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CHAPTER I 

INTRODUCTION 

The neutron soil moisture meter was first developed in the early 

1950's. Neutron scattering is an excellant method of in situ soil 

moisture measurement because it permits repeated measurements from the 

same sample. It is not influenced by other soil factors such as soil 

temperature and salt concentration, and it gives an accurate indication 

of the soil moisture in a soil profile. The equipment utilized with 

the neutron scattering technique consists of a probe wliich contains a 

fast neutron source, slow neutron detector, and a preamplifier; a digital 

readout scaler or a ratemeter which counts the electrical pulses from 

the slow neutron detector; and a 6 volt battery and power supplies. 

General reco1111llendations at present are that the fast neutron source 

should be located at approximately the center of the sensitive length of 

the detector tube before calibration and periodic checks be made after 

calibration to insure that the calibration curve does not change. The 

location of the source may be critical. If so, minor differences in 

positioning may cause a difference in calibration curves of otherwise 

similar probes. Seven Nuclear-Chicago model P-19 neutron probes are 

used in the Oklahoma Experiment Station system and each probe has been 

found to require a different calibration curve. Identification of the . 

factors causing such differences could lead to a method of arriving at 

a universal calibration curve. 
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There are several factors which can contribute to the variation 

among similar probes. Two factors can be suspected of having a pro­

nounced effect. One is the geometry of the paraffin shield, which is 

commonly used as a standard in the ratio of soil:paraffin shield. The 

other factor is the location of the source with respect to the detector 

tube. The use of a large hydrogenous medium as the standard in place 

of the paraffin shield reduces the variation in calibration among probes 

by about one-half. This of course removes the variation due to small 

differences in geometry in the paraffin shields. 

The objectives of this study were as follows: 

1. To develop a procedure for determining the midpoint of the 

anode wire in the detector tube. 

2. To determine the center of the sensitive volume of the 

detector tube. 

3. To investigate the relation between the midpoint of the 

anode wire and the center of the sensitive volume of the 

detector tube. 

4. To determine the effect of .the location of the source on 

the calibration curve of a neutron probe with a side located 

source. 



CHAPTER II 

LITERATURE REVIEW 

Numerous articles may be found in the literature describing the 

neutron method. Most of these are not related to principles involved 

in this study. The literature cited here is by no means intended to be 

exhaustive and represents approximately one-fourth of the literature 

relating to the neutron method. 

The neutron scattering technique involves the placement of a 

source of fast neutrons within the medium to be monitored. As the fast 

neutrons emitted by the source traverse the medium they interact with 

the nuclei by elastic collisions, during which the neutrons change 

direction and loose energy resulting in moderation or slowing down, and 

by inelastic collisions which involves the capture of the neutron by the 

nuclei of some element in the soil. Elastic collisions are by far the 

most common in the soil. After the fast neutrons have undergone a 

sufficient number of these elastic collisions they become slow or 

thermal neutrons meaning that they are approaching the same mean energy 

level as other particles at the temperature of that medium (37). The 

names fast and slow neutrons are relative terms to classify them ac­

cording to their energy status; a fast neutrons energy level is defined 

as greater than 10 keV while a slow neutron is less than 100 eV (15). 

As the moderating power of the material increases, the density of slow 

neutrons in the vicinity of the source of fast neutrons increases form-
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ing a cloud of slow neutrons around the source. The density of this 

cloud does not continue to increase but reaches an equilibrium, for the 

particular material being. monitored, in about a millionth of a second 

(37) after the source has been placed in the material. 

The moderating power of the various components in the soil varies 

depending upqn the scattering cross section of the element, usually ex-

-24 2 . 
pressed in barns (one barn being equal to 10 cm), and the number of 

collisions, between a neutron and the nuclei of the element, required 

to moderate a fast neutron. Hydrogen is the most effective moderator of 

the common components found in the soil because moderation requires 

about 18 collisions and H has a cross section of about 2.5 barns (8). 

The major portion of the hydrogen in the soil is in the form of water. 

