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=
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AN ANALYSIS OF FREE VIBRATION OF THIN CYLINDRICAL
SHELLS WITH RINGS AND STRINGERS TREATED
AS DISCRETE ELEMENTS WHICH MAY BE
NONSYMMETRIC, ECCENTRIC, AND

ARBITRARILY SPACED

CHAPTER I

INTRODUCTION

The structure of an aircraft or space vehicle con-
sists of several orthogonally reinforced thin shells. The
vibrations of these shells have been of interest to the
structural dynamicist for several years. 1In the past, large
numbers of closely spaced stiffeners have been used to in-
crease the axial buckling strength of a thin cylindrical
shell, while keeping the weight addition to a minimum.

This use of closely spaced stiffeners has led to the devel-
opment of a "smeared" theoretical analysis. This "smeared"
analysis assumes that the stiffeners are spaced closely
enough so that their effect may be averaged out over the
entire shell.

The more recent trend has been to use fewer ring

and stringer stiffeners, which has caused concern for the
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use of a smeared analysis. This has led to the .ifevelopment
of a "discrete" analysis, where the stiffening elements are
treated as discrete individual elements. This method is
obviously more general than the smeared analysis. Besides
being few in number, the stiffeners may be nonuniformly
spaced, consist of different materials, and differ in
geometry and size.

The effect of the stiffener's eccentricity, which
is the term used when the stiffener's centroid does not
coincide with the middle surface of the shell, can be
included in either type of analysis. Also, the effect
of a nonsymmetric stiffener, like an angle or z section,
may be handled with either type of analysis.

Some analyses have treated the stiffeners as dis-
crete elements, but only a few have allowed for both
stringers and rings and treated them as discrete elements.
Only one analysis has used an energy approach and consid-
ered both discrete rings and discrete stringers. The
other works considering discrete rings and stringers have
used a discrete mass technique, where the shell and stiff-
eners are handled as lumped masses. This method is
referred to as the finite-element method.

The analysis used in this present investigation is
the Rayleigh-Ritz energy method and considers the stringers

and rings as discrete elements. General type displacement
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modes are used, which allow different types of end supports
to be considered.

The final result of this work is a comprehensive
computer program to predict the natural frequencies and
associated mode shapes for an orthogonally reinforced cylin-
drical thin shell with symmetrically distributed stringers
and general type stiffeners. Numerical results are pre-
sented and compared with experimental values for both

clamped-free and simply supported ends.

Survey of Previous Work

The literature is full of studies concerning the

uniform thin cylindrical shell. The study by Forsberg (1)

“is particularly complete for a large number of different
types of end supports. Also of interest is the work of
Arnold and Warburton for a uniform circular cylinder in a
vacuum with simply supported ends (2) and for fixed ends
(3).

For the stiffened cylinder, there are several dif-
ferent items to consider. First, the studies may be divided
into classes depending on the mathematical approach. The
majority of the work has been done using the energy method
or Raleigh-Ritz technique. However, Wah, in both (4) and
(5) , and Hu, Gormley, and Lindholm (6) used a finite dif-
ference calculus to arrive at the natural frequency. Hung
(7) used an approach based upon the matrix force methcd,

and McGrattan and North (8) used a similar discrete mass
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technique. Next, the studies can be separated into two
types, depending on how the stiffeners are handled. Most
of the works have considered a large number of stiffeners
so that their effect may be averaged out over the shell to
give an equivalent orthotropic shell. An analysis using
this uniformly thicker shell with an equivalent stiffness
is referred to as a "smeared" analysis as opposed to a
"discrete" stiffener analysis, where the stiffeners are
treated as discrete elements. The smeared approach was
used by Mikulas and McElman in references (9) and (10),
by Sewall, Clary and Leadbetter (l11), and by Hoppman in
(L2) and (13). The smeared approach was also used by
Bleich (14), by Foxwell and Franklin (15), and by Nelson,
zZzapotowski, and Bernstein (16).

This present analysis is a direct extension of
the work of Egle and Sewall (l17), which considered both
discrete stringers and rings. The studies by Hung (7)
and McGrattan and North (8), which used a finite-element
analysis, also treated the rings and stringers as discrete
elements. Only three other references, Miller (18), Schnell
and Heinrichsbauer (19), and 0Ojalvo and Newman (20) have
considered the stringers as discrete elements. Miller (18)
has given a thorough review of the problem and has set the
background in theory but has not attempted a solution. The
work of Schnell and Heinrichsbauer (19) is not extensive;

and that of Ojalvo and Newman (20) considered discrete
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stringers but no ring stiffening. The use of discrete
rings was made by Galletly (21), by wah in (4) and (5),
and by Hu, Gormley, and Lindholm (6).

The earlier studies neglected stiffener eccentric-
ity and assumed that the centroid of the stiffener
coincided with the middle surface of the cylinder or that
the effect of this difference was negligible. This
approach was taken by Baron (22) for ring stiffeners.

This effect of stiffener eccentricity was also not explic-
itly included in most of the smeared analyses. The works
of Mikulas and McElman (9) and (10) are the exceptions and
did take into account the effect of stiffener eccentricity
using a smeared analysis for the case of a cylinder with
simply supported ends. The recent discrete analysis by
Egle and Sewall (17) took into account this eccentricity
effect, and the discrete analysis of Hu, Gormley, and
Lindholm (6) also included the effect of eccentricity for
a cylinder stiffened with equally spaced rings and is
simply supported.

While the problem of eccentricity has been studied,
the author does not know of any work going so far as to
include the effects of nonsymmetric stiffeners. The widely
used z section is a good example of a nonsymmetric stiffener.

There is also a conspicuous lack of work involving
end conditions other than the simply-supported for stiff-

ened cylinders. The three exceptions are the work of
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Sewall, Clary and Leadbetter (1l), who used the smeared
analysis for various end conditions; Hung (7), who used
the clamped-free and free-free end conditions; and Egle
and Sewall (17), who discussed the problem of incorpora-
ting different end conditions for the Rayleigh-Ritz

analysis.



CHAPTER II
METHOD OF ANALYSIS

The method of analysis utilized is the Rayleigh-
Ritz energy technique. The general approach of the method
is outlined in the following steps.

First, the expressions for the kinetic and potential
energies are written for the cylinder, stringers, and rings.
These six expressions are then used to give one expression
for the total kinetic energy and one for the total poten-
tial energy of the stiffened cylinder, which are then writ-
ten in terms of the displacement of the middle surface of
the cylinder. ©Next, deflection shapes are assumed in the
form of a finite series, where each term satisfies the end
conditions. Then, these assumed displacement series are
substituted into the energy expressions. Finally, the re-
sulting energy expressions are substituted into a set of
six Lagrange egquations. This results in a set of linear
equations which are solved, allowing the calculation of the

desired natural frequencies and mode shapes.

Detailed Analysis

The energy expressions are written first in terms
of the strain energy and then the strains are written in

7
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terms of the displacements of the middle surface of the
shell to give the energy expressions as functions of the
displacements. Only the strain energy due to the normal
strain in the direction of the stiffener axis and shear
strain due to twisting about the stiffener axis are con-
sidered for the stiffeners. The normal strain includes
the extension caused by the bending of the stiffener about
both cross sectional axes, and the effect of warping of the
stiffener cross section due to twisting. The strain energy
for the stiffeners and the shell are expressed in integral
and summation forms in terms of deflections of the shell
surface and their derivatives..

The rotatory inertia of the shell is considered
negligible; however, the rotatory inertia is important in
the stiffeners and is included in the kinetic energy terms.
The kinetic engergy is then expressed in integral and summa-
tion forms in terms of time derivatives of the deflections

and their derivatives.

Potential Energies

The strain displacement relations for a cylindrical
shell with coordinates, as shown in Figure 1, are given by

Flugge (23) as

XX X XX
e e _ee . w
CIC) R R(R+2) R+z

continued
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%'g | Rtz z z
®x0 TRez TR V'x T Yrxe (R ¥ Rz (1a-c)

where a comma before the subscript indicates differentiation
- 32w ).

X® 9 X30@

ships are referred to as Fliigge's exact strain relations,

with respect to the subscript (w, These relation-
and assume that normals to the middle surface remain normal
after straining, that extensions of normals are negligible,
and that displacements are small. Miller pointed out in
reference (18) why Fliigge's exact strain relations should

be used, and why the assumption that (1 + %) = 1, which
gives the linear Donnell strain relations, leads to unnec-
essary errors.

The strain energy or the potential energy of the
shell is found by considering a small element in a thin
shell. Since the shell is considered thin, it is assumed
that the small element is in plane stress (ozz = 0), and

that the out of plane shear stresses are zero (oxz= c 0).

ez
Hooke's law for an isotropic material in plane stress is
P p

E
g = (e + ve_.)
XX 1-v XX |0
E
o = (e + ve_ )
C]c) 1_VZ e XX
ol E e (2a-c)

x® _ 2(1+v) °x0

The incremental change in strain energy per unit volume
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for the small element is

+ o _de de (3)

auy, 00°%0 ¥ “x09%xe

= de
1 Iwx“Cxx

Substituting equations (2a-c) into equation (3) and inte-

grating gives the strain energy per unit volume as

2 2
e e
_ _E XX |0 (l-v) .2
U = 5 [ + + Ve, €ag + 2 ex®] (4)

The total energy of the shell is then the integral over the

volume of the shell

v =f U d(vol) or
c Vol vol

a 2 2
j- Fxx + e®® + 2Vexxe(@(@
0

+ =5 ex®] (R+z) dxdedz (6)
where d(Vol) = (R+z)dxdedz, and EC is Young's modulus of
the cylinder. The strain energy of the cylinder may be
obtained in terms of the displacement of the middle surface
by substituting equations (la-c) into equation (6) and per-
form the integral over the thickness. The potential energy

for the cylindrical shell then may be written as



where

and

2
2 t
1-v 21 (R *T
+ 2v u,xv,® + wu,x + ( > ) u,® T + R
21 a
v, + 2u,®v dxde + 3[ [ Rw, X 2u, w,xx
6]
12 t 2 2V
+ ;3 (T - R) (w,®® + 2w,®®w) + 5 (w,xxw,®® Wi x Vg
3
1-v 2 (g2 t7 )12 _ 6
+ ( 3 w’x@ (R T - Rt + 2R t3 R W.X®V,x
24
+ ;"'3“ (RT - t) u'@)w'X@} dXd® (7)
t
R+ = 3 5
T = 1n i = % + t 3+ t z + e
R - > 12R 80R
Ect3
D = — 3
12(1-v7)

Next, the potential energy expressions for the

stringers and rings will be developed with the assumption

that these stiffeners are uniform along their length and

have a nonsymmetric cross section. Further, it is assumed

that only normal strains in the direction of the stiffener
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axis and shearing strains due to twisting about the stiff-
ener axis are important. Also, it is assumed that in the
absence of twisting forces the cross sectional planes do
not warp, but warping of the cross section due to twisting
will be included in the potential energy expressions of
the stiffeners.

The elastic axis is chosen as a reference line for
the stiffener since it remains undeformed in a state of
pure torsion, and the deformations in this state may be
described by a single variable, ¢, which is the angular
displacement of the cross section about the elastic axis.
Since the elastic axis is chosen as the reference line,
there is no coupling of the displacements of the elastic

axis (u which describe the flexure and extension

E'VE'WE)'
in the bar, to the angular displacement (g), which de-
scribes the torsion. Because of this uncoupling, the
displacements of any point in a stiffener can be expressed
in terms of the above four variables.

Following the previous assumptions, the potential
energy of the stringer can now be developed. Using the

elastic axis as the reference line, the displacement com-

ponents of any point in a stringer (us,vs,ws) are

(8a-c)

£
]
mi:
+
=
S
1]
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where the last term in equation (8a) is the warping dis-
placement of the stringer cross section due to torsion.
The coordinates are shown in the stringer detail of Figure
2. The warping function (Ys) is the same as that in the
pure torsion theory of Timoshenko (24).

The strain energy due to extension of the stringers
is

fEstj 2
\Y . = —= e da ,dx (9)
extension = 2 0 AsL XX ®=®L si

where e = Yg and the total number of stringers is L.
’

The Young's modulus for the Lth stringer (9) 1is E5L and ®L
is its ®-coordinate.

It must be kept in mind, however, that the final
potential energy expressions for the stiffeners must be in
terms of the middle sufface of the cylinder, and related
to the line of attachment of the stiffener to the shell.

The location of the line of attachment is the line
of symmetry for a symmetric stiffener, and is definite for
stiffeners attached by a single row of rivets or spot welds.
However, for a nonsymmetric stiffener attached by more than
one row of rivets or integral with the shell, the choice of
the line of attachment is not so evident. Ojalvo and
Newman (14) have assumed that the line of attachment in
these cases should be located at the stiffener midflange.

Assuming that the line of attachment has been deter-

)

mined, the displacements of the line of attachment (uA’VA'“k
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are first related to the elastic axis. This is done by
using the general equations (8a-c) and solving for the

displacements from the elastic axis. This gives

W
_ A _ s _ 4B _A,X0
Ug T Ya YsVa, x s, x ¥g R
2s
VE = Va "R “a.o
Y%A, 0
— —_ L —
Wp = Wy + R (10a-c)

where Yi is the warping function of the stringer evaluated

at the line of attachment, and ¢ has been set equal to

w
—%fg. If equations (l0a-c) are substituted into equations

(8a~-c), the results give

_ _ _ s _ & _ WA A,X@
ug = uy YVa x zwA,x + (yzS zg_ + Ys YS) —Rr
2w
_ _ A,
Vs = Va R
YW
_ A,B -
w, =W, + —p (lla-c)

After substituting equation (lla) into equation (9)

and integrating over the area, the results are
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L EsL.]. 2 -~
Vextension ~ le 2 4 [AsLu'x - 2ysLAsLu’xv'xx

(IzzstsL - IyzscysL

2

- A ~ ~
T Yo hg Y )v'xxw’®xx "R (IyzstsL - IyysLysL

sl 'si si

dx (12)

®=®L

- ESLAstgL)w’xxw’®xx]
where a term like §SL is the distance of the Lth stringer
from the line of attachment to the stringer centroid, and
the subscript A has been dropped from the displacements
with the understanding that they are still referenced to
the line of attachment.

