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PREFACE 

In this study, the dipole.sum rule for the oscillator strengths has 

been evaluated using the non-relativistic harmonic.oscillator model an,d 

the relativistic equivalent harmonic oscillator model. The results of 

the sum rules in.both cases are not identical. The brem'13strahlung 

weighted cross.section has·also been calculated using the relativistic. 

equivalent ha~onic oscillator model and compared with the well known. 

result obtained with· the non..-.relativistic harmonic oscillator model. A 

relativistic correction factor for the bremsstrahlung weighted cross 

section has been evalua,ted. 

I would like to thank Dr. N' v. V. J; Swamy·for his suggestion of 

the problem and his patient guidance during the cours.e of this. work. I 

would also like to thank the OSU Research Foundation and the Ministry of 

National Defence of .the Republic of China for the:f.,r support and encour­

agement. 
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CHAPTER I 

INTRODUCTION 

The experimental discovery of the giant dipole resonance stimulated 

theoretical research in photo-nuclear reactions, While Goldha~er and 

Teller interpreted this in a unique way as a collective di,pole ·vibration 

ot the ,neutrons. ,and protons· in the m,1cleus, efforts were made ·to apply. 

the knowledge of the well known atomic photo-etf ect to the nucleE:lr 

gamma absorption.· Levinger .and Bethe madean.e~tensive study of the 

dipole transitions, in nuclei. Their study covered 

a) oscillator strengths in the dipole approx:l.mati,on, 

b) sum rule. for tbese ,dipole oscillator. strengths., 

c) effect of neutron-proton exchange force on .. the sum rule, 

d) cross section for photon absorption integrated over energy, 

e) mean energy for photon.absorption and a sum rule for .. quadruple 

e) 

transitions, 

dw the dipole cross.section weighted by the~. approximation to. 
w 

the brumsstrahlung spectrum. 

Before the.workof Levinger ancl Bethe, Feenberg and Siegert. showed that 

an attractive exchange force,increased the sununed oscill~tor strength. 

above the value calculated on the basis of ordinary forces. Leving~r 

and Bethe used an, independent particle model of the nucleus, without , 

Pauli Correlations betV{.een. the nucleons, and established that ·quadrupole. 

transitions are of negligible importa:nce and that a suitable shell, model · 
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of the nucleus and an application of .time dependent perturbation-theQry 

to the nucleus-proton ·interactiqn can.explain even the ·giant dipole. 

resonance without invoking_ a special hydrodynamical model:of collective. 

mutual oscilla,tions of .. neutron and proton fluids, 

On the experimental -side besides an extensive·study of the .giant 
I 

resonant absorption,.important; contributions have been ma.de·in:yields 

and angular distributions. of y-n processes, photoneutron. cross sect.ions., 

photodisintegration of very light nuclet and the brunsstrahlung weighted 

cross section. While there . have .been, .noticeable discrepancies in the.· 

measurements of different groups using different techniques, the agree-

ment betwe~n theory.and experiment has been.fair but not·of such .. a 

nature as to leave nothing to be desired, The Levinger-Bethe theory, 

revised by Levinger later, has been increasingly helpful in understand.,. 

ing photo-nuclear reactions. The existing theories a,re-purely non­

relativist~c and it may well be that the non-existeµce.of an exact 

relativistic nuclear model till now.has prevented any consideration .of 

relativistic motions of nucleons :i..n their interaction with. phot.ons •. 

The Equivalent Harmonic Oscillator -model recently proposed by Swamy. 

and its applica,tion to the analysis of high energy-electron scattering 

expel;'iments by Braun, encourage.investigation of its suitability in 

studying photo-nuclear cross sections, In _this thesis two aspects .of 

nuclear photon absorption have been studied,. the.validity of the sum 

rulefor di.pol~ transitions.when.relativistic.effects a'J\'e included, and 

secondly the improvement.in ·the. agreement between theory and experiment_ 

as far as br1,1:msstrahlung weighted cross sections are·concern,ed. The 

isotropic harmonic.oscillator with spin-orbit -coupling ha,s long been 

used as a shell :model of the nucleus. In particular Levinger used this 
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model.in his calculations. The EHO reduces to this in the non-relativis­

tic limit, which facilitates comparisons and th~ study of relativity as 

a correction .factor. While :Levinger did make use of the Dirac~Coulomb 

wave furtctions to study .relativistic radiative transitions. in atoms, 

this has not·been dqne for nuclei so far. 

