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CHAPTER I 

INTRODUCTION 

The purpose of this study is to determine the nature of the heart 

rate (HR) component of the orienting reflex (OR). The OR is a general­

ized response which is elicited by novel stimuli and facilitates the 

reception and evaluation of these stimuli. Since Pavlov (1927) first 

described the OR, considerable research has been conducted to determine 

the significance and principle characteristics of the OR. Research has 

determined that the OR is of primary importance in the processing and 

evaluation of stimuli in the environment. This fact has led many re­

searchers to believe that the OR may be of central importance in the 

understanding of many abnormalities of behavior (Maltzman and Raskin, 

1965; Lynn, 1963). 

In recent years the widespread use of electro-physiological 

measures in behavioral research has given impetus to research on the 

OR. Unfortunately, this research has been hampered by the frequent use 

of inadequate or invalid physiological measures. Many studies have 

utilized single, superficial physiological measures of the OR, or have 

employed more complex measures ·which were later determined to be of 

questionable validity (e.g. GSR, vasomotor measures). Therefore, 

before any meaningful research at the physiological level on the OR can 

be conducted, the precise physiological components of the OR must be 

further expli'cated. For example, the HR component of the OR has been 

1 
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the objeict of considerable research recently, but an examination of the 

literature reveals that present knowledge of the cardiac component of 

the OR is both confused and contradictory. 

Many different procedures of measuring HR have been used and this 

has contributed to the confusion that exists concerning the HR component 

of the OR. The ideal HR measure permits an examination of the pre­

stimulus base level and all components of the HR response following the 

stimulus. This can be accomplished by recording HR on a beat-by~beat 

basis or a second-by-second basis. When the beat-by-beat method is 

used HR is estimated by measuring the time elapsing between each beat. 

The reciprocal of length of the inter-beat-interval (IBI) gives the HR 

in beats per minute (bpm). The second-by-second means of measuring HR 

simply consists of computing the mean HR for each second (sec) pre­

ceding and following the stimulus. Other procedures such as computing 

a mean HR for a pre-stimulus period and a post stimulus period do not 

permit an examination of the many possible fluctuations of HR above 

and below the pre~stimulus level following the stimulus. 

For the purpose of this study deceleration of HR was defined as 

any decrease of HR below the level of the preceding IBI or SEC. A 

deceleratory trend or phase was defined as any deceleration of HR which 

persisted for two or more successive IBis or SECs. An acceleratory 

trend or phase was defined as any acceleration of HR which persisted 

for two or more successive IBis or SECs. Trends of acceleration or 

deceleration which rose above the prestimulus level or fell below the 

pre-stimulus level, respectively~ were so designated. 

Heart rate response curves of various types have been observed 

in the literature. Some studies have reported a diphasic response 
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of initial acceleration above the pre-stimulus level followed by a phase 

of deceleration below the pre-stimulus level (Davis, Buchwald, and 

Frankmann, 1955; : Lang.,and Hnatiov,-l96?; ..:,,Uno.;:and Gr;ings, 1965; Smith 

and Strawbridge, 1968). (See Fig. 1) 

FRE-STJNULUS ·LEVE1 .... --------

STlNULUS 
PRE-STIMULUS POST STJNULUS PERIOD 

PERIOD 

Figure 1. Approximate form of the HR response curve for studies 
reporting initial acceleration of HR followed by 
se~ondary deceleration. 

Other studies have observed a multiphasic response of initial 

deceleration below the pre-stimulus level followed by a longer latency 

acceleration above the pre-stimulus level, and finally, a deceleratory 

phase below the pre-stimulus level (Meyers and Gullickson, 1967; 

Meyers, 1969; Raskin, Kates and Beve~, 1969; Smith and Strawbridge, 

1969). (See Fig. 2) 

Monophasic decelerative HR responses below the pre-stimulus level 

have been reported by Chase and Graham (1967), Kanfer (1958), Wilson 

(1964), Zeaman, Deane, and Wenger (1954), and Davis and Buchwald (1957). 

(See Fig. 3) 



Mean 
Pre-stimulus 

Level -------~ 

Stimulus 
Preastimulus Post stimulus 

Period Period 

Figure 2. Approximate form of the HR response curve in studies 
reporting initial deceleration below the pre-stimulus 
level, secondary acceleration above the pre-stimulus 
level, and deceleration below the pre-stimulus level. 

Mean 
Pre-stimulus -------N-

Stimulus 
Pre-stimulus 

Period 
Post stimulus 

Period 

Figure 3. Approximate form of the HR response curve in studies 
reporting deceleration below· the pre-stimulus level. 

Acceleration of HR above the pre-stimulus level has been reported 

by Dykman, Reese, Galbrecht, and Thomasson (1959), and Germana and 

Klein (1968). (See Fig. 4) 

Numerous attempts have been made to explain these inconsistent 

results. At present, most researchers have concluded that decelera~ 

tion best meets the criteria of an OR (occurs to stimuli of moderate 

intensity and habituates). (Graham and Clifton, 1966; Lacey and 

Lacey, 1958; Smith and Strawbridge, 1968, 1969; Raskin, Kotes and 

4 



Mean 
Pre-stimulus 

Level ------

Stimulus 
Pre-stirnul us 

Period 
Post stimulus 

Period 

Figure 4. Approximate form of the HR response curve in studies re­
porting acceleration above the pre-stimulus level. 

Bever, 1969). The acceleratory phase of the response curve that has 

been frequently observed has been explained as a phasic component of 

the OR (Graham and Clifton, 1966); a specific adaptive reflex (Solty-

5 

sik, Jaworska, Kowals·ki, and Radom, 1961; Meyers and Gullickson, 1967), 

a st~rtle r'eflex '(Graham 1and Cl'if·ton, 1966; · Still th and Strawbridge, 

1968), a defensive reflex (DR) (Graham and Clifton, 1966); or as the 

result of respiratory artifacts (Smith and Strawbridge, 1969). Re-

search conducted since Graham and Clifton's review tends to eliminate 

all of these except respiration from serious consideration. The re-

flexive effect of respiration upon HR (sinus arrythmia) has long been 

known (de Cyon and Ludwig, 1847; see Scher, 1965b), but few studies 

have examined the possible effect of this reflexive mechanism upon 

the HR response curve. Therefore, the purpose of this study was to 

examine the role of respiration in producing the accelerative phase of 

the HR response to non-signal, novel stimuli. 
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Psychological and Physiological Characteristics of the OR 

The OR is one of three responses that may occur to simple stimuli. 

The OR, the adaptive response (.AR), and the defensive reflex (DR) 

represent three distinct and important responses to simple stimuli. 

The OR acts to increase the effects of stimulation by eliciting gener­

alized approaching behaviors and cortical activation (Sokolov, 1960). 

The .AR serves a localized homeostatic function which is specific to 

the sense organ stimulated. For example, when the eye is exposed to 

a change in the level of stimulation (light or darkness) it responds 

by constricting or contracting. The .AR persists with repetition of the 

stimulus, but the OR habituates as the stimulus is repeated. The DR 

evokes generalized "fight or flight" patterns of aggression, retreat, 

or freezing. When the stimulus is repeated the DR habituates very 

slowly if at all. 

Three stimulus parameters determine whether an OR or a DR occurs 

to a stimulus. These are as follows: (1) the intensity of the stimu­

lus; (2) the number of repetitions of the stimulus; and (3) the 

signal value of the stimulus (i.e. its capacity to serve as a con­

ditioned stimulus). Intense stimuli produce immediate ORs and DRs on 

later presentations of the stimulus. If a stimulus acquires signal 

value, it becomes more likely to elicit ORs at both higher and lower 

intensities9 

Sokolov (1960, 1963a) has proposed a theory of the operation of 

the OR. Sokolov postulates the existence of a "neuronal model" con­

sisting of an organization of neural cells of the cortex which preserve 
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information about the intensity, quality, duration, and patterning of 

stimuli. If the parameters of a given stimulus do not parallel existing 

neuronal models, an OR is initiated by excitatory processes. When the 

parameters of a stimulus parallel those represented in an existing 

neuronal model, negative feedback to the excitatory system is initiated 

which results in an inhibition of the OR. With repeated presentations 

of the stimulus, the model becomes more completely developed and the 

magnitude of the OR gradually decreases until it disappears completely. 

Although the basic propositions of Sokolov's model have been con-

firmed (Zimny and Schwabe, 1966; Zimny and Kienstra, 196?), research 

has failed to adequately define the physiological components of the OR. 

Lynn (1966) and Berlyne, (1960) have described the physiological changes 

of the OR as follows: (1) an increase in sense organ sensitivity; 

(2) activation of skeletal muscles that direct sense organs; (J) muscu-

lar activity (rise in general muscle tonus and electronzy-ographic 

activity); (4) vegetative changes (GSR, respiration changes, variable 

HR, and vasodilation in the head and vasoconstriction in peripheral 

areas); and (5) changes in the central nervous system (e.g. disruption 

of alpha or slower waves). Thus, various physiological changes have 

been observed in association with the OR. A closer examination of the 

·literature, however, reveals that some of these changes are not clearly 

defined. In particular, research on the HR response to simple stimuli 

of moderate intensity has failed to arrive at a precise determination 

of the HR component of the OR. 