Salt concentration and temperature does not affect the utilization of 

neutrons. Boron and chlorine do by capturing neutrons. Organic matter 

and other non-water hydrogen do because they introduce hydrogen that is 

not in water. Fortunately the boron and chlorine are not present in 

most soils in appreciable quantities. Concentrations as small as 100 

PPM of boron and 1000 PPM of chlorine can have a pronounced effect (12, 

37). The effect of non-water hydrogen is very small in comparison to 

water-bound hydrogen. The reason is not clear bµt Van Bavel (37) states 

that a possible reason is the difference in chemical binding between wa-

ter and organic matter. Some soil components such as kaolinite do con-

tain non-water hydrogen that significantly affects the background count. 

The general feeling seems to be that the non-water hydrogen is present 

in very small amounts as compared to the hydrogen present in the form 

of water. Since the moderation process is little affected except by 

water-bound hydrogen, then the slow neutron density in the vicinity of 



5 

the source can be considered as related to the soil water content. The 

essential components for soil water determination by neutron scattering 

are a source of fast neutrons, a slow neutron detector, and a counting 

mechanism. The source and detector usually being housed with a pre-

amplifier circuit in one unit referred to as the probe. 

A source of fast neutrons can be prepared by mixing an alpha par-

ticle emitting element with beryllium (15,37) then encapsulating the 

mixture in a metal container. A neutron source prepared in this manner 

4 that is capable of emitting 10 neutrons per second can be contained 

in a .95 cm by .95 cm right cylinder. Intimate mixing of the two sub-

stances is essential for maximum utilization of the alpha particle 

source because of the limited range of the alpha particle. The energy 

characteristics of the neutrons depend on the alpha emitter thu~ the 

proper selection is very important. Four different alpha particle 

sources have primarily been used for soil moisture determination: polo-

nium-210, radium-226, plutonium-239, and Americium-241. Polonium-210 

and plutonium-239 are not commonly used because polonium has a very 

short half life (138 days) and plutonium results in a very bulkly 

source because of its low activity (15). Radium-beryllium sources (37) 

have been often utilized because of their long half life (1620 years) 

and the ease with which they can be obtained although radium does have 

a rather high gamma radiation level which does present a health hazard. 

Americium-beryllium (38) sources are increasing in use because of some 

advantageous characteristics such as the elimination of gamma radiation. 

This can result in a reduction of the weight of the probe, since less 

lead shielding is required for operator protection. An increase in 

counting rate and an increased depth resolution have been observed with 
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Americium partially because of the lower energy of the neutrons emitted 

by a source of this type. 

Detection of slow neutrons presents a problem because the neutron 

is an uncharged particle and for detection must be entered into a nucle­

ar reaction that produces a detectable charged particle. Normally neu­

trons are counted by the use of boron (enriched with boron-10) lined or 

boron trifluoride gas (enriched with boron-10) filled proportional 

counter tubes (15,30,37). The enrichment with boron-10 is necessary be­

cause it has a much larger neutron capture cross section than boron-11. 

These tubes consist of a thin wire centrally located and completely in­

sulated from the outer walls of the tube with a voltage drop of 1000 to 

1500 volts between the outside wall and the wire. The detection of neu­

tron occurs by a boron-10 nuclei absorbing a neutron then emitting an 

alpha particle which produces an ionized track in the gas filled cham­

ber, resulting in a discharge pulse (37). The discharge pulses are al­

most instantaneous (approximately 100 µ seconds) and do not limit the 

counts per unit of time that would normally be encountered in soil mois­

ture measurements. The boron-10 reaction is selective for slow neutrons 

and ignores the fast neutrons; thus, a count per unit time of the dis­

charge pulses from the detector tube gives a neasure of the slow neutron 

density in vicinity of the source and detector tube. The discharge 

pulses from the detector tube can be counted by a rate meter as de­

scribed by Underwood et al. (32) or by a digital read-out scaler as 

described by Holmes and Turner (13) and Stone et al. (30). 