The viewpoint qf this work is nqt to assume the. exis.tence ·of .rela.,. 

tivistic motions in nuc,lei but rather to as-certain regions.of nuclei 

where relativistic motions. may be significant if in such .cases the. 

relativistic theoretical results show a significant'improvement in their 

agreement with experiment as compared with. non.,.relativistic calculations. 



CHAPTER· II 

OSCILLATOR STRENGTHS AND SUM RULE 

Th.e concept of oscillator strength and the sum rule· orginat;ed in 

the scattering of .electromagnic waves by.atoms, in particular the dis­

persion.low developed.by K~amers and.Heisenberg(!) in quantum. mechanics, 

In·the same context.Thomas and·Kuhn~2 ) developed a sum. rµle for the· 

oscillator strengths in the electric dipole approximation which was 

based on the correspondence principle.. It is interesting to note that 

Heisenberg developed the most. fundamental relations in quantum mechanics, 

the well-known quantum condition .between x .and P , [x, P ] =. i'fi., based x x 

on the sum rule. In other1 words, the sum rule preceded quantum mechanics 

in.a sense, For this reason.it is necessary to trace .the deve:t.opment of. 

the concept of oscillator strengths and·the sum rulei 

In classical.electrodynamics the total power radiated.from an· 

oscillating dipole is given by the expression(J) 

p = 
4 

w j+Pj2 ... -"3" 
3c 

[l] 

-+ 
where, P is the oscillating dipole moment, c the speed of light, and w 

th.e ap.gular firequency. 

This expression of course gives the tot~! power radiated, whereas 

the angular distribution is given.by the following expression, 

w4 i"Pi 2 sin2e. --3 
8'1TC 

4 

[2] 



..... 
where the.angle 6 is measured from the.direction of P. In t}\e deriva-

tion of.tqese results in·classic,al electromagnetic ·th~ory.the energy of 

flux is given by.Poyn~ing's theorem and.the powerradiated·per unit 

solid angle is averaged over a .. complete,period of osci.llat;ion ,of ·the 

dipole. 

Kramers{4) made the fundamental·assumption·that an.atom, when ex­

posed to radiation becomes a.sotirve of secondary spherical wavelets, 

which are coherent with the·incident waves. A tra:f,.n of palarizeq har-

5 

monic'wayes of frequency·v, the electric vector of which at the point ·in 

space where the atom is saturated.is·represented by 

.... 
E = E ft cos 2irvt. [3] 

is incident on the·atom. E here .. is the amplitude and n·is a unit vec;:tor. 

The secondary wavelets can,be·deecribed as orginating from an oscillating 

dipole9 the streng~h of whic_h is given by 

..... 
B =. P ff cos (2irvt ,- ~) [4] 

where Pis ·the amplitude'and ft'. also a unit vector, while ~represents. 

the phase.differ-ence·between the 1secondary and primary waves~ The am-

plitude'P will be propor~ional to the amplitude E:of the inc:i;.dent waves~ 

a~d' this ·is .. the relat:f,.~nship that Kramers ·first calculated. Taking a 

model of ·t'h,e atom as an electron isotropically ·bound to a position ,of 

equilibrium,, Kramers derived,, 

p = 
2 

E ~ 1 
m 4 2 (. 2 ..;. ". 2) 

. 1T "i 
[5] 



where eand m-are the charge and mass of an electron ap.d·v1 is one of 

the natural frequencies of·the electton. · 

If v1v2 •.•• v r are the absorbtion frequencies • corresponding t:o tl!-e · 

stationary. states of, the atom,. then.· the fc;irmula ·becomes geheralized. to 

6 

p ... E E f 
i i 

e 2 1 
m 4 2 c· . 2' . 2) 

[6] 
7T \)i - \I 

and. here. fi,are constants which were actually determined experimentally 

from the abs .. orption ;lines .• 

Modifying this classical picture by bot~ the:concept of sta~ionary 

states and, transitions between'them; Kramers was. able. to derive the 

follqwing formula, applying the correspondence principle that in the . 

li.mit of l,.arge quantµm numbers or as Planck's constant· (h) tends. tc,> zero, 

t;he, qua:nt:um ~echanica~ syst.em goes over into a cla:saical, system •... Stated· 

differently, in _the region wher.e success.ive ,stationa;ry states of an atom, 

diff et' ·only·· comparatively little from each other; the int;eraction between . 

the at:pm and the field of radiation tenqs to.coincide with the interac-

tion tq be expect,ed on the .basis of classical. ,.electrodynamic ·theory. 

