This dissertation has been microfilmed exactly as received $\quad 68-12,332$

SODER, Jr., Keats Endymion, 1943-
AN ANALYSIS OF FREE VIBRATION OF THIN CYLINDRICAL SHELLS WITH RINGS AND STRINGERS TREATED AS DISCRETE ELEMENTS WHICH MAY BE NONSYMMETRIC, ECCENTRIC, AND ARBITRARILY SPACED.

The University of Oklahoma, Ph.D., 1968
Engineering, aeronautical

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

AN ANALYSIS OF FREE VIBRATION OF THIN CYLINDRICAL SHELLS WITH RINGS AND STRINGERS TREATED
AS DISCRETE ELEMENTS WHICH MAY BE NONSYMMETRIC, ECCENTRIC, AND ARBITRARILY SPACED

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

BY
KEATS E: SODER, JR. Norman, Oklahoma

AN ANALYSIS OF FREE VIBRATION OF THIN CYLINDRICAL SHELLS WITH RINGS AND STRINGERS TREATED

AS DISCRETE ELEMENTS WHICH MAY BE NONSYMMETRIC, ECCENTRIC, AND ARBITRARILY SPACED

DISSERTATION COMMITTEE

ACKNOWLEDGMENT

The author sincerely appreciates the guidance and assistance given by Dr. Davis M. Egle, of the School of Aerospace and Mechanical Engineering, and wants to give a special note of thanks to Dr. Tom J. Love, who is Director of the School of Aerospace and Mechanical Engineering, for his support and encouragement throughout the author's attendance at the University.

The author also wishes to thank his lovely wife, Barbara, for her help and encouragement.

TABLE OF CONTENTS

Page
LIST OF TABLES v
LIST OF FIGURES vi
LIST OF SYMBOLS viii
Chapter
I. INTRODUCTION 1
II. METHOD OF ANALYSIS 7
III. COMPARISON WITH PREVIOUS WORKS 48
IV. DISCUSSION OF RESULTS. 68
REFERENCES. 82
APPENDIX I 85
APPENDIX II 94

LIST OF TABLES

Table Page

1. Comparison of Theoretical and Experimental (Ref. 26) Frequencies, which are plotted in Figure 4. 53
2. Comparison of Theoretical and Experimental (Ref. 26) Values for the Three Lowest Frequencies and the Axial Wave Numbers, which are Plotted in Figure 5. 55
3. Comparison of Theoretical and Experimental (Ref. 6) Frequencies, which are plotted in Figure 6 59
4. Theoretical Frequencies Calculated by a Series of Twenty Odd Terms and the Axial Wave Numbers, which are plotted in Figure 7. 62
5. Theoretical Frequencies and Axial Wave Numbers Calculated by Either a Series of Seven Odd Terms or Seven Even Terms Where the Lowest Frequencies are plotted in Figure 7 63

LIST OF FIGURES

Figure Page

1. Geometry of Discretely Stiffened Cylinder. 9
2. Geometric Detail of Eccentric Stiffeners 15
3. Circumferential and Longitudinal Radial Mode Shapes (w) of a Cylinder 30
4. Theoretical and Experimental Frequencies of an Unstiffened Cylindrical Shell with Clamped- Free Ends. 52
5. Theoretical and Experimental Frequencies of a Clamped-Free Cylindrical Shell Stiffened Internally with Three Equally Spaced Rings and Sixteen Equally Spaced Stringers 54
6. Theoretical and Experimental Frequencies of an Unstiffened Cylindrical Shell with Simply Supported Ends 58
7. Theoretical and Experimental Values for the Lowest Radial, Axial, and Torsional Frequencies of a Simply Supported Cylindrical Shell Stiff- ened with Thirteen Equally Spaced Rings. 60
8. Calculated Axial Mode Shapes of a Clamped-Free Cylindrical Shell Stiffened Internally with Three Equally Spaced Rings and Sixteen Equally Spaced Stringers for $\mathrm{n}=2$ 72
9. Calculated Axial Mode Shapes of a Clamped- Free Cylindrical Shell Stiffened Internally with Three Equally Spaced Rings and Sixteen Equally Spaced Stringers for $n=9$ 73
10. Calculated Axial Mode Shapes of a Clamped-Free Cylindrical Shell stiffened Internallywith Three Equally Spaced Rings and SixteenEqually Spaced Stringers for $n=11$.74
11. Calculated Axial Mode Shapes of a Simply Supported Cylindrical Shell Stiffened with Thirteen Equally Spaced Symmetric Rings for $n=2$. 75
12. Calculated Axial Mode Shapes of a Simply Supported Cylindrical Shell Stiffened with Thirteen Equally Spaced External Rings for $\mathrm{n}=2$. 76
13. Calculated Axial Mode Shapes of a Simply Supported Cylindrical Shell Stiffened with Thirteen Equally Spaced Symmetric Rings for $\mathrm{n}=10$ 77
14. Calculated Axial Mode Shapes of a Simply Supported Cylindrical Shell Stiffened with Thir,teen Equally Spaced External Rings for $\mathrm{n}=10$ 78
15. Calculated Mode Shapes of a Simply Supported Cylindrical Shell stiffened with Thirteen Equally Spaced Symmetric Rings for $n=0$ 81

LIST OF SYMBOLS

```
    Symbol
    Quantity
    a length of cylindrical shell
    A stiffener cross-sectional area
    d radius of gyration about stiffener
        centroid
        radius of gyration about shell middle
        isotropic plate flexural stiffness,
        Et }\mp@subsup{}{}{3}/12(1-\mp@subsup{v}{}{2}
        strains
    E Young's modulus
(GJ)
stiffener torsional stiffness
i,j,k,l,m,n,P,Q
    I
    K
    L
    m
    m* maximum number of terms used in the
        axial displacement series
    n
    number of circumferential full waves
```

n*	maximum number of terms used in the circumferential displacement series
p	polar radius of gyration about stiffener centroid
p^{\prime}	polar radius of gyration about shell middle surface
R	shell radius
t	shell thickness
T	kinetic energy; $\ln \left(\frac{\mathrm{R}+\mathrm{t} / 2}{\mathrm{R}-\mathrm{t} / 2}\right)$
v	potential energy
u,v,w	shell middle surface displacements in the x, Θ, z directions
x	position along length of shell
Y	position along the circumference of shell
z	position normal to middle surface of shell
$\mathrm{X}_{\mathrm{m}}(\mathrm{x})$	Bernoulli-Euler beam functions
$U_{m}(x), V_{m}(x), W_{m}(x)$	axial mode functions representing displacements in the x, \otimes, z directions
$\bar{x}, \bar{y}, \bar{z}$	coordinate of stiffener centroid
$\hat{x}, \hat{y}, \hat{z}$	coordinate of stiffener elastic axis
a_{m}, B_{m}	coefficients in Bernoulli-Euler beam functions
B	angle of twist of a ring cross section about its elastic axis
Γ	warping constant
Γ^{\prime}	effective warping constant, see equations 13 and 25

$\delta_{i j}$	Kronecker delta function
\triangle	frequency parameter $\left(1-\nu^{2}\right) \rho_{c} R^{2} \psi^{2} / E_{C}$
\bigcirc	angular position along the circumference $R \bullet=y$
v	Poisson's ratio
0	mass density
Ј	stress
0	angle of twist of a stringer cross section about its elastic axis
Ψ	warping function
$\Psi{ }^{\prime}$	warping function evaluated at the line of attachment
${ }^{*}$	circular frequency

Subscripts

c
k
ℓ
r
s
refers to cylinder
refers to the $k^{\text {th }}$ ring
refers to the $\ell^{\text {th }}$ stringer
refers to rings
refers to stringers

AN ANALYSIS OF FREE VIBRATION OF THIN CYLINDRICAL SHELLS WITH RINGS AND STRINGERS TREATED AS DISCRETE ELEMENTS WHICH MAY BE NONSYMMETRIC, ECCENTRIC, AND ARBITRARILY SPACED

CHAPTER I

INTRODUCTION

The structure of an aircraft or space vehicle consists of several orthogonally reinforced thin shells. The vibrations of these shells have been of interest to the structural dynamicist for several years. In the past, large numbers of closely spaced stiffeners have been used to increase the axial buckling strength of a thin cylindrical shell, while keeping the weight addition to a minimum. This use of closely spaced stiffeners has led to the development of a "smeared" theoretical analysis. This "smeared" analysis assumes that the stiffeners are spaced closely enough so that their effect may be averaged out over the entire shell.

The more recent trend has been to use fewer ring and stringer stiffeners, which has caused concern for the
use of a smeared analysis. This has led to the ievelopment of a "discrete" analysis, where the stiffening elements are treated as discrete individual elements. This method is obviously more general than the smeared analysis. Besides being few in number, the stiffeners may be nonuniformly spaced, consist of different materials, and differ in geometry and size.

The effect of the stiffener's eccentricity, which is the term used when the stiffener's centroid does not coincide with the middle surface of the shell, can be included in either type of analysis. Also, the effect of a nonsymmetric stiffener, like an angle or z section, may be handled with either type of analysis.

Some analyses have treated the stiffeners as discrete elements, but only a few have allowed for both stringers and rings and treated them as discrete elements. Only one analysis has used an energy approach and considered both discrete rings and discrete stringers. The other works considering discrete rings and stringers have used a discrete mass technique, where the shell and stiffeners are handled as lumped masses. This method is referred to as the finite-element method.

The analysis used in this present investigation is the Rayleigh-Ritz energy method and considers the stringers and rings as discrete elements. General type displacement
modes are used, which allow different types of end supports to be considered.

The final result of this work is a comprehensive computer program to predict the natural frequencies and associated mode shapes for an orthogonally reinforced cylindrical thin shell with symmetrically distributed stringers and general type stiffeners. Numerical results are presented and compared with experimental values for both clamped-free and simply supported ends.

Survey of Previous Work

The literature is full of studies concerning the uniform thin cylindrical shell. The study by Forsberg (1) is particularly complete for a large number of different types of end supports. Also of interest is the work of Arnold and Warburton for a uniform circular cylinder in a vacuum with simply supported ends (2) and for fixed ends (3).

For the stiffened cylinder, there are several different items to consider. First, the studies may be divided into classes depending on the mathematical approach. The majority of the work has been done using the energy method or Raleigh-Ritz technique. However, wah, in both (4) and (5) , and Hu, Gormley, and Lindholm (6) used a finite difference calculus to arrive at the natural frequency. Hung (7) used an approach based upon the matrix force method, and McGrattan and North (8) used a similar discrete mass
technique. Next, the studies can be separated into two types, depending on how the stiffeners are handled. Most of the works have considered a large number of stiffeners so that their effect may be averaged out over the shell to give an equivalent orthotropic shell. An analysis using this uniformly thicker shell with an equivalent stiffness is referred to as a "smeared" analysis as opposed to a "discrete" stiffener analysis, where the stiffeners are treated as discrete elements. The smeared approach was used by Mikulas and McElman in references (9) and (10), by Sewall, Clary and Leadbetter (11), and by Hoppman in (12) and (13). The smeared approach was also used by Bleich (14), by Foxwell and Franklin (15), and by Nelson, zapotowski, and Bernstein (16).

This present analysis is a direct extension of the work of Egle and Sewall (17), which considered both discrete stringers and rings. The studies by Hung (7) and McGrattan and North (8), which used a finite-element analysis, also treated the rings and stringers as discrete elements. Only three other references, Miller (18), Schnell and Heinrichsbauer (19), and Ojalvo and Newman (20) have considered the stringers as discrete elements. Miller (18) has given a thorough review of the problem and has set the background in theory but has not attempted a solution. The work of Schnell and Heinrichsbauer (19) is not extensive; and that of Ojalvo and Newman (20) considered discrete
stringers but no ring stiffening. The use of discrete rings was made by Galletly (21), by wah in (4) and (5), and by Hu, Gormley, and Lindholm (6).

The earlier studies neglected stiffener eccentricity and assumed that the centroid of the stiffener coincided with the middle surface of the cylinder or that the effect of this difference was negligible. This approach was taken by Baron (22) for ring stiffeners. This effect of stiffener eccentricity was also not explicitly included in most of the smeared analyses. The works of Mikulas and McElman (9) and (10) are the exceptions and did take into account the effect of stiffener eccentricity using a smeared analysis for the case of a cylinder with simply supported ends. The recent discrete analysis by Egle and Sewall (17) took into account this eccentricity effect, and the discrete analysis of Hu, Gormley, and Lindholm (6) also included the effect of eccentricity for a cylinder stiffened with equally spaced rings and is simply supported.

While the problem of eccentricity has been studied, the author does not know of any work going so far as to include the effects of nonsymmetric stiffeners. The widely used z section is a good example of a nonsymmetric stiffener.

There is also a conspicuous lack of work involving end conditions other than the simply-supported for stiffened cylinders. The three exceptions are the work of

Sewall, Clary and Leadbetter (11), who used the smeared analysis for various end conditions; Hung (7), who used the clamped-free and free-free end conditions; and Egle and Sewall (17), who discussed the problem of incorporating different end conditions for the Rayleigh-Ritz analysis.

CHAPTER II

METHOD OF ANALYSIS

The method of analysis utilized is the RayleighRitz energy technique. The general approach of the method is outlined in the following steps.

First, the expressions for the kinetic and potential energies are written for the cylinder, stringers, and rings. These six expressions are then used to give one expression for the total kinetic energy and one for the total potential energy of the stiffened cylinder, which are then written in terms of the displacement of the middle surface of the cylinder. Next, deflection shapes are assumed in the form of a finite series, where each term satisfies the end conditions. Then, these assumed displacement series are substituted into the energy expressions. Finally, the resulting energy expressions are substituted into a set of six Lagrange equations. This results in a set of linear equations which are solved, allowing the calculation of the desired natural frequencies and mode shapes.

Detailed Analysis

The energy expressions are written first in terms of the strain energy and then the strains are written in
terms of the displacements of the middle surface of the shell to give the energy expressions as functions of the displacements. Only the strain energy due to the normal strain in the direction of the stiffener axis and shear strain due to twisting about the stiffener axis are considered for the stiffeners. The normal strain includes the extension caused by the bending of the stiffener about both cross sectional axes, and the effect of warping of the stiffener cross section due to twisting. The strain energy for the stiffeners and the shell are expressed in integral and summation forms in terms of deflections of the shell surface and their derivatives.

The rotatory inertia of the shell is considered negligible; however, the rotatory inertia is important in the stiffeners and is included in the kinetic energy terms. The kinetic enfergy is then expressed in integral and summation forms in terms of time derivatives of the deflections and their derivatives.

Potential Energies

The strain displacement relations for a cylindrical shell with coordinates, as shown in Figure 1 , are given by Flügge (23) as

$$
\begin{aligned}
& e_{x x}=u_{\rho_{x}}-z w_{\rho_{x x}} \\
& e_{\Theta \Theta}=\frac{v_{\Theta}(\Theta)}{R}-\frac{z w_{\rho_{\Theta \Theta}}}{R(R+z)}+\frac{w}{R+z}
\end{aligned}
$$

Figure 1. Geometry of Discretely Stiffened Cylinder.

$$
\begin{equation*}
e_{x \Theta}=\frac{u_{\cdot} \Theta}{R+z}+\frac{R+z}{R} v \cdot_{x}-w_{\rho_{x \Theta}}\left|\frac{z}{R}+\frac{z}{R+z}\right| \tag{la-c}
\end{equation*}
$$

where a comma before the subscript indicates differentiation with respect to the subscript $\left(w_{,_{X \Theta}}=\frac{\partial^{2} w}{\partial x \partial \Theta}\right)$. These relationships are referred to as flügge's exact strain relations, and assume that normals to the middle surface remain normal after straining, that extensions of normals are negligible, and that displacements are small. Miller pointed out in reference (18) why Flugge's exact strain relations should be used, and why the assumption that $\left(1+\frac{z}{R}\right)=1$, which gives the linear Donnell strain relations, leads to unnecessary errors.

The strain energy or the potential energy of the shell is found by considering a small element in a thin shell. Since the shell is considered thin, it is assumed that the small element is in plane stress ($\sigma_{z z}=0$), and that the out of plane shear stresses are zero ($\sigma_{x z}=\sigma_{\oplus \in z}=0$). Hooke's law for an isotropic material in plane stress is

$$
\begin{align*}
& \sigma_{x x}=\frac{E}{1-v^{2}}\left(e_{x x}+v e_{\Theta \Theta}\right) \\
& \sigma_{\Theta \Theta}=\frac{E}{1-v^{2}}\left(e_{\Theta \Theta}+v e_{x x}\right) \\
& \sigma_{x \Theta}=\frac{E}{2(1+v)} e_{x \Theta} \tag{2a-c}
\end{align*}
$$

The incremental change in strain energy per unit volume
for the small element is

$$
\begin{equation*}
d U_{V o l}=\sigma_{x x} d e_{x x}+\sigma_{\Theta \Theta \Theta} d e_{\Theta \Theta}+\sigma_{x \Theta} d e_{x \Theta} \tag{3}
\end{equation*}
$$

Substituting equations (2a-c) into equation (3) and integrating gives the strain energy per unit volume as

$$
\begin{equation*}
U_{V \circ 1}=\frac{E}{1-v^{2}}\left[\frac{e_{x x}^{2}}{2}+\frac{e_{\Theta \Theta}^{2}}{2}+v e_{x x} e_{\Theta \Theta}+\frac{(1-v)}{4} e_{x \Theta \Theta}^{2}\right] \tag{4}
\end{equation*}
$$

The total energy of the shell is then the integral over the volume of the shell

$$
\begin{gather*}
V_{c}=\int_{V o l} U_{V o l} d(\mathrm{Vol}) \text { or } \\
V_{c}=\frac{E_{c}}{2\left(1-\nu^{2}\right)} \int_{-\frac{t}{2}}^{\frac{t}{2}} \int_{0}^{2 \pi} \int_{0}^{a}\left[e_{x x}^{2}+e_{\Theta \Theta \Theta}^{2}+2 V e_{x x} e_{\Theta \Theta}\right. \\
\left.+\frac{1-\nu}{2} e_{x \Theta}^{2}\right](R+z) d x d \Theta d z \tag{6}
\end{gather*}
$$

where $d(V \circ 1)=(R+z) d x d \Theta d z$, and E_{C} is Young's modulus of the cylinder. The strain energy of the cylinder may be obtained in terms of the displacement of the middle surface by substituting equations (la-c) into equation (6) and perform the integral over the thickness. The potential energy for the cylindrical shell then may be written as

$$
\begin{aligned}
& V_{C}=\frac{6 D}{t^{2}} \int_{0}^{2 \pi} \int_{0}^{a}\left[R u,{ }_{x}^{2}+\frac{v e_{\Theta}^{2}}{R}+w^{2} \frac{T}{t}+\frac{2 v_{\cdot \Theta} w}{R}\right. \\
& +2 v\left\{u_{, ~ x} v,_{\Theta}+w u_{x}\right\}+\left(\frac{1-v}{2}\right)\left\{u_{,}^{2} \frac{T}{t}+\left(\frac{R^{2}+\frac{t^{2}}{4}}{R}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +\left|\frac{1-v}{2}\right|\left\{w, \underset{x \Theta}{2}\left|R^{2} T-R t+\frac{t^{3}}{4 R}\right| \frac{12}{t^{3}}-\frac{6}{R} w^{\prime}{ }_{x \Theta} v v_{x}\right. \\
& \left.\left.+\frac{24}{t^{3}}(R T-t) u_{e_{\Theta}} w_{x \Theta}\right\}\right] d x d \Theta \tag{7}\\
& \text { where } \quad T=\ln \left(\frac{R+\frac{t}{2}}{R-\frac{t}{2}}\right) \approx \frac{t}{R}+\frac{t^{3}}{12 R^{3}}+\frac{t^{5}}{80 R^{5}}+\cdots \\
& \text { and } \\
& D=\frac{E_{C} t^{3}}{12\left(1-v^{2}\right)}
\end{align*}
$$

Next, the potential energy expressions for the stringers and rings will be developed with the assumption that these stiffeners are uniform along their length and have a nonsymmetric cross section. Further, it is assumed that only normal strains in the direction of the stiffener
axis and shearing strains due to twisting about the stiffener axis are important. Also, it is assumed that in the absence of twisting forces the cross sectional planes do not warp, but warping of the cross section due to twisting will be included in the potential energy expressions of the stiffeners.

The elastic axis is chosen as a reference line for the stiffener since it remains undeformed in a state of pure torsion, and the deformations in this state may be described by a single variable, φ, which is the angular displacement of the cross section about the elastic axis. Since the elastic axis is chosen as the reference line, there is no coupling of the displacements of the elastic axis (u_{E}, v_{E}, w_{E}), which describe the flexure and extension in the bar, to the angular displacement (φ), which describes the torsion. Because of this uncoupling, the displacements of any point in a stiffener can be expressed in terms of the above four variables.

Following the previous assumptions, the potential energy of the stringer can now be developed. Using the elastic axis as the reference line, the displacement components of any point in a stringer (u_{s}, v_{s}, w_{s}) are

$$
\begin{align*}
& u_{s}=u_{E}-y^{\prime} v_{E, x}-z^{\prime} w_{E, x}+\psi_{S} \varphi_{S, x} \\
& v_{S}=v_{E}-z^{\prime} \varphi_{S} \\
& w_{S}=w_{E}+y^{\prime} \varphi_{S} \tag{8a-c}
\end{align*}
$$

where the last term in equation (8a) is the warping displacement of the stringer cross section due to torsion. The coordinates are shown in the stringer detail of Figure 2. The warping function (Ψ_{s}) is the same as that in the pure torsion theory of Timoshenko (24).

