimination method eliminates all but one variable from a set of equations. The back substitution starts with the retained variable. The Gausselimination is a powerful technique when the number of equations in a set is not too great, i.e., not greater than 50 (5). For frequently
encountered distillation operations, the method gives quick and reliable answers.

The method resembles with Tomich's tridiagonal matrix which uses modified Newton-Raphson technique for solution. The difference arises in the way the heat balance and equilibrium functions are set. Tomich's method uses the mixture enthalpies and deducts right-hand side from left-hand side of heat balances and equilibrium relationships to set them in functional form. The "General-Solution" makes use of partial molal enthalpies for heat balances (21). The arrangement in functional form is shown in Equations (3.20) and (3.21).

Round-Off Errors

As stated previously, Equations (3.11) or (3.13) can be used to get $v_{g_{1}}$ or $\operatorname{lym}_{y_{j}}$ values, respectively. For the light components, l_{11} may be quite high compared to $\ell_{N_{1}}$. Stripping factors are large for light components. As a result, if equation set (3.13) is used for light components; the first few equations will have very large numbers compared to those of the bottom-equations in the same set. The simultaneous solution would thus result in a considerable loss of accuracy. Similar reasoning holds for heavy components if Equation (3.11) is applied for them. To keep round-off errors to a minimum, it is recommended to use Equation (3.11) for 1 ight components and Equation (3.13) for the heavy components. A component is defined as "light" if $\prod_{\mathrm{j}=1}^{N}$ $A_{\jmath_{1}} \leq 1$, otherwise it is heavy. In the computer program, the sets (3.11) and (3.13) are arranged in different forms shown below. Before applying the Equations (3.24) and (3.25) presented below, it is essential to break up the mixture into light and heavy groups.

For the heavy group,
$\sigma_{0_{1}}=1$
$\sigma_{1}=1+S_{1_{1}}$
$\sigma_{j 1}=\sigma_{j-1,1}\left(1+S_{j 1}\right)-\sigma_{j-2,1} b_{g-1} B_{g} S_{j 1} \quad 2 \leq j \leq N$
(3.24)
$\ell_{y_{1}}=\frac{\Phi_{j_{1} \sigma_{j-1,1}+\sum_{q=1}^{j-1}\left[\left(\prod_{t=q}^{j-1} b_{t}\right) \Phi_{q i} \sigma_{q}-1,1\right]+\ell_{j+1,1} S_{j+1,1} B_{j+1} \sigma_{j-1,1}}^{\sigma_{j 1}}}{\frac{1}{2}}$
$\mathrm{N}-1 \geq \mathrm{j} \geq 2$
$\ell_{1}=\frac{\Phi_{1_{1}}+\ell_{2_{1}} S_{2_{1}} B_{2}}{\sigma_{1}}$
\int

For the lighter group,

$$
\begin{aligned}
& \alpha_{N+1,1}=1 \\
& \alpha_{N_{1}}=1+A_{N_{1}} \\
& \alpha_{j_{1}}=\alpha_{j+1,1}\left(1+A_{j_{1}}\right)-B_{1+1} b_{j} A_{j_{1}} \alpha_{1+2,1}, \quad N-1 \geq j \geq 1 \\
& v_{I_{1}}=\frac{\Phi_{I_{1}} \alpha_{2_{1}}+\sum_{q=2}^{N}\left[\left(\prod_{t=2}^{q} B_{t}\right) \Phi_{q_{1}} \alpha_{q+1}, 1\right]}{\alpha_{I_{1}}}
\end{aligned}
$$

$$
\begin{aligned}
& v_{j_{1}}=\frac{\Phi_{j_{1} \alpha_{j+1}, 1}+\sum_{q=\mu+1}^{N}\left[\left(\prod_{t=1+2}^{q} B_{t}\right) \Phi_{q 1} \alpha_{q+1}, 1\right]+A_{j+1,1} b_{j-1} v_{j-1,1} \alpha_{j+1,1}}{\alpha_{j 1}} \\
& \quad 2 \leq j \leq N-1
\end{aligned}
$$

The subroutine MATBAL employs these equations to calculate $l_{y_{i}}$ and $v_{j 1}$'s needed for use in heat balance and equilibrium functions.

CHAPTER IV

THERMODYNAMIC PROPERTIES

The thermodynamic properties K and H are needed for the components of the mixture in calculating component distribution and heat balances in equilibrium stage computations. K is defined as the vapor liquid equilibrium distribution ratio, i.e., y_{1} / x_{1}, whereas, H is the enthalpy (heat content) of a particular component. Both, K and H, are functions of temperature, pressure, and mixture composition and chemical nature of the component. For computer algorithms, these values should be represented by empirical equations expressing K and H as separate functions of temperature for the particular conditions of interest. The coefficients appearing in these equations depend on the type of component, type of mixture and pressure of the system. The forms of the empirical equations used by Taylor and Edmister (21, 22) were taken directly from Holland (12) and used in the demonstration of the "General-Solution" because of convenience.

Holland's (12) Equations

At constant pressure,

$$
\begin{align*}
& \sqrt[3]{\frac{K}{T}}=a_{0}+a_{1} T+a_{2} T^{2}+a_{3} T^{3} \tag{4.1}\\
& \sqrt{h_{L}}=b_{0}+b_{1} T+b_{2} T^{2} \tag{4.2}\\
& \sqrt{H_{V}}=c_{0}+c_{1} T+c_{2} T^{2} \tag{4.3}
\end{align*}
$$

In Equations (4.1) through (4.3), T is the temperature in degrees Rankine and $a_{1} ' s, b_{1} ' s$, and c_{1} 's are the coefficients for K, h_{L}, and H_{V} of a component, respectively. These coefficients are different for different components and depend also upon the pressure of the system. Holland (12) has presented these coefficients for frequently encountered hydrocarbons for a range of pressures; i.e., $p=50$ psia, 120 psia, 264.7 psia, 300 psia, and 400 psia. For this work, the K and H equations were replaced with different forms of equations which appear in the next section. The objectives for this replacement are the following:

1. The operating pressures for distillation processes are not restricted to a particular set of values. They are generally fixed by the product requirements and the temperature of cooling water in the overhead condenser. Thus, it is desirable to have K and H equations that are flexible enough to handle at any pressure conditions.
2. The empirical equations presented by Holland (12) do not reflect the composition effects on the K and H values of a mixture component.
3. The NGPA - K \& H computer program developed by Erbar-Persyn and Edmister (27) is well suited to generate K and H values of mixture components. These K and H values reflect the temperature, pressure, and composition effects. Once the K and H values have been generated by the program, they can be curve-fitted to yield the desired coefficients for empirical K and H equations.

Proposed New Forms of Equations

The new forms of the equations presented here have been successfully used and are recommended by Erbar (9):

$$
\begin{align*}
\ln K_{1} & =a_{0}^{\prime}+a_{1}^{\prime} / T+a_{2}^{\prime} / T^{2} \tag{4.4}\\
\bar{h}_{L} & =b_{0}^{\prime}+b_{1}^{\prime} T+b_{2}^{\prime} T^{2} \tag{4.5}\\
\bar{H}_{V} & =c_{0}^{\prime}+c_{1}^{\prime} T+c_{2}^{\prime} T^{2} \tag{4.6}
\end{align*}
$$

Note that in Equation (4.4) T is the temperature in degrees Rankine divided by 100 , i.e., ${ }^{\circ}$ R/100, while in Equations (4.5) and (4.6) T is the temperature in degrees Rankine. The new coefficients, $a_{i}^{\prime \prime} s, b_{i}^{\prime} ' s$, and c_{1}^{\prime} 's are obtained by curve-fitting the K and H values obtained from NGPA K \& H program (9, 27). By employing the scaling procedure on temperature (i.e., dividing it by 100) for Equation (4.4), a good curvefit is obtained. The details of the curve-fit program appear in Appendix B.

Basis for New Forms of K \& H Equations

The basis for the new form of K equation, Equation (4.4) is the Antoine vapor pressure expression (9); i.e.,

$$
\begin{equation*}
\ln \mathbf{p}^{0}=A+B /(C+t) \tag{4.7}
\end{equation*}
$$

The value of C for most substances is 273 if t is in Centigrade units and 460 if t is in Fahrenheit units. Thus, the denominator of the second term on the right side of Equation (4.7) is the "absolute temperature scale." Now, for a mixture obeying Raoult'swLaw,

$$
\begin{equation*}
K_{1}=p_{1}^{0} / p \tag{4.8}
\end{equation*}
$$

or,

$$
\begin{equation*}
\ln \mathrm{K}_{1}=\ln \mathrm{p}_{1}^{\circ}-\ln \mathrm{p} \tag{4.9}
\end{equation*}
$$

Substituting for $\ln p_{i}^{0}$ from Equation (4.7)

$$
\begin{equation*}
\ln \mathrm{K}_{1}=\mathrm{A}+\mathrm{B} / \mathrm{T}-\ln \mathrm{p} \tag{4.10}
\end{equation*}
$$

At constant pressure, $l m p$ is a constant and, hence, could be absorbed in A. rihus, Equation (4.10) is a straight line on $\ln \mathrm{K}$ versus $1 / T$ co-ordinates, and represents Raoults-Law-K values. To account for the deviations from Raoults Law, a third temperature dependent term, i.e., a_{z}^{\prime} / T^{2}, has been included. Thus, the final equation is,

$$
\begin{equation*}
\ln K_{1}=a_{0}^{\prime}+a_{1}^{\prime} / T+a_{2}^{\prime} / T^{2} \tag{4.11}
\end{equation*}
$$

The form of enthalpy-equation stems from empirical equations for C_{p}, the heat capacity. $\bar{H}_{1}=\int C_{p_{1}} d T$, the empirical C_{p}-expression could be integrated with respect to T analytically.

$$
\begin{align*}
\bar{H}_{1} & =\int\left(\alpha_{1}+\beta_{i} T\right) d T \tag{4.12}\\
& =a_{1} T+\beta_{1} \frac{T^{2}}{2}+c_{0} \\
& =b_{0}^{\prime}+b_{1}^{\prime} T+b_{2}^{\prime} T^{2} \tag{4.13}
\end{align*}
$$

The purpose of modification of forms of K and H equations could now be made clear.

1. For the K-form, an excellent curve-fit is obtained since the order of magnitude of temperature (i.e., $T / 100$) and K values is same. The reducing of temperature, i.e., $T / 100$, is referred
to as "scaling." The previous form (Equation (4.1)) will, however, yield a poor fit because the vast difference in K values and temperatures will cause truncation errors.
2. The previous H-forms (Equations (4.2) and (4.3)) do not permit the negative enthalpy values. In practice, however, one encounters negative enthalpies for liquid, the ideal gas state being the reference state. The originally proposed forms (Equations (4.2) and (4.3)) do not permit negative enthalpies.

CHAPTER V

APPLICATION RESULTS

This chapter presents various problems solved with a modification of Taylor's (23) computer program for the Taylor-Edmister's calculation method. Incorporation of new K and H equations, i.e., Equations (4.4) through (4.6), is the main modification of the program. Wherever possible, the temperature and flow profiles found via previously used K and H equations (Holland's Equations (4.1) through (4.3)) are compared with those from the new equations. The K values from the new equations have also been compared with those used previously, i.e., Equation (4.1).

Finally, the application of integral technique with "GeneralSolution" has been demonstrated.