In order to help make the problem easier to handle,
only the first integral will be used as the extensional
energy of the stringers. The terms in the second integral
have been assumed small enough to be negligible. The
symbol TQL has been used in place of the longer expression

for the warping term which is a constant for a particular

stringer cross section and is equal to
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22

. _ A ~2 _ ~
rsL - IzzstsL 2Iyzs{,zs{,ys{, + IyysLysL 2AsL(ystsL
- A A2
- 2,9 Yyt + ALY + T (13)

The strain energy due to the torsional shear of

the stringers from reference (l1l) is

a

L (GJ)
st f w? ax (14)

torsion 21 2R2 0 XE® ®=®L

v

where (GJ)SL is the torsional stiffness of the Lth stringer.
The total strain energy of the stringers (Vs) is equal to

) and

) -

The following set of formulas for the stringers will

the sum of the extensional strain energy (Vextension

the strain energy due to the torsional shear (Ve .
orsion

be useful in the calculation of the moments of inertia

-2
Tozst = Tzzest * AsLYsL
Iyzs{, - Iyzcs{, + AsLystsL
I =1 +a_,z° (15a~c)
yys4 yycs?e sl s4,
where the subscript ¢ in terms 1ike‘IzzcsL refers to the

moment of inertia of the Lth stringer about its centroid.
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These moments are found from the fgllowing equations

_ 2
Izzcs{, _j’ Y dAsL
A

si

Iyycs{, =[ z dAsL (lea-c)

Also of use for later calculations is the radii of gyration,
which are given in terms of the moment of inertias in the

following set of equations

32 = Tyyss,
sl ASL

2 _ Izzs{, + IyysL

péL = i (17 a-b)
st
or they may be found from
V2 _ 52 =2
dsL = dsL + Zgy
- -2 =2 _
Pgy = Py * Yy * 25, (18a-b)

The symbols dS and pg, are defined in the following as

1
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d2 _ _yyecse
s

2 _ Tgzcsy * IYYQSL
Pst ~ As&

(19a-b)

Proceeding in the same manner used for the stringers,
the strain energy of the rings will be developed. Using
the elastic axis of the ring as the reference line, the dis-

placement components of any point in a ring (ur,vr,wr) are

ur = uE - z'B
r 'E R E,® R "E,® R '@
wW_ = W_ + X'B {20a-c)

r E

where B is the angular displacement of the ring cross-
section about the elastic axis. The coordinates are shown
in the ring detail of Figure 2. It has been assumed that
2r is very small compared to the radius so that w=(R+2r).
The last term in equation (20b) is the warping displacement
of the ring cross section due to torsion. As in the case
of a stringer, the warping function (Yr) is the same as

that in the pure torsion theory.

The strain energy due to extension of the rings is
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21
K }|E
Y B
Vextension Z 2 €90 da . de (21)
k=1 0 A
rk X=X
k
Vr @ Yr
where €00 = ﬁ + R from reference (25) and the total

number of rings is K. The Young's modulus for the kth

ring is E and X is its x-coordinate.

- Assuming that the line of attachment has been deter-
mined, the displacements of the line of attachment (uA,YA,yAL
are first related to the elastic axis. This is done by

using the general equations (20a-c) and solving for the

displacements from the elastic axis. This gives

~ ~ A
E A R A,0 R "A,® R "A,x0
Wp = W, + ﬁrwA,x (22a-c)

where B has been set equal to Wa o x° If equations (22a-c)

are substituted into equations (20a-c) the results are

r A A,X
A
V.=V = w Xy + (YR— YR— “R* T ZRX) W
r A R A,0 R A,® R A,x0
W= W+ XW (23a-c)
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After substituting equations (23b-c) into equation

(21) and integrating over the area, the results are

21 _
_ f Erkf [Ark s e = S
extension =] 2 ) R ® R2 8 'e6
_ 2xrkArk u + Ixxrk w2 + 1:zzrk 2 + I\Jlrk W2
R2 ® 608 R3 e R3 CIC) R3 X660
A z_ . A X_. A A
rk rk’'rk rk’' rk rk 2
+ 2 R v,®w - 2 Rz ,®®—2 R2 wu,®® + R w
X_.A X _. A
rk’'rk 2Zrk rk''rk
+ 2 R w,xv,® 2 5 u,®®w. + 2 5 ww.x
R R
2m
I E
zzrk 2 rkf xzrk
X= X 0 R
2A "~ - " - A 2
+ R2(zrerk = Xrx%rk T Yrk)v'(aw'x@@ + R3

- A - 2 .
rkIxzrk = XrkIxxrk = YrkZrkPrk) WeaeV' xe0” ?(zrklzzrk

N>

(

2n
~ A - rk " - -~
R YrerkArk)u'®®w'x®® + R2 (2Xrk = XrkZrk

A xzrk 2 /4 s

- Yrk)ww'x®® -2 R2 WexWrgg t RZ(ZrkIzzrk = Xoelxark
XA YR Yw, w ] ae (24)
rkirk rk! T’'x ' %80 -
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where a term like irk is the distance of the kth

the line of attachment to the ring centroid, and the sub-

ring from

script A has been dropped from the displacement with the
understanding that they are still referenced to the line
of attachment.

In order to help make the problem easier to handle,
only the first integral will be used as the extensional
energy of the rings. The order of magnitude of the terms
in the second integral have been assumed small enough to
be negligible. The symbol Ték has been used in place of
the longer expression for the warping term, which is a con-

stant for a particular ring cross section and is equal to

' - A2 A2 - - _ - A
rrk - Izzrkzrk + Ixxrerk ,?Ark(xrkzrk zrkﬁrk)‘yrk
A2
+ Ark‘yrk + I‘rk (25)
where T =f ‘i’z da
rk rk 'rk
Ark

The strain energy due to the torsional shear of

the ring from reference (1ll) is

2

K | (GJ)
_ rk 2
vt:orsion - Z 2R [ w'x@ dg (26)

k= 1 x:)(](

th

where (GJ)rk is the torsional stiffness of the k ring.
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The total strain energy of the rings (Vr) is equal to the
) and the
).

The moments of inertia of a ring cross section and

sum of the extensional strain energy (Vextension

strain energy due to the torsional shear (Vtorsion

the radii of gyration will be needed later. The following

set of formulas will be useful in these calculations

-2
Ixxrk - Ixxcrk + Arkzrk
Iezrk = Txzerk ¥ Brk®rkZrk
I -1 + A %2 (27a-c)
zzrk zzcrk rk“rk
where the subscript c in the terms like I refers to
xxcrk

the moment of inertia of the kth ring about its centroid
centroid. These moments are found from the following

equations

| .
Ixxcrk - A z dArk
rk

Ixzcrk = j; XZdArk
rk

2
I,zerk = -[ x"dA g (28a-c)
rk

The radii of gyrations are given in the following
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d'2 _ _XxXrk
rk

I +

2 xxrk zzrk

p' = . (29a—b)
rk Ark

or they may be found from

V2 _ 22 -2

drk - drk * 2
2 2 =2 =2

Prk = Prx * Xpx ¥ Zrx ‘ (30a-b)

The symbols drk and P are defined in the following as

d2 _ Ixxcrk
rk Ark
I + I
Pik - xxcrkA zzcrk (3la=b)

rk

Kinetic Energies

The total kinetic energy of a body is equal to its
kinetic energ§ of translation plus its kinetic energy of
rotation. This may be written as

2

cmPY (32)

_ =2
T=1/2 mv_ .+ 1/2 1

where Gcm is the total velocity of the center of mass, and

w 1s the angular velocity of the mass about an axis through
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the center of mass whose moment of inertia about this same
axis 1s Icm'
Neglecting the kinetic energy of rotation or the

rotatory inertia, the kinetic energy of the cylinder can

be written as

3
n

2m a
. 1/2 Rf f o t(82 + ¥2 + w2)dxde (33)
0 o ¢

where Po is the mass density of a cylinder of thickness t
and the dot above a variable denotes differentiation with
respect to time.

It was noted by Egle and Sewall (17) that although
the rotational energy of the cylinder may be neglected,
this is a substantial term in the kinetic energy of the
stiffeners.

The kinetic energy of the L stringers from equation
(32) is

a

T. =5 fi A j’ a2 v 92 + W
s 2 =21 PsePse 5 Yemse cmsd, cms4,

[ ot

®=®L

a

+ j. I W’ +
Psy 0 yyecse 'x

{IzzcsL + IyycsL) QZ
2 14

(34)
R o

2

where Psy is the mass density of the Lth stringer and

is the moment of inertia of the Lth stringer about

IyyCSL
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the centroidal axis parallel to the y-axis. The term

&cmsL is the velocity of the center of mass of the Lth
stringer in the x-direction. The eccentricity of the
stringers causes a rotation about the stringer centroid
when the point of attachment on the shell translates.

The displacement of the stringers referenced to the shell

is
Uomsey = 9 7 ZWorx T YoV
z
_ _ st
chsL =V R w'@
- -se -
wcmsL =W+ w,@ (35a-c)

After substituting equations (35a-c) into equation (34)
and using equations (l19a-b) for the radii of gyration,

the result gives the kinetic energy of the stringers as

a
T—l}% .\ (b - 2w, - 9.,%, )% (v - =L, )2
s =2 &Psttse st 'x ~ Tst'x R 'O
WA Yo Wig P P:;, 2
+ S + d° we o+ we dx (36)
sy ’'x R ®
8=9,

Proceeding in the same method for the rings, the

kinetic energy of the K rings from equation (32) is
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2m
T = l § AR &2 + \'72 + WZ ans
r 2 Prxrk cmrk cmrk cmrk
k=1 x=xk
2m
Rf [(1 + I ) we Ixxerk 2] g (37)
t Prx 5 xxecrk zzerk/ Yex t R2 '® x=x

k

where the term &cmrk is the velocity of the center of mass

of the kth ring in the x-direction. The displacement of

the rings referenced to the shell is

Yemrk — B 7 ZpkVWrex
S - S o 3
cmrk R '® R '®
Womrk = W F XWoy (38a-c)

After substituting equations (38a-c) into equation (37)
and using equations (3la-b) for the radii of gyration,

the result gives the kinetic energy of the stringers as

21

T=l§ ARf (ﬁ-Ev’v)2+(\'z——zr—kv'v
r 2 k=1 Prkrk 0 rk ’x R ‘e
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Displacement Functions

The displacements of the middle surface of the
cylinder (u,v,w), which are similar to those used by Egle
and Sewall (17), are assumed to be

u = i i (umncos ne + u ,Sin n@)Um(x)SLn wt

v==L2Z% (v
m n

mnS 0 ne - VanCos n@)vm(x)SLn wt

w = ﬁ E (whncos ne + WonSin n@)Wﬁ(x)51n wt (40a-c)
where Um(x), Vm(x), Wﬁ(x) are the axial mode functions
which satisfy the end conditions. Figure 3 identifies a
few of the terms in equation (40c) for simply-supported
and clamped-free end conditions.

mn‘Gmn'amn) are asso-

The unprimed coefficients (u
ciated with the symmetric circumferential modes, referring
to those modes having normal displacements (w) which are
symmetric with respect to the x-z plane. Similarly, the

primed coefficients (u' ,v'

,W' ) are associated with the
mn’ mn’ mn

antisymmetric circumferential modes.

Axial Mode Functions

The axial mode functions Um(x). Vm(x), Wh(x) should
be selected so that the displacement and its slope at each
end represent the physical problem as closely as possible.

The final choice may be a campromise that requires both
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Figure 3. Circumferential and Longitudinal Radial Mode
Shapes (w) of a Cylinder.
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insight and time-consuming trial and error. A discussion
of the problem of selecting the axial mode functions is
given by Egle and Sewall in reference (17).
The following axial mode functions were selected
for the case of simple support without axial constraint,

which is also called freely supported

dxm(x)
Um(x) = dx
Vm(x) = Xm(x)
Wm(x) = xm(x) (4la-c)
where X_(x) = /2 sin (E%i). The following integrals for

simply supported ends are needed later

a
1[ )
a g KX (AR =6y
a
.]_‘j’ X ( )X" )d = M 2
ag ‘m X)Xj(x)dax = - () S i
a
L e = @’
ag m(x j\xax = (a ) mi
a
lf xr (0 X2 (x) dx = (&) (42a-d
a g (¥ X (x)dx = () 6.5 a-d
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where the prime indicates differentiation with respect
to x.
The classical Bernoulli-Euler beam functions were
used for the cylinder with clamped-free ends. The axial

mode functions are the same as equations (4la-c) except

Xm(x) = cosh(Bmx) - cos(Bmx) - ap sinh(Bmx) - sin(Bmx)

The beam functions and their properties for several com-
binations of end conditions are tabulated in references
(27) and (28) . The properties for clamped-free ends from

reference (27) are

Xm(O) = Xﬁ(O) = X&(a) = X;(a) =0

and

m B2 o

1 1.8751 041 0.7340 955

2 4.6940 9113 1.0184 6644

3 7.8547 5743 0.9992 2450

4 10.9955 4074 1.0000 3355 3

5 14.1371 6839 0.9999 9855 01
> 5 (2n-1)n/2 1.0

The following integrals from reference (28) are needed

later
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a

L
y . Xm(x) Xi(x) dx = 6mi
48 B. .
((for m # i ——%[(-1)“‘“
a(Bi_Bm)
a
l,/—x' (x) X! (x) dx = é 3. 4.3
ag ‘m i OBi= aifn - Bmsi(o‘isi— c'mBm)
o.B.
\ for m = i —la—l (2 + a;B;a)
a
lfx"(x)x"( ax = gt
a g FmX)X{(x)dx = 8; &,;
4 .,
. 4B; |2 mei 2
( for m # i 84-8‘-1 [Bm— (-1) BiJ
m 1

_(/)’ Xm(x)X]!_dx = é

o |-

a

1 f n
3 ! Xm(x)xi(x) dx =




34

Derivation of the Frequency Equation

The Lagrangian equations of motion for free vibra-
tion written in notation similar to that used by 0Ojalvo

and Newman (20) are

QT
d(———v—
T
- + = - &) i=1,2,...,6 (44)
qij

where T is the total kinetic energy of the cylinder,
stringers, and rings, and V is the total potential energy

given by equations as

3
I

TC+TS+Tr

<
I

Vc + VS + Vr (45a-b)

(1) . .= . - .
The term qij for i =1, 2, 3 is uijs1n wt, VijSln wt,

. . (i) .. =, _.
wijSLn wt and for i = 4, 5, 6 the term qij is uij51n wt,
= (1) _