One of the most important factors to consider when using the 

neutron probe is the initial calibration because all futu;re·moisture 

measurements depend on this calibration. Certain steps must be taken 



to insure that the calibration curve obtained is the most accurate 

possible and remains so during use. 
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According to Cohen (4) two features of the probe must be determined 

before a field calibration can be made: the effective volume of soil 

measured by the probe and the point on the probe which determines the 

center of this effective volume during measurements. The thickness of 

the layer of influence depends somewhat on the moisture conditions of 

the soil but 15 cm is the value most commonly used in soil moisture 

studies. This is despite the fact that readings taken in successive 

15 cm increments have been shown to be less than an infinite volume for 

laboratory calibrations. For laboratory calibrations a container at 

least 91 cm in diameter filled with soil as described by Van Bavel et 

al. (36) is reconunended. Some investigators (4,28) have determined 

the sampling center, which they refer to as the sensitive center, which 

they used as a reference point to measure depth for different probes of 

the side located type. Cohen found the sensitive center to be different 

for two similar probes and that the source was not located at the sensi­

tive center. He also observed that with a change of the detector tube 

to a different model the sensitive center changed. The most conunon 

reference point £or depth measurements has been the center of the 

source. Some workers (10,36) reconnnend that the source should be 

located before calibration approximately at the center of the sensitive 

volume of the detector tube for a probe with a side located source. By 

this method the detector tube is symmetrically located within the layer 

of influence. By using the center of the source and the center of the 

sensitive volume to reference depth measurements the best indication 

of the soil profile moisture conditions can be obtained. 

After the calibration has been completed, periodic checks should 

be made to ensure the validity of the calibration curve against drift. 
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Drift from the calibration curve may occur for reasons such as change 

in the source strength, change in the source or detector position, 

decreased in efficiency of the boron trifluoride tube, variation in the 

voltage applied to the detector tube, or faults in the counting equip­

ment (2). A simple method of determining if the calibration curve has 

changed involves the utilization of a series of standards which might be 

polyethylene cylinders (33), cadmium shields (2), or salt solutions (36). 

A very important feature of any type of equipment is its sensitivi­

ty and the neutron probe has been considered to be sensitive to changes 

in soil moisture and being able to determine the soil moisture content 

to within one or two percent on the volume basis (37). Van Bavel 

(34,35) has discussed the efficiency of a probe which is defined by 

the equation a=N/se where N=counts per minute, s=source strength in 

millicuries and 9=water content on a volume basis. Multipling both 

sides of this equation by s gives sensitivity S=sa=N/9. Meriam and 

Copeland (20,21) relate sensitivity to the slope of the calibration 

curve with counts per minute plotted against water content by volume. 

This gives sensitivity the same dimensions as the above equation which 

is the most commonly accepted definition of sensitivity. 

From the above, it has been recommended that the neutron source 

should be located approximately at the center of the sensitive length 

of the detector tube. However the effect of the source not being 

located at the center of the sensitive length has not been reported . 

. The literature also states that steps should be taken to maintain the 

source at the same location after calibration. Again, the deviation 

from the original source location has not been studied as to how a 

change in source location might affect the calibration curve. 



CHAPTER III 

MATERIALS AND METHODS 

Detector: The soil moist\,lre measuring probe utilized in these 

studies was the Nuclear-Chicago Corporation model P-19. Longitudinal 

and transverse cross sections of this probe are shown in Figure~ 1. .This 

probe employed a detector tube designated as Nuclear-Chicago model 

NC-213 boron trifluoride proportional counter tube. This tube was 

described by Nuclear-Chicago as having an 8.75 inch (22.3 cm) length; 

1 inch (2.54 cm) diameter with an active length of 4 inches (10.14 cm) 

and an active diameter 15/16 inch (2.38 cm). It was filled with 96% 

enriched ~OB in BF3 filled to a pressure of 30 cm Hg. The operating 

voltage was 1400 on a tungsten anode with a plateau slope of 3% and a 

connector type UG-560/U. The cathode was optionally of copper or brass. 

The anode diameter was .001 inch (25µ). 

Source-detector geometry: Th~ sensitive portion of a proportional 

detector generally coincides with the position of the anode wire, with 

due allowance for "end effect". In order to be able tp refer measure­

ments in this study to the position of the anode wire in the detector 

tube, a defunct tube was dismantled to ascertain its dimensions. For 

comparison an X-ray radiograph also was made of the actual detector used 

in this study. This permitted verification of the position of the anode 

wire. Calculations of the position of the wire reported in· this study 

were made from the radiograph by triangulation. The end insulators 

9 
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neutron probe. The source is shown positioned above the 
midpoint of the anode wire . 
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supporting the anode wire were clearly recognizable in the radiographs 

although the anode wire itself was not. In these comparisons the posi:- .. 

tions of the anode wires were not discernably different. The detector 

tubes in the other probes reported in this study were not X-rayed (all 

used the NC-213 detector tube). 