The strain energy due to extension of the stringers is

$$
\begin{equation*}
V_{\text {extension }}=\sum_{\ell=1}^{L}\left\{\frac{E_{s \ell}}{2} \int_{0}^{a} \int_{A_{s \ell}} e_{x x}^{2}\right\}_{\Theta=\Theta} d A_{s \ell} d x \tag{9}
\end{equation*}
$$

where $e_{x x}=u_{s, x}$ and the total number of stringers is L. The Young's modulus for the $\ell^{\text {th }}$ stringer (9) is $\mathrm{E}_{\mathrm{s} \ell}$ and Θ_{ℓ} is its Θ-coordinate.

It must be kept in mind, however, that the final potential energy expressions for the stiffeners must be in terms of the middle surface of the cylinder, and related to the line of attachment of the stiffener to the shell.

The location of the line of attachment is the line of symmetry for a symmetric stiffener, and is definite for stiffeners attached by a single row of rivets or spot welds. However, for a nonsymmetric stiffener attached by more than one row of rivets or integral with the shell, the choice of the line of attachment is not so evident. Ojalvo and

Newman (14) have assumed that the line of attachment in these cases should be located at the stiffener midflange.

Assuming that the line of attachment has been determined, the displacements of the line of attachment $\left(u_{A}, v_{A}, w_{A}\right)$

EXTERNAL STRINGER DETAIL

EXTERNAL RING DETAIL

Figure 2. Geometric Detail of Eccentric Stiffeners.
are first related to the elastic axis. This is done by using the general equations ($8 \mathrm{a}-\mathrm{c}$) and solving for the displacements from the elastic axis. This gives

$$
\begin{align*}
& u_{E}=u_{A}-\hat{y}_{S} v_{A, x}-\hat{z}_{S} w_{A, x}-\Psi_{S}^{A} \frac{w_{A, x \Theta}}{R} \\
& v_{E}=v_{A}-\frac{\hat{z}_{S}}{R} w_{A, \Theta} \\
& w_{E}=w_{A}+\frac{\hat{y}_{S} w_{A, \Theta}}{R} \tag{10a-c}
\end{align*}
$$

where Ψ_{s}^{A} is the warping function of the stringer evaluated at the line of attachment, and \in has been set equal to $\frac{w_{A, \Theta}}{R}$. If equations (10a-c) are substituted into equations (8a-c), the results give

$$
\begin{align*}
& u_{s}=u_{A}-y v_{A, x}-z w_{A, x}+\left(y \hat{z}_{S}-z \hat{y}_{S}+\Psi_{S}-\Psi_{S}^{A}\right) \frac{w_{A, x \Theta}}{R} \\
& v_{S}=v_{A}-\frac{z w_{A, \Theta}}{R} \\
& w_{S}=w_{A}+\frac{y w_{A, \Theta}}{R} \tag{11a-c}
\end{align*}
$$

After substituting equation (lla) into equation
and integrating over the area, the results are

$$
\begin{aligned}
& V_{\text {extension }}=\sum_{l=1}^{L}\left\{\frac { E _ { s l } } { 2 } \int _ { 0 } ^ { a } \left[A_{s \ell} u^{2}{ }_{x}-2 \vec{y}_{s \ell} A_{s \ell}{ }^{u} \cdot x^{v \cdot} \cdot x x\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+I_{y y S l} w^{2}{ }_{x x}+\frac{\Gamma_{S l}^{\prime}}{R^{2}} w_{l @ x x}^{2}\right]_{\Theta=Q_{l}}^{d x}+\frac{E_{S l}}{2} \int_{0}^{a}\left[\frac { 2 A _ { S l } } { R } \left(\bar{y}_{S l} \hat{z}_{s l}\right.\right.
\end{aligned}
$$

where a term like $\bar{y}_{s l}$ is the distance of the $\ell^{\text {th }}$ stringer from the line of attachment to the stringer centroid, and the subscript A has been dropped from the displacements with the understanding that they are still referenced to the line of attachment.

In order to help make the problem easier to handle, only the first integral will be used as the extensional energy of the stringers. The terms in the second integral have been assumed small enough to be negligible. The symbol $\Gamma_{\text {sl }}^{\prime}$ has been used in place of the longer expression for the warping term which is a constant for a particular stringer cross section and is equal to

$$
\begin{aligned}
& \Gamma_{s \ell}^{\prime}= I_{z z s \ell} \hat{z}_{s \ell}^{2}-2 I_{y z s \ell} \hat{z}_{s \ell} \hat{Y}_{s \ell}+I_{Y Y S \ell}^{2} \hat{Y}_{s \ell}^{2}-2 A_{s \ell}\left(\bar{y}_{s \ell} \hat{z}_{s \ell}\right. \\
&\left.-\bar{z}_{s \ell} \hat{y}_{s \ell}\right) \Psi_{s \ell}^{A}+A_{s \ell} \Psi_{s \ell} A^{2}+\Gamma_{s \ell} \\
& \text { where } \quad \Gamma_{s \ell}=\int_{A_{s \ell}} \Psi_{s \ell}^{2} d A_{s \ell}
\end{aligned}
$$

The strain energy due to the torsional shear of the stringers from reference (11) is
where (GJ) ${ }_{\text {s }}$ is the torsional stiffness of the $\ell^{\text {th }}$ stringer. The total strain energy of the stringers $\left(V_{s}\right)$ is equal to the sum of the extensional strain energy ($\mathrm{V}_{\text {extension }}$) and the strain energy due to the torsional shear ($\mathrm{V}_{\text {torsion }}$).

The following set of formulas for the stringers will be useful in the calculation of the moments of inertia

$$
\begin{align*}
& I_{z z s \ell}=I_{z z c s \ell}+A_{s \ell} \bar{Y}_{s \ell}^{2} \\
& I_{y z s \ell}=I_{Y z c s \ell}+A_{s \ell} \bar{Y}_{s \ell} \bar{z}_{s \ell} \\
& I_{Y Y S \ell}=I_{Y y c s \ell}+A_{s \ell} \bar{z}_{s \ell}^{2} \tag{15a-c}
\end{align*}
$$

where the subscript c in terms like $I_{z z c s \ell}$ refers to the moment of inertia of the $\ell^{\text {th }}$ stringer about its centroid.

These moments are found from the following equations

$$
\begin{align*}
& I_{z z c s \ell}=\int_{A_{s \ell}} y^{2} d A_{s \ell} \\
& I_{y z C s \ell}=\int_{A_{s \ell}} y z d A_{s \ell} \\
& I_{y Y c s \ell}=\int_{A_{s \ell}} z^{2} d A_{s \ell} \tag{16a-c}
\end{align*}
$$

Also of use for later calculations is the radii of gyration, which are given in terms of the moment of inertias in the following set of equations

$$
\begin{align*}
& d_{s \ell}^{\prime 2}=\frac{I_{y y s \ell}}{A_{s \ell}} \\
& p_{s \ell}^{\prime 2}=\frac{I_{z z s \ell}+I_{y y s \ell}}{A_{s \ell}} \tag{17a-b}
\end{align*}
$$

or they may be found from

$$
\begin{align*}
& d_{s l}^{\prime 2}=d_{s \ell}^{2}+\bar{z}_{s \ell}^{2} \\
& p_{s l}^{\prime 2}=p_{s l}^{2}+\bar{y}_{s \ell}^{2}+\bar{z}_{s \ell}^{2} \tag{18a-b}
\end{align*}
$$

The symbols $d_{s \ell}$ and $p_{s \ell}$ are defined in the following as

$$
\begin{align*}
& d_{s \ell}^{2}=\frac{I_{y y c s \ell}}{A_{s \ell}} \\
& p_{s \ell}^{2}=\frac{I_{z z c s \ell}+I_{y y c s \ell}}{A_{s \ell}} \tag{19a-b}
\end{align*}
$$

Proceeding in the same manner used for the stringers, the strain energy of the rings will be developed. Using the elastic axis of the ring as the reference line, the displacement components of any point in a ring (u_{r}, v_{r}, w_{r}) are

$$
\begin{align*}
& u_{r}=u_{E}-z^{\prime} \beta \\
& v_{r}=v_{E}-\frac{z^{\prime}}{R} w_{E, \Theta}-\frac{x^{\prime}}{R} u_{E, \Theta}+\frac{\Psi_{r}}{R} \beta, \Theta \\
& w_{r}=w_{E}+x^{\prime} B \tag{20a-c}
\end{align*}
$$

where β is the angular displacement of the ring crosssection about the elastic axis. The coordinates are shown in the ring detail of Figure 2. It has been assumed that \hat{z}_{r} is very small compared to the radius so that $R \mathcal{R}\left(R+\hat{z}_{r}\right)$. The last term in equation (20b) is the warping displacement of the ring cross section due to torsion. As in the case of a stringer, the warping function (Ψ_{r}) is the same as that in the pure torsion theory.

The strain energy due to extension of the rings is

$$
\begin{equation*}
v_{\text {extension }}=\sum_{k=1}^{K}\left\{\frac{E_{r k}}{2} \int_{0}^{2 \pi} \int_{A_{r k}} e_{\Theta \Theta \Theta}^{2}\right\} d_{x=A_{k}} d \Theta \tag{21}
\end{equation*}
$$

where $e_{\Theta \Theta}=\frac{V_{r, \Theta}}{R}+\frac{W_{r}}{R}$ from reference (25) and the total number of rings is K. The Young's modulus for the $k^{\text {th }}$ ring is $E_{r k}$ and x_{k} is its x-coordinate.

Assuming that the line of attachment has been determined, the displacements of the line of attachment $\left(u_{A}, v_{A}, w_{A}\right)$, are first related to the elastic axis. This is done by using the general equations (20a-c) and solving for the displacements from the elastic axis. This gives

$$
\begin{align*}
& u_{E}=u_{A}-\hat{z}_{r} w_{A, x} \\
& v_{E}=v_{A}-\frac{\hat{z}_{r}}{R} w_{A, \Theta}-\frac{\hat{x}_{r}}{R} u_{A, \Theta}-\frac{\Psi_{r}^{A}}{R} w_{A, x \Theta} \\
& w_{E}=w_{A}+\hat{x}_{r} w_{A, x} \tag{22a-c}
\end{align*}
$$

where β has been set equal to $w_{A, x^{\prime}}$. If equations (22a-c) are substituted into equations (20a-c) the results are

$$
\begin{align*}
& u_{r}=u_{A}-z w_{A, x} \\
& v_{r}=v_{A}-\frac{z}{R} w_{A, \Theta}-\frac{x}{R} u_{A, \Theta}+\frac{\left(\Psi_{R}-\Psi_{R}^{A}-\hat{x}_{R} z+\hat{z}_{R} x\right)}{R} w_{A, x \Theta} \\
& w_{r}=w_{A}+x w_{A, x} \tag{23a-c}
\end{align*}
$$

After substituting equations $(23 b-c)$ into equation (21) and integrating over the area, the results are

$$
\begin{aligned}
& V_{\text {extension }}=\sum_{k=1}^{K}\left\{\frac { E _ { r k } } { 2 } \int _ { 0 } ^ { 2 \pi } \left[\frac{A_{r k}}{R} v_{\Theta_{\Theta}}^{2}-\frac{2 \bar{z}_{r k}{ }^{A} r k}{R^{2}} v_{\Theta \Theta}{ }^{W}, \Theta \Theta\right.\right. \\
& -\frac{2 \bar{x}_{r k}^{A} r k}{R^{2}} v,_{\Theta} u^{\prime} \Theta \Theta+\frac{I_{x x r k}}{R^{3}} w_{\prime_{\Theta \Theta \Theta}}^{2}+\frac{I_{z z r k}}{R^{3}} u_{\prime_{\Theta \Theta \Theta}}^{2}+\frac{\Gamma_{r k}^{\prime}}{R^{3}} w_{\rho_{X \Theta \Theta}}^{2} \\
& +2 \frac{A_{r k}}{R} v_{\Theta_{\Theta}} w-2 \frac{\bar{z}_{r k} A_{r k}}{R^{2}} w w_{\Theta \Theta \Theta}-2 \frac{\bar{x}_{r k} A_{r k}}{R^{2}} w u_{\Theta_{\Theta \Theta}}+\frac{A_{r k}}{R} w^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{I_{z z r k}}{R} w_{\rho_{x}}^{2}\right]_{x=x_{k}}+\frac{E_{r k}}{2} \int_{0}^{2 \pi}\left[2 \frac{I_{x z r k}}{R^{3}} u_{\rho_{\Theta \Theta}} w_{\Theta \Theta \Theta}\right. \\
& +\frac{2 A}{R^{2}}\left(\hat{z}_{r k} \bar{x}_{r k}-\hat{x}_{r k} \bar{z}_{r k}-\Psi_{r k}^{A}\right) V_{r \Theta} W_{r \Theta \Theta}+\frac{2}{R^{3}} \\
& \left(\hat{z}_{r k} I_{x z r k}-\hat{x}_{r k} I_{x \times r k}-\Psi_{r k}^{A} \bar{z}_{r k} A_{r k}\right) W_{\rho \Theta \Theta}{ }^{W},_{x \Theta \Theta \Theta}-\frac{2}{R^{3}}\left(\hat{z}_{r k} I_{z z r k}\right. \\
& \left.-\hat{x}_{r k} I_{x z r k}-\Psi_{r k}^{A} \bar{x}_{r k} A_{r k}\right) u_{\prime \Theta \Theta} W_{f \Theta \Theta}+\frac{2 A_{r k}}{R^{2}}\left(\hat{z}_{r k} \bar{x}_{r k}-\hat{x}_{r k} \bar{z}_{r k}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.\left.-\bar{x}_{r k}{ }^{A} r k^{\Psi}{ }_{r k}^{A}\right) w_{0} w^{w}, x \Theta \Theta\right]_{x=x_{k}}^{d \Theta}\right\} \tag{24}
\end{align*}
$$

where a term like $\bar{x}_{r k}$ is the distance of the $k^{\text {th }}$ ring from the line of attachment to the ring centroid, and the subscript A has been dropped from the displacement with the understanding that they are still referenced to the line of attachment.

In order to help make the problem easier to handle, only the first integral will be used as the extensional energy of the rings. The order of magnitude of the terms in the second integral have been assumed small enough to be negligible. The symbol $\Gamma_{r k}^{\prime}$ has been used in place of the longer expression for the warping term, which is a constant for a particular ring cross section and is equal to

$$
\begin{align*}
\Gamma_{r k}^{\prime}= & I_{z z r k} \hat{z}_{r k}^{2}+I_{x x r k} \hat{x}_{r k}^{2}-2 A_{r k}\left(\bar{x}_{r k} \hat{z}_{r k}-\bar{z}_{r k} \hat{x}_{r k}\right) \Psi_{r k}^{A} \\
& +A_{r k} \Psi_{r k}^{A^{2}}+\Gamma_{r k} \tag{25}
\end{align*}
$$

where $\quad \Gamma_{r k}=\int_{A_{r k}} \Psi_{r k}^{2} d A_{r k}$
The strain energy due to the torsional shear of the ring from reference (11) is

$$
\begin{equation*}
v_{\text {torsion }}=\sum_{k=1}^{K}\left\{\frac{(G J) r k}{2 R} \int_{0}^{2 \pi} w_{x \Theta}^{2}\right\}_{x=x_{k}}^{d \Theta} \tag{26}
\end{equation*}
$$

where (GJ) rk is the torsional stiffness of the $\mathrm{k}^{\text {th }}$ ring.

The total strain energy of the rings $\left(V_{r}\right)$ is equal to the sum of the extensional strain energy ($\mathrm{V}_{\text {extension }}$) and the strain energy due to the torsional shear ($V_{\text {torsion }}$). The moments of inertia of a ring cross section and the radii of gyration will be needed later. The following set of formulas will be useful in these calculations

$$
\begin{align*}
& I_{x x r k}=I_{x x C r k}+A_{r k} \bar{z}_{r k}^{2} \\
& I_{X z r k}=I_{x z C r k}+A_{r k} \bar{x}_{r k} \bar{z}_{r k} \\
& I_{z z r k}=I_{z z C r k}+A_{r k} \bar{x}_{r k}^{2} \tag{27a-c}
\end{align*}
$$

where the subscript c in the terms like $I_{\text {xxcrk }}$ refers to the moment of inertia of the $k^{\text {th }}$ ring about its centroid centroid. These moments are found from the following equations

$$
\begin{align*}
& I_{x x C r k}=\int_{A_{r k}} z^{2} d A_{r k} \\
& I_{x z C r k}=\int_{A_{r k}} x z d A_{r k} \\
& I_{z z C r k}=\int_{A_{r k}} x^{2} d A_{r k} \tag{28a-c}
\end{align*}
$$

The radii of gyrations are given in the following

$$
\begin{align*}
& d_{r k}^{2}=\frac{I_{x x r k}}{A_{r k}} \\
& p_{r k}^{\prime 2}=\frac{I_{x x r k}+I_{z z r k}}{A_{r k}} \tag{29a-b}
\end{align*}
$$

or they may be found from

$$
\begin{align*}
& d_{r k}^{2}=d_{r k}^{2}+\bar{z}_{r k}^{2} \\
& p_{r k}^{\prime 2}=p_{r k}^{2}+\bar{x}_{r k}^{2}+\bar{z}_{r k}^{2} \tag{30a-b}
\end{align*}
$$

The symbols $d_{r k}$ and $p_{r k}$ are defined in the following as

$$
\begin{align*}
& d_{r k}^{2}=\frac{I_{x x c r k}}{A_{r k}} \\
& p_{r k}^{2}=\frac{I_{x x c r k}+I_{z z c r k}}{A_{r k}} \tag{3la-b}
\end{align*}
$$

Kinetic Energies

The total kinetic energy of a body is equal to its kinetic energy of translation plus its kinetic energy of rotation. This may be written as

$$
\begin{equation*}
T=1 / 2 \mathrm{mv}_{\mathrm{cm}}^{2}+1 / 2 I_{\mathrm{cm}} \rho \omega^{2} \tag{32}
\end{equation*}
$$

where \bar{v}_{Cm} is the total velocity of the center of mass, and ω is the angular velocity of the mass about an axis through
the center of mass whose moment of inertia about this same axis is I_{cm}.

Neglecting the kinetic energy of rotation or the rotatory inertia, the kinetic energy of the cylinder can be written as

$$
\begin{equation*}
T_{c}=1 / 2 R \int_{0}^{2 \pi} \int_{0}^{a} \rho_{c} t\left(\dot{u}^{2}+\dot{v}^{2}+\dot{w}^{2}\right) d x d \Theta \tag{33}
\end{equation*}
$$

where ρ_{c} is the mass density of a cylinder of thickness t and the dot above a variable denotes differentiation with respect to time.

It was noted by Egle and Sewall (17) that although the rotational energy of the cylinder may be neglected, this is a substantial term in the kinetic energy of the stiffeners.