In the normal functioning of the heart the sino-artrial (S-A) node 

is responsible for the HR. Excitatory impulses generated in the S-A 

node initiate a wave of depolarization which results in the heart beat. 
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(Scher, 1965a). Changes in this pattern of excitation and, therefore, 

changes in HR can be produced in numerous ways. Heart activity is 

regulated by the cardio-vasc·ul ar regulatory center located in the 

medulla. (Rushmer, 1965; Brener~ 1967) This center is composed of 

three sub-centers which mediate specific changes in cardio-vascular 

activity. The cardiac acceleratory center acts through the sympathetic 

cardiac nerves to produce an increase in HR. Decreases in HR are 

produced by the cardio-inhibitory center through the action of the 

parasympathetic vagus nerve. The sympathetic vascoconstrictor center 

produces vaso-constriction of the peripheral arterial tree and a rise 

in arterial pressure. 

Information on blood composition is conveyed to the medulla 

cardiovascular regulatory center by means of the chemoreceptors of the 

aortic arch and the carotid sinus. Thus, increases in co2 or decreases 

in o2 in the blood lead to stimulation of the cardio-acceleratory 

center and, therefore, an increase in HR. Information on blood pressure 

is transmitted to the cardio-vascular regulatory center by the baro­

receptors of the blood vessels, aortic arch, and carotid sinus. An 

increase in pressure activates. the cardio-inhibitory center through 

the baroceptors which produces a decrease in both HR and blood pressure. 

Although the cardio-regulatory center of the medulla is sufficient 

for homeostatic adjustments of heart activity, other areas of the brain 

are responsible for further changes in cardiac activity. The hypotha~ 

lamus and.the cerebral cortex for example, may be responsible for 

changes in cardiac activity by influencing the cardio=vascular regula­

tory center. The changes of HR associated with the OR probably 

originate in the cortex or other centers of the brain. Impulses from 



these centers act on the cardiac-regulatory center of the medulla, 

thereby influencing the activity of the heart. Thus, deceleration as 

a component of the OR is produced by the cardio-inhibitory center 

through the action of the parasympathetic vagus nerve. The accelera­

tory component of the OR results from stimulation of the sympathetic 

cardiac nerves by the cardio-acceleratory center. 

Heart Rate Component of the OR 

Although Sokolov (1960, 1963a, 1963b) is the leading theorist and 

researcher on the OR, he has not specified the HR component of the OR. 

A study cited by Sokolov (Soltysik et al., 1961) reported an increase 

in the HR of dogs in response to the onset of a sound and a decrease 

in HR to the offset of the sound. Sokolov (1963b) interpreted the 

deceleration of HR that occurred at the off set of the sound as a 

specific accoustico-cardiac reflex dependent upon the intensity of the 

sound. Responses such as this which are confined to a single sense 

organ cannot be a portion of the OR due to the fact that the OR 

represents a generalized response rather than a specific adaptive 

response. The initial acceleration was interpreted to be the result 

of a surmnation of the acoustico-cardiac reflex and the OR. Thus, 

Sokolov seems to designate acceleration as the HR component of the OR. 

9 

Lacey and Lacey (1958), however, have postulated that deceleration 

characterized the HR component of the OR. This conclusion is based 

upon the observation that increases in HR and blood pressure are associ­

ated with inhibition of cortical activity (Bonvallett, Dell, and Riebel, 

1954; Nakao, Ballim, and Gellhorn, 1956). Since the OR acts to 

facilitate the reception and evaluation of stimuli it should be associ-
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ated with cortical activation. Lacey and Lacey, therefore, propose that 

deceleration accompanies stimuli or tasks which require receptivity to 

the external environment and acceleration occurs to stimulus patterns 

or tasks which necessitate or evoke rejection of the external environ-

ment. 

Lacey, Kagan, Lacey, and Moss (1962) tested this hypothesis by 

exposing subjects (§.s) to stimulus situations designed to elicit re­

jection or acceptance of the external environment. It was hypothe­

sized that the tasks which required sustained attention to the incoming 

signals would elicit HR deceleration, but tasks which required 

selective rejection of the external environment would result in HR 

acceleration. Two groups of §.s (N=94 and N=30) were given both of 

these types of tasks and the mean of the twelve fastest IBis were 

determined for: (1) a one minute period preceding the presentation of 

an alert concerning the nature of the coming task (Base L~vel); (2) a 

one minute period following the alerting announcement (Alert); and 

(3) the one to two minute period during the stimulus situation (Stress). 

The tasks selected which were defined as requiring rejection of 

the external environment involved internal manipulation of symbols and 

retrieval of stored information. These were: mental arithmetic 

(simple addition and multiplication problems), reverse spelling (identi-

fibation of words verbally spelled in reverse order), and make-up 

sentences (§.s asked to make up 5 word sentences beginning each word 

with a letter announced by E). As predicted, all of these tasks 

resulted in acceleration of HR. 

Tasks that required attention to the incoming stimulus were the 

following: (1) photostimulation (§.s were asked to note the varying 



colors and patterns of light in the stimulus) (Flash); (2) a tape 

recorded recitation by a dying man with which !i_s were instructed to 

empathize (Drama). The pattern,of HR response for these tasks con­

sisted of acceleration from Base to Alert and deceleration for the 

Stress period, as was predicted. 

11 

Lacey, et~· (1962) interpreted these results to mean that tasks 

which demand that incoming signals be noted throughout the stimulation 

period result in deceleration. The tasks that demanded concentration 

and mental work resulted in acceleration. Lacey's research, however, 

has involved complex stimulus situations which are not comparable to 

the simple non-signal stimuli used in OR research. Graham and Clifton 

(1966) note that such complex situations may not involve simple accep­

tance-rejection alone. Furthermore, Lacey's HR measure does not allow 

for an examination of the exact form of the HR response being elicited. 

The results of the study by Lacey, et al. (1962) provides a 

demonstration of a decelerative HR response to moderate intensity 

stimulation; however, other studies which have used more intensive 

analyses and more relevant stimuli have failed to obtain unequivocal 

results. Graham and Clifton (1966) reviewed numerous studies of the 

HR component of the OR and found little agreement among them. Few· of 

the studies reviewed reported a purely decelerative response to moder­

ate intensity stimulation. Despite .the confusing and contradictory 

nature of the literature, Graham and Clifton were able to conclude that 

deceleration represents the HR component of the OR. This conclusion 

was based on two observations: (1) the initial HR response to stimu­

lation was virtually always deceleration when the method of data 

analysis permitted such an observation; and (2) this initial decWera-
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tion usually habituated with repetition of the stimulus; whereas, the 

accelerative component tended to resist habituation. For instance, 

Davis, Buchwald, and Frankmann (1957) reported that by the tenth trial 

the decelerative component was only 20% of its initial magnitude. 

Also, Lang and Hnatiow (1962) reported a persistent accelerative com­

ponent and a habituating deceleration component. The accelerative 

component best met the criterion of a DR (occurred to strong stimuli, 

resisted habituation, and frequently increased in amplitude with repe­

tition of the stimulus). 

Graham and Clifton (1966) discuss several alternative explanations 

for the frequently observed accelerative component of the HR response. 

They note that the accelerative component does not appear to be an 

essential component of the OR since it fails to occur in some appropri­

ate stimulus situations and often resists habituation. A second 

explanation of the acceleratory phase is that it represents a partially 

inhibited DR. This is consistent with Lacey's interpretation of HR 

acceleration, and studies which have reported acceleration have often 

used $timuli in the prepain zone of intensity (Davis, Buchwald, and 

Frankmann, 1955; Lang and Hnatiow, 1962), whereas, studies which have 

reported a predominance of deceleration have frequently used stimuli 

within the mild or moderate range of intensity (Kanfer, 1958; Wilson, 

1964; Zeaman, Deane and-Wen-g·~;, 1-954; · Chase and Graham, 1967). 

A further possibility mentioned by Graham and Clifton is that the 

accelerative phase represents a specific adaptive response to acoustic 

stimuli. They note that most of the studies reviewed used auditory 

stimuli and those using nonauditory stimuli have not observed accelera­

tion as frequently (Davis, et al. , 19 57; Geer, 1964). Finally, Graham 
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and C~ifton propose that the accelerative phase could be the result of 

a startle response. Fleshler (1965) found that the effective acoustic 

stimulus parameter for eliciting startle in the rat was the peak inten­

sity reached during the first 12 milliseconds of stimulation. Thus, it 

seems possible that startle could be produced by a relatively low· 

intensity tone if it reached its peak intensity quickly. 

A further possibility that Graham and Clifton fail to consider is 

that the acceleratory phase is the result of respiratory activity. The 

reflexive effect of respiration on HR (sinus arrythmia) can result in 

both deceleration and acceleration. Therefore, the acceleratory phase 

could be the result of a reflexive, compensatory or homeostatic re­

sponse to the deceleration produced by the OR. It is surprising that 

more attention has not been given to the role of respiration in pro­

ducing the acceleratory component. 