The ~-19 probe contains the detector tube, the neutron source and 

a preamplifier. The source is positioned at the side of the detector 

tube. The volume between the detector tube and the probe casing is 

filled with a lead slug whose transverse cross-section describes a 

crescent as can be seen in Figure 1. The source is positioned in a 

slot in this slug. The source is a .95 cm by .95 cm right cylinder. 

The slot in the slug is a nominal .95 cm wide and 2.5 cm long. The 

source is held in this slot by a sp.ting-loaded .clip_ (drop.ping .the probe 

onto a firm surface can cause the source to be repositioned in. the . 

slot). The lead slug in the probe studied was 16.1 cm long. This 

dimension was found to vary among probes. The slug was shortened by 

2.5 cm at each end to provide the freedom of movement to position the 

source at any point between 8.3 cm and 18.9 ctn from the outside bottom 

of the probe (from A to B in Figure 1.) The volume of lead slug thus 

sacrificed was replaced by spacers of aluminum of similar cross­

sectional shape. These spacers were of various heights in multiples 

of 1 mm. Changing the position of the source required dismantling of 

the probe and rearranging the spacers. This technique permitted hold­

ing the source firmly in place during a set of measurements and proved 

a positive means of positioning the source to within 1 mm of the desired 

position. The slot in the lead slug was modified by filling the per•. 

tions beyond ·.the dimensions of the sour.ce witl} lead, thus .. preventing the 



12 

possibility of the source being moved within the slot. 

Hydrogenous Media: Readings were made in four hydrogenous materi,.. 

als: the paraffin shield supplied with the probe; urea, fertilizer 

grade, (NH2CONH2) which appeared to the probe as about 19% water by 

volume; ground aluminum sulfate, technical grade, (AL2 (so4 )3 ·18H20) 

which appeared to the probe as about 49% water by volume; and water. 

The urea and aluminum sulfate were contained in 210 1 drums fitted with 

3.8 cm O.D. steel access tubes mounted on the center axis of the drum. 

(These were obtained from an electrical supply company as "l~-inch 

E.M.T.".) The drums were filled to a depth slightly exceeding the 

diameter (57 cm) of the drum. Both of these compounds were in a dry 

crystalline form. The drums were fitted with a 75µ plastic liner which 

was folded to the center at the top of the material and taped to the 

access tub~, as to completely enClose ·:the materials in a plastic cort­

tainer, which prevented the entry of any foreig~ material including 

water vapor. The water medium was contained in a 76 1 GI can with.the 

same kind of access tube mounted at the axial center of the can. A 

layer of mineral oil over the surface prevented evaporation of water. 

The access tube was mounted to protrude through the lid of the can. The 

seams were taped to prevent entry of any foreign material. All three 

containers were placed 15 cm above a concrete floor on open-type con­

crete blocks. A plug was placed in each of the three access tubes so 

that the probe could be reproducibly and accurately placed at the center 

of the hydrogenous medium by the lowering the probe in the tube until 

it rested on the plug. 

Counting: At least 100,000 counts were taken during each reading. 

Therefore the coefficient of variation due to random counting was .003. 
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To permit the detection of a malfunction during this extended count 

period the 100,000 counts were taken in five consecutive portions, each 

of which was approximately 20,000 counts. Thus, the count rate of 

any one counting segment differing significantly from the others was 

an indication of a malfunction. The Nuclear-Chicago model 2800B scaler 

was used to record the count and a Monsanto Electronics model lOOB 

counter-timer was used to record the counting interval. The scaler and 

the counter-timer were wired to a conunon on-off switch to permit simul­

taneous switching. Counting results were expressed as counts per 

minute. 

Once the source was mounted at a desired position in the probe the 

100,000 count readings were made in each of the four hydrogenous media 

before changing the source-detector geometry. The order of reading in 

the four media was initially randomized, but the same order was followed 

thereafter •. The probe was not moved to a succeeding medium until all 

100,000 counts were obtained. The total elapsed time for reading in all 

four media was generally 3 hours. On several occasions excessive drift 

in count rate or complete failure of a 9omponent occurred necessitating 

repairs so that several days lapse of time might occur in a set of 

readings. The order of reading the positions of the source from 8.3 

to 18.9 cm was a random selection. Subsequent to this set of readings 

a second and third set were taken. These sets did not include the 

entire range of positions but concentrated on the middle one-third to 

accurately locate the peaks of the response curves. 