The kinetic energy of the L stringers from equation (32) is

$$
\begin{align*}
& T_{s}=\frac{1}{2} \sum_{\ell=1}^{L}\left\{\rho_{s \ell} A_{s \ell} \int_{0}^{a}\left[\dot{u}_{\mathrm{cms} \ell}^{2}+\dot{\mathrm{v}}_{\mathrm{cms} \ell}^{2}+\dot{w}_{\mathrm{cms} \ell}^{2}\right]_{\Theta=\Theta} \mathrm{dx}\right. \\
& \left.+\rho_{\mathrm{s} \ell} \int_{0}^{a}\left[I_{y y c s} \dot{w}_{\prime_{x}}^{2}+\left(\frac{I_{z z c s \ell}+I_{y y c s \ell}}{R^{2}}\right) \dot{w}_{\bullet \Theta \Theta}^{2}\right]_{\Theta=\Theta \Theta}\right\} \tag{34}
\end{align*}
$$

where $\rho_{s \ell}$ is the mass density of the $\ell^{\text {th }}$ stringer and $I_{\text {yycs } \ell}$ is the moment of inertia of the $l^{\text {th }}$ stringer about
the centroidal axis parallel to the y-axis. The term $\dot{u}_{\text {cmsl }}$ is the velocity of the center of mass of the $\ell^{\text {th }}$ stringer in the x-direction. The eccentricity of the stringers causes a rotation about the stringer centroid when the point of attachment on the shell translates. The displacement of the stringers referenced to the shell is

$$
\begin{align*}
& u_{c m s \ell}=u-\bar{z}_{s \ell}{ }^{w}{ }^{\prime} x-\bar{y}_{s \ell}{ }^{v}{ }_{x} \\
& v_{\text {cms } \ell}=v-\frac{\bar{z}_{s \ell}}{\mathrm{R}} w_{\rho} \\
& w_{\text {cms } \ell}=w+\frac{\bar{y}_{S \ell}}{R} w_{\ell} \tag{35a-c}
\end{align*}
$$

After substituting equations (35a-c) into equation (34) and using equations (19a-b) for the radii of gyration, the result gives the kinetic energy of the stringers as

$$
\begin{align*}
& T_{S}=\frac{1}{2} \sum_{\ell=1}^{L} \rho_{S \ell} A_{s \ell} \int_{0}^{a}\left[\left(\dot{u}-\bar{z}_{S \ell} \dot{w}_{\rho_{x}}-\bar{y}_{S \ell} \dot{v}_{f x}\right)^{2}+\left(\dot{v}-\frac{\bar{z}_{S \ell}}{R} \dot{w}_{\rho(\Theta)}\right)^{2}\right. \\
& \left.+\left(\frac{\dot{w}+\bar{Y}_{S l} \dot{w}_{\ell}(\Theta)}{R}\right)^{2}+a_{s l}^{2} \dot{w}_{l_{x}}^{2}+\frac{p_{S \ell}^{2}}{R} \dot{w}_{\rho \Theta \Theta}^{2}\right]_{\Theta=\Theta l} d x \tag{36}
\end{align*}
$$

Proceeding in the same method for the rings, the kinetic energy of the K rings from equation (32) is

$$
\begin{align*}
T_{r} & =\frac{1}{2} \sum_{k=1}^{K}\left\{\rho_{r k} A_{r k} R \int_{0}^{2 \pi}\left[\dot{u}_{c m r k}^{2}+\dot{v}_{c m r k}^{2}+\dot{w}_{c m r k}^{2}\right]_{x=x_{k}}^{d \Theta}\right. \\
& \left.+\rho_{r k} R \int_{0}^{2 \pi}\left[\left(I_{x x c r k}+I_{z z c r k}\right) \dot{w}_{r_{x}}^{2}+\frac{I_{x x c r k}}{R^{2}} \dot{w}_{\rho_{\Theta}}^{2}\right]_{x=x_{k}} d x\right\} \tag{37}
\end{align*}
$$

where the term $\dot{u}_{\text {cmrk }}$ is the velocity of the center of mass of the $k^{\text {th }}$ ring in the x-direction. The displacement of the rings referenced to the shell is

$$
\begin{align*}
& u_{c m r k}=u-\bar{z}_{r k} w_{\prime_{x}} \\
& v_{c m r k}=v-\frac{\bar{z}_{r k}}{R} w_{\prime_{\Theta}}-\frac{\bar{x}_{r k}}{R} u_{\prime_{\Theta}} \\
& w_{c m r k}=w+\bar{x}_{r k} w_{\prime_{x}} \tag{38a-c}
\end{align*}
$$

After substituting equations (38a-c) into equation (37) and using equations (3la-b) for the radii of gyration, the result gives the kinetic energy of the stringers as

$$
\begin{align*}
T_{r}= & \frac{1}{2} \sum_{k=1}^{K} \rho_{r k} A_{r k} R \int_{0}^{2 \pi}\left[\left(\dot{u}-\bar{z}_{r k} \dot{w}_{\rho_{x}}\right)^{2}+\left(\dot{v}-\frac{\bar{z}_{r k}}{R} \dot{w}_{\bullet \Theta}\right.\right. \\
& \left.\left.-\frac{\bar{x}_{r k}}{R} \dot{u}_{\rho \Theta \Theta}\right)^{2}+\left(\dot{w}+\bar{x}_{r k} \dot{w}_{\rho_{x}}\right)^{2}+p_{r k}^{2} \dot{w}_{\rho_{x}}^{2}+\frac{d_{r k}^{2}}{R^{2}} \dot{w}_{\rho \Theta \Theta}^{2}\right]_{x=x_{k}}^{d \Theta} \tag{39}
\end{align*}
$$

Displacement Functions

The displacements of the middle surface of the cylinder (u,v,w), which are similar to those used by Egle and Sewall (17), are assumed to be

$$
\begin{aligned}
& \mathrm{u}=\sum_{m} \sum_{n}\left(\bar{u}_{m n} \cos n \Theta+\bar{u}_{m n}^{\prime} \sin n \Theta\right) u_{m}(x) \sin \omega t \\
& v=\sum_{m} \sum_{n}\left(\bar{v}_{m n} \sin n \Theta-\bar{v}_{m n}^{\prime} \cos n \Theta\right) v_{m}(x) \sin \omega t \\
& w=\sum_{m} \sum_{n}\left(\bar{w}_{m n} \cos n \Theta+\bar{w}_{m n}^{\prime} \sin n \Theta\right) w_{m}(x) \sin \omega t \quad(40 a-c)
\end{aligned}
$$

where $U_{m}(x), V_{m}(x), W_{m}(x)$ are the axial mode functions which satisfy the end conditions. Figure 3 identifies a few of the terms in equation (40c) for simply-supported and clamped-free end conditions.

The unprimed coefficients ($\bar{u}_{m n}, \bar{v}_{m n}, \bar{w}_{m n}$) are associated with the symmetric circumferential modes, referring to those modes having normal displacements (w) which are symmetric with respect to the $x-z$ plane. Similarly, the primed coefficients ($\bar{u}_{m n}^{\prime}, \bar{v}_{m n}^{\prime}, \bar{w}_{m n}^{\prime}$) are associated with the antisymmetric circumferential modes.

Axial Mode Functions

The axial mode functions $U_{m}(x), V_{m}(x), W_{m}(x)$ should be selected so that the displacement and its slope at each end represent the physical problem as closely as possible. The final choice may be a compromise that requires both

AXIAL WAVE NUMBER (m)

Figure 3. Circumferential and Longitudinal Radial Mode Shapes (w) of a Cylinder.
insight and time-consuming trial and error. A discussion of the problem of selecting the axial mode functions is given by Egle and Sewall in reference (17).

The following axial mode functions were selected for the case of simple support without axial constraint, which is also called freely supported

$$
\begin{align*}
& U_{m}(x)=\frac{d x_{m}(x)}{d x} \\
& V_{m}(x)=X_{m}(x) \\
& W_{m}(x)=X_{m}(x) \tag{41a-c}
\end{align*}
$$

where $X_{m}(x)=\sqrt{2} \sin \left(\frac{m \pi x}{a}\right)$. The following integrals for simply supported ends are needed later

$$
\begin{align*}
& \frac{1}{a} \int_{0}^{a} x_{m}(x) x_{i}(x) d x=\delta_{m i} \\
& \frac{1}{a} \int_{0}^{a} x_{m}(x) x_{i}^{\prime \prime}(x) d x=-\left(\frac{m \pi}{a}\right)^{2} \delta_{m i} \\
& \frac{1}{a} \int_{0}^{a} x_{m}^{\prime}(x) x_{i}^{\prime}(x) d x=\left(\frac{m m}{a}\right)^{2} \delta_{m i} \\
& \frac{1}{a} \int_{0}^{a} x_{m}^{\prime \prime}(x) x_{i}^{\prime \prime}(x) d x=\left(\frac{m \pi}{a}\right)^{4} \delta_{m i} \tag{42a-d}
\end{align*}
$$

where the prime indicates differentiation with respect to x .

The classical Bernoulli-Euler beam functions were used for the cylinder with clamped-free ends. The axial mode functions are the same as equations (4la-c) except

$$
X_{m}(x)=\cosh \left(\beta_{m} x\right)-\cos \left(\beta_{m} x\right)-\alpha_{m}\left(\sinh \left(\beta_{m} x\right)-\sin \left(\beta_{m} x\right)\right)
$$

The beam functions and their properties for several combinations of end conditions are tabulated in references (27) and (28). The properties for clamped-free ends from reference (27) are

$$
X_{m}(0)=X_{m}^{\prime}(0)=X_{m}^{\prime \prime}(a)=X_{m}^{\prime \prime \prime}(a)=0
$$

and

m	$\beta_{\mathrm{m}} \mathrm{a}$	α_{m}	
1	1.8751041	0.7340955	
2	4.69409113	1.01846644	
3	7.85475743	0.99922450	
4	10.99554074	1.00003355	3
5	14.13716839	0.9999985501	
>5	$(2 n-1) \pi / 2$	1.0	

The following integrals from reference (28) are needed later

$$
\frac{1}{a} \int_{0}^{a} x_{m}(x) x_{i}(x) d x=\delta_{m i}
$$

$$
\begin{aligned}
& \frac{1}{a} \int_{0}^{a} X_{m}^{\prime}(x) X_{i}^{\prime}(x) d x=\left\{\begin{array}{l}
\text { for } m \neq i \quad \frac{4 \beta_{m} \beta_{i}}{a\left(\beta_{i}^{4}-\beta_{m}^{4}\right)}\left[(-1)^{m+i}\right. \\
\left.\left(\alpha_{m} \beta_{i}^{3}-\alpha_{i} \beta_{m}^{3}\right)-\beta_{m} \beta_{i}\left(\alpha_{i} \beta_{i}-\alpha_{m} \beta_{m}\right)\right] \\
\text { for } m=i \quad \frac{\alpha_{i} \beta_{i}}{a}\left(2+\alpha_{i} \beta_{i} a\right)
\end{array}\right. \\
& \frac{1}{a} \int_{0}^{a} X_{m}^{\prime \prime}(x) X_{i}^{\prime \prime}(x) d x=\beta_{i}^{4} \delta_{m i}
\end{aligned}
$$

$$
\frac{1}{a} \int_{0}^{a} x_{m}(x) x_{i}^{\prime} d x= \begin{cases}\text { for } m \neq i & \frac{4 \beta_{i}^{4}}{\beta_{m}^{4}-\beta_{i}^{4}}\left[\beta_{m}^{2}-(-1)^{m+i} \beta_{i}^{2}\right] \\ \text { for } m=i & \frac{2}{a}\end{cases}
$$

$$
\frac{1}{a} \int_{0}^{a} X_{m}(x) X_{i}^{\prime \prime}(x) d x=\left\{\begin{array}{l}
\text { for } m \neq i \\
\frac{4 \beta_{i}^{2}\left(\alpha_{m} \beta_{m}^{-} \alpha_{i} \beta_{i}\right)}{\alpha_{m}\left(\beta_{m}^{4}-\beta_{i}^{4}\right)}\left[(-1)^{m+i} \beta_{i}^{2}+\beta_{m}^{2}\right] \\
\text { for } m=i \quad \frac{\alpha_{i} \beta_{i}}{a}\left(2-\alpha_{i} \beta_{i} a\right)
\end{array}\right.
$$

(43a-e)

Derivation of the Frequency Equation

The Lagrangian equations of motion for free vibration written in notation similar to that used by Ojalvo and Newman (20) are

$$
\begin{equation*}
-\frac{d\left(\frac{\partial T}{\partial \dot{q}_{i j}^{(i)}}\right)}{d t}=\frac{\partial V}{\partial q_{i j}^{(i)}} i=1,2, \ldots, 6 \tag{44}
\end{equation*}
$$

where T is the total kinetic energy of the cylinder, stringers, and rings, and V is the total potential energy given by equations as

$$
\begin{align*}
& T=T_{C}+T_{S}+T_{r} \\
& V=V_{C}+V_{S}+V_{r} \tag{45a-b}
\end{align*}
$$

The term $q_{i j}^{(i)}$ for $i=1,2,3$ is $\bar{u}_{i j} \sin \omega t, \bar{v}_{i j} \sin \omega t$, $\bar{w}_{i j} \sin \omega t$ and for $i=4,5,6$ the term $q_{i j}^{(i)}$ is $\bar{u}_{i j} \sin \omega t$, $\bar{v}_{i j} \sin \omega t, \bar{w}_{i j}^{\prime} \sin \omega t$. The time derivative of $q_{i j}^{(i)}$ is $\dot{q}_{i j}^{(i)}=$ $\omega \bar{u}_{i j}^{(1)} \cos \omega t$, and $\ddot{q}_{i j}^{(1)}=-\omega^{2} q_{i j}^{(1)}$.

The operations denoted by $\frac{d\left(\frac{\partial T}{\partial \dot{q}_{i j}^{(i)}}\right)}{d t}$ are not clear from this abbreviated form. The easiest way to explain them is by the use of an example. Assuming that $T=\dot{u}^{2}$ and $u=\sum_{m} \sum_{n}\left(\bar{u}_{m n} \cos n \Theta+\bar{u}_{m n}^{\prime} \sin n \otimes\right) U_{m}(x) \sin \omega t$, the dis-
placement u may be written as $u=\sum_{m} \sum_{n}\left(q_{m n}^{(1)} U_{m} \cos n \Theta\right.$ $\left.+q_{m n}^{(4)} U_{m} \sin n @\right)$, and the velocity $\dot{\dot{u}}$ may be written as $\dot{u}=\sum_{m} \sum_{n}\left(\dot{q}_{m n}^{(1)} U_{m} \cos n \Theta+\dot{q}_{m n}^{(4)} U_{m} \sin n \Theta\right)$. Then for this example the operation denoted by $\frac{\partial T}{\partial \dot{q}_{i j}^{(i)}}$ for $i=1$ gives
$\frac{\partial T}{\partial \dot{q}_{i j}^{(1)}}=\frac{\partial \dot{u}^{2}}{\partial \dot{q}_{i j}^{(1)}}=\frac{\partial\left[\sum_{m n} \sum_{n}\left(\dot{q}_{m n}^{(1)} U_{m} \cos n \Theta+\dot{q}_{m n}^{(4)} U_{m} \sin n \Theta\right)\right]^{2}}{\partial \dot{q}_{i j}^{(1)}}=$

$$
2 \dot{\mathrm{u}} \frac{\partial \dot{u}}{\partial \dot{q}_{i j}^{(1)}}
$$

By looking at the equations for u and \dot{u}, it can be seen that

$$
\frac{\partial \dot{u}}{\partial \dot{q}_{i j}^{(1)}}=\frac{\partial u}{\partial q_{i j}^{(1)}}
$$

Using this fact, the previous equation can be written as

$$
\frac{\partial T}{\partial \dot{q}_{i j}^{(1)}}=2 \dot{u} \frac{\partial u}{\partial q_{i j}^{(1)}}
$$

Next, taking the time derivative of both sides and using the fact that $u=\omega^{2} u$, the result is

$$
\frac{d\left(\frac{\partial T}{\partial \dot{q}_{i j}^{(l)}}\right)}{d t}=2 u \frac{\partial u}{\partial q_{i j}^{(1)}}=-2 \omega^{2} u \frac{\partial u}{\partial q_{i j}^{(1)}}
$$

Substituting the energy expressions represented by

 equations (45a-b) into equation (44) for $i=1$ gives the following$$
=\frac{6 D}{t^{2}} \int_{0}^{2 \pi} \int_{0}^{a}\left[2 R u_{\cdot x} \frac{\partial u_{\cdot} x}{\partial \bar{u}_{i j}}+2 v\left(v_{\cdot \Theta} \frac{\partial u_{\cdot} x}{\partial \bar{u}_{i j}}+w \frac{\partial u_{\cdot x}}{\partial \bar{u}_{i j}}\right)\right.
$$

$$
\left.+2\left(\frac{1-v}{2}\right)\left(\frac{T}{t} u_{\cdot \Theta} \frac{\partial u_{\cdot} x}{\partial \bar{u}_{i j}}+v_{e_{x}} \frac{\partial u_{\cdot} \Theta}{\partial \bar{u}_{i j}}\right)\right] d x d \Theta+\frac{D}{2} \int_{0}^{2 \pi} \int_{0}^{a}
$$

$$
\left[-2 w_{,_{x x}} \frac{\partial u_{i x}}{\partial \bar{u}_{i j}}+\left\{2\left(\frac{12}{t^{3}}\right)(R T-t) w_{\rho_{x \Theta}} \frac{\partial u_{\cdot \Theta}}{\partial \bar{u}_{i j}}\right\rangle\left(\frac{1-v}{2}\right)\right] d x d \Theta
$$

$$
+\sum_{\ell=1}^{L}\left[\frac { E _ { s \ell } } { 2 } \int _ { 0 } ^ { a } \left\{2 A_{s \ell}{ }^{u_{i}} \frac{\partial u_{i} x}{\partial \bar{u}_{i j}}-2 \bar{y}_{s \ell} A_{s \ell}{ }^{v_{l}}{ }_{x x} \frac{\partial u_{i} x}{\partial \bar{u}_{i j}}\right.\right.
$$

$$
\begin{aligned}
& \frac{1}{2} R \int_{0}^{2 \pi} \int_{0}^{a} \rho_{c} t 2 w^{2} u \frac{\partial u}{\partial \bar{u}_{i j}} d x d \Theta+\frac{1}{2} \sum_{l=1}^{L} \rho_{s l}{ }^{A} s \ell \int_{0}^{a}\left[2 w ^ { 2 } \left(u-\bar{z}_{s l} w_{0}\right.\right. \\
& \left.\left.-\bar{y}_{S \ell} v \cdot{ }_{x}\right) \frac{\partial u}{\partial \bar{u}_{i j}}\right]_{\Theta=\Theta_{\ell}} d x+\frac{1}{2} \sum_{k=1}^{K} \rho_{r k^{A}}{ }_{r k} R \int_{0}^{2 \pi} 2 w^{2}[(u \\
& \left.\left.-\bar{z}_{r k} w_{\prime_{x}}\right) \frac{\partial u}{\partial \bar{u}_{i j}}+\left(v-\frac{\bar{z}_{r k}}{R} w \rho_{\Theta \Theta}-\frac{\bar{x}_{r k}}{R} u_{\rho_{\Theta}}\right)\left(-\frac{\bar{x}_{r k}}{R} \frac{\partial u_{\bullet \Theta}}{\partial \bar{u}_{i j}}\right)\right]_{x=x_{k}} d \Theta
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.-2 \bar{z}_{s \ell^{A} s \ell}{ }^{w}, x x \frac{\partial u_{i x}}{\partial \bar{u}_{i j}}\right\}_{\Theta=\Theta_{\ell}}\right] d x+\sum_{k=1}^{K}\left[\frac { E _ { r k } } { 2 } \int _ { 0 } ^ { 2 \pi } \left\{-\frac{2 \bar{x}_{r k^{A} r k}}{R^{2}}\right.\right. \\
& v, \Theta \frac{\partial u_{\bullet \Theta \Theta}}{\partial \bar{u}_{i j}}+\frac{2 I_{2 z r k}}{R^{3}} u_{\bullet \Theta \Theta} \frac{\partial u_{, \Theta \Theta}}{\partial \bar{u}_{i j}}-\frac{2 \bar{x}_{r k}{ }^{A} r k}{R^{2}} w \frac{\partial u_{\bullet \Theta \Theta}}{\partial \bar{u}_{i j}} \\
& \left.\left.-\frac{2 I_{z z r k}}{R^{2}} w_{\rho} x \frac{\partial u_{, \Theta \Theta}}{\partial \bar{u}_{1 j}}\right\}_{x=x_{k}} d \Theta\right] \tag{46}
\end{align*}
$$

Substituting the assumed displacements of equations (40a-c) into equation (46) and dividing through by sin wt gives

$$
\begin{aligned}
& \frac{12 D}{t^{2}} \int_{0}^{2 \pi} \int_{0}^{a}\left[R \Sigma \Sigma \bar{u}_{m n} U_{m}^{\prime} U_{i}^{\prime} \cos n \Theta \cos j \Theta+\nu\left(\Sigma \Sigma n \bar{v}_{m n} V_{m} U_{i}^{\prime}\right.\right. \\
& \left.\quad \cos n \Theta \cos j \Theta+\Sigma \Sigma \bar{w}_{m n} W_{m} U_{i}^{\prime} \cos n \Theta \cos j \Theta\right)+\left(\frac{1-\nu}{2}\right) \\
& \left.\left(\frac{T}{t} \Sigma \Sigma j n \bar{u}_{m n} U_{m} U_{i} \sin n \Theta \sin j \Theta-\Sigma \Sigma j \bar{v}_{m n} V_{m}^{\prime} U_{i} \sin n \Theta \sin j \Theta\right)\right] \\
& d x d \Theta+D \int_{0}^{2 \pi} \int_{0}^{a}\left[-\Sigma \Sigma \bar{w}_{m n} W_{m}^{\prime \prime U_{i}} \cos n \Theta \cos j \Theta+\left(\frac{1-\nu}{2}\right)\left(\frac{12}{t^{3}}\right)\right. \\
& \text { (RT-t) } \left.\Sigma \Sigma n j \bar{w}_{m n} W_{m}^{\prime} U_{i} \sin n \Theta \sin j \Theta\right] d x d \Theta+\sum_{l=1}^{L}\left[E_{s l} \int_{0}^{a}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{A_{s \ell} \Sigma \Sigma\left(\bar{u}_{m n} \cos n \Theta+\bar{u}_{m n}^{\prime} \sin n \Theta\right) U_{m}^{\prime} U_{i} \cos j \Theta-\bar{y}_{s l} A_{s \ell}\right. \\
& \Sigma \Sigma\left(\bar{v}_{m n} \sin n \Theta-\bar{v}_{m n} \cos n \Theta\right) v_{m}^{\prime \prime u_{i}^{\prime} \cos j \Theta-A_{s \ell} \bar{z}_{s \ell}}
\end{aligned}
$$

$$
\left.\left.\Sigma \Sigma\left(\bar{w}_{m n} \cos n \Theta+\bar{w}_{m n}^{\prime} \sin n \Theta\right) w_{m}^{\prime \prime} U_{i} \cos j \Theta\right\}_{\Theta=\Theta}^{\ell}\right] d x+\sum_{k=1}^{K}
$$

$$
\left[E _ { r k } \int _ { 0 } ^ { 2 \pi } \left\{\frac{\bar{x}_{r k} A_{r k}}{R^{2}} \Sigma \Sigma n j{ }^{2} \bar{v}_{m n} V_{m} U_{i} \cos n \Theta \cos j \Theta+\frac{I_{z z r k}}{R^{3}}\right.\right.
$$

$$
\Sigma \Sigma n^{2} j^{2} \bar{u}_{m n} U_{m} U_{i} \cos n \Theta \cos j \Theta+\frac{\bar{x}_{r k}^{A} r k}{R^{2}} \Sigma \Sigma j^{2} \bar{w}_{m n} w_{m} U_{i} \cos n \Theta
$$

$$
\left.\cos j \Theta+\frac{I_{z z r k}}{R^{2}} \Sigma \Sigma j^{2} \bar{w}_{m n} w_{m}^{\prime} U_{i} \cos n \Theta \cos j \Theta\right\}_{x=x_{k}}^{-} d \Theta
$$