Recent Research 

Several equally plausable explanations for the acceleratory phase 

exist. An examination of research published since Graham and Clifton's 

review may provide more insight into which of these explanations is 

correct. Uno and Grings (1965) recorded HR responses along with several 

other physiological variables from twelve §.s. The stimuli were two sec 

bursts of white noise presented at five intensity levels (60, 70, 80, 

90, and 100 db). Each of five interstimulus intervals (30, 40, 45, 50, 

and 60 sec) appeared once in each of five trial blocks. According to 

Uno and Grings the HR response to the 70, 80, and 90 db noise was 

characterized by a predominance of acceleration above the pre-stimulus 

level. The 60 and 100 db response curves, on the other hand, exhibited 



a predominance of deceleration below· the pre-stimulus level. 
/ 

Repetition of the 100 db stimulus changed the ER response from 

deceleration to acceleration above the pre-stimulus level, although 
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deceleration continued to occur for the later post-stimulus IBis. All 

other intensities continued to result in acceleration with repetition. 

The fact that the observed deceleratory trend tended to habituate while 

the acceleratory trend persisted indicates that the deceleratory trend 

best meets the primary criterion of an OR (systematic habituation). 

The failure of deceleration to occur for the other intensities may 

have been the result of an artifact such as respiration superimposed 

upon the ER component of the OR. Al so, the failure for the observed 

acceleratory trends to exhibit ordering of amplitude according to 

intensity of the stimulus indicates that the acceleration may not.be· 

due to a startle reflex. Since acceleration occurred to stimuli which 

varied from moderate to painful in intensity, the acceleratory phase 

does not seem to be attributable to a DR. Similarly, if a startle 

reflex was responsible for the acceleratory phase, the effective 

stimulus parameter which elicited the startle would have to be some 

variable other than the intensity of the stimulus. The rise time of 

the stimulus or the time required for the stimulus to attain its peak 

intensity might constitute such a parameter. 

Chase and Graham (1967) presented 10 continuous, 18 sec, 71 db 

tones to 10 ~s. Half of the ~s received a series of identical tones 

first and then received a series of "different" tones. The "different" 

tones were equally spaced from 300 to 2000 Hz on a logarithmic scale 

and ranged from 60 to 87 db. The other half of the ~s received the 

tones in reverse order. Deceleration occurred to both the onset and 



1.5 

offset of the tones. The decelerative component habituated with re­

peated presentations until the onset and offset responses were not 

apparent during the last three trials. The rate of habituation was not 

effected by the difference in the two series of tones. Each series 

habituated at approximately the same rate. Chase and Graham concluded 

that variable nature of the tones did not introduce sufficient novelty. 

Chase and Graham's failure to observe an acceleratory trend is the 

most interesting aspect of this study. An examination of the response 

curves for the data of trial blocks #1 and #3, however, may reveal the 

reason for this failure. Acceleration appears to have occurred for 

both of these trial blocks, but it was delayed for the first trial 

block until 2.5 sec. after the onset of the stimulus and only f sec. 

for the third trial block. Thus, if this trend is characteristic of 

the rest of the data, an overall response curve might appear to main­

tain a constant level throughout stimulation when in fact acceleration 

occurs on each trial block in different portions of the response curve. 

This apparent acceleration did not habituate with repetition as did the 

deceleration phase. 

Meyers and Gullickson (1967) presented 40 stimuli of f sec. dura­

tion (71 db) at a rate of 1every10 sec. to 48 Ss. Each stimulus 

was composed of 2 successive tones of different frequencies. The first 

20 stimuli comprised a familiarization phase, and the second 20 stimuli 

made up the test phase of the experiment. During the familiarization 

phase, half of the §.s heard them in a low-high frequency sequence. The 

high frequency tone was 700 Hz, and the low frequency tone was 300 Hz. 

The only change in the test phase was to reverse the frequency sequence 

heard by each S. 
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The response curve for both the first and second 20 trials was 

diphasic in nature. Slight initial deceleration was followed by pro­

nounced acceleration. The only discernable difference between the two 

sets of trials was an increase in initial deceleration for the second 

set of trials. The HR deceleration observed on trial #1 had completely 

disappeared by trial #2, indicating habituation effects which are 

characteristic of the OR. The deceleration was replaced by accelera­

tion which Meyers and Gullickson suggest might be an adaptation re­

sponse, since it was judged unlikely that a DR would occur to a stimulus 

of moderate intensity. 

Smith and Strawbridge (1968) presented 16 stimuli at 40 db and 16 

stimuli at 85 db (4000 cps) at durations of 1 sec. and 15 sec, to 48 

male ~s. The interstimulus interval was constant at 30 sec. The 

intensity of the stimulus did not prove a significant factor, but 

duration of the stimuli seemed to be responsible for a marked change 

in the form of the response after 5-7 post-stimulus !Bis. At this ·. 

point, the response to the 15 .sec. tone fell below the pre-stimulus 

level and remained there for a period of 10 to 12 IBis. The HR 

response for the 1 sec. tone remained largely above pre-stimulus levels 

during this period. With repetition, the response curve of the 1 sec. 

tone did not change appreciably, but the response curve to the 15 sec. 

tone changed to acceleration similar to that of the 1 sec. tone. 

Smith and Strawbridge concluded that deceleration is the HR 

component of the OR based on the rapid habituation of the deceleratory 

phase. Since the acceleratory phase persisted, they concluded that it 

could not be a part of the OR. Likewise, it could not be a part of 

the DR because it occurred to stimuli of both high and low intensity. 
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Smith and Strawbridge attributed the acceleration to a startle response 

caused by the rise 'time of'·,the ·tones, or<to a specific response ';to 

acoustic stimuli. 

Germana and Klein (1968) presented five tones (1000 Hz of one sec. 

duration) at intensities of 50, 70 and 90 db to 6 Ss. The inter-stimu­

lus interval was constant at 10 sec. Measures of HR indicated that the 

overall response was acceleration above the pre-stimulus level with 

multiphasic responses superimposed upon it. Trials #1 and #3 consisted 

of initial acceleration above the pre-stimulus level followed by 

deceleration (but not below the pre-stimulus level), and another late 

accelerative response above the pre-stimulus level. The accelerative 

phase habituated with repetition, but the decelerative phase did not. 

Furthermore, the accelerative phase was greater for the higher intensity 

tones (70 and 90 db). Germana and Klein concluded that the criterion 

of an OR was best met by the accelerative phase (systematic habituation 

and ordering of response magnitude according to intensity). 

There are several weak points in this study which may limit the 

validity of' these findings, however. The small number of ~s (N=6) may 

limit the validity of the findings and, possibly, expose the study to 

the individual differences which have been observed in OR functioning 

(Maltzman and Raskin, 1965; Lynn, 1963). Secondly, there was little 

·apparent difference in the response to the 70 db tones and the 90 db 

tones. According to Sokolov (1963), a 90 db tone lies in the prepain 

zone of intensity, while a 70 db lies within the moderate range of 

intensity. Therefore, the 90 db tone should elicit a DR while the 70 

db tone should elicit an OR. The fact that there was little discern­

able difference between the obtained responses to these tones makes 
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the validity of these findings questionable. Thirdly, Germana and 

Klein seemed to ignore the fact that the 50 db tone did produce a sub­

stantial deceleratory phase (below the pre-stimulus level) which 

habituated. A slight deceleration reappeared on trial #5, but the 

spontaneous recovery of a habituated OR is not impossible. The im­

portant point is that both the acceleratory phase and deceleratory 

phase exhibited habituation to some extent. This indicates that al­

though it cannot be determined which represents an OR, neither can 

conclusively be classified as a DR or a startle response. Both the 

DR and startle response do not permit the rapid habituation observed in 

the response curves. Fihally, the short inter-stimulus interval of 

10 sec. hardly allows for a full development of the HR response to a 

stimulus before the next one is presented. Such a short inter-stimulus 

interval may have caused a compounding of the HR responses. Germana 

and Klein were apparently aware of some of these difficulties for they 

conclude by pointing out that precise HR measures of the OR are de­

pendent upon the elimination of artif actual components such as those 

resulting from respiration. 

Smith and Strawbridge (1969) conducted a study in which both HR 

and respiratory responses to nonsignal stimuli were examined. Using 

18 male £s, they presented 10 (54 db, 700 Hz), 3/4 sec. tones and simi­

lar visual stimuli' (8. 0 ml.) •. · At inter.:.stimul US>< intervals qf i {in1 'order 

of presentation) 50, 60, 45, 55, 40, 45, 40, 55, and 60 sec. The tones 

elicited a HR response of predominately acceleration above the pre­

stimulus level with repetition of the stimulus. Both of the response 

curves (auditory and visual) exhibited an initial response (beats 

#0-1) of deceleration tmieh r~pld1y changl3d to:·aceBleJ?at1.on~ , , . 1 • 
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':(:'he initial deceleratfon,habituated fbr'both'the light and '.~'-· L n.nr' 

the tone with repetition of the stimuli. Thus, the two stimuli although 

of two diffferent modalities, elicited roughly identical response 

curves. 