The new forms of K and H equations were tested on various problems selected from literature. The general procedure for the solution by "General-Solution" is as follows:

1. From the data on feed and column specifications, estimate the approximate compositions of the top and bottom results. As a quick estimate, "perfect-split" consideration was used for all the examples presented here. This is not absolutely necessary, however.
2. Calculate the K and H values of the mixture components at three points in the column, i.e., distillate temperature, feed
temperature, and bottom temperature, with the use of NGPA-K\&H program (27).
3. Curve-fit the K and H values by using Erbar's linear-regression curve-fit. K values are curve-fitted by using Equation (4.4), while Equations (4.5) and (4.6) are used for the $\overline{\mathrm{h}}^{\text {b }}$ and $\overline{\mathrm{H}}^{\mathrm{v}}$ curve-fits, respectively. This curve-fit procedure provides one with the coefficients in Equations (4.4), (4.5), and (4.6).
4. Prepare the INPUT DATA according to the instructions given on INPUT DATA preparation in Appendix E.
5. Tabulate the converged temperature and flow-rate profiles, composition of distillate, side-streams and bottoms.

All the examples were solved with the above procedure. In Example Number 5 (Feed - "hybrid-mixture"), the converged compositions of the products (i.e., the pseudo-compositions) had to be processed further to obtain the real-compositions. This has been explained in Example Number 5.

> Application of Integral Technique
> to General-Solution

The Taylor-Edmister method has also been applied to processes treating complex, petroleum fractions (22). Simpson's rule has been used for numerical integration of equilibrium and heat-balance functions (22). An extension has been proposed for the composite-feeds, i.e., mixtures having plateaus and continuous curves in their TBP representation. The pseudo-feed compositions should be based on the continuous part of TBP curve only. This implies that if $\mathrm{mp}_{\mathrm{p}}^{\prime}$ is the total mole fraction of all complex-fractions, then divide m_{f}^{\prime} into some equal
sub-intervals, say 10. The pseudo-feed compositions will now be given as

Component No.
1
2
3
4
:
11

Pseudo-Feed Composition
$(1 / 30) m_{F}^{\prime}$
(4/30) mf ${ }^{\prime}$
(2/30) mp ${ }^{\prime}$
(4/30) mé
\vdots
(1/30) mp ${ }^{\prime}$

The product-compositions obtained are in terms of pseudo-feed compositions, and have to be converted to real compositions (22).

The Use of Simpson's Rule

The developments leading to the use of Simpson's rule for "GeneralSolution" will now be presented. The equation is derived for equilibrium relationship and it holds similarly for heat balances.

At equilibrium on a general stage, j,
for discrete components,

$$
\begin{equation*}
\sum K_{1} x_{1}=1.0 \tag{5.1}
\end{equation*}
$$

for hypothetical components, however,

$$
\begin{equation*}
\int K_{1} d m_{L 1}=1.0 \tag{5.2}
\end{equation*}
$$

$d m_{L i}=$ mole fraction of 'i' present on any stage j. At this point, it is assumed that $d m_{L i}$ can be expressed as a function of $d m_{1}$, mole fraction of the same component, i, in the feed to the column. This
follows from the expressions for compositions of "discrete" components on $j^{\text {th }}$ stage. These expressions involve the feed-composition terms (Equations (3.24) and (3.25)).

Now suppose the functional relationship is

$$
\begin{equation*}
\mathrm{dm}_{L 1}=\varphi_{i} \mathrm{dm}_{\mathrm{F}_{1}} \tag{5.3}
\end{equation*}
$$

where φ_{1} is the function which accounts for temperature and flow profiles as well as withdrawal streams. Substituting (5.3) into (5.2),

$$
\begin{equation*}
\int K_{1} D_{1} d m_{f 1}=1.0 \tag{5.4}
\end{equation*}
$$

One has, usually, to resort to numerical integration of left-hand side of Equation (5.4), since no analytical expressions of K or 0 in terms of d_{f} are available. Equation (5.5) could be cast in summation form with the use of Simpson's rule. For 10 equal sub-intervals of feed, i.e.,

11 components, one can write

$$
\begin{align*}
\int K_{1} \varphi_{1} d m_{\rho_{1}} & =\left.\sum K_{1} \oplus_{1} \cdot\left(\frac{1}{30}\right)\right|_{t_{1}}+\left.\sum K_{1} \varphi_{1}\left(\frac{4}{30}\right)\right|_{t_{2}}+\left.\sum K_{1} \varphi_{1}\left(\frac{2}{30}\right)\right|_{t_{3}} \\
& +\left.\sum K_{1} \theta_{1}\left(\frac{4}{30}\right)\right|_{t_{4}} \cdots+\left.\sum K_{1} \varphi_{1}\left(\frac{1}{30}\right)\right|_{t_{11}} . \tag{5.5}
\end{align*}
$$

Equation (5.5) shows that $\frac{1}{30}, \frac{4}{30}, \frac{2}{30}, \ldots$, etc., could be replaced by \mathbf{x}_{F}, the pseudo-feed compositions for the use of Simpson's rule. For the use of Simpson's rule, however, one uses the end-properties of the respective cuts (22).

The mixture had been divided into 18 components, i.e., 7
discrete-type and 11 complex-hydrocarbon fractions, for the Simpson's rule approach and 21 components (7 discrete +14 hypothetical) for the "Hypothetical-Component" method for Example 5.

Example Number 1

The column for this example consists of 13 theoretical stages and has a pressure of 300 psia. Feed enters on the fifth stage and is a bubble point liquid at the column conditions. Product distributions and temperature and flow-rate profiles have been calculated.

Description of Feed and Column

TABLE I

INITIAL AND FINAL TEMPERATURE AND FLOW-RATE PROFILES FOR EXAMPLE NUMBER 1

Stage No.	Assumed		Final Solution					
	Initial	alues	Via K and H equations (4.1), (4.2) and (4.3)			Via K and H equations (4.4), (4.5) and (4.6)		
	$\mathrm{T}_{\mathrm{g}}\left({ }^{\circ} \mathrm{F}\right)$	L_{3}	$\mathrm{T}_{\mathrm{g}}\left({ }^{\circ} \mathrm{F}\right)$	L_{j}	v_{j}	$\mathrm{T}_{\mathrm{g}}\left({ }^{\circ} \mathrm{F}\right)$	L_{1}	v_{g}
1	100.0	63.2	107.6	63.2	31.6	109.9	63.2	31.6
2	133.3	63.2	134.4	61.7	94.8	130.5	61.9	94.8
3	166.7	63.2	151.9	57.8	93.3	145.4	59.0	93.5
4	200.0	63.2	170.3	48.5	89.4	163.3	51.1	90.6
5	233.3	163.2	207.5	179.1	80.1	204.2	175.4	82.7
6	266.7	163.2	228.7	194.5	110.7	226.2	189.1	107.0
7	300.0	163.2	243.3	205.0	126.1	242.7	201.0	120.7
8	333.3	163.2	254.2	212.5	136.6	255.4	213.5	132.6
9	366.7	163.2	262.9	217.0	144.1	265.2	228.9	145.1
10	400.0	163.2	271.7	217.6	148.6	274.0	250.7	160.5
11	433.3	163.2	284.2	212.0	149.2	286.4	279.7	182.3
12	466.7	163.2	308.0	192.0	143.6	311.2	274.2	211.3
13	500.0	68.4	366.6	68.4	123.6	357.8	68.4	205.8
			$Q(C)=(0.397) 10^{6} \mathrm{Btu} / \mathrm{hr} Q(\mathrm{C})=(0.390) 10^{6} \mathrm{Btu} / \mathrm{hr}$					
			No. of	trials	5	No. of	rials	5
			Processor time 39.312 secs			Processor time 38.088 secs		
			on IBM $360 / 65$			on IBM $360 / 65$		

TABLE II

FINAL PRODUCT-DISTRIBUTIONS FOR EXAMPLE NUMBER 1

Component	Final Product Distribution			
	By K and H Equations (4.1) : (4.2), and (4.3)		By K and H Equations (4.3), (4.4), and (4.5)	
CH_{4}	$\begin{gathered} x_{d_{1}} \\ (0.632915) 10^{-1} \end{gathered}$	$\frac{x_{b_{1}}}{(0.163650) 10^{-10}}$	$\begin{gathered} x_{d} \\ \left(0.6329 \frac{1}{14}\right) 10^{-1} \end{gathered}$	$\begin{gathered} \mathbf{x}_{b_{i}} \\ (0.255143) 10^{-9} \end{gathered}$
$\mathrm{C}_{2} \mathrm{H}_{E}$	(0.316454)	(0.170339) 10^{-5}	(0.316458)	(0.753836) 10^{-7}
$\mathrm{C}_{3} \mathrm{H}_{6}$	(0.188999)	(0.405185) 10^{-3}	(0.189160)	(0.331839) 10^{-3}
$\mathrm{C}_{3} \mathrm{H}_{8}$	(0.390708)	(0.224921) 10^{-2}	(0.391108)	$(0.206514) 10^{-2}$
i-C ${ }_{4}$	$(0.234765) 10^{-1}$	(0.403255) 10^{-1}	(0.192860) 10^{-1}	$(0.422616) 10^{-1}$
nC 4	(0.169987) 10^{-1}	(0.211452)	(0.204865) 10^{-1}	(0.209839)
nC 5	(0.638544) 10^{-4}	(0.222197)	(0.209763) 10^{-3}	(0.222131)
nC 6	(0.297918) 10^{-6}	(0.165207)	(0.239020) 10^{-5}	(0.165207)
nCr_{7}	$(0.201018) 10^{-8}$	(0.131581)	(0.459735) 10^{-7}	(0.131581)
nC_{8}	(0.140683) 10^{-10}	(0.124271)	(0.822173) 10^{-9}	(0.124271)
$400^{\circ} \mathrm{Fnbp}$	(0.206499) 10^{-13}	(0.102341)	(0.766560) 10^{-16}	(0.102340)

Figure 2. Comparison of Temperature Profile for Example No. 1

Example Number 2

This example illustrates the use of "General Solution" to a column with 16 equilibrium stages. The pressure of the column is 250 psia, feed enters on seventh stage and is at $225^{\circ} \mathrm{F}$. Product compositions, temperature and flow-rate profiles have been calculated

Description of Feed and Column

Component	Feed Composition
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.03
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.20
$\mathrm{C}_{4} \mathrm{H}_{10}$	0.37
$\mathrm{C}_{5} \mathrm{H}_{12}$	0.35
$\mathrm{C}_{6} \mathrm{H}_{14}$	0.05
tions	

TABLE III
INITIAL AND FINAL TEMPERATURE AND FLOW-RATE PROFILES FOR EXAMPLE NUMBER 2

Stage No.	Assumed Initial Values for "General Solutio		Final Solution				
			Via K and H equations (4.4), (4.5) and (4.6) in "General Solution"		Solution obtained and presented by Amundsen et al. (1)		
	$\mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{F}\right)$	$L_{\text {j }}$	$T_{j}\left({ }^{\circ} F\right)$	L_{1}	Initially Final Assumed $T_{j}\left({ }^{\circ} \mathrm{F}\right) \quad \mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{F}\right)$		Final$\Sigma_{x_{11}}$
1	112.0	113.0	118.2	113.0	110.0	119.7	1.002
2	125.0	113.0	128.9	108.7	126.0	131.16	1.002
3	138.0	113.0	141.5	103.4	140.0	139.16	1.002
4	151.0	113.0	156.8	98.7	154.0	149.0	1.001
5	164.0	113.0	172.7	95.6	168.0	160.53	1.00
6	177.0	113.0	187.2	92.9	182.0	174.46	1.00
7	191.0	113.0	200.3	87.0	196.0	191.49	0.999
8	221.0	196.6	216.9	170.5	210.0	213.11	1.00
9	226.0	196.6	222.2	172.0	225.0	220.57	1.00
10	231.0	196.6	226.8	173.3	237.0	227.46	1.001
11	236.0	196.6	231.1	174.4	250.0	233.97	0.999
12	241.0	196.6	235.0	175.4	262.0	240.09	1.00
13	246.0	196.6	238.0	176.0	274.0	246.06	1.00
14	252.0	196.6	243.2	176.1	285.0	252.7	1.00
15	257.0	196.6	249.3	175.3	300.0	261.77	0.999
16	262.0	77.4	259.6	77.4	305.0	276.06	0.999
			$Q(C)=(0.713) 10^{6} \mathrm{Btu} / \mathrm{hr} Q(\mathrm{C})$ Not Reported				
			$\mathrm{Q}(\mathrm{R})=(0.842) 10^{6} \mathrm{Btu} / \mathrm{hr}$		$Q(R)=(1.03) 10^{6} \mathrm{Btu} / \mathrm{hr}$		
			Tolerance 0.00001		No. of trials $=14$		
			No. of trials $=5$		Processor time on Univac 1103		
			Processor time on IBM 360/65		50 secs for		
					36.18 secs		