$$
-R w^{2} \int_{0}^{2 \pi} \int_{0}^{a} \rho_{c} t\left[\Sigma \Sigma \bar{u}_{m n} U_{m} U_{i} \cos n \Theta \cos j \Theta\right] d x d \Theta-\omega^{2} \sum_{i=1}^{L}
$$

$$
\rho_{s \ell}{ }_{s \ell} \int_{0}^{a}\left[\left\{\Sigma \Sigma\left(\bar{u}_{m n} \cos n \Theta+\bar{u}_{m n}^{\prime} \sin n \Theta\right) U_{m}-\bar{z}_{s \ell} \Sigma \Sigma\left(\bar{w}_{m n} \cos n \Theta\right.\right.\right.
$$

$$
\left.\left.+\bar{w}_{m n}^{\prime} \sin n \Theta\right) w_{m}^{\prime}-\bar{y}_{s l} \Sigma \Sigma\left(\bar{v}_{m n} \sin n \Theta-\bar{v}_{m n}^{\prime} \cos n \Theta\right) v_{m}^{\prime}\right\}
$$

$$
\begin{align*}
& \left.\left(U_{1} \cos J \Theta\right)\right]_{\Theta=\Theta_{l}}^{d x}-w^{2} \sum_{k=1}^{K} \rho_{r k^{A}}{ }_{r k} R \int_{0}^{2 \pi}\left[\left\{\Sigma \Sigma \bar{u}_{m n} U_{m} \cos n \Theta-\bar{z}_{r k}\right.\right. \\
& \left.\Sigma \Sigma \bar{w}_{m n} W_{m}^{\prime} \cos n \Theta\right\} u_{i} \cos j \Theta+\left\{\Sigma \Sigma \bar{v}_{m n} V_{m} \sin n \Theta+\frac{\bar{z}_{r k}}{R}\right. \\
& \left.\Sigma \Sigma n \bar{w}_{m n} W_{m} \sin n \Theta+\frac{\bar{x}_{r k}}{R} \Sigma \Sigma n \bar{u}_{m n} J_{m} \sin n \Theta\right\}\left(\frac{\bar{x}_{r k}}{R}\right) \\
& \left.\left(j U_{i} \sin j \Theta\right)\right]_{x=x_{k}} d \Theta=0 \tag{47}
\end{align*}
$$

where the summations are over m and n. In the preceding equation, several terms containing $\int_{0}^{2 \pi} \cos n \Theta \sin j \Theta d \Theta$ were left out since the integral is zero for all n and j. After integrations are performed and the entire equation is multiplied by $\frac{t^{2} R^{2}}{12 D \pi R a}$, the following equation results

$$
\begin{aligned}
& R^{2} \Sigma \Sigma \delta_{j n} \bar{u}_{m n} I_{U_{m}^{\prime} U_{i}}+\nu R \Sigma \Sigma j \delta_{j n} \bar{v}_{m n} I_{V_{m}} U_{i}+\nu R \Sigma \Sigma \delta_{j n} \bar{W}_{m n} I_{W_{m}} U_{i} \\
& +\left(\frac{1-v}{2}\right) \frac{T R}{t} \Sigma \Sigma j^{2} \delta_{j n} \bar{u}_{m n} I_{U_{m} U_{i}}-\left(\frac{1-v}{2}\right) R \Sigma \Sigma j \delta_{j n} \bar{v}_{m n} I_{V_{m}^{\prime}} U_{i} \\
& -\frac{t^{2} R}{12} \Sigma \Sigma \delta_{j n} \bar{w}_{m n} I_{W_{m}^{\prime \prime} U_{i}^{\prime}}+\left(\frac{1-v}{2}\right) \frac{(R T-t) R}{t} \Sigma \Sigma j^{2} \delta_{j n} \bar{W}_{m n} I_{W_{m}^{\prime} U_{i}} \\
& +\sum_{\ell=1}^{L}\left[S _ { s \ell } R ^ { 2 } \left\{\Sigma \Sigma\left(\bar{u}_{m n} \cos n \Theta+\bar{u}_{m n}^{\prime} \sin n \Theta\right) I_{U_{m}^{\prime} U_{i}^{\prime}} \cos j \Theta-\bar{y}_{s \ell}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma \Sigma\left(\bar{v}_{m n} \sin n \Theta-\bar{v}_{m n} \cos n \Theta\right) I_{V_{m}^{\prime \prime} U_{i}^{\prime}} \cos j \Theta-\bar{z}_{s \ell} \Sigma \Sigma\left(\bar{w}_{m n} \cos n \Theta\right. \\
& \left.\left.\left.+\bar{w}_{m n}^{\prime} \sin n \Theta\right) I_{W_{m}^{\prime \prime} U_{i}^{\prime}} \cos j \Theta\right\}_{\Theta=\Theta l}\right]+\sum_{k=1}^{K}\left[\frac { S _ { r k } } { A _ { r k } } \left\{\frac{\bar{x}_{r k} A_{r k}}{R}\right.\right. \\
& \Sigma \Sigma j^{3} \delta_{j n} \bar{v}_{m n} V_{m} U_{i}+\frac{{ }^{I} z z r k}{R^{2}} \Sigma \Sigma j^{4} \delta_{j n} \bar{u}_{m n} U_{m} U_{i}+\frac{\bar{x}_{r k} A_{r k}}{R} \\
& \left.\left.\Sigma \Sigma j^{2} \delta_{j n} \bar{W}_{m n} W_{m} U_{i}+\frac{I_{z z r k}}{R} \Sigma \Sigma j^{2} \delta_{j n} \bar{W}_{m n} W_{m}^{\prime} U_{i}\right\}_{x=x_{k}}\right]^{-\Delta} \\
& \Sigma \Sigma \delta_{j n} \bar{u}_{m n} I_{U_{m} U_{i}}-\Delta \sum_{\ell=1}^{L}\left[M _ { s \ell } \left\{\Sigma \Sigma\left(\bar{u}_{m n} \cos n \Theta+\bar{u}_{m n} \sin n \Theta\right)\right.\right. \\
& I_{U_{m} U_{i}} \cos j \Theta-\bar{z}_{s \ell} \Sigma \Sigma\left(\bar{w}_{m n} \cos n \Theta+\bar{w}_{m n}^{\prime} \sin n \Theta\right) I_{W_{m}^{\prime} U_{i}} \cos j \Theta-\bar{Y}_{s \ell} \\
& \left.\left.\Sigma \Sigma\left(\bar{v}_{m n} \sin n \Theta-\bar{v}_{m n}^{\prime} \cos n \Theta\right) I_{V_{m}^{\prime} U_{i}} \cos j \Theta\right\}_{\Theta=\Theta}\right]-\Delta \sum_{k=1}^{K} \\
& {\left[M _ { r k } \left\{\Sigma \Sigma \delta_{j n} \bar{u}_{m n} U_{m} U_{i}-\bar{z}_{r k} \Sigma \Sigma \delta_{j n} \bar{W}_{m n} W_{m}^{\prime} U_{i}+\frac{\bar{x}_{r k}}{R}\right.\right.} \\
& \Sigma \Sigma j \delta_{j n} \bar{v}_{m n} V_{m} U_{i}+\frac{\bar{z}_{r k} \bar{x}_{r k}}{R^{2}} \Sigma \Sigma j^{2} \delta_{j n} \bar{w}_{m n} W_{m} U_{i}+\left(\frac{\bar{x}_{r k}}{R}\right)^{2}
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.\Sigma \sum^{2} \delta_{j n} \bar{u}_{m n} U_{m} U_{i}\right\}_{x=x_{k}}\right]=0 \tag{48}
\end{equation*}
$$

where Δ is the frequency parameter defined by

$$
\begin{equation*}
\Delta=\frac{(1-v) \rho_{c} R^{2} w^{2}}{E_{C}} \tag{49}
\end{equation*}
$$

A short hand notation has been used for some of the integrals. For example, $\mathrm{I}_{\mathrm{U}_{\mathrm{m}} \mathrm{U}_{\mathrm{i}}}$ is used in place of the

$$
\frac{1}{a} \int_{0}^{a} U_{m}^{\prime}(x) U_{i}(x) d x
$$

Equation (48) has been developed from equation (44) for $i=1$ only, A similar procedure must be done five more times for $i=2-6$. By combining the coefficients of the same displacements, the results are the following six equations linear in $\bar{u}_{m n}, \bar{v}_{m n}, \bar{w}_{m n}, \bar{u}_{m n}^{\prime}, \bar{v}_{m n}^{\prime}, \bar{w}_{m n}^{\prime}$
$\sum_{m} \sum_{n}\left[A_{i j m n} \bar{u}_{m n}+D_{i j m n} \bar{v}_{m n}+E_{i j m n} \bar{w}_{m n}+G_{i j m n} \bar{u}_{m n}+G_{i j m n} \bar{v}_{m n}^{\prime}\right.$

$$
\begin{aligned}
+H_{i j m n} \bar{w}_{m n}^{\prime}-\Delta & \left\{N_{i j m n} \bar{u}_{m n}+N N_{i j m n} \bar{v}_{m n}+P_{i j m n} \bar{w}_{m n}\right. \\
& \left.\left.+T_{i j m n} \bar{u}_{m n}^{\prime}+T T_{i j m n} \bar{v}_{m n}^{\prime}+U_{i j m n} \bar{w}_{m n}^{\prime}\right\}\right]=0
\end{aligned}
$$

panụุดo

$\sum_{m} \sum_{n}\left[H_{m n i j} \bar{u}_{m n}+D D_{m n i j} \bar{v}_{m n}+M_{m n i j} \bar{w}_{m n}+E_{m n i j}^{\prime} \bar{u}_{m n}^{\prime}\right.$

$$
\begin{aligned}
& +F_{m n i j}^{\prime} \bar{v}_{m n}^{\prime}+C_{i j m n}^{\prime} \bar{w}_{m n}^{\prime}-\Delta\left\{U_{m n i j} \bar{u}_{m n}+W_{m n i j} \bar{v}_{m n}\right. \\
& \left.\left.+Y_{m n i j} \bar{w}_{m n}+P_{m n i j}^{\prime} \bar{u}_{m n}^{\prime}+R_{m n i j}^{\prime} \bar{v}_{m n}^{\prime}+S_{i j m n}^{\prime} \bar{w}_{m n}^{\prime}\right\}\right]=0
\end{aligned}
$$

(50a-f)
The coefficients of equations (50a-f) are presented in Appendix I.

Equations (50a-f) may also be written in matrix form, with the aid of the work of Egle and Sewall (17), as
where the superscript T indicates the submatrix has been transposed. The terms in equations (50a-f) have been redefined in order to write them in the matrix form of
equation (51). The terms $\overline{\bar{u}}, \overline{\bar{v}}$, etc, are column vectors whose components are $\overline{\bar{u}}_{p}=\overline{\mathrm{u}}_{\mathrm{mn}}$

$$
\begin{aligned}
& \overline{\bar{v}}_{p}=\overline{\mathrm{v}}_{m n} \\
& \overline{\bar{w}}_{\mathrm{p}}^{\prime}=\overline{\mathrm{w}}_{m n}^{\prime}
\end{aligned}
$$

and n and m are related to P by

$$
\begin{align*}
& m=P-\left(\frac{p-1}{m^{*}}\right)_{T} m^{*} \\
& n=1+\left(\frac{p-1}{m^{*}}\right)_{T} \tag{52a-b}
\end{align*}
$$

where m^{\star} is the maximum value of m, n^{*} is the maximum value of n, and the symbol ($)_{T}$ represents the operation of integer truncation, for example $(8 / 3)_{T}=2$. Likewise, the coefficients $A_{Q P}$, $D_{Q P}$, etc. in the matrix are related to those in equations (50a-f) as

$$
\begin{aligned}
& A_{Q P}=A_{i j m n} \\
& D_{Q P}=D_{i j m n}
\end{aligned}
$$

where n and m are related to P by equations (52a-b), while i and j are related to Q by

$$
\begin{align*}
& i=Q-\left(\frac{Q-1}{m^{\star}}\right)_{T} m^{*} \\
& j=1+\left(\left.\frac{Q-1}{m^{\star}}\right|_{T}\right. \tag{53a-b}
\end{align*}
$$

An example of this calculation for $P=10, Q=16$, and $\mathrm{m}^{\star}=4$, gives $\mathrm{i}=6, \mathrm{~J}=4, \mathrm{~m}=2$, and $\mathrm{n}=3$, then $\mathrm{A}_{10,16}$ $=A_{6,4,2,3}{ }^{\circ}$

The solution of equation (51) is an eigenvalue problem where the size of each matrix is ($6 m * n *$) by ($6 m * n *$). The first matrix in equation (51), which contains A, B, C, etc., will be referred to as the stiffness matrix, and the second matrix as the mass matrix.

Equations (50a-f) will simplify if it is assumed that the stringers are distributed symmetrically with respect to the $x-z$ plane. This means that for every stringer at $\Theta=\Theta_{l}$ there is an identical stringer at $\Theta=-\Theta_{l}$. Also, if a stringer at $\Theta=\Theta_{\ell}$ has a $\bar{y}_{\text {s }}$ that is not zero, the corresponding stringers at $\Theta=-\Theta_{\ell}$ must be identical with the exception that the sign of $\bar{Y}_{s \ell}$ must be opposite that of the other stringer. The terms in equation (51) which couple the symmetric and antisymmetric circumferential modes (G, GG, $H, F F, E E, D D, H H, M M$, and M in the stiffness matrix; and T, TT, U, RR, V, W, UU, X, and Y in the mass matrix) are identically zero for this stringer distribution. For example,

$$
\begin{aligned}
G G_{i j m n}= & I_{V_{m}^{\prime \prime \prime} u_{i}} \sum_{l=1}^{L / 2} S_{s \ell}\left[\bar{y}_{s \ell} \cos \left(n \Theta_{\ell}\right) \cos \left(j \Theta_{l}\right)\right. \\
& \left.-\bar{y}_{s \ell} \cos \left(-n \Theta_{\ell}\right) \cos \left(-j \Theta_{\ell}\right)\right]=0
\end{aligned}
$$

and

$$
\begin{aligned}
G_{i j m n}= & I_{U_{m} U_{i}^{\prime}} R^{2} \sum_{\ell=1}^{L / 2} S_{s \ell}\left[\sin \left(n \Theta_{\ell}\right) \cos \left(j \Theta_{\ell}\right)\right. \\
& \left.+\sin \left(-n \Theta_{\ell}\right) \cos \left(-j \Theta_{\ell}\right)\right]=0
\end{aligned}
$$

Consequently, the matrix equation (51) uncouples into two sets of equations which are not necessarily identical. One set is for the symmetric circumferential modes, while the other is for the antisymmetric modes. The result may be two similar circumferential mode shapes displaced by a quarter wave length with slightly different natural frequencies.

Since the experimental works used for comparison had circumferential symmetry, only the set of equations for this condition need to be solved. The set of equations involving only the symmetric circumferential modes can be written in matrix form as

$$
\left[\begin{array}{lll}
A & D & E \\
D^{T} & B & F \\
E^{T} & F^{T} & C
\end{array}\right] \quad-\Delta \quad\left[\begin{array}{lll}
N & N N & P \\
N N^{T} & Q & R \\
P^{T} & R^{T} & S
\end{array}\right] \quad\left\{\begin{array}{c}
\overline{\bar{u}} \\
\overline{\bar{v}} \\
\overline{\bar{W}}
\end{array}\right\}=0
$$

where the size of each matrix is (3m*n*) by (3m*n*). The computer program for the calculation of the coefficients and the solution of this eigenvalue problem is presented in Appendix II.

CHAPTER III

COMPARISON WITH PREVIOUS WORKS

Since the natural frequencies for stiffened cylinders have been experimentally determined and the results published in other works, calculations were made for these cylinders to determine how well the analysis agrees with experiment. The computer program was written for the calculations in Fortran IV and was run on an IBM 360/40. The program is given in Appendix II.

Exact Solution of Forsberg

The theory was tested for comparison with the exact solution of Forsberg (1) in the case of an unstiffened cylinder with freely supported ends. Comparisons were made for length-to-radius ratios of 1 and 10 . The calculated frequencies agreed as close as could be determined with the frequency curves in the small graphs given by Forsberg.

The close agreement for the unstiffened cylinder gave a good check of the general approach and more specifically for the part of the theory pertaining to the cylindrical shell. Next, calculations were made for comparison with published experimental work involving both unstiffened and stiffened cylindrical shells.

Comparison for a Cylinder with Clamped-Free Ends
The experimental work by Park (26) was for cylindrical shells with clamped-free ends. The work included an unstiffened cylindrical shell and the same cylindrical shell stiffened internally with three rings and sixteen stringers. The stringers were equally spaced around the circumference and one ring was at the free end with the other two equally spaced along the length, dividing the shell into three equal bays. The material properties of the shell and stiffeners were the same, namely

$$
\begin{aligned}
& \rho=0.0007332 \mathrm{lb} \mathrm{sec} \\
& 2 / \mathrm{in}^{4} \\
& E=30 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2} \\
& \nu=0.29
\end{aligned}
$$

The dimensions of the cylinder were

$$
\begin{aligned}
& \mathrm{R}=10.0 \mathrm{in} \\
& \mathrm{t}=0.03 \mathrm{in} \\
& \mathrm{a}=48.0 \mathrm{in}
\end{aligned}
$$

The dimensions and geometric properties of the sixteen identical stringers were

$$
A_{s l}=0.031096 \mathrm{in}^{2}
$$

$$
\begin{aligned}
\bar{z}_{\text {Sl }} & =-0.1376 \mathrm{in} \\
\bar{y}_{\text {Sl }} & =0.0 \mathrm{in} \\
I_{\text {zZCSl }} & =0.0001652 \mathrm{in}^{4} \\
I_{\text {YyCSl }} & =0.0003895 \mathrm{in}^{4} \\
(G J)_{\text {Sl }} & =306.01 \mathrm{bin} \mathrm{in}^{2}
\end{aligned}
$$

and it was assumed that

$$
\Gamma_{s \ell}^{\prime}=0.0
$$

The dimensions and geometric properties of the three identical rings were

$$
\begin{aligned}
& A_{r k}=0.06251 \mathrm{in}^{2} \\
& \overline{\mathrm{z}}_{\mathrm{rk}}=-0.1219 \mathrm{in} \\
& \bar{x}_{r k}=0.0 \mathrm{in} \\
& I_{\text {xxcrk }}=0.0003253 \text { in }^{4} \\
& I_{\text {zzcrk }}=0.0004945 \text { in }^{4} \\
& \text { (GJ) }{ }_{\mathrm{rk}}=5146.0 \mathrm{lb} \mathrm{in}^{2}
\end{aligned}
$$

and it was assumed that

$$
\Gamma_{r k}^{\prime}=0.0
$$

The results of the theoretical calculations for the natural frequency of the unstiffened cylinder are shown as a solid line in Figure 4 along with the experimental points of Park (26). The numerical data used to plot the graph are given in Table 1 . Similarly, the results are shown in Figure 5 for the stiffened cylinder, with the numerical data used to plot the graph given in Table 2.

Comparison for a Cylinder with

 Freely-Supported EndsThe experimental and theoretical work by Hu , Gormley, and Lindholm (6) was for cylindrical shells with freely-supported ends. The work included an unstiffened cylinder and two models of the same cylindrical shell stiffened with thirteen rings. In one model the rings were external and in the other they were symmetric about the middle surface of the shell. There was one ring at each end of the cylinder with the other rings equally spaced, dividing the shell into twelve equal bays. The material properties of the shell and rings were the same, namely

$$
\begin{aligned}
& \rho=0.0007324 \mathrm{lb} \mathrm{sec}^{2} / \mathrm{in}^{4} \\
& \mathrm{E}=30 \times 10^{6} \mathrm{lb} / \mathrm{in}^{2} \\
& \nu=0.3
\end{aligned}
$$

The dimensions of the cylinder were

NUMBER OF CIRCUMFERENTIAL FULL WAVES (n)
Figure 4. Theoretical and Experimental Frequencies of an Unstiffened Cylindrical Shell with Clamped-Free Ends.

TABLE 1
COMPARISON OF THEORETICAL AND EXPERIMENTAL (REF. 26) FREQUENCIES, ${ }^{\text {a }}$ WHICH ARE PLOTTED IN FIGURE 4

N	$\mathrm{m}=1$		$m=2$	
	Theory	Exper.	Theory	Exper.
2	104.4	$\begin{gathered} 87.2 \\ \text { and } \\ 95.1 \end{gathered}$		
3	55.6	51.5		
4	52.0	50.4	177.9	$\begin{gathered} 168.5 \\ \text { and } \\ 170.2 \end{gathered}$
5		70.9		132.8
6		101.4		$\begin{aligned} & 128.8 \\ & \text { and } \\ & 130.1 \end{aligned}$
7	139.1	138.8	154.2	153.6
8	182.6	182.2	191.2	191.3

a Units are cycles/second.

Figure 5. Theoretical and Experimental Frequencies of a Clamped-Free Cylindrical Shell Stiffened Internally with Three Equally Spaced Rings and Sixteen Equally Spaced Stringers.

TABLE 2
COMPARISON OF THEORETICAL AND EXPERIMENTAL (REF. 26)
VALUES FOR THE THREE LOWEST FREQUENCIESa AND THE AXIAL WAVE NUMBERS, WHICH ARE PLOTTED IN FIGURE 5

	First Frequency		Second Frequency		Third Frequency				
	m	Theory	Exper.	m	Theory	Exper.	m	Theory	Exper.
1	1	243.9							
2	1	105.8	80.2 and 88.2	2	433.9				
3	1	135.2	107.5	2	274.1	246.2	3	568.2	491.8
4	1	216.9	184.6	2	285.9	251.5	3	447.1	and and
5	1	302.5		2	333.2	304.6	3	445.9	
6	2	315.0		1	353.8		4	414.0	
7	4	286.0		1	340.2		2	394.0	
8	4	264.3		1	310.6		2	361.3	
9	4	300.9		1	332.7		6	367.7	
10	4	334.4		1	357.4		6	380.2	
11	4	378.1		5	395.8		6	409.2	

$$
\begin{aligned}
& \mathrm{R}=6.0 \mathrm{in} \\
& \mathrm{t}=0.015 \mathrm{in} \\
& \mathrm{a}=24.0 \mathrm{in}
\end{aligned}
$$

The dimension and geometric properties of the thirteen identical symmetric rings were

$$
\begin{aligned}
A_{r k} & =0.0451 \mathrm{in}^{2} \\
\bar{z}_{r k} & =0.0 \mathrm{in} \\
\bar{x}_{r k} & =0.0 \mathrm{in} \\
I_{x x c r k} & =0.0005978 \mathrm{in}^{4} \\
\mathrm{I}_{z z \mathrm{Crk}} & =0.0000541 \mathrm{in}^{4} \\
\text { SJ) }_{r k} & =2009.0 \mathrm{lb} \mathrm{in}^{2}
\end{aligned}
$$

and it was assumed that

$$
\Gamma_{r k}^{\prime}=0.0
$$

Tre properties for the thirteen identical external rings were

$$
\begin{aligned}
& A_{r k}=0.0450 \mathrm{in}^{2} \\
& \bar{z}_{r k}=0.1 .955 \mathrm{in} \\
& \bar{x}_{r k}=0.0 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
& I_{\text {xxcrk }}=0.0005274 \mathrm{in}^{4} \\
& I_{z z c r k}=0.000054 \mathrm{in}^{4} \\
& (G J)_{r k}=1981.01 \mathrm{bin} \mathrm{in}^{2}
\end{aligned}
$$

and it was assumed that

$$
\Gamma_{r k}^{\prime}=0.0
$$

The results of the theoretical calculations for the natural frequency of the unstiffened cylinder are shown as a solid line in Figure 6 along with the experimental points of Hu , Gormley, and Lindholm (6). The numerical data used to plot the graph are given in Table 3. The theory of Hu, Gormley, and Lindholm gave essentially the same results for the cylinder stiffened with either symmetric or external rings and their theory is shown as a continuous solid line in Figure 7, while their three experimental points for the cylinder with external rings are depicted with the hexagonal symbols.

The remaining curves were calculated using the theory in this present work. The lowest frequencies associated with the radial, axial, and torsional modes are depicted with the square and triangular symbols, and these symbols are connected with a broken solid line for the torsional and axial modes. These frequencies were calculated assuming a displacement series of twenty odd terms. The numerical data for these curves are given in

Figure 6. Theoretical and Experimental Frequencies of an Unstiffened Cylindrical Shell with Simply Supported Ends.

TABLE 3
COMPARISON OF THEORETICAL AND EXPERIMENTAL (REF. 6) EREQUENCIES, ${ }^{\text {a }}$ WHICFi ARE PLOTTED IN FIGURE 6

N	$\mathrm{m}=1$		$m=2$		$m=3$		$m=4$	
	Theory	Exper	Theory	Exper.	Theory	Exper.	Theory	Exper.
2	633.5							
3	326.7	370						
4	202.3	255	696.1	745				
5	159.9	205	483.0	545	960.6			
6	; 168.0	200	370.5	420	724.0	790		
7	206.0	220	325.1	345	580.8			
8	261.0	265	329.2	360	506.1		768.3	820
10	403.4	395	429.2	435	506.6		649.9	
12	581.1	560	594.9	580	632.3	625	706.4	
14	791.8	760	801.8	780	824.7	805	867.6	850

$a_{\text {Units }}$ are cycles/second.

Figure 7. Theoretical and Experimental Values for the Lowest Radial, Axial, and Torsional Frequencies of a Simply Supported Cylindrical Shell Stiffened with Thirteen Equally Spaced Rings.

Table 4. The dashed line in Figure 7 has been calculated from the theory presented in this work, but only either seven odd terms or seven even terms were assumed for the displacement series, with the lowest frequency being shown in the figure. The numerical data for this curve are given in Table 5.

Difficulties Encountered

In calculating the natural frequencies of a stiffened cylindrical shell, two problems were encountered. The first concerns the presentation of the results. As discussed in the work of Egle and Sewall (17), there is a problem in identifying the circumferential wave number (n) and the axial wave number (m) . Egle and Sewall solved this problem by observing that the term in the assumed displacement series with the largest coefficient is generally the predominant one in the modal shape. If this is the $n^{\text {th }}$ term in the series, then the mode will be identified with a wave number of n.

The second problem was deciding how many terms to assume for the displacement series. In order to reduce the size of the eigenvalue problem, which then decreases the computer time required for a solution, it was necessary to keep the assumed displacement series to a minimum. The minimum number of terms can be decided by repeating the frequency calculations at the same value of n for $a n$

TABLE 4
THEORETICAL FREQUENCIES ${ }^{\text {a }}$ CALCULATED RY A SERTES OF TWENTY ODD TERMS AND THE AXIAL WAVE NIJMBERS,

Which are plotted in figure 7

N	Lowest Axial				Lowest Torsional				Lowest Radial			
	Ext. Rings		Sym. Rings		Fxt. Rings		Sym. Rings		Ext. Pings		Sym. Rings	
	m	Theory										
0	1	1926.4	1	2542.1	1	1651.0	1	1649.7	27	2969.5	33	3953.4
2	1	5461.3	1	4625.7	1	12,347	1	12,362	1	518.3	1	490.7
4	1	10,447	1	8190.5	7	20,131	1	22.477	1	1287.5	1	1225.7
6	1	14,989	1	11,612	11	29,807	1	33,295	1	2276.7	1	2556.1
10	1	21,159	1	17,522	13	50,395	13	50,491	1	2694.8	1	2995.6
14	1	27,329	1	22,590	5	77,870	15	64,397	1	2506.8	1	2601.4

$a_{\text {Units }}$ are cycles/second.

TABLE 5
THEORETICAL FREQUENCIES ${ }^{\text {a }}$ AND AXIAL WAVE NUMBERS CALCULATED BY EITHER A SERIES OF SEVEN ODD TERMS OR SEVEN EVEN TERMS, WHERE THE LOWEST FREQUENCIES ARE PLOTTED IN FIGURE 7

N	Odd Terms		Even Terms			
	m	Theory	m	Theory		
4	1	1239.1	2	1315.4		
6	1	2813.7	2	2828.3		
10	11	6206.0	12	5880.3		
14	11	8219.8	12	7712.5		
18	11	10.469	12	9802.1		
a Units are cycles/second.						

increasing number of terms in the displacement series and then checking for convergence.

As an example, the following tabulation shows the lowest natural frequency in cycles per second for 3, 10, and 20 terms in the assumed displacement series for the stiffened shell with clamped-free ends:

Range of m	$\mathrm{n}=3$	$\mathrm{n}=8$
$1-3$	144.0	483.3
$1-10$	135.2	264.3
$1-20$	130.3	263.5

Considering that the computer time for the 20 -term series was approximately four times as long as the time for the 10-term series, it was decided that for this particular cylinder a lo-term series would give adequate results.

In the case of the ring stiffened cylinder of Hu , Gormley, and Lindholm with simply supported ends, a twenty-term series did not agree with their theory, and the difference increased as n became larger. The twentyterm series gave a matrix size of 60 by 60 , which was the maximum size that could be handled by the computer.

If there is no coupling between the odd and even terms in the assumed displacement series, the range of m can be doubled without increasing the matrix size by using only the odd or even terms of the assumed displacement series. For the case of a simply supported cylinder with rings that are symmetric about their z-axis ($\bar{x}_{r k}=0$)
and are distributed symmetrically about the middle of the shell ($x=a / 2$) , this uncoupling allows the use of only the odd or even terms in the displacement series. This uncoupling can be shown by examining the portions of the terms in equation (51) which involve the rings.

For example, the ring portion of $B_{i j m n}$ (see Appendix
I) is

$$
j^{2} \sum_{k=1}^{K} S_{r k}\left[V_{m} v_{i}\right]_{x_{k}}
$$

Since the cylinder is simply supported, the axial mode function is

$$
V_{m}(x)=\sqrt{2} \sin \left|\frac{m \pi x}{a}\right|
$$

The ring portion of $B_{i j m n}$ can be written as

$$
\begin{aligned}
& 2 j^{2} \sum_{k=1}^{K / 2} S_{r k}\left[\operatorname { s i n } m \pi \left(\frac{1}{2}-\frac{L_{K}}{a} \left\lvert\, \sin i \pi\left(\frac{1}{2}-\frac{L_{K}}{a}\right)\right.\right.\right. \\
& \left.\quad+\sin m \pi\left(\frac{1}{2}+\frac{L_{K}}{a}\right) \sin i \pi\left(\frac{1}{2}+\frac{L_{K}}{a}\right)\right]
\end{aligned}
$$

since for every ring at

$$
x=\frac{a}{2}-L_{K}
$$

there is an identical ring at

$$
x=\frac{a}{2}+L_{K}
$$

The ring portion of $B_{i j m n}$ can be expanded and rewritten as

$$
\left.\begin{array}{rl}
2 j^{2} \sum_{k=1}^{K / 2} S_{r k}\left[\left(\left.\sin m \frac{\pi}{2} \cos m \pi \frac{L_{K}}{a}-\sin m \pi \frac{L_{K}}{a} \cos m \frac{\pi}{2} \right\rvert\,\right.\right. \\
& \left|\sin i \frac{\pi}{2} \cos i \pi \frac{L_{K}}{a}-\sin i \pi \frac{L_{K}}{a} \cos i \frac{\pi}{2}\right|
\end{array}\right\} \begin{aligned}
+ & \left|\sin m \frac{\pi}{2} \cos m \pi \frac{L_{K}}{a}+\sin m \pi \frac{L_{K}}{a} \cos m \frac{\pi}{2}\right|
\end{aligned}
$$

which is nonzero only if m and i are both odd or both even. Therefore, there is no coupling between the odd and even terms.

By using only the odd terms in the displacement series, the range of m was increased, which gave good agreement with the theory of Hu, Gormley, and Lindholm for the lowest radial frequency. As an example, the following tabulations shows the lowest radial frequency in cycles per second at $n=4$ for a 7 -term series and for two series containing only odd terms for the simply supported cylinder stiffened with symmetric rings:

Range of m	$n=4$
$1-7$	1758.1
$1-19$ odd only	1758.1
$1-37$ odd only	1225.7
Theory from Ref. 6	1180.0

At $n=14$, the lowest radial frequency using a series containing only the odd terms was:

Range of m	$n=14$
$1-13$ odd only	8219.8
$1-29$ odd only	2601.4
Theory from Ref. 6	2600.0

Considering the computer time required for the calculations, it was decided that for this particular cylinder a 15 -term series containing only the odd terms from 1 to 29 could give adequate results for the lowest frequency.

These two examples indicate that the range of the displacement series necessary for convergence increases as the number of bays increases. However, with only two specific examples, it is not possible to draw any definite conclusions. Further study is needed in order to decide which terms should be included in the assumed displacement series for a particular shell. Then by including only the necessary terms, the size of the eigenvalue problem could be greatly reduced.

DISCUSSION OF RESULTS

Experiments for an Unstiffened Cylinder

The comparison of experimental work with the present theory for an unstiffened cylindrical shell is shown in Figure 4 for clamped-free ends and in Figure 6 for simply supported ends. Since the comparison of the present theory with the exact theory of Forsberg (1) showed such close agreement for the case of simply supported ends, it is possible that the difference between the experimental work of Hu, Gormley, and Lindholm (6), which is shown in Figure 6, and the present theory could be due to the boundary conditions of the experimental cylinder. This conclusion is supported by the close agreement with the theoretical work of Hu , Gormley, and Lindholm to the present analysis.

The work of Forsberg showed that there are several different end conditions associated with the name simple support. This type of support can be without axial constraint, or can have an axial constraint at one or both ends. Also it is possible for a tangential constraint to
to be present at either end. It was shown by Forsberg that there can be about 40 to 60 per cent difference in the minimum frequency depending on which type of simple support is assumed. Forsberg pointed out that for a shell with clamped ends the frequency can be as much as 100 per cent higher than the same shell with freely supported ends. His work also clearly showed that the influence of boundary corditions diminishes for higher values of n.

This explanation could account for the difference
between the experimental points and theory shown in Figure 6. If the experimental cylinder had some axial restraint and the tangential displacement was not fully restrained, the measured frequency would be higher for low values of n than for a cylinder without axial constraint and with the tangential displacement fully constrained.

Using the work of Forsberg for a comparison of a cylinder with clamped-free ends to a cylinder with freely supported ends, it is inferred that a cylinder with clampedfree ends would have a higher frequency than a cylinder with a simple support at one end and free at the other. If the clamped end of the experimental cylinder was not rigid enough to make the slope of the radial displacement zero, as is assumed in the theoretical calculation, the true end support could be somewhere between a theoretical
clamped end and a simply supported end. This would cause the measured frequencies to be lower than expected at low values of n, and could explain the difference between the experimental points and theory shown in Figure 4. At larger values of n the effect of end conditions diminishes, which is clearly shown in both Figures 4 and 6.

Experiments for a Stiffened Cylinder

The comparison of experimental work with the present theory for a stiffened cylindrical shell is shown in Figure 5 for clamped free ends and Figure 7 for simply supported ends. Although there are only a few experimental points in Figure 5, the agreement is closer at the higher values of n. This indicates that the difference in the calculated and measured frequencies at lower values of n is due to the difference between the experimental and theoretical end clamping, which was discussed for the unstiffened cylinder.

The frequency of an unstiffened cylinder for a particular value of n increases as the axial wave number (m) increases, and for a particular value of m the frequency increases as the value of n increases. An example of this is clearly shown in Figure 6. However, the present theory predicts a second minimum for a stiffened. cylinder, which is shown in Figure 5 and Figure 7. This minimum also
occurs for the theory of Hu, Gormley, and Lindholm (6), which is shown as a continuous solid line in Figure 7. They explained that this flattening of the frequency curve is a result of diminished ring motion and weakened coupling between the bays. If enough terms in the radial displacement series are not assumed, this flattening of the frequency curve does not appear. This is shown in figure 7 by the dashed line, where only a seven-term series was assumed.

The continuous solid line in Figure 7 for the theory of Hu, Gormley, and Lindholm is for the case of either external or symmetric rings, since the difference between the two is too small to be shown on the figure. However, the present theory shows a noticeable frequency difference. The frequencies for the cylinder with external rings are indicated in Figure 7 by the triangles, and squares are used to indicate the frequencies corresponding to the cylinder with symmetric rings.

Another interesting development occurs for the stiffened cylinder that is different from the case of an unstiffened shell. The frequency at a particular value of n does not always increase as the axial wave number (m) increases. Figures 8 through 14 show the normalized radial displacement (w) plotted against the nondimensional longitudinal coordinate for the three or four lowest

Figure 8. Calculated Axial Mode Shapes of a Clamped-Free Cylindrical Shell Stiffened Internally with Three Equally Spaced Rings and Sixteen Equally Spaced Stringers for $\mathrm{n}=2$.

Figure 9. Calculated Axial Mode Shapes of a Clamped-Free -Cylindrical Shell Stiffened Internally with Three Equally Spaced Rings and Sixteen Equally Spaced Stringers for $n=9$.

Figure 10. Calculated Axial Mode Shapes of a clamped-Free Cylindrical Shell Stiffened Internally with Three Equally Spaced Rings and Sixteen Equally Spaced Stringers for $n=11$.

Figure ll. Calculated Axial Mode Shapes of a Simply Supported Cylindrical Shell Stiffened with Thirteen Equally Spaced Symmetric Rings for $n=2$.

Figure 12. Calculated Axial Mode Shapes of a Simply Supported Cylindrical Shell Stiffened with Thirteen Equally Spaced External Rings for $n=2$.

Figure 13. Calculated Axial Mode Shapes of a Simply Supported Cylindrical Shell Stiffened with Thirteen Equally Spaced Symmetric Rings for $\mathrm{n}=10$.

Figure 14. Calculated Axial Mode Shapes of a Simply Supported Cylindrical Shell Stiffened with Thirteen Equally Spaced External Rings for $n=10$.
radial-mode frequencies at a particular n. Figures 8, 9, and 10 are for the stiffened shell with clamped-free ends, and Figures 11 through 14 are for the stiffened shell with simply supported ends. For a particular value of n the mode shape that is associated with the lowest frequency is shown at the top of each figure with the frequency increasing for each following mode shape.

Notice that in Figure 8 for $\mathrm{n}=2$, the frequency increases as m increases from one to three; while in Figure 9 for $\mathrm{n}=9$, the frequency increases as m goes from four to one to six; similarly, in Figure 10 for $n=11$, the frequency increases as m increases from four to six. The explanation for this phenomenon is not known. The axial wave number associated with each frequency for the stiffened cylinder with clamped-free ends is shown in Table 2.

A displacement series with twenty odd terms was assumed to calculate the frequencies shown in Figure 7. The axial mode shapes associated with $\mathrm{n}=2$ for a cylindrical shell with simply supported ends are shown in Figure 11 for symmetric rings and in Figure 12 for external rings. Similarly, the axial mode shapes associated with $\mathrm{n}=10$ are shown in Figure 13 for symmetric rings and in Figure 14 for external rings. The difference between the mode shapes for the symmetric and external rings was unexpected, since the eccentricity of the external rings was small.

At $\mathrm{n}=0$, another unexpected phenomenon occurred. For the case of an unstiffened cylinder, the lowest natural frequency is usually associated with a radial mode. As is shown in Figure 7 for a stiffened cylinder, the lowest frequency at $\mathrm{n}=0$ is associated with a torsional mode (v). while the second from the lowest is associated with an axial mode (u), and the third from the lowest frequency is associated with the radial mode (w) having an axial wave number of $m=33$. These three mode shapes are normalized and shown in Figure 15 for the case of symmetric rings.

Figure 15. Calculated Mode Shapes of a Simply Supported Cylindrical Shell Stiffened with Thirteen Equally Spaced Symmetric Rings for $\mathrm{n}=0$.

REFERENCES

1. Forsberg, K., "Influence of Boundary Conditions on the Modal Characteristics of Thin Cylindrical Shells", AIAA Journal, Vol. 2, No. 12, pp. 21502157 (1964).
2. Arnold, R. N., and G. B. Warburton, "Flexural Vibrations of the Walls of Thin Cylindrical Shells Having Freely Supported Ends". Proc. Royal Soc. (London), Vol. 197A, pp. 238-256 (1949).
3. Arnold, R. N., and G. B. Warburton, "The Flexural Vibrations of Thin Cylinders", Proc. Inst. Mech. Eng. Vol. 167A, pp. 62-74 (1953).
4. Wah, T., "Circular Symmetric Vibrations of RingStiffened Cylindrical Shels", J. Soc. Indust. Appl. Math., Vol. 12, pp. 649-662 (1964).
5. Wah, T., "Flexural Vibrations of Ring-Stiffened Cylindrical Shells", Journal of Sound and Vibration, Vol. 3, pp. 242-251 (1966).
6. Hu, W. C. L., J. F. Gormley, and U. S. Lincholm, "An Analytical and Experimental Study of Vibrations of Ring-Stiffened Cylindrical Shells", Contract NASr94 (06), Technical Report No. 9, Southwest Research Institute, San Antonio, Texas (June, 1967).
7. Hung, F. C., et.al., "Dynamics of Shell-Like Lifting Bodies Part I. The Analytical Investigation", Technical Report AFFDL-TR-65-17, Part I, Air Force Flight Dynamics Lab., Wright-Patterson AFB, Ohio (June, 1965).
8. McGrattan, R. J., and E. L. North, "Vibration Analysis of Shells Using Discrete Mass Techniques", J. Eng. for Industry, Vol. 89, No. 4, pp. 766-772 (Nov. 1967).
9. Mikulas, M. M., Jr., and J. A. McElman, "On the Free Vibration of Eccentrically Stiffened Cylindrical Shells and Plates", NASA TND-3010 (Sept. 1965).
10. McElman, J. A., M. M. Mikulas, Jr., and M. Stein, "Static and Dynamic Effects of Eccentric Stiffening of plates and Shells", AIAA Journal, Vol. 4, No. 5, pp. 887-894 (May 1966).
11. Sewall, J. L., R. R. Clary and S. A. Leadbetter, "An Experimental and Analytical Vibration Study of a Ring-Stiffened Cylindrical Shell Structure with Various Support Conditions", NASA TND-2398 (August, 1964).
12. Hoppmann, W. H., II, "Flexural Vibrations of Orthogonally Stiffened Cylindrical Shells", Proc. 9th International Congress of Applied Mechanics, Bruxelles, pp. 225-237 (1956).
13. Hoppmann, W. H., II, "Some Characteristics of the Flexural Vibrations of Orthogonally Stiffened Cylindrical Shells.", J. Acous. Soc. Amer., Vol. 30. pp. 77-82 (1958).
14. Bleich, H. H., "Approximate Determination of the Frequencies of Ring-Stiffened Cylindrical Shells", Osterreichisches Ingenieur-Archiv, Vol. 15, No. 1-4, pp. 6-25 (1961).
15. Foxwell, J. H., and R. E. Franklin, "The Vibrations of a Thin-Walled Stiffened Cylinder in an Acoustic Field", Aero. Quarterly, Vol. 10, pp. 47-64 (Feb. 1957).
16. Nelson, H. C., B. Zapotowski, and M. Bernstein, "Vibration Analysis of Orthogonally Stiffened Circular Fuselage and Comparison with Experiments", Proc. National Specialist Meeting on Dynamics and Aeroelasticity, Fortworth, Texas, pp. 77-87 (Nov. 1958).

- 17. Egle, D. M., and J. L. Sewall, "An Analysis of Free Vibration of Orthogonally Stiffened Cylindrical Shells with Stiffeners Treated as Discrete Elements", AIAA Journal, Vol. 6, No. 3, pp. 518-526 (1968).

18. Miller, P. R., "Free Vibrations of a Stiffened Cylindrical Shell", Aeronautical Research Council Reports and Memoranda No. 3154, London (1960).
19. Schnell, W., and F. J. Heinrichsbauer, "Zur Bestimmung der Eigenschwingungen Langsversteifter, Dunnwandiger Kreiszylinderschalen", Jahrbuch Wissenschaft, Ges. Luft u. Raumfehrt (WGLR), pp. 278-286 (1963). Technical translation: Schnell, W., and F. Heinrichsbauer, "The Determination of Free Vibrations of Longitudi-nally-Stiffened Thin-Walled, Circular Cylindrical Shells", NASA TT F-8856 (April 1964).

20 Ojalvo, I. V., and M. Newman, "Natural Vibrations of a Stiffened Pressurized Cylinder with an Attached Mass", AIAA Journal, Vol. 5, No. 6, pp. 1139-1146 (June 1967).
21. Galletly, G. D. "On the In-Vacuo Vibrations of Simply Supported Ring-Stiffened Cylindrical Shells", proc. 2nd U. S. National Congress of Applied Mechanics, ASME, pp. 225-231 (1955).
22. Baron, M. L., "Circular Symmetric Vibrations of Infinitely Long Cylindrical Shells with Equidistant Stiffeners", J. Appl. Mech., Vol. 23, pp. 216-218 (1956).
23. Flügge, W., Stresses in Shells, Springer-Verlag, Berlin (1962).
24. Timoshenko, S. P., "Theory of Bending, Torsion and Buckling of Thin-Walled Members of Open Cross Section", Journal of the Franklin Institute, Vol. 239, No. 3, pp. 201-219, No. 4, pp. 249-268, No. 5, pp. 343-361 (1945). Reprinted in the Collected papers of Stephen P. Timoshenko, pp. 559-609, McGraw-Hill, New York (1953).
25. Love A. E. H., The Mathematical Theory of Elasticity, 4th ed., Dover, New York (1944).
26. Park, A. C., et al., "Dynamics of Shell-Like Lifting Bodies Part II. The Experimental Investigation", Technical Report AFFDL-TR-65-17, Part II, Air Force Flight Dynamics Lab., Patterson AFB, Ohio (June 1965).
27. Yourig, Dana, and R. P. Felgar, Jr., "Tables of Characteristic Functions Representing Normal Modes of Vibration of a Beam", The University of Texas Publication No. 4913 (July 1949).
28. Felgar, R. P., Jr., "Formulas for Integrals Containing Characteristic Functions of a Vibrating Beam". The University of Texas, Bureau of Engineering Research, Circular No. 14 (1950).

APPENDIX I

Matrix Elements in Rayleigh-Ritz

 Vibration AnalysisThis appendix contains detailed expressions for the unprimed coefficients in equations (50a-f) and the matrix elements of equation (51). The primed coefficients, Aijmn' ${ }^{\prime}{ }_{i j m n}$, etc., may De calculated by interchanging $\sin ()$ and $\cos ()$ and by replacing $\bar{Y}_{s l}$ with $-\bar{y}_{s l}$ in the expressions for the unprimed coefficients. For example,

$$
\begin{aligned}
& {N N_{i j m n}}=\delta_{j n} \sum_{k=1}^{K} M_{r k} \bar{x}_{r k}\left[V_{m} U_{i}\right]_{x_{k}} \\
& +I_{V_{m}^{\prime} U_{i}} \sum_{l=1}^{L} M_{s l} \bar{Y}_{s l}\left(\cos n \Theta_{l} \sin j \Theta_{l}\right)
\end{aligned}
$$

The terms that are bracketed and subscripted x_{k}, as an example $\left[V_{m} U_{i}\right]_{x_{k}}$, indicate that the expression is evaluated at the location x_{k}. The terms like $I_{U_{m} U_{i}}{ }^{\prime} I_{V_{m}^{\prime} U_{i}}$ etc., are a short notation for an integral; for example

$$
\begin{aligned}
& I_{U_{m} U_{i}}=\frac{1}{a} \int_{0}^{a} U_{m}(x) U_{i}(x) d x \\
& I_{V_{m}^{\prime} U_{i}}=\frac{1}{a} \int_{0}^{a} V_{m}^{\prime}(x) U_{i}(x) d x
\end{aligned}
$$

The following definitions have been made to help shorten the expressions used for the coefficients:

$$
\begin{aligned}
& M_{s \ell}=\frac{\rho_{s \ell} A_{s \ell}}{\rho_{c} \pi R t} \\
& M_{r k}=\frac{\rho_{r k} A_{r k}}{\rho_{c} a t} \\
& S_{s \ell}=\frac{\left(1-v^{2}\right) E_{s l} A_{s \ell}}{E_{c} \pi R t} \\
& S_{r k}=\frac{\left(1-v^{2}\right) E_{r k} A_{r k}}{E_{c} a t} \\
& T_{s \ell}=\frac{\left(1-v^{2}\right)(G J)}{E_{c l} \pi R^{3} t} \\
& T_{r k}=\frac{\left(1-v^{2}\right)(G J)}{E_{c k} a R^{2} t}
\end{aligned}
$$

The term $\delta_{j n}$ is the Kronecker delta and is equal to zero except for $j=n$.

The unprimed coefficients are as follows:

$$
\begin{aligned}
& A_{i j m n}=\delta_{j n}\left\{R^{2} I_{U_{m}^{\prime} U_{i}}+\left|\frac{1-v}{2}\right| \frac{T R j^{2}}{t} I_{U_{m} U_{i}}+\frac{j^{4}}{R^{2}} \sum_{k=1}^{K} \frac{S_{r k} I_{z z r k}}{A_{r k}}\right. \\
& \left.\left[U_{m} U_{i}\right]_{x_{k}}\right\}+R^{2} I_{U_{m}^{\prime} U_{i}} \sum_{\ell=1}^{L} s_{s \ell}\left(\cos n \Theta_{\ell} \cos j \Theta_{\ell}\right) \\
& B_{i j m n}=\delta_{j n}\left\{j^{2} I_{v_{m} V_{i}}+\left(\frac{1-v}{2}\right)\left(R^{2}+\frac{t^{2}}{4}\right) I_{v_{m} V_{i}}+j^{2} \sum_{k=1}^{K} S_{r k}\right. \\
& \left.\left[V_{m} V_{i}\right]_{x_{k}}\right\}+R^{2} I_{V_{m}^{\prime \prime}} V_{i}^{\prime \prime} \sum_{\ell=1}^{L} \frac{s_{s \ell} I_{z z s \ell}}{A_{s \ell}}\left(\sin n \Theta_{\ell} \sin j \Theta_{\ell}\right) \\
& c_{i j m n}=\delta_{j n}\left\{\left[\frac{T R}{t}+\left(\frac{T R-t}{t}\right)\left(j^{4}-2 j^{2}\right) I_{W_{m} W_{i}}+\frac{t^{2} R}{12} I_{W_{m}^{\prime \prime} W_{i}^{\prime \prime}}\right.\right. \\
& -\frac{t^{2} \nu j^{2}}{12}\left(I_{W_{m}^{\prime \prime}}{ }^{1} W_{i}+I_{W_{m i}} W_{i}^{\prime \prime}\right)+\left(\frac{1-\nu}{2}\right)\left(\left.\frac{R^{3} T}{t}-R^{2}+\frac{t^{2}}{4} \right\rvert\,\right. \\
& \left.j^{2} I_{W_{m}^{\prime} W_{i}^{\prime}}\right\}+\delta_{j n} \sum_{k=1}^{K}\left[S _ { r k } \left\{\left(\frac{I_{x x r k} j^{4}}{R^{2} A_{r k}}+\frac{2 \bar{z}_{r k} j^{2}}{R}+1\right)\left[W_{m} W_{i}\right]_{x_{k}}\right.\right. \\
& \left.+\frac{\bar{x}_{r k}}{--R}\left\langle\left[W_{m} W_{i}\right]_{x_{k}}+\left[W_{m}^{\prime} W_{i}\right]_{x_{k}}\right)+\left(\frac{\Gamma^{\prime} r_{k} j^{4}}{R^{2} A_{r k}}+\frac{I_{z z r k}}{A_{r k}}\right)\left[W_{m}^{\prime} W_{i}\right]\right\} \\
& \left.+T_{r k} R^{2} j^{2}\left[W_{m}^{\prime} W_{i}^{\prime}\right]_{x_{k}}\right]+R^{2} \sum_{\ell=1}^{L}\left[\frac { S _ { S \ell } } { A _ { S \ell } } \left\{I_{Y Y S \ell} I_{W_{m}^{\prime \prime}} W_{i}^{\prime \prime}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(\cos n \Theta_{\ell} \cos j \Theta_{\ell}\right)+\frac{\Gamma_{s \ell^{j n}}^{\prime}}{R^{2}} I_{W_{m}^{\prime \prime} W_{i}^{\prime \prime}}\left(\sin n \Theta_{\ell} \sin j \Theta_{\ell}\right)\right\} \\
& \left.+j n T_{s \ell} I_{W_{m}^{\prime} W_{i}}\left(\sin n \Theta_{\ell} \sin j \Theta_{\ell}\right)\right] \\
& D_{i j m n}=\delta_{j n} j R\left\{I_{V_{m} U_{i}}-\left(\frac{1-\nu}{2}\right) I_{V_{m}^{\prime} U_{i}}+\frac{j^{3}}{R} \sum_{k=1}^{K} S_{r k} \bar{x}_{r k}\left[V_{m} U_{i}\right]_{x_{k}}\right\} \\
& -R^{2} I_{V M U} \sum_{i=1}^{L} S_{s \ell} \bar{Y}_{s \ell}\left(\sin n \Theta_{l} \cos j \Theta_{l}\right) \\
& E_{i j m n}=\delta_{j n}\left\{\nu R I_{W_{m} U_{i}^{\prime}}-\frac{t^{2} R}{12^{-}} I_{W_{m}^{\prime \prime} U_{i}^{\prime}}+\left(\frac{1-\nu}{2}\right) \frac{(R T-t) R j^{2}}{t} I_{W_{m}^{\prime} U_{i}}\right. \\
& \left.+j^{2} \sum_{k=1}^{K} S_{r k}\left(\frac{\bar{x}_{r k}}{R}\left[W_{m} U_{i}\right]_{x_{k}}+\frac{I_{z z r k}}{A_{r k} R}\left[W_{m}^{\prime} U_{i}\right]_{x_{k}}\right)\right\} \\
& \left.-R I_{W_{m}^{\prime \prime U}}{ }_{i}^{\prime} \sum_{\ell=1}^{L} S_{S \ell} \bar{z}_{s \ell}!\cos \mathrm{n}_{\ell} \cos j \Theta_{\ell}\right) \\
& F_{i j m n}=\delta_{j n} j\left\{I_{W_{m} V_{i}}-\frac{t^{2} v}{12} I_{W_{m}^{\prime \prime} V_{i}}+\left(\frac{1-v}{2}\right) \frac{t^{2}}{4} I_{W_{m}^{\prime} V_{i}^{\prime}}+\sum_{k=1}^{K}\right. \\
& S_{r k}\left[\left(1+\frac{j^{2} \bar{z}_{r k}}{R}\right)\left[W_{m} V_{i}\right]_{x_{k}}+\bar{x}_{r k}\left[W_{m}^{\prime} V_{i}\right]_{x_{k}}\right]+R_{2} I_{W_{m}^{\prime \prime}} V_{i}^{\prime \prime} \sum_{i=1}^{L} \\
& \frac{S_{s \ell} I_{Y Z S \ell}}{A_{S \ell}}\left(\cos n \Theta_{\ell} \sin j \Theta_{\ell}\right)
\end{aligned}
$$

$$
\begin{aligned}
& G_{i j m n}=R^{2} I_{U_{m}^{\prime} U} \sum_{l=1}^{L} S_{s l}\left(\sin n \Theta_{l} \cos j \Theta_{l}\right) \\
& H_{i j m n}=-R^{2} I_{W_{m}^{\prime \prime U} U_{i}} \sum_{l=1}^{L} S_{s \ell} \bar{z}_{s \ell}\left(\sin n \Theta_{\ell} \cos j \Theta_{\ell}\right) \\
& M_{i j m n}=R^{2} \sum_{\ell=1}^{L}\left[\frac { s _ { s \ell } } { A _ { s \ell } } \left\{I_{y Y s \ell}\left(\sin n \Theta_{\ell} \cos j \Theta_{\ell}\right)-\frac{\Gamma_{s \ell}^{\prime j n}}{R}\right.\right. \\
& \left.\left.\left(\cos n \Theta_{\ell} \sin j \Theta_{\ell}\right)\right\} I_{W_{m}^{\prime \prime} W_{i}^{\prime \prime}}-T_{s \ell} j n\left(\cos n \Theta_{\ell} \sin j \Theta_{\ell}\right) I_{W_{m}^{\prime} W_{i}}\right] \\
& D D_{i j m n}=R^{2} I_{W_{m}^{\prime \prime V}} V_{i} \sum_{\ell=1}^{L} \frac{S_{s \ell} I_{y z s \ell}}{A_{s \ell}}\left(\sin n \Theta_{\ell} \sin j \Theta_{\ell}\right) \\
& E E_{i j m n}=-R^{2} I_{V_{m}^{\prime \prime} V_{i}^{\prime \prime}} \sum_{\ell=1}^{L} \frac{S_{s \ell^{I} z z s \ell}^{A_{B \ell}}\left(\cos n \Theta_{\ell} \sin j \Theta_{\ell}\right)}{} \\
& F_{i j m n}=-R^{2} I_{U_{m}^{\prime} V_{i}^{\prime \prime}} \sum_{\ell=1}^{L} s_{s \ell} \bar{y}_{s \ell}\left(\sin n \theta_{\ell} \sin j \theta_{\ell}\right) \\
& G G_{i j m n}=R^{2} I_{V_{m} U_{i}} \sum_{l=1}^{L} S_{s \ell} \bar{y}_{G l}\left(\cos n \theta_{\ell} \cos j \theta_{l}\right)
\end{aligned}
$$

$$
\begin{aligned}
H H_{i j m n} & =-R^{2} I_{U_{m}^{\prime} W_{i}^{\prime \prime}} \sum_{\ell=1}^{L_{i}} S_{s \ell} \bar{z}_{S \ell}\left(\sin n \Theta_{\ell} \cos j \Theta_{\ell}\right) \\
M_{i j m n} & =-R^{2} I_{V_{m}^{\prime \prime} W_{i}^{\prime \prime}} \sum_{\ell=1}^{L} \frac{S_{s \ell} I_{Y Z S \ell}}{A_{S \ell}}\left(\cos n \Theta_{\ell} \cos j \Theta_{\ell}\right) \\
N_{i j m n} & =\delta_{j n}\left\{I_{U_{m} U_{i}}+\sum_{k=1}^{K} M_{r k}\left(1+\frac{\bar{x}_{r k}^{2} j^{2}}{R^{2}}\right)\left[U_{m} U_{i}\right]_{x_{k}}\right\} \\
& +I_{U_{m} U_{i}} \sum_{\ell=1}^{L} M_{S \ell}\left(\cos n \Theta_{\ell} \cos j \Theta_{\ell}\right)
\end{aligned}
$$

$$
\begin{aligned}
P_{i j m n} & =-\delta_{j n} \sum_{k=1}^{K} M_{r k} \bar{z}_{r k}\left(\left[W_{m}^{\prime} U_{i}\right]_{x_{k}}-\frac{\bar{x}_{r k} j^{2}}{R^{2}}\left[W_{m} U_{i}\right]_{x_{k}}\right) \\
& -I_{W_{m}^{\prime U}} \sum_{\ell=1}^{L} M_{S \ell} \bar{z}_{s \ell}\left(\cos n_{l} \cos j_{\Theta_{l}}\right) \\
Q_{i j m n} & =\delta_{j n}\left\{I_{V_{m} V_{i}}+\sum_{k=1}^{K} M_{r k}\left[V_{m} V_{i}\right]_{x_{k}}\right\}+\sum_{\ell=1}^{L} M_{s \ell} \mid \bar{Y}_{s l}^{2} I_{V_{m}^{\prime}} V_{i}^{\prime} \\
& \left.+I_{V_{m} V_{i}}\right\}\left(\sin n \Theta_{\ell} \sin j \Theta_{\ell}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R_{i j m n}=\frac{\delta_{j n} j}{R} \sum_{k=1}^{K} M_{r k} \bar{z}_{r k}\left[W_{m} V_{i}\right]_{x_{k}}+\sum_{\ell=1}^{L} M_{s \ell} \bar{z}_{s \ell}\left\{\bar{Y}_{s \ell} I_{W_{m}^{\prime}} V_{i}^{\prime}\right. \\
& \left.\left(\cos n \Theta_{\ell} \sin j \Theta_{l}\right)+\frac{n}{R} I_{W_{m}} V_{i}\left(\sin n \Theta_{\ell} \sin j \Theta_{\ell}\right)\right\} \\
& s_{i j m n}=\delta_{j n}\left\{I_{W_{m} W_{i}}+\sum_{k=1}^{K} M_{r k}\left[\left(1+\frac{I_{x x r k}{ }^{2}}{A_{r k} R^{2}}\right)\left[W_{m} W_{i}\right]_{x_{k}}\right.\right. \\
& \left.\left.+\bar{x}_{r k}\left(\left[w_{m} w_{i}^{\prime}\right]_{x_{k}}+\left[w_{m}^{\prime} w_{i}\right]_{x_{k}}\right)+p_{r k}^{\prime 2}\left[W_{m}^{\prime} w_{i}^{\prime}\right]_{x_{k}}\right]\right\} \\
& +\sum_{\ell=1}^{L} M_{s \ell}\left\{\left[I_{W_{m} W_{i}}+\frac{I_{Y y s \ell}}{A_{s \ell}} I_{W_{m}^{\prime}} W_{i}^{\prime}\right]\left(\cos n_{\ell} \cos j \Theta_{\ell}\right)\right. \\
& +I_{W_{m}} W_{i}\left[\frac{p_{s \ell}^{\prime j n}}{R^{2}}\left(\sin n \Theta_{\ell} \sin j \Theta_{\ell}\right)-\frac{\bar{y}_{s \ell}{ }^{j}}{R}\right. \\
& \left.\left.\left(\cos n \Theta_{\ell} \sin j \Theta_{\ell}\right)-\frac{\bar{s}_{i} n}{R}\left(\sin n \Theta_{\ell} \cos j \Theta_{\ell}\right)\right]\right\} \\
& T_{i j m n}=I_{U_{m}} U_{i} \sum_{\ell=1}^{L_{s \ell}} M_{s i n}^{n}\left(\sin \cos \Theta_{\ell}\right) \\
& U_{i j m n}=-I_{W_{m}^{\prime} U_{i}} \sum_{\ell=1}^{L} M_{s \ell} \bar{z}_{s \ell}\left(\sin n \Theta_{\ell} \cos j \Theta_{\ell}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[{ }_{i}^{T} M_{i}^{u} \Delta_{I}\left({ }^{\gamma} \Theta C \operatorname{son}{ }^{\gamma} \Theta U \operatorname{soo}\right)\right.}
\end{aligned}
$$

APPENDIX II

This appendix contains the computer program used to calculate the natural frequencies of a stiffened cylindrical shell with circumferential symmetry. Statement functions or function subprograms must be supplied for the values of the integrals. For example, the notation IUWI (M,I) means $\frac{1}{a} \int_{0}^{a} U_{m}(x) W_{i}(x) d x$, and the value of this integral, which depends on the assumed axial mode functions, must be supplied.

The following is a short description of the program operation. Because of a size restriction, the entire computation was written ir two parts. After reading and writing the input quantities, some intermediate values were calculated and stored. Next, the coefficients of the stiffness matrix were computed and stored on tape, then the coefficients of the mass matrix were computed in the same memory location and stored on tape. The rows of each matrix were calculated one at a time starting with the diagonal elements. Then using the fact that the matrix is symmetric, the remainder of the matrix was completed.

The second part of the main program read the two matrices and other necessary parameters from the tape. Both of the matrices were then converted to column vectors, and the subroutine DNROOT was called. This subroutine used the subroutine DEIGEN. Both of these subroutines are in the IBM scientific library, but they have been modified slightly by the addition of a common statement and are used in their double precision form. The results give the eigenvalues and eigenvectors in column form. Next, the natural frequencies in cycles per second are computed from the eigenvalues. Then the eigenvectors are normalized by the largest coefficient in the radial mode (w) and the results printed.

```
n
C THIS FROGRAM IS FOR A CYLINDER WITH STRINGER SYMMETRY AND ISSEPARATED INTI TWO MAIN PROGRAMS. THE FIRST MAIN PROGRAMCALCULATES THE MASS AND STIFFNESS MATRIX AND WRITES THEM ON TAPE.THE SECUND MAIN PROGRAM READS THE TAPE AND CALCULATES THEEIGENVALUES A:O EIGENVECTORS: WHICH GIVE THE VIBRATIONAL FREQUENCY
    AND ASSUCIATE: MCDE SHAPES.
MAIN PROGRAM lOEER UNE
MUUNT SCRAIEI :AFE DN FDRTRAN UNIT NUMBER 7
    SUBROUTINES :. LEU BY MAIN PRGGRAM - CHECK,STATEMENT FUNCTIONS
    DCUBLE PRECIS: JN SROUT2,PI,SIG,RHOC,EC,P,H,A,SUMI,SUM2,SUM3,SUBT,D
1,LFJ,OFN,BIG,!,CAPV,CAPW,CAPU,CAPWL,ALPHA,BETA
    OUUBLE PRECIS: IN IUU,IVIU,IUVI,IWIU,IUWI,IVIVI,IWIWI,IVIWI,IWIVI,I
    IUIUL,IUIVZ,IV,II,IUIW2,IW2UI,IV2V2,IV2W2,IW2V2,IW2W2,IVV,IWV,IVW,I
    2wr.IVUl,IWUl.. :%己,IW2W,IW2V,IWIW
    THE DIMENSICI ;JZE FOR THE NEXY STATEMENT MUST BE EQUAL TO OR
    LARGER THAN :.. NUMBER OF STRINGERS
    OLUBLE PREC1S1JN Y(16),DPS(16),GJS(16),AS(16),RHOS(16),ES(16),2BAR
    IS(16),YBARS(1: ),MS(16),SS(16),TS(16),IZZS(16),IYZS(16),IYYS(16),GA
    ZMPS(16),PPS2(16),1ZZCS(16),IYZCS(16),IYYCS(16)
    THE DIMENSIUN SIZE FOR THE NEXT STATEMENT MUST BE EQUAL TO OR
    LARGER THAH THE NUMBER OF RINGS
    DUUBLE PRECISION X(13),DPR(13),GJR(13),AR(13),RHOR(13),ER(13),2BAR
        IR(13), XBARR(13),MR(13),SR(13),TR(13),IXXR(13),IX2R(13),IZ2R(13),GA
SLUBLE PRECIS1JN Y(16),DPS(16),GJS(16),AS(16),RHOS(16),ES(16),2BAR IS(16),YBARS(1: \(1, M S(16), S S(16), T S(16), I Z 2 S(16), I Y Z S(16), I Y Y S(16), G A\) ZMPS(16),PPSZ(16),1ZZCS(16),IYZCS(16),IYYCS(16)

2MPR(13), PPR2(13), IXXCR(13), IXZCR(13), IZ2CR(13)
    PKECISI U\{20,13),V(20,13),W(20,13),W1(2(1,13)
    EQUIVALENCE \((X X X(1,1), Y Y Y(1,1), X X(1,1), Y Y(1,1))\)
    COMMON A,D:XX
    INTEGER \(P, Q\)
    \(P I=3.141592653589793\)
    CALL CHECK 111

THE DIMENSION SIZE FOR THE NEXT TWO STATEMENTS MUST BE EQUAL TD OR LARGER THAN \(3 * M S I Z E\) FOR EACH SUBSCRIPT WHERE MSIZE=NSTAR*MSTAR OR MSIZE \(=(\) NHA-NLA +1\() *(\) NHC-NLC +1\()\)

DUUBLE FSECISION XX(60.60),YY(60.60)
DUUBLE PKECISION XXX(60,60),YYY(60,60)
THE DIMENSION SIZE FOR THE NEXT STATEMENT MUST BE EQUAL TO OR LARGER THAN NSTAR FOR THE FIRST SUBSCRIPT AND LARGER THAN OR EQUAL TO THE NUMBER OF STRINGERS FOR IHE SECOND SUBSCRIPT WHERE NSTAR \(=\mathrm{NHC}\) - \(\mathrm{NLL}+1\)

DOUBLE PKECISION C(20,16),S(20,16)
THE DIMENSION SIZE FOR THE NEXT STATEMENT MUST BE EQUAL TO OR LARGER THAN MSTAR FOR THE FIRST SUBSCRIPT AND LARGER THAN OR EQUAL TO THE NUMBER OF RINGS FOR THE SECOND SUBSCRIPT WHERE MSTAR \(=\mathrm{NHA}-\mathrm{NL} A+1\)

DOUBLE PRECISIUN U\{20,13\},V\{20,13),W\{20,131,W1(21,13)
EQUIVALENCE \((X X X(1,1), Y Y Y(1,1), X X(1,1), Y Y(1,1))\)
COMHON A,O;XX
\(P I=3.141592653589793\)
CALL CHECK 11
READ AND WRITE INPUT PARAMETERS AND CASE IDENTIFICATION

READ \(\{1,1006\) NGROPS, NWRITE
1006 FORMAT (4I4)
REWIND 7 WRITE 171 NGROPS
```

 DO 409 NGPS=1.NGROPS
 READ (1,1006) NMSETS,NS,NR
 READ(1,1000)
 WRITE (7,1000)
 1000 FGRMATI8OH
l
REAU\1, 1001) RHOC,EC,R,H,A,SIG
1002 FORMAT (6F10.01
T=ULOG((R+H/2.DO)/(R-H/2.DO))
IF(NS)200,201,200
200 READ(1,1003)(Y(L),AS(L),RHOS(L),ES(L),GJS(L),L=1,NS)
1003 FURMAT(5F10.0)
READ (1,1001)(1L2CS(L),IYZYS(L),IYYCS(L),YBARSILI,ZBARSILI,GAMPS(L
(1,L=1,NS)
201 IF(NR)202,203,202
202 READ(1,1003)(X(K),AR(K),RHOR(K),ER(K),GJR(K),K=1,NR)
READ (1,1001)(IXXCR(K),IXZCR(K),IZZCR(K), X8ARR(K),ZBARR(K),GAMPR(K
11,K=1,NR1
203 CONTINUE
CALL CHECK 1 2:
WRITE (7) NMSETS
DO 409 NMS=1,NMSETS
READ (1,1006) NLC,NHC,NLA,NHA
WRITE (3,1025)
1025 FORMATI'I FREE VIBRATION ANALYSIS OF A RING AND STRINGER STIFFENED
l CYLINDRICAL SHELL'/' EGLE AND SODER FOR NASA, NGR-37-003-035, RI-
21589, 1/11/68%/' PROGRAM OU-20, FOR VARIOUS END CONDITIONS'//I
WRITE (3,1060)NGPS,NMS
1060 FORMAT (' DATA GROUP NUMBER 1S',I4," MODE SET NUMBER IS',I4/11
WRITE(3,1000)
WRITE(3,1002IRHOC,EC,R,H,A,SIG,T,NS,NR,NLC,NHC,NLA,NHA
1002 FORMATI//6X.'RHOC=',E16.8,5X,'EC=',E16.8,6X,'R=',E16.8//6X,'H=',EL
16.8,6X,4A=',E16.8,4X,'SIG=',E16.8,5X.
2'T=:,E16.8//8X,'NUMBER OF STRINGERS IS *,I3//8X,'NUMBER OF RINGS I
3S ',I3//8X,'ASSUMED MODES CIRCUMFERENTIAL N',I3,'-',I3,4X,'LONGI

```
```

C
C
CALCULATE INTERMEDIATE VALUES AND WRITE STIFFENER PROPERTIES
C
IF \NSI100.101.100
101 MS{1 =0.00
SS{1)=0.00
TS(I)=0.00
Y(I)=0.DO
DPS(1)=0.DO
GJS(1)=0.DO
AS(1)=1.DO
RHOS\1}=0.DO
ES(1)=0.DO
ZBARS{1)=0.DO
YBARS(1d=0.DO
IZZS(1)=0.DO
IYYS(1)=0.00
IYZS(1)=0.DO
PPS2(1)=0.DO
GAMPS(1)=0.DO
GOTOLO3
100 DO102L=1,NS
MS(L)=RHOS(L)*AS(L)/(RHOC*PI*R*H)
SS(L)=(1.DO-SIG*SIG)*ES(L)*AS(L)/(EC*PI*R*H)
IZZS(L)={ZZCS(L)+AS(L)*YBARS(L)*YBARS(L)
IYYS(L)=IYYCS(L)*AS(LI*ZBARS(L)*ZBARS(L)
IYZS(L)=IYZCS(L)+AS(L)*YBARS(L)*ZBARS(L)
PPS2(L)=(IZZS(L)+[YYS(L))/AS(L)
102 TS(L)=(1.DO-SIG*SIG)*GJS(L)/(EC*PI*R*R*R*H)
410 WRITE(3,1004){L,Y(L),AS(L),RHOS(L),ES(L),GJS{L),MS(L),SSIL|,TS(L),
LL=1,NSI
1004 FORMAT(/3X, 'STRINGER PROPERTIES'//3X,'L',4X,'YILI',12X,'ASILI*,1IX

```

```

 2(L)'/(IX,I3,8E16.8)\
 WRITE (3,1007)(L,Y(L).IZZCS(L),IYZCSIL),IYYCS(L),YBARSIL),ZBARS(L)
 1,GAMPS(L),L=1,NS)
 1007 FORMAT (//3X,'L',4X,'Y(L)', 12X,'IZZCSIL)',8X, 'IYZCS(L)',8X, 'IYYCSI
LLJ',8X, 'YBARSIL)',8X,'ZBARSILI`,8X,"GAMMAPS(LJ'/{IX,I3,7E16.8)!
103 IF(NR)104,105,104
10% MR(1)}=0.D
SR{1)=0.DO
TR(1)=0.00
X(1)=0.00
DPR(1)=0.DO
GJR(1)=0.DO
AR(1)=1.DO
RHOR(1)=0.DO
ER(1)=0.DO
LBARR(1)=0.00
XBARR(1)=0.DO
I XXR(1)=0.DO
IZ2R(1)=0.DO
1X2R\1)=0.DO
PPR2{1)=0.DO
GAMPR(1)=0.DO
GOTO106
104 DD107K=1,NR
MR(K)=RHOR(K)*AR(K)/(RHOC*A*H)
SR(K)=(1.DO-SIG*SIG)*ER(K)*AR(K)/{EC*A*H)
IXXR(K)=IXXCR(K)*AR(K)*ZBARR(K)*ZBARR(K)
IZZR(K)=IZZCR(K)*AR(K)*XBARR(K)*XBARR(K)
IXZR(K)=IXZCR(K)+AR(K)*XBARR(K)*ZBARR(K)
PPR2(K)=(IXXR(K)+IZZR(K))/AR(K)
107 TR(K)=(1.DO-SIG*SIG)*GJR(K)/(EC*A*R*R*H)
412 WRITE(3,1005)(K,X(K),AR(K),RHOR(K),ER(K),GJR(K),MR(K),SR(K),TR(K),
lK=1,NR)

```


```

 2/(1X,I3,8E16.8))
 WRI.JE (3,1008)(K,X(K),IXXCR(K),IXZCR(K),IZZCR(K),XBARR(K),ZBARR(K)
 1.GAMPR(K),K=1,NR)
    ```

```

 IK)'s &X, 'XBARR(K)*,8X,*ZBARR(K)* & 8, 'GAMMAPR(K)'/(1X,I3,7E16.8))
 106 CONTINUE
MSTAR=NHA-NLA+1
NSTAR=NHC-NLC+1
MSIZE=MSTAR*NSTAR
WRI.TE (3,1009) MSTAR,NSTAR,MSIZE
1009 FORMAT (/' MSTAR IS*.I3,* NSTAR IS',I3,* MSIZE IS*,I3)
DO 2 J=1,NSTAR
DFJ=DFLOAT(NLC+J-1)
IF(NS) 108,109,108
109 C(J,1)=0.D0
S(J.1) =0.DO
GOTO2
108
DU 440 L=1,NS
C(d.L)=DCOS(DFJ*Y(L)/R)
S(J.L)=DSIN(DFJ*Y(L)/R)
440 CONTINUE
2 CONTINUE
DO 422 I=1,MSTAR
II=I+NLA-I
IF (NR) 423,424,423
424 U(L., 1)=0.DO
V(I.,1)=0.DO
W{I., 1)=0.DO
W1(I.1)=0.DO
GO TO 422
423 DO 441 K=1,NR
D=X(K)
U(I,K)=CAPUIII)

```
```

 V(I,K)=CAPV(II)
 W(I,K)=CAPW(II)
 W1(I,K)=CAPWI(II)
 4 4 1 ~ C O N T I N U E ~
 4 2 2 \text { CONJINUE}
 CALL CHECK (3)
 C
c
C
c
COMPUTE STIFFNESS MATRIX
II=0
c
c
ROW 1
DO4Q=1,MSIZE
II=1 I+1
INTGQ $=(Q-1) /$ MSTAR
$I=Q-I N T G Q * M S T A R+N L A-I$
11=1-NLA+1
$J=I N T G Q+N L C$
$J 1=I N T G Q+1$
DFJ=DFLOAT(J)
C
C
C
SUBMATRIX A
$N N=Q-1$
DO5P $=0$, MSIZE
$N N=N N+1$
INTGP $=(P-1) /$ MSTAR
$M=P-I N T G P * M S T A R+N L A-1$
ML $=\mathrm{M}-\mathrm{NL}_{\mathrm{L}} \mathrm{A}+1$
N=INTGP +NLC
$N 1=I N T G P+1$
IF(J-N)110.111.110

```
```

 110 XXX(II,NN)=0.DO
 GOTO112
 C
C RING ELEMENTS
111 SUM2=0.DO
DO 113 K=1,NR
113 SUM2=SUM2+SR(K)*IZZR(K)*U(MI,K)*U(II,K)/AR(K)
XXX(II,NN)=IUIUI(M,I)*R*R+((1.DO-SIG)*DFJ*DFJ/2.DO)*IUU(M,I|*I*R/H
1+SUM2*DFJ**4/(R*R)
C
C
112 SUMI=0.DO
DO6L=1,NS
6 SUM1=SUMI +SS(L)*C(NL,L)*C(Jl,L)
5XX(II,NN)=XXX(II,NN)*IUIUI(M,I)*R*R*SUMI O
C
C SUBMATRIX
DO7P=1,MSIZE
NN=NN+1
INTGP=(P-1)/MSIAR
M=P-1NTGP*MSTAR+NLA-1
ML=M-NLA+1
N=INTGP+NLC
NL=INTGP+1
IF(J-N) 115,116.115
115 XXX(II,NN)=0.DO
GO TO }7
C RING ELEMENTS
C
116 SUMI=0.00
DO 114 K=1,NR

```



INTGP \(=(P-1) / M S T A R\)
\(M=P-I N T G P \neq M S T A R+N L\)
\(M=P-I N T G P * M S T A R+N L A-1\)
\(M 1=M-N L A+1\)
4
2
+
+
2
2
2
2
2

\section*{\section*{ \\ \\ SUBMATRIX \\ \\ SUBMATRIX \\ \(\omega \circlearrowleft\)}
\(008 \quad P=1, M S \perp 2 F\)
\(N N=N N+1\)
DO \(8 \mathrm{P}=1\), MSILF:
\(\mathrm{N} 1=\mathrm{INTGP}+\mathrm{I}\)
Nl=INTGP+1
IF (J-N) \(117,113,117\)
\(117 \mathrm{XXX}(\mathrm{II}, \mathrm{NN})=0.00\)
N
N
0
0
0
0
117

> DO \(73 \mathrm{~K}=1\). NH
> \(73 \begin{aligned} & \operatorname{SUM} 2=\operatorname{SUM} 2+\operatorname{SR}(K) *(X B A R R(K) * W(M 1, K) / R+I Z Z R(K) * W I(M I, K) /(A R(K) * R)) * U( \\ & 111, K) \\ & X X X(I I, N N)=S I G * R * I W U I(M, I)-(H * H * R * I W 2 U 1(M, I) / 12 . D O 1+((1.00-S I G) / 2 . \\ & 100) * R *(R * T-H) * D F J * D F J * I W I U(M, I) / H+D F J * D F J * S U M 2\end{aligned}\)

STRINGER ELEMENTS
\(\omega \circlearrowleft\)
```

 121 SUM1=0.DO
 DO 9 L = 1,NS
 9 SUM1 = SUMI + ZBARS(L)*SS(L)*C(N1,L)*C(JI,L)
 8 XX(II,NN)=XXX(II,NN)-IW2UI(M,I)*R*R*SUM1
 4 \text { CONTINUE}
 CALL CHECK (41
 C
C
ROW 2
C
0015 Q=1.MSIZE
II=II+1
INTGQ=(Q-1)/MSTAR
I=Q-INTGQ*MST AR +NLA-1
II=I-NLA+1
J=INTGQ+NLC
Jl=INTGQ+1
DFJ=OFLOAT\JJ
SUBMATRIX DT
$N N=M S I Z E+Q-1$
C
C
C
SUBMATRIX B
DO130 P=Q.MSIZE $N N=N N+1$
INTGP $=(P-1) / M S I A R$
$M=P-I N T G P * M S T A R+N L A-1$
$M 1=M-N L A+1$
$N=I N T G P+N L C$
NL=INTGP+1
IF (J-N) 126,127,126
126 XXX(II, NNI $=0 . \mathrm{DO}_{0}$
GO TO 79
C

```

RING ELEMENTS

\section*{SUMl \(=\) SUML + SR(K) *V(M1,K)*V(II,K) \\ \(\stackrel{\infty}{\sim}\)}

XXX(II,NN)=IVV(N,I)*DFJ*DFJ+.5DO*(1.00-SIG)*(R*R+H*H/4.DO)*IVIVI(M) \(1,11+D F J * D F J * S U M 1\)

ט ט

\section*{127 SUM1=0.DO}
\(\omega \omega\)
STRINGER ELEMENTS
(9UM2=0.DO
79 SUM2=0.
DO \(122 L=1\), NS

ט ט

RING ELEMENTS
SU20 \(K=1\), NR

```

 IIVI(M,I)/8.00*SUMI)
 C
C STRINGER ELEMENTS
78 SUMZ=0.DO
DO 123 L=1,NS
123 SUM2=SUM2+SS(L)*IYZS(L)*C(N1,L)*S(J1.L)/AS(L)
19 XX(II,NN)= XXX(II,NN) +R*R*IW2V2(M,I)*SUM2
1 5 CONTINUE
CALL CHECK (5)
C
ROW 3
DO24Q=1,MSIZE
II= II+1
INTGQ=(Q-1)/MSTAR
I=Q-INTGQ*MSTAR+NLA-1
11=1-NLA+1
J=1NTGQ+NLC
Jl=INTGQ+1
DFJ=DFLOAT(J)
C
C SUBMATRIX ET,FT
C
NN=MSIZE*2*O-1
C
C SUBMATRIX C
C
DO27P=Q,MSIZE
NN=NN+1
INTGP=(P-1)/MSTAR
M=P-INTGP*NSTAR+NLA-1
MI=M-NLA+1
N=INTGP+NLC
Nl=INTGP+L

```

```

C
IF (NWRITE) 420,421,420
421 WRITE(3,1050)
1050 FORMAT('1 STIFFNESS MATRIX')
MSIZE6=MSIZE*3
DO 420 I= 1,MSIZE6
WR1TE{3.1051)I
1051 FORMAT (///3X, 'ROW'.I3/1
HRITE (3.1052)(XX(I,J),J=1,MSIZE6)
1052 FORMAT (2X8E16.8)
420 CONTINUE
WRITE (7) XX
CALL CHECK (9)
C
C
C
C
COMPUTE MASS MATRIX
II=0
C
C
DO 300 Q=L,MSILE
II=II+I
INTGQ=(Q-1)/MSTAR
I=Q-INTGQ*MSTAR+NLA-1
II=I-NLA+1
J=INTGQ+NLC
JL=INTGQ+1
DCJ=DFLOAT(J)
C
C SUBMATRIX N
C
NN=Q-1
DO 301 P=Q,MSIZE

```
\(N N=N N+1\)
INTGP \(=(P-1) /\) MSTAR
\(M=P-I N T G P * M S T A R+N L A-1\)
\(M 1=M-N L A+1\)
\(N=I N T G P+N L C\)
\(\mathrm{NL}=\mathrm{INTGP}+1\)
[F (J-N) 302,303,302
302 YYY(II, NN) \(=0.00\)
GO TO 305

RING ELEMENTS
303 SUM1 \(=0\). DO
DO \(304 K=1\), NR
304 SUM1 \(=\operatorname{SUM} 1+\operatorname{MR}(K) * U(M 1, K) * U(I 1, K) *(1 . D O+(X B A R R(K) * D F J / R) * * 2)\)
YYY(II,NN) \(=\operatorname{SUMI}+I U U(M, I)\)
C
C
305 SUM \(2=0.00\)
DO 306 L=1, NS
306 SUM2 \(=\) SUM2 + MS(L)*C(NL,L)*C(JL.L)
301 YY(II,NN)=IUU(M,I)*SUM2*YYY(II,NN)
C
\(C\)
\(C\)
SUBMATRIX NN
DO \(307 \mathrm{P}=1\), MSIZE
\(N N=N N+1\)
INTGP \(=(P-1) /\) MSTAR
\(M=P-1\) NTGP*MSTAR + NLA-1
\(\mathrm{ML}=\mathrm{M}-\mathrm{NL} A+1\)
\(N=I N T G P+N L C\)
N1=1NTGP+1
IF (J-N) 341,342,341
YYY(II,NN)=0.DO