Adjustment of Data: Counting drift caused by the extended period 

of time for the sets of measurements caused vertical displacement in 

the response curves in the several sets of readings in the hydrogenous 
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media. However, the peaks of these curves generally appeared to be at 

the same abscissa when plotting count rate versus distance of the source 

from the bottom of the probe. A procedure was developed to adjust these 

data for count rate drift effect. While the shape of the curve result­

ing from·positioning the source along the detector tube :would be expect"' 

ed to be bell..,i;haped in general, the resulting curves were.parabolic. 

Evidently the source was not positioned far enough in this study for 

the bell-shaped characteristic to develop. Thus, a second degree poly­

nomial was fit by least squares to the individual runs. The resulting 

equations were solved for the maxima. The abscissas of the computed 

maxima for a set of runs in a given medium were approximately equal. 

Since the data obtained in the first set covered the widest range of 

source positions it was used as the reference curve. The count rate 

of each point in the second two runs in each medium were then each 

adjusted by the fractional amount of displacement between the count 

rate at the maximum point for the curve for the particular set from the 

reference curve. This procedure of adjustment resulted in four sets 

of data, one for each hydrogenous medium. A second degree polynomial 

was then fit by least squares to each of these four sets of adjusted 

data. The abscissas of the maxima of these four curves were again 

approximately equal. 

The drift effect that caused the various runs to be different 

could also cause the comparisons between hydrogenous media to be differ ... 

ent so adjustment was made for this also. To achieve this adjustment 

the source was adjusted to a position corresponding to the maxima on 

the four curves. Readings with this positioning were then made in the 

four media in a randomized block design with four replications. Thus, 
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any drift in count rate would be confounded with replications. The 

ratios between the average count rates in the four media were computed 

and the equations for the four parabolic curves were again adjusted 

so that the ratios between the maximum corresponded to those in this 

randomized block determination. 

As can be seen above, all the adjustments were'' made on the ordinate 

values only. The procedure was designed to remove only count-rate drift 

effects. 



CHAPTER IV 

RESULTS AND DISCUSSION 

The adjusted curves describing the counts in the four hydrogenous 

media are shown in Figure 2 and the coefficients and other statistical 

data for the curves are shown in Table 1. The adjusted data points for 

all the individual readings in the urea are shown. This grouping of 

points was typical of those in the other media as can be seen from the 

range of the standard error of determination shown on each curve. It is 

plotted at the mathematical maximum for each curve. The vertical dis­

tance between the bars is 2 times this standard error. The values for 

the abscissa of the maxima fqr the water, aluminum sulfate, shield and 

urea were in close agreement, they were 13.6 cm, 13.4 cm, 13.3 cm and 

13.6 cm, respectively. Obviously these curves show a pronounced effect 

of source positioning with respect to the detector. A shift in position 

of as small as .5 cm would provide a significant difference in count­

rate in a given medium. The greater the hydrogen concentration of the 

medium, the greater the steepness of the curve leaving the peak as is 

seen by contrasting the curves for urea, aluminum sulfate and water. 

The paraffin shield is of course a finite, anisotropic moderating sys­

tem, but also exhibits the characteristic peak. The uniformity of the 

position of the peak of the curves implies a center of the sensitive 

volume of the detector tube. This center would be expected to be at 

the midpoint of the anode wire in a symmetrically constructed detector 

tube. (This means the anode wire is centered in the gas tube.) 

ln 
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Medium 

Paraffin shield 

Urea 

Aluminum sulphate 

Water 

TABLE I 

COEFFICIENTS FOR LEAST SQUARES FIT SECOND DEGREE POLYNOMIAL 
EQUATIONS AND STATISTICAL ESTIMATORS* 

a - b - c r 

510.0 730.0 - ·31. 6 0.88 

1400.0 441.0 - 18.6 0.88 

4050.0 824.0 - 35.1 0.82 

1430. 0 2530.0 -107.0 0. 96 

2 
r 

o. 77 

o. 77 

0.67 

0. 92 

s 

38 

28 

61 

82 

*Equations are for the curves of Figure 1. Equations were obtained by least squares analysis of the 
adjusted data. Coefficients are for the model Y=a t bX t cx2 where Y is counts per minute and X is the 
distance (cm) between the center of the source and the bottom of the probe. The r, r 2 and s are the 
correlation coefficient, index and standard error of determination, respectively. 