Significant changes in respiratory rate and amplitude followed 

the auditory and visual stimuli. These changes did not habituate with 

repetition of the s::bim.u];i~· · Wfo.e mean reJ?pil'.Ftt'O~\Y\· ~te :~:fo::r lbctth.• .. ·~timu1i 

increased over pre-stimulus levels, although this increase was sig­

nificant only for the visual stimulus. .Amplitude of respiration, on 

the 0th.er hand, was significantly greater for the tone, but not for 

the light flash. The magnitude of these responses did not habituate 

over the 10 presentations of the stimuli. Attempts to correlate pre­

and post-stimulus respiration measures with the corresponding HR 

measures at points of maximum HR acceleration and HR deceleration 

(post~sti'mulus IBis #1, 3, 4 and 10), yielded low and insignificant 

correlations, generally. In the case of the light flash, however, 

the amount of HR acceleration was directly related to the amount of 

respiration amplitude increase for several HR IBis (HR IBI #3, rho= 

.46, p <·05; HR IBI #4, rho=.37, p <.10). Thus, the observed HR 

acceleration phase appears to be accompanied by persistent respiratory 

changes. The fact that the deceleratory phase habituated in the 

presence of persistent respiratory changes was noted by Smith and 

Strawbridge as evidence that the deceleration was not·influenbed by 

respiration. Smith and Strawbridge conclude that the HR response to 

simple auditory and visual stimuli consists of a habituating decelera­

tory phase of short latency and long duration, with a shorter duration 

and longer latency acceleratory phase superimposed upon it. Also, the 



acceleratory phase is resistent to habituation and related to corre­

sponding respiratory changes. 
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Raskin, Kotes, and Bever (1969) attempted to differentiate between 

ORs and DRs using numerous physiological indices (forehead-skin pulse 

amplitude, forehead-skin blood content and IIB). Thirty t sec. bursts 

of white noise, presented at inter-stimulus intervals of 30, 45, and 

60 sec., made up the stimuli. The stimuli were presented at two in­

tensities (80 and 120 db) to 30 male £s. The 80 db noise resulted in 

an overall response curve that was characterized by a slight initial 

deceleration, a secondary acceleration, and a later deceleration. The 

120 db noise produceq a pronounced initial acceleration with a slight 

later deceleratory trend (about 8-10 IBis following the stimulus). 

Repetition of the stimuli resulted in greater habituation of the 

acceleratory component for the 120 db noise than for the 80 db noise. 

Raskin, et al. concluded that the OR may be discriminated from the DR 

on the basis of the short latency deceleration for the 80 db noise and 

the predominance of acceleration for the 120 db noise. However,-·-the 

80 db noise may not have elicited an OR at all. A stimulus of 80 db 

lies in the pre-pain zone of intensity and therefore, the observed Iffi 

response very likely reflects DRs as well as ORs. This fact makes it 

difficult to conclude that ORs may be discriminated by the presence 

of the initial deceleratory trend. Had this study used a stimulus 

clearly falling within the moderate range of intensity such a con­

clusion might have been warranted. 

Meyers (1969) examined the HR response of forty adolescents 

(11-13 years old) to a moderate (70 db) or a loud (95 db) stimulus 

pattern. The stimulus pattern was identical to that employed by Meyers 
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and Gullickson (1967) which was described earlier. Meyers reported that 

the only significant deviation from the pre-stimulus HR level for the 

first presentation of the 70 db stimulus patter~ was an initial decel­

eratory trend. The 95 db stimulus pattern exhibited a significant 

initial deceleration below the pre-stimulus·level and a later decelera­

tory trend below· the pre-stimulus level (5-10 sec following the 

stimulus). Thus, both intensities elicited an initial deceleratory 

trend below pre-stimulus levels, but the 95: db stimulus pattern also 

exhibited a secondary deceleratory trend. 

Repetition of the 70 db stimulus pattern changed the HR response 

from deceleration to acceleration above the pre-stimulus level. 

However, this acceleration habituated after ten trials. Repeated 

presentations of the 95 db stimulus pattern resulted in deceleration 

below the pre-stimulus level which continued to occur through the final 

trial block. 

The results of recent research do not appear to support the 

explanations for the acceleratory phase proposed by Graham and Clifton 

(1966). The fact that the acceleratory trend occurred without regard 

to the intensity of the stimulus (Uno and Grings, 1965; Smith and 

Strawbridge, 1968, 1969; Germana and Klein, 1969; Raskin, Kotes, and 

Bever, 1969; and Meyers, 1969) indicates that this trend can neither 

be an essential component of the OR or a partially inhibited DR. 

Presumably, if either of these alternatives were correct, the accel­

eratory trend would exhibit some tendency to occur to stimuli of a 

particular range of intensities. This is due to the fact that the OR 

is elicited by moderate intensity stimuli and the DR 9ccurs to intense 

stimuli. For much the same reasons the acceleratory trend does not 
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appear to be the result of a startle reflex unless the rise time of 

stimulus is the effective stimulus parameter eliciting startle. The 

proposal that acceleration represents a specific adaptive response to 

acoustic stimuli was eliminated when Smith and Strawbridge (1969) failed 

to observe a difference in the HR response curves for auditory and 

visual stimuli. 

The only proposal that has not been discredited is the respiratory 

explanation for the acceleratory trend. The reflexive effect of 

respiration upon HR (sinus arrhythmia), has long been known (de Cyon 

and Ludwig, 1847, see Scher, 1965b). This phenomenon consists of 

reflexive acceleration of HR in conjunction with inspiration and re­

flexive deceleration of HR in conjunction with expiration. .Although 

there appears to be some controversy over the exact physiological 

mechanisms involved in sinus arrhythmia (Manzotti, 1958; Scher, 1965; 

Clynes, 1960), the effect of respiration upon HR has been clearly 

documented. 

Westcott and Huttenlocher (1961) conducted a study on the effects 

of various levels of respiratory activity upon HR. £s were trained to 

respirate at various rates (6, 10, and 20 cycles/min) and depths 

(shallow·, moderate, and deep). Westcott and Huttenlocher examined 

the amount of variability of HR introduced by these procedures. Deep 

breathing at 6 cycles/min produced HR changes (initial acceleration 

above the pre-test levels followed by deceleration below· the pre-test 

levels) on the order of 30 bpm; at 10 cycles/min produced HR changes 

of 14 bpm; and at 20 cycles/min. resulted in a rapid steady HR instead 

of the orderly fluctuating HR observed for the other rates. 



Medium respiratory depth resulted in HR changes of 15, 15, and 8 

bpm for the three rates respectively. Shallow breathing resulted in 

dependable HR changes at 6 cycles/min and 10 cycles/min only (8 and 5 

bpm respectively). The HR change for rapid shallow· respiration (20 

cycles/min) was small and irregular. Isolated gasps of respiratory 

activity resulted in consistent HR changes. A single sharp inspira­

tion, for example, produced an acceleration above the pre-test level 

followed by an equally sharp deceleration below the pre-test level 

before returning to the base level. 

Although OR studies have largely neglected to give adequate con­

sideration to the role of respiration in producing acceleration, 

numerous HR conditioning studies have attempted to study the con­

ditioned cardiac response independent of respiratory activity (Wood 

and Obrist, 1964; Riege and Peacock, 1967; Zeaman and Smith, 1965; 

Westcott and Huttenlocher, 1961). Because these studies deal th with 

complex conditioning contingencies and frequently employed intense 

shock as the CS, the results are not applicable to OR research. 

Therefore, only the methods used to eliminate or minimize respiratory 

artifacts will be reviewed her~~ ... ' ·'""' 

Three principle procedures have been employed in these studies 
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to control respiratory effects. Sustained inhalation and exhala~ion 

have been successfully used in several studies (Riege and Peacock, 

1967; Smith, 1965; Zeaman and Smith, 1965). These procedures require 

that ~s extend the inspiration or expiration portion of their respira­

tory cycle when a signal is presented. Thus, when a stimulus is due 

to be presented, some signal must be given to the S for him to initiate 

the·appropriate respiratory pattern. These methods, obviously, cannot 



be used for prolonged periods, and seem inappropriate .for OR research 

due to the stimulus confounding that is likely to occur, 
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Several studies have used training procedures in which §.s were to 

maintain a pace set by a stimulus which was either adjusted to corre­

spond to the §.s normal respiratory pattern or at a predetermined rate, 

In these studies, training was usually continued until each S exhibited 

adequate control of respiratory activity and then the pacing stimulus 

was removed. With this method §.s can maintain the desired pattern for 

prolonged periods without creating an abnormal physiological state. 

Thus, pacing methods seem best suited for OR research. The use of 

these methods is not likely to eliminate respiratory artifacts from HR 

altogether, but two effects may be achieved: (1) the effects of 

respiration will be minimized or held t'lonsta:nt:; and (2) isolated gasps 

and irregularities which seem to be capable of producing profound 

changes in HR will be eliminated. 

With the use of such a method, caution must be taken that the 

emphasis placed by the training procedures on bodily activity does not 

produce HR changes independent of the changes produced by the training 

procedures. It has been reported that attending to bodily processes 

alone results in HR deceleration (Miller and Caul, 1969). Therefore, 

the use of respiratory control procedures should be accompanied by the 

inclusion of a group of §.s who are merely instructed to attend to their 

normal respiratory pattern without attempting to control it. 

Stateme·nt of 'the Prol::He'm. 

The review of the literature has demonstrated that studies on the 

HR component of the OR have yielded confusing and contradictory results. 
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While deceleration appears to be the HR component of the OR, an accel­

eratory component has -be!?n frequently observed which has not been ade­

quately explained. Graham and Clifton (1966) proposed four alternative 

explanations for this acceleratory trend, but research published since 

their review tends to eliminate all but one of their proposals. The 

only remaining proposal is that the acceleratory phase represents a 

startle response dependent upon the rise time of the stimulus as the 

effective stimulus parameter for eliciting startle. While this proposal 

merits study and investigation, a more reasonable explanation is that 

the acceleratory phase is the result of artifactual respiratery 

activity. 

This study, therefore, attempted to examine the role of respira­

tion in producing the acceleratory component of the HR response to 

nonsignal auditory stimuli of moderate intensity. HR responses were 

observed under two different conditions of uncontrolled respiration 

and under one controlled respiration condition. In the Uncontrolled I 

condition, §_s received no instructions concerning respiratery control 

or any physiological function. §.s in the Uncontrolled II condition 

received instructions only to attend to their normal respiratory 

pattern and to detect any changes in it during the experimental period. 

In the Controlled condition, §_s received extensive training in main,.. 

taining a constant rate and amplitude of respiration prior to the 

presentation of the experimental stimuli (a series of 10 moderate 

intensity tones presented at variable inter-stimulus intervals). 

It was hypothesized that: (1) control of respiration would 

result in a HR response curve which contained a significantly diminished 

acceleratory trend than for the uncontrolled conditions; (2) there 
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would be no significant difference between' the response '.curves;'f or· the 

two uncontrolled respiration conditions. 



CHAPTER II 

METHOD 

Subjects 

Fifty~four male volunteers drawn from undergraduate psychology 

classes were used as .§.s in the experiment. The .§.s ranged in age from 

18 to 23 years and were free from any cardiac or auditory abnormalities. 

A further requirement for participation was that the .§.s not be under 

medication of any kind. .§.s were randomly assigned to one of the 

three conditions of the experiment upon entering the experimental room. 

Apparatus 

The stimuli (tones) were presented on magnetic tape via a Sony 

stereo tape recorder (model 124 CS) through a set of Sony stereo head­

phones (model DR 3A). The tones which served as the stimuli were pro­

duced by an audio generator (model 377, Electronic Instrument Co.). 

The tones were i sec in duration and were presented at an intensity of 

60 db (1000 Hz). A stimulus of 60 db was selected because this in­

tensity falls well within the moderate range and was considered likely 

to elicit ORs which were not confounded by other responses such as DRs 

or startle reflexes. Two Hunter timers were wired so that they woUld 

recycle sequentially. The lights signifying the end of the timing 

interval were covered so that only the light indicating the duration 

of the timing interval was visible on each timer. The timers were 
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placed within easy reach of the £. 

Physiological measures were recorded on a six-channel Physiograph 

(E and M Instrument Co.). Heart rate and respiration measures were de­

rived from the electrocardiogram (EKG). The EKG was recorded through 

two surface electrodes placed on either ·side of the £'s chest at ap­

proximately the level of the fifth rib, and a third surface electrode 

placed over the £'s heart. During the recording of the physiological 

measures, each §.was seated in a normal sitting position in the experi­

mental room with the temperature maintained within the limits of normal 

comfort. 

Procedure 

Upon entering the experimental room, each £ was asked to remove 

his shirt and to be seated. The electrodes were then attached to his 

chest. Following the attachment of the electrodes, each £was given 

the instructions appropriate to his assigned condition (see Appendix A). 

In the Controlled Respiration Condition each .§. was trained to 

maintain a normal rate and amplitude of respiration. The S was in­

structed to adjust two timers to correspond to his normal respiratory 

pattern. When the timers had been adjusted, the .§. was instructed to 

pace his respiration with the timers. Eventually, the timers were 

turned off and the £ was asked to continue to maintain a constant rate 

and amplitude without the aid of the timers. During the period of 

training without the timers, ~ gave verbal feedback to the §.on how 

well he was doing. The feedback consisted of reinforcement such as, 

"good," "fine," or "keep it up, you're doing fine," when the observed 

respiratory pattern reflected adequate control. The criterion of 
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control was that each cycle not deviate from the previous cycle by more 

than 2o% in amplitude. As long as such a record was maintained, only 

positive reinforcement was given. When a record did not conform to 

this standard, ~ gave such feedback as, "try to maintain a constant 

rate and amplitude," or "concentrate on maintaining a constant rate and 

amplitude," More specific instructions were given if the standard in­

structions failed to induce adequate control~ however, these instanc.es. 

were rare. If the £failed to achieve adequate control, he was dropped 

from the experiment. This decision was made prior to the presentation 

of the stimuli. (See Appendix B for the exact times allotted for each 

phase of the experiment.) 

In the Uncontrolled Respiration Condition I, each S received no 

training. The £ simply sat in the experimental chair for 20 minutes 

prior to the presentation of the stimuli to keep the time in the experi­

ment constant across all conditions and to permit the equipment to be 

calibrated and stabilized. (Se~ Appendix B). 

In the Uncontrolled Respiration Condition II, each £ was initially 

instructed to relax while the physiograph was calibrated and stabilized. 

Ten minutes into the experiment, however, each £was instructed to 

attend to his normal respiratory pattern. The S was told that he would 

listen to a tape later in the experiment and would be asked to report 

any changes in his respiratory pattern that occurred during the tape. 

Therefore, the £was instructed to take a few minutes prior to the 

presentation of the tape to become familiar with his no;rmal respiratory 

pattern. The stimuli were presented at the conclusion of this ten 

minute period (see Appendix B). 
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.After this initial twenty minute period, each §.listened to a tape 

which consisted of a series of 10 tones. The first two minutes of the 

tape were blank, but during the remaining six minutes of the tape, the 

tones were presented at random intervals of 30, 40, or 50 seconds. The 

inter-stimulus intervals were randomized so that each interval appeared 

three times during each tone series. Each of the 18 §.s in each con­

dition received one of six tapes with the inter-stimulus intervals 

randomly distributed on each. 

Data Analysis 

Heart rate measures were derived from the EKG by a cardiotachometer 

which recorded the time that elapsed between each heart beat. The 

reciprocal of the elapsed times for each IBI yielded HR expressed in 

beats per minute. Data was collected for five pre-stimulus IBis and 

fifteen post-stimulus IBis. Thus, the data collected from each S 

consisted of 20 HR values for each of the 10 stimuli. The data was 

grouped into trial blocks each of which included two of the ten 

successive stimuli making a total of five trial blocks. The experi­

mental design was a three factor experiment with reported measures on 

two of the factors (Winer, 1962; Wilson, 1967). The three factors 

were Conditions, Trial Blocks, and Intervals (IBis). Repeated measures 

were made on Trial Blocks and Intervals. 



CHAPTER III 

RESULTS 

Statistical Design 

The experimental procedure used in this study conforms to a 

three-factor, factorial design with repeated measures on two factors. 

All three factors were considered fixed. The first factor (A) was 

Conditions~ Factor A was composed of three levels (Controlled Res­

piration, Uncontrolled Respiration I, and Uncontrolled Respiration II). 

The second factor (B) was Trial Blocks which had five levels each 

representing one trial block. Each Trial Block was composed of data 

from two successive stimuli. The third factor ( C) was Intervals. 

Factor C was composed of twenty levels. Repeated measures were made on 

factors B (Trial Blocks) and C (Intervals). 

This design corresponds to that recommended by Wilson (1967) for 

physiological research of this type and also appears in Winer (1962, 

pp. 319-337) and Bruning and Kintz (1968, pp. 72-83). The usual 

analysis of variance assumptions apply to this design plus an addi­

tional assumption of homogeneity and equality of variance~covariance 

matrices. To correct for his observation that HR data fail to meet 

this assumption, Wilson (1967) recommends that the degrees of freedom 

for Intervals be reduced by t when F-tests are made. 
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Respiratory Control 

The training procedure outlined in the previous chapter for the 

Controlled Respiration Condition proved to be adequate to elicit a 

constant rate and amplitude of respiration in most 2s. Only one 2 had 

to be dropped from the experiment because adequate control was not 

achieved. 

Results 

The summary table for the main analysis reported in Table I shows 

that the main effects for Trial Blocks (p(.025) and Intervals (p<.005) 

were significant. In addition, the interactions of Conditions X 

Intervals (p<.025) and Conditions X Trial Blocks (p<.025) were 

statistically significant. Figure 5 presents the mean overall HR 

response curve for each condition and Figures 6, ?, 8, 9, and 10 pre­

sent the response curves for each trial block. 

An orthogonal trend analysis was performed on the data (Appendix 

C) to determine the type of function that best fit the data points. 

The main effects for Trial Blocks were best approximated by a linear 

function (p <· 01), and the Intervals main effects were approximated by 

a quadratic function (p.C::.01). The Conditions X Intervals interaction 

was approximated by both a significant linear function (p~.025) and a 

significant cubic function (p<.Ol). 

As Wilson (1967) recommends, a separate analysis was performed on 

each condition to facilitate interpretation of the results. Tables 

II, III, and IV report the results of the analysis for each condition. 

The main effects for Intervals were significant for each condition 

( p <· 005 for each condition). The main effects for Intervals for the 
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TABLE I 

AOV: MAIN ANALYSIS 

Source df SS MS F p 

Total 5399 629,650.6805 26,054.0359 1.2909 n. s. 

Between §_s 53 540 '721. 6 515. 

Conditions (A) 2 26,054.0718 26,054.0359 1.2909 n.s. 

Error (Between) 51 514,667.5797 10,091.5212 

Within §..s 5346 88,929.0290 

Trial Blocks (B) 4 942.3271 235.5818 2.8391 .025 

Intervals (C) 19 . 1,586.5705 97.7142 5.6706 .005* 

AB 8 1,610.5916 201.3240 2.4262 .025 

AC 38 818.3782 21.5363 1.7654 .025* 

BC 76 1,148.4729 15.1115 1.2384 .25 * 

ABC 152 1,643.7700 10.8143 n.s. 

Error 1 204 16,927.4303 82.9776 

Error 2 969 16,697.6003 17.2318 

Error 3 3876 47,283.8881 12.1991 

*Degrees of freedom reduced by 1/2 according to Wilson's (1967) 
reco:rnmendation. 
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Figure 8. Mean HR response for each condition on Trial Block #3. 
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Figure 9. Mean HR response for each condition on Trial Block 14. 
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TABLE II 

ANALYSIS OF VARIANCE OF TRIAL BLOCKS AND INTERVALS 
FOR UNCONTROLLED RESPIRATION CONDITION I 

Source df SS MS F 

Total 1799 226,335.59 

Subjects ' 17 195~548.8740 

Within §.s 1782 30, 786. 7160 

Trial Blocks (A) 4 1,784.1680 .'/446.042 4.569 

Linear 1 1,255.04 1,255.04 12.856 

Quadratic 1 277.77 277.77 2.845 

Cubic 1 180.99 180.99 1.854 

Residual 1 70.368 70.368 

Intervals (B) 19 805.7270 42.406 2.725 

Linear 1 41.27 41.27 2.652 

Quadratic 1 298.64 298.64 19.189 

Cubic 1 260.55 260.55 16.742 

Residual 16 205.267 12.829 

AXB 76 723.1220 9.514 <1 

Ss X A 68 6,638.5020 97.625 

Ss X B 323 5,027.0470 15.563 -
Ss X AX B 1292 15,808.1500 12.235 

*Degrees of freedom reduced by 1/2 according to Wilson's (1967) 
recommendation. 
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p 

• 005 

• 005 

.10 

• 25 

• 005* 

.25 

.005 

.005 



TABLE III 

ANALYSIS OF VARIANCE FOR TRIAL BLOCKS AND INTERVALS 
FOR UNCONTROLIED RESPIRATION CONDITION II 

Source df SS MS F 

Total 1799 235,960.29 

Subjects 17 210,443.63 

Within £.s 1782 25,516.660 

Trial Blocks (A) 4 452.655 113.164 1.422 

Linear 1 270.71 270.701 3.401 

Quadratic l 55.18 55.18 

Cubic 1 67.89 

Residual 1 58.88 

Intervals (B) 19 1,059.053 55.740 3.594 

Linear 1 34.24 34.24 2.208 

Quadratic 1 161.81 161.81 10.434 

·. Cubic 1 70.96 70.96 4.576 

Residual 16 792.04 49.503 3.192 

AB 76 616.998 8.118 4". l 

§.s X A 68 5,413.128 ·79.605 

Ss X B 323 5,009.122 15.508 

Ss X .AX B 1292 12,965.686 10.035 

*Degrees of freedom reduced by 1/2 according to Wilson's (1967) 
recommendation. 
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p 

.25 

.10 

.005* 

.25 

.005 

.05 

.005 



TABLE IV 

ANALYSIS OF VARIANCE FOR TRI.AL BLOCKS AND INTERVALS 
FOR CONTROLLED RESPIRATION CONDITION 

Source df SS MS F 

Total 1799 141,300.73 

Subjects 17 108,675.07 

Within §.s 1782 32,625.66 

Trial Blocks (A) 4 316.186 79.047 1.102 

Linear 1 38.19 38.19 

Audra tic 1 n.52 71.52 

Cubic 1 21.87 21.87 

Residual 1 184.61 184.61 2.575 

Intervals (B) 19 810.247 42.645 2.068 

Linear 1 30.02 30.02 1.456 

Quadratic 1 534.08 534.08 25.897 

Cubic 1 3.35 3.35 

Residual 16 242.80 15.175 

AB 76 1,452.126 19.107 1.334 

Ss X A 68 4,875.76 71. 702 

Ss X B 323 6,661.357 20.623 

Ss X AX B 1292 18,510.036 14.327 

*Degrees of freedom reduced by 1/2 according to Wilson's (1967) 
recommendation. 
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p 

.05 

.025* 

.005 

.25* 
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two uncontrolled conditions were approximated by significant quadratic 

(p<.005 for both conditions) and cubic (p (.00.5 for Uncontrolled 

Respiration I and p <.0.5 for Uncontrolled Respiration II) trends. The 

main effects for Intervals for the Controlled Respiration Condition 

was approximated by significant quadratic trend (p <.00.5). In addition, 

the main effects for Trial Blocks were significant for Uncontrolled 

Respiration Condition I (p(.00.5), but not for the other conditions • 

.Although the main analysis (Table I) did not show· the main effects 

for Conditions to be statistically significant, the differences between 

the conditions were consistent and, seemingly, large. Therefore, the 

Newman-Keuls test of differences among means was performed on the means 

of the conditions (Appendix D). The results verified that none of the 

condition means differed.signi:t'icantly from one another.. The Newman­

Keuls procedure was also performed on the means of the main effects for 

Trial Blocks and Intervals (Appendix D). The only comparison that was 

significant for the Trial Blocks main effects was the difference be­

tween the means of Trial Block 1 and Trial Block 4. All other com­

parisons were not significant. The comparisons for the Intervals main 

effects revealed several significant differences. The mean of post­

stimulus Interval 2 was significantly lower than the means of all other 

Intervals. The mean of post-stimulus Interval 1 was significantly 

different from the means of pre=stimulus Intervals -.5, =4, -3, and -2, 

and post~stimulus Intervals 13, 14 and 1.5. In addition, the mean of 

pre-stimulus Interval -.5 differed significantly from the means of 

post-stimulus Intervals 3, 6, 7~ 8, 9, and 10. 



CHAPTER IV 

DISCUSSION 

The results of this study confirm that the HR component of the OR 

involved deceleration below the pre-stimulus level. The HR response to 

the stimuli consisted of initial deceleration lasting for two post­

stimulus IBis, followed by an acceleratory trend which varied in com­

plexity and magnitude across the conditions. The significant main 

effects for Intervals indicates that the changes in HR produced by the 

stimuli were significant. The Newman-Keuls test on the IBI means re­

vealed that the point of maximum deceleration (post-stimulus IBI 2) was 

significantly below· all the remaining IBI means. The acceleratory 

trend which followed the initial deceleratory phase reached its maximum 

point of acceleration at IBI 4. The point of maximum acceleration at 

IBI 4 represented a significant increase of HR over the point of maximum 

deceleration at IBI 2. The acceleratory trend was followed by a slight 

deceleratory trend at post-stimulus IBis 5 through ?, but this phase 

did not represent a significant decrease from the point of maximum 

acceleration at IBI 4. Furthermore, the second.deceleratory trend 

remained significantly above the point of maximum deceleration at IBI 

2. 

Thus, the mean HR response curve consisted of initial deceleration 

below the pre-stimulus level, followed by an acceleratory trend. To 

make certain that means represented in the HR response curves were not 

44 
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obscuring idiosyncratic response patterns among §_s the individual 

response curves of §.s on Trial Block 1 were subjected to a visual ex­

amination. Trial Block 1 was selected for this examination because the 

most reliable changes of HR would be expected on the initial presenta­

tions of the stimuli. On later presentations of the stimuli the 

habituation effects of the OR would be expected to increasingly reduce 

the consistency of the response pattern across §_s. Of the 18 §.s in 

each condition, the HR response curve of initial deceleration followed 

by an acceleratory trend was shared by 13 §_s in both Uncontrolled Res­

piration Condition II, and the Controlled Respiration Condition, and by 

12 in Uncontrolled Respiration Condition I. The analysis of individual 

response patterns, therefore, confirms that the mean HR response curves 

reflect reliable and consistent responses across all §_s. 

The initial deceleratory phase habituated in all three conditions, 

although the rates differed. The deceleratory phase disappeared on 

Trial Block 3 for the Controlled Respiration Condition and Uncontrolled 

Respiration Condition II, but it did not disappear until Trial Block 

5 for the Uncontrolled Respiration Condition II. The acceleratory 

component of the response continued to occur after the deceleratory 

response had habituated. Therefore, the principle criterion of an OR, 

systematic habituation, was met by the deceleratory phase of the 

observed response. 

An interesting tendency for the deceleratory response to reappear 

on Trial Block 4 for Uncontrolled Respiration Condition II was ob­

served. The habituation observed on Trial Block 3 may not have been 

genuine, or the reappearance of the deceleratory trend may have been 

due to some artifact. The latter of these explanations is probably 
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correct, since fatigue and other subject variables (e.g. boredom and 

restlessness) became increasingly apparent as the experiment progressed. 

The significant interaction of Conditions X Intervals provided 

evidence for a significant difference in the response curves across 

conditions. The data of both uncontrolled conditions were approximated 

by significant quadratic and cubic trends. The Controlled Respiration 

Condition data, however, was approximated by a quadratic function. The 

absence of the significant cubic trend for the Controlled Respiration 

Condition was interpreted as indicating that the acceleratory com1xment 

contributed to the cubic effect for the uncontrolled conditions and not 

for the Controlled Respiration Condition. Therefore, the failure of 

the Controlled Respiration Condition to exhibit a significant cubic 

trend was attributed to a diminished acceleratory trend in this con­

dition. 

The findings of this study have provided added insight into the 

nature of the HR component of the OR. The study has successfully 

demonstrated that the acceleratory component can be significantly 

decreased by controlling respirati.on. This finding is especially sig­

nificant in view· of the method used to control respiration. The 

training procedure used to elicit controlled respiration did not alter 

the respiratory cycle as does sustained inhalation or exhalation. The 

success in diminishing the acceleratory phase achieved by limiting 

respiration to regular, constant cycles indicates that the exaggerated 

acceleration observed in the uncontrolled conditions may have been the 

result of isolated gasps or sharp deviations from normal respiratory 

activity. Normal, regular respiration of constant rate and amplitude 

does not seem to have significantly contributed to the acceleratory 
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phase. Therefore, either the acceleratory trend that has been observed 

represents a respiratory component of the OR, or random variations in 

respiratory activity unrelated to any quality of the stimulus. The 

latter of these alternatives does not seem tenable in view of the con­

sistency with which the acceleratory component has been observed. 

Therefore, the acceleratory trend may well be related to the respiratory 

component of the OR. 

Verbal reports from £s in Uncontrolled Respiration Condition II 

provide some insight into the nature of the respiratory response to 

simple stimuli. £s frequently reported that the effect of the stimulus 

was to interrupt their respiration. Furthermore, several £s noted that 

if the stimulus came during a portion of their respiratory cycle 

(inhalation or exhalation) the interruption was greater than if it came 

between these portions of the cycle. Though these observations have 

not been objectively substantiated, it is probably safe to speculate 

that such interruptions cause gasps or compensatory intakes of air 

which would produce an acceleration of HR. Petelina (1958) reported 

similar observations on the respiratory component of the OR. Based 

upon observations of the responses of dogs to tones, Petelina described 

a "compression reaction" during which breathing was momentarily inter­

rupted. The interruption of respiratory activity was· associated with 

slower, shallower respiration and deceleration of HR. Petelina's ob­

servations confirm. that the effect of novel stimuli upon respiration 

may include interruption of ongoing activity. If the exaggerated 

acceleratory phase were dependent upon the interruption of respiration 

created by the OR, however, the acceleratory component would be ex­

pected to disappear as the deceleratory component (OR) habituated to 
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the stimulus. This could account for the resu.J.ts of some studies which 

have reported habituation of the acceleratory phase of the HR response 

(Germana and Klein, 1968; Raskin, Kotas, and Bever, 1969). 

Cardiac activity and respiratory activity are so intimately re­

lated that it seems meaningless to attempt to utilize the HR response 

for the identification of the OR without considering the influence of 

respiration upon HR. Thus, while research is still needed to specify 

the separate contributions of the cardiovascular and respiratory 

systems to the OR, studies which use physiological measures merely for 

the identification of ORs might be advised to devise a cardio-respira­

tory measure of the OR. Such a measure would dispense with the current 

practice of looking at the two as relatively independent and recognize 

the inseparable functioning of the two systems. 

At present, too little is known about the relationship of these 

two systems as they relate to the OR. It would be intere·sting to con­

duct a study in which stimuli were presented at various portions of the 

respiratory cycle. A comparison of the HR response ·curves with the 

stimuli so presented might further clarify the relationship of respira­

tory and HR components of the OR. 

One possible criticism of this study grows out of an attempt to 

be overly rigorous. In order to be certain that the uncontrolled con­

ditions, which received no respiratory training, spent as much time in 

the experiment as the condition that did receive training, ~s in Un­

controlled Respiration Condition I were required to remain seated for 

two ten minute periods prior to the presentation of the stimuli. This 

empty period seems to have produced a reduced HR in this condition 
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(although the difference in HR across conditions was not significant). 

Future research should make certain that all groups have more compara­

ble pre-test experiences. 



CHAPTER V 

SU.MJ:1.ARY 

This study was performed to determine the HR component of the 

orienting reflex (OR) and, more specifically, to determine if the 

acceleratory phase of the HR response to simple stimuli could be 

attributed to respiratory artifacts. Grham and Clifton (1966) reviewed 

the literature and concluded that the HR component of the OR was decel­

eration. Four possible explanations for the secondary acceleratory 

phase were proposed by Graham and Clifton (that it represents an 

essential component of the OR, a partially inhibited defensive reflex, 

a startle response, or a specific adaptive response to acoustic 

stimuli). Of these, only startle was not eliminated by a review of 

research published since Graham and Clifton's review. A more logical 

explanation for the acceleratory phase (respiratory artifact) was not 

examined by Graham and Clifton. Although the relationship between 

respiration and cardiac activity is well known, few researchers have 

closely examined the role of respiration in producing the acceleratory 

trend. 

The experiment design was a three factor factorial with repeated 

measures on two factors (Trial Blocks and Intervals). Fifty-four male 

£s were randomly assigned to three experimental conditions. The Con­

trolled Respiration Condition received training to maintain a constant 

rate and amplitude of respiration. Two other conditions received no 
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such training. Uncontrolled Respiration Condition I was merely in­

structed to listen to a tape while seated and Uncontrolled Respiration 

Condition II was "trained" to attend to their respiratory patterns and 

to detect arry changes that might occur during the presentation of the 

stimuli. Ten simple stimuli (1000 Hz, 60 db tones) were presented to 

each ~ at random intervals of 30, 40 and 50 sec. 

The results of the study confirmed that the HR component of the 

OR was deceleration, and that control of respiration produced a dimin­

ished acceleratory phase. The main effects for Intervals were signifi­

cant which indicated that the stimuli resulted in a significant change 

in HR. The significant Conditions X Intervals interaction, indicated 

that a difference in the response curves existed across the conditions. 

A trend analysis performed on the data of each condition revealed that 

· the response curves for the uncontrolled conditions were approximated 

by significant quadratic and cubic functions. The Controlled Respira­

tion Condition, however, was approximated by a significant quadratic 

effect alone. This was interpreted as indicating that the acceleratory 

component had been significantly diminished by the respiratory control 

training. 

The acceleratory phase of the response curve was attributed to 

artifactual respiratory activity. It was proposed that future research 

examine HR and respiratory activity in conjunction rather than treating 

them as separate components of the OR. 
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INSTRUCTIONS FOR UNCONTROLLED RESPIRATION CONDITION I 

(following the attachment of the electrodes) Be seated and just 
relax for a few minutes. 
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(at the beginning of the third adaptation period - 15 minutes into 
the experiment) Please sit up straight, keep both feet flat on the 
floor, your arms on the arms of the chair, and look straight ahead. 

(immediately preceding the tape) Now, I am going to let you 
listen to a tape. Just relax and look straight ahead. You will not 
hear anything for a couple of minutes. 

INSTRUCTIONS FOR UNCONTROLIED RESPIRATION CONDITION II 

(following the attachment of the electrodes) Be seated and just 
relax for a few minutes. 

(preceding the training period - 10 minutes into the experiment) 
Sit up straight, keep both feet flat on the floor, your arms on the 
arms of the chair, and look straight ahead. During the next few 
minutes I want you to observe your normal respiratory pattern. Later 
in the experiment, I'm going to let you listen to a tape and I want 
you to be able to detect any changes in your respiration that might 
occur during the tape. So just relax and become familiar with your 
normal respiratory pattern. 

(immediately preceding the tape) Now I'm going to let you listen 
to a tape and I want you to attend to your respiratory pattern and 
report any changes that occur at the end of the tape. You will not 
hear anything for the first couple of minutes. 