(i)

vij51n wt, wij51n wt. The time derivative of qij is qij
=(1) =(1) _ _ 2 (1)
wuij cos wt, and iy = - w 935

a[—2t
ag )
The operations denoted b ——21 are not clear
y ac

from this abbreviated form. The easiest way to explain

them is by the use of an example. Assuming that T = ﬁz

and u = ﬁ g(ﬁmncos ne + ﬁﬁnsin n@) U_(x) sin wt, the dis-
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placement u may be written as u = ¢ ¥ (qéi)Umcos n@

+ q U sin nB), and the velocity U may be written as

v . (4).. . .
a = ﬁ i (qmn U cos n® + g U, sin n@)- Then for this
example the operation denoted by

for i = 1 gives

(l)
3q lj
2
(1) . (4) .
- aﬁ2 [Z Z(qmn Umcos ne + 4 Um51n n@)]
NS gy =
aql] ql] 13
du
2
aqg)

By looking at the equations for u and 4, it can be seen
that

du  _ _du
(l) aq(l)

9ij ij

Using this fact, the previous equation can be written as

3T 20 _du

2] i;)

Next, taking the time derivative of both sides and using

the fact that U = wzu, the result is

a T
[
i TR -1 S wzu du
dt (1) 3 (1)
94y 9
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Substituting the energy expressions represented by

equations (45a-b) into equation (44) for i = 1 gives the

following
j%n a a
L
1 j‘ 2 Ju 1 jﬂ 2 _=
5 R ¢ 0 pct 2w u = dxd@’f 2 g;l psLAsL [Zw (u %ﬁ?&
i3
2m
-, v.,) =22 dx+—§ AR[ 202 {(
YsiVix 3G 2 Prxrk w u
uij k=1
0=8,
z X X . du
_ =z ou o P rk _ rk '®
o ot YT TR Ve TR u'®)( R aﬁ.) d®
1] 13d,
2 a
du, ou, ou,
=%J[2Ru, _x+2v(v,® 4 w— )
t 0 auij d i3 aulJ
2 a
du, du,
+2(——l£\J (? Uy —X 4 v, _®) dxd®+%[
du du, . 0 0
1) 1]
Jou, du,
- v, —% 4 (2 (—%)(RT )W, g —2 (lz—\’-) axde
aui. t du,
J : i
a
L E au, aul
si
+ Z: -——-!’ 2A_,u, = 2y_,A_,v,
1=1 2 st au. . sy st 'xx 3G
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21 _
- au'x K Erk 2xrkArk
2""s‘t,As{,W'xx - dx + Z o R R
aui. k=1 0 R
J 0=0,
au,®® 2Izzrk au,®® 2xrkArk au,®®
V;® — + 3 ul®® _ - 2 w -
auij R auij R auij
21 ou,
_ zzrk w, o6 de (46)
2 X .=
R du._ . -
L1 Jx=x
k

Substituting the assumed displacements of equations
(40a-c) into equation (46) and dividing through by sin wt

gives

27 a
12p jﬁ _]. [R TTu_ U'U! cos n® cos j® + v(IInv__V_U!
2 mn m i mn mi
t 0 (0]
. - . . . 1-y
cos n® cos j@ + TIw W U cos n@ cos je) + (—5—)

T .- . L = , . L
(E-sznuanmU151n n® sin jO - ZZjvmanU131n n® sin J@}

2t a

dxde + Dz' [ - ZEwmnw;lUi cos n® cos jO +

14

_ L f
(RT-t)ZZ n]wmnWQUi51n n® sin j@| dxde + EEJ%SL ]

continued
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AsLZZ(umncos n@ + uﬁn51n n@)U&Ui cos jB® -~ ysLAsL

ZZ\vmn51n ng - Von €OS n@)\mui cos j® -~ AstsL

K
ZZ(wmncos ne + wﬁnsin n@)W&Ui cos i@ ]dx + z:
®=®L k=1

2

X_,A I k
rk’'rk 2= . _22rx
L&_ p __;5__ TInj‘v__v U;cos n@ cos j@ + 3

X . A
rk2rk szza

2.2- .
ZZn7) uanmUicos n@ cos jB8 + -

nmeicos ne

1
cos jo + —55%5 zzjzﬁmnw$uicos n® cos jB ] de
R X=X
2r a
-szf fpt[)‘..ZG U U.cos n®@ cos j® dxd@_wziL:
' c mn m i J £

0 0 1=1

a
psLAsL g[ ZZ\umncos ne + u sin n@)Um - zs&EZ(wmncos ne

+ wﬁn81n n@)W& - ystz(vaSIH n® - vﬁncos n®)v&

continued
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2n

K
2 - -
(Ulcos 10) dx - w ki prkArk R ZZu Umcos ne - Z oy

®=®L 0

- ) . . rk
Iz wmnwm cos nB U cos i® + zz v V 51n ne + =

X,
PN nw W sin n® + —ﬁ— zz nu U sin n@ ( )

(jU;sin 30) d® = 0 (47)
X=Xk

where the summations are over m and n. 1In the preceding
2n
equation, several terms containing df cos n® sin jO dO

were left out since the integral is zero for all n and j.

After integrations are performed and the entire equation

2r2
is multiplied by l;D:Ra the following equation results

2

R IZ 6JnumnIU U + VR ZZ Jéjnvmnlv U' + VR LI 63n mnIW U'

1-v - 1-v -
+ firJ ZZ j éjnumn U U; f——J R I jGJannIV U,

t"R - 1-v] (RT t)R
- 12 I 6jnwmnIW"""U! ( , LT J 63n mn Wr'nUl

2 . - . : -
[SSLR ZZ(umncos ne + UnnSin n®)IUﬁUicos 8 - Ysy

continued

+
o
Il ™M
s
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ZZ(vmnsin ne - Vo COS n@) I

+ wo o Sin n@)IWRUlcos B[C)

VU, o+ zzrk

£X j 6jn mn m i

I
w _WU. + —5555

¥ J 6jn mn m i

.U
jn mn

™M

M

L 6
1 sd

I

v Ay
JmUi 1

I cos j&a - zsLZZ (wmn

EZ(an51n ne - VinSoS ne) I

zrerk
RZ

T j6. V_U.

jn mn'm i V

0=0

T 3%

T j

cos n w'
[o) ® + -

L 376

&

EZ(umn

cos i@ - EsL

T (w
mn

U U. +

jn mn mi

W'U

. W .
jn mn m-i

rkA

R

X=X

cos n u
S n® + umn

sin n®) I

cos j@

anﬁnwhul +

w! U

(xrk
R

rk

sin n@)

cos j8 -y

2

continued

cos n@®

sS4
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.2 = _
2:5: j éjnuanmUi =0 (48)
X=Xy
where A is the frequency parameter defined by
(l—v)pCR2w2
b= — (49)
c

A short hand notation has been used for some of the

integrals. For example, IU'U is used in place of the
m i
a
l[ U'{x) U.(x) dx
ay m' i

Equation (48) has been developed from equation (44) for

i =1 only, A similar procedure must be done five more
times for i = 2 - 6. By combining the coefficients of
the same displacements, the results are the following six

equations linear in u v w ' v W'
qd mn’ mn’ mn’ mn’ mn’ "mn

ﬁ i Aijmn mn ¥ Dijmn mn Eijmnwmn + Gijmnumn GGijnwyhn
+ Hijmnwmn -4 Nijmnumn + ijmn'mn + Pijmnwmn
+ Tijmnumn + TTijmnvmn + Uijmnwm€} =0

continued
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anijﬁmn * NNﬁnijaﬁﬁ M Qijmngﬁn + Rijmnaﬁn ] -0
T gl:Hmnijamn + DDmniijn + anijamn + Eﬁnijaﬁn
¥ F$nij-ﬁn + Cijmnwﬁn -4 Umnij mn mnljgmn
* Ymnij;’mn ﬁnljﬁﬁn Rﬁnijgﬁn Sijmnaﬁn ] =0
(50a-f)

The coefficients of equations (50a-f) are presented in
Appendix I.
Equations (50a-f) may also be written in matrix

form, with the aid of the work of Egle and Sewall (17), as

— - -
A D E G GG H| ™ NN P T TT U] (ﬁ
b B F FF EE DD NN'Q R RR V W v
EE FY C HH MM M - PP RT S W X Y 4 w
T FFT HH' A° D' E' T RRT pul N' NN P 3
ccT Eef MM D'T B' F° 7 vE xT wlqQ' R v
' oot M* BT ET cr vt W ¥y e T RT sf] (&

(51)

where the superscript T indicates the submatrix has been
transposed. The terms in equations (50a-f) have been

redefined in order to write them in the matrix form of
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equation (51). The terms u, v, etc. are column vectors
whose components are u_ = u
P mn
V=9
P mn
;I - ‘;l -
P mn

and n and m are related to P by

pP-1
ms=P- "5 m*
(“‘ T
n=1+ (ﬁ;}) (52a-b)
T

where m* is the maximum value of m, n* is the maximum value
of n, and the symbol ( )T represents the operation of
integer truncation, for example (8/3)T = 2. Likewise, the

coefficients A__, D etc. in the matrix are related to

QP Qp’
those in equations (50a-f) as

AQP = Aijmn

D =D

QP ijmn

where n and m are related to P by equations (52a-b), while

i and j are related to Q by



j =1+ (9'—1) (53a-b)
T

An example of this calculation for P = 10, Q = 16, and

m* = 4, gives i =6, Jj =4, m = 2, and n = 3, then AlO 16

= B¢ a,2,3"

The solution of equation (51) is an eigenvalue prob-
lem where the size of each matrix is (6m*n*) by (6m*n*).
The first matrix in equation (51), which contains A, B, C,
etc., will be referred to as the stiffness matrix, and the
second matrix as the mass matrix.

Equations (50a-f) will simplify if it is assumed
that the stringers are distributed symmetrically with
respect to the x-z plane. This means that for every

stringer at =@, there is an identical stringer at @=-0

L '
Also, if a stringer at §=8, has a §SL that is not zero,
the corresponding stringers at ®=—®L must be identical
with the exception that the sign of §SL must be opposite
that of the other stringer. The terms in equation (51)
which couple the symmetric and antisymmetric circumfer-
ential modes (G, GG, H, FF, EE, DD, HH, MM, and M in the
stiffness matrix; and T, TT, U, RR, V, W, UU, X, and Y

in the mass matrix) are identically zero for this stringer

distribution. For example,
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2 L/2 _ .
i3mn IV&UER ggl Ss{ ychos(n®L)cos(]®L)

- ysLCOS(~n®L)c05(-J®L) =0
and
2 L/2
Gijmn = IUﬁUiR & Ssc 51n(n®L)cos(J®L)
+ 51n(—n®&)cos(—3®£) =0

Consequently, the matrix equation (51) uncouples into two
sets of equations which are not necessarily identical.
One set 1s for the symmetric circumferential modes, while
the other is for the antisymmetric modes. The result may
be two similar circumferential mode shapes displaced by a
quarter wave length with slightly different natural

frequencies.

Since the experimental works used for compariéon
had circumferential symmetry, only the set of equations
for this condition need to be solved. The set of equations
involving only the symmetric circumferential modes can be

written in matrix form as

A D E N NN P a

T T =
DO B F - A NN Q R v)=0
ET FL ¢ pT RY s w

(54)
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where the size of each matrix is (3m*n*) by (3m*n*). The
computer program for the calculation of the coefficients
and the solution of this eigenvalue problem is presented

in Appendix II.



CHAPTER III

COMPARISON WITH PREVIOUS WORKS

Since the natural frequencies for stiffened cylin-
ders have been experimentally determined and the results
published in other works, calculations were made for these
cylinders to determine how well the analysis agrees with
experiment. The computer program was written for the cal-
culations in Fortran IV and was run on an IBM 360/40. The

program is given in Appendix II.

Exact Solution of Forsberg

The theory was tested for comparison with the
exact solution of Forsberg (1) in the case of an unstiff-
ened cylinder with freely supported ends. Comparisons
were made for length-to-radius ratios of 1 and 10. The
calculated frequencies agreed as close as could be deter-
mined with the frequency curves in the small graphs given
by Forsberg.

The close agreement for the unstiffened cylinder
gave a good check of the general approach and more specif-
ically for the part of the theory pertaining to the cylin-
drical shell. Next, calculations were made for comparison
with published experimental work involving both unstiffened

and stiffened cylindrical shells.
48
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Comparison for a Cylinder with Clamped-Free Ends

The experimental work by Park (26) was for cylin-
drical shells with clamped-free ends. The work included
an unstiffened cylindrical shell and the same cylindrical
shell stiffened internally with three rings and sixteen
stringers. The stringers were equally spaced around the
circumference and one ring was at the free end with the
other two equally spaced along the length, dividing the
shell into three equal bays. The material properties of

the shell and stiffeners were the same, namely

0.0007332 1b sec?/in?

p:
E = 30 x 106 lb/in2
v = 0.29

The dimensions of the cylinder were

R = 10.0 in
t = 0.03 in
a = 48.0 in

The dimensions and geometric properties of the sixteen

identical stringers were

.2
AsL = 0.031096 in
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zsL = -0.1376 in

Yo = 0.0 in
I = 0.0001652 in?
zzcesl,

. 4

I = 0.0003895 in
yycsi
(GJ) , = 306.0 1b in®

si :

and it was assumed that

TéL = 0.0

The dimensions and geometric properties of the three

identical rings were

.2
Ark = 0.06251 in
zrk = -0.1219 1in
xrk = 0.0 in
I = 0.0003253 in4
xxcrk -
I = 0.0004945 in4
zzcrk .
(GJ) . = 5146.0 1b in?
rk )

and it was assumed that

Ték = 0.0
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The results of the theoretical calculations for
the natural frequency of the unstiffened cylinder are shown
as a solid line in Figure 4 along with the experimental
points of Park (26). The numerical data used to plot the
graph are given in Table 1. Similarly, the results are
shown in Figure 5 for the stiffened cylinder, with the
numerical data used to plot the graph given in Table 2.

Comparison for a Cylinder with
Freely-Supported Ends

The experimental and theoretical work by Hu,
Gormley, and Lindholm (6) was for cylindrical shells with
freely-supported ends. The work included an unstiffened
cylinder and two models of the same cylindrical shell
stiffened with thirteen rings. 1In one model the rings
were external and in the other they were symmetric about
the middle surface of the shell. There was one ring at
each end of the cylinder with the other rings equally
spaced, dividing the shell into twelve equal bays. The
material properties of the shell and rings were the same,

namely —

0.0007324 1b sec?/in?

p=
E = 30 x 10° 1b/in?
v = 0.3

The dimensions of the cylinder were
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TABLE 1

COMPARISON OF THEORETICAL AND EXPERIMENTAL (REF. 26)
FREQUENCIES,? WHICH ARE PLOTTED IN FIGURE 4

m=1 m= 2
N
Theory Exper. Theory Exper.
87.2
2 104.4 and
95.1
3 55.6 51.5
168.5
4 52.0 50.4 177.9 and
170.2
5 70.9 132.8
128.8
6 101.4 and
130.1
7 139.1 138.8 154.2 153.6
8 182.6 182.2 191.2 191.3

qunits are cycles/second.
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TABLE 2

COMPARISON OF THEORETICAIL AND EXPERIMENTAL (REF. 26)
VALUES FOR THE THREE LOWEST FREQUENCIES2 AND THE
AXIAL WAVE NUMBERS, WHICH ARE PLOTTED IN

FIGURE 5

First Frequency

Second Frequency

Third Frequency

N
m | Theory| Exper.| m | Theory |Exper. | m| Theory | Exper.
1|1 243.9
80.2
211 105.8 and | 2 433.9
88.2
311 135.2} 107.51 2 274.1 ] 246.2 3 568.2 ) 491.8
397.0
4 11 216.9 184.6 ] 2 285.9 | 251.5 3 447.1 and
430.4
511 302.5 2 333.2 | 304.6 3 445.9
6}]2 315.0 1 353.8 4 414.0
714 286.0 1 340.2 2 394.0
8 | 4 264.3 1 310.6 2 361.3
214 300.9 1 332.7 6 367.7
10 14 334.4 1 357.4 6 380.2
11 ,4 378.1 5 395.8 6 409.2

3units are cycles/second.
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R = 6.0 in
t = 0.015 in
a = 24.0 1in

The dimension and geometric properties of the thirteen

1dentical symmetric rings were

. 2
Ark = 0.0451 in
Z 4 = 0.0 in
xrk = 0.0 1in
= 0.0005978 in?
xxcrk ’
. . 4
I = 0.0000541 in
zzcrk
~ . 2
JJ)rk = 2009.0 1b in

and it was assumed that

Tex =00 o

Tre properties for the thirteen identical external rings

were
A . = 0.0450 in?
rk
zrk = 0.1955 in-
Xy = 0.0 in
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I = 0.0005274 in?
xxcrk
I = 0.000054 in%
zzerk ~ 7°
(GJ) . = 1981.0 1b in?
rk

and it was assumed that

Fék = 0.0

The results of the theoretical calculations for
the natural frequency of the unstiffened cylinder are
shown as a solid line in Figure 6 along with the experi-
mental points of Hu, Gormley, and Lindholm (6). The
numerical data used to plot the graph are given in Table
3. The theory of Hu, Gormley, and Lindholm gave essen-
tially the same results for the cylinder stiffened with
either symmetric or external rings and their theory is
shown as a continuous solid line in Figure 7, while their‘
three experimental points for the cylinder with external
rings are depicted with the hexagonal sypbols.

The remaining curves were calculated using the
theory in this present work. The lowest frequencies
associated with the radial, axial, and torsional modes
are depicted with the square and triangular symbols, and
these symbols are connected with a broken solid line for
the torsional and axial modes. These frequencies were
calculated assuming a displacement series of twenty odd

terms. The numerical data for these curves are given in
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TABLE 3

COMPARISON OF THEORETICAL AND EXPERIMENTAL
FREQUENCIES,® WHICH ARE PLOTTED IN FIGURE 6

(REF. 6)

m 1 m m 3 m 4

N

Theory Exper. Theory Exper. Theory Exper. Theory Exper.
2 633.5
3 326.7 370
4 202.3 255 696.1 745
5 159.9 205 483.0 545 960.6
6 ) 168.0 200 370.5 420 724.0 790
7 206.0 220 325.1 345 580.8
8 261.0 265 329.2 360 506.1 768.3 820
10 403.4 395 429.2 435 506.6 649.9
12 581l.1 560 594.9 580 632.3 625 706.4
14 791.8 760 801.8 780 824.7 805 867.6 i 850

%Units are cycles/second.
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Table 4. The dashed line in Figure 7 has been calculated
from the theory presented in this work, but only either
seven odd terms or seven even terms were assumed for the
displacement series, with the lowest frequency being
shown in the figure. The numerical data for this curve

are given in Table 5.

Difficulties Encountered

In calculating the natural frequencies of a stiff-
ened cylindrical shell, two problems were encountered. The
first concerns the presentation of the results. As dis-
cussed in the work of Egle and Sewall (17), there is a
problem in identifying the circumferential wave number (n)
and the axial wave number (m). Egle and Sewall solved this
problem by observing that the term in the assumed displace-
ment series with the largest coefficient is generally the
predominant one in the modal shape. 1If this is the nt.h
term in the series, then the mode will be identified with
a wave number of n.

The second problem was deciding how many terms to
assume for the displacement series. 1In order to reduce the
size of the eigenvalue problem, which then decreases the
computer time required for a solution, it was necessary to
keep the assumed displacement series to a minimum. The
minimum number of terms can be decided by repeating the

frequency calculations at the same value of n for an



TABLE 4

THEORETICAL FREQUENCIES® CALCULATED BY A SERTES OF
TWENTY ODD TERMS AND THE AXIAL WAVE NUMBERS,
WHICH ARE PLOTTED IN FIGURE 7

Lowest Axial Lowest Torsional Lowest Radial

N | Ext. Rings Sym. Rings FExt. Rings| Sym. Rings Ext. Rings Sym. Rings

—— -
1

Y '
m Theory m Theory m Theory m Theory m Theory m | Theory

0 1 1926.4 1 2542.1 1 1651.0 1 1649.7 |27 2969.5 {33 13953.4

2 1 5461.3 1 4625.7 1 12,347 1 12,362 1 518.3 1 490.7

4 1 10,447 1 8190.5 7 20,131 1 22,477 1 1287 5 1| 1225.7

6 1 14,989 1 11,612 J11 29,807 1 33,295 1 2276.7 1] 2556.1

10 1 21,159 1 17,522 |13 50,395 |13 50,491 1 2094.8 1] 2995.6

14 1 27,329 1 22,590 5 77,870 {15 64,397 1 2506.8 1] 2601.4

qunits are cycles/second.

Z9
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TABLE 5

THEORETICAL FREQUENCIES? AND AXIAL WAVE NUMBERS
CALCULATED BY EITHER A SERIES OF SEVEN ODD
TERMS OR SEVEN EVEN TERMS, WHERE THE
LOWEST FREQUENCIES ARE PLOTTED
IN FIGURE 7

0dd Terms Even Terms

N
m Theory m Theory
4 1 1239.1 2 1315.4
6 1 2813.7 2 2828.3
10 11 6206.0 12 5880.3
14 11 8219.8 12 7712.5
18 11 10,469 12 9802.1

a, .
Units are cycles/second.
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increasing number of terms in the displacement series and
then checking for convergence.
As an example, the following tabulation shows the
lowest natural frequency in cycles per second for 3, 10,
and 20 terms in the assumed displacement series for the

stiffened shell with clamped-free ends:

Range of m n=3 n =28
1 - 3 144.0 483.3
1 -10 135.2 264.3
1 - 20 130.3 263.5

Considering that the computer time for the 20-term series
was approximately four times as long as the time for the
10-term series, it was decided that for this particular
cylinder a 10-term series would give adequate results.

In the case of the ring stiffened cylinder of Hu,
Gormley, and Lindholm with simply supported ends, a
twenty-term series did not agree with their theory, and
the difference increased as n became larger. The twenty-
term series gave a matrix size of 60 by 60, which was the
maximum size that could be handled by the computer.

If there is no coupling between the odd and even
terms in the assumed displacement series, the range of m
.can be doubled without increasing the matrix size by using
only the odd or even terms of the assumed displacement
series. For the case of a simply supported cylinder with

rings that are symmetric about their z-axis (irk = 0)
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and are distributed symmetrically about the middle of the
shell (x = a/2), this uncoupling'allows the use of only
the odd or even terms in the displacement series. This
uncoupling can be shown by examining the portions of the
terms in equation (51) which involve the rings.

For example, the ring portion of Bijmn {see Appendix
I) is
K
57 L S [vvs)

Xk

Since the cylinder is simply supported, the axial mode

function is
_ . mrx
Vm(x) = /2 sin (—3—)

The ring portion of Bijmn can be written as

2j2 ::éi S 5 [sin it —é— - faﬁ sin im i% _ %)
4+ sin mm (% + iaK) sin im (%—4- -I;—K)

since for every ring at
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The ring portion of Bijmn can be expanded and rewritten as
2j2 Kfz S 1k [‘sin m % cos mm I;—K - sin mn Ealﬁ cos m %)
k=1
‘sin i % cos im ZF - sin in 2% cos i g)
+ (sin m % cos mm 2? + sin mn ;F cos m %)
(sin i % cos im 2? + sin inm 2? cos i %1]

which is noﬁzero only if m and i are both odd or both even.
Therefore, there is no coupling between the odd and even
terms.

By using only the odd terms in the displacement
series, the range of m was increased, which gave good agree-
ment with the theory of Hu, Gormley, and Lindholm for the
lowest radial frequency. As an example, the following
tabulations shows the lowest radial frequency in cycles
per second at n = 4 for a 7-term series and for two series
containing only odd terms for the simply supported cylin-

der stiffened with symmetric rings:

Range of m n =4
1 -7 1758.1
1 - 19 odd only 1758.1
l - 37 odd only 1225.7

Theory from Ref. 6 1180.0
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At n = 14, the lowest radial frequency using a series con-

taining only the odd terms was:

Range of m n = 14
1 - 13 odd only 8219.8
1 - 29 odd only 2601.4
Theory from Ref. 6 2600.0

Considering the computer time required for the calculations,
it was decided that for this particular cylinder a 15-term
series containing only the odd terms from 1 to 29 could
give adequate results for the lowest frequency.

These two examples indicate that the range of the
displacement series necessary for convergence increases as
the number of bays increases. However, with only two
specific examples, it is not possible to draw any definite
conclusions. Further study is needed in order to decide
which terms should be included in the assumed displacement
series for a particular shell. Then by including only the
necessary terms, the éize of the eigenvalue problem could

be greatly reduced.



CHAPTER IV

DISCUSSION OF RESULTS

Experiments for an Unstiffened Cylinder

The comparison of experimental work with the pres-
ent theory for an unstiffened cylindrical shell is shown
in Figure 4 for clamped-free ends and in Figure 6 for
simply supported ends. Since the comparison of the pres-
ent theory with the exact theory of Forsberg (1) showed
such close agreement for the case of simply supported ends,
it is possible that the difference between the experimental
work of Hu, Gormley, and Lindholm (6), which is shown in
Figure 6, and the present theory could be due to the
boundary conditions of the experimental cylinder. This
conclusion is supported by the close agreement with the
theoretical work of Hu, Gormley, and Lindholm to the
present analysis.

The work of Forsberg showed that there are several
different end conditions associated with the name simple
support. This type of support can be without axial con-
straint, or can have an axial constraint at one or both

ends. Also it is possible for a tangential constraint to

68
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to be present at either end. It was shown by Forsberg
that there can be about 40 to 60 per cent difference in
the minimum frequency depending on which type of simple
support is assumed. Forsberg pointed out that for a shell
with clamped ends the frequency can be as much as 100 per
cent higher than the same shell with freely supported ends.
His work also clearly showed that the influence of boundary
coriditions diminishes for higher values of n.

This explanation could account for the difference
between the experimental points and theory shown in Fig-
ure 6. If the experimental cylinder had some axial
restraint and the tangential displacement was not fully
restrained, the measured frequency would be higher for
low values of n than for a cylinder without axial con-
straint and with the tangential displacement fully
constrained.

Using the work of“Forsberg for a comparison of a
cylinder with clamped-free ends to a cylinder with freely
supported ends, it is inferred that a cylinder with clamped-
free ends would have a higher frequency than a cylinder
with a simple support at one end and free at the other.

If the clamped end of the experimental cylinder was not
rigid enough to make the slope of the radial displacement
zero, as is assumed in the theoretical calculation, the

true end support could be somewhere between a theoretical
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clamped end and a simply supported end. This would cause
the measured frequencies to be lower than expected at low
values of n, and could explain the difference between the
experimental points and theory shown in Figure 4. At
larger values of n the effect of end conditions diminishes,

which is clearly shown in both Figures 4 and 6.

Experiments for a Stiffened Cylinder

The comparison of experimental work with the pres-
ent theory for a stiffened cylindrical shell is shown in
Figure 5 for clamped free ends and Figure 7 for simply
supported ends. Although there are only a few experimental
points in Figure 5, the agreement is closer at the higher
values of n. This indicates that the difference in the
calculated and measured frequencies at lower values of n
is due to the difference between the experimental and-
theoretical end clamping, which was discussed for the
unstiffened cylinder.

The frequency of an unstiffened cylinder for a
particular value of n increases as the axial wave number
(m) increases, and for a particular value of m the fre-
quency increases as the value of n increases. An example
of this is clearly shown in Figure 6. However, the present
theory predicts a second minimum for a stiffened.cylinder,

which is shown in Figure 5 and Figure 7. This minimum also
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occurs for the theory of Hu, Gormley, and Lindholm (6),
which is shown as a continuous solid line in Figure 7.
They explained that this flattening of the frequency curve
is a result of diminished ring motion and weakened coupling
between the bays. If enough terms in the radial displace-
ment series are not assumed, this flattening of the fre-
quency curve does not appear. This is shown in Figure 7
by the dashed line, where only a seven-term series was
assumed. ‘

The continuous solid line in Figure 7 for the
theory of Hu, Gormley, and Lindholm is for the case of
either external or symmetric rings, since the difference
between the two 1s too small to be shown on the figure.
However, the present theory shows a noticeable frequency
difference. The frequencies for the cylinder with external
rings are indicated in Figure 7 by the triangles, and
squares are used to indicate the frequencies corresponding
to the cylinder with symmetric rings.

Another interesting development occurs for the
stiffened cylinder that is different from the case of an
unstiffened shell. The frequency at a particular value
of n does not always increase as the axial wave number
(m) increases. Figures 8 through 14 show the normalized
‘radial displacement (w) plotted against the nondimensional

longitudinal coordinate for the three or four lowest
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Figure 8. Calculated Axial Mode Shapes of a Clamped-Free
Cylindrical Shell Stiffened Internally with Three
Equally Spaced Rings and Sixteen Equally Spaced
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~Cylindrical Shell Stiffened Internally with Three
Equally Spaced Rings and Sixteen Equally Spaced
Stringers for n=9.
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Figure 11. Calculated Axial Mode Shapes of a Simply Supported
Cylindrical Shell Stiffened with Thirteen Equally
Spaced Symmetric Rings for n=2.
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Figure 12. cCalculated Axial Mode Shapes of a Simply Supported
Cylindrical Shell Stiffened with Thirteen Equally
Spaced External Rings for n=2.
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radial-mode frequencies at a particular n. Figures 8, 9,
and 10 are for the stiffened shell with clamped-free ends,
and Figures 11 through 14 are for the stiffened shell with
simply supported ends. For a particular value of n the
mode shape that is associated with the lowest frequency is
shown at the top of each figure with the frequency increas-
ing for each following mode shape.

Notice that in Figure 8 for n = 2, the frequency
increases as m increases from one to three; while in Figure
9 for n = 9, the frequency increases as m goes from four to
one to six; similarly, in Figure 10 for n = 11, the fre-
guency increases as m increases from four to six. The
explanation for this phenomenon is not known. The axial
wave number associated with each frequency for the stiff-
ened cylinder with clamped-free ends is shown in Table 2.

A displacement series with twenty odd terms was
assumed to calculate the frequencies shown in Figure 7.

The axial mode shapes associated with n = 2 for a cylin-
drical shell with simply supported ends are shown in Figure
11 for symmetric rings and in Figure 12 for external rings.
Similarly, the axial mode shapes associated with n = 10
are shown in Figure 13 for symmetric rings and in Figure
14 for external rings. The difference between the mode
shapes for the symmetric and external rings was unexpected,

since the eccentricity of the external rings was small.
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At n = 0, another unexpected phenomenon occurred.
For the case of an unstiffened cylinder, the lowest natural
frequency is usually associated with a radial mode. As is
shown in Figure 7 for a stiffened cylinder, the lowest fre-
quency at n = 0 is associated with a torsional mode (v),
while the second from the lowest is associated with an
axial mode (u), and the third from the lowest frequency
is associated with the radial mode (w) having an axial wave
number of m = 33. These three mode shapes are normalized

and shown in Figure 15 for the case of symmetric rings.
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APPENDIX I

Matrix Elements in Rayleigh-Ritz
Vibration Analysis

This appendix contains detailed expressions for

the unprimed coefficients in equations (50a-f) and the

matrix elements of equation (51). The primed coeffi-
cients, Aijmn Bijmn etc., may pbe calculated by inter-
changing sin ( ) and cos ( ) and by replacing ysL with

-y in the expressions for the unprimed coefficients.
s{

For example,

NN, Sin Z Mrk x [v U]]
*k

V'U.

L
+ I U gglMsLysL(cos n®&s%n J®L)

The terms that are bracketed and subscripted X
as an example Iympi]x ., indicate that the expression is
k
evaluated at the location X . The terms like IU u.’ IV'U.

etc., are a short notation for an integral; for example

85



86

a
-1
IU u. a‘L‘ Um(x)Ui(x) dx
m i
a
1 = -11[ V' (xX)U, (x)dx
V'U. a m i
m 1 0

The following definitions have been made to help

shorten the expressions used for the coefficients:

M = PsrPsy
st = p.TRt
M _ prkArk
rk ~ pcat
2
< ) (1-v )ESLASL
sd EcnRt
2
< ) (L-v )ErkArk
rk Ecat
2
(L-v7) (GJ)
sd
Ts{, = 3
EcﬂR t
2 ~
LD,
rk 2

E aR' 't
C

The term 6jn is the Kronecker delta and is equal to zero
except for j=n.

The unprimed coefficients are as follows:
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A.. =5, dr? (1 ’I'Rj2 I . ﬁ f Srklzark
ijmn jn U 4 UmU.i R2 =1 R
[UmUl]x +R UmUi 4@15 {cos n®Lcos 3®L)
2 K
.2 1-v 2 t .2
B.. = 6. (371 + |=<=] IR” + = |1I,.,x,, + 3 ZS
ijmn jn vai ‘ 2 ) ‘ 4 ) vai =1 rk

L S ,I
2 si z2sdi, . . .
[VV] + R7I_ .o —X—===2(sin n@®,sin jO®,)
m i val Lzl As{, 4 L

x?‘

t2R2

_ TR . [TR-t| ,.4 2
Cijmn = ®3in [t + | T | (5% - 237 Tww.* 7120 Tarwy

_tRvit oo b Ay (R g2, £
12 W" W, Iw w" V2 t ¢ 4
m h K m 1
.4 - .2
K I j 2z .3
.2 XXTK rk
Tgiwi) + 5. L 1Sk : " + 1 [wmw,.Jx
jn k=1 R Ark R X

- 4
X T .3 I
Xk [mei - [thwi + ‘z’k + ;zrk wmw']
X X R Ark rk

s
2 _s4
+ Ty [wm 1.] , + R Lgl A, Tyysttwewy
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T! jn
(cos neLcos 3@ ) + —3— W“W" (sin n@ sin ]® )

+ JnTsL W W' (sin n@LSLn 3® )

.3
ijmn = $5nI® YTy vy - tl-V)Iv Lot ® élsrk’—‘rk [vai]x

D =
k
% -
-R "yt y_,{sin n®,cos j®,)
IVmU:L 1=1 SL st L L
c _ s o1 _ 2R v [R5y et -t)Ri% |
ijmn = %°§n (VY Wi~ 127 Twu i WU,
2 § [w zzrk
+ 3 s ] [w U.]
K1 rk m i ArkR m i .
L e
- RIW"U]'_ LgSSL slLacms n@Lcos 3@0
2 2 K
= : A, 1-v| t~
Fijmn = ®3nd Tw v, 2 Iw;lvi + ( 2 ) 3 Iwn'nv' + k§1
L
k
s [( r) +x w'v].] +RyTer
rk [ i rk[ m % 2 wr'nVJ. LZ=:1

s_,I
—s'-{‘—ém (cos ng{’ sin j®{.)
si



ijmn

ijmn

ijmn

DD.

ijmn

EE; .

FF

(cos ng, sin J®L) Iw}hw'i— TsLJn(cos n@Ls:.n J@L) Iwr.nw!l]

2

=R I

89

L

UmUi Lzl s

)

(sin n@ cos 3®L

2 L

-R

2

-R

-R

2

IW"U' Z Ssczsé(sm n@,cos j@,)

mi.g=1 ‘

LIS r'',jn
sd : . . _S4°
gl[AsL Tyysy (810 18 c08 38,) R

s S Zw (sin n@,sin j§,)

mid=1 As{,

L S I
2 84 "2z81 .
Ternvrn : (cos n@,sin j8,)
val Lzl As& L t

L
2 -
Iy vy (,Zl Sgi¥gy (8in @, sin 3g,)

L

R°I,, .0, S_,Y., (cos ng,cos 38,)
A Lgl sl L )
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L
_ 2
HH; jmn = 7R IUI;‘W;'_ ,?;1 s4Zsy (sin 18 cos 38,)
L S .1
- _n2 si"yzsi .
MM on = R Iv;ﬁw‘i ;1 Al (cos n@,cos j@L)
K 22, 32
rk
N.. = 6. (I + M, (1 + —=5— PJIL]
ijmn jn UmUi kz-':-l rk R2 m i X,
i
+ (cos n@, cos ]@ )
U U:L 1=1 st
K X_ .3
= rk
P,. = -5, M_.Z WU, ] - —————[w U‘]
ijmn jn kz-:~=l rk"rk [ moi X, R2 m i X
fi z )
- I, M .z . {cos n@,cos JB
WU, e siTst 2 L

K L
-2
.. = 6. + M [V V., + M I,
ijmn jn IVmVi kz=:l rk{i{m i X, Lgl sL(ysL vai

sin j®L)

+ I, V‘)(51n ne,
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L
-JL—- Z:M Pﬂ\l + Ym ,z_ {y_ 1
rk®rk X, 2;1 sl s{)'se Whyi

Rijmn
L n . ..
(cos n®L51n 3(%) + R Iwmvi(sn.n n@Lsn.n J@L)
.2
K I J
k
=5, + Ym 1+—-’5x—r—[ww.
ijmn n\"wW W, oo rk 2 m i
k=1 ArkR Xy
+ x [w W, + w'w' + pr? w'w']
rk m:.]x [m i]x Prx [mi
k k *x
L I st
+ Z Ms{, [IW w. * Y¥SL IW'W!] (cos n@Lcos 38 ,)
2=1 m i A m i
sS4
p,in Y, 3
+ I (sin n® sin j@,) it
wmwi R2 t z R
(cos n@LSJ.n J®L) - R (sin nD cos jO )
L
Tijmn = IUmUi & s{,(SIn n®£cos j® )
L
SL s4(31n n@Lcos J@ )

U.. = -I__,
1jmn mei =1
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APPENDIX II

This appendix contains the computer program used to
calculate the natural frequencies of a stiffened cylindrical
shell with circumferential symmetry. Statement functions
or function subprograms must be supplied for the values of
the integrals. For example, the natation IUWl(M,I) means
%‘ég Um(x)Wi(x)dx, and the valué of this integral, which
depends on the assumed axial mode functions, must be
supplied.

The following is a short description of the program
operation. Because of a size restriction, the entire com-
putation was written ir two parts. After reading and
writing the input guantities, some i1ntermediate values were
calculated and stored. Next, the coefficients of the
stiffness matrix were computed and stored on tape, then
the coefficients of the mass matrix were computed in the
same memory location and stored on tape. The rows of each
matrix were calculated one at a time starting with the

diagonal elements. Then using the fact that the matrix

is symmetric, the remainder of the matrix was completed.
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The second part of the main program read the two
matrices and other necessary parameters from the tape.
Both of the matrices were then converted to column vectors,
and the subroutine DNROOT was called. This subroutine used
the subroutine DEIGEN. Both of these subroutines are in
the IBM scientific library, but they have been modified
slightly by the addition of a Common statement and are
used in their double precision form. The results give
the eigenvalues and eigenvectors in column form. Next,
the natural frequencies in cycles per second are computed
from the eigenvalues. Then the eigenvectors are normalized
by the largest coefficient in the radial mode (w) and the

results printed.



aEaEsEaEeNeNeNelsNalaNaNaNaN ol o]

[aNaNaNel

aNaNaNe!

THIS FROGRAM IS FOR A CYLINDER WITH STRINGER SYMMETRY AND IS
SEPARATED INT1) TWO MAIN PROGRAMS. THE FIRST MAIN PROGRAM
CALCULATES THE MASS AND STIFFNESS MATRIX AND WRITES THEM ON TAPE.
THE SECOND MAIN PROGRAM READS THE TAPE AND CALCULATES THE
EIGENVALUES AD ELIGENVECTORS, WHICH GIVE THE VIBRATIONAL FREQUENCY
AND ASSOCIATE . MUDE SHAPES.

MAIN PRUOGRAM IR UNE
MUUNT SCRATZr i4APE ON FORTRAN UNIT NUMBER 7
SUBROUTINES . LEDL BY MAIN PRGGRAM — CHECK,STATEMENT FUNCTIONS

DGUBLE PRECIS! N SROUT24PI1+SIGyRHOC+EC)RyHyAySUML, SUM2,SUM3,SUBT,D
1oUFJoDFNBIG, ! »CAPV,CAPW,CAPU,CAPW1 ,ALPHA,BETA

OUUBLE PRECIST IN TUUSIVIU TUVI s IWIU»TUWL IVIV]IoIWIWIIVIWLaIWIVL 41
LUIULTULVZ IV J1 o TUIW29IW2UL g IV2V2,IV2W2 9 IW2V24 TW2H2IVVIHV,IVW,1
2Re g IVULsIWUL . | %2y IWZ2H IW2V, IWIW

THE DIMENSIUCr 172t FOR THE NEXY STATEMENT MUST B8E EQUAL TO OR
LARGER THAN T+ . NUMBER OF STRINGERS

DUUBLE PRECILIJIN YU16),D0PS116),6JS(16),A5(16),RHOS(16),ES(16),2ZBAR
IS(163 s YBARS{1 )y MS{1639SSUL6)sTS(16)91Z2S(16)91YZS{16),1YYS(16),GA
2MPSL16) 4PP32(156),12ZCS(16)21YZ2CS(16441YYLS(16) '

THE DIMENSIUN SIZE FOR THE NEXT STATEMENT MUST BE EQUAL TO OR
LARGER THAHN THE NUMBER OF RINGS

DUUBLE PRECISION X(13),DPRI(13),GJR(13),AR(13),RHOR(13)},ER(L13),2ZBAR
IR{13) ¢ XBARR(13)4MRE13)ySRI13),TR(13)IXXR{L13}»IXZR(13),IZZR(13),GA
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el eNeNaNg]

o OO0 OO0

OO0

1006

2MPR{13)4PPR2{13),IXXCRE13),IXZCR(13)},IZZCR(13)

THE DIMENSION SIZE FOR THE NEXT TWO STATEMENTS MUST BE EQUAL TO
OR LARGER THAN 3#MSIZE FOR EACH SUBSCRIPT WHERE MSIZE=NSTAR*MSTAR
OR MSIZE=(NHA—NLA+]1)&{NHC-NLC+1)

DOUBLE PAECISION XX{60:60),YY(60,60)
DUUBLE PRECISION XXX(60960),YYY{(60,60)

THE DIMENSION SIZE FOR THE NEXT STATEMENT MUSYT BE EQUAL TO OR
LARGER THAN NSTAR FOR THE FIRST SUBSCRIPT AND LARGER THAN OR
EQUAL TO THE NUMBER Of STRINGERS FOR THE SECOND SUBSCRIPT WHERE
NSTAR=NHC-NLC+1

DOUBLE PKECISION C(204916),S(20,416)

THE DIMENSION SIZE FOR THE NEXT STATEMENT MUST BE EQUAL TO OR
LARGER THAN MSTAR FOR THE FIRST SUBSCRIPT AND LARGER THAN OR
EQUAL TGO THE NUMBER OF RINGS FOR THE SECOND SUBSCRIPT WHERE
MSTAR=NHA-NLA+}

DOUBLE PRECISIDON U{20413),V120,413)¢W(20413)sWL(20,13)

EQUIVALENCE (XXXUieldoYYY(LyldyXX{1s1l),YY(Lly1))
COMMON A,D XX

INTEGER P,4Q

P1=3.141592653589793

CALL CHECK ( 1)}

READ AND WRITE INPUT PARAMETERS AND CASE IDENTIFICATION

READ {1,10061 NGROPS,NWRITE
FORMAT (414)

REWIND 7

WRITE (7) NGROPS

L6



DO 409 NGPS=1,NGROPS
READ (1,1006) NMSETS¢NS,NR
READ(1,1000) '
WRITE (7,1000)

1000 FURMAT{80H

1 )
REAUD(1:1001) RHOCLECyRyHyALSIG
1001 FORMATY {(6f10.01
T=DLOG{(R+H/2.D00)/7{(R-H/2.D0))
IF{NS)200,201,200
200 READ{1,1003)CY (L) AS{L) ¢RHOS(L) ¢ES{L) 4GJISIL)¢L=1,4NS)
1003 FURMATI(5F10.01 .
READ (1410013 (1Z2CSULY4IVYZES(L)»IYYCS(L),YBARS(L)yZBARS(L )sGAMPS (L
1) sL=14NS)
201 IF({NR)202,2C3.202
202 READ(141003}{X(K)AR(K) ¢RHOR(K) ER{K) yGJR(K) 4K=1,NR)
READ (121001 )(IXXCRIKDIIXZCRIK),IZZCR(K) ,XBARRI[K),ZBARR{K ) ,GAMPR (K
1'0K31'NR‘
203 CONTINUE
CALL CHECK ( 2!
WRITE (7) NMSETS
DO 409 NMS=1,NMSETS
READ (191006} NLC yNHC s NLANHA
WRITE (3,1025)

1025 FORMAT{*1 FREE VIBRATION ANALYSIS OF A RING AND STRINGER STIFFENED
1 CYLINDRICAL SHELL®*/* EGLE AND SODER FOR NASA, NGR-37-003-03%5, RI-
21589, 1/11/68°/*' PROGRAM QU-20, FOR VARIOUS END CONDITIONS'//)

WRITE (3,1060INGPS,NMS

1060 FORMAT (* DATA GROUP NUMBER IS*,I4,' MODE SET NUMBER IS*',14//)
WRITE(3,1000)
WRITE(391002)RHOC ¢ECoRoyHoA9SIGsT NS oNR ¢NLCyNHC o NLA, NHA

1002 FORMATL/ /76X ' RHOC=? gELB B 9SS X9 'EC=t ,E16.896Xe'R=?E16.8//76X9y*H=",E1
16.896Xe%A=% sE16.844X9?SIG='yE16.895Xy
2'T=9,E16.8//8Xy *NUMBER OF STRINGERS IS *,13/7/8X,*NUMBER OF RINGS I
3S ¢,13//8X,*ASSUMED MODES CIRCUMFERENTIAL N',13,'-9,13,4X,*LONGI
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4TUDINAL M*,13,'-,13)
CALCULATE INTERMEDIATE VALUES AND WRITE STIFFENER PROPERTIES

IF [NS)}100,101,100
101 MS{11=0.00

$S{i11=0.D0
¥5(11=0.D0
Yi13=0.D0

bPS(1)=0.00
GJS(1)=0.D0
AS(1)=1.00
RHOS(1)=0.D0
ES(11=0.D0
ZBARS{11=0.D0
YBARS(14=0.D0 4
1225{1)=0.D0
I1YYS{1)=0.00
1YZS(1)=0.00
PPS2{1)=0.D0
GAMPS{1)=0.D0
GOT0103

100 DOL10O2L=14NS
MS(L)I=RHOS(LI*AS(LI/(RHOC®PI*R*H)
SS{L)=(1DO~SIG*SIG)*ES(L)®AS(L} /(EC*PI*R%*H)
1ZZS(L)=LZZCS(LI+AS(L)®YBARS(L)I*YBARS(L)
IYYSUL)=1VYYCSIL)I®AS{LI*¥ZBARSIL)I*ZBARS{L)
IVZSIL)=1YZCS(L)+AS{L)*YBARS(L)*ZBARS(L)
PPS2LL)=(1ZZS{LI&IYYSLL))/Z7AS(L)

102 TS{LI=(1.D0-SIG*SIG)*GIS(LI/(EC*PI*R*R&R*H)

410 MRITE(340004) L YIL) ¢AS(L) yRHOS(L) oESIL) +GJISIL)yMS(L}, SS(L’.TS‘L’O
1L=1,NS)

1004 FORMAT(/3X,*STRINGER PROPERTIES'//3Xs 'L ' ,4Xs'YIL)"412X,AS(LI®*,11X
1o ®RHOS(L) * s OX o "ESIL) "o 11X *°GJISILY " 510X *MSIL) " y11Xs¢SSEL)I*11X,"°TS
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2(L)*/(1Xy13,8E16.8))
WRITE (3,1007) (L ,Y(L)oIZZCSIL)oIYZCSIL) »IYYCS(LD,YBARSIL),ZBARS(L)
1,GAMPS(L ) ,L=1,NS)

1007 FORMAT (//3Xe*L* 94Xy *VYIL)*y12Xe " IZZCS{L)" 48X, IYZCSIL)*"y8X,*IVYCSI
 1L)'¢BXs'VBARS{L)?®,8X,*ZBARSIL) ®,8X, *GAMMAPS(L) */{1X,13,7EL6.8))
103 IF{NR)104,105,104
105 MR{11=0.D0

SR{11)=0.D0
TR{(1)=0.D0
X{11=0.00
DPR(1}=0.D0
GJR{1)=0.D0
AR(1)=1.D0
RHOR(1)=0.D0
ER{(1)=0.D0
ZBARR{1)=0.D0
XBARR{1)=0.00
IXXR{1)=0.D0
1ZZR(1)=0.D0
1XZR11)=0.D0
PPR2{11=0.D0
GAMPR(1)=0.D0
GOT0106 - ‘

104 DO107K=1,NR
MREK)=RHOR{K)*AR(K)/(RHOC*A®H)
SRUKI=(1.0D0-SIG*SIG)*ER(K) ®*AR(K) / (EC*A%®H)
IXXR(KI=IXXCR(K)+AR(K)*ZBARR(K)*ZBARR(K)
IZZR(K)=IZZCR{K)+AR(K)*XBARR(K)EXBARR (K)
IXZR{IK)=IXZCR(K)+AR(K)*XBARRIK}*ZBARR(K])
PPR2IK)=(IXXR{KI+IZZR{K))}/AR(K)

107 TR{KDI={1.D0-SIG*SIG)*GJRIK)/(EC*A*R*R*H)

412 WRITE(351005) (KoyXCK)ARCK) RHOR(K) ¢ERIK)y GJR(K)} sMRIK)sSR{KDIeTR(K),
1K=14NR)

1005 FORMAT(/3Xs*RING PROPERTIES*//3X s "K'e4Xe* X{K)® 12Xe*AR(K) 911X,y *RH

00T



1008

106

1009

109

108

440

424

423

10R(K)'.9X.'ER!K)'.I[X.'GJR(K)'.lox.'MR(K)'.llX.'SR(K)'.llX.'TR(K)'
2/{1X+13,8E16.8))

WRITE {3,1008)(KsX(K)oIXXCR{K), IXZCR(K).IZZCR(K).XBARR(KI.ZBARR(K)
1sGAMPR(K )} yK=14NR)

FORMAT (//73X9°K® 94X "' X{K) 912X *IXXCRIK)®* ¢BXs " IXZCRIK)®*8X9*I1ZZCRI
lK)‘gBXo'XBARR(K)'.BX.'ZBARR(K)'18Xy'GAHHAPR(K) /(1Xe13,TEL6.8))
CONT INUE

MSTAR=NHA-NLA+1 |

NSTAR=NHC—NLC+1

MSIZE=MSTAR*NST AR

WRLTE (3,1009) MSTAR,NSTAR,MSIZE

FORMAT (/° MSTAR 15°,13,"* NSTAR IS*,13,* MSIZE IS°,13)
DO 2 J=1,NSTAR ’
DFJ=DFLOATINLC+J-1)

IF(NS) 108,109,108

C(J, 1,=0.DO

StJel) =0.D0

G0T02

DO 440 L=1,NS

ClJL)=DCOS(DFJEY(L)/R)

S{JeLI=DSIN(DFJ*®Y{L)/R)

CONTINUE

CONTINUE

DO 422 I=1,MSTAR

11=I+NLA~1]

IF (NR) 423,424,423

UtL,1)=0.D0

Vil,1)=0.D0

W(ly1)=0.D0

Willle1)=0.D0

GO TO 422

DO 441 K=1,NR

D=X(K)

U(TI.K)}=CAPULILI)
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(e Eale]

441

VI(LeK)=CAPVIII)
W{IsK)=CAPW(II)
W1(I,K}=CAPWL(II)
CONTINUE

422 CONTINUE

CALL CHECK ( 3)

COMPUTE STIFFNESS MATRIX

I11=0
ROW 1

DO4Q=1,MSIZE

LiI=11I+1
INTGQ=(Q— 1} /MSTAR
I=Q-INTGQ*MSTAR+NLA~-1
I1=I-NLA+]
J=INTGQ+NLC
JI=INTGQ+1
DFJ=DFLOAT (4}

SUBMATRIX A

NN=Q-1

DOSP=Q,MSIZE

NN=NN+1

INTGP={P—-1) /MSTAR
M=P—-INTGP*MSTAR+NLA-1
Ml1=M—NLA+1
N=INTGP+NLC
N1=INTGP+1
IF(J-N)110,111,110

Z0T



[aEake! OO0

[aNsXe!

OO0

110 XXX{I14NN)=0.D0
GOTOo112

RING ELEMENTS

111 SUM2=0.D0
DO 113 K=1,NR

113 SUMZ2=SUM2+SR{K)*[ZZRI(K)*U (ML, ,K)*U(I1,K)/AR(K)
XXX{IToNN)=TULUL(M,I)*%R*R+{{1.D0—-SIG) *DFJ*DFJ/2.D0)*IUU(M,I)*T*R/H
1+SUM2#DF J**4/(R¥R)

STRINGER ELEMENTS

112 SUM1=0.D0
DO6L=14 NS
6 SUML=SUML+SSILI*CI(NL,L)*C(J1,L)
5 XX{IToNN)=XXX{IT,NN)+IULUL{M, I )*R&RESUM]
\

SUBMATRIX D

DO7P=1,MSI1ZE
NN=NN+1
INTGP=(P-1)/MSTAR
M=P—INTGP*MSTAR+NLA-1
M1=M-NLA+1
N=INTGP+NLC
N1=INTGP+1
IFLJ-N) 11541164115

115 XXX(II,NN)=0.D0 :
GO 10 77 |

RING ELEMENTS

116 SUM1=0.D0
DO 114 K=]1,NR

£0T



SIN3W3II3 YIONINYLS

ZANS3CI0xC40+H/ (T *WINTMI %M 4A8M 0% (H--1 %8 ) =¥ 2 (001

*Z/691S~00" 1) +{0UZT/ (I *WITNZM T #UxHARH)~( T*W) TNMI 4= IS={NN*TT) XXX
' (N¢T11

IN2EE3HNIYV) /AL TH) TMa (A IMZZE+U/ (O TIWIM2 ) YYVAX IR {H)AUSH+ZWNS=2ZWNS
HN*T=X €L 0G

0a°0=2Wne

SIN3IW3ITI ONI Y

121 01 09

OCG*0O=(NN*TIIXXX

LIT*ETT1%LTT IN-TYdI

1+d9LINI=1IN

JIN+IILINT =N

o THVIN-W=TIK
D) T-VIN*YY ISWxdIIN]I-d=W
- HYLSW/(T—-d )=daiINT
T+NN=NN

32ISW*1=d 8 0Q

=] X13Lvihans

CHNSH(T*W)TNZAT XY U~ (NN TT)IXXX=(NN*TT)XX
(TLTICIDx(TLINISH(TISUVEAZR( 1) SS+2ZWNS=2ZHNS
“N¢T=T 61T OQ

0a*0=2WNs

SIN3IWITI HIININUILS
d/e#x%xl1

402TWNSH (T WINTAER(OIS-00°T) %006 (I WITNAT*OIS ) 284l 40=(NN*T T )XXX
(TN A THIAR (AR ) YUVAX X (N DIYS+TWNS=TWNS

€L

811

L1171

611

Lz

%11

LQLUOL

QOO



OO0

OO0 [aXaN gl

121

S ®0

126

SUM1=0.D0

00 9 L = 1y NS

SUM1 = SUML+ZBARS(L)&SSIL)I*CIN1,L)*C(J1,L)
XXCELoNN)=XXXUTIoNN)—IW2UL{M,]1)*R¥R¥SUM]
CONTINUE

CALL CHECK ( 4!