..... 
00 



19 

The length of the anode wire on the model NC-213 detector tube 

as determined from the radiograph was 12,2 cm. The end of the wire is 

2.3 cm from the bottom of the detector tube and the end of the detector 

tube is 4.9 cm from the bottom of the probe which will be the reference 

point for all positioning measurements in.this paper. Thus, the anode 

wire midpoint is 13.3 cm (12.2t2cm I 2.3 cm I 4.9 cm) from the bottom 

of the probe. While making measurements from the radiograph and from 

the dismantled detector tube a simpler estimate of the midpoint of the 

anode wire was noted. This point was the midpoint between the bottom 

of the detector tube and the seam on the upper part of the tube shown 

in Figure 1. This seam is between the detector portion of the housing 

for the anode connector and the coaxial connector. This dimension was 

a constant for the four NC-213 detector tubes measured in this study. 

The validity of this dimerision:".in estimating the geometric center of 

the anode wire was confirmed by a manufacturer* of detector tubes to be 

a representative feature of detector tubes similar to the model NC-213 

as well as all tubes suitable for use in the P-19 probe made by them. 

Using one half the distance from the tube bottom to the seam, 17.1 cm, 

to estimate the center of the anode wire, 8.6 cm, added to 4.9 cm gives 

13.5 cm from the reference point. Thus, it is seen from the above 

results that the two methods of estimating the geometrical center of 

the anode wire agree very closely; and comparing these with the four 

estimates of the center of the sensitive volume of the detector tube, 

the midpoint of the anode is seen to determine the center of the 

sensitive volume of the detector tube. 

*Mr. Red, Personal Communication, N. Wood Counter Laboratories, 
Ind. 1525 East 53rd St., Chicago, Illinois 60615 
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To evaluate the effect of the source location on the calibration 

curve of a probe it is necessary to change counts per minute for urea 

and aluminum sulfate to a ratio that is comparable with the soil:par­

affin shield. ratio used in the calibration. This is done by dividing 

the counts per minute for urea and aluminum sulfate at a given source­

detector location by the counts per minute for the paraffin shield at 

the same location. Thus the urea:paraffin .shield ratio and aluminum 

sulfate:paraffin shield ratio are determined for a given displacement 

from the center of the sensitive volume. If a probe were ·calibrated 

with the source at one location, and later the source shifts position, 

the result, as shown in Figure 3, would be a shift in the calibration 

curve. The solid line represents an arbitrary calibration with the 

source at the center of the sensitive volume. The points above the 

curve at 18. 7% and 49 .3% show the result if the source moves 1. 5, 3, 

4 or 5 cm above or below the center of the sensitive volume of the 

detector tube. It is seen from the figure that the same displacement 

of the source results in a greater deviation from the original curve 

at the higher moisture content than at the lower moisture content. 

This indicates that the calibration curve tends to remain constant at 

the intercept and tilts upward increasing the slope as the source moves 

up or down from the center of the sensitive volume. The fact that the 

slope increases as the source moves from the center of the sensitive 

volume should not be misinterpreted to mean an increased sensitivity. 

The effects of the paraffin shield have to be considered before reach­

ing a conclusion on sensitivity. By comparing the curve for the paraf­

fin shield to the curves for the other hydrogenous media it is seen that 

the paraffin shield does not behave as the apparent water content would 
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indicate. Rather it has a greater change in counts per minute for a 

given change in the source location. This is largely a result of the 

strictly finite dimensions of the container. Thus, these dimensions 

cause the increased slope of the calibration curve rather than an 

increased water resolving power of the probe. The sensitivity which 

will be defined here as S=dN/de where N is the counts per minute and 
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0 is the water content on a volume basis. Sensitivity expressed in 

this manner agrees with the analysis of van Bavel (35) and Merriam and 

Copeland (21). In regard to the sensitivity of the probe consider 

the graphs of the poly0omial curves plotted in :J?igµre 2 where counts 

per minute is plotted against distance from the center of the sensitive 

volume of the detector tube. From the foregoing equation, it is seen 

then that the greatest sensitivity results from positioning the source 

at the center of the sensitive volume of the detector and the sensitivity 

decreases as the source is moved above or below the center of the sen­

sitive volume. Additionally, the source should be located no more than 

.S cm above or below the center of' the sensitive volume and sqould be 

permitted to move no ~ore than about 1 mm from this position thereafter 

or the calibration will significantly change. Such changes can be 

detected with periodic checks made by using some of several standard 

materials such as those report~d here and elsewhere (2,33,36). 