TABLE IV

FINAL PRODUCT DISTRIBUTIONS IN EXAMPLE NUMBER 2

Component	Final Distribution	
	Via K and H equations (4.4), (4.5) and (4.6) in "General Solution" (21)	
$\mathrm{C}_{2} \mathrm{H}_{6}$	(0.132659)	$(0.250121) 10^{-4}$
$\mathrm{C}_{3} \mathrm{H}_{8}$	(0.834246)	$(0.148106) 10^{-1}$
$\mathrm{nC}_{4} \mathrm{H}_{10}$	$(0.330539) 10^{-1}$	(0.4684)
$\mathrm{nC}_{5} \mathrm{H}_{12}$	$(0.404971) 10^{-4}$	(0.452193)
$\mathrm{C}_{6} \mathrm{H}_{14}$	$(0.800586) 10^{-8}$	$(0.646006) 10^{-1}$

Figure 3. Comparison of Temperature Profile for Example No. 2

Example Number 3

The fractionator for this example consists of 30 equilibrium stages at 265 psia. Feed enters on sixteenth stage and is bubble point liquid at column conditions. Product distributions and temperature and flowrate profiles have been presented.

Description of Feed and Column

Component	Feed Composition
CH_{4}	0.1260
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.003
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.0328
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.0396
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.1494
$\mathrm{i}-\mathrm{C}_{4}$	0.104
$\mathrm{n}_{4} \mathrm{C}_{4}$	0.280
nC_{5}	0.2410
nC_{6}	0.091
$350^{\circ} \mathrm{F}$ nbp	0.037

Specifications

Column pressure ... 265 psia
Number of stages including partial condenser and reboiler 30
Feed is a bubble point liquid at column pressure.
Feed entry on sixteenth stage (from top).
Feed rate ... 4.45 lb moles $/ \mathrm{min}$
Feed temperature $187.07^{\circ} \mathrm{F}$ (Fl ash L/F = 1.0)
Distillate is a dew point vapor.
Distillate rate ... 1.16 lb moles $/ \mathrm{min}$
Reflux rate .. 3.68 lb moles $/ \mathrm{min}$

Find the product-compositions, temperature and flow-rate profiles.

TABLE V

INITIAL AND FINAL TEMPERATURE AND FLOW-RATE PROFILES FOR EXAMPLE NUMBER 3

TABLE VI

FINAL PRODUCT DISTRIBUTIONS IN EXAMPLE NUMBER 3

Component	Final Product Distribution	
	Via K and H equations $(4.4),(4.5)$ and (4.6)	
CH_{4}	$(0.483374) 10^{-1}$	$(0.284104) 10^{-14}$
$\mathrm{C}_{2} \mathrm{H}_{4}$	$(0.483371) 10^{-1}$	$(0.557227) 10^{-7}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	(0.125830)	$(0.288460) 10^{-6}$
$\mathrm{C}_{3} \mathrm{H}_{6}$	(0.151459)	$(0.161718) 10^{-3}$
$\mathrm{C}_{3} \mathrm{H}_{8}$	(0.538547)	$(0.205302) 10^{-2}$
$\mathrm{i}-\mathrm{C}_{4}$	$(0.755739) 10^{-1}$	(0.114027)
nC_{4}	$(0.119214) 10^{-1}$	(0.374537)
nC_{5}	$(0.358458) 10^{-6}$	(0.325983)
nC_{6}	$(0.239771) 10^{-13}$	(0.123088)
$350^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.647630) 10^{-37}$	$(0.500468) 10^{-1}$

Figure 4. Temperature Profile for Example No. 3

Example Number 4

This example presents the application of "General Solution" to a column with two feeds and two side streams. The column pressure is 300 psia.

Description of Feed and Column

Component	Feed 1 (vapor)	Feed 2 (Liquid)
CH_{4}	0.04	0.0
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.16	0.04
$\mathrm{C}_{3} \mathrm{H}_{6}$	0.08	0.04
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.20	0.05
$\mathrm{i}-\mathrm{C}_{4}$	0.04	0.03
nC_{4}	0.180	0.12
nC_{5}	0.10	0.204
nC_{6}	0.10	0.126
nC_{7}	0.06	0.120
nC	0.04	0.13
$400_{8}^{\circ} \mathrm{F}$ nbp	0.0	0.14

Specifications

Column pressure ... 300 psia
Number of stages including partial condenser and reboiler ... 13
Feed Number 1 is vapor to stage 5.
Temperature of Feed 1 .. $200^{\circ} \mathrm{F}$
Feed 2 is liquid to stage 10.
Temperature of Feed 2 ... $150^{\circ} \mathrm{F}$
Feed 1 Rate $=$ Feed $2 \cdot$ Rate $=501 \mathrm{lb}$ moles $/ \mathrm{hr}$ liquid sidedraw from third stage 10 moles/hr liquid sidedraw from eleventh stage 10 lb moles/hr

Overhead product dew point vapor.
Rate of distillate ... 30 lb moles/hr
Reflux rate .. 100 lb moles/hr

TABLE VII
INITIAL AND FINAL TEMPERATURE AND FLOW-RATE PROFILES FOR EXAMPLE NUMBER 4

Stage No.	AssumedInitial Values		Final Solution	
			Via K and H equations (4.1), (4.2) and (4.3)	Via K and H equations (4.4), (4.5) and (4.6)
	$\mathrm{T}_{5}\left({ }^{\circ} \mathrm{F}\right)$	L_{j}	$\mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{F}\right) \quad \mathrm{L}_{\mathrm{j}}$	$\mathrm{T}_{5}\left({ }^{\circ} \mathrm{F}\right) \quad \mathrm{L}_{5}$
1	100.0	100.0	120.7100 .0	118.1 100.0
2	125.0	100.0	161.1101 .2	150.0132 .9
3	150.0	100.0	184.2 99.3	178.4
4	175.0	90.0	202.482 .4	209.4653 .6
5	200.0	90.0	225.8 82.8	223.0 73.5
6	225.0	90.0	240.4 87.0	206.1389 .0
7	250.0	90.0	248.587 .8	227.8 303.8
8	275.0	90.0	256.087 .1	230.7303 .8
9	300.0	90.0	265.8 82.7	253.5179 .4
10	325.0	140.0	287.5186 .8	293.5267 .4
11	350.0	140.0	313.8186 .2	327.0184 .9
12	375.0	130.0	352.5162 .2	363.596 .2
13	400.0	50:0	426.250 .0	420.250 .0
			$Q(C)=(0.686) 10^{6} \mathrm{Btu} / \mathrm{hr}$	$Q(C)=(0.6087345) 10^{6}$
			$Q(R)=(0.144) 10^{6} \mathrm{Btu} / \mathrm{hr}$	$Q(R)=(0.1994564) 10^{7}$
			No. of trials $=9$	No. of trials $=9$
			Processor time on IBM $360 / 65$	Processor time on IBM $360 / 65$

TABLE VIII

FINAL PRODUCT-DISTRIBUTION FOR EXAMPLE NUMBER 4

Component	Final Solution			
	Via K and H Equations (4.1), (4.2), (4.3) ("General-Solution")			
	x_{4}	$\mathrm{x}_{\mathrm{W}_{3}}$	$x_{w_{1 I}}$	x_{b}
CH_{4}	(0.66288) 10^{-1}	(0.113669) 10^{-2}	(0.263368) 10^{-9}	(0.203858) 10^{-11}
$\mathrm{C}_{2} \mathrm{H}_{6}$	(0.322457)	(0.306928) 10^{-1}	(0.160700) 10^{-2}	(0.674736) 10^{-4}
$\mathrm{C}_{3} \mathrm{H}_{6}$	(0.170508)	(0.263368) 10^{-9}	(0.667699) 10^{-2}	(0.690827) 10^{-3}
$\mathrm{C}_{3} \mathrm{H}_{8}$	(0.340189)	(0.160700) 10^{-2}	(0.111715) 10^{-1}	$(0.134778) 10^{-2}$
i-C ${ }_{4}$	(0.385205) 10^{-1}	(0.667699) 10^{-2}	(0.394070) 10^{-1}	(0.956988) 10^{-2}
NC_{4}	$(0.618678) 10^{-1}$	(0.111715) 10^{-1}	(0.312988)	(0.995654) 10^{-1}
NC_{5}	(0.169122) 10^{-3}	(0.394070) 10^{-10}	(0.316245)	(0.235919)
NC_{6}	(0.130268) 10^{-5}	(0.312988)	(0.138488)	(0.197633)
NC_{7}	(0.933515) 10^{-8}	(0.316245)	(0.765980) 10^{-1}	(0.164604)
NC_{8}	(0.652886) 10^{-10}	(0.138488)	(0.577377) 10^{-1}	(0.15844)
$400^{\circ} \mathrm{Fnbp}$	(0.355637) 10^{-22}	(0.765980) 10^{-1}	(0.390933) 10^{-1}	(0.132182)

TABLE IX

FINAL PRODUCT DISTRIBUTION FOR EXAMPLE NUMBER 4

Component	Final Solution			
	Via K and H Equations (4.4), (4.5) and (4.6) ("General-Solution")			
	$\mathrm{x}_{\mathrm{C}_{\mathrm{i}}}$	$\mathrm{x}_{\mathrm{W}_{3}}$	$\mathrm{x}_{\mathrm{w}_{11}}$	x_{b}
CH_{4}	(0.6635285) 10^{-1}	$(0.941443) 10^{-3}$	(0.323512) 10^{-10}	$(0.3395779) 10^{-12}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	(0.3234078)	$(0.291113) 10^{-1}$	(0.531061) 10^{-3}	(0.2687850) 10^{-4}
$\mathrm{C}_{3} \mathrm{H}_{6}$	(0.1698592)	(0.323512) 10^{-10}	(0.226663) 10^{-2}	$(0.2786576) 10^{-3}$
$\mathrm{C}_{3} \mathrm{H}_{8}$	(0.3352022)	$(0.531061) 10^{-3}$	$(0.430893) 10^{-2}$	$(0.5838136) 10^{-3}$
iC_{4}	(0.31242070) 10^{-1}	(0.226663) 10^{-2}	(0.452693) 10^{-1}	(0.1222590) 10^{-12}
$\mathrm{nC} \mathrm{C}_{4}$	(0.3275597) 10^{-1}	(0.430893) 10^{-2}	(0.391898)	(0.1331278)
nC 5	(0.5709688) 10^{-4}	(0.452693) 10^{-1}	(0.320430)	(0.2376529)
nC_{6}	$(0.5189140) 10^{-6}$	(0.391898)	(0.146702)	(0.1962642)
$\mathrm{nC} \mathrm{F}_{7}$	(0.3899459) 10^{-8}	(0.320430)	$(0.823064) 10^{-1}$	(0.1634869)
nC 8	(0.2774415) 10^{-10}	(0.146702)	(0.613920) 10^{-1}	(0.15771430)
$400^{\circ} \mathrm{Fnbp}$	$(0.3919305) 10^{-23}$	$(0.823064) 10^{-1}$	(0.403689) 10^{-1}	(0.13192620)

TABLE X

A TYPICAL K-VALUE COMPARISON
(Temperature of system $=101.4272^{\circ} \mathrm{F}$;

$$
\text { system pressure }=300 \text { psia.) }
$$

Component	K by Eq. ${ }^{(4.1)^{(12)}}$	K Predicted by NGPA-K and H Computer Program (27)	$\begin{aligned} & \text { \% Deviations* } \\ & \text { of Eq. }(4.1) \text {, } \\ & \text { Chao-Seader } \end{aligned}$
CH_{4}	13.160	7.2265	82.08643
$\mathrm{C}_{2} \mathrm{H}_{6}$	2.3493	1.8766	25.23529
$\mathrm{C}_{3} \mathrm{H}_{6}$	0.83178	0.80953	2.76614
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.71869	0.71523	0.49936
iC_{4}	0.30580	0.36883	-17.07703
nC_{4}	0.22118	0.28217	-21.60361
nC_{5}	0.067759	0.12043	-43.72208
nC_{6}	0.021178	0.051549	-58.90146
nC F	0.0067001	0.024251	-72.35963
nC_{8}	0.0020614	0.010666	-80.66223
$400^{\circ} \mathrm{nbp}$	0.00082049	0.00034035	141.32010

*These deviations have been graphically represented after this tabular comparison.

TABLE XI

K VALUE COMPARISON
(Temperature of system $=177.95^{\circ} \mathrm{F}$; system pressure $=300$ psia)

Component	K by Eq. (4.1) ${ }^{(12)}$	$\begin{gathered} \text { K Predicted by } \\ \text { NGPA K and H } \\ \text { Computer Program }{ }^{\left(a^{7}\right)} \end{gathered}$	\% Deviations of Eq.(4.1) from NGPA
CH_{4}	14.187	10.134	40.0145
$\mathrm{C}_{2} \mathrm{H}_{6}$	3.580	3.5433	0.97837
$\mathrm{C}_{3} \mathrm{H}_{6}$	1.6060	1.5398	4.26963
$\mathrm{C}_{3} \mathrm{H}_{8}$	1.4148	1.3804	2.46669
iC_{4}	0.73010	0.73231	-0.32705
nC_{4}	0.56729	0.59534	-4.73707
nC_{5}	0.22948	0.27009	-15.07174
nC_{6}	0.092462	0.12298	-24.86394
$n \mathrm{nc}_{7}$	0.039250	0.059942	-34.57179
nC 8	0.016083	0.027903	-42.41550
$400^{\circ} \mathrm{Fnbp}$	0.0039829	0.0013377	197.2280

TABLE XII

K VALUE COMPARISON
(Temperature of system $=356^{\circ} \mathrm{F}$;
system pressure $=300$ psia)
$\left.\begin{array}{cccc}\hline & & \begin{array}{c}\text { K Predicted by } \\ \text { NGPA K and } \mathrm{H} \\ \text { Component }\end{array} & \text { K by Eq. (4.1) }\end{array} \begin{array}{c}\text { \% Deviations } \\ \text { of Eq. } \\ \text { Chao-Seader }\end{array}\right]$

Figure 5. K Value Deviations

Figure 6. Temperature Profile Comparison for Example No. 4

Example Number 5

The feed to the column for this example is a hybrid-mixture containing both the discrete components and complex petroleum fractions. The example has been solved by two approaches:

1. Simpson's rule approach.
2. Hypothetical-component approach.

These two approaches differ in the way of handling the complex-fractions (i.e., $\left.C_{7+}\right)$. The Simpson's rule approach requires to break-up C_{7+} into an odd-number of components and uses their pseudo-compositions for calculation purposes (22). For the application of hypotheticalcomponent approach, one breaks the $C_{7}+$ fraction into an arbitrary number of narrow-boiling cuts. Average physical properties, i.e., critical temperature, critical pressure, accentric factor, ${ }^{\circ}$ API gravity, of these narrow-boiling cuts are used to predict their K and H values.

Description of Feed and Column

$* F e e d ~ i s ~ a ~ c o m p o s i t e-m i x t u r e ~ o f ~ d i s c r e t e ~ a n d ~ c o m p l e x-f r a c t i o n s . ~$	
Component	Mole fraction
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.005
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.005
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.07
$\mathrm{i}-\mathrm{C}_{4}$	0.02
$\mathrm{n}_{4} \mathrm{C}_{4}$	0.03
nC_{5}	0.12
nC_{6}	0.05
nC_{7}	0.70

Molar TBP For C7+
TBP

Mole fraction off$166^{\circ} \mathrm{F}$
2150.400.60
0.30
0.40
0.50
0.60
0.70

$$
0.80
$$

0.80

$$
0.90
$$

1.0

Specifications

Column pressure 22 psia
Feed flash $\mathrm{L} / \mathrm{F}=0.40$
Saturated vapor part goes to stage number 6 and a co-existingliquid on the stage 7 .
Top product dew point vapor
Number of stages 10
Liquid side stream from stage number 3.
Rate of withdrawal 110 lb moles/hr
Bottoms Rate 156 1b moles/hr
Rate of Vapor feed 483.86 lb moles/hr
Rate of liquid feed 322.14 1b moles/hr
(Total Feed Rate 806 1b moles $/ \mathrm{hr}$)
Feed temperature $316.5^{\circ} \mathrm{F}$
Reflux rate 240 1b moles/hr

Feed Composition for Simpson's Rule Application (18 Components)

Component	Composition $\mathbf{x}_{\mathbf{F}}$
$\mathrm{C}_{2} \mathrm{H}_{4}$	0.005
$\mathrm{C}_{2} \mathrm{H}_{6}$	0.005
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.07
$\mathrm{i}-\mathrm{C}_{4}$	0.03
nC_{5}	0.12
nC_{6}	0.05

Pseudo-Compositions of $\mathrm{C}_{7}+$ Fraction
$166^{\circ} \mathrm{F} \mathrm{nbp}$
0.0233
$204^{\circ} \mathrm{F} \mathrm{nbp}$
0.0935
$232^{\circ} \mathrm{F}$ nbp
0.0467
$266^{\circ} \mathrm{F} \mathrm{nbp}$
0.0935
$303^{\circ} \mathrm{F} \mathrm{nbp}$
0.0467
$340^{\circ} \mathrm{F} \mathrm{nbp}$
0.0935
$377^{\circ} \mathrm{F} \mathrm{nbp}$
0.0467
$407^{\circ} \mathrm{F}$ nbp
0.0935
$435^{\circ} \mathrm{F}$ nbp
0.0467
$475^{\circ} \mathrm{F}$ nbp
0.0935
$550^{\circ} \mathrm{F}$ nbp
0.0233

First, the Simpson's rule solution has been presented and then the "Hypothetical-Component" method results have been tabulated. Finally, a comparison of temperature and flow profiles by two methods has been made. For this example, the two approaches yield essentially identical results.

TABLE XIII
TEMPERATURE AND FLOW-RATE PROFILE FOR EXAMPLE NUMBER 5
VIA THE APPLICATION OF SIMPSON'S RULE FOR COMPLEX \rightarrow FRACTIONS

Conversion of Pseudo-Compositions of Products

Into Real Compositions

The compositions of the products reported in Table XIV, i。e., $\mathbf{x}_{d_{1}}$ $x_{w_{3}}$, and $x_{b_{1}}$, are the pseudo-compositions of the products. They have to be converted to real-compositions in order to get the TBP-assays of the products. A detailed treatment for this conversion has been presented by Taylor and Edmister (22).

For the "hybrid-mixtures," the compositions of the discrete components in the products, need not be processed further since Simpson's rule has been applied for the complex-fractions only. Thus, the following discussion applies for the complex-fractions (e.g., 166 nbp) only.

From the pseudo-compositions of the products in Table XIV, pseudofeed compositions and product-rate specifications one gets ($\mathrm{Dx}_{d_{i}} / \mathrm{F} \mathrm{x}_{\mathrm{f}}$), $\left(B x_{b_{1}} / F x_{f}\right)$, and $\left(W W_{j} W_{j} / F x_{F}\right)$ for distillate, bottoms, and side-stream, respectively. For distillate product, the quantity $\mathrm{Dx}_{\mathrm{d}_{1}} / \mathrm{Fx}_{\mathrm{F}}$ corresponds to $\left(\mathrm{Ddm}_{\mathrm{D}} / \mathrm{Fdm} \mathrm{f}_{\mathrm{F}}\right)$ where dm_{D} is the real mole fraction of component "i." in distillate and $d m_{f}$ is the real mole fraction of "i" in the feed. Therefore,

$$
\begin{equation*}
\frac{\mathrm{Dx}_{\mathrm{d}}}{\mathrm{~F} \mathbf{x}_{\mathrm{F}}}=\frac{\mathrm{Ddm}_{D}}{\mathrm{Fdm}} \tag{5.1}
\end{equation*}
$$

Thus, the ratio of pseudo-composition of a component "i" in distillate to its pseudo-composition in feed equals the ratio of real compositions of the same component in distillate and feed. Equation (5.1) can be used to construct TBP-assay of distillate. For this purpose, the quantitiy $\left(x_{f_{f}} / x_{f}\right)$ should be plotted against m_{f}, and the area under the curve be computed between proper limits of m_{r}. For the present case,
m_{F} limits are 0.3 to 1.0. TBP-assay can now be constructed by following the procedure described by Edmister (7).

Areas can also be found with the computer. For this problem, area had been found with computer. The interval $m_{F}=0.3$ to 1.0 was divided into 10 equal sub-intervals. The total area was found by summing up the areas of elementary sub-intervals. The areas of elementary subintervals can be approximated in several ways, e.g., Simpson's rule or chord-area method. Since the sub-intervals are sufficiently small, the chord-area approximation had been employed for calculating the areas of elementary sub-intervals. The TBP-assays are then constructed following the procedure of Edmister (7). The same procedure is repeated for sidestream and bottom assays. The feed and product TBP-assays are shown in Figure 7.

TABLE XIV

PRODUCT DISTRIBUTION FOR EXAMPLE NUMBER 5 VIA SIMPSON'S RULE APPLICATION

Component	$x_{c_{1}}$	$x_{w_{3}}$	$x_{b_{1}}$

Mole Fraction for Real Components

$\mathrm{C}_{2} \mathrm{H}_{4}$	$(0.7428693) 10^{-2}$	$(0.11590905) 10^{-4}$	$(0.1153987) 10^{17}$
$\mathrm{C}_{2} \mathrm{H}_{6}$	$(0.7426397) 10^{-2}$	$(0.228711) 10^{-4}$	$(0.9760015) 10^{16}$
$\mathrm{C}_{3} \mathrm{H}_{8}$	(0.1041231)	$(0.132546) 10^{-2}$	$(0.6178259) 10^{10}$
$\mathrm{i}-\mathrm{C}_{4}$	$(0.2968755) 10^{-1}$	$(0.766705) 10^{-3}$	$(0.8748876) 10^{-9}$
$\mathrm{n}-\mathrm{C}_{4}$	$(0.4449108) 10^{-1}$	$(0.134778) 10^{-2}$	$(0.3123344) 10^{-8}$
$\mathrm{n}-\mathrm{C}_{5}$	(0.176829)	$(0.105293) 10^{-1}$	$(0.3278529) 10^{-6}$
$\mathrm{n}-\mathrm{C}_{6}$	$(0.7285651) 10^{-1}$	$(0.831464) 10^{-2}$	$(0.2042785) 10^{-5}$

Pseudo-Compositions for Complex-Fractions

$166^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.3354315) 10^{-1}$	$(0.396296) 10^{-2}$	$(0.1000193) 10^{-5}$
$204^{\circ} \mathrm{F} \mathrm{nbp}$	(0.1340832)	$(0.268152) 10^{-1}$	$(0.2791539) 10^{-4}$
$232^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.6713565) 10^{-1}$	$(0.120553) 10^{-1}$	$(0.2156534) 10^{-4}$
$266^{\circ} \mathrm{F} \mathrm{nbp}$	(0.1266371)	$(0.626734) 10^{-1}$	$(0.5406528) 10^{-3}$
$303^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.5788539) 10^{-1}$	$(0.553249) 10^{-1}$	$(0.1558176) 10^{-2}$
$340^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.9321749) 10^{-1}$	(0.203673)	$(0.1689749) 10^{-1}$
$377^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.2534067) 10^{-1}$	(0.161292)	$(0.3948231) 10^{-1}$
$407^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.1743383) 10^{-1}$	(0.310502)	(0.2039064)
$435^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.1733877) 10^{-2}$	$(0.94220) 10^{-1}$	(0.1686631)
$475^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.1368148) 10^{-3}$	$(0.469475) 10^{-1}$	(0.4498429)
$550^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.1784474) 10^{-7}$	$(0.213219) 10^{-3}$	(0.1186458)

It is essential to make sure that convergence has been reached to the specified tolerance. This can be checked in many ways. One quick way to do this is by a component material balance around the whole column for typical components, as illustrated below.

$$
F x_{P_{1}}=D x_{d_{1}}+W x_{W_{q}}+B x_{B}
$$

This will be demonstrated by an example, e.g., $204^{\circ} \mathrm{F}$ nbp component. (Refer to Table XIV.)
$\mathrm{D}=504 \mathrm{moles} / \mathrm{hr}$
$\mathrm{B}=156 \mathrm{moles} / \mathrm{hr}$
$\mathrm{W}=110$ moles $/ \mathrm{hr}$
$\mathrm{F}=806$ moles $/ \mathrm{hr}$
$x_{d_{i}}=0.1340832$
$x_{b_{i}}=0.000027915$ Table XIV
$x_{w_{1}}=0.0268152$
$\mathrm{x}_{\mathrm{F}}=0.0935$ from specifications.

Thus, total output

$$
\begin{aligned}
D x_{d_{1}}+W x_{W_{1}}+B x_{g_{1}} & =(504)(0.1340832)+(110)(0.0268152)+(156)(0.000027915) \\
& =72.4+2.969+.0004464 \\
& =75.3694464
\end{aligned}
$$

The moles of the same component in feed,

$$
\begin{aligned}
\mathrm{F}_{\mathbf{F}_{1}} & =806(0.0935) \\
& =75.39 .
\end{aligned}
$$

These numbers are within the range of slide-rule accuracy and it has been concluded that convergence has been reached. Check can also be made with a computer. Similar balances hold for other components.

Figure 7. TBP Assays of Products (Via Simpson's Rule) for Example 5

Hypothetical Component Method

Abstract

This method requires to break up $C_{7}+$ into a series of narrowboiling cuts. The physical properties ($\mathrm{P}_{0}, \mathrm{~T}_{\mathrm{c}}{ }^{\circ}{ }^{\circ} \mathrm{API}$, etc.) at their average boiling points are used to predict the K and H values of these components. For this example, $\mathrm{C}_{7}+$ was broken up into 14 components, at interval of $m_{F}=0.05$ on the TBP curve, $i_{\infty} e_{\Delta}$, the mole fraction of each narrow-boiling cut is 0.05 . The average temperatures of all the narrow cuts are reported along with $\mathrm{C}_{7}+$ break-up. The temperature and flow profiles obtained by this method agree closely with those obtained by Simpson's rule application.

TABLE XV

TEMPERȦTURE AND FLOW-RATE PROFILE COMPARISON
FOR EXAMPLE NUMBER 5

TABLE XVI

PRODUCT COMPOSITIONS BY "HYPOTHETICAL-COMPONENT METHOD" FOR EXAMPLE NUMBER 5

Component	$\mathrm{x}_{\mathrm{d}_{1}}$	$\mathrm{x}_{\mathrm{H}_{3}}$ (side stream)	x_{b}.
$\mathrm{C}_{2} \mathrm{H}_{4}$	$(0.7428712) 10^{-2}$	(0.204835) 10^{-4}	(0.1854383) 10^{-16}
$\mathrm{C}_{2} \mathrm{H}_{6}$	$(0.7425425) 10^{-2}$	(0.366216) 10^{-4}	(0.1002358) 10^{-14}
$\mathrm{C}_{3} \mathrm{H}_{8}$	(0.1041015)	(0.184985) 10^{-2}	(0.2062781) 10^{-9}
i- C_{4}	(0.2963847) 10^{-1}	(0.104313) 10^{-2}	(0.2450487) 10^{-8}
$\mathrm{n}-\mathrm{C}_{4}$	$(0.4440083) 10^{-1}$	(0.184393) 10^{-2}	(0.8496599) 10^{-8}
nC 5	(0.1761347)	(0.153173) 10^{-1}	(0.9372333) 10^{-6}
$\mathrm{nC} \mathrm{C}_{6}$	$(0.7194780) 10^{-1}$	$(0.131458) 10^{-1}$	(0.6743780) 10^{-5}
- - - -			
$180^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.7132171) 10^{-1}$	(0.162091) 10^{-1}	(0.1417689) 10^{-4}
$200^{\circ} \mathrm{Frnbp}$	(0.6984902) 10^{-1}	(0.233894) 10^{-1}	(0.4937371) 10^{-4}
$225^{\circ} \mathrm{F} \mathrm{nbp}$	(0.6751610) 10^{-1}	(0.343409) 10^{-1}	(0.1967322) 10^{-3}
$247^{\circ} \mathrm{Frnbp}$	(0.6461798) 10^{-1}	(0.485801) 10^{-1}	(0.6024853) 10^{-3}
$274^{\circ} \mathrm{F} \mathrm{nbp}$	(0.5937399) 10^{-1}	(0.719007) 10^{-1}	(0.2105794) 10^{-2}
290 $297^{\circ} \mathrm{Frb}$	(0.5019132) 10^{-1}	(0.109144)	$(0.7839975) 10^{-2}$
$\stackrel{\text { ¢ }}{\text { ¢ }}$ ¢ $_{\text {¢ }} 325^{\circ} \mathrm{F} \mathrm{nbp}$	(0.3539155) 10^{-1}	(0.149288)	(0.3035468) 10^{-1}
$+352^{\circ} \mathrm{Frbp}$	(0.1506110) 10^{-1}	(0.18083)	(0.7870184) 10^{-1}
$380^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.4212305) 10^{-2}$	(0.112581)	(0.1645896)
$402^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.8268706) 10^{-3}$	(0.52355) 10^{-1}	(0.2184665)
$425^{\circ} \mathrm{F} \mathrm{nbp}$	(0.1129719) 10^{-3}	(0.187726) 10^{-1}	(0.2447212)
$442^{\circ} \mathrm{Frnp}$	(0.1425552) 10^{-4}	(0.627625) 10^{-2}	(0.2538744)
$475{ }^{\circ} \mathrm{F}$ nbp	$(0.7310501) 10^{-6}$	(0.120452) 10^{-2}	(0.2573941)
$518^{\circ} \mathrm{F} \mathrm{nbp}$	$(0.6706184) 10^{-8}$	(0.882802) 10^{-4}	(0.2581837)

Figure 8. TBP Assays of Products (Via Hypothetical-Component Method) for Example 5

Figure 9. Temperature Profile Comparison (Example 5)

CONCLUSIONS AND RECOMMENDATIONS

The primary objectives of this study were:

1. Adapt "Taylor's program" to the Oklahoma State University's IBM 360/65 computer.
2. Replace the Holland $-K \& H$ equations (12) that Taylor had used with the new forms of equations, i.e., Equations (4.4), (4.5), and (4.6). These new forms of K and H equations incorporate composition, temperature, and pressure effect on K and H values of components of a mixture.
3. Demonstrate the use of Simpson's rule for hybrid-mixtures. The use of Simpson's rule had been proposed by Taylor and Edmister (22) to handle complex-hydrocarbon treating columns.
4. Application of "Hypothetical-Component" method to hybridmixtures.
5. Prepare documentation and readable print-out format with explanation.

Conclusions

Based on the investigations conducted in this work, the following are concluded and recommended:

1. Adaptation of "Taylor's program" to IBM 360/65 installation at Oklahoma State University turned out to be fairly simple.
A. few JOB CONTROL CARDS had to be changed.
2. The K values predicted by NGPA-K \& H computer program differ appreciably from those obtained by Equation (4.1) (27). The deviations do not follow a specific trend with temperature; however, for methane, the NGPA-K \& H computer program always predicts values lower than those by Equation (4.1) (27).
3. The temp. profile in enricher-section obtained by the use of new K \& H equations, i.e., Equations (4.4), (4.5), and (4.6), is lower than that obtained by using Equations (4.1), (4.2), and (4.3).
4. The new-proposed K and H equations worked quite successfully for a variety of problems. Essentially, the convergence remains the same.
5. The hybrid-mixtures, i.e., mixtures containing discrete components and complex-fractions, can be solved with Edmister's Integral technique (4), via the use of Simpson's rule.
6. The present limit of the program to handle maximum of four feeds, four sidestreams, and fifty-two stages can easily be lifted by proper indexing.

Recommendations

1. During this investigation, it was observed that the limits listed in NGPA - K \& H Program (27) for the reliable use of Chao-Seader correlation (6) had been exceeded frequently. The Lee-Edmister correlation (15) would cover a wider range of pressures and temperatures and would yield better K and H values.
2. A study should be made to include the ability to handle sidestream strippers.
3. Convergence characteristics of the method may be studied under special conditions, i.e., large number of stages and very small magnitudes of slopes, $\frac{\partial G}{\partial T}$. This may result in an improvement in the numerical stability of the method.
4. The computer-execution time may be reduced significantly by modifying the forms of equilibrium and heat balance functions. Taylor's program (23) uses the following forms for the functions:

$$
\begin{align*}
& G_{r}=\frac{\sum_{i=1}^{c} l_{j_{1}} K_{j_{1}}}{L_{j}}-1 . \tag{3.20}
\end{align*}
$$

These functions have been obtained from heat balance and equilibrium relationships by dividing them throughout by their respective right-hand sides, and then deducting unity from both sides of the equations.

Thus, this formulation requires two instructions to computer, i.e., division and deduction.

Instead, if the right-hand side is deducted from left-hand side of an equation, functions similar to those in Equations (3.20) and (3.21) will be obtained; i.e.:

$$
\begin{aligned}
& G_{q}^{\prime}=\left(b_{j-1} \sum_{i=1}^{c} h_{j-1,1} \ell_{j-1,1}+B_{j+1} \sum_{i=1}^{c} S_{y+1,1} H_{j+1,1} \ell_{j+1,1}+\sum_{i=1}^{c} f_{j 1}^{v} H_{j 1}^{f}+\sum_{i=1}^{c} f_{j 1}^{L} h_{j 1}^{f}\right) \\
& -\left(\sum_{i=1}^{c} h_{y 1} \ell_{y 1}+\sum_{i=1}^{c} S_{y 1} H_{y 1} \ell_{y 1}\right) \\
& G_{\eta}^{\prime}=\sum_{i=1}^{c} l_{j i} K_{y i}-L_{j} . \\
& \text { Equation (3.20) Modified. }
\end{aligned}
$$

The formulation of $\mathrm{G}_{\mathrm{r}}^{\prime}$ requires only one operation, i.e., deduction. Since the functions are evaluated for each stage and in each iteration, a good amount of computer time may be saved by using Equations (3.20) and (3.21).

A SELECTED BIBLIOGRAPHY

(1) Amundsen, N. R. and A. J. Pontien. "Multicomponent Distillation Calculations on a Large Digital Computer." Ind. Eng. Chem., 50, 730 (1958).
(2) Ball, W. E. "Computer Programs for Distillation." A paper presented at AIChE Meeting, New Orleans (February, 1961).
(3) Broyden, C. G. "A Class of Methods for Solving Non-linear Simultaneous Equations." Math. of Computations, 26, 577, (1965).
(4) Burman, L. K. "Relaxation Calculations for Multicomponent Distillation." (unpub. M. S. Thesis, Oklahoma State University, 1965.)
(5) Carnahan, Luther Wilkes. Applied Numerical Methods, New York: John Wiley \& Sons, Inc.
(6) Chao K. C., and J. D. Seader. "A General Correlation of VaporLiquid Equilibria in Hydrocarbon Mixtures." AIChE Journal, 7, 589 (1961).
(7) Edmister, W. C. "Improved Integral Technique for Petroleum Distillation Calculations." Ind. Eng. Chem., 47, 1685 (1955).
(8) Edmister, W. C. "Review of Thermodynamic Data and Methods for Equilibrium Stage Calculations." Educational Monograph TD-11-71, Feb. 1971, NASA Office of Technology Utilization, Contract NASA 37-gg2-045.
(9) Erbar, J. H. Private Communication (1971).
(10) Greenstadt, J. et al. "Multicomponent Distillation Calculation on IBM 704." Ind. Eng. Chem. , 50, 1644 (1958).
(11) Gunness, R. C. "Column Performance in the Rectification of Petroleum." Ind. Eng. Chem., 29, 1092 (1937).
(12) Holland, C. D. Multicomponent Distillation. Englewood Cliffs: Prentice-Hall Inc., 1963.
(13) Jenson and Jeffreys. Mathematical Methods in Chemical Engineering. London: Academic Press, 1963.
(14) Lapidus, L. Digital Computation Methods for Chemical Engineers. New York: McGraw-Hill Book Co., 1962.
(15) Lee, B. I. "Generalized Prediction Methods of Vapor-Liquid Equilibrium Ratio and Enthalpy for Hydrocarbon Mixtures." (unpub. Ph. D. Thesis, Oklahoma State University, 1971.)
(16) Lewis, W. K., and G. L. Matheson. "Design of Rectifying Columns for Natural and Refinery Gasoline." Ind. Eng. Chem., 24, 494 (1932).
(17) Muller, D. E. "A Method of Solving Algebraic Equations Using an Automatic Computer." Math Tables Aides Comp., 10, 208 (1956).
(18) Robinson, C. S., and E. R. Gilliland. The Elements of Fractional Distillation. New York: McGraw-Hill Book Co., 1939.
(19) Rose, A., et al. "Continuous Distillation Calculations by Relaxation Method." Ind. Eng. Chem., 50, 737 (1958).
(20) Smith, B. D. Design of Equilibrium Stagewise Processes. New York: McGraw-Hill Book Co.
(21) Taylor, D. L., and W. C. Edmister. "General Solution for Multicomponent Distillation Processes." Inst. of Chem. Eng. Symp. Series, 32, 5:23 (1969).
(22) Taylor, D. L., and W. C. Edmister. "Solution to Distillation Processes Treating Petroleum Fractions." Paper presented at AIChE meeting San Juan, May, 1970, (To be published in AIChE Journal).
(23) Taylor, D. L. Private Communication (1971).
(24) Thiele, E. W., and R. L. Geddes. "Computation of Distillation Apparatus for Hydrocarbon Mixtures." Ind. Eng. Chem., 25, (1933)。
(25) Tomich, J. F. "A New Simulation Method for Equilibrium Stage Processes." AIChE Journal, 2, 229 (1970).
(26) Wang, J. C., and G. E. Henke. "Tridiagonal Matrix for Distillation." Hydrocarbon Processing, 45, 155 (1966).
(27) NGPA-K \& H Computer Program. Natural Gas Processors Association, Tulsa, Oklahoma (Nov., 1969).

APPENDIX A

THE NEWTON-RAPHSON ITERATION TECHNIQUE

The analytical solution of many equations encountered in chemical engineering is often extremely difficult, if not impossible. Under such circumstances, the iterative techniques offer valuable means for solution.

The Newton-Raphson technique is probably the most widely used technique for solution of algebraic or transcendental equations.

This section describes the Newton-Raphson technique, and illustrates its geometric-significance. The mathematical derivations follow.

Mathematical Derivations

Consider a function of one variable only. A Taylor's series expansion around $\mathbf{x}^{(0)}$ leads to,

$$
\begin{align*}
f(\bar{x}) & =0=f\left(x^{(0)}\right)+\left(\bar{x} \cdots x^{(0)}\right) f^{\prime}\left(x^{(0)}\right)+\frac{\left(\bar{x}-x^{(0)}\right) 2}{2!} f^{\prime \prime}\left(x^{(0)}\right)+\cdots \\
& =f\left(x^{(0)}\right)-\epsilon^{(0)} f^{\prime}\left(x^{(0)}\right)+\frac{\left(\epsilon^{(0)}\right)^{2}}{2!} f^{\prime \prime}\left(x^{(0)}\right)+\cdots \tag{A.1}
\end{align*}
$$

where $\epsilon^{(0)}=\mathbf{x}^{(0)}-\overline{\mathbf{x}}$.
If the initial estimate of $x^{(0)}$ is a good one, i.e., $x^{(0)}$ lies in the neighborhood of \bar{x}, the desired value, then square of the error term may be neglected. So, one has,

$$
\begin{equation*}
\left.f\left(x^{(0)}\right)-\epsilon^{(0)}\right) f^{\prime}\left(x^{(0)}\right)=0 . \tag{A.2}
\end{equation*}
$$

or,

$$
\begin{equation*}
\epsilon^{(0)}=f\left(x^{(0)}\right) / f^{\prime}\left(x^{(0)}\right) . \tag{A.3}
\end{equation*}
$$

Consider the next improved estimate is made up as,

$$
\begin{align*}
\mathbf{x}^{(1)} & =\mathbf{x}^{(0)}-\epsilon^{(0)} \quad \text { where } \mathbf{x}^{(1)} \text { denotes the next estimate } \\
& =\mathbf{x}^{(0)}-f\left(\mathbf{x}^{(0)}\right) / f^{\prime}\left(\mathbf{x}^{(0)}\right) \tag{A.4}
\end{align*}
$$

Repeating the process with $x^{(1)}$ and $\epsilon^{(1)}$ yields in the same way,

$$
\begin{equation*}
\epsilon^{(1)}=f\left(x^{(1)}\right) / f^{\prime}\left(x^{(1)}\right) \tag{A.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{x}^{(2)}=\mathbf{x}^{(1)}-\epsilon^{(1)} \tag{A.6}
\end{equation*}
$$

Note that $\mathrm{x}^{(2)}$ is the 2nd estimate of the independent variable. Writing $\epsilon^{(I)}$ in functional form,

$$
\begin{equation*}
\mathbf{x}^{(2)}=\mathbf{x}^{(1)}-f\left(x^{(1)}\right) / f^{\prime}\left(x^{(1)}\right) \tag{A.7}
\end{equation*}
$$

Substituting for $\mathrm{x}^{(1)}$ from Equation (A-4),

$$
\begin{equation*}
x^{(2)}=x^{(0)}-\epsilon^{(0)}-\epsilon^{(1)} \tag{A.8}
\end{equation*}
$$

Thus, $x^{(2)}$ is a better estimate than $x^{(1)}$.
Now, by mathematical-induction, one can write,

$$
\begin{align*}
& x^{(r+1)}=x^{(r)}-\epsilon^{(r)} \tag{A.9}\\
& \epsilon^{(r)}=f\left(x^{(r)}\right) / f^{\prime}\left(x^{(r)}\right) \tag{A,10}
\end{align*}
$$

Substitution of $\epsilon^{(r)}$ in Equation (A.9) yields,

$$
\begin{equation*}
x^{(r+1)}=x^{(r)}-f\left(x^{(r)}\right) / f^{\prime}\left(x^{(r)}\right) \tag{A.11}
\end{equation*}
$$

Equation (A.11) is a "single-line" statement of Newton-Raphson method in one independent variable.

Equation (A.11) states that the function must be analytic in the region of estimates, and this often proves as a serious defect of this method, as will be seen later.

The geometric interpretation and certain cases where this method might not converge have been shown by Figures 10 and 11. Much depends on the initial estimate of x and shape of curve at or in the neighborhood of that point.

From Equation (A.11), one may say that the greater the slope of the function at a point, faster is the convergence. This, however, should not be extended further. In case of very steep slopes in neighborhood of selected points and when the value of the function is small compared to the slope at that point, the independent variable does not change at all and, in turn, the method does not converge. Algebraically, the convergence requirement may be completely stated as $" f^{\prime}(x)$ and $f^{\prime \prime}(x)$ should not change in sign in the interval $\left(x^{(0)}\right.$, $\bar{x})$ and $f^{\prime}\left(x^{(0)}\right)$ and $f^{\prime \prime}\left(x^{(0)}\right)$ should have the same sign, in order to converge to $\bar{x}(11) . "$ Geometrically, this implies that the curve should be smoothly convex to the x axis.

The discussion above applies to the functions of single independent variables.

The same method could be extended to the functions of more than one independent variable, by the use of "partial differential" type equations, as if $f_{1}\left(x_{1}, x_{2}\right)=0, \quad f_{2}\left(x_{1}, x_{2}\right)=0$, then,

$$
\begin{align*}
& \frac{\partial f_{1}}{\partial x_{1}} \Delta x_{1}+\frac{\partial f_{1}}{\partial x_{2}} \Delta x_{2}=-f_{1} \tag{A.12}\\
& \frac{\partial f_{2}}{\partial x_{1}} \Delta x_{1}+\frac{\partial f_{2}}{\partial x_{2}} \Delta x_{2}=-f_{2} \tag{A.13}
\end{align*}
$$

Simultaneous solution of (A.12) and (A.13) will give one $\Delta \mathbf{x}_{1}$ and $\Delta \mathbf{x}_{2}$; then,

$$
\begin{equation*}
\left(x_{1}\right)_{\text {new }}=\left(x_{1}\right)_{\text {old }}+\Delta x_{1} \tag{A.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x_{2}\right)_{\text {new }}=\left(x_{2}\right)_{\text {old }}+\Delta x_{2} \tag{A.15}
\end{equation*}
$$

Equations (A.14) and (A.15) have been used for convergence of heat balance and equilibrium functions in the General-Solution of Taylor and Edmister.

Higher order methods may make convergence faster, however, the degree of complexity of the computations increase in the reverse order. The Newton-Raphson method is a good compromise between the speed of convergence and the complexity of calculations.

Figure 10. Geometric Interpretation of Newton-Raphson Method

Figure 11. Typical Extreme Cases for Newton-Raphson Technique

APPENDIX B

ERBAR'S LINEAR REGRESSION CURVE-FIT

Regression is of utmost importance in relating a set of values of two different variables, e.g., in the field of chemical engineering, K or H^{\prime} s may be related to temperature or pressure by the use of regression on a set of data.

For the purpose of correlating K and H with temperature, Erbar's curve-fit (9) which employs the principle of linear regression, had been used. The first section of this appendix deals with the principle while the details of the curve-fit appear in the later section.

Linear Regression

By a linear regression model the author means an equation involving parameters and variables that is linear in parameters. The coefficients of x are known as parameters.

Consider that a curve of the form $\hat{y}_{1}=a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}$ is to be fitted through a set of $x-y$ points. It is believed that experimental errors in determination of x_{1} and y_{1} could be neglected.

The least-square criterion of curve-fitting seeks to fit the curve by minimizing the total sum of squares of deviations between calculated and given y_{1} values, $i . e .$, values of dependent variable.

Mathematically this could be written as,

$$
\sum\left(y_{1}-\hat{y}_{1}\right)^{2} \rightarrow \text { Minimum for a specific type of equation, } \quad(B, 1)
$$

where

$$
\hat{y}_{1}=a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2} .
$$

Substituting for \widehat{y}_{1} in Equation (B.1),

$$
\begin{equation*}
S=\sum\left(y_{1}-a_{0}-a_{1} x_{1}-a_{2} x_{1}^{2}\right)^{2} \quad \text { minimum } \tag{B.2}
\end{equation*}
$$

Note that in the Equation (B.2) y_{i} and x_{1} values are fixed and S, the sum of squares of deviations and the a_{0}, a_{1}, and a_{2} are the variables. The type of equation that best fits a given $x-y$ data could only be determined after trying various different forms of fit.

In order to minimize S, the derivatives of S with respect to all the variables should separately be zero.

Differenting Equation (B.2) with respect to a_{0}, a_{1}, and a_{2} in turn, one obtains a set of equations as under,

$$
\begin{align*}
& \frac{\partial S}{\partial a_{0}}=(-1)(2) \sum\left(y_{1}-a_{0}-a_{1} x_{1}-a_{2} x_{1}^{2}\right)=0 \tag{B.3}\\
& \frac{\partial S}{\partial a_{1}}=(-2) \sum\left(y_{1}-a_{0}-a_{1} x_{1}-a_{2} x_{1}^{2}\right)\left(x_{1}\right)=0 \tag{B.4}\\
& \frac{\partial S}{\partial a_{2}}=(-2) \sum\left(y_{1}-a_{0}-a_{1} x_{1}-a_{2} x_{1}^{2}\right)\left(x_{1}^{2}\right)=0 . \tag{B.5}
\end{align*}
$$

The equalities (B.3), (B.4), and (B.5) are generally referred to as Normal Equations. The number of equations required is determined by the
number of unknowns involved in the selected equation. The simultaneous solution of normal equations will give the required unknowns.

It is comparatively easier to solve these equations by a matrixinversion technique. Expression the above equations in the matrix notation;

$$
\left[\begin{array}{ccc}
N & \Sigma x_{i} & \Sigma x_{1}^{2} \tag{B.6}\\
\Sigma x_{1} & \Sigma x_{1}^{2} & \Sigma x_{i}^{3} \\
\Sigma x_{i}^{2} & \Sigma x^{3} & \Sigma x_{1}^{4}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma y_{1} x_{i}^{2} \\
\Sigma y_{1} x_{1}
\end{array}\right]
$$

To solve the matrix equation written above, one needs to have inverse of the first matrix on the left-hand side, then one has,

$$
\left[\begin{array}{l}
a_{0} \tag{B.7}\\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{ccc}
N & \Sigma x_{1} & \Sigma x_{1}^{2} \\
\Sigma x_{1} & \Sigma x_{1}^{2} & \Sigma x_{1}^{3} \\
\Sigma x_{1}^{2} & \Sigma x_{1}^{3} & \Sigma x_{1}^{4}
\end{array}\right]^{-1}\left[\begin{array}{c}
\Sigma y_{1} \\
\Sigma y_{1} x_{1} \\
\Sigma y_{1} x_{1}^{2}
\end{array}\right]
$$

Note that the matrix whose inverse is required is a symmetric matrix.
Erbar's curve-fit program consists of a main program and an inversion subroutine. The main program could roughly be separated into three segments. The first segment performs reading the data and some of the writing activities. The second segment forms the entries of the matrix to be inverted, along with the entries on the right-hand side of matrix equation (B, 6). These entries are supplied to the inversion subroutine, which performs the inversion task and subsequent solution of the matrix equation.

The third segment receives the values of constants from the inversion subroutine, and calculates \hat{y}_{1} 's with the use of the constants and the form of equation selected. This segment al so performs the
activities of writing the values of constants, number of points, calculated values of y_{1}, the dependent variable and the observed values of y_{1} and x_{1} 's.

As written, the program can handle 100 data points for a particular fit. The number could, however, be increased by increasing the dimension of x and y entries provided, which now is 100. In a similar way, the degree of polynomial fitted could also be increased. These two, however, are limited by round-off error. A series of problems could be solved only by one stacking since the program provides a statement to get out of DO LOOP when it encounters a zero value of the dependent variable; i.e., at the end of each problem, a card with a zero value of y_{i} or simply a blank card may be provided to switch over to the other problem. The program requires (the first READ statement) that each data set be preceded by an "identification card".

APPENDIX C

NGPA-K \& H PROGRAM

In making stage-wise calculations, K_{1} and \bar{H}_{i} values are essential. K and \bar{H} are dependent on temperature, pressure, and composition. In Taylor's program for General-Solution, these values are fitted as functions of temperature at certain column-pressure, the composition effect being allowed by getting $K-H$ values at feed-plate condenser and bottom.

In order to get $\mathrm{K}-\mathrm{H}$ values, the computer program developed by Erbar, Persyn, and Edmister (27) has been used. Detailed description has been treated in NGPA manual; a summary has been presented here, however.
K_{1} is defined by,

$$
\begin{equation*}
K_{i}=\nu_{1} \gamma_{1} / \Phi_{i} \tag{C.1}
\end{equation*}
$$

Φ_{1} is calculated by $R-K$ equation of state, while calculation of γ_{1} employs the regular-solution theory of Scatchard and Hildebrand. V_{1} values are obtained by curve-fits of Chao and Seader (6).

The calculation of \bar{H}_{1}^{V} uses essentially the isothermal pressureeffect on enthalpy by $R-K$ equation, while the liquid component, partial molal enthalpies are given by

$$
\begin{equation*}
\bar{H}_{i}^{1}=\bar{H}_{1}^{0}-\operatorname{RTr}_{1}^{2} T_{c_{i}}\left[\left(\frac{\partial \ln \nu_{i}}{\partial T_{r_{1}}}\right)_{p_{i}}+\left(\frac{\partial \ln \gamma_{i}}{\partial T_{r_{i}}}\right)_{P_{i} x}\right] . \tag{C.2}
\end{equation*}
$$

The derivatives listed in bracket could be obtained for the corresponding functions for $\ln \nu_{1}$ and $\ln \gamma_{1} \cdot$ It should be noted that the second derivative in the bracket is the effect of composition on $\bar{H}_{1}{ }^{\mathrm{L}}$. The program also handles complex hydro carbon fractions by the use of modified Cavett's correlation which requires mean average boiling point, API gravity, and the molecular weight. These data, in turn, are used to calculate T_{c}, P_{c}, W, and V^{L} needed for further calculations.

The program makes available 11 different options to the user:

1. B.P. temperature calculation,
P specified
2. B.P. pressure calculation, T specified
3. D.P. temperature calculation P specified
4. D.P. pressure calculation T specified
5. L / F calculation \quad P, T specified
6. L / F calculation over a range of $T, \quad T, P, \Delta T$ specified
7. L / F calculation over a range of $P, \quad T, P, \Delta P$ specified
8. Flash temperature calculation, $\quad \mathrm{L}, \mathrm{F}$ specified
9. Flash pressure calculation, $T, L / F$ specified
10. T and L / F calculation, $\quad H, P$ specified
11. P and L / F calculation, H, T specified
a. $\quad V_{i}$ can be calculated both by Chao-Seader equations or Grayson-Streed equations, both of which are included in NGPA-K \& H program as alternatives.
b. Hypothetical components could be handled by Cavett's method or by New-correlation. The latter needs fraction's specific-gravity and molecular weight. The method, however, has not been tested extensively.

Besides the required JCL, the cards mentioned below will be introduced as input. Here it has been assumed that the program has been stored in a particular computer-library.

1. Problem identification card with necessary codes to use the method desired.
2. If hypothetical component(s) is (are) present, its (their) physical properties. This card can be emitted if there is no such fraction present.
3. Type of calculation (one of 11 options) with necessary information.
4. Component-identification numbers. They are from 1 to 100 and in integer-type format.
5. Component-molal flow rates.

TAYLOR'S COMPUTER PROGRAM

The "General-Solution of Taylor and Edmister" has been programmed by Taylor (23). The program can handle multi-feeds, multi-draws and complex-hydrocarbon fractions treating columns. This compact program can handle as many as four feeds, four-side streams, and a maximum of 52 stages. The limit on the number of components that could be handled is 25. The indexing could be easily changed to increase the above mentioned limits.

First the program is fully described and then the block-diagrams are presented for a clearer explanation.

Description

The program consists essentially of a main program calling the subroutines INPUT, MATBAL, FCAL, DERCAL, and SIMQ. The functions of these subroutines will be described next.

The subroutine INPUT reads the input data which includes maximum number of trials, number of components, number of stages, (including the condenser and the reboiler), type of problem (i.e., the unknown is to be determined from other specifications. 1 denotes that product compositions are to be determined at given reflux-rate while $\underline{2}$ shows the determination of reflux ratio at given key component distributions), number of feeds to the column, state of feed (i.e., vapor or
liquid), location of feed, etc. It should be noted here that a partially vaporized feed is treated as two-feeds, the saturated vapor going to the plate above while the saturated liquid going to the plate below. Additional variables include number of side streams, their locations, rates, assumed temperature profile for the column, assumed liquid rates, maximum and minimum allowable values of liquid rates, coefficients of K_{1} 's and $\bar{H}_{1}^{\prime} ' s$ for all components at the column conditions. In addition to reading and supplying these values to the main program, this subroutine also sends the tolerance specified on heat balance and equilibrium functions. (i.e., Equations (3.20) and (3.21)). It is desired to have the values of these functions on all stages near to zero.

The subroutine MATBAL serves an important purpose of numerical accuracy: i.e., for the component material balance on all stages one has two sets of equations. (Equations (3.11) and (3.12). For relatively light components, i.e., components characterized by large stripping-factors (in the program they are defined as $\prod_{j=1}^{N} A_{j 1} \leq 1^{\bullet}$ where π denotes the product on N stages), the use of equation sets 11 yields a better accuracy. Similar argument holds for heavy components $\left(\prod_{g=1}^{N} A_{d_{1}}>1\right)$ by using equation set 13 . In the subroutine, the accuracy is achieved by using the arrangement of defining the quantities $\sigma_{g_{1}}$ and $\alpha_{g_{1}}$ for lights and heavies, respectively. (Arrangement is given in Equations (3.24) and (3.25)). Arrangements have also been provided for the extreme cases such as all the components being light or all being heavy. After performing the separation task described above, the subroutine computes vapor and liquid rates of all components on all stages. The values are finally returned to the main program. The subroutine

FCAL calculates the equilibrium and heat balance functions from the component - molar flow rates obtained from the subroutine MATBAL via the main program. Calculation of heat balance functions is not initiated until the equilibrium functions on each plate are less than or equal to 0.20. This is achieved by means of KHB, i.e., heat-balance index. $K H B=0$ means no heat balance and $K H B=1$ means heat balance inclusion. The subroutine DERCAL finds the derivatives of the functions calculated by the FCAL subroutine. These derivatives are needed to form the equation set (3.22).

The derivative values are returned to the main program. The subroutine $S I M Q$ gets the values of the derivatives from the subroutine DERCAL via the main program. It solves the equation set (3.22) by the Gauss successive elimination and back substitution method. The values are sent to the main program which then updates the temperature and flow profile by adding ΔT_{j} and ΔL_{j} to the previous T_{j} and L_{j}, respectively. The calling and calculating and updating of the independent variables is repeated until desired accuracy is obtained. The program prints each trial, its temperature profile, and liquid-vapor traffics. As written, it can handle maximum of 52 stages, maximum 11 components, with temperature limits $100^{\circ} \mathrm{F}$ - $500^{\circ} \mathrm{F}$. By changing the dimensions concerned, the program may handle even bigger columns and more components. The necessary block diagrams will now be presented.