INSTRUCTIONS FOR CONTROLLED RESPIRATION CONDITION 

(following the attachment of the electrodes) Be seated and just 
relax for a few minutes. 

(preceding initial training period - 5 minutes into the experi­
ment) These are two timers. What I want you to do is adjust these 
timers to correspond to your normal respiratory pattern. That is, 
when this light is on, (~pointed to the appropriate timer) I want 
you to be inhaling and when this light is on (~ pointed to the 
appropriate timer) I want you to be exhaling. You adjust the timers 
using the top two knobs on each timer. The top knob is for seconds 
and the second knob is for tenths of a second. When you do this, 
there is a tendency for you to alter your respiratory pattern and 
attempt to maintain a rate and amplitude that is uncomfortable, so I 
would advise you to take a few minutes and observe your normal pattern 
before you attempt to adjust the timers. Do you understand what I 
want you to do? 
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(preceding the second training period - 15 minutes into the 
experiment) Now, I'm going to turn these timers off and I want you to 
maintain a constant rate and amplitude without the aid of the timers. 
I'll let you know how well you're doing. Just relax and maintain a 
constant rate and amplitude. 

(immediately preceding the tape) Fine. Now, I'm going to let 
you listen to a tape and I want you to concentrate on maintaining a 
constant rate and amplitude throughout the tape. You won't hear any­
thing for the first couple of minutes. 
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BREAKlXlWN OF EXPERIMENTAL PROCEDURE FOR EACH CONDITION 

Controlled Uncontrolled Uncontrolled 
Respiration Respiration Respiration 

Time Condition Condition I Condition II 

.5 min. adaptation adaptation adaptation 
period period period 

.5 min. adjusting adaptation adaptation 
timers period period 

.5 min. training adaptation Ss 'trained' 
with the period to detect 
aid of the respiratory 
timers changes 

.5 min. training adaptation Ss 'trained' 
without the period to detect 
aid o.f the respiratory 
timers changes 

8 min. stimuli stimuli stimuli 
presented presented presented 
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TREND COMPONENTS FOR TRIAL BLOCKS 

Source df SS MS F p 

Trial Blocks 4 942.3271 235.5818 2.8391 • 025 

Linear 1 696.1633 696.1633 8.3898 .01 

Quadratic 1 81.5175 81.5175 

Cubic 1 96.5223 96.5223 1.1632 n.s. 

Residual 1 68.1240 68.1240 

Error 1 204 16,927.4303 82.9776 

TREND COMPONENTS FOR INTERVALS 

Source df SS MS F p 

Intervals 19 1,856.5705 97.7142 5.6706 .005* 

Linear 1 12.2060 12.2060 

Quadratic 1 947 .1751 947.1751 54.9667 .005 

Cubic 1 30.4000 30.4000 1.7642 n.s. 

Residual 16 866.7894 54.1743 3.1439 • 005 

Error 2 969 16,697.6003 17.2318 

*Degrees of freedom reduced by 1/2 according to Wilson'e 1967 
recommendation. 
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TREND COMPONENTS FOR CONDITIONS X TRIAL BLOCKS INTERACTION 

Source df SS MS F p 

AB 8 1,610.5916 201.3240 2.4262 .025 

Linear 2 867.7900 433.8950 5.2291 .01 

Quadratic 2 322.9653 161.4827 1.9461 .25 

Cubic 2 174. 2387 87.1194 1.0499 n. s. 

Residual 2 245.5976 122.7988 1.4799 .25 

Error 1 204 16,927 .4303 82.9776 

TREND COMPONENTS FOR CONDITIONS X INTERVALS. INTERACTION 

Source df SS MS F p 

AC 38 818.3782 21.5363 1. 7654 .025* 

Linear 2 93.3356 46.6678 3.8255 .025 

Quadratic 2 56.3639 28.1820 2.3102 .10 

Cubic 2 304.4752 152.2376 12.4794 .005 

Residual 32 364.2035 11.0692 

Error 3 3876 47,283.8881 12.1991 

*Degrees of freedom reduced by 1/2 according to Wilson's 1967 
reco:m:m.endation. 



APPENDIX D 

TESTS ON MAIN EFFECTS OF CONDITIONS, 

TRIAL BLOCKS, AND INTERVALS USING 

NEWMAN-KEULS PROCEDURE 
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Means 

61.926 

65.622 

67.160 

TESTS ON CONDITIONS MAIN EFFECTS 
USING NEWMAN-KEULS PROCEDURE 

Uncontrolled 
Respiration 
Condition I 

61.926 

·'(;,,•!!!· 

Uncontrolled 
Respiration 
Condition II 

65.622 

3.696 

2.83 3.40 

Wp*-*----'6 ..... .._?l...__ __ __..8 .......... 06 __ 

*q(p,n2 ) = tabulated value for p No. of 
means and n2 error degrees 
of freedom. 

MS error between = 2.37 
npr 
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Controlled 
Respiration 

Condition 

67.160 

5.234 

1.538 



Trial Block # 

Means 

64.313 

64.653 

64.869 

65.139 

65.539 

TESTS ON TRIAL BLOCKS MAIN EFFECTS 
USING NEWMAN-KEULS PROCEDURE 

1 .2 3 

64.313 64.653 65.869 

------ .340 .556 

.216 

------

5 

65.139 

.826 

.486 

.270 

*Significant at the .05 level, (p,oodf). 

p __ 2 _____ ._3 ___ 4 _____ 5 ___ _ 

2.77 3.31 J.63 3.86 

Wp** .757 .917 1.006 1.069 

*q(p,n2) = tabulated value for p No. of 
means and n2 error degrees of 
freedom. 

**Wp = q(p,n)s:c 

MS error 1 
npr 

= .2?7 
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4 

65.539 

1.226* 

.886 

.670 

.400 

------



p 2 3 4 5 6 7 8 9 10 

q(p,n2 )* 2.77 3.31 3.63 3.86 4.03 4.17 4.29 ~.39 4.47 

Wp** .688 .837 .918 .977 1.020 1.055 1.085 1.111 1.131 

11 12 13 14 15 16 17 18 19 20. 

4.55 4.62 4.68 4.74 4.80 4.85 4.89 4.93 4.97 5.01 

1.151 1.169 1.184 1.199 1.214 1.227 1.237 1.247 1.257 1.267 

sB =~MS error 2 
npr 

*q(p,n2) = Tabulated value for 
p No. of means and 
n? error degrees of 
freedom. 



Beat # -5 

Means 65.81 

65.81 
65.61 
65.55 
65.54 
65.32 
65.32 
65.28 
65.28 
65.07 
65.00 

Beat # 12 

Means 64.95 

65.81 .86 
65.61 .66 
65.55 .60 
65.54 .59 
65.32 .37 
65.32 .37 
65.28 .33 
65.28 .33 
65.07 .12 
65.00 .05 
64.95 
64.78 
64 .. 62 
64.61 
64.53 
64.51 
64.42 
64.41 
64.11 
63.33 

TESTS ON INTERVALS MAIN EFFECTS 
USING NEWMAN-KEULS PROCEDURE 

15 -4 -3 13 -2 
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14 4 5 -1 

65.61 65.55 65.54 65.32 ~.~~;~ ~;~ ~.~~.oo 

.20 .26 .27 .49 .49 .53 .53 .74 .81 
.06 .07 .29 .29 .33 .33 .54 .61 

.01 .23 .23 .27 .27 .48 .55 
.22 .22 .26 .26 .47 .54 

.oo .04 .o4 .25 .32 
.04 .04 .25 .32 

.oo .21 .28 
.21 .28 

.07 

11 8 10 9 3 7 6 1 2 

64.78 64.62 64.61 64.53 64.51 64.42 64.41 64.11 63.33 

1.03 1.19* 1.20* 1.28* 1.30* 1.39* 1.40* 1.70* 2.48* 
.83 .99 LOO 1.08 1.10 1.19 1.20 1.50* 2.28* 
.77 .93 .94 1.02 1.04 1.13 1.14 1.44* 2.22* 
.76 .92 .93 1.01 1.03 1.12 1.13 1.43* 2.21* 
.54 .70 • 71 .79 .81 .90 .91 1.21* 1.99* 
.54 .70 .71 .79 .81 .90 .91 1.21* 1.99* 
.50 .66 .67 .75 .77 .86 .87 1.17* 1.95* 
.50 .66 .67 .75 • 77 .86 .87 1.17* 1.95* 
.29 .45 .46 .54 .56 .65 .66 .86 1.74* 
.22 .38 .39 .47 .49 .58 .59 .89 1.67* 
.17 .33 .34 .42 .44 .53 .54 .84 1~62* 

.16 .17 .25 .27 .36 .37 .67 1.45* 
.01 .09 .11 .20 .21 .51 1.29* 

.08 .10 .19 .20 .50 1.28* 
.02 .11 .12 .42 1.20* 

.09 .10 .40 1.18* 
.01 .31 1.09* 

.30 1.08* 
1.08* 

*Significant at the .05 level, (p,oodf) 
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