Since the source location does affect sensitivity and calibration 

of a probe, then great care must be exercised in manufacture and sub­

sequent handling. Three probes were examined for the location of the 

source with respect to the midpoint of the anode wire which has been 

shown to be a good estimate of the center of the sensitive volume. The 

source positions with respect to the anode wire midpoint were .. 64 ·cm 
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below, .25 cm above and 2.54 cm below. This would indicate that the 

variation in source location could be a serious problem among opera~:. -

tional probes. Furthermore, it even seems advisable to check source 

position prior to calibrating a new probe. 

Calibration curves for several P-19 probes are shown in Figure 4. 

It will be noted that the trend of greater difference at higher moisture 

content which was seen in Figure 3 appears in Figure 4 also. This indi­

cates that variation in source location may be a component of this 

variation. Probes 194, 301 and 249 were the three cited in the pre­

ceding paragraph. Probe 121 is the one on which the detailed measure­

ments were made in this study. Considering the measurements on the 

positioning in the previous paragraph an.d the degree of change predicted 

in Figure 3, it is obvious that at least a second source of variation is 

present, The remaining variation is approximately the amount due .to 

the variation between readings in the paraffin shields mentioned in the 

introduction. The variation due to these two sources does not complete­

ly account for the spread of the calibration curves in.Figure 4. 

Measurements of source-detector geometry were not made at the time of 

acquisition of these probes so there is no way to determine the geometry 

at the time of initial calibration. However it can be said with cer"' 

tainty that the" combination "of. differ.enc-es due to·.sour~e-detector .var.b. 

at ion arid. variatitm .:(ri readings -in -the' :paraffin 'shield$. are .. in" .the 

order ·.of mag.nitude of the range of -dif fer:ences. noted in .Figure 4. 
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CHAPTER V 

SUMMARY Af.lD OONQLUSIONS 

The above results lead to the following conclusions: 

1. The position of the source with respect to the detector 

tube has a pronounced influence on the count rate. A 

displacement of the source in the order of 1 mm is de­

tectable from the change in count rate. 

2. For maximum sensitivity from a probe with a side located 

source, the source should be placed directly opposite 

the center of the sensitive volume of the detector tube. 

3. The center of the sensitive volume of the detector tube 

is at the midpoint of the anode wire in a symmetrically 

constructed detector tube. 

4. A change in the calibration will result from a change of 

source location as small as 1 mm. 

Vigilance to any possible change is essenti;:i.l to ensure the validity of 

the calibration curve. To increase the precision of the neutron probe 

the following procedures are recommended: 

1. Find the center of the sensitive volume of the detector 

by measuring from the seam on the detector to the bottom. 

The center of the sensitive volume should be at the mid­

point of this portion of the detector. This can be 

checked with X•ray radiograph if there is doubt as to 
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the symmetry of the detector. The insulators and support• 

ing stems for the anode wire should be clearly recogniz­

able in the radiograph. 

2. Determine that the source is immobile in the lead slug 

(or whatever positioning device employed) and that it is 

mounted exactly opposite the center of the sensitive 

volume of the detector. Then reposition the source to the 

centered position if necessary using shims at the top or 

bottom of the mounting slug. If the slot accomodating 

the source is of significantly larger dimension than the 

source, fill the excess space with material of the same 

composition as the slug. 

3. Use the location of the accurately-positioned source as 

the reporting depth for measurements in the soil. 

4. Make periodic check readings in large containers of 

hydrogenous media. The media reported in this study have 

worked well for many years. Some investigators prefer to 

use large cylinders of polyethylene or some other plastic 

material which will not change composition or shape with 

time. Any change in the ratios between readings in such 

media will be a indication of a change in the calibration 

of the detector. Such change would likely be due to a 

change in the source-detector geometry. This might be 

caused by accidental movement of the source or could 

result when a faulty detector tube is replaced with a 

detector tube of different geometry, 
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