GO 10345
RING ELEMENTS
C
342 SUMI \(=0.00\)
DO \(327 \mathrm{~K}=1\), NR
327 SUMI = SUMI +MR(K)*XBARR(K)*V(MI,K)*U(II,K)
YYY(II;NN)=DFJ*SUMI/R
c
C STRINGER ELEMENTS
345 SUM2 \(=0.00\)
DO \(346 \mathrm{~L}=1\), NS
346 SUM2=SUM2+MS(L)*YBARS(L)*S(N1,L)*C(JI,L)
307 YY(II, NN) \(=\) YYY(II,NN)-IVIU(M,I)*SUM2
C
\(C\) SUBMATRIX \(P\)
C
\(00308 \mathrm{P}=1\), MSIZE
\(\mathrm{NN}=\mathrm{NN}+\mathrm{l}\)
INTGP \(=(P-1) /\) MSTAR
\(M=P-1\) NT GP*MST AR + NLA-1
\(M 1=N-N L A+1\)
\(N=I N T G P+N L C\)
NL=INTGP+1
IF (J-N) 309,310,309
309 YYY(II,NNI \(=0.00\)
GO TO 312
C
C Ring elements
310 SUMI \(=0\). DO
DO \(311 \mathrm{~K}=1\), NR
311 SUM1=SUMI + ZBARR(K)*MR(K)*(Wl(M1,K)-XBARR(K)*DFJ*DFJ*W(M1,K)/(R*R)) 1*U(II,K)

YYY(II,NN) \(=-S U M 1\)
STRINGER ELEMENTS
312 SUM2=0.DO
DO \(313 \mathrm{~L}=1\), NS
313 SUMZ \(=\) SUM \(2 * 2 B A R S(L) * M S(L) * C(N 1, L) * C(J 1, L)\)
308 YY(II,NN)= YYY(II,NN)-IWIU(M,I)*SUMZ
300 CONTINUE
CALL CHECK 1101
\(C\)
\(C\)
\(C\)
ROW 2
DO \(319 \mathrm{Q}=1\),MSIZE
II \(=1 I+1\)
INTGQ \(=(Q-1) /\) MSTAR
I=Q-INTGQ*MSTAR*NLA-1
II=1-NLA+1
\(J=I N T G Q+N L C\)
\(J 1=1 N T G Q+1\)
DFJ=DFLOAT(J)
C
C SUBMATRIX NNT
C
\(N N=M S 12 E+Q-1\)
C
C SUBMATRIX Q
c
DO \(329 \mathrm{P}=\mathrm{Q}\). MSILE
\(N N=N N+1\)
INTGP \(=(P-1) /\) MSTAR
\(M=P-I N T G P \approx M S T A R+N L A-1\).
\(M 1=M-N L A+1\)
\(N=I N T G P+N L C\)
\(\mathrm{NL}=\mathbf{I N T G P}+1\)

If (J-NI 322.323.322
322 YYY(II,NN)=0.DO
GO TO 325
    323 SUMI \(=0.00\)
    DO \(324 \mathrm{~K}=1\), NR
    \(324 \operatorname{SUM} 1=\operatorname{SUM} 1+\operatorname{MR}(K) * V(M 1, K) * V(11, K)\)
        YYY(II,NN) =SUMI+IVV(M.I)
C
C
STRINGER ELEMENTS
    325 SUM2 \(=0\). DO
    DO \(328 \mathrm{~L}=1\), NS
    328 SUM2=SUM2*MS(L)*S(N1,L)*S(JI,L)*(YBARS(L)*YBARS(L)*IVIVI(M,I)+IVV(
        (M, I) )
    329 YY(II:NN)=SUM2+YYY(II:NN)
C
C SUBMATRIXR
c
        DO 338 P=1.MSIZE
        \(N N=N N+1\)
        INTGP \(=(P-1) /\) MSTAR
        \(M=P-I N T G P * M S T A R+N L A-1\)
        MI \(=\) M-NLA 1
        \(\mathrm{N}=\mathrm{INTGP}+\mathrm{NLC}\)
        \(\mathrm{N}=\mathrm{I}=\mathrm{NTGP}+1\)
        DFN=DFLOAT(N)
        IF (J-N) 331.332.331
    \(331 \operatorname{YYY}(I I, N N)=0 . D 0\)
        GO TO 336
\(C\)
\(C\)
C RING ELEMENTS
```

 332 SUMI=O.DO
 D0 333 K=1,NR
 333 SUML=SUM1 +2BARR(K)*MR(K)*W(M1,K)*V(11,K)
 YYY(II,NN)=DFJ*SUMI/R
 C
C SIRINGER ELEMENTS
336 SUM2=0.DO
DO }337\textrm{L}=1,N
337 SUM2=SUM2+ZBARS(L)*MS(L)*(S(N1,L)*DFN*IWV(M,I)/R+YBARS(L)*C(N1,L)*
IIWIVI(M,I|)*S(JI,L)
338 YY(II,NN)=SUM2+YYY{II,NN)
319 CONTINUE
CALL CHECK {11}
C
C ROW 3
C
DO 348 Q=1,MSIZE
II=II+I
INTGQ=(Q-1//MSTAR
I=Q-INTGQ*MST AR +NLA-1
II=I-NLA+1
J=LNT GQ+NLC
J1=INTGQ+1
DFJ=DFLDAT(J)
C
C SUBMATRIX PT. RT
C
NN=MSIZE*2+Q-1
C
C SUBMATRIX S
C
OO 351 P=Q,MSIZE
NN=NN+1
INTGP=(P-1)/MSTAR

```
\(M=P-I N T G P * M S T A R+N L A-1\)
\(M 1=M-N L A+1\)


352

\section*{RING ELEMENTS}

\section*{SUML \(=0\). DO} DO \(354 \mathrm{~K}=\)
DO \(354 \quad K=1, N R\)
SUMI = SUMI +MR (K
354 SUMI = SUMI + MR (K) * ( (1.DOtDF J*DFJ*IXXR(K)/(AR(K)*R*R))*W(MI,K)*W(II,K \(11+P P R 2(K) * W I(M L, K) * W 1(I I, K)+X B A R R(K) *(W(M 1, K) * W I(I I, K)+M I(M I, K) * W(\) 2II,K)I)
YYY(II,NN) \(=\) SUMI +IWW(M.I)

\section*{STRINGER ELEMENTS}

DO. \(358 \mathrm{~L}=1\), NS
357 SUM2 \(=0\). DO

351 YY(II,NN)=YYY(II,NNI+SUM2*IWH(M,II)+SUM3
351 YY(II,NN)=YYY(II,NN)+SUM 2 \&IWWIM,I) + SUM 3
348 CONTINUE
CALL CHECK (12)
DO 426 Q=I.MSIZE3
O26 \(P=Q\),MSIZE 3
\(426 \quad Y Y(P, Q)=Y Y(Q, P)\)
\(\omega\)
```

C PRINT MASS MATRIX IF NWRITE IS ZERO
C
IF (NHRITE) 430,431.430
431 WRITE 13,1080)
1080 FORMAT ('1 MASS MATRIX')
MSIZE6=MSIZE*3
DO 430 1=1,MSIZE6
WRITE (3,1081) I
1081 FORMAT (///3X: 'ROW`.I3/)
WRITE (3,1082) (YY(I,J), J=1,MSIZE6)
1082 FORMAT (2X8E16.8)
430 CONTINUE
WRITE (7) YY,EC,SIG,RHOC,R,NLC,NHC,NLA,NHA
CONTINUE
STOP
END

```
```

 MAIN PROGRAM NUMBER TWO
 this program mavbe run directly after the first or as a separate
 JOB.
 SUBroutine's called by main program - dnroot
DOUBLE PRECISION EC,SIG,RHOC.R,BIG
C the subscripts on the next three cards must be the same as in the
FIRST MAIN PROGRAM AND ALSO IN THE TWO SUBROUTINES DNROOT AND
C DEIGEN.
DOUBLE PRECISION XX(60,60),YY(60,60), EVEC(60,60)
DOUBLE PRECISION EVAL{601
OIMENSION FREQ(60),ISAVE(60)
C the SUBSCRIPTS ON the NEXT CARD mUST be the square of that on eval.
DOUBLE PRECISION SX(3600),SY(3600),EE(3600)
EQUIVALENCE (SX(1),XX(1)],(SY(1),YY(1),EVEC(1))
COMMON YY
C REWIND tape ano read input values
REWIND 7
READ (7) NGROPS
OO 40'9 NGPS=1,NGROPS
REAO (7,1000)
1000 FORMAT(80H
1)

```
```

 READ (7) NMSETS
 DO 409 NMS =1,NMSETS
 WRITE (3.1061)
 1061 FORMATI'I FREE VIBRATION ANALYSIS OF A RING AND STRINGER STIFFENED
 1 CYLINDRICAL SHELL'/' EGLE AND SODER FOR NASA, NGR-37-003-035, RI-
 21589, 1/15/68%/' PROGRAM OU-30, SOLUTION OF THE EIGENVALUE
 3PROBLEM USING DNROOT AND DEIGEN'//I
 WRITE (3,1000)
 READ (7) XX
 READ (7) YY,EC,SIG,RHOC,R,NLC,NHC,NLA,NHA
 MSTAR=NHA-NLA+1
 NSTAR=NHC-NLC+1
 MSIZE=MSTAR*NSTAR
 MSIZE6=MSIZE#3
 c
c solve eigenvalue problem
C
I J=0
00 800 K=1.MSIZE6
DO 800 L=1,MSIZE6
I J=I J+l
800 SX(IJ)=XX(L,K)
I J=0
DO 801 K=1,MSIZE6
00 801 L=1,MSIZE6
I J={ J +1
801 SY(IJ)=YY(L,K)
CALL DNROOT (MSIZEG,SX,EVAL,EE)
WRITE \3,10601NGPS,NMS
1060 FORMAT 1'ODATA GROUP NUMBER IS',I4,' MODE SET NUMBER IS',I4//I
l J=0
DO 802 K=1,MSIZE6
DO }802\mathrm{ L=1,MSIZE6
I J= IJ +1
802 EVEC(L.K)=EE(IJ)

```
```

C
C COMPUTE FREQUENCIES FROM EIGENVALUES
400 00 404 I=1,MSI2E6
OMSQ=EVAL(I)*EC/(|(1.DO-SIG*S\G)*RHOC*R*R)
404 FREQ(I)=SQRT(ABS(OMSQ) 1/6.283185
C
C NORMALIZE EIGENVECTORS
C
NEW1=2*MSIZE+1
NEW2=3*MSILE
DO 405 J=1,MSIZE6
8IG=0.DO
DO 406 I=NEW1,NEW2
IF (DABS(EVEC(I,J))-DABS(BIG)) 406,408,408
408 BIG=EVEC(I,J)
[SAVE{J\= I
406 CONTINUE
IF (BIG) 428.427.428
428 DO 407 I=1,MSI2E6
407 EVEC(I,J)=EVEC(I,J)/BIG
GO TO 405
427 ISAVE\J\=100
405 CONTINUE
C
C. WRITE EIGENVALUES AND FREQUENCIES
C
WRITE (3.1020)
1020 FORMAT 1:0 J EIGENVALUES
DO 445 J=1.MSIZE6
IFIISAVE(J)-1001 446,447,446
447 M=0
N=0
GO TO 448
446 III=ISAVE(J)-2*MSI2E

```
```

 INTGP=(III-1)/MSTAR
 M=III-INTGP*MSTAR+NLA-I
 N=INTGP+NLC
 WRITE (3,1023) J,EVAL(J),FREQ{J),M,N
 1023 FORMAT (13.2E17.8,2(4X,13))
445 CONTINUE
C
C WRITE EIGENVECTORS
C
WRITE (3,1021)
1021 FORMAT \&'1
EIGENVECTORS')
OO 409 J=1,MSIZE6
III=0
WRITE (3,1022) J
1022 FORMAT (' (',I3,')')
DO 414 K=1,3
II=III+1
III=III+MSIZE
414 WRITE (3,1026) (EVEC(I,J),I=II,III)
1026 FORMAT (/(5X,6D19.8))
409 CONTINUE
STOP
END

```

NROOT00I

SUBROUTINE NROOT NROOTOO3

PURPOSE NROOTOOG
COMPUTE EIGENVALUES AND EIGENVECTORS OF A REAL NONSYMMETRIC NROOTOOT MATRIX OF THE FORM B-INVERSE TIMES A. THIS SUBROUTINE IS NROOTOOB NORMALLY CALLED BY SUBROUTINE CANOR IN PERFORMING A NROOTOO9
CANDNICAL CORRELATION ANALYSIS. NROOTOIO
USAGE NROOTO 11

CALL NROOT ( \(M, A, B, X L, X\) )
DESCRIPTION OF PARAMETERS
M - ORDER OF SQUARE MATRICES \(A\) : \(B\), AND \(X\).
A - INPUT MATRIX (M. X M).
B - INPUT MATRIX (M X M).
XL - OUTPUT VECTOR OF LENGTH M CONTAINING EIGENVALUES OF B-INVERSE TIMES A.
\(X\) - OUTPUT MATRIX (M X M) CONTAINING EIGENVECTORS COLUMNWISE.

REMARKS
NONE
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED EIGEN

METHOD
REFER TO W. W. COOLEY AND P. R. LOHNES, MULTIVARIATE PROCEDURES FOR THE BEHAVIDRAL SCIENCES', JOHN WILEY AND SONS, 1962, CHAPTER 3.
```

C
NROOT035
SUBROUTINE DNROOT (M,A,XL,X)
DIMENSION A(1),XL(1),B(36001:X(1)

```

```

 NROOT041
 IF A DUUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE NROOTO42
 C IN COLUMN I SHOULD BE REMOVED FROM THE DOUBLE PRECISION NROOTO43
 STATEMENT WHICH FOLLOWS.
 NROOT044
 NROOT045
 DOUBLE PRECISION A.B,XL,X,SUMV.TEMP
 CDMMON B
 THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
 INNG IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
 ROUTINE.
 THE DOUBLE PKEGISION VERSION OF THIS SUBROUTINE MUST ALSO NROOTO52
 NROOT048
 NROOT049
 NROOT050
 NROOT051
 CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT IN STATEMENTSNROOTO53
 110 AND 175 MUST BE CHANGED TO DSQRT. ABS IN STATEMENT 110 NROOTO54
 MUST BE CHANGED TO DABS. NROOT055
 NROOT056
 NROOTO57
 COMPUTE EIGENYALUES ANO EIGENVECTORS OF B NROOTO58
 K=1 NROOTO60
 K=1
 DO 100 J=2,M
 L=M*(J-1)
 DO 100 I = 1,N
 L=L+1
 K=K+1
 100 B(K)=B(L)
 C

```


```

 L=L+1 NROOT104
 A(L)=0.0
 DO 130 K=1,M
 Nl=Nl+M
 N2=N2+1
 130 A(L)=A(L) +X(N1)*B(N2)
 K=0
 DO 200 I=1,M
 DO 200 J=1,M
 K=K+1
 TEMP=B(K)
 B(K)=A(K)
 200 A(K)=TEMP
 C COMPUTE EIGENVALUES aND Eigenvectors of a
CALL DEIGEN (X,M,MV)
L=0
DO 140 I=1,M
L=L+I
140 XL(I)=B(L)
C
C COMPUTE THE NORMALIZED EIGENVECTORS
C
DO 150 I=1,M
N2=0
OO 150 J=1,M
N1=1-M
L=M*(J-1)+I
B(L)=0.0
DO 150 K=1,M
NL=N1+M
N2=N2+1
NROOT110
NROOT111
NROOT 112
NROOT114
NROOT115
NROOT116
NROOT117
NROOT118
NROOT119
NRODT }12
NROOT121
NRDOT122
NROOT123
NROOT124
NROOT125
NROOT126
NROOT127
NROOT128
NROOT129
NROOT130
NROOT131

```
        K=0
        DO 180 J=1.M
SUMV=0.0
DO 170 I= 1,M
L=L+1
170 SUMV=SUMV+B(L)*B(L)
175 SUMV=DSQRT(SUMV)
DO 180 I=1.M
K=K+1
180 X(K)=B(K)/SUMV
RETURN
END
NROOT14
```

EIGENOO5
PURPOSE EIGENOO6
CGMPUTE EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC EIGENOOT
MATRIX EIGENOO8
EIGENOO9
USAGE EIGENOIO
CALL DEIGEN(A,R,N,MV) EIGENOII
DESCRIPTION OF PARAMETERS EIGENOI2
A - ORIGINAL MATRIX (SYMMETRIC). DESTROYED IN COMPUTATION. EIGENOI
RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGONAL OF EIGENOIS
MATRIX A IN DESCENDING ORDER. EIGENOIG
R - RESULTANT MATRIX OF EIGENVECTORS ISTOREO COLUMNWISE, EIGENOI7
IN SAME SEQUENCE AS EIGENVALUESI EIGENOI8
N - ORDER DF MATRICES A AND R EIGENOI9
MV- INPUT CODE EIGENO20
0 COMPUTE EIGENVALUES AND EIGENVECTORS EIGENO2I
1 COMPUTE EIGENVALUES ONLY IR NEED NOT BE EIGENO22
OIMENSIONED BUT MUST STILL APPEAR IN CALLING EIGENO23
SEQUENCE) EIGENO24
EI GENO26
ORIGINAL MATRIX A MUST BE REAL SYMMETRIC (STORAGE MODE=1) EIGENO27
MATRIX A CANNOT BE IN THE SAME LOCATION AS MATRIX R EIGENO28
EIGENO29
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED EIGENO30
NONE
EIGENO31
EI GENO32
METHOD
EIGENO33
DIAGONALIZATION METHOD DRIGINATED BY JACOBI AND ADAPTED EIGENO34
BY VON NEUMANN FOR LARGE COMPUTERS AS FOUND IN MATHEMATICALEIGENO35

```
    METHODS FOR DIGITAL COMPUTERS', EDITED BY A. RALSTON AND EIGENO36
    H.S. WILF, JOHN WILEY AND SONS, NEW YORK, 1962. CHAPTER 7 EIGENO 37
                            EIGENO38
                    EIGENO39
                            EIGENO4O
        SUBROUTINE DEIGEN (R,N,MV)
        DIMENSION A(3600),R(1)
        COMMON A
                            EIGENO43
                            EIGENO44
                                    EIGENO45
    If A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED. THE
        C IN COLUMN I SHOULD BE REMOVED FROM THE DOUBLE PRECISION
        STATEMENT WHICH FOLLOWS.
            EIGEN046
            EIGENO47
DOUBLE PRECISION A,R,ANORM,ANRMX,THR,X,Y,SINX,SINXZ,COSX, EIGENOSO
    1 COSX2.SINCS
    EIGENO49
    l
        EIGENO51
        APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
        EIGENO53
        EIGENO54
                            EIGENO55
        ROUTINE• EIGENO56
        THE DOUBLE PRECISION VERSION DF THIS SUBROUTINE MUST ALSO EIGENOS7
        CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. SQRT IN STATEMENTSEIGENO5B
        40, 68, 75, AND 78 MUST BE CHANGED TO DSQRT. ABS IN STATEMENT EIGENO59
        6 2 \text { MUST BE CHANGED TO DABS. EIGENO6O}
        EIGEN061
        EIGEN062
                            EIGENO63
        GENERATE IDENTITY MATRIX EIGENO64
        IF(MV-1) 10,25,10 EIGENO66
10
IQ=-N
DO 20 J=1,N
    EIGEN067
    l
    EIGEND68
    EIGENO69
```

```
    DO 20I=1,N EIGENOTO
    IJ= IQ+I
    R(IJ)=0.D+00
    [F(1-J) 20,15,20
    15R(LJ)=1.D+00
    20 CONTINUE
C
C COMPUTE INITIAL AND FINAL NORMS (ANORM AND ANORMX)
    25 ANORM=0.0+00
        DO 35 I=1,N
        DO 35 J=I,N
        IF(I-J) 30,35,30
    30 [A=1+(J*J-J)/2
    ANORM=ANORM+A(IA)*A(IA)
    35 CONTINUE
    IF(ANORM) 165,165,40
    40 ANORM=1.4140+00*DSQRT(ANORM)
    ANRMX=ANORM* 1.00-06/FLOAT(N)
C
C INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR
C
        IND=0
        THR=ANORM
    45 THR=THR/FLOAT\N)
    50 L=1
    55 M=L+1
C
C COMPUTE SIN AND COS
C
60 MQ=(M*M-M)/2
    LQ=(L*L-L)/2
    LM=L+MQ
    62 IF(DABS(A(LMA)-THR) 130,65,65
    65 1ND=1
```

EIGENOTO
EIGENOT1
EI GENOT2
EIGENO73
EIGENO74
EIGENO75
EIGENO 76
EI GEN077
EIGEN078
EI GENO79
EIGENO80
EIGENOB1
EIGENOB2
EIGENOB3
EI GEN084
EIGENOB5
EIGEN086
EIGENO87
EIGENO88
EIGENO89
EIGEN090
EIGENO91
EIGENO92
EIGENO93
EIGENO94
EIGEN095
EIGEN096
EIGENO97
EIGENO98
EI GENO99
EI GEN100
EIGENIO1
EIGEN102
EIGEN103
EIGEN104


```
    LL=I+II*I-I|/2 EIGENIT5
    JQ=N*(I-2)
EIGEN176
    DO 185 J=I.N
    JQ=JQ+N
    MM=J+(J*J-J)/2
    |F(A(LL)-A(MM)) 170,185,185
170 X=A{LL)
    A(LL)=A(MM)
    A(MM)=X
    IF(MV-1) 175.185,175
175 DO 180 K=1,N
    ILR=IO+K
    IMR=\Q+K
    X=R(ILR)
    R(ILR)=R{{MR}
180 R(LMMR)=X
185 CONTINUE
RETURN
END
EIGEN177
EIGEN178
EIGEN179
EIGEN180
EIGEN181
EIGEN182
EIGEN183
EIGEN184
EIGEN185
EIGEN186
EIGEN187
EIGEN188
EIGEN188
EIGEN189
EIGEN190
EIGEN191
EIGEN192
EIGEN193
```