SUBROUTINE FCAL

SUBROUTINE SIMQ

APPENDIX E

INPUT AND OUTPUT FOR TAYLORIS PROGRAM

This section presents the details of preparing the input for the program. Data consistency is of prime importance in the input preparation. Frequently, the troubles arise because of the invalid input information. Equally important is reasonable specification of parameters, i.e., number of stages and reflux rate should be sufficient for producing the desired products.

Format Specifications

I, F, and E type formats are used in the program. The I and E type of formats should always be right justified, while the F type format must have a decimal point punched in their respective fields. The discussion of input preparation follows.

Card Title	Variable Name	Input Format	No. of Cards Required	Minimum Value for Variable	Maximum Value for Variable	Remarks
Control Card 1	Max. no. of trials	I	1	1	-	Some integer number must be specified.
	Number of components	I	-	2	25	11
	Number of stages	I	-	3	52	This number includes both the partial condenser and a reboiler.
	Problem specification	I	-	1	2	$1=$ calculation of product distribution for a given reflux ratio and given number of stages.
						2 = calculation of reflux ratio for a given key-component distribution and given number of stages.
Control Card 2	Total no. of feeds	I	1	1	4	
Feeds location and state identification			NFD	1	4	NFD = Total number of feed streams to column.

Card Title	Variable Name	Input Format	No. of Cards Required	Minimum Value for Variable	Maximum Value for Variable	Remarks
	Entry for the first feed.	I	1			
	State of feed no. 1	I	-	1	2	$\begin{aligned} & 1=\text { Liquid feed; } 2= \\ & 2=\text { vapor feed } \end{aligned}$
	Temperature of feed 1	F	-	-	-	Temperature should be in degrees fahrenheit. Be sure to punch the decimal point. After finishing this first card for first feed, other cards must be filled in this order.
Feed rate Card	Molal rate of first feed.	F	1	-	-	
Feed composition Card(s)	Composition of first feed in mole fraction units.	F	$?$	0	1.0	Here the number of cards depends on the number of components. One card contains composition for 12 components.
						These should be repeated for other feeds, in the same order.
Number of sidestream cards.	Number of sidestreams	I	1	0	4	Only liquid sidestreams are allowed.

(Continued)

Card Title	Variable Name	Input Format	No. of Cards Required	Minimum Value for Variable	Maximum Value for Variable	Remarks
Locations of sidestreams.	Stage numbers from where the streams are wi thdrawn.	I	1	0	4	
Sidestream rates	Molar rates of sidestreams.	F	1	0	-	
Key component card.	Key component number. Key component composition in distillate.	I F	1	-	-	Components are numbered starting with the lightest. The same should be repeated in this order for another key in bottom. Use this card only if problem specification $=2$.
K-coefficients card.	Coefficients $a_{0}^{\prime}, a_{1}^{\prime}$, and a_{2}^{\prime}.	E	NC		-	NC means number of components in feed mixture. Arrange 3 coefficients per card; the components should be arranged in order of decreasing volatility. The constants describe the effect of temperature and pressure on K's.

Card Title	Variable Name	Input Format	No. of Cards Required	Minimum Value for Variable	Maximum Value for Variable	Remarks
Temperature-profile card.	Temperature (Initially assumed profile)	F	NC	-	-	Temperature is in degrees fahrenheit. The number of cards depends on the number of stages. One card contains maximum of 12 entries.
Liquid-flow profile	Liquid-flow rate (Initially assumed)	F	?	-	-	Same as for temperature profile, except that the rate is in mole/time basis.
Minimum allowable liquid flow rates	Liquid flow	F	?	-	-	Some reasonable figure should be used. Same remarks as in temperature profile.
Maximum flow rate card.	Maximum flow rate	F	$?$	-	-	Use some big reasonable number. Rest of the comments are the same as in temperature profile.

(Continued)
Card Title

CONTROL CARD 1

CONTROL CARD 2

FEED RATE CARD

COMPOSITION CARD

*REPEAT FEED RATE AND COMPOSITION CARDS FOR OTHER FEEDS

NUMBER OF SIDE STREAMS-CARD

KEY COMPONENT CARD (Use only if problem specification $=2$, otherwise skip this card)

COEFFICIENTS OF K EQUATION (Proposed new form Eq. 4.4)

TEMPERATURE PROFILE CARD (Initially estimated profile)

FLOW PROFILE CARD

MINIMUM ALLOWABLE FLOW RATE CARD

MAXIMUM ALLOWABLE FLOW RATE CARD

COEFFICIENTS OF ENTHALPY EQUATIONS CARDS (Proposed new forms Eqs.(4-5), (4-6) 'E' FORMAT

Explanation of Print-Out Results

This section deals with the explanation of the print-out results from Taylor's program for "General-Solution".

Print-Out of Input Data

All the input data is printed. It is essential to check the input data to make sure that they are correct. The format for this print-out is identical to that given in input.

Print-Out of Results

The results are printed in the following order:

1. Iteration number, starting with "zero", i.e., the first iteration. This iteration is based on the initial values of temperature and flow-profiles supplied.
2. Product-distributions, starting with the distillate distribution, $\mathrm{XD}(\mathrm{I})$, and ending with the bottoms distributions, $\mathrm{XB}(\mathrm{I})$. The order in which the compositions are reported for a particular product is the same as in the input, i.e., starting with the lightest component and ending with the heaviest "E" format has been used for this print.
3. Temperature and flow profiles. Temperatures are reported in degrees fahrenheit units while the flow profiles are in molarrate units. "F" format has been used here.
4. Condenser duty $Q(C)$ and reboiler duty $A(R)$ in Btu/time units. "E" format has been employed for this.

The foregoing will be made clear by some typical print-out presentation. This is only a qualitative representation.

Data

Data appears in the same order as that described in the INPUT section of this appendix. Trial results are shown below. Trial No. 0

XD (I)	0.600000 EOO	0.200000 EOO	0.10000 EOO	0.100000 EOO
$\mathrm{XS}(\mathrm{J})$	0.500000 EOO	0.40000 EOO	0.050000 EOO	0.049000 EOO

(If there are more than one sidestreams, they are printed in the same format. The order of their print is from top toward bottom.)
$\mathrm{XB}(\mathrm{I}) \quad 0.700000 \mathrm{EOO} 0.100000 \mathrm{EOO} 0.050000 \quad 0.150000 \mathrm{EOO}$
$J \quad T(J) \quad L(J) \quad V(J)$
$\begin{array}{llll}1 & 122.7 & 102.0 & 28.0\end{array}$
$2 \quad 126.2 \quad 102.0 \quad 130.0$
3: $127.0 \quad 102.0 \quad 130.0$
$\begin{array}{llll}4 & 127.8 & 102.0 & 130.0\end{array}$

- \quad
- $\quad 0$
- -

$\begin{array}{llll}\mathrm{N} & 225.8 \quad 64.0 & 130.0\end{array}$
(Note that the column labeled J shows the numbering for the stages.
"1" refers to the partial condenser while "N" refers to the reboiler.)
$Q(C)=0.0$
$Q(R)=0.0$
(For the first trial (Trial No. O), this program usually does not take the heat balance and, thus, $Q(C)$ and $Q(R)$ are reported as zero.)

Trial No. 1

XD (I)
XS (J)
*REPEAT IN THE SAME ORDER AS FOR TRIAL 'O', BUT DO NOT PRINT THE INPUT DATA.

APPENDIX F

NOMENC LATURE

```
Agi
    \beta=Convergence-controller in Burman's method.
    {
    Fj}=\mathrm{ Total molal rate of flow of liquid feed that enters above stage
    j.
f
    part of feed below stage j.
f}\mp@subsup{f}{i}{L}=\mathrm{ Molal rate at which component i enters the column in the liquid
    part of the feed above stage j.
F
Gr}=\mathrm{ Set of functions defined by Equations (2.20) and (2.21) also
    used in Equation (2.22).
\mp@subsup{H}{j1}{1}} Partial molal enthalpies of component i, in vapor and liquid
\mp@subsup{h}{9i}{}}==\mathrm{ state, respectively (y on the stage j.
Hf1 F
\mp@subsup{h}{\mp@subsup{j}{1}{}}{F}
K}\mp@subsup{|}{i}{}=\mathrm{ Vapor-liquid equilibrium constant for the component i on the
    stage j.
L
```

```
\ellf1}=\mathrm{ Molal rate of flow of component i from stage j.
    N = Number of stages including the reboiler and partial condenser.
Q(C) = Condenser duty., Btu/hr.
Q(R) = Reboiler duty., Btu/hr.
S Si}=\mathrm{ Stripping factor for component i on stage j.
    Tg}=\mathrm{ Temperature of stage j.
    Vg}=\mathrm{ Total molal flow rate of vapor from stage j.
vif}=\mathrm{ Molal rate of flow of component i from stage j.
    \mp@subsup{W}{j}{\prime}}=\mathrm{ Total molal rate of withdrawal of liquid sidestream that leaves
        below stage j.
    Wg
        column above stage j.
wfi
        sidestream below stage j.
w v
    sidestream from stage j.
\mp@subsup{x}{j1}{}}=\mathrm{ Mole fraction of component "i" in the liquid stream leaving
    stage j.
\mp@subsup{x}{d}{}
        of pseudo-component "i" in distillate for Simpson's rule
        application in Example 5.
\mp@subsup{x}{b}{}
        pseudo-component "i" in bottoms for Simpson's rule use in
        Example 5.
\mp@subsup{x}{w}{}
        from stage j. Mole-fraction of pseudo-component "i" in
        liquid sidestream from stage j. (for Simpson's rule, Example 5)
```

```
    \mp@subsup{x}{f}{}}=\mathrm{ Feed composition on mole fraction basis; pseudo-feed composition
        for Simpson's rule in Example 5.
\mp@subsup{y}{\mp@subsup{j}{1}{}}{}= Mole fraction of component "i" in the vapor stream leaving stage
        j.
        \alpha
            Quantities defined by Equations (2.24) and (2.25).
    \sigma
\Phi}\mp@subsup{g}{1}{}= Total molal flow-rate of component "i" in the vapor and liquid
        feeds that enter stage j.
\varphi, (1) Functions used in Equations (5.3), (5.4), and (5.5).
                                    Subscripts
    i = Component number. i=1....c 1 designates the lightest
        component and c designates the heaviest one.
    j = Stage number. Stages are numbered from top-down. Stage "1"
        is the partial condenser and N is the reboiler.
    r= index used for functions, G}\mp@subsup{G}{r}{}\mathrm{ , in Equations (3.20) and (3.21).
q, t = Summation and product indices, respectively, used in Equations
        (2.24) and (2.25).
        D = Distillate
        B= Bottoms
        W = Sidestreams
        F}=\mathrm{ Feed
```


Superscripts

```
    F = Specifies that the associated enthalpy is for a feed stream.
L, V = Specifies that the associated quantity is for a liquid and
        vapor stream, respectively.
    '= Denotes the pseudo-compositions of feed in Example 5, and
        denotes the new equilibrium and heat balance functions in
        Chapter VI.
```

VITA

Ghanshyam C. Shah
Candidate for the Degree of
Master of Science

Thesis: GENERAL-SOLUTION OF TAYLOR AND EDMISTER FOR MULTICOMPONENT, MULTISTAGE SEPARATIONS

Major Field: Chemical Engineering

Biographical:
Personal Data: Born in Sojitra, India, July 25, 1946, the son of Champaklal and Kashiben Shah.

Education: Attended M. M. High School at Sojitra, India; graduated from Maharaja Sayajirao University, Baroda, India, with the degree of Bachelor of Science in Chemical Engineering, May, 1969; attended Oklahoma State University, Stillwater, Okl ahoma, U. S. A., since January, 1970, and completed requirements for Master of Science degree in Chemical Engineering, July, 1971.

Professional Experience: Took in-plant training at Gujarat Refinery, Baroda, India, during Summer, 1968; employed as graduate assistant, School of Chemical Engineering, Oklahoma State University during Spring, 1971.