ROW 2

DO1S Q=1,MSIZE

ii=11+1

INTGQ=(Q—1)/MSTAR
I=Q—INTGQ*MSTAR+NLA-1

I1=I-NLA+]

J=INTGQ+NLC '
JI=INTGQ+1

DFJ=DFLOAT(J}

SUBMATRIX DT
NN=MSIZE+Q-1
SUBMATRIX B

DO130 P=Q.MSIZE
NN=NN+1

INTGP=(P—-1) /MSTAR
M=P-INTGP&MSTAR#NLA-1
M1l=M-NLA+1
N=INTGP+NLC
NI=INTGP+1
IF(J-NI126,127,126
XXX(IIyNN}=0.D0

GO TO 79

SO0T



106

MI*H*H% (91S-00"T)+00°2T1/ (I WIAZMI*OISeH*H-(T1*WIAMT) %M JA=(NN*TT)XXX
(ASTIIARCINT

CTR) TMa N YEVEX+ (N THIMS(U/ (N ) UUVEZ#M 408 3G+00° 1) 12 (XN )IUS+TWNS=TWNS 02
YN*1=M 0200

0CG°0=TWNS 621

SINIW3I3 ONIY

84 01 09
OQ°0=(NN*TI)XXX 821
821¢621°82TIN-T}41
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c
c

[eXaka

(N aNe (aNeN el

11V1i(Ms1)/8.D00#5UM1)

STRINGER ELEMENTS

78 SUM2=0.D0

DO 123 L=1,4NS

123 SUM2=SUM2+SSIL)*IYZS(L)*CINLL)*S{J1,L)/AS(L)
19 XXLIIoNN)=XXXCIL NN)+R*¥REXTW2V2 (M, [ )*SUM2
15 CONTINUE

CALL CHECK ( 5)
ROW 3

D024Q=1,MSIZE

11=11+1
INTGQ=(Q-1)/MSTAR
I=Q-INTGQ®MSTAR+NLA-1
I1=1-NLA+]
J=INTGQ+NLC
JI=INTGQ+1
DFJ=DFLOAT{J)

SUBMATRIX ET,FT
NN=MSIZE*2+¢Q-1
SUBMATRIX C

D027P=Q,MSIZE

NN=NN+1

INTGP=(P—1)/MSTAR

M=P—INTGP*MSTAR+NLA-1
 M1=M-NLA+1

N=INTGP+NLC

N1=INTGP+1

LOT
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(2N gNg)

(N gXg)

421
1050

1051

1052
420

IF (NWRITE) 420,421,420
WRITE(351050)

FORMAT(*1 STIFFNESS MATRIX')
MSIZE6=MSIZE*3

DO 420 I=1,MSIZES6

WRITE{(3,1051)1

FORMAT (/7/3X,°ROW* 413/)

WRITE (341052)(XX{I5J)+J=1,MSIZES)
FORMAT (2X8El6.8)

CONTINUE

WRITE (7) XX

CALL CHECK ( 9]

COMPUTE MASS MATRIX
11=0
ROW 1

DO 300 Q=1,MSIZE
11=11+1
INTGQ=(Q-1)/MSTAR
[=Q~INTGQ*MSTAR+NLA-1
Il1=I-NLA+}
J=INTGQ+NLC
J1=INTGQ+1
DF4=DFLOAT(J)

SUBMATRIX N

NN=Q—-1
DO 301 P=Q.MSIZE

60T
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OO0

NN=NN+1

INTGP=(P-1) /MSTAR

M=P—-INTGP*MSTAR+NLA-1

M1=M-NLA+1

N=INTGP+NLC

N1=INTGP+1

IF (J—-N} 3024303,302
302 YYY{I14NN})=0.DO

GO YD 305

RING ELEMENTS

303 SUM1=0.D0
DO 304 K=1;3NR

304 SUM1=SUML+MRIK}*UIMLl K)®U(I1,K)*(1.DO¢+{XBARR(K)*DFJ/R)*%2)
YYY(IIoNN)=SUM1+IUU(M:I)

STRINGER ELEMENTS

305 SUM2=0.D0

DO 306 4=1,NS
306 SUM2=SUM2¢MS{L)I*CINL,L)*C(JLl,L)
301 YY(II,NN}=TUUIM,I)*SUM2+¢YYY{II,NN)

SUBMATRIX NN

DO 307 P=1,MSIZE
NN=NN+1
INTGP=(P—1)/MSTAR
M=P-INTGP*MSTAR#+NLA-1
Ml=M—-NLA+1
N=INTGP+NLC
N1=INTGP+1
IF (J-N) 341,342,341
341 YYY{II,NN}=0.D0

011



GO YO 345

RING ELEMENTS

A0

342 SUM1=0.DO
DO 327 K=1+NR

327 SUM1=SUML#MR(K)*XBARR(K)*VIML,K)*U(I]1,K)
YYY(II,NNI=DF JESUML/R

STRINGER ELEMENTS

OO0

345 S5UM2=0.D0

DO 346 L=1,NS
346 SUM2=SUM2+MSIL)I*YBARS{LI*S(NL,L)I*C(JLl,L)
307 YYALIIoNN)=YYY(II,NN}=-IVIU(M,]I)ESUM2

SUBMATRIX P

OO0

00 308 P=1,MSILZE

NN=NN+1

INTGP=({P-1)/MSTAR

M=P—INTGP*MSTAR+NLA—-1

M1=M—NLA+1

N=INTGP&NLC

N1=INTGP+1

IF (J-N) 309,310,309
309 YYY(ILI+NNI=0.00

GO TQ 312

c
C RING ELEMENTS
c

310 SUM1=0.D0
DO 311 K=1,NR

311 SUM1=SUM1+ZBARRIK)*MRIKI*{W1{(M]1sK)}—XBARRIK)*DF J*DF J*W(ML,K)/(R*R))
1*%U( 1K)

111
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OO0 OO0

312

313
308
300

YYY(II,NN)==5UML
STRINGER ELEMENTS

SUM2=0.D0

DO 313 L=1,NS
SUM2=SUM2&ZBARS(L)*MS{LI*C(N1l,L)*C(J1,L)
YY(IIoNN)=YYYUTIsNNI-IWLIU (M, 1) %*SUM2
CONTINUE

CALL CHECK (10}

ROW 2

DO 319 Q=1.,M51Z2E

II=11+1

INTGQ=(Q-1)/MSTAR
[=Q—- INTGQ#*MSTAR+NLA-1
I1=I-NLAe¢1
J=INTGQ#NLC
J1=INTGQ+1

DF J=DFLOAT(J)

SUBMATRIX NNT
NN=MSIZE+Q-1
SUBMATRIX Q

DO 329 P=Q,MSIZE
NN=NN+1
INTGP=(P-1)/MSTAR
M=P—-INTGPEMSTAR+NLA-1,
Mi=M-NLA+1
N=INTGP+NLC
N1=INTGP+1

AN



[aNaNg] OO0

OO0

(s NaNel

I€ (J-N) 3224323,322
322 YYY(II4NN)=0.DO
GO TO 325

REING ELEMENTS

323 SUM1=0.DO
DO 324 K=1,NR

324 SUM1=SUMLI#+MR(KI*V(ML,K)*V({I1yK)
YYYCLEoNN)=SUML1+IVV(M,1)

STRINGER ELEMENTS

325 SUM2=0.D0
DO 328 L=1,NS

328 SUM2=SUM2eMS{L)*S{NL,L)*S{JLleL)*(YBARS(L)*YBARS(L)*®IVIVL(M,I)+IVV(
IMs 1D

329 YY(IToNN)=SUM2+YYYLII NN}

SUBMATRIX R

DO 338 P=14MSIZF
NN=NN+1
INTGP=(P-1)/NSTAR
M=P—-INTGPEMSTAR+NLA~-1
Ml=M-NLA+]1
N=INTGP+NLC
N1=INTGP+1
DFN=DFLOAT{N)
IF tJ-N) 331,332,331
331 YYY(1I4NN)=0.DO
GO TO 336

RING ELEMENTS

€11
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(e X aNel

(aNgNy) (aNalel

332 SuMl=0.00
DO 333 K=1,NR

333 SUML=SUML +ZBARRIK)*MR(K)*WIM]1,K)*V(I1,K)
YYY{I1+sNN)=DF J&SUML/R

STRINGER ELEMENTS

336 SUM2=0.D0
DO 337 L=1sNS

337 SUM2=SUM2+ZBARS(LI*MSI{L)*(SINL,L)*DFN*IWVI(M,1)/R+YBARS(L)*C(N1,L)*
LINIVI(M,I})®S(J1,L)

338 YY{II+NN)=SUM2+YYY{ILI,NN)

319 CONTINUE
CALL CHECK (111}

ROW 3

DO 348 Q=1,MSIZE
LI=11+1
INTGQ=(Q—-1)}/MSTAR
I=Q—INTGQ*MSTAR+NLA-1
I1=I-NLA+1
J=LINTGQ+NLC
J1=INTGQ+1
DFJ=DFLOAT(J)

SUBMATRIX PT, RT
NN=MSIZE*2+Q—-1
SUBMATRIX S

' DO 351 P=Q,MSIZE

NN=NN+1
INTGP=(P~1)/MSTAR

vi1
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431
1080

1081

1082
430

409

PRINT MASS MATRIX IF NWRITE IS ZERO

IF (NWRITE) 430,431,430

WRITE (3,1080)

FORMAT (*1 MASS MATRIX®)
MSIZE6=MSIZE*3

DO 430 I=14MSIZES

WRITE (3,1081) 1

FORMAT (/773X "ROW?,13/)

WRITE (3,1082) (YY(1,J)e J=1,MSIZESG)
FORMAT (2X8E16.8)

CONT INUE

WRITE (7) YYL,EC,SIGyRHOC,R¢NLCyNHC,NLA,NHA
CONTY INUE

sToP

END

91T
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OO0

(e NaXgl

MAIN PROGRAM NUMBER TWO

THIS PROGRAM MAYBE RUN DIRECTLY AFTER THE FIRST OR AS A SEPARATE
JOB.

SUBROUTINES CALLED BY MAIN PROGRAM - DNROOT
DOUBLE PRECISION EC»SIGsRHOC4R,BIG

THE SUBSCRIPTS ON THE NEXT THREE CARDS MUST BE THE SAME AS IN THE
FIRST MAIN PROGRAM AND ALSO IN THE TWO SUBROUTINES DNROOT AND
OEIGEN.

!
DOUBLE PRECISION XX(60,60),YYt60,60)EVEC(60,60)
DOUBLE PRECISION EVAL(60]}
DIMENSION FREQ(60)ISAVE(60)

THE SUBSCRIPTS ON THE NEXT CARD MUST BE THE SQUARE OF THAT ON EVAL.

1
DOUBLE PRECISION SX(3600),SY(3600),EE(3600)

JEQUIVALENCE (SXOLIoXXCLY¥)o(SY(L,YY(1),EVEC(1))

1000
1

COMMON YY

REWIND TAPE AND READ INPUT VALUES

REWIND 7

READ (7) NGROPS

D0 409 NGPS=1,NGROPS
READ (7,1000)
FORMAT(80H

LT



sXaKe)

READ (7) NMSETS
DO 409 NMS=1,NMSETS
WRITE (3,1061)

1061 FORMAT{'1 FREE VIBRATION ANALYSIS OF A RING AND STRINGER STIFFENED
1 CYLINDRICAL SHELL®*/* EGLE AND SODER FOR NASA, NGR-37-003-035, RI-

800

801

1060

3PROBLEM USING DNROOT AND DEIGEN®//)
WRIYE (3,1000)
READ (7) XX

21589, 1/15/68°/* PROGRAM 0U-30, SOLUTION OF THE EIGENVALUE

READ (7) YYZECsSIGs+RHOCsR¢NLC y NHC ¢ NLAyNHA

MSTAR=NHA-NLA+1
NSTAR=NHC—-NLC+1
MSIZE=MSTAR#*NSTAR
MSIZE6=MS1ZE*3

SOLVE EIGENVALUE PROBLEM

1J=0

DO 800 K=1,MSIZE®6

DO 800 L=14MSIZES6

[d=1J+1

SXCEJ)=XX(L oK)

1J=0

DO 801 K=1,MSIZE6

DO 801 L=14MSIZESG

1d=1J+1

SY(LJ)=YY (LK)

CALL DNROOT (MSIZEG6+SX+EVALLEE)
WRITE (341060)INGPSyNMS

FORMAT [*ODATA GROUP NUMBER IS*,I4,°
I1J=0

- DO 802 K=1,MSIZE6

802

DO 802 L=1,MSIZE6
IJ=1J+1
EVECIL.KI=EE(LJ)

MODE SET NUMBER IS*,14//)

811
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(aNeNel

400

404

408
406

428
407

27
405

coo

1020

%47

446

COMPUTE FREQUENCIES FROM EIGENVALUES

DO 404 I=1,MSILES
OMSQ=EVAL(I)*EC/( (1. DO—SIG*SIG)*RHOC*R*R)
FREQUI)=SQRT(ABS(OMSQ) 1/6.283185

NORMALIZE EIGENVECTORS

NEW1=2%MSIZE+1
NEW2=3¢MSI1E

DO 405 J=1,MSIZE6
8IG=0.00

DO 406 I=NEW1 4NEW2

IF (DABS(EVEC(I1:J)1-DABS{BIG)) 406,408,408
BIGS=EVEC(1,4)
ISAVE{J)=1

CONV INUE

IF (BIG) 42844274428

DO 407 I=1,MSIZEG
EVEC(1I,J0=EVEC(I,J)/BIG
GO TO 405

ISAVE(J)=100

CONTINUE

WRITE EIGENVALUES AND FREQUENCIES

WRITE (3,1020)

FORMAT (*0 J ETGENVALUES
DO 445 J=1.MSIZE6
IFCISAVE(J)-100) 44694474446
M=0

N=0

GO TOD 448
III=1ISAVE(J)-2*%NSIZE

FREQUENCY (CPS)

Nt/7/)

611
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1023
445

1021

1022

“l4
1026
409

INTGP=(TLII-1)/MSTAR
M=IITI-INTGP#MSTAR#NLA-1

N=INTGP+NLC

WRITE (3,1023) JyEVALUJ) FREQUI) yMyN
FORMAT (13,2E17.8,2(4X,13))

CONTINUE

WRITE EIGENVECTORS

WRITE (3,10211}

FORMAT (*] EIGENVECTORS?®)
DO 409 J=1,MSIZE6
I11=0

WRITE (3,1022) J

FORMAT (' (*,1I3,%)%)

DO 414 K=1,3

II=t11+1}

IHI=11T+MSIZE

WRITE (3,10260) (EVEC(I,J)I=11,111)
FORMAT (/7(5X+6D19.8)}

CONTINUE

STOP

END

0ct
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NROOTOOI

..QQ...‘C..Q....“..Q‘...O0.0..0...................O.Q...-...OO....NROOTOOZ

NROOTO003
SUBROUTINE NROOT NROOTO0O04
NROOTO005
PURPOSE NRGOOT006

COMPUTE EIGENVALUES AND EIGENVECTORS OF A REAL NONSYMMETRIC NROOTOO7
MATRIX OF THE FORM B-INVERSE TIMES A. THIS SUBROUTINE IS NROOTOOB

NORMALLY CALLED BY SUBRQUTINE CANOR IN PERFORMING A NROOQT009
CANONICAL CORRELATION ANALYSIS. NROOTO10
NROOTO11

USAGE NROOTO12
CALL NROOT (MyA,BeXL,yX) NROOTOL13
NROOTO14

DESCRIPTION OF PARAMETERS NROOTO15
M -~ ORDER OF SQUARE MATRICES A, B, AND X. NROOTO16

A - INPUT MATRIX (M. X M). NROOTO17

B — INPUT MATRIX (M X M). NROOTO1l8

XL — OUTPUT VECTYOR OF LENGTH M CONTAINING EIGENVALUES OF NROOTO19
B—INVERSE TIMES A. NROOTO020

X = DUTPUT MATRIX (M X M) CONTAINING EIGENVECTORS COLUMN- NROOTO21
WISE. NROOT022
NROOTO023

REMARKS NROOTO024
NONE NROOTO25
NROOTO026

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED NROOTO27
EIGEN NROOT028

, NROOTO029

METHOD NROOTO30

REFER TO We. W. COOLEY AND P. R. LOHNES, *MULTIVARIATE PRO- NROOTO31
CEDURES FOR THE BEHAVIORAL SCIENCES®*, JOHN WILEY AND SONS, NROOT032
1962, CHAPTER 3. NROOTO033

NROOTO34
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sNaNeNaNaRale!