The· superscri.pt a, refer to a~sorbtion and• the supers,cript e refers to 

emission in the;foll,.9wing formula, the.A's are the Einstein.coefficients. 

representing. the probability of .. an isolated, atom ·undergoing in ·Unit· 

time, transi.tions ·between stat.ionary. stat:es giving rise -to etther 

emission or ab.sorbtion of a. spectral. line., 

2 
1 p E·E A a ,.a e· ... E E A e e 

= T. . 
i i 'i m 2 a2 2 j j j 

4ir (vi - \) ) 

2 
1 e [7] 2 ' . 2 .. e2 - ,)) m 4ir (v j 
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A characte:r;istic time t ·for both emission and abso.rption is introduced 

and·this represents.the time in which the energy of a pai;-ticle·perform­

ing linear harmo.nic oscillations of frequency v is reduced. to l/f.. of its 

value.. A • will ·be a dimensionless quantity f and this f represents the . 

vittual oscillat·or strength~ In the revised· formula, of Kramers, radia':" 

tion reaction, that 1is the reaction of the atom on· the incident .. radia­

tion is .taken intq account.by the introduction of virtual.harmonic os­

cillators ·and it is the.number or the strength of these oscillators that: 

the f represents. 

It is important to know t~at up to this point.P represents t:he di"'." 

pole moment induced by.· the electromagnetic wave that is incident .. ,on ·the 

atom and once.the dipole moment is known·the radiation ·is.then computed 

according to the classical formula. The differential scattering cross 

section .in ·classical theory is.given by the ratio of the intensity of 

the radiation in a particular directi~m to the intensity of incident 

rac:J.iation, 

When .the atom is exposed. to ext.ernal monochromatic ra,4iation of 

frequency v it not only emits secondary monochromatic.spherical, waves 

of frequency v which are coherent with the incident radiation but, 

accord:f..ng to the . corre13pondence principle, spherical{ waves of other 

frequencies are also emitted, frequencies (v ± ·v'), where hv' denotee 

the. energy difference. of ·the atom between .,two stationary states. This 

incoherent radiation,is the Raman effect in ·the atoms and molecules. 

Kramers and Heisenberg refined the original, formulat.ion .. of ·Kramers in a . 

quantum mechal;lical but :still semi-classical treatment of· the int~raction, 

of the a.toms. ·and the-radiation. The model, ·of :the atom is. that; of an 

oscillating dipol,e ·and the.effort was to c~lculate the dipole moment 
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induced in.the a1;:9m by the incident electromagnetic wave. However, the 

possibility of -incoherent scattered waves has been intt;oduced and the 

formula.for tbe scattering moment.developed by Kramers and Heisenberg 

from the correspondence principle is given by 

P(t) = 
e2 fa fe 

E - O:: 2 _ v2 - e~ \i 2 _ \1 2) • cos (271'\lt) 
471'2m a \I 

[8] 

a e 

As in Kramer~s original formula, once again, T is the decay time of 
\) . 

classically oscillating elect.ron ,with frequency v · 

3c3m 
T "" 

\) 8.222 71' e \I 

and the strength of the t:r;ansition is given by the number f 

[9] 

f = [10] 

where A denotes Einstein's probability coefficien~. 

The total intensity of scattered light per unit-time is given by 

the application of classical.electrodynamic formula for the radiation 

from the oscillating dipole, using the above dipole moment, 

It may. be remarked incidentally that different types of scatte.red 

radiation and the tr_ansition between .stationary states to wh;lch they 

give rise, should leave the energy.distribution.in the black-body radia-

tion and statistical equilibrium .distribution of the atoms unchanged. 

Before proceeding to. the fully quantum mechanical derivation of the 

well-known.Kramers Heisenberg dispersion formula it .is worth mentioning 

thatr Kuhn andThomas(2) noticed,a sum rule obeyed by the oscillator 

strengths corresponding to the above paragraph. 

The·quantum mechari,ical derivation of sum rule .and the co+respondence 



principle argument leads to.the following set of formulas. 

Lights of frequencies \11 , \12 •• ,\IY can.induce transitions of the 

Hydrogen.atom to a number of higher states e:1 , e: 2 ... e:y. For a.radia..., 

tion with frequency \I not close to one of the resonance.frequencies 

\11 , \1 2 •••. \1 2 Thomas and Kuhