```
        By
    CHANG HSU
    Bachelor of Science
Chinese Air Force Academy
Taiwan, Republic of China
    1965
```

```
Submitted to the Faculty of the Graduate College
    of the Oklahoma State University
    in partial fulfillment of the requirements
    for the Degree of
    MASTER OF SCIENCE
        May, 1971
```


STUDY OF OSCILLATOR STRENGTHS AND DIPOLE SUM

RULE USING A RELATIVISTIC NUCLEAR MODEL

Thesis Approved:

PREFACE

In this study, the dipole sum rule for the oscillator strengths has been evaluated using the non-relativistic harmonic oscillator model and the relativistic equivalent harmonic oscillator model. The results of the sum rules in both cases are not identical. The bremsstrahlung weighted cross section has also been calculated using the relativistic equivalent harmonic oscillator model and compared with the well known result obtained with the non-relativistic harmonic oscillator model. A relativistic correction factor for the bremsstrahlung weighted cross section has been evaluated.

I would like to thank Dr. N. V.V.J. Swamy for his suggestion of the problem and his patient guidance during the course of this work. I would also like to thank the OSU Research Foundation and the Ministry of National Defence of the Republic of China for their support and encouragement.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
II. OSCILLATOR STRENGTHS AND SUM RULE 4
III. THE RELATIVISTIC EQUIVALENT HARMONIC OSCILLATOR 26
IV. BREMSSTRAHLUNG WEIGHTED CROSS SECTION 33

* V. RELATIVISTIC OSCILLATOR STRENGTHS 44
VI. RESULTS AND CONCLUSIONS 51
REFERENCES 59
APPENDIX A. PROGRAM FOR THE REQUIRED MATRIX ELEMENTS IN THE CAL- CULATION OF σ_{b}. WHEN NEHO MODEL IS USED 60
APPENDIX B. PROGRAM FOR THE REQUIRED MATRIX ELEMENTS IN THE CAL-
CULATION OF σ_{b} WHEN EHO MODEL IS USED 63
APPENDIX C. PROGRAM FOR THE SUMMED OSCILLATOR STRENGTHS 68

LIST OF TABLES

Table Page
I. Degeneracy of the EHO and the NRHO. 32
II. The Quantum Numbers of the Outermost Nucleons Outside Closed Shells 43
III. Bremsstrahlung Weighted Cross Section σ_{b} in Units of 10^{-27} cm^{2} 56
IV. $\delta_{b} / A^{4 / 3}$ 57
V. Value of the Correction Factor Δ in Relativistic and Non- Relativistic Cases. 58

CHAPTER I

INTRODUCTION

The experimental discovery of the giant dipole resonance stimulated theoretical research in photo-nuclear reactions. While Goldhaber and Teller interpreted this in a unique way as a collective dipole vibration of the neutrons and protons in the nucleus, efforts were made to apply the knowledge of the well known atomic photo-effect to the nuclear gamma absorption. Levinger and Bethe made an extensive study of the dipole transitions in nuclei. Their study covered
a) oscillator strengths in the dipole approximation,
b) sum rule for these dipole oscillator strengths,
c) effect of neutron-proton exchange force on the sum rule,
d) cross section for photon absorption integrated over energy,
e) mean energy for photon absorption and a sum rule for quadruple transitions,
e) the dipole cross section weighted by the $\frac{d w}{w}$ approximation to the brumsstrah1ung spectrum.

Before the work of Levinger and Bethe, Feenberg and Siegert showed that an attractive exchange force increased the summed oscillator strength above the value calculated on the basis of ordinary forces. Levinger and Bethe used an independent particle model of the nucleus, without Pauli Correlations between the nucleons, and established that quadrupole transitions are of negligible importance and that a suitable shell model
of the nucleus and an application of time dependent perturbation theory to the nucleus-protion interaction can explain even the giant dipole resonance without invoking a special hydrodynamical model of collective mutual oscillations of neutron and proton fluids.

On the experimental side besides an extensive study of the giant resonant absorption, important contributions have been made in yields and angular distributions of $\gamma-\mathrm{n}$ processes, photoneutron cross sections, photodisintegration of very light nuclei and the brunsstrah1ung weighted cross section. While there have been noticeable discrepancies in the measurements of different groups using different techniques, the agreement between theory and experiment has been fair but not of such a nature as to leave nothing to be desired. The Levinger-Bethe theory, revised by Levinger later, has been increasingly helpful in understanding photo-nuclear reactions. The existing theories are purely nonrelativistic and it may well be that the non-existence of an exact relativistic nuclear model till now has prevented any consideration of relativistic motions of nucleons in their interaction with photons.

The Equivalent Harmonic Oscillator model recently proposed by Swamy and its application to the analysis of high energy electron scattering experiments by Braun, encourage investigation of its suitability in studying photo-nuclear cross sections. In this thesis two aspects of nuclear photon absorption have been studied, the validity of the sum rule for dipole transitions when relativistic effects are included, and secondly the improvement.in the agreement between theory and experiment as far as brumsstrahlung weighted cross sections are concerned. The isotropic harmonic oscillator with spin-orbit coupling has long been used as a shell model of the nucleus. In particular Levinger used this
model in his calculations. The EHO reduces to this in the non-relativistic limit, which facilitates comparisons and the study of relativity as a correction factor. While Levinger did make use of the Dirac-Coulomb wave functions to study relativistic radiative transitions in atoms, this has not been done for nuclei so far.

The viewpoint of this work is not to assume the existence of relativistic motions in nuclei but rather to ascertain regions of nuclei where relativistic motions may be significant if in such cases the relativistic theoretical results show a significant improvement in their agreement with experiment as compared with non-relativistic calculations.

OSCILLATOR STRENGTHS AND SUM RULE

The concept of oscillator strength and the sum rule orginated in the scattering of electromagnic waves by atoms, in particular the dispersion low developed by Kramers and Heisenberg ${ }^{(1)}$ in quantum mechanics. In the same context Thomas and Kuhn ${ }^{(2)}$ developed a sum rule for the oscillator strengths in the electric dipole approximation which was based on the correspondence principle. It is interesting to note that Heisenberg developed the most fundamental relations in quantum mechanics, the well-known quantum condition between x and $P_{x},\left[x, P_{x}\right]=i n$, based on the sum rule. In other words, the sum rule preceded quantum mechanics in a sense. For this reason it is necessary to trace the development of the concept of oscillator strengths and the sum rule.

In classical electrodynamics the total power radiated from an oscillating dipole is given by the expression ${ }^{(3)}$

$$
\begin{equation*}
P=\frac{c k^{4}}{3}|\vec{P}|^{2}=\frac{4^{4}}{3 c^{3}}|\vec{P}|^{2} \tag{1}
\end{equation*}
$$

where, \vec{P} is the oscillating dipole moment, c the speed of light, and ω the angular frequency.

This expression of course gives the total power radiated, whereas the angular distribution is given by the following expression,

$$
\begin{equation*}
\frac{d p}{d \Omega}=\frac{\omega^{4}}{8 \pi c^{3}}|\vec{P}|^{2} \sin ^{2} \theta \tag{2}
\end{equation*}
$$

where the angle θ is measured from the direction of \vec{P}. In the derivation of these results in classical electromagnetic theory the energy of flux is given by Poynting's theorem and the power radiated per unit solid angle is averaged over a complete period of oscillation of the dipole.

Kramers ${ }^{(4)}$ made the fundamental assumption that an atom, when exposed to radiation becomes a sourve of secondary spherical wavelets, which are coherent with the incident waves. A train of polarized harmonic waves of frequency v, the electric vector of which at the point in space where the atom is saturated is represented by

$$
\begin{equation*}
\vec{E}=E \hat{n} \cos 2 \pi \nu t \tag{3}
\end{equation*}
$$

is incident on the atom. E here is the amplitude and \hat{n} is a unit vector. The secondary wavelets can be described as orginating from an oscillating dipole, the strength of which is given by

$$
\begin{equation*}
\vec{B}=P \hat{n}^{\prime \prime} \cos (2 \pi \nu t-\phi) \tag{4}
\end{equation*}
$$

where P is the amplitude and $\hat{\mathrm{n}}^{\prime}$ also a unit vector, while ϕ represents the phase difference between the secondary and primary waves, The amplitude P will be proportional to the amplitude E of the incident waves, and this is the relationship that Kramers first calculated. Taking a model of the atom as an electron isotropically bound to a position of equilibrium, Kramers derived

$$
P=E \frac{e^{2}}{m} \frac{1}{4 \pi^{2}\left(\nu_{1}^{2}-\nu^{2}\right)}
$$

where e and m are the charge and mass of an electron and ν_{1} is one of the natural frequencies of the electron.

If $\nu_{1} \nu_{2} \ldots \nu_{r}$ are the absorbtion frequencies corresponding to the stationary states of the atom, then the formula becomes generalized to

$$
\begin{equation*}
P=E \sum f_{i} \frac{e^{2}}{m} \frac{1}{4 \pi^{2}\left(v_{i}^{2}-v^{2}\right)} \tag{6}
\end{equation*}
$$

and here f_{i} are constants which were actually determined experimentally from the absorption lines.

Modifying this classical picture by both the concept of stationary states and transitions between them; Kramers was able to derive the following formula, applying the correspondence principle that in the limit of large quantum numbers or as Planck's constant (h) tends to zero, the quantum mechanical system goes over into a classical system. Stated differently, in the region where successive stationary states of an atom differ only comparatively little from each other, the interaction between the atom and the field of radiation tends to coincide with the interaction to be expected on the basis of classical electrodynamic theory. The superscript a refer to absorbtion and the superscript e refers to emission in the following formula, the A's are the Einstein coefficients representing the probability of an isolated atom undergoing in unit time, transitions between stationary states giving rise to either emission or absorbtion of a spectral line.

$$
\begin{align*}
P=E \cdot \sum_{i} A_{i}^{a} \tau_{i}^{a} & \frac{e^{2}}{m} \frac{1}{4 \pi^{2}\left(\nu_{i}^{a 2}-\nu^{2}\right)}-E \sum_{j} A_{j}{ }^{e} T_{j}{ }^{e} . \\
& \cdot \frac{e^{2}}{m^{2}} \frac{1}{4 \pi^{2}\left(\nu_{j}^{e}-\nu^{2}\right)} \tag{7}
\end{align*}
$$

A characteristic time t for both emission and absorption is introduced and this represents the time in which the energy of a particle performing linear harmonic oscillations of frequency v is reduced to $1 / \varepsilon$ of its value. $A \tau$ will be a dimensionless quantity f and this f represents the virtual oscillator strength. In the revised formula of Kramers, radiation reaction, that is the reaction of the atom on the incident radiation is taken into account by the introduction of virtual harmonic oscillators and it is the number or the strength of these oscillators that the f represents.

It is important to know that up to this point P represents the dipole moment induced by the electromagnetic wave that is incident on the atom and once the dipole moment is known the radiation is then computed according to the classical formula. The differential scattering cross section in classical theory is given by the ratio of the intensity of the radiation in a particular direction to the intensity of incident radiation.

When the atom is exposed to external monochromatic radiation of frequency v it not only emits secondary monochromatic spherical waves of frequency v which are coherent with the incident radiation but, according to the correspondence principle, spherical waves of other frequencies are also emitted, frequencies $\left(\nu \pm \nu^{\prime}\right)$, where $h \nu^{\prime}$ denotes the energy difference of the atom between two stationary states. This incoherent radiation is the Raman effect in the atoms and molecules. Kramers and Heisenberg refined the original formulation of Kramers in a quantum mechanical but still semi-classical treatment of the interaction of the atoms and the radiation. The model of the atom is that of an oscillating dipole and the effort was to calculate the dipole moment
induced in the atom by the incident electromagnetic wave. However, the possibility of incoherent scattered waves has been introduced and the formula for the scattering moment developed by Kramers and Heisenberg from the correspondence principle is given by
$P(t)=E \frac{e^{2}}{4 \pi^{2} m}\left(\underset{a}{\nu_{a}^{2}-\nu^{2}}-\underset{e}{\left.e_{e} \frac{f e}{\nu_{e}^{2}-\nu^{2}}\right) \cdot \cos (2 \pi \nu t) ~}\right.$
As in Kramer!'s original formula, once again, τ_{ν} is the decay time of classically oscillating electron with frequency v.

$$
\begin{equation*}
\tau_{v}=\frac{3 c^{3} m}{8 \pi^{2} e^{2} v^{2}} \tag{9}
\end{equation*}
$$

and the strength of the transition is given by the number f

$$
\begin{equation*}
f=A \tau_{V} \tag{10}
\end{equation*}
$$

where A denotes Einstein's probability coefficient.
The total intensity of scattered light per unit time is given by the application of classical electrodynamic formula for the radiation from the oscillating dipole, using the above dipole moment.

It may be remarked incidentally that different types of scattered radiation and the transition between stationary states to which they give rise, should leave the energy distribution in the black-body radiation and statistical equilibrium distribution of the atoms unchanged.

Before proceeding to the fully quantum mechanical derivation of the well-known Kramers Heisenberg dispersion formula it is worth mentioning that Kuhn and Thomas ${ }^{(2)}$ noticed a sum rule obeyed by the oscillator strengths corresponding to the above paragraph.

The quantum mechanical derivation of sum rule and the correspondence
principle argument leads to the following set of formulas.
Lights of frequencies $\nu_{1}, \nu_{2} \ldots \nu_{\gamma}$ can induce transitions of the Hydrogen atom to a number of higher states $\varepsilon_{1}, \varepsilon_{2} \ldots \varepsilon_{\gamma}$. For a radiation with frequency v not close to one of the resonance frequencies $v_{1}, v_{2} \cdots v_{2}$ Thomas and Kuhn assumed that the oscillating dipole moment of the atom can be representing by

$$
\begin{equation*}
\frac{P}{E}=\frac{1}{4 \pi^{2}} \frac{e^{2}}{m} i^{\frac{r}{2}} \frac{P_{i}}{v_{i}^{2}-v^{2}} \tag{11}
\end{equation*}
$$

in analogy with classical dispersion theory. Here, as earlier, P and E are the amplitudes of the dipole moment and electric vector of the incident light respectively and p_{i} is the number of dispersion electrons which is appropriate for the transition $(0 \rightarrow i)$ and which number is assumed identical with the number of absorption electrons.

For very large frequencies of incident radiation this reduces to

$$
\begin{equation*}
\frac{P}{E}=-\frac{e^{2}}{4 \pi^{2} m} \frac{1}{\nu^{2}} \sum_{i=1}^{r} p_{i} \tag{12}
\end{equation*}
$$

It is known that the dispersion associated with the dispersion vector \vec{P} is equal to

$$
\begin{equation*}
-\frac{d E}{d t}=\frac{(2 \pi v)^{4}}{3 c^{3}}|\vec{P}|^{2} \tag{13}
\end{equation*}
$$

and this simply gives the energy dispersed per unit time per atom as

$$
\begin{equation*}
-\frac{d E}{d t}=\frac{e^{4}}{3 c^{3} m^{2}} \cdot\left(\sum_{i=1}^{r} p_{i}\right)^{2} E^{2} \tag{14}
\end{equation*}
$$

If one substitutes $\sum_{i=1}^{r} P_{i}=1$ in this expression then the well-known cross section of Thomson is reproduced. It is this approximate agreement of the dispersion cross section with experiment that has established the validity of the rule $\sum_{i} P_{i}=1$. The connection with optical dispersion relation however is given by a calculation, from the above induced dipole moment vector, of the dipole moment density or dipole moment per unit volume, and the polarizability and relating that to the refractive index, This of course is not the way in which the dispersion formula is useful for dispersion in quantum mechanics. The quantity of importance and interest, therefore; is the oscillator strength which in classical theory represents the number of dispersion electrons that participate in the proper vibration in question. In quantum theory this number need not be an interger, it represents the strength of the oscillator or what fraction of a given electron trated as a classical oscillator contributes to the dispersion. By comparison of the formulas of Kr amers and Kuhn it is easily noticed that the oscillator strength f used by Kuhn is (AT) introduced by Kramers namely the product of the Einstein's coefficient and the decay time of electron. The Kramers Heisenberg derivation is not fully quantum mechanical not only because it was still obtained from the correspondence principle way of calculating the dipole moment, but the oscillator strengths are not given in terms of quantum mechanical matrix elements and most important of all the radiation field is not quantized. As is well-known, the most accurate description of the interaction of matter and radiation involves quantizing the radiation field and treating the interaction between radiation and atoms as a perturbation. The transition probabilities and the cross section are then calculated according to time dependent perturbation theory. The perturbing Hamil-
tonian is

$$
\begin{equation*}
H_{\text {int }}=-\frac{e}{\mu}(\vec{P} \cdot \vec{A})+\frac{e^{2}}{2 \mu} A^{2} \tag{15}
\end{equation*}
$$

and the radiation field is quantized. One speaks not of electromagnetic waves being scattered by the atom but of photons and electrons and the photon number and electron number before and after the collision. In the case of dispersion therefore there are two possibilities which experiments can not distinguish. A quantum of energy $h \nu$ and momentum $\frac{h v}{c}$ is obsorbed by the atom or, more precisely by the electron in the coulomb field. So in an intermediate state no light quantum is present: The excited electron then makes the transition to the final state and a photon with energy hu' is emitted. On the other hand it is equally possible that in the field of the incident photon the electron first emitted a hv', thus creating a intermediate state in which two light quanta $h \nu, h v^{\prime}$ are present and eventually the electron absorbs the incoming radiation $h \nu$. There is a possibility of interference between these two processes and therefore the matrix elements have first to be added and then the absolute square of their sum is introduced into the formula of the time dependent perturbation theory for the transition probability. The matrix elements are computed in the basis of product wave functions, the factors of which represent the wave functions of the photon and the electron in the initial and the final states. The vector potential in the interaction Hamiltonial given above is usually taken to be

$$
\begin{equation*}
\vec{A}=A_{0} \hat{\varepsilon} e^{-i \vec{k} \cdot \vec{r}} \tag{16}
\end{equation*}
$$

The time factor is omitted here and is taken into account by the energy conservation between the two stationary states and the photon. This leads to $\vec{P} \cdot \vec{A}$ being equal to

$$
\begin{equation*}
\vec{P} \cdot \vec{A}=A_{0}(\vec{p} \cdot \hat{\varepsilon}) e^{-i \vec{k} \cdot \vec{r}} \tag{17}
\end{equation*}
$$

The presence of the exponential factor, often referred to as a retardlion factor; complicates the evaluation of the integrals. However, in the cases of experimental interest (kr) happens to be a very small quantity being the ratio of the linear dimension of the atom ($10^{-8} \mathrm{~cm}$) and the wave length of the outgoing radiation ($4000 \times 10^{-8} \mathrm{~cm}$). In this long wave length approximation, therefore, the $e^{-i} \vec{k} \cdot \vec{r}$ can be replaced by 1 and this is often referred to as a dipole approximation, because then the quantum mechanical formula parallels the oscillating dipole in the Kramer Heisenberg formulation of dispersion theory. This fully quantum mechanical formula is given in Heitler's Quantum Theory of NadiaLion ${ }^{(5)}$

$$
\begin{gather*}
\mathrm{d} \phi=r_{0}^{2} \frac{k}{k_{0}} \mathrm{~d} \Omega\left[\frac{1}{\mu} \sum_{i} \frac{P_{0} n_{0} n_{1} P_{i} n}{E_{0}-E_{i}+k_{0}}+\frac{P_{0} n_{i} P_{0} n_{0} n}{E_{0}-E_{i}-k}\right) \\
\left.\quad+\delta_{n_{0}} \cos \theta\right]^{2} \tag{18}
\end{gather*}
$$

and in, the case of coherent scattering

$$
\begin{gather*}
d \phi=r_{0}^{2} d \Omega\left[\frac{1}{\mu} \sum_{i}\left(\frac{P_{0} n_{0} n_{i} P n_{i} n_{0}}{E_{0}-E_{i}+k_{0}}+\frac{\ln _{0} n_{i} P_{0} n_{i} n_{0}}{E_{0}-E_{i}-k_{0}}\right)\right. \\
\quad+\cos \theta]^{2} \tag{19}
\end{gather*}
$$

In the above formula if $n_{0}=n$ then it corresponds the Rayleigh scattering, wherein the process of scattering the quantum state of the atom is not changed. If $n_{0} \neq n$ then the atom has made a transition and this corresponds to Raman scattering, where the incident photon and the outgoing photon have different frequencies and the difference in energy is used up in making a jump between stationary states by the atom on which the light is incident.