OO0

....“‘.‘-.Q."..........................O.......................Q.NRODT035

NROOTO356
SUBROUTINE DONROOT (MeA,XLsX)
DIMENSION Al1),XL(1),B{3600),X(1)
NROOT039
NROOTO41
IF A DUUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE NROOT042
C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION NROOTO043
STATEMENT WHICH FOLLOWS. NROOTO44
NROOTO045
DOUBLE PRECISION Ae¢Be XL 9 X9 SUMV,TEMP
COMMON B
NROOTO0&7
THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS NROOTO048
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH TRHIS NRODOT049
ROUTINE. NROOTO0S0
NROOTOS1
THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO NROOTO0S52

CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT IN STATEMENTSNROOYO0S3
110 AND 175 MUST BE CHANGED TO DSQRT. ABS IN STATEMENT 110 NROOTO054

MUST BE CHANGED TO DABS. NROOTOS55
NROOTO0S56
......‘.......Q‘.‘..‘.‘......................................'.NROOTOS?
NROOTO58

COMPUTE EIGENVALUES AND EIGENVECTORS OF B NROOTO059
NROOTO060

K=1 NROOTOb61
D0 100 J=2,M NROOTO062
L=N¥*{J-1) . NROOTO63
DO 100 I=1,J NROOTO64
L=L+l NROOTO65
K=K+1 NROOTO066
100 B(K)=B(L) NROOYO067
NROOTO68

AAS
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130

200

140

150

=L+l
A(L)=0.0

DO 130 K=1,M
N1=N1+M
N2=N2+1
ALL)=A(L)+X(NL1)*B(N2)
K=0

DO 200 I=1.M
DO 200 J=1,M
K=K+1
TEMP=B(K]}
B(KI=A{K)
A(K)=TEMP

COMPUTE EIGENVALUES AND EIGENVECTORS OF A

CALL DEIGEN (X,M,MV)

L=0

DO 140 I=1,M
L=L+1
XL{1)=8{(L)

COMPUTE THE NORMALIZED EIGENVECTORS

DO 150 I=1,M
N2=0

00 150 J=1,M
Nl1=1I-M
L=M%{J-1)+]
B(L)=0.0

DC 150 K=1,M
Ni=N1+M
N2=N2+1
B(L)=BIL)+A(NL)*X(N2)
L=0

NROOT104
NROOT105
NROOT 106
NROOT107
NROOT108
NROGT109

NROOT110
NROOT111
NROOT112

NROOT114
NROOT115
NROOT116
NROOTRL7
NROOT118
NROOT119
NROOT120
NROOT121
NRDOT1L22
NROOT123
NROOT124
NROOT125
NROOT126
NROOTLR27
NROOTL 28
NROOTL129
NROOT130
NROOT131

bzl



170
175

180

K=0

DO 180 J=1,M
SUMV=0.0

DO 170 I=1,M
L=L+1
SUMV=SUMV+B{L)*B(L)
SUMV=DSQRT{SUMV)
DO 180 I=1.M
K=K+1
X{K)=B(K)/S5UMV
RETURN

END

NROOT132
NROOT133
NROOT134
NROOT135
NROOT136

NROOT139
NROOT140

NROOT142
NROOT143

SZ1
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EIGENOO1

....-.O......................0....o.......-..o.............o..c...E‘GENOOZ

SUBROUTINE DEIGEN

PURPOQOSE

CCoMPUTE EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC
MATRIX

USAGE
CALL DEIGENU(AJR,NeMV)

DESCRIPTION OF PARAMETERS
A — ORIGINAL MATRIX (SYMMETRIC), DESTROYED IN COMPUTATION.
RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGONAL OF
MATRIX A IN DESCENDING ORDER.
R — RESULTANT MATRIX OF EIGENVECTORS {STORED COLUMNWISE,
IN SAME SEQUENCE AS EIGENVALUES)
N - ORDER OF MATRICES A AND R
MV- INPUT CODE
0 COMPUTE EIGENVALUES AND EIGENVECTORS
1 COMPUTE EIGENVALUES ONLY (R NEED NOT BE
DIMENSIONED BUT MUST STILL APPEAR IN CALLING
SEQUENCE)

REMARKS
ORIGINAL MATRIX A MUST BE REAL SYMMETRIC (STORAGE MODE=1)
MATRIX A CANNOT BE IN THE SAME LOCATION AS MATRIX R

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NOGNE

METHOD
DIAGONALIZATION METHOD DRIGINAYED BY JACOBI AND ADAPTED

EIGENOO3
EIGENOO4
EIGENOOS
EIGENOOG6
EIGENOO7
EIGENOOS
EIGENOO9
EIGENO10
EIGENOL1
EIGENOL12
EIGENO13
EIGENO14
EIGENO1S
EIGENO16
EIGENO17
EIGENOL8

EIGENO19.

EIGENO20
EIGENO21
EIGENO22
EIGENG23
EIGENO24
EIGENO25
EIGENO26
EIGENO27
EIGENO28
EIGENO29
EIGENO30
EIGENO31
EIGENO32
EIGENO33
EIGEND34

BY VON NEUMANN FOR LARGE COMPUTERS AS FOUND IN *MATHEMATICALEIGENO3S

9Z1



e XakaNea Xyl

s NaNaNaNeNaRaNgNaNoaRaNoNa e (g} (aXeNeNaNaN el

METHODS FOR DIGITAL COMPUTERS®, EDITED BY A. RALSTON AND EIGENO36
HeSe WILFy JOHN WILEY AND SONSe NEW YORK,e 1962, CHAPTER 7 EIGENO37

EIGENO38
OB 00 B0 OB G 90D 0DV DP DD D IO AY B8 PSSO DO IDOSOSSE .....‘......‘.O...EIGE~039
EIGENO4O
SUBROUTINE DEIGEN (RyNeMV)
DIMENSION A(3600),R(1)
CGMMON A
EIGENO43
GG 8 000 OB COC OO N OO0 OO DOOLSNOCenssODee ........‘................EIGENO‘k
EIGENO4S
IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE EIGENO46
C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION EIGENO&7
STATEMENT WHICH FOLLOWS. EIGENO48
DOUBLE PRECISION AgRsANORMyANRMX» THR9 X9Y 9 SINXSINX2,COSX, EIGENOSO
EIGENO49
1 COSX24ySINCS EIGENOS1
EIGENOS2
THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS EIGENOS53
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS EIGENOS54
ROUTINE. EIGENOSS
EIGENOS56
THE OOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO EIGENOS7

CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT IN STATEMENYSEIGENOSS
40, 689 75, AND 78 MUST BE CHANGED TD DSQRT. ABS IN STATEMENT EIGENOS9

62 MUST BE CHANGED TO DABS. EIGENO060
EIGENOS1
...................................Q..........................CEIGEN062
EIGENO63

GENERATE IDENTITY MATRIX EIGENOG64
EIGENO65

IF(MV-1) 104+25,10 EIGENOG66

10 1Q=-N : EIGENO67
DO 20 J=1.N EIGENOG68

IQ=1Q+N EIGENO69

INA
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20

DO 20 I=1,.N

EIGENOT7O

OO0

(aNaN el

(2N el gl

35

40

45

55

60

62
65

1J=1Q¢I EIGENOT1
R({IJI=0.D+00 EIGENOT2
IF(I-J) 20,15,20 EIGENOT3
R(LJ)I=1.0+00 EIGENO74
CONTINUE EIGENOTS
EIGENOT76

COMPUTE INITIAL AND FINAL NORMS {ANORM AND ANORMX) EIGENOT7
EIGENOT78

ANORM=0.0+00 EIGENOT9
DO 35 I=1,4N EIGENOBO
00 35 J=IyN EIGENOB1
IF(I-J) 30+35,30 EIGENOS82
LA=1¢(J®y-3)/2 ' EIGENOB3
ANORM=ANORM+A (T A) *A{IA) EIGENOSB4
CONTINUE E1GENOS8S
IF(ANORM) 165,165,40 EIGENOBS
ANORM=1.414D¢+00*DSQRY{ ANORM) EIGENOB7
ANRMX=ANORM*1 .00~06/FLOAT(N) EIGENOBS
EIGENOB9

INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR EIGENO090
EIGENO91

IND=0 EIGEND92
THR=ANORM EIGENO93
THR=THR/FLOAT{N) EIGENO94
L=1 EIGENO9S
M=L+]1 EIGENO96
EIGEN097

COMPUTE SIN AND CODS EIGENO98
EIGENO99

MQ=(M*M-M) /2 EIGEN100
LO=(L*L-L)/2 EIGEN1O1
LM=L+MQ EIGEN1O2
IF(DABS(A(LMII-THR) 130+65,65 EIGEN103
IND=1 EIGEN104

8¢1
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68

70
15

78

80
85

90,
95
100

105
110

115
120

Li=L+LQ

MM=M+MQ

X=0.50¢00%(A{LL)-A(MM))
==A(LMI/DSQRT (A(LM)®A(LM) ¢X%X)
IF(X) 70475,75

Y=~Y
SINX=Y/DSQRT{2.0+00%*(1.0¢#00+(DSQRT(1.D+00-Y%Y))))
SINX2=SINX#*SINX
COSX=DSQRT(1.00¢00-SINX2)
CUSX2=COSX*COSX

SINCS =SINX#COSX

ROTATE L AND M COLUMNS

ILQ=N*(L-1)

IMQ=N*{M-1)

DD 125 I=1,N
IQ=C(I%]I-1)/2

IF¢LI-L) 80,115,80
IFCI-M) 85,115,90
IM=1+MQ

GO 70 95

IN=M¢]Q

IF(I-L) 100,105,105
IL=1+LQ

60 TO 110

IL=L+¢]IQ
X=A(IL)*COSX—ACIM)*SINX
A(IM)=A(IL)I*SINX+A(IN)*COSX
ALIL)=X

IF(MV-1) —m@.nwmypmo
ILR=ILQ*]

IMR=I MQ+] m

X=RUILR)*COSX~R ( MR} *SINK

RULMRI=RUILRI*SINX+R{ IMR)}*COSX

EIGEN10S
EIGEN106
EIGEN107
EIGEN108
EIGEN109
EIGEN110
EIGENL111

EIGEN112

EIGEN113
EIGENL114
EIGENL1S
EIGENL116
EIGENLLY
EIGENL18
EIGEN119
EIGENL120
EIGENL121
EIGEN122
EIGEN123
EIGENL24
EIGEN125
EIGENL126
EIGENL127
EIGEN128
EIGENL129
EIGEN130
EIGEN131
EIGEN132
EIGEN133
EIGEN134%
EIGEN135
LIGEN136
EIGENL137
EIGEN138
EIGENL139

6C1
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OO0 oMo

125

130

135

140
145

150
155

160

165

R{ILRI=X
CONTINUE
X=2.D+00%A(LM)*SINCS

Y=A(LL)*COSX2¢+ACMM) *SINX2-X
X=A{LLI*SINX2¢A(MN)*COSX2¢X
ACLM)=(A(LLI-A(MM) }*SINCS+A(LM)I*(COSX2-SINX2)
A(LL)=Y _

A(MM)=X

TESTS FOR COMPLETION
TEST FOR M = LAST COLUMN

IF(M-N) 135,140,135
M=N+1
GO TO 60

TEST FOR L = SECOND FROM LAST COLUMN

IFCL-IN-1)) 145,150,145
L=L+l

GO TO 55

IFUIND-1) 16051554160
IND=0

GO 70 50

COMPARE THRESHOLD WITH FINAL NORM
IF{THR-ANRMX) 165,165,445

SDRT EIGENVALUES AND EIGENVECTORS
[Q=-N

DO 185 [=1,N
IQ=1Q+N

EIGEN140
EIGENL14]
EIGEN142
EIGEN143
EIGEN144
EIGENL45S
EIGEN146
EIGENL47
EIGEN148
EIGEN149
EIGEN150
EIGEN1S1
EIGEN152
EIGENL1S53
EIGEN154
EIGENLS55
EIGEN156
EIGENL1S7
EIGEN158
EIGEN1S59
EIGENL160
EIGEN161
EIGEN162
EIGEN163
EIGENLG64
EIGENL165
EIGEN166
EIGENL67
EIGEN168
EIGEN169
EIGEN170
EIGEN1T1
EIGEN172
EIGENLT3
EIGEN1T74

0€T1



170

175

180
185

LL=1+(1¥%1-1d72

JQ=N*(1-2)
DO 185 J=1,N
JQ=JQ+N

MM=J¢(J*J-J)/2
IFCA(LL)-A(MM)) 170,185,185
X=AtLL)

A(LL)=A(MM)

A(MM)=X

IF{MV-1) 175,185,175
DO 180 K=1,N
ILR=]1Q¢K

IMR=4Q+K

X=R(ILR)
RUILRI=R{IMR)
RUEIMR)=X

CONTINUE

RETURN

END

EIGEN1TS
EIGENL1T6
EIGENL1T7
EIGEN178
EIGENL179
EIGEN180
EIGEN181
EIGEN182
EIGEN183
EIGENL184
EIGEN185
EIGENL 86
EIGEN187
EIGEN188
EIGEN189
EIGEN190
EIGEN191
EIGEN192
EIGEN193
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