We now can introduce the fully quantum mechanical definition of the oscillator strength from the above formula. The oscillator strength is as proportional to the numerator of the two terms in the cross section formula.

$$
\begin{equation*}
\left.f_{n^{\prime}}=\left.\left.\frac{2 m}{\hbar} \omega_{n^{\prime} n}\right|^{<n}\right|^{\prime} \right\rvert\, n^{\prime} \gg 1^{2} \tag{20}
\end{equation*}
$$

This is the definition of the oscillator strength in the dipole approximation of the quantum mechanical interaction between radiation and matter. And the most important sum rule Thomas-Reiche-Kuhn rule is now a rule for the sum of the oscillator strength for all transitions which start from a definite state n of the atom. This happens to be a very general rule which holds for any atom or molecule with or without'external fields, for any polarization direction and no matter which (if any of the various angular momentum operators are constants of the motion). For one electron this sum equals one and for z electrons this sum is equal to the total number of electrons z. Stated simply, this sum is

$$
\begin{equation*}
\sum_{n^{\prime}} f_{n^{\prime} n}=z \tag{21}
\end{equation*}
$$

(sometimes the notation $f_{n} n^{\prime}$ is also used for $f_{n} n^{\prime}$). Although it has been established in accordance with the correspondence principle by Thomas and

Kuhn the sum rule can be derived simply by considering the following commutator relations and using the properties of completeness of the eigenfunctions of a Hermitean Hamiltonian, and olosure.

Consider the double commutator $[[t, H], z]$. If $\underset{\sim}{H}=\frac{1}{2 m} \overrightarrow{\mathrm{P}}^{2}+V(r)$, then according to Heisenberg matrix mechanics we have, because $[z, V(r)]=0$,

$$
\begin{equation*}
[z, \underset{\sim}{H}]=\frac{1}{2 m}\left[z, P_{z}^{2}\right]=\frac{i \hbar}{m} P_{z} \tag{22}
\end{equation*}
$$

using the quantum condition $\left[z, P_{z}\right]=$ in and $\left[z, P_{x}\right]=\left[z, P_{y}\right]=0$, we have

$$
\begin{equation*}
[[z, H], z]=\left[\frac{i \hbar}{m} p_{z}, z\right]=\frac{\hbar^{2}}{m} \tag{23}
\end{equation*}
$$

Taking the expectation value of both sides with respect to the normalized eigenstate $|0\rangle$ of the Hamiltonian $\underset{\sim}{H}$,

$$
\begin{equation*}
\langle 0 \|[[z, H], z] \mid 0\rangle=\frac{\hbar^{2}}{m}\langle 0 \| 0\rangle=\frac{\hbar^{2}}{m} \tag{24}
\end{equation*}
$$

The left hand side equals

$$
\sum_{n}\{\langle 0|[z, H]|n\rangle\langle n| z|0\rangle-\langle 0| z|n\rangle\langle n|[z, H]|0\rangle\}[25]
$$

Now

$$
\begin{align*}
& \langle 0|[z, H]|n\rangle=\langle 0| z H|n\rangle-\langle 0| H z|n\rangle \tag{26}\\
& H|n\rangle=E_{n}|n\rangle \tag{27a}\\
& \langle 0| H=E_{0}\langle 0| \tag{27b}\\
& \langle 0|[z, H]|n\rangle=\left(E_{n}-E_{0}\right)\langle 0| z|n\rangle \tag{28}
\end{align*}
$$

therefore,

$$
\begin{equation*}
\left.\langle 0|[[z, H], z]|0\rangle=2 \sum_{n}\left(E_{n}-E_{0}\right)|\langle 0| z| n\right\rangle\left.\right|^{2} \tag{29}
\end{equation*}
$$

Hence the sum rule,

$$
\begin{align*}
\sum_{n} f_{o n} & \left.=\frac{2 m}{\hbar^{2}} \sum_{n}\left(E_{n}-E_{0}\right)|\langle O| z| n\right\rangle\left.\right|^{2} \\
& =\frac{2 m}{\hbar^{2}} \cdot \frac{\hbar_{1}^{2}}{2 m}=1 \tag{30}
\end{align*}
$$

Two things are very important in the above derivation, firstly that the double commutator is equal to $\left(\frac{K^{2}}{m}\right)$ and secondly the matrix elements of P are related to the matrix elements of γ through the Bohr frequency condition. We will later see that these relations are not necessarily valid in the case of a relativistic theory of electron, viz; if $\underset{\sim}{H}$ happens to be a Dirac Coulomb Hamiltonian instead of a non-relativistic Schrödinger Hamiltonian for central fields.

The quantum mechanical T. R. K. sum rule can be said to correspond to classical integrated power absorbtion for forced oscillation by a charged oscillator or that it gives the classical Thomson cross section for the forward scattering amplitude.

A third interpretation of the oscillator strength is through the quantum mechanical expression for the electric polarizability.

$$
\begin{align*}
\frac{\text { dipole moment }}{\text { electric field }} & =2 e^{2} \sum_{n} \frac{|\langle n| z| 0\rangle\left.\right|^{2}}{E_{n}-E_{0}} \tag{31}\\
& =e^{2} \sum_{n} \frac{f_{o n}}{m W_{o n}^{2}}
\end{align*}
$$

Here the oscillator strength is the fraction of the electron bound by a linear sping of spring constant $\dot{k}_{\mathrm{on}}=\dot{\mathrm{m}} \omega_{\mathrm{on}}^{2}$.

We will now calculate the oscillator strength for nuclear case, i.e., Y-ray absorbtion by nuclei; It is to be noticed that as far as the physics and the quantum mechanical analysis are concerned, the $a b-$ sorbtion of optical photons by atoms and absorbtion of gamma rays by nuclei are two similar processes, and it is in this way that Bethe and Levinger applied the knowledge of atomic spectra to nuclear photon absorbtion. The model of the nucli will be a shell model in which each nucleon is moving independently of the others in an average central field described by an astropic harmonic oscillator potential. The energy levels are given by E_{n}, Eq. [32] $E_{n}=\hbar \omega_{c}\left(2 v+\ell+\frac{3}{2}\right)$ and the normalized single particle wave functions are given by $U_{v 1 m}(r . \theta . \phi$.

$$
\begin{align*}
& U_{v i m}=R_{v l}(r) Y_{\ell}^{m}(\theta, \phi) \tag{33}\\
& P_{v e}(r)=\left\{\frac{2 \lambda^{2}\left[\left(v+l+\frac{3}{2}\right)\right.}{v!\left[T\left(x+\frac{3}{2}\right)\right]^{2}}\right\}^{\frac{1}{2}}(\lambda y)^{l} e^{-\frac{1}{2} \lambda^{2} y^{2}} \quad F_{1}\left(\begin{array}{l}
-v \\
l+\frac{3}{2}
\end{array} ; \lambda^{2} r^{2}\right) \\
& =\left\{\frac{2 \lambda^{2} T\left(v+l+\frac{3}{2}\right)}{v!\left[T\left(l+\frac{3}{2}\right)\right]^{2}}\right\}^{\frac{1}{2}} x^{-\frac{3}{4}} M_{v+\frac{1}{2}+\frac{3}{4}, \frac{l}{2}+\frac{3}{4}}(x)
\end{align*}
$$

where, M is a Whitaker function and λ represents the oscillator constand $\frac{\sqrt{m \omega}}{h}$ and $\chi \equiv \lambda^{2} \gamma^{2}$. These solutions have a definite parity $(-)^{\ell}$. This Hamiltonian has rotational symmetry writing z as $r \cos \theta=\sqrt{\frac{4 \pi}{3}} r Y_{1}^{0}$ we get the parity selection rule for the matrix element of z, by considering the following integral:

$$
\int Y_{l_{3}}^{m_{3}^{*}} Y_{l_{2}}^{m_{2}} Y_{l_{1}}^{m_{1}} d \Omega=\left\{\frac{\left(2 l_{1}+1\right)\left(2 l_{2}+1\right)}{4 \pi\left(2 l_{3}+1\right)}\right\}^{\frac{1}{2}} C_{m_{1} m_{2} m_{3}}^{l_{1} l_{2} l_{3}} C_{0}^{l_{1} l_{2} l_{3}} 00
$$

In our case $\ell_{1}=\ell, \ell_{2}=1, \ell_{3}=\ell^{\prime}$ and $m_{1}=m, m_{2}=0$ and $m_{3}=m^{\prime}$. The Clebsch-Gordan (c-) coefficients vanish whenever $\ell!\neq \ell+1$ or $\ell-1$ $\mathrm{m}^{\prime} \neq \mathrm{m}$.

The selection rule for the magnetic quantum number (m) is, therefore,

$$
\begin{equation*}
\Delta m \equiv m^{\prime}-m=0 \tag{36}
\end{equation*}
$$

The selection rule for the orbital quantum number (ℓ) is, therefore,

$$
\begin{equation*}
\Delta \ell \equiv \ell^{\prime}-\ell= \pm 1 \tag{37}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\langle v^{\prime} l+1 m\right| z|v \ell m\rangle=\sqrt{\frac{(l+1)^{2}-m^{2}}{(2 l+3)(2 l+1)}}\left\langle v^{\prime} l+1\right| v|v l\rangle \tag{38a}\\
& \left.\left\langle v^{\prime} l-\right| m|z| v \ell \cdot m\right\rangle=\sqrt{\frac{l^{2}-m^{2}}{(2 l+1)(2 l-1)}}\left\langle v^{\prime} l-1\right| v|v l\rangle \tag{38b}
\end{align*}
$$

$\left\langle v^{\prime} e^{\prime} m\right| z|v e m\rangle=0$
for all other ℓ^{\prime}.
[38c]

And the radial integral in the oscillator strengths becomes

$$
\begin{gathered}
\left\langle v^{\prime} \ell+1\right| r|v \ell\rangle=\int R_{v^{\prime} \ell+1}(r) R_{v e}(r) r^{3} d r \\
=\left\{\frac{2 \lambda^{3} T\left(v+l+\frac{3}{2}\right)}{v!\left[T\left(l+\frac{3}{2}\right)\right]^{2}}\right\}^{\frac{1}{2}}\left\{\frac{2 \lambda^{3} \Gamma\left(v^{\prime}+l+\frac{5}{2}\right)}{v^{\prime}!\left[T\left(l+\frac{5}{2}\right)\right]^{2}}\right\}^{\frac{1}{2}} \frac{1}{2 \lambda^{4}} X
\end{gathered}
$$

$$
X \int X^{-\frac{1}{2}} M_{v+\frac{\theta}{2}+\frac{3}{4}}, \frac{l}{2}+\frac{1}{4}(x) M_{v^{\prime}+\frac{1}{2}+\frac{p}{4}}, \frac{0}{2}+\frac{3}{4}(x) d x
$$

Evaluating the integral ${ }^{(10)}$, we get

$$
\begin{align*}
& \left\langle v^{\prime} l+1\right| r|v l\rangle=\frac{1}{\lambda}\left\{\frac{T\left(v+l+\frac{3}{2}\right) T\left(v^{\prime}+l+\frac{5}{2}\right)}{T(v+1) T\left(v^{\prime}+1\right)}\right\}^{\frac{1}{2}} X \\
& X \frac{(-1)^{v+v^{\prime}}}{T\left(l+\frac{3}{2}\right) T\left(l+\frac{5}{2}\right)} \cdot \frac{T\left(l+\frac{3}{2}\right) T\left(l+\frac{5}{2}\right) T\left(l+\frac{5}{2}\right) T(v+1)}{T\left(v^{\prime}+l+\frac{5}{2}\right) T\left(v-v^{\prime}+1\right)} \\
& \quad \times \sum_{m=0}^{1}\binom{1}{m}\binom{v^{\prime}}{v-m} \frac{T(1+m)}{T\left(l+m+\frac{3}{2}\right)} \\
& = \\
& \quad(-1)^{v+v^{\prime} \frac{1}{\lambda}\left\{\frac{T\left(v^{\prime}+1\right) T\left(v+l+\frac{3}{2}\right)}{T(v+1) T\left(v^{\prime}+l+\frac{5}{2}\right)}\right)^{\frac{1}{2}} X} \begin{array}{l}
\Gamma\left(v-v^{\prime}+1\right) T\left(v^{\prime}-v+2\right)
\end{array}\left\{\left(l+\frac{3}{2}\right)\left(v^{\prime}-v+1\right)\right. \\
& \quad+v\} \tag{39}
\end{align*}
$$

From the above formula we get by algebraic manipolation the following oscillator strengths.

$$
\begin{align*}
& f_{v e m}^{v l-1 m}=\left(\leftrightarrow \frac{2 \mu}{\hbar^{2}} \hbar \omega_{c} \frac{1}{\lambda^{2}}\left(v+l+\frac{1}{2}\right) \frac{l^{2}-m^{2}}{(2 l+1)(2 l-1)}\right. \\
& f_{v l m}^{v+1 \ell-1 m}=\frac{2 \mu}{\hbar^{2}} \hbar \omega_{c} \frac{1}{\lambda^{2}}(v+1) \frac{l^{2}-m^{2}}{(2 \ell+1)(2 \ell-1)} \tag{40b}
\end{align*}
$$

$$
\begin{align*}
& f_{v l m}^{v l+1 m}=\frac{2 \mu}{\hbar^{2}} \hbar \omega_{c} \frac{1}{\lambda^{2}}\left(v+l+\frac{3}{2}\right) \frac{(l+1)^{2}-m^{2}}{(2 l+3)(2 l+1)} \tag{40c}\\
& f_{v \ell m}^{v-1 \ell+1 m}=\left(\rightarrow \frac{2 \mu}{\hbar^{2}} \hbar \omega_{c} \frac{1}{\lambda^{2}}(v) \frac{(l+1)^{2}-m^{2}}{(2 l+3)(2 l+1)}\right. \tag{4}
\end{align*}
$$

As a result of the 'selection rules on the quantum numbers v, ℓ and m; in the summation only a few terms survive namely $v^{\prime}=v, v+1$ for $\ell^{\prime}=\ell+1$ and $v^{\prime}=v_{1} v-1$ for $\ell^{\prime}=\ell-1$. Incidentally it is to be noted that the summation, as far as the sum rule is concerned, has to be done on all the quantum numbers which represent a particular state of a one particle system. Carrying out this summation

$$
\begin{equation*}
\sum_{n^{\prime}} f_{r^{\prime} n}=f_{v e m}^{v e-1 m}+f_{v e m}^{v+1 e-1 m}+f_{v e m}^{v e+1 m}+f_{v e m}^{v-1 e+1 m}=1 \tag{41}
\end{equation*}
$$

We therefore get the sum equal to 1 . This is not unexpected because the solutions form a complete set and are the eigenfunctions of the nonrelativistic Hamiltonian

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+\frac{1}{2} m w_{0}^{2} r^{2} \tag{42}
\end{equation*}
$$

and therefore the double commutator relation Eq. (23), and the replacement of P matrix element by the γ matrix element are easily accomplished. However, this calculation provides an algebric and numerical check on the accuracy of the sum rule. It is pointed out by Fock ${ }^{(18)}$ that the sum rule is really not valid if one goes to a more complicated sys-
tem than Hydrogen atom. It is generally understood that if there are z electrons the sum of the oscillator strength gives z. This really does not turn out to be the case if one bears in mind the identity of the electrons and that they obey the Pauli exclusion principle. The requirement of antisymmetry on the wave function of the many electron system results in the peculiar quantum mechanical effect of an exchange integral. The single particle Hamiltonian should really be written as the sum of three terms, the kinetic energy, potential energy and the exchange energy which has a sign opposite to the potential energy. With this Hamiltonian, the double commutator relation, which is the most important quantum mechanical equation that gives. rise to the sum rule, is no longer the same because z in general will not commute with the exchange part of the Hamiltonian. In the case of the naclear photo effect Levinger and Bethe corrected the sum rule for certain other reasons because in their original treatment they ignored the Pauli correlations. The two particle nuclear force has; besides the ordinary interaction, an exchange interaction. This exchange interaction is a dynamical part of the nuclear force and is not to be confused with a quantum mechanical exchange arising from the antisymmetry of the wave function, i.e., arising from the Pauli positional correlations in the motions of the particles. They noticed that the final result of the sum rule has to be corrected ${ }^{(7)}$

$$
\begin{equation*}
\sum_{\mathrm{n}} \mathrm{f}_{\mathrm{on}}=\frac{\mathrm{NZ}}{\mathrm{~A}}(1+0.8 x) \tag{43}
\end{equation*}
$$

where N is the number of neutrons and Z the number of protons and A is the sum of Z and $N . \quad X$ is the fraction of attractive force for the neutron-proton potential. In spite of this, however, the sum rule has
been very helpful in understanding photo nuclear reactions. The most outstanding photo nuclear reaction happens to be the gaint dipole resonance which is known to exist in almost'all nucli except the really light ones. In the analysis of this resonant photo absorbtion the sum rule plays an important part.

The above discussion is confined to non-relativistic quantum mechanics. It is interesting to ask what happens to the sum rule if in the computation of the oscillator strength, instead of non-relativistic basis sets, relativistic basis sets are used. This has never been attempted because of the unavailability of a relativistical single particle nuclear model. Very recently a relativistic equivalent harmonic oscillator model has been proposed ${ }^{(8)}$. It is therefore tempting to use. the exact relativistic eigenfunctions of this Hamiltonian to compute, as an approximation, the oscillator strengths and the sum rule, While a detailed discussion of the relativistic oscillator is given in a later chapter, the important equations and results will be reproduced here. The eigenfunctions of the Hamiltonian happen to be

$$
\Psi_{v \times \mu}=\left\{1+\frac{\left(E-m_{0}\right)^{2}}{4 \lambda^{2}\left(v+|x|+\frac{1}{2}\right)}\right\}^{-\frac{1}{2}}\binom{|v x M\rangle}{\frac{s_{x}\left(E-m_{0}\right)}{2 \lambda \sqrt{v+|x|+\frac{1}{2}}}|v-x \mu\rangle}[44]
$$

It is interesting to note that the radial functions occurring in this spinor are identical to the functions occurring in the non-relativistic harmonic oscillator solutions. Secondly, this relativistic Hamiltonian goes over into the non-relativistic Hamiltonian in the limit of low velocities. This facilitates greatly the comparison between relativistic
and non-relativistic results and, in particular, the evaluation of the relativistic corrections, if any, that need to be made both in the oscillator strengths as well as the sum rule.

The Dirac quantum number X in the eigenfunction $\Psi_{v X \mu}$ can be expressed in the language of orbital quantum number ℓ using the relation in Eq. (52) and, therefore, the eigenfunction $\Psi_{v K \mu}$ can be written as function of quantum number v, ℓ, and μ for a chosen j (or X) value as in Eq. (70). The parity selection rules for the matrix element of z, derived for the Spherical Harmonics $Y_{\ell}^{m}(\theta . \phi)$ as in Eq. (36), Eq. (37) and Eq. (38) can now be applied, to simplify the integrals and further the radial integrals are the same as given in Eq, (39). The latter happens to be so because the radial parts of the wave functions in the relativistic and non-relativistic cases are the same. The oscillator strengths calculated using the eigenfunctions of E. H. O. Hamiltenian are now formed as follows: When initial state is chosen such that $j=\ell+\frac{1}{2}(\kappa<0)$, then, for $j^{\prime}=\ell^{\prime}+\frac{1 / 2}{2}\left(X^{\prime}<0\right)$ we have

$$
\begin{align*}
f_{n}^{n^{\prime}}= & f_{v x \mu}^{v x-1 \mu}=\frac{2 m}{\hbar^{2}}\left(E_{n}-E_{n^{\prime}}\right) \frac{1}{\lambda^{2}(2 l+3)^{2}} \times \\
& \times \frac{\left(\ell+\mu+\frac{3}{2}\right)\left(l-\mu+\frac{3}{2}\right)}{4\left(E_{n}^{2}-m_{0} c^{2} E_{n}\right)\left(E_{n^{\prime}}^{2}-m_{0} c^{2} E_{n^{\prime}}\right)} \\
& \times\left\{4 \lambda^{2} \hbar^{2} c^{2}\left(v+l+\frac{3}{2}\right) \sqrt{v+l+\frac{5}{2}}+\right. \\
& \left.\left(E_{n}-m_{0} c^{2}\right)\left(E_{n^{\prime}}-m_{0} c^{2}\right) \sqrt{v+l+\frac{5}{2}}\right\}^{2} \tag{45a}
\end{align*}
$$

$$
\begin{aligned}
& f_{n}^{n^{\prime}}=f_{v \ll \mu}^{v x+1 \mu}=\frac{2 m}{\hbar^{2}}\left(E_{n}-E_{n^{\prime}}\right) \frac{1}{\lambda^{2}(2 \ell+1)^{2}} X \\
& X \frac{\left(l+\mu+\frac{1}{2}\right)\left(l-\mu+\frac{1}{2}\right)}{4\left(E_{n}^{2}-m_{0} c^{2} E_{n}\right)\left(E_{n^{\prime}}^{2}-m_{0} c^{2} E_{n^{\prime}}\right)} \\
& X\left\{4 \lambda^{2} \hbar^{2} c^{2}\left(v+l+\frac{1}{2}\right) \sqrt{v+l+\frac{3}{2}}+\right. \\
& \left.\left(E_{n}-m_{0} c^{2}\right)\left(E_{n^{\prime}}-m_{0} c^{2}\right) \sqrt{v+1+\frac{3}{2}}\right)^{2}
\end{aligned}
$$

[45b]
and for $j^{\prime}=\ell-\frac{1}{2}$ we have

$$
\begin{align*}
& f_{n}^{n^{\prime}}=f_{v x \mu}^{v-1-x \mu}=\frac{2 \mu}{\hbar^{2}}\left(E_{n}-E_{n^{\prime}}\right) \frac{1}{\lambda^{2}(2 l+1)^{2}} X \\
& X \frac{1}{4\left(E_{n}^{2}-m_{0} c^{2} E_{n}\right)\left(E_{n^{\prime}}^{2}-m_{0} c^{2} E_{n^{\prime}}\right)} \\
& X \frac{4 \mu^{2} v\left(4 \lambda^{2} \hbar^{2} c^{2}\right)^{2}\left(v+l+\frac{3}{2}\right)\left(v+l+\frac{1}{2}\right)}{(2 l+3)^{2}} \tag{45c}\\
& f_{n}^{n^{\prime}}=f_{v \times \mu}^{v+1-x \mu}=\frac{2 m}{\hbar^{2}}\left(E_{n}-E_{n^{\prime}}\right) \frac{1}{\lambda^{2}(2 l+3)^{2}} \\
& \times \frac{\left(l+\mu+\frac{3}{2}\right)\left(l-\mu+\frac{3}{2}\right)}{4\left(E_{n}^{2}-m_{0} c^{2} E_{n}\right)\left(E_{n^{\prime}}^{2}-m_{0} c^{2} E_{n^{\prime}}\right)} X
\end{align*}
$$

$$
X \frac{4 \mu^{2}(v+1)\left(E_{n}-m_{0} c^{2}\right)^{2}\left(E_{n^{\prime}}-m_{0} c^{2}\right)^{2}}{\left(l+\mu+\frac{3}{2}\right)\left(l-\mu+\frac{3}{2}\right)(2 l+1)^{2}}
$$

$f_{n}^{n^{\prime}}=o$ for all other cases.
Then the sum rule

$$
\begin{aligned}
& \sum_{n^{\prime}} f_{n^{\prime} n}=\sum_{v^{\prime}} \sum_{x^{\prime}} \sum_{\mu^{\prime}} f_{v x \mu}^{v^{\prime} x^{\prime} \mu^{\prime}} \\
& =\frac{2 m}{\hbar^{2}} \frac{\left(E_{n}-E_{n_{1}^{\prime}}\right)\left(\ell+\mu+\frac{3}{2}\right)\left(l-\mu+\frac{3}{2}\right)}{4\left(E_{n}^{2}-m_{0} c^{2} E_{n}\right)\left(E_{n_{1}^{\prime}}^{2}-m_{0} c^{2} E_{n^{\prime}}\right) \lambda^{2}(2 l+3)^{2}} \\
& X\left\{16 \lambda^{4} \hbar^{4} c^{4}\left(v+l+\frac{3}{2}\right)^{2}\left(v+l+\frac{5}{2}\right)+8 \lambda^{2} \hbar^{2} c^{2}\right. \\
& X\left(v+l+\frac{3}{2}\right)\left(v+l+\frac{5}{2}\right)\left(E_{n}-m_{0} c^{2}\right)\left(E_{n_{1}^{\prime}}-m_{0} c^{2}\right) \\
& +\left(E_{n}-m_{0} c^{2}\right)^{2}\left(E_{n_{1}^{\prime}}-m_{0} c^{2}\right)^{2}\left(v+l+\frac{5}{2}\right) \\
& \left.+\frac{4 \mu^{2}(v+1)\left(E_{n}-m_{0} c^{2}\right)^{2}\left(E_{n_{1}^{\prime}}-m_{0} c^{2}\right)^{2}}{\left(l+\mu+\frac{3}{2}\right)\left(l-\mu+\frac{3}{2}\right)(2 l+1)^{2}}\right\} \\
& +\frac{2 m}{\hbar^{2}} \frac{\left(E_{n}-E_{n_{2}^{\prime}}\right)\left(l+\mu+\frac{1}{2}\right)\left(l-\mu+\frac{1}{2}\right)}{4\left(E_{n}^{2}-m_{0} c^{2} E_{n}\right)\left(E_{n_{2}^{\prime}}^{2}-m_{0} c^{2} E_{n_{2}^{\prime}}\right) \lambda^{2}(2 \ell+1)^{2}} \\
& +16 \lambda^{4} \hbar^{4} c^{4}\left(v+l+\frac{1}{2}\right)^{2}\left(v+l+\frac{3}{2}\right)+8 \lambda^{2} \hbar^{2} c^{2} X
\end{aligned}
$$

$$
\begin{align*}
& X\left(v+l+\frac{1}{2}\right)\left(v+l+\frac{3}{2}\right)\left(E_{n}-m_{0} c^{2}\right)\left(E_{n i}-m_{0} c^{2}\right) \\
& +\left(E_{n}-m_{0} c^{2}\right)^{2}\left(E_{n_{2}^{\prime}}-m_{0} c^{2}\right)^{2}\left(v+l+\frac{3}{2}\right) \\
& \left.+\frac{4 \mu^{2} v\left(4 \lambda^{2} \hbar^{2} c^{2}\right)^{2}\left(v+l+\frac{3}{2}\right)\left(v+l+\frac{1}{2}\right)}{\left(l+\mu+\frac{1}{2}\right)\left(l-\mu+\frac{1}{2}\right)(2 l+3)^{2}}\right\} \tag{46}
\end{align*}
$$

Because of the functional dependence of the terms on the energy E_{v} of the state it is obvious that the terms can not be summed as easily as in the non-relativistic case. This is done numerically and the sum gives 0.68 as against 1 in the non-relativistic case. The detail of the choice of λ, the oscillator parameter, is discussed elsewhere. This result, although it compares with Levinger's ${ }^{(11)}$ result of 0.85 for the Coulomb field case (Levinger, incidentally includes retardation also), is approximate because of the nature of the derivation. For a realistic theory the interaction of the proton with the electromagnetic field has to be treated according to quantum electrodynamics. This is done in a later chapter.

CHAPTER III

THE RELATIVISTIC EQUIVALENT HARMONIC OSCILIATOR

As a preliminary to the introduction of the relativistic Equivalent Harmonic Oscillator proposed by Swamy ${ }^{(8)}$ it is necessary to discuss the spin angle functions. The spherical harmonics which form an orthonormal set of functions in polar angle space are defined as

$$
\begin{equation*}
Y_{\ell}^{m}(\theta, \varphi)=(\rightarrow)^{m} \sqrt{\frac{(2 \ell+1)(\ell-m)!}{4 \pi(l+m)!}} \sin ^{m} \theta \frac{d^{m}}{d(\cos \theta)^{m}} P_{l}(\cos \theta) e^{i m \varphi} \tag{47}
\end{equation*}
$$

These satisfy the phase relation

$$
\begin{equation*}
\mathrm{Y}_{\ell}^{-\mathrm{m}}=(-1)^{\mathrm{m}} \mathrm{Y}_{\ell}^{\mathrm{m} *} \tag{48}
\end{equation*}
$$

and the orthonormal property

$$
\begin{equation*}
\int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \varphi Y_{l^{\prime}}^{2 n^{\prime} *}(\theta, \varphi) Y_{e}^{m}(\theta, \varphi)=\delta_{l l^{\prime}} \delta_{m m^{\prime}} \tag{49}
\end{equation*}
$$

The well known spin functions for a particle of spin $1 / 2$ are given by

$$
\begin{equation*}
x_{\frac{1}{2}}^{\frac{1}{2}}+\alpha=\left(\frac{1}{0}\right) ; x_{\frac{1}{2}}^{-\frac{1}{2}}+\beta=\binom{0}{1} \tag{50}
\end{equation*}
$$

with the spin up or down $m_{s}= \pm \frac{1}{2}$ is taken along the Z axis. From these two the spin-angle functions are now defined as

$$
X_{x}^{\mu}=\sum_{\tau} C_{-\mu-\tau}^{e} \quad \begin{array}{cc}
\frac{1}{2} & j \tag{51}
\end{array} Y_{l}^{\mu-\tau} X_{\frac{1}{2}}^{\tau}
$$

$$
\tau= \pm \frac{1}{2}
$$

where C are Clebsch-Gordan coefficients. These were also called spherical spinors by Rose and Biedenharn who first introduced them ${ }^{(9)}$. In the
above, the Dirac quantum number k simultaneously determines both 1 and j the latter being the usual total angular momentum quantum number relating to the quantum mechanical vector sum of the orbital angular momentum and spin. This is an algebraic number which can take on all integral values except 0 . It is negative if the spin and orbital angular momenta are parallel and positive in the other case. We thus have

$$
\begin{align*}
& \text { for } j=\ell-\frac{1}{2}, k=\ell \tag{52}\\
& \text { for } j=\ell+\frac{1}{2}, k=-\ell-1
\end{align*}
$$

1 now can be treated as a function of k and one introduces $1(-k)$, denoted by the symbol $\bar{\ell}$, as follows

$$
\begin{align*}
& \text { for } \quad j=\ell-\frac{1}{2}, \bar{\ell}=\ell-1 \tag{53}\\
& \text { for } \quad j=\ell+\frac{1}{2}, \bar{\ell}=\ell+1
\end{align*}
$$

We note that in either case $|k|=j+1 / 2$. For each k there will be $2|\kappa|$ values of μ which can take on the half integral values:

$$
\begin{equation*}
\mu= \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \ldots ., \pm\left(|\kappa|-\frac{1}{2}\right) . \tag{54}
\end{equation*}
$$

The spin angle functions defined in Eq. (51) are eigenfunctions of J^{2}, J_{z}, and L^{2}, where J is the total angular momentum $\vec{J}=\vec{L}+\vec{S} \cdot \mu$ now refers to the projection quantum number $\mu=J_{z}=1_{z}+s_{z}=m+m_{s} \cdot$ The χ_{k}^{μ} are also eigenfunctions of the spin-orbit coupling operator introduced by Dirac (in units of $h=c=1$)

$$
\begin{equation*}
\text { - }(\vec{\sigma} \cdot \vec{L}+1) x_{k}^{\mu}=-k \cdot x_{k}^{\mu} \tag{55}
\end{equation*}
$$

Since $-K$ and $1_{(-K)}$ are defined, it is easy to introduce χ_{-k}^{μ} as follows

$$
X_{-X}^{\mu}=\sum_{\tau} C_{\mu-\tau}^{\ell(-x)} \begin{array}{cc}
\frac{1}{2} & |x|-\frac{1}{2} \\
\mu & \tau
\end{array} Y_{l(-x)}^{\mu-\tau} X_{\frac{1}{2}}^{\tau}
$$

The operator that connects the two spin-angle functions is

$$
\begin{equation*}
\frac{\vec{\sigma} \cdot \vec{r}}{r} \equiv \vec{\sigma} \cdot \hat{r} \tag{57}
\end{equation*}
$$

and the connecting relationship is

$$
\begin{equation*}
\vec{\sigma} \cdot \hat{r} x_{k}^{\mu} \equiv\left(\frac{\vec{\sigma} \cdot \vec{r}}{r}\right) x_{k}^{\mu}=-x_{-k}^{\mu} \tag{58}
\end{equation*}
$$

The explicit form of the spin-angle functions in all four important cases is given below.

```
For the case f=\ell-\frac{1}{2}(k>0), K=\ell and \overline{\ell = \ell - 1}
```

$$
X_{k}^{\mu}=\left(\begin{array}{cc}
-\sqrt{\frac{l-\mu+\frac{1}{2}}{2 l+1}} & Y_{\ell}^{\mu-\frac{1}{2}} \tag{59a}\\
\sqrt{\frac{l+\mu+\frac{1}{2}}{2 \ell+\frac{1}{2}}} & Y_{\ell}^{\mu+\frac{1}{2}}
\end{array}\right)
$$

and

$$
X_{-x}^{\mu}=\left(\begin{array}{ll}
\sqrt{\frac{l+\mu-\xi}{2 \alpha-1}} & Y_{l-1}^{\mu-\frac{1}{2}} \tag{59b}\\
\sqrt{\frac{l-k-K}{2}-\frac{\xi}{2}} & Y_{0-1}^{\mu+\frac{1}{2}}
\end{array}\right)
$$

For the opposite case, where $j=\ell+\frac{1}{2}(\kappa<0), \kappa=-\ell-1$ and $\bar{\ell}=\ell+1$
and

$$
D_{x}^{\mu}=\left(\begin{array}{cc}
\sqrt{\frac{l+\mu+\frac{1}{2}}{2 l+1}} & Y_{\ell}^{\mu-\frac{1}{2}} \tag{59c}\\
\sqrt{\frac{l-\mu+\frac{1}{2}}{2 l+1}} & \begin{array}{l}
\mu+\frac{1}{2} \\
\ell
\end{array}
\end{array}\right)
$$

The spin angle functions form an orthonormal set in spin-angle space

$$
\begin{equation*}
\left\langle X_{x^{\prime}}^{\mu^{\prime}} \mid X_{x}^{\mu}\right\rangle=\delta_{x x^{\prime}} \delta_{\cdot \mu \mu^{\prime}} \tag{60}
\end{equation*}
$$

where the scalar product implies integration over the angles and summation over the spin indices.

Since multiplication of these spin-angle functions by any function of r does not alter the angular properties of these functions, in particular their relationship to $J^{2}, L^{2}, J_{z}, \vec{\sigma} \cdot \vec{L}+1$ and $\vec{\sigma} \cdot \hat{r}$, we can introduce the spinors

$$
\begin{align*}
& \mid v \kappa \mu>\rightarrow \chi_{K}^{\mu} F_{v \ell} \tag{61a}\\
& \mid v-\kappa \mu>\rightarrow i \chi_{-K}^{\mu} F_{v} \bar{\ell} \tag{61b}
\end{align*}
$$

Here $F_{v 1}(r)$ is the normalized radial solution of the non-relativistic isotropic harmonic oscillator

$$
F_{v l}(r)=\left\{\frac{2 \lambda^{3} T\left(v+l+\frac{3}{2}\right)}{v!\left[T\left(l+\frac{3}{2}\right)\right]^{2}}\right\}^{\frac{1}{2}}(\lambda r)^{l} e^{-\frac{1}{2} \lambda^{2} r^{2}}, F_{1}\left(\begin{array}{l}
-v \tag{62}\\
l+\frac{3}{2}
\end{array} ; \lambda^{2} r^{2}\right)
$$

Now the orthonormal property of these spinors can be generalized

$$
\begin{equation*}
\left\langle v^{\prime} x^{\prime} \mu^{\prime} \mid v x \mu\right\rangle=\delta_{v v^{\prime}} \delta_{x x^{\prime}} \delta_{\mu \mu^{\prime}} \tag{63}
\end{equation*}
$$

v is the quantum number which, with 1 , determines the oscillator energy levels

$$
\begin{equation*}
E_{v 1}=(2 v+1+3 / 2) \hbar \omega \tag{64}
\end{equation*}
$$

The EHO is obtained by adding the interaction

$$
\begin{equation*}
\mathrm{V}=i \lambda^{2} \rho_{1}(\vec{\sigma} \cdot \overrightarrow{\mathrm{r}}) \frac{\vec{\sigma} \cdot \overrightarrow{\mathrm{E}}+1}{|\vec{\sigma} \cdot \vec{L}+1|} \tag{65}
\end{equation*}
$$

to the free particle Dirac Hamiltonian (units of $h=c=1$)

$$
\begin{equation*}
H_{f p}=\rho_{3}\left(m_{0}\right)+\rho_{1}(\vec{\sigma} \cdot \vec{P}) \tag{66}
\end{equation*}
$$

This has exact eigenvalues and eigenfunction as follows:

$$
\begin{align*}
& H \Psi_{V K \mu}=E \Psi_{V K \mu} \tag{67a}\\
& E=\sqrt{m_{0}^{2}+4 \lambda^{2}\left(v+|K|+\frac{1}{2}\right)} \tag{67b}
\end{align*}
$$

In terms of the spinors given in Eq. (59) the above solutions ${ }_{v K \mu}$ are given explicitly by

$$
\begin{equation*}
\Psi_{v \times \mu}=\left\{1+\frac{\left(E-m_{0}\right)^{2}}{4 \lambda^{2}\left(v+|x|+\frac{1}{2}\right)}\right\}^{-\frac{1}{2}}\binom{|v x u\rangle}{\frac{s_{x}\left(E-m_{0}\right)}{2 \lambda \sqrt{v+|x|+\frac{1}{2}}}|v-x \mu\rangle} \tag{68}
\end{equation*}
$$

and the bound state normalized constant is

$$
\begin{equation*}
\left[1+\frac{\left(E-m_{0}\right)^{2}}{4 \lambda^{2}\left(v+|k|+\frac{1}{2}\right)}\right]^{-\frac{1}{2}} \tag{69}
\end{equation*}
$$

Explicit forms of the solutions fro the two cases of importance $j=\ell+\frac{1}{2}$ and $j=\ell-\frac{1}{2}$ are given below for $j=\ell+\frac{1}{2}(k<0)$

for $f=\ell-\frac{1}{2}(k>0)$

As was shown in ref. 14; in the non-relativistic limit; the EHO Hamiltonian yields the usual isotropic harmonic oscillator Hamiltonian with a spin-orbit coupling term of the Thomas-Frenkel form.

$$
\begin{equation*}
H_{N R}=\left(1+\frac{3}{2} \lambda^{2} S_{x}\right) m_{0}+\frac{P^{2}}{2 m_{0}}+\frac{\lambda^{4}}{2 m_{0}} \gamma^{2}+\left(\frac{\lambda^{2}}{m_{0}} S_{x}\right) \vec{\sigma} \cdot \vec{L} \tag{71}
\end{equation*}
$$

The degeneracy of the energy levels of EHO is four times that of the non-relativistic oscillator and a comparison of these degeneracies is given in Table I.

TABLE I
degeneracy of the eho and the nrho

| EHO | | | NRHO | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E^{2}-m_{0}{ }^{2} c^{4}$ | $v+\|\kappa\|$ | Degeneracy | E | $2 v+\ell$ | Degeneracy |
| $6 \lambda^{2}$ | 1 | 4 | $\frac{3}{2} \hbar \omega$ | 0 | 1 |
| $10 \lambda^{2}$ | 2 | 12 | $\frac{5}{2} \hbar \omega$ | 1 | 3 |
| $14 \lambda^{2}$ | 3 | 24 | $\frac{7}{2} \hbar \omega$ | 2 | 6 |
| $18 \lambda^{2}$ | 4 | 40 | $\frac{9}{2} \hbar \omega$ | 3 | 10 |
| $22 \lambda^{2}$ | 5 | 60 | $\frac{11}{2} \hbar \omega$ | 4 | 15 |
| $26 \lambda^{2}$ | 6 | 84 | $\frac{13}{2} \hbar \omega$ | 5 | 21 |

CHAPTER IV

BREMSSTRAHLUNG WEIGHTED CROSS SECTION

The bremsstrahlung weighted cross section is defined as

$$
\begin{equation*}
\sigma_{b}=\int(\sigma / w) d w \tag{72}
\end{equation*}
$$

where σ_{b} is the electric dipole cross section for the nuclear photoeffect weighted by the $d W / W$ approximation to the bremsstrahlung spectrum. σ_{b} is rather easily compared with measured bremsstrahlung yields for photonuclear processes. As has been shown by Levinger and Bethe ${ }^{(7)} \sigma_{b}$ is not changed by the neutron-proton exchange force and, in the harmonic oscillator approximation, of the nuclear shell model, σ_{b} is proportional to the nuclear radius. For this reason sometimes the experiment is used as a means of determining the nuclear radius parameter r_{0}. Experimentally the total photonuclear cross section has been determined by measuring the attenuation of the photon flux from betatron gamma rays or some other copious source, using a Compton spectrometer with good resolution (12). The loss of intensity in the incident photon stream is partly due to nuclear absorption and partly due to electronic absorption. However, since accurate theoretical cross sections are available for photonelectron interactions such as the Compton effect, pair production, radiative corrections, it is possible to subtract the electronic absorption from the measured attenuation and get a fairly accurate value for the cross section due to nuclear absorption. This type of experiment is
preferred to measuring the partial cross sections--v-p, $\nu-n, \nu-\nu$ cross sections-and summing these because of the uncertainties concerning the geometry involved in the latter. While the nuclear part of the absorption is only a small fraction of the total loss of photons in the incident beam, in the case of light nuclei the nuclear part of the total cross section happens to be well distinguishable. Several experiments have been made on light closed-shell nuclei.

The cross section for a particle in an initial state $\mid 0>$ to make a transition to another stationary state |n> by photon absorption is obtained from the transition probability computed according to time dependent perturbation theory in quantum mechanics. According to the semiclassical theory of interaction of radiation with matter the photon is described by the vector potential

$$
\begin{equation*}
\vec{A}=\hat{z} \cdot A_{0} e^{-i k x} \tag{73}
\end{equation*}
$$

Here the gamma ray is assumed to be polarized along the Z axis and propagating along the x direction and the amplitude A_{0} determines the number of photons in the incident flux. In the nonrelativistic Schrodinger theory the Hamiltonian for an electron in a pure radiation field is given by the gauge invariant substitution

$$
\begin{equation*}
\vec{P} \rightarrow \vec{P}+\frac{e}{c} \vec{A} \quad, \quad E \rightarrow E+e \phi \tag{74a}
\end{equation*}
$$

Such that

$$
\begin{equation*}
\vec{P}^{2} \rightarrow \vec{P}^{2}+\frac{e}{c} \vec{P} \cdot \vec{A}+\frac{e}{c} \vec{A} \cdot \vec{P}+\frac{e^{2}}{c} \vec{A}^{2} \tag{74~b}
\end{equation*}
$$

and the Schrödinger equation becomes

$$
\left[\frac{1}{2 m}\left(\overrightarrow{\mathrm{P}}^{2}+\frac{e}{c} \overrightarrow{\mathrm{P}} \cdot \overrightarrow{\mathrm{~A}}+\frac{e}{c} \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{P}}+\frac{e^{2}}{c^{2}} \overrightarrow{\mathrm{~A}}^{2}\right)+V\right] \Psi=E \Psi
$$

The term in $\overrightarrow{\mathrm{A}}^{2}$ gives rise to second order transitions in which more than one photon is involved which is negligible and in the radiation gauge $\nabla \cdot \overrightarrow{\mathrm{A}}=0, \phi=0$, the two terms $\frac{e}{2 \mathrm{mc}}(\vec{P} \cdot \overrightarrow{\mathrm{~A}}+\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{P}})$ combine to give the perburbing potential

$$
\begin{equation*}
\frac{\mathrm{e}}{\mathrm{mc}} \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{P}}=-\frac{i e^{h}}{\mathrm{mc}} \overrightarrow{\mathrm{~A}} \cdot \vec{\nabla} \tag{76}
\end{equation*}
$$

The transition probability between states $|0\rangle$ and $\mid n>$ is proportional to the absolute square of the matrix element

$$
\begin{equation*}
\left.<0\left|A_{0} e^{-i k x} \hat{z} \cdot \vec{\nabla}\right| n\right\rangle \tag{77}
\end{equation*}
$$

For photon energies of experimental interest and where the radiation is observed far away from the atom $k x$ is very small compared to 1 and hence the exponential in the perturbing potential can be replaced by unity. This is known as the dipole approximation or neglect of the retardation factor. The time factor is eliminated by conservation of energy between the initial state of the particle $|0\rangle$, the final state of the particle $\mid n>$ and the photon energy. The vector potential has, of course, to be real and this necessitates the addition of the complex conjugate to the term in Equation (77), however, this leads to emission of a gamma ray and hence can be set equal to zero in absorption probability calculations. Applying Heisenberg matrix mechanics and the Bohr frequency rule, the above matrix element can be related to the oscillator strength as the following steps show.
Since

$$
\begin{equation*}
\langle 0| \hat{z} \cdot \vec{\nabla}|n\rangle=\frac{1}{\hbar}\langle 0| P_{z}|n\rangle \tag{78}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{m}\langle 0| P_{z}|n\rangle=\langle 0| \dot{z}|n\rangle=\frac{1}{\hbar}\left(E_{n}-E_{0}\right)\langle 0| z|n\rangle=1 \omega_{0 n}\langle 0| z|n\rangle \tag{79}
\end{equation*}
$$

then the matrix element becomes, in the dipole approximation,

$$
\begin{equation*}
-\frac{m}{k_{1}} \omega_{o n}<0|z| n>. \tag{80}
\end{equation*}
$$

If we compare with the definition of the oscillator strengths, as given in. Eq. (20), it is easy to see they are related by a constant (-2). The cross section for the absorption of a photon of energy $W=E_{n}-E_{0}$ is, then given by ${ }^{(7)}$

$$
\begin{equation*}
\sigma_{o n}=\frac{2 \pi^{2} e^{2} h}{\mu c} f_{o n}=\frac{4 \pi^{2} e^{2}}{\pi c}\left(E_{n}-E_{0}\right)|<0| z|n>|^{2} \tag{81}
\end{equation*}
$$

From the above we get the bremsstrahlung weighted cross section for a one particle quantum mechanical system as

$$
\begin{align*}
\sigma_{b} & =\int\left(\frac{\sigma_{0 n}}{W}\right) d W \\
& =\left.\frac{4 \pi^{2} e^{2}}{\hbar c} \sum_{n}|<0| z|n\rangle\right|^{2} \tag{82}\\
& =\frac{4 \pi^{2} e^{2}}{\hbar c}\langle 0| z^{2}|0\rangle
\end{align*}
$$

In the above the closure property has been used in the summation over n. It is thus seen that the crux of the problem is to evaluate the ground state expectation value of the operator z^{2} for the appropriate quantum mechanical system.

For a nuclear transition from the ground state $|0\rangle$ to any excited state |n> the wave functions of both the states have to be known. Rather little is known of the wave function of the ground state of the whole
nucleus and much less of the excited state |n>. It is therefore customary to work in some model of the nucleus and the one best suited to this problem is the well known shell model or the independent particle model. Bethe and Levinger ${ }^{(7)}$ were the first to derive a formula for the bremsstrahlung weighted cross section for the nucleus; proceeding along the lines of the derivation given above for a one particle problem. If we consider the displacement from the center of mass of the nucleus, each proton behaves as if its charge were $e N / A$ where N is the neutron number and, similarly, each neutron as if its charge were - eZ/A., For a many particle system the appropriate operator in the dipole approximation is $\sum_{i} Z_{i}$ where Z_{i} is the component of the displacement along the direction of polarization of the incident photon. Bethe and Levinger derived the following formula for the bremsstrahlung weighted cross section

$$
\begin{align*}
\sigma_{b} & =\int_{0}^{\infty}\left(\underset{w}{\left(\frac{\delta}{w}\right) d w}\right. \\
& =\left[\frac{e^{2}}{(c}\right)\left(4 \pi^{2}\right)<0\left|\left[\frac{N}{A} \sum_{i} z_{i}-\frac{Z}{A} \sum_{j} z_{j}\right]^{2}\right| 0> \tag{83}
\end{align*}
$$

In the above the suffix i refers to protons and the suffix f to neutrons, and the expectation value is taken with respect to the ground state wave function of the nucleus $\mid 0>$. The important consideration then is to know the ground state wave function as accurately as possible. Levinger and Bethe used the Fermi gas model and a Hartree type product many particle wave function with single particle plane wave functions as factors. Levinger ${ }^{(13)}$ used a more realistic independent particle model. He chose the isotropic harmonic oscillator model and used a many particle wave function which was a product of two Slater determinants, one representing antisymmetrized proton states and the other antisymmetrized
neutron states. In other words Levinger introduced positional correlations in the motions of protons and neutrons separately in accordance with the Pauli principle. He arrived at the remarkably simple formula for the bremsstrahlung weighted cross section

$$
\begin{equation*}
\sigma_{b}=0.36 \mathrm{~A}^{4 / 3} \mathrm{mb} \tag{84}
\end{equation*}
$$

The above has been used ever since as the phenomenological or semiempirical formula for bremsstrahlung weighted cross section which, as seen above, depends only on the mass number of the absorbing nucleus or more appropriately the one parameter viz., the radius parameter which, in the harmonic oscillator approximation, can be fixed from the oscillator constant λ. The Pauli principle correlations decrease σ_{b} since due to the exclusion principle each proton is surrounded by an 'exchange hole' in which there is a decreased likelihood of finding another proton. The shell model, of course, ignores other dynamical correlations like the spin dependent force between nucleons-attractive forces in a mutual triplet spin state of two nucleons and repulsive in singlet states. While a detailed comparison of experiment and theory will be postponed to a later chapter, it is important to note that the simple Levinger formula is not in agreement with experiment in all cases and there has been need to look for corrections to this formula.

The simplest and most straightforward extension of Levinger's theory attempted in this work is to replace the non-relativistic isotropic harmonic oscillator by a relativistic oscillator model of the nucleus (8). As has been discussed in an earlier chapter, this EHO Hamiltonian has the merit of analytical simplicity as well as a physically significant non-relativistic limit; that of the isotropic oscillator
with a spin orbit coupling of the Thomas-Frenkel form. The single particle states are then given by the spinor wave function $\Psi_{V K \mu}$ of the earlier chapter and the ground state of the nucleus is described by the antisymmetrized (protons and neutrons separately) wave function made up of these single particle states in the usual way as a Slater determinant. This makes sure that positional correlations are included. This ground state wave function is used in Eq. (83) to compute the bremsstrahlung weighted cross section. The following equations summarize the formula one obtain when relativistic wave functions are used. They are naturally more complicated than the non-relativistic formulas but in the approximotion $v / c-0$ the simple formula of Levinger is obtained.

$$
\begin{aligned}
\sigma_{b}= & \frac{4 \pi^{2} e^{2}}{\hbar c}\langle 0|\left[\frac{N}{A} \sum_{i} z_{i}-\frac{Z}{A} \sum_{i} z_{j}\right]^{2}|0\rangle \\
= & \frac{4 \pi^{2} e^{2}}{\hbar c}\left\{\frac{N^{2}}{A^{2}}\langle 0| \sum_{i} z_{i}^{2}|0\rangle+\frac{N^{2}}{A^{2}}\langle 0| \sum_{i} \sum_{i^{\prime}} z_{i} z_{i^{\prime}}|0\rangle\right. \\
& +\frac{Z^{2}}{A^{2}}\langle 0| \sum_{j} z_{j}^{2}|0\rangle+\frac{Z^{2}}{A^{2}}\langle 0| \sum_{j} \sum_{i^{\prime}} z_{j} z_{j^{\prime}}|0\rangle \\
- & \left.\frac{2 N Z}{A^{2}}\langle 0| \sum_{i} \sum_{j} z_{i} z_{j}|0\rangle\right\}
\end{aligned}
$$

where $i=1,2,3, \ldots \ldots z$

$$
j=z+1, z+2, \ldots z+N
$$

and $|0\rangle$, the ground state wave function of nucleus when Pauli principle correlation is taken into account, can be expressed explicitly as follows:

In the last equation $\Psi_{a_{k}}\left(\vec{\gamma}_{i}\right)$ is the normalized wave function $\Psi_{V K \mu}$ of the $i^{\text {th }}$ particle in the quantum state described by the quantum numbbens u, k, and $\mu\left[\equiv a_{k}\right]$, then, the results of the required matrix alements in Eq. (85) are obtained as follows, by using the orthogonal properties and the selection rules.

$$
\begin{align*}
\langle 0| Z_{i}^{2}|0\rangle= & \frac{1}{Z} \sum_{l=1}^{Z}\left\langle\Psi_{a_{i}}\left(\vec{r}_{i}\right)\right| Z_{i}^{2}\left|\Psi_{a_{i}}\left(\vec{r}_{i}\right)\right\rangle \tag{87a}\\
\langle 0| Z_{j}^{2}|0\rangle= & \frac{1}{N} \sum_{l=1}^{N}\left\langle\Psi_{a_{l}}\left(\vec{r}_{j}\right)\right| z_{j}^{2}\left|\Psi_{a_{e}}\left(\vec{r}_{j}\right)\right\rangle \\
\langle 0| Z_{i} Z_{i}|0\rangle= & \frac{1}{Z(Z-1)} \sum_{l=1}^{Z} \sum_{m=1}^{Z}(-)\left\langle\Psi_{a_{l}}\left(\vec{r}_{i}\right)\right| Z_{i}\left|\Psi_{a_{m}}\left(\vec{r}_{i}\right)\right\rangle \\
& X\left\langle\Psi_{a_{m}}\left(\vec{r}_{i^{\prime}}\right)\right| Z_{i^{\prime}}\left|\Psi_{a_{l}}\left(\vec{r}_{i}\right)\right\rangle
\end{align*}
$$

$$
\begin{equation*}
\langle 0| Z_{i} Z_{f}|0\rangle=0 \tag{87e}
\end{equation*}
$$

Two questions arise in the application of the above formula to a particular nucleus for purposes of comparison with experimental results. Firstly the quantum numbers of the single particles outside closed shells have to be fixed. This becomes a problem if we remember that the multiplicities and degeneracies are not the same in the relativistic and non-relativistic models. However, since the Dirac angular momentum quantum number κ relates to j it is realistic to choose the appropriate quantum numbers in such a way that the experimentally known spin of the nucleus (j value) is reproduced. The appropriate quantum numbers of the outermost nucleon or nucleons in the cases studied are given in Table II. The second question is the choice of the one parameter in the oscillator model--whether relativistic or non-relativistic--viz., the oscillator constant λ. In the non-relativistic case the equivalent unform radius of the nucleus in a linear function of the oscillator constant; as can be seen from the following equations:

$$
\begin{align*}
& \langle v i| r^{2}|v l\rangle=\frac{1}{\lambda^{2}}\left(2 v+l+\frac{3}{2}\right) \tag{88}\\
& \left\langle r^{2}\right\rangle_{\text {nucleus }}=\frac{1}{\lambda^{2}}\left[\frac{1}{A} \sum_{v} \sum_{l}\left(2 v+l+\frac{3}{2}\right)(2 l+1)\right] \tag{89}
\end{align*}
$$

$$
\begin{align*}
& \langle 0| z_{i} z_{i}|0\rangle-\frac{1}{N(N-1)} \sum_{\substack{i=1 \\
i \rightarrow m}}^{N} \sum_{m=1}^{N}(-)\left\langle\Psi a_{a}\left(\vec{Y}_{i}\left|z_{i}\right| \Psi_{a_{d}}\left\langle\overrightarrow{r_{i}}\right\rangle\right\rangle\right. \\
& x\left\langle\Psi_{a_{m}}\left(\vec{r}_{i j}\right)\right| z_{i}\left|\Psi_{a_{2}}\left(\vec{r}_{j}\right)\right\rangle \tag{87d}
\end{align*}
$$

since,

$$
\begin{equation*}
R_{\text {uni form }}^{2}=\frac{5}{3}\left\langle x^{2}\right\rangle_{\text {nucleus }} \tag{90}
\end{equation*}
$$

such that

$$
\begin{equation*}
R_{\text {uniform }}=\frac{1}{\lambda}\left[\frac{5}{3 A} \sum_{v} \sum_{l}\left(2 v+l+\frac{3}{2}\right)(2 l+1)\right] \tag{91}
\end{equation*}
$$

If, therefore, the uniform radius of the nucleus is chosen in accordance with the well known formula

$$
\begin{equation*}
R=r_{0} A^{1 / 3} \tag{92}
\end{equation*}
$$

then from Eq. (91), the oscillator constant is fixed depending on the choice of r_{0}. Levinger chose $r_{0}=1.2$ fermis which was the best known value from other experimental studies of nuclear sizes, coulomb energies of mirror nuclei, mesonic x-rays, etc. This way of fixing the oscillator parameter is not applicable to the relativistic case easily. The energy of the state pertaining to the quantum numbers enters the wave function implicitly and this leads to a transcendental equation for λ in the expression for the uniform radius. It has been noticed, however, that the error involved in accepting the non-relativistic value is negligible.

The nuclei chosen for study lie in the regions of light nuclei, intermediate nuclei and very heavy nuclei. Calculations have been made for representative nuclei for which both experimental data and non-relativistic estimates exist. Detailed comparison of the relativistic results with experiment is given in the concluding chapter. Because of the complicated nature of the formula (85), the cross sections had to be numerically evaluated. The relevant computer program is appended.

TABLE II
THE QUANTUM NUMBERS OF THE OUTERMOST NUCLEONS OUTSIDE CLOSED SHELLS

Nuclides	$\begin{gathered} \text { Ordina1 No. } \\ \text { of } \\ \text { Nucleon } \end{gathered}$	v	κ	μ
${ }_{6}^{12} \mathrm{C}$	5	0	-2	$+\frac{1}{2}$
	6	0	-2	- $\frac{1}{2}$
$\begin{gathered} 19 \\ F \\ \hline 9 \end{gathered}$	9	1	-1	$+\frac{1}{2}$
	10	1	-1	$-\frac{1}{2}$
$\begin{aligned} & 98_{\mathrm{Mo}} \\ & 42 . \end{aligned}$	41	0	-4	$+\frac{1}{2}$
	42	0	-4	$-\frac{1}{2}$
$\begin{gathered} 208 \mathrm{~Pb} \\ 82 \end{gathered}$	81	0	-5	$+\frac{1}{2}$
	82	0	-5	- $\frac{1}{2}$
	123	2	+3	$+\frac{1}{2}$
	124	2	+3	$-\frac{1}{2}$
	125	2	+3	$+\frac{3}{2}$
	126	2	+3	- $\frac{3}{2}$

CHAPTER V

RELATIVISTIC OSCILLATOR STRENGTHS

The definition and calculation of oscillator strengths in the earlier chapter are based on the non-relativistic Schrödinger equation for central fields. The interaction between the charged particle e and the radiation field (not quantized) is taken, in the radiation gauge, to be

$$
\begin{equation*}
\frac{i e k}{m c} \overrightarrow{\mathrm{~A}} \cdot \vec{\nabla} \tag{93}
\end{equation*}
$$

Here \vec{A} is the vector potential which, in the cases of emission and $a b-$ sorption of radiation accompanied by transition between stationary states, is expressed as

$$
\begin{equation*}
\overrightarrow{\dot{A}}=A_{0} \hat{e} e^{\hat{i} i \vec{k} \cdot \vec{r}} \tag{94}
\end{equation*}
$$

where \hat{e} is the unit vector in the direction of polarization of a linearly polarized electromagnetic wave. From the above two equations one eventually introduces the oscillator strength as

$$
\begin{equation*}
\left.f_{n^{\prime} n}=\frac{2 m}{n_{n}} \omega_{n^{\prime} n}\left|\left\langle n^{\prime}\right| z\right| n\right\rangle\left.\right|^{2} \tag{95a}
\end{equation*}
$$

or

$$
\begin{equation*}
\left.f_{n^{\prime} n}=\frac{2}{\hbar_{m} \omega_{n^{\prime} n}}|<n| P_{z}\left|n^{\prime}\right\rangle| |\left\langle n^{\prime}\right| P_{z}|n\rangle \right\rvert\, \tag{95b}
\end{equation*}
$$

It is the second expression which contains matrix elements of the momentum operator between the appropriate stationary state wavefunctions of the charged particle interacting with radiation, that makes transition to relativistic theory convenient. It is well known that for an adequate description of the processes of absorption, spontaneous and induced emission of radiation by matter consistent with experimental facts, it is necessary to quantize the electromagnetic field as well. In this theory also the basic interaction of the charged particle with the electromagnetic field, which is treated as a perturbation, is given by

$$
\begin{equation*}
-\frac{\mathrm{e}}{\mathrm{mc}} \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{\mathrm{P}} \tag{96}
\end{equation*}
$$

In the dipole approximation, or neglecting the retardation factor $e^{i \vec{k} \cdot \vec{r}}$, the oscillator strength is still given by Eq. (95). The justification for this may be in the fully relativistic and quantized derivation of the Kramers Heisenberg Dispersion theory ${ }^{(5)}$ from which the oscillator strength can be extracted just as in the non-relativistic theory. Payne and Levinger ${ }^{(11)}$ calculated the relativistic oscillator strengths both in the dipole approximation and in a more exact formulation including the retardation factors, for the Dirac-Coulomb case. In other words, in their calculations; the basis states of the charged particle are the solutions of the Dirac equation with the Coulomb potential. Jacobsohn (15) gave relativistic oscillator strengths for dipole transitions from the L shell. Massey and Burhop ${ }^{(16)}$ calculated the relativistic nonretarded transition rate of K x-rays of 79 Au . While all these have been numerical calculations in the main, through an entirely different approach Gell-mann, Goldberger and Thirring derived the sum rule for di-
pole transitions by considering the dispersion relation obeyed by the forward scattering amplitude of a bound electron scattering a high energy photon. While their derivation agreed with the familiar Thomas-Reiche-Kuhn sum rule, Levinger's calculation disagreed with this conclusion and showed that the scattering by a free electron and a bound electron of a high energy photon cannot be considered to be equal.

It is easy to see that the derivation of the sum rule made in the non-relativistic theory cannot be duplicated in the relativistic theory. For instance, the starting point in the non-relativistic derivation was the double commutator

$$
\begin{equation*}
[[\mathrm{H}, \mathrm{z}], \mathrm{z}] \tag{97}
\end{equation*}
$$

the expectation value of which in the basis of a complete set of states led to the sum rule. If we replace the non-relativistic central field Hamiltonian

$$
\begin{equation*}
H_{n r}=\frac{1}{2 m} \vec{P}^{2}+V(r) \tag{98}
\end{equation*}
$$

by the Dirac Hamiltonian

$$
\begin{equation*}
H=\rho_{3} m_{0}+\rho_{1} \vec{\sigma} \cdot \vec{p}+V(r) \tag{99}
\end{equation*}
$$

the double commutator vanishes as follows:

$$
\begin{align*}
& {[\mathrm{H}, \mathrm{z}]=\left[\rho_{1} \vec{\sigma} \cdot \overrightarrow{\mathrm{P}}, \mathrm{Z}\right]=-\mathrm{i} \rho_{i} \sigma_{z}} \tag{100a}\\
& {[[\mathrm{H}, \mathrm{Z}], \mathrm{Z}]=0} \tag{100b}\\
& {\left[\rho_{i}, \mathrm{z}\right]=\left[\sigma_{i}, \mathrm{z}\right]=0} \tag{100c}
\end{align*}
$$

since
This happens because of the basic difference in the dynamical description,
of the momentum of a particle in the two theories. In the non-relativistic theory the momentum operator follow the Schrodinger prescription $\vec{P}=-i \hbar \vec{\nabla}$ whereas in the relativistic theory the momentum operator is given by

$$
\begin{equation*}
\vec{P}=m_{0} c \vec{a} \tag{101}
\end{equation*}
$$

and correspondingly the oscillator strength is given by the expression

$$
\begin{equation*}
f_{n^{\prime} n}=\frac{2 m_{0} c^{2}}{z_{1} \omega_{n^{\prime} n}}\left|<n^{\prime}\right| \alpha_{z}|n>|^{2} \tag{102}
\end{equation*}
$$

This basic difference can also perhaps be related to the well known phenomenon wherein the position operator in Dirac theory does not exact1y correspond to the position operator in the Schrodinger theory inasmuch as the particle can be localized only within an error in measurement corresponding to the Compton wavelength of the particle. Incidentally it is interesting to note that the above double commutator does not vanish in the EHO case because the operator z does not commute with the EHO potential

$$
\begin{equation*}
\left[z, i \lambda^{2} \rho_{1}(\vec{\sigma} \cdot \vec{I}) \frac{\vec{\sigma} \cdot \vec{L}+1}{|\vec{\sigma} \cdot \vec{L}+1|}\right] \neq 0 \tag{103}
\end{equation*}
$$

whereas z does commute with the Coulomb potential e^{2} / r; It is, therefore, necessary to compute the oscillator strengths and the sum rule numerically starting from the basic matrix element

$$
\begin{equation*}
\left\langle n^{\prime}\right| \vec{\alpha}|n\rangle \tag{104}
\end{equation*}
$$

using as basis functions the solutions of the EHO $\Psi_{V K \mu \text {, While the }}$ numerical results are presented and discussed in the next chapter, there
is one other point to note. Usually the experiment does not distinguish between the three mutually perpendicular directions along which the photon may be linearly polarized: The oscillator strengths should, therefore, be averaged over the photon polarizations. Furthermore in all central fields, relativistic or non-relativistic, the chosen initial state described by a given. set of quantum numbers is usually degenerate in energy. Since different sets of quantum numbers describing the initial state can have the same energy, in the sum rule calculations it will be meaningful if a further averaging is done over the different degenerate initial states. This question is not crucial in the nonrelativistic case of a one particle system because, as Bethe and Salpeter ${ }^{(17)}$ have shown, once the sum over photon polarizations is made, the result happens to be independent of the magnetic quantum number m because of the selection rules. Similarly the sum over makes the result independent of the orbital angular quantum number ℓ and thus it is immaterial whether or not this averaging over initial states is done because the sum over final states and average over photon polarizations makes the result independent of the quantum numbers of the initial state, Some of the calculations of Bethe and Salpeter are reproduced here below. Unfortunately this is not the case for relativistic radiative transitions and this necessitates averaging over the degenerate initial states.

For a given v^{\prime}, the average oscillator strengths $\overline{\mathrm{f}}_{\mathrm{n}} \mathrm{n}$ is
$\bar{f}_{n^{\prime} n}=\left.\frac{1}{3}\left\{\frac{2 m}{\hbar} \omega_{v e, v^{\prime} \ell+1} \sum_{i} \sum_{m^{\prime}}\left|\langle v \ell m| x_{i}\right| v^{\prime} e+1 m^{\prime}\right\rangle\right|^{2}$

$$
\left.+\frac{2 m}{\hbar} \omega_{v l, v^{\prime} l-1} \sum_{i} \sum_{m^{\prime}}\left|\langle v l m| x_{i}\right| v^{\prime} e-\left.\left|m^{\prime}\right\rangle\right|^{2}\right\}
$$

$$
\begin{array}{r}
=\left.\frac{1}{3}\left\{\frac{2 m}{\hbar} \omega_{v e, v^{\prime} e+1}\left(\frac{\ell+1}{2 e+1}\right)|\langle v e| r| v^{\prime} e+1\right\rangle\right|^{2} \\
\left.\left.\quad+\frac{2 m}{\hbar} \omega_{v e, v^{\prime} e-1}\left(\frac{l}{2 l+1}\right)|\langle v e| r| v^{\prime} e-1\right\rangle\left.\right|^{2}\right\}
\end{array}
$$

When summed over v^{\prime} the sum rule for the average oscillator strengths is obtained as follows:

$$
\begin{aligned}
\sum_{n^{\prime}} \bar{f}_{n^{\prime} n} & \left.=\frac{2 m}{3 \hbar}\left(\frac{\ell+1}{2 \ell+1}\right) \sum_{v^{\prime}} \omega_{v l, v^{\prime} \ell+1}|\langle v \ell| v| v^{\prime} \ell+1\right\rangle\left.\right|^{2} \\
& \left.+\frac{2 m}{3 \hbar}\left(\frac{\ell}{2 l+1}\right) \sum_{v} \omega_{v \ell, v^{\prime} \ell-1}|\langle v \ell| v| v^{\prime} \ell-1\right\rangle\left.\right|^{2} \\
& =\frac{1}{3} \frac{(l+1)(2 l+3)}{(2 l+1)}-\frac{1}{3} \frac{\ell(2 \ell-1)}{(2 \ell+1)} \\
& =1
\end{aligned}
$$

As in the non-relativistic case, when the sum is broken up into two different summations, one corresponding to higher energy of the final state (absorption) and another corresponding to lower energy (emission), absorption probability predominates over emission probability. In other words the jumps corresponding to absorption make a larger contribution to the summed oscillator strengths than the ones corresponding to emission. As will be seen later, the end result happens to be an agree-
ment with Levinger and Payne's conclusion even in the nuclear case rather than with the Gell-mann, Goldberger, and Thirring's theorem.

CHAPTER VI

RESULTS AND CONCLUSIONS

As mentioned in the previous chapter, for the relativistic case the oscillator strengths and the sum rule had to be evaluated numerically. However, since the Pauli spinors χ_{k}^{μ} in the solutions $\psi_{v K \mu}$ of the EHO are built out of the solutions of the non-relativistic Schrödinger equation for the isotropic harmonic oscillator, the calculations are considerably simplified because of selection rules resulting from the orthogonality of the spherical harmonics as well as the radial functions.

$$
\begin{align*}
& \left\langle\ell m \mid l^{\prime} m^{\prime}\right\rangle=\delta_{l e^{\prime}} \delta_{m m^{\prime}} \tag{106a}\\
& \left\langle v \ell \mid v^{\prime} \ell\right\rangle=\delta_{v v^{\prime}} \tag{106~b}
\end{align*}
$$

The final formula for the summed oscillator strengths becomes

$$
\left.\sum_{n^{\prime}} f_{n^{\prime} n}=\frac{1}{3} 2 m_{0} c^{2} \sum_{V^{\prime}} \sum_{K^{\prime}} \sum_{\mu^{\prime}} \sum_{i} \frac{1}{E_{v^{\prime} x^{\prime}}-E_{v x}}\left|\left\langle v^{\prime} x^{\prime} \mu^{\prime}\right| \alpha_{i}\right| v x \mu\right\rangle\left.\right|^{2} \quad[107]
$$

where there is a further averaging over all the degenerate states represented by the quantum numbers v, k and $\mu ; v+|k|$ being constant. In the actual calculation the state chosen has the following quantum numbers and energy
and

$$
\begin{align*}
v=0,|k|=3 \text { or } v & =1,|k|=2 \text { or } v=2,|k|=1 \\
E_{n} & =\sqrt{m_{0}^{2}+14 \lambda^{2}} \tag{108}
\end{align*}
$$

There is an interesting point of difference between the matrix elements in the non-relativistic case and in the relativistic theory. In the radial integrals, arising from the basic operator α_{i}, one gets the radial matrix element

4

$$
\langle v \ell| r\left|v^{\prime} \ell^{\prime}\right\rangle
$$

where

$$
\ell^{\prime}=\ell+1 \text { or } \ell-1
$$

whereas in the relativistic case, because of the aperator α_{i}, one gets the overlap integral

$$
\begin{equation*}
\left\langle v K \mu \mid V^{\prime}-K^{\prime} \mu^{\prime}\right\rangle=\delta_{V K^{\prime}} \delta_{K,-K^{\prime}} \delta_{\mu \mu}^{\prime} \tag{109}
\end{equation*}
$$

and this introduces the selection rule $v^{\prime}=v$, which simplifies the results considerably and reduces the total number of final discrete states to which transitions are probable. Since the calculations are done numerically it is necessary to choose one particular nucleus and the one chosen is ${ }_{29}^{63} \mathrm{Cu}$. The oscillator parameter λ is fixed by adjusting the radius of the equivalent uniform sphere to $r_{o} A^{1 / 3}$ fermis where r_{0} has been chosen as 1.2 . This choice of the radius constant facilitates comparisons with the non-relativistic cases. The maximum number of final states to which a dipole transition is probable from the initial state $\left|0,-3, \frac{1}{2}\right\rangle$ happens to be 7 . Using the formula in Eq. 107 and averaging over the three directions of photon polarization as also the different degenerate states belonging to the energy level $v+|\kappa|=3$, the numerical value of the sum is 0.94 and thus slightly departs from the non-relativistic value of 1 . It is, of course, to be noted that the sum rule corresponds to the transitions of the 29 th particle in that particular initial state, or stated more precisely, this sum rule
is that of one particle in a given initial state described by the quantum numbers $v=0 ; k=-3$ and $\mu=\frac{1}{2}$. The percentage departure from the non-relativistic value is linked with the approximate procedure used in fixing the oscillator parameter λ. In Chapter II the sum rule was evaluated in.a more approximate way. Bethe's non-relativistic derivation was changed to the extent of calculating the matrix elements of z in the basis set $\Psi_{V K \mu}$ in place of the solutions of the isotropic harmonic oscillator $U_{v e m}$ as the basis functions. The numerical value of the sum for the initial state $\left|0,-3 \frac{1}{2}\right\rangle$ for the nucleus $A=63$ turns out to be 0.91 . This exhibits the unsatisfactory nature of the approximation in the evaluation of the sum rule by this semi-relativistic method. For the nuclei of experimental interest $2^{H e^{4}}, 6^{C^{12}}, 8_{8}^{0^{16}},{ }_{9} F^{19}$, $20^{\mathrm{Ca}^{40}}, 42^{\mathrm{Mo}}{ }^{98},{ }_{82} \mathrm{~Pb}^{208}$, calculations of the bremsstrahlung weighted cross section σ_{b} have been made using formula (85) In Chapter IV. As usual the one adjustable parameter λ has been chosen, following Levinger, such that the radius of the nucleus is equal to $r_{0} A^{1 / 3}$ fermis. The effect of different choices of r_{0}, which is a matter of dispute in the literature, has also been studied. The results are summarized in Tables III, IV and V. Several comparisons have to be made. There is the comparison of the overall result with the simple formula derived by Levinger ${ }^{\text {(13) }}$

$$
\begin{equation*}
\sigma_{b}=0.36 \mathrm{~A}^{4 / 3} \tag{110}
\end{equation*}
$$

and then there is the comparison with the calculations made using nonrelativistic wave functions. To facilitate the latter comparison the following percentage is shown in Table III:

$\frac{\text { Relativistic }}{\text { nonrelativistic }}$ nonciatistic 100

Tables IV and V emphasize that the above simple Levinger's phenomenological formula is not strictly correct. The constant .355 does not turn out to be a nucleus-independent constant but happens to be a function of the mass number A. However it is very interesting to note that a simple modification of Levinger's formula can be proposed

$$
\begin{equation*}
\sigma_{b}=0.355\left(\frac{r_{0}^{2}}{1.45}\right) A^{1 / 3}(A+\Delta) \tag{111}
\end{equation*}
$$

where Δ is the correction factor which is shown in Table V. This correction factor is itself dependent on A and is slightly sensitive to the choice of r_{0}. It may not be too wrong to say, however, that averaging over all values of r_{0} the correction factor can be taken to be . 025A and if this is substituted in Eq. (111) we can rewrite Levinger's fromula with a modified multiplying constant

$$
\begin{equation*}
\sigma_{b}=0.364\left(\frac{r_{o}}{1.45}\right) \mathrm{A}^{4 / 3} \tag{112}
\end{equation*}
$$

Unfortunately the comparison with experiment is nat very straightforward because the experimental results themselves have appreciable uncertainties in the measured cross section, as shown in Table III. It is not unreasonable to assert, however, that the relativistic values with the choice of $r_{0}=1.1$ appear to fit experimental results better than the non-relativistic calculations and are decidedly superior to Levinger's simple formula. The latter formula, though based on the non-relativistic harmonic oscillator mode1, uses the approximation $\mathrm{N}=\mathrm{Z}$ and hence checks with our calculations for these types of nuclei. The pronounced disagreement of Levinger's formula with experiment happens to be in the
case of lead where the relativistic calculations with amaller radius constant show very good agreement. It is quite probables as has been shown by Braun, that in such a heavy nucleus with such tight packing of nucleons there may exist relativistic motions. To some extent this can also be said of a very light nucleus like helium where probably the; nucleons almost simulate the motions of free particles. There is probably noticeable disagreement in the case of oxygen between theory and experiment and this is perhaps due to the existence of other modes in particular, the giant resonance which this kind of a theory cannot take into account.

In conclusion it appears to be safe to say that the dipole oscillator strengths' sum rule is not applicable, at least without suitable modifications, to relativistic quantum mechanical systems. There is strong ground for suspecting relativistic motions in helium and lead to the extent that photonuclear reactions and the bremsstrahlung weighted cross section can be accepted as representative experiments for nuclear structure. The simple formula of Levinger needs the slight modification suggested above.

TABLE III

BREMSSTRALUNG WEIGHTED CROSS SECTION σ_{b} IN UNITS OF $10^{-27} \mathrm{~cm}^{2}$

Nucleus	Non-Relativistic			Relativistic						$\begin{gathered} \text { Levinger's } \\ \text { Results } \end{gathered}$	Experimental Results
	$\mathrm{r}_{0}=1.1$	$r_{0}=1.2$	$\mathrm{r}_{0}=1.3$	$r_{0}=1.1$	(\%)	$\mathrm{r}_{0}=1.2$	(\%)	$\mathrm{r}_{0}=1.3$	(\%)		
${ }_{2}^{4} \mathrm{He}$	1.882	2.240	2.689	1.937	2.900	2.296	2.500	2.660	1.200	2.287	1.5-. 3.0
${ }_{6}^{12}$ C	8.143	9.690	11.373	8.414	3.333	9.968	2.867	11.657	2.500	9.893	5.4-12.0
${ }^{16} 80$	11.949	14.221	16.689	12.278	2.750	14.459	1.675	17.036	2.075	14.460	$7.2-7.4$
${ }_{9}^{19} \mathrm{~F}$	14.985	17.833	20.929	15.455	3.142	18.313	2.692	21.420	2.347	18.262	11.4-16.8
${ }_{20}^{40} \mathrm{Ca}$	40.543	48.249	56.626	41.881	3.300	49.600	2.800	57.985	2.400	49.213	26-32
$\begin{aligned} & 98 \mathrm{Mo} \\ & 42^{2} \end{aligned}$	131.170	156.103	183.204	135.175	3.053	160.190	2.618	187.365	2.271	161.668	110-140
${ }^{208} \mathrm{~Pb}$	348.831	415.137	487.210	358.202	2.686	424.702	2.304	496.244	1.854	443.455	270-375

$$
\begin{aligned}
& \text { TABLE IV } \\
& \delta_{b} / A^{4 / 3}
\end{aligned}
$$

Nuc1eus	Non-Relativistic			Relativistic			Levinger's Results
	$\mathrm{r}_{0}=1.1$	$\mathrm{r}_{0}=1.2$	$\mathrm{r}_{0}=1.3$	$r_{0}=1.1$	$\mathrm{r}_{0}=1.2$	$\mathrm{r}_{0}=1.3$	
${ }_{2}^{4} \mathrm{He}$	0.296	0.353	0.414	0.305	0.362	0.419	0.36
${ }^{12} \mathrm{C}$	0.296	0.353	0.414	0.306	0.363	0.424	0.36
${ }^{16} 80$	0.296	0.353	0.414	0.305	0.359	0.423	0.36
${ }^{19} \mathrm{~F}$	0.296	0.352	0.413	0.305	0.361	0.422	0.36
${ }_{20}^{40} \mathrm{Ca}$	0.296	0.353	0.414	0.306	0.363	0.424	0.36
$\frac{98}{42^{\mathrm{Mo}}}$	0.290	0.345	0.405	0.299	0.355	0.415	0.36
${ }^{208} 8{ }^{\text {Pb }}$	0.283	0.037	0.395	0.291	0.345	0.403	0.36

TABLE V
VALUE OF THE CORRECTION FACTOR \triangle IN RELATIVISTIC AND NON-RELATIVISTIC CASES

Nucleus	Non-Relativistic			Relativistic		
	$\left(r_{0}=1.1\right)$	$\begin{gathered} \Delta \\ \left(r_{0}=1,2\right) \end{gathered}$	$\left(r_{0}=1.3\right)$	$\left(r_{0}=1.1\right)$	$\left(r_{0}=1.2\right)$	$\begin{gathered} \Delta \\ \left(r_{0}=1.3\right) \end{gathered}$
${ }_{2}{ }^{\text {He }}$	0.000	0.000	0.000	0.116	0.100	0.048
${ }_{6}^{12} \mathrm{C}$	0.000	0.000	0.000	0.400	0.344	0.300
${ }^{16}{ }_{8}$	0.000	0.000	0.000	0.440	0.268	0.332
${ }^{19}{ }_{9} \mathrm{~F}$	-0.053	-0.053	-0.053	0.543	0.458	0.392
${ }_{20}^{40} \mathrm{Ca}$	0.000	0.000	0.000	1.320	1.120	0.960
$\frac{98}{42^{\mathrm{Mo}}}$	-2.000	-2.000	-2.000	0.931	0.514	0.180
${ }^{208} 8{ }^{\text {Pb }}$	-9.337	-9.337	-9.337	-4.000	-4.760	-5.653

REFERENCES

(1) Kramers, H. A. and W. Heisenberg. Z. Phys. 31, 681 (1925).
(2) Kuhn, W. Z. Phys. 33, 408 (1925).

Thomas, W. Naturwiss 13, 627 (1925).
(3) Jackson, J. D. Classical Electrodynamics, John Wiley and Sons, New York, 272 (1962).
(4) Kramers, H. A. Nature 133, 673 (1924).
(5) Heitler, W. The Quantum Theorey of Radiation, Oxford University Press, Oxford, 132 (1936).
(6) Arfken, G. Mathematical Methods for Physicists, Academic Press, New York, 633 (1970).
(7) Levinger, J. S. and H. A. Bethe. Phys. Rev. 78, 115 (1950).
(8) Swamy, N. V. V. J. Phys. Rev. 180, 1225 (1969).
(9) Biedenharn, L. C. and M. E. Rose, Rev. Mod. Phys. 25, 729 (1953).
(10) Melvin, M. and N. V. V. J. Swamy. J. Math. Phys, 36, 157 (1957).
(11) Payne, W. B. and J. S. Levinger. Phys. Rev. 101, 1020 (1955).
(12) Bezić, N., D. Brajnik, D. Jamnik and G. Kernel. Nuclear Physics A128, 426 (1969).
(13) Levinger, J. S. Phys. Rev. 97, 122 (1954).
(14) Braun, J. J. M.S. Thesis (Oklahoma State University, unpublished 1970).
(15) Jacobsohn, B. Ph.D. dissertation (University of Chicago, unpublished 1947).
(16) Massey, H. S. W. and E. H. S. Burhop. Proc. Roy. Soc. (London) A153, 661 (1936).
(17) Bethe, H. A. and E. E. Salpeter. Quantum Mechanics of One and Two Electron Atoms, Academic Press, New York, 248 (1957).
(18) Fock, V. Z. Phys. 89, 744 (1934).

APPENDIX A

PROGRAM FOR THE REQUIRED MATRIX ELEMENTS IN THE CALCULATION OF σ_{b} WHEN NEHO MODEL IS USED

This program, written in the FORTRAN IV language; will print out. the required matrix elements of σ_{b} in Eq. (85) of Chapter IV when the wave functions of NRHO model is used in, $\mid 0>$. The oscillator constant λ is not included in this program.

$$
\begin{aligned}
& \text { ZSQWO }=\langle 0| Z_{i}^{2}|0\rangle \\
& \text { ZIJWO }=\langle\dot{0}| Z_{i} Z_{i},|0\rangle
\end{aligned}
$$

The value of the variable N, is the number of protons in this program which must be changed for different nuclei. The input data are the quantum numbers v, ℓ, and m of the protons. Making use of Eq. (85) and the printed results the value of the bremsstrahlung weighted cross section σ_{b} can be calculated.

```
000000000111111111112222222222333333333344444444445555555555666666666677717777778
12345678901234567890123456789012345678901234567890123456789012345678901234967890
    101 FORMAT (4F5.1)
    102 FORMATIIX,I5,5X,4F10.1,5X,E11.4,F10.4)
    103 FORMATIIX,I3HSUM OF ZSOVLM,5X,EIIL.4)
    104 FORMATIIX, &HZSQWC IS,5X,ELI.4I
    105 FORMAT{1X,2[5,10X,4E20.4)
    106 FORMATIIX, EHZIJWC IS,5X,EIL.4)
    107 FORMATIIX,I4HSUM GF 2ILJ IS,EIL.4)
        S1(R1,R2)=SQRT(R1+R2+1.0/2.0)
        S2(R3)=SGRT(R3+1.0)
            S3(R4,R5)=SQRT(R4+R5+3.C/2.0)
            S4(R6,R7)= SQRT((R6*R6-R7*R7)/(12.0*R6+1.0)*(2.0*R6-1.0))!
            S5(R8,R9)=SQRT(()R8+1.0)*(R8+1.0)-R9*R9)/((2.0*R8+3.0)*(2.0*R8+1.0
            C|l
            REAL IV(130),IL(13C),IM(130),IMS(130),2SOVLF(130)
            SUM=0.0
            N=9
            ALPHA=1.0
            DO 10 i=1,N
            READ(5,101)IV(I),IL(I),IM(I),IMS(I)
            2SOVLH(I)=(-1.0/ALPHA*ALPHA)*(2.0*IV(II+IL(I)+3.0/2.0)*(1.C/3.0)*1
            C(2.0*(3.0*IM(I)*IM(I)-IL(I)*(ILII)+1.0)I)/((2.0*IL(I)-1.0)*(2.0*IL
            C(I)+3.01)-1.01
            SUM= SUM+ZSGVLM(I)
            WRITE(G,IO2II,IV(I),IL(I),IM(I),IMSII), 2SOVLMIII,SUM
    1O CONTINUE
            HRITE(6,103ISUM
            ZSOHD=SUM/A
            WRITE(6,104)2SGWO
            SUMM=0.0
            DO 20 L=1,N
            OO 20 K=1,N
            IF(L.EQ.K) GO TC 99
            IFIIMS(L)-IMS(K):NE.0.OI GOTO 99
            IF(IM(LI-IMIK).NE.O.0) GOTO }9
            IFIIL(L)-IL(K) .EQ.1.0) GOTO 11
            IFIIL(L)-ILIK) .NE.-1.01 GOTO 99
            IF(IV(L)-IV(K).EQ. 0.0) GOTO 22
            IF(IV(LI-IV(K).NE.1.0) GOTO 99
            2ILK =(-1.0/ALPHA)*SORT(IV(LI)*S5(IL(L),IM(L))
            ZJKL =(-1.0/ALPHA)*S2(IV(K))*S4(IL(K),IM(K))
            GO TO 100
    22 2ILK ={l.0/ALPHA)#S3(IVIL),ILIL)I#S5(IL(L),IM(L))
            ZJKL =(1.0/ALPHA)*SI(IV(K),IL(K))*S4(IL(K),IM(K))
            GOTO }10
    11 IF(IV(LI-IV(K).EQ. -1.0) GOTO 33
            IF(IV(LI-IVIKI.NE.O.0) GOTO 99
            2ILK ={I.O/ALPHAI*SI(IVILI,IL(L))*S4(IL(L),IM(L))
            2JKL ={1.0/ALPHA) & S3(IV(K).ILIK)|#S5(IL(K).IM(K))
            GO TO 100
    33 2ILK =(-1.0/ALPHA)*S2(IV(L))*S4(IL(L),IM(L))
            2JKL =(-1.0/ALPHA)*SQRT(IV(K))#S5(ILIK).IM(K))
            GO TO 100
    99 ZILK=0.0
```

CARD
COC 1
CARC
0055
0 0 5 6
0057
0 0 5 8
0059
0 0 6 0
0 0 6 1
0062
0063
0064
0 0 6 5
0 0 6 6

```
```

```
0000000001111111111122222222223333333333444444444455555555556666666666777777777778
```

```
0000000001111111111122222222223333333333444444444455555555556666666666777777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

ZJKL=0.0

```
ZJKL=0.0
    100 2I2J=(-1.0)*2ILK*2JKL
    100 2I2J=(-1.0)*2ILK*2JKL
        IFIZIZJ.EO.O.OIGC TO 20
        IFIZIZJ.EO.O.OIGC TO 20
        SUMM=SUMP+212J
        SUMM=SUMP+212J
        WRITE(6,10E)L,K,2ILK, 2JKL,2I2J,SUMM
        WRITE(6,10E)L,K,2ILK, 2JKL,2I2J,SUMM
    2O CONTINUE
    2O CONTINUE
        ZIJWO=SUNM/(N*(N-1))
        ZIJWO=SUNM/(N*(N-1))
        WRITE(6,107)SUMM
        WRITE(6,107)SUMM
        WRITE(6.106)ZIJWO
        WRITE(6.106)ZIJWO
        STOP
        STOP
        END
        END
$ENTRY
```

\$ENTRY

```

\section*{APPENDIX B}

PROGRAM FOR THE REQUIRED MATRIX ELEMENTS IN THE
CALCULATION OF \(\sigma_{b}\) WHEN EHO MODEL IS USED

This program will print out the same required matrix elements as the program given in Appendix A. The only difference is now the wave functions of EHO model are used in \(|0\rangle\). The oscillator constant \(\lambda\) is included in this program.
\[
\begin{aligned}
& \text { ZSQWO }=\langle 0| Z_{i}^{2}|0\rangle \\
& Z I Z J=\langle 0| Z_{i} z_{i},|0\rangle
\end{aligned}
\]

The input data are the quantum numbers \(v, k\) and \(\mu\) of each proton.
```

000000000111111111112222222222393333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
JCB
101 FORMAT(3F5.1)
102 FORMAT (1X,[5,4F10.1,5E15.4)
103 FORMATIIX,8HZSONC IS,10X,E15.4I
104 FORMATIIX,2I5,5x,4E20.41
105 FORMATIIX,9HZIZ JhO IS,IOX,E20.41
REAL V(130),K(130),U(130),L(130),E(130),CA(130),CB(130), O(130).
12SOVKUC1301.MC2.ZSOVNK(130)
COA(A,B)=-1.0\#SQRT(ARS((A-B+0.5)/(2.0\#A+1.C)))
COB(A,B)=SORT(ABS((A+B+0.5)/(2.0*A+1.0)))
COC(A.B)=SORT(ABSI(A+B+0.51/(2.0+A+1.0)))
COD(A.B)=SCRT(ABS((A-B+0.5)/(2.0*A+1.0)))
COE(A,B)=SORT(ABS((A+8-0.5)/(2.0*A-1.0)))
COF(A,B)=SORTIABS(IA-B-0.5)/(2.0*A-1.0)\)
COG(A,B)=-1.0*SORT(ABS ((A-B+1.5)/(2.0*A+3.0)))
COH(A,B)=SORT(AESI(A+B+1.5)/(2.0\#A+3.0)))
N=82
A=208.0
RM=1.67239*(10.0**(-24.0))
C=2.9974*(10.0**10.01
H=1.05443*(10.0**(-27.0))
VEM=1.6*(10.C**(-6.01)
MC2=RN\#C\#C
T=SQRT(|42.0 *RM*VEM*(A**(-1.0/3.0))|/(H*H))
THC=T*H*C
SUM=0.0
DO 10 I=1.N
READ (5,101IVIIH,K(II,UII)
O(I)=SORT(MC2*MC2+4,0*THC*THC*(VII)+ABS(K|I)|+0.5)!
CAII)=(1.0+(10(I)-MC2)**2)/(4.0*THC*THC*(VII)+ABS(K(I)I+0.5)I)**(-
10.5)
CBII|=({K(I)/ABS(KII)|)*(OII)-NC2)I/(2.0*THC*SQRTIVII)+ABS(KIII)*O
1.511
IFIKII).GT.O.OI GC TO 11
L(I)=-1.0*K(I)-1.0
CALL SS(VIII.LII),U(I)-0.5.S1)
CALL SS(VIII,L(I),U(I)+0.5.S2I
ZSQvKU(I)=(1L(I)+U(I)+0.5)/(2.0*L(1)+1.0))*S1+1
L(LII)-U(I)+0.5)/(2.0%L(I)+1.0))\#S2
CALL SSIV(I),L(I)+1.0.U(I)-0.5,S3)
CALL SSIV(II.L(I)+1.0.U(I)+0.5.54)
ZSQVNK (I)=({LII)-U(I)+1.5)/(2.0*L(I)+3.0))*S3
1+1(LII)+U(II+1.5)/(2.0*L(I)+3.0I)*S4
GO TO 22
11 L(I)=K(I)
CALL SS(VIII,LII),U(I)-0.5.55)
CALL SSIV(II,LIII,U(I)+0.5,56)
ZSOVKU(1)=(1LII)-U(1)+0.5)/(2.0*L.(1)+1.0))*S5
1+((LII)+U(I)+0.5)/(2.0*L(I)+1.01)*S6
CALL SS(VIII,L(I)-1.0.U(I)-0.5.57)
CALL SS(V(I),L(I)-1,0,U(I)+0.5,58)
ZSOYNK(II=(ILII)+U(I)-0.5)/(12.0*L(I)-1.01)*S7
1 +(iL(II-U(I)-C.5i/(2.0*L(I)-1.0))*SB
22 RZSQI= CA(I)*CA(I)*2SOVKU(I)+CA(II*CA(II*CE(II*CB(II*ZSOVNK III

```
CARD
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
```

 SUR=SUM+RZSOI
    ```
    SUR=SUM+RZSOI
    WRITE(6,102II,V(I),KIII,UIII,L(I),CA(I),CEII),OII),RZSOI,SUM
    WRITE(6,102II,V(I),KIII,UIII,L(I),CA(I),CEII),OII),RZSOI,SUM
    10 CONTINUE
    10 CONTINUE
        ZSOHC=SUN/R
        ZSOHC=SUN/R
        WRITE(6,103)2SOLC
        WRITE(6,103)2SOLC
        SUMM=0.0
        SUMM=0.0
        DO 20 J=1,A
        DO 20 J=1,A
        DO 20-H=1,N
        DO 20-H=1,N
        IF(J.EQ.M) GO TO 20
        IF(J.EQ.M) GO TO 20
        IF(K(J)) 2C2,202,121
        IF(K(J)) 2C2,202,121
    121IF(KIMI| 44,44,33
    121IF(KIMI| 44,44,33
    33 L\J)=K(J)
    33 L\J)=K(J)
        L{M}=K(M)
        L{M}=K(M)
        CALL AA(V(J)OL(J),U(J)-0.5,V(M),L(M),U(M)-0.5,211
        CALL AA(V(J)OL(J),U(J)-0.5,V(M),L(M),U(M)-0.5,211
        CALL AA(V(J),L(J),U(J)+0.5,V(M),L(M),U(M)+0.5,22)
        CALL AA(V(J),L(J),U(J)+0.5,V(M),L(M),U(M)+0.5,22)
        CALL AAPV{J),L(Ji-1,0,U(J)-0.5,V(M),L(M)-1.0.U(M)-0.5,23)
        CALL AAPV{J),L(Ji-1,0,U(J)-0.5,V(M),L(M)-1.0.U(M)-0.5,23)
        CALL AA(VIJI.L(J)-1,0,U(J)+0.5,V(M),L(M)-1.0.U(M)+0.5,24)
        CALL AA(VIJI.L(J)-1,0,U(J)+0.5,V(M),L(M)-1.0.U(M)+0.5,24)
        CALL AA(V(M),L(MI,U(M)-0.5,V(J),L(J),U(J)-0.5.25)
        CALL AA(V(M),L(MI,U(M)-0.5,V(J),L(J),U(J)-0.5.25)
        CALL AA(V(M),L(MI,U(M)+0.5,V(J),L(J),U(J)}+0.5,26
        CALL AA(V(M),L(MI,U(M)+0.5,V(J),L(J),U(J)}+0.5,26
        CALL AA(V(M),L(M)-1,0,U(M)-0.5,V(J),L(J)-1.C,U(J)-0.5,27)
        CALL AA(V(M),L(M)-1,0,U(M)-0.5,V(J),L(J)-1.C,U(J)-0.5,27)
        CALL AA(VIM),L(MI-1,0,U(M)+0.5,V(J),L(J)-1,0,U(J)+0.5,28)
        CALL AA(VIM),L(MI-1,0,U(M)+0.5,V(J),L(J)-1,0,U(J)+0.5,28)
        ZIVKLK =COA(L(J),U(J))#COA(L(M),U(M))#2I+COB(E(J),U(J)) #CCB(LI
        ZIVKLK =COA(L(J),U(J))#COA(L(M),U(M))#2I+COB(E(J),U(J)) #CCB(LI
        CMI,U(M)|*22
        CMI,U(M)|*22
            2IVNKL =COE(L(J),U(J))#COE(L(M),U(M))#23+COF(LIJ),U(J))#COF(L
            2IVNKL =COE(L(J),U(J))#COE(L(M),U(M))#23+COF(LIJ),U(J))#COF(L
        C(MI,U(M))#24
        C(MI,U(M))#24
            ZJVKKL =COA(L(J),U(J))*CCA(LIM),U(M))*2S+COB(LIJ),U(J))*COB(LI
            ZJVKKL =COA(L(J),U(J))*CCA(LIM),U(M))*2S+COB(LIJ),U(J))*COB(LI
        CMI,U(M)|#26
        CMI,U(M)|#26
            2JVNKK =COE(L(J),U(J))*COE(L:(M),U(M))*27+CCF(LIJ),U(J))*COF(L
            2JVNKK =COE(L(J),U(J))*COE(L:(M),U(M))*27+CCF(LIJ),U(J))*COF(L
        C(M),U(M))*28
        C(M),U(M))*28
            GO TO 1CC
            GO TO 1CC
    44L(J)=K(J)
    44L(J)=K(J)
            L(M)=-1.0#K(M)-1.0
            L(M)=-1.0#K(M)-1.0
            CALL AA(V(J),L(J),U(J)-0.5,V(M),L(M),U(M)-0.5,211)
            CALL AA(V(J),L(J),U(J)-0.5,V(M),L(M),U(M)-0.5,211)
            CALL AA(VIJ),L(J),U(J)+0.5,V(M),L(M),U(M)+0.5,212)
            CALL AA(VIJ),L(J),U(J)+0.5,V(M),L(M),U(M)+0.5,212)
            CALL AA(V(J),L(J)-1,0,U(J)-0.5,V(M),L(M)+1,0,U(M)-0.5,213)
            CALL AA(V(J),L(J)-1,0,U(J)-0.5,V(M),L(M)+1,0,U(M)-0.5,213)
            CALL AA(V(J),L(J)-1,0,U(J)+0.5,V(M),L(M)+1,0,U(M)+0.5,214)
            CALL AA(V(J),L(J)-1,0,U(J)+0.5,V(M),L(M)+1,0,U(M)+0.5,214)
            CALL AA(V(M),L(M),U(M)-0.5,V(J),L(J),U(J)-0.5,Z15)
            CALL AA(V(M),L(M),U(M)-0.5,V(J),L(J),U(J)-0.5,Z15)
            CALL AA(V(M),L(M),U(M)+0.5,V(J),L(J),U(J)+0.5,216)
            CALL AA(V(M),L(M),U(M)+0.5,V(J),L(J),U(J)+0.5,216)
            CALL AA(V(N),L(F)+1,0,U(M)-0.5,V(J),L(J)-1,0,U(J)-0.5,217)
            CALL AA(V(N),L(F)+1,0,U(M)-0.5,V(J),L(J)-1,0,U(J)-0.5,217)
            CALL AA(V(M),L(M)+1.0,U(M)+0.5,V(J),L(J)-1.0,U(J)+0.5,218)
            CALL AA(V(M),L(M)+1.0,U(M)+0.5,V(J),L(J)-1.0,U(J)+0.5,218)
            2IVKLK =COA(L(J),U(J))#CGC(L(M),U(M))*211*COQ(LIJ),U(J))*COD(L
            2IVKLK =COA(L(J),U(J))#CGC(L(M),U(M))*211*COQ(LIJ),U(J))*COD(L
            C(M),U(M))*212
            C(M),U(M))*212
            2IVNKL =COE(L(J).U(J))*COG(L(M),U(M))*213+COF(L(J),U(J))*COH(
            2IVNKL =COE(L(J).U(J))*COG(L(M),U(M))*213+COF(L(J),U(J))*COH(
            CL(M),U(M) ) #214
            CL(M),U(M) ) #214
            2JVKKL =CCA(L(J),U(J))*CCC(LIM),U(N))#215+COE(L(J),U(J))#COO(L
            2JVKKL =CCA(L(J),U(J))*CCC(LIM),U(N))#215+COE(L(J),U(J))#COO(L
            C(M),U(M))*216
            C(M),U(M))*216
            ZJVNKK COE(L(J),U(J)|*CCG(L(M),U(M))#217+COF(LIJ),U(J))#COH(
            ZJVNKK COE(L(J),U(J)|*CCG(L(M),U(M))#217+COF(LIJ),U(J))#COH(
            CL(M),U(M))#218
            CL(M),U(M))#218
            GO TO 100
            GO TO 100
    202 IF(K(M)) 66,66,55
    202 IF(K(M)) 66,66,55
    55L(J)=-1.0*K(J)-1.0
    55L(J)=-1.0*K(J)-1.0
            L(M)=K(M)
            L(M)=K(M)
            CALL AA(V(J),L(J),U(J)-0.5,V(M).L(M),U(M)-0.5,221)
            CALL AA(V(J),L(J),U(J)-0.5,V(M).L(M),U(M)-0.5,221)
    CALL AA(V(J),L(J),U(J)+0.5,V(M),L(M),U(M)+0.5,222)
```

 CALL AA(V(J),L(J),U(J)+0.5,V(M),L(M),U(M)+0.5,222)
    ```
CARD
C055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
C093
0094
0095
0096
\(\mathrm{CO97}\)
\(C 098\)
0099
0100
0101
0102
C103
0104
0105
0166
0107
0108
```

000000000111111111122222222223333333333444444444455555555556666666666777777777778
123456789012345678P012345678901234567890123456789C123456789012345678901234567890
00000000011111111122222222233333333344444444445555655555666666666677777777778 $1234567890123456789012345678901234567890123456789 C 123456789012345678901234567890$
CALL AA(V(J).LAN)+1.0,U(J)-0.5.V(M).L(M)-1.C.U(M)-0.5.2231
CALL AA(V(J) $1(J)+1.0 . U(J)+0.5, V(M), L(M)-1.0 . U(M)+0.5,224)$
CALL AA(V(M):-LIM),U(M)-0.5,V(J),L(J),U(J)-0.5,225)
CALL AA(V(M),LIN),U(N)+C.5,V(J),L(J),U(J)+0.5,226)
CALL $A A(V(M), L(M)-1.0, U(M)-0.5, V(J), L(J)+1.0, U(J)-0.5,227)$
CALL AA(V(M),L(M)-1.0.U(M) $+0.5, V(J), L(J)+1.0, U(J)+0.5,228)$
ZIVKLK =CCC(LIJ), U(J)) \#CCAIL(M), U(M))*でi +CCO(L(J), U(J))*CEB(L
C(M),U(M)) ${ }^{2} 22$
ZIVNKL =COG(L(J),U(J)) \#CCE(L(M),U(M)) $223+C C H(L(J), U(J)) \neq C C F($
CL(M), U(M)) $\ddagger 224$

```

```

C(M),U(M)) 226

```

```

CL(M), U(M)) $\# 228$
GO TC 100

```

```

$L(M)=-1 . C \neq K(M)-1.0$
CALL AA(VIJ), L(J),U(J)-0.5. VV(M),L(M),U(M)-0.5.231)
CALL AA(V(J),L(J),U(J)+C.5,V(M),L(M),U(M)+C.5,232)
CALL AA(V(J),L(J)+1.0,U(J)-0.5,V(M),L(M)+1.0.U(M)-0.5,233)
CALL AA(V(J),L(J) $+1,0, U(J) \neq 0.5, V(M), L(M)+1,0, U(M)+0.5,234)$
CALL AA(V(M),L(M),U(M)-C.5,V(J),L(J),U(J)-0.5,235)
CALL AA(V(M),L(M),U(M)+0.5,V(J),L(J),U(J)+C.5,23E)
CALL AA(VIM).L(M)+1,0,U(M)-0.5,V(J),L(J)+1.0,U(J)-0.5,237)
CALL AA(V(M),L(M)+1,0,U(M)+0.5,V(J),L(J)+1,C,U(J)+0.5,238)

```

```

C(M).U(M)I\#232
ZIVNKL \quad COG(LIJ), U(J)) \#COG(L(M), U(M)) $\ddagger 233+\operatorname{COH}(L(J), U(J)) \neq C O H($
CL(M), U(M)) 234

```

```

C(M),U(M)I*236
2 JVNKK $\quad=\operatorname{COG}(L(J), U(J)) \neq C O G(L(M), U(M)) \neq 237+C O H(L(J), U(J)) \neq C O H($
CL(M),U(M) 1 \#238
GOTO 100
100 RZILK \quad CA(J)*CAIM)*ZIVKLK $\quad+C A(J) \neq C A(M) \neq C B(J) \neq C B(H) \neq$
CZIVNKL
R2JKL $\quad C A(J) \neq C A(M) * 2 J V K K L \quad+C A(J) \neq C A(M) * C B(J) \neq C B(H) *$
CZ JVNKK
IFIRZILK.EG.O.O) GO TO 20
IFIRZJKL.EG.0.01 GO TO 20
RZIZJ=(-1.C)*RZILK*RZJKL
SUMM=SUNF+RZIZJ
WRITEIE,104)J,M,R2ILK,R2JKL,R2IZJ,SUMM
29 CONTINUE
$B=N$
ZIZJ×SUNM/(B*(B-1.0))
WRITEI6.105)2I2J
STAP
END

```CARD
01090110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0121
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0135
0136
0136
0137
0138
0139
C140
0141
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0155
0156
0157
```

```
0000000001111111111122222222223333333333444444444445555555555666666666677777777778
```

```
0000000001111111111122222222223333333333444444444445555555555666666666677777777778
1234567890123456789012345678901234567890123456789C123456789012345678901234567890
```

1234567890123456789012345678901234567890123456789C123456789012345678901234567890

```
```

SUBROUTINE AAIRYL,RLL,RNL,RYK,RLK,RNK,ANSI

```
SUBROUTINE AAIRYL,RLL,RNL,RYK,RLK,RNK,ANSI
    SI(R1,R2)=SORT(ABS(R14R2+1.0/2.01)
    SI(R1,R2)=SORT(ABS(R14R2+1.0/2.01)
    S2(R3)=SQRT(ABS(R3+1.0))
    S2(R3)=SQRT(ABS(R3+1.0))
    S3(R4,R5)=SQRT(AES(R4+R541.5))
    S3(R4,R5)=SQRT(AES(R4+R541.5))
    S4(RG,R7)=SQRT(ABS((R6*RG-R7*R7)/((2.0*R6+1.0)*(2.0*R6-1.01)))
    S4(RG,R7)=SQRT(ABS((R6*RG-R7*R7)/((2.0*R6+1.0)*(2.0*R6-1.01)))
    S5(RB,R9)=SORT(ARS(((R8+1.0)*(R8+1.0)-R9#R9)/((2.0*R8*3.0)*
    S5(RB,R9)=SORT(ARS(((R8+1.0)*(R8+1.0)-R9#R9)/((2.0*R8*3.0)*
    C(2.0*R8+1.C))])
    C(2.0*R8+1.C))])
    ALPHA=1.O
    ALPHA=1.O
    IF(ABS(RNL).GT.RLL) GO TO 999
    IF(ABS(RNL).GT.RLL) GO TO 999
    IF(ABS(RNK).GT.RLK) GD TO 999
    IF(ABS(RNK).GT.RLK) GD TO 999
    IF(RNL-RMK.NE.O.O) GO TO }99
    IF(RNL-RMK.NE.O.O) GO TO }99
    IF(RLL-RLK.EG.I.C) GO TO 111
    IF(RLL-RLK.EG.I.C) GO TO 111
    IF(RLL-RLK.NE.-1.0) GO TO }99
    IF(RLL-RLK.NE.-1.0) GO TO }99
    IF(RVL-RVK.EG.O.0) GO TO 222
    IF(RVL-RVK.EG.O.0) GO TO 222
    IF(RVL-RVK.NE.1.O) GO TO }99
    IF(RVL-RVK.NE.1.O) GO TO }99
    ANS=(-1.0/ALPHA)*SORT(AES(RVL))*S5(RLL,RNL)
    ANS=(-1.0/ALPHA)*SORT(AES(RVL))*S5(RLL,RNL)
    GO 10 777
    GO 10 777
    222 ANS=(1.0/ALPHA)*S3(RVL,PLL)*S5(RLL,RML)
    222 ANS=(1.0/ALPHA)*S3(RVL,PLL)*S5(RLL,RML)
    GO TO }77
    GO TO }77
    111 IF(RYL-RVK.EQ.-1.0) GO TO 333
    111 IF(RYL-RVK.EQ.-1.0) GO TO 333
    IF(RVL-RVK.NE.O.0) GO TO }99
    IF(RVL-RVK.NE.O.0) GO TO }99
    ANS*(1.0/ALPHA)*S1(RVL,RLL)*S4(RLL,RML)
    ANS*(1.0/ALPHA)*S1(RVL,RLL)*S4(RLL,RML)
    G0 10 777
    G0 10 777
    333 ANS=(-1.0/ALPHA)*S2(RVL)*SG(RLL,RML)
    333 ANS=(-1.0/ALPHA)*S2(RVL)*SG(RLL,RML)
    GO TO 777
    GO TO 777
    999 ANS=0.0
    999 ANS=0.0
    777 RETURN
    777 RETURN
    END
    END
    SUBROUTINE SS(A,B,C,S)
    SUBROUTINE SS(A,B,C,S)
    IF(ABSICI.CT.BI GO TO I
    IF(ABSICI.CT.BI GO TO I
    S=(-1.0) *(2.0*A+8+1.5)*(1.C/3.0)*(1(2.0*(3.0*C*
    S=(-1.0) *(2.0*A+8+1.5)*(1.C/3.0)*(1(2.0*(3.0*C*
    1C-A*(B+1.0))//((2.0*B-1.0)*(2.0*8*3.0)))-1.0)
    1C-A*(B+1.0))//((2.0*B-1.0)*(2.0*8*3.0)))-1.0)
    GOTO 2
    GOTO 2
    1 S=0.0
    1 S=0.0
    2 RETURN
    2 RETURN
    END
    END
$Entay
```

\$Entay

```
CARC
0001
0002
C003
COO4
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
CO20
0021
0022
0022
0023
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
C038
0039
0039
0040
0040
0042
0043
0044
0045
0046
0047
004 B

\section*{APPENDIX C}

\section*{PROGRAM FOR THE SUMMED OSCILLATOR STRENGTHS}

The summed oscillator strengths, \(\sum_{n^{\prime}} f_{n} n^{\prime}\), where \(f_{n} r_{n}\) was defined in Eq. (107) of Chapter VI were calculated using this program. For the given initial states,
\[
\operatorname{SUM}=\sum_{n^{\prime}} f_{n^{\prime} n} .
\]

The input data cards inc1ude all the degenerate initial states of a given energy level and all the possible final states.
```

000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
0002 101 FORMAT(3F5.1)
0003 102 FORMAT(1X,15,3F1C.1,5X,3E15.4)
0004 LO3 FORMATIIX.2I5.2F20.4.10X,5HFOR X
0005 104 FORMATIIX,2I5,2F20.4,10X,5HFOR Yi
0006 LO5 FORMATIIX,2IS,2F2C.4,10X, SHFOR 2I
0007 106 FORMAT (|X.4F20.4)
REAL V(130),K(13C),U(130),L(130),0(130),CA(130),CB(130),MC2
COA(A,B)=-1.0*SGRT(ABS((A-B*0.5)/(2.0*A+1.0 (1)
COB(A,BI=SGRTIABS((A+B+0.5)/(2.0+A+1.0))I
COC(A,B)=SORT(ABS((A+B+0.5)/(2.0+A+1.0))1)
COD(A,B)=SORT(ABS((A-B+0.5)/(2.0\&A+1.0)))
COE(A,B)=SSR\{ABS((A+B-0.5)/1(2.0+A-1.0)1)
COF(A,B)=SORT(ABS((A-B-0.5)/{2.0中A-1.0)|)
COG{A,B)=-1.0*SORT(ABS((A-B+1.5)/(2.0+A+3.0))
COH(A,B)=SORT(ABS((A+B+1.5)/(2.0*A+3.01))
N=32
A=63.0
RM=1.67239*(10.0**(-24.01)
C=2.9979*(10.C** 10.01
H=1.05443*(10.0**(-27.01)
VEM=1.6\#(10.0\#\#(-6.0))
MC2=RN\#C\#C
T=SORT(142.0 *RN*VEM*(A**(-1.0/3.01)I/(H*H|)
THC= T*H*C
DO 10 I=1, A
READ (5,101)V(I),K(II,U(I)
O(I)= SQRT(MC.2\#MC2+4.C\#THC*THC*(V(I)+ABS(K(I))*0.5))
CAII)=(1:0+((O(I)-MC2)**2)/(4.0*THC*THC*(V(II*ABS(K(I))+0.5)))*\#(-
10.5)
CB(I)=((K(I)/ABS{K(I)))*(O(I)-MC2))/(2.0*THC*SQRT(V(I)+ABSIM(I))*O
1.511
WRITE(6,1O2I I,VII),K(I),UIII,CA(II,CEIII,CIIS
10 CONTINUE
DO 60 J=1,12
SumX=0.0
SUMY=0.0
SUMZ =0.0
SUM=0.0
DO 20 M=1,A
(F(O)J).EO.O(M)) GO TO 20
COEFF={2.O\&MC2)/(C(M)-0(J))
IF (K(J).GE.0.0)L(J)=K(J)
IF (K(M).GE. 0.0) L(M)= K(M)
IF (K(M).LE, 0.0) L(M)= (-1.0)\#K(M)-1.0
IF (K(J).LE. 0.0)LIJ)= (-1.0)\&K(JI-1.0
AA=CA(J)
AP=CA(M)
BB=CB(J)
BP=CE(M)
A=COA(L(J),U(J))
B=COB(L(J),U(J))
C=COC(LlJ),U(J)
D=COD(L(JI,U(J))

```
CARD
0001 JOB
```

000000000111111111112222222222333333333344444444445555555555666666666677777777770
12345678901234567890123456789012345678901234567890123496789012345678901234567890
E=COE(LIJI,U(J)!
F=COF{L(J),U(J)}
G=COG(LIJI,U(J)I
H=COH(LIJ).U(J):
AF=COA(L(M),U(M)
BF=COB(L(M),U(M))
CF=COC(L(M),U(M)I
DF=COD(L(M),U(M)I
EF=CCE(LIM).U(M)|
FF=COF(LIMI,U(M)I
GF=CCG(L(M),U(M)I
HF=COH(LIF),U(M)I
IF (K(J)) 202,2C2,121
121 IF (K(M)) 44,44,33
33 L(J)=K(J)
L(M)=K(M)
IF ((U(M)+0.5).EQ.(U(J)-0.5)) GO TO 111
IF (IU(M)-0.5).EQ.U(J)+0.5) GO TO222
IF (U(M).EC.U(J)I GO TO 333
GO TC 20
111 IF (L(M).EO.L(J)-1.0) GO TO 112
IF (L(M)-1.0.EQ.L(J)) GO TO 113
GO TC 20
112AAX=(AP*AA*BB**F*E)
AAY=(AP\#AA\#BB\#BFFE)
AAX=AAX\#AAX
AAY=AAY*AAY
GO TC }9
113 AAX=(AP*AA*BP\#FF*A)
AAY=(AP*AA*BP*FF*A)
AAX=AAX*AAX
AAY = AAY\#AAY
GO TO 99
222 IF(LIM).EQ.L(J)-1.0).GO TO 223
IF (L(M)-1.0.EQ.L(J)) GO TO 224
GO TO 20
223 AAX=(AP\#AA*BB*AF*F)
AAX=AAX\#AAX
AAY=AAX
G0 T0 99
224 AAX=(AP*AA*BP*EF*B)
AAX=AAX\#AAX
AAY=AAX
GO TO 99
333 IF(L(M).EQ.L(J)-1.0) GO TO 334
|F (L(M)-1.O.EO.L(J)) GO TO 335
GO TO 20
334 AAZ1=AP*AA*BB\#(E\#AF-F*BF)
AAZ=AAZ I*AAZI
GO TO 999
335 AAL1=AP*AA* AP* (EF*A-FF*\&)
AAL\#AAZIFABZI
GO TC 999

```
CARD
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
C071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
COB4
CC 85
0086
CC87
0088
0089
0090
0091
0092
0093
C094
0095
C096
0097
C098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
```

000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
L(M)=(-1.C)\#K(M)-1.0
IFILIM).EQ.L(J)-1.0) GOTO 23
GO TO 20
23 IF (U(M)+0.5.EQ.U(N)-0.5) GO TO 21
IF (U(M)-0.5.EQ.U(J)*0.5) GO TO 31
IF (UPM).EQ.U(J): GO TO 41
GO TO 20
21 AAX=AP*AA*(BB*E\#CF-BP*HF*A)
AAX=AAX*AAX
AAY=AAX
G0 10 99
31 AAX=AP*AA*(BB*F*CF-BP*GF*B)
AAX=AAX A AAX
AAY=AAX
GO TC }9
41 AAZ=AP*AA*(BB*(E*CF-F*DF)-BP*(A*GF+B*HF))
AAZ = AAZ \# AAZ
GO TO 999
202 L(J)=(-1.0)*K(J)-1.0
IF (K(M)) 55,55,66
66 L(M)=K(M)
IF (LIM).EG.L(J)+1.0) GO TO 67
GO TO 20
67 IF (U(M)+0.5 .EQ. U(J)-0.5) GC TO }7
IF (U(M)-0.5 .EQ.U(J)+0.5) GO TO }7
IF (U(M).EQ. U(J)J GO TC }7
GO TC 20
71 AAX=AP*AA* (BB\#G㫜BF-BP\#FF\#C)
AAX=AAX* AAX
AAY=AAX
GO TO 20
72 AAX=AP*AA*(BB*H*AF-BP*D*EF)
AAX=AAX**AAX
AAY=AAX
GO TO 99
73 AAZ=AP\&AA*(BB*(G*AF-H\#BF)-BP*(C*EF-D*FF))
AAZ=AAZ*AAZ
GO TO 999
55L(M)=(-1.0)\#K(M)-1.0
IF (U{M)*O.5.EQ.U(J)-0.5) GO TO 51
IF (U(M)-0.5.EQ.U(J)+0.5) GO TO 52
IF IU(M).EG.U(JI) GO TO }5
GO TC 20
51 IF IL(MI.EQ.L(J)+1.0) GO TO 54
IF (L(M).EQ.L(JI-1.0) GO TO 56
GO TO 20
54 AAX=(AP*AA*BB*G*CF)
AAX=AAX\&AAX
AAY=AAX
GO TO 99
26 AAX=(AP*AA*BP*C*HF)
AAX=AAX*AAX
AAY=AAX
GO T0 99

```
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
```

 52 IF (LIM).EQ.L(J)+1.0) 60 TO.58
    ```
    52 IF (LIM).EQ.L(J)+1.0) 60 TO.58
        IF [L(M)+1.O.EO.L(J)] GO TO 59
        IF [L(M)+1.O.EO.L(J)] GO TO 59
        GO TO 20
        GO TO 20
    58 AAX=(AP*AA*BB#H*CF)
    58 AAX=(AP*AA*BB#H*CF)
        AAX=AAX*AAX
        AAX=AAX*AAX
        AAY=AAX
        AAY=AAX
        GO TO 99
        GO TO 99
        59 AAX=(AP*AA**BP*D#GF)
        59 AAX=(AP*AA**BP*D#GF)
        AAX=AAX*AAX
        AAX=AAX*AAX
        AAY=AAX
        AAY=AAX
        GO TO }9
        GO TO }9
    53 IF (LIM).EQ.L(J)+1.0) GO TO 531
    53 IF (LIM).EQ.L(J)+1.0) GO TO 531
        IF (L(M)+1.O.EQ.L(J)) GO TO 532
        IF (L(M)+1.O.EQ.L(J)) GO TO 532
        GO TO 20
        GO TO 20
    531 AAZ=AA*AP*BB*)G*CF-H*DF)
    531 AAZ=AA*AP*BB*)G*CF-H*DF)
        AAZ=AAZ#AAZ
        AAZ=AAZ#AAZ
        G0 10 999
        G0 10 999
    532 AAZ=AA * AP*BP* (C*GF-D*HF)
    532 AAZ=AA * AP*BP* (C*GF-D*HF)
        AAZ=AAZ#AAZ
        AAZ=AAZ#AAZ
        GO TO 999
        GO TO 999
    99 AAX=CCEFF*AAX
    99 AAX=CCEFF*AAX
        SUMX= SUMX+AAX
        SUMX= SUMX+AAX
        WRITE(6,103)J,M,AAX, SUMX
        WRITE(6,103)J,M,AAX, SUMX
        AAY=AAY#COEFF
        AAY=AAY#COEFF
        SUMY=SUMY+AAY
        SUMY=SUMY+AAY
        HRITE(6,1041J,M,AAY, SUNY
        HRITE(6,1041J,M,AAY, SUNY
        GO TO 20
        GO TO 20
    999 AAZ=AAZ*CCEFF
    999 AAZ=AAZ*CCEFF
        SUMZ=SUM 2+AAZ
        SUMZ=SUM 2+AAZ
        HRITE(6,105IJ.M,AAZ,SUMZ
        HRITE(6,105IJ.M,AAZ,SUMZ
    20 CONTINUE
    20 CONTINUE
        SUM= SUMX+SUMY SUMPZ
        SUM= SUMX+SUMY SUMPZ
        WRITE(6,106) SUNX,SUNY,SUMZ,SUM
        WRITE(6,106) SUNX,SUNY,SUMZ,SUM
    6 0 \text { CONTINUE}
    6 0 \text { CONTINUE}
        STDP
        STDP
        ENO
        ENO
SENTRY
```

SENTRY

```
CARD
0163
0164
0165
\(01 \epsilon 6\)
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0180
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199

VITA
Chang Hsu
Candidate for the Degree of
Master of Science

Thesis: STUDY OF OSCILLATOR STRENGTHS AND DIPOLE SUM RULE USING A RELATIVISTIC NUCLEAR MODEL

Major Field: Physics
Biographical:
Personal Data: Born in Kiangsu, Republic of China, August 1, 1942, the son of Hsu Chengi, Ist Lt. of the Chinese Air Force.

Education: Chinese Air Force Academy, Taiwan, Republic of China, and received the Bachelor of Science degree with a major in physics in September 1965; completed the requirements for the Master of Science degree in May, 1971.

Professional Experience: Electronic Officer in the Chinese Air Force from 1966 - 1967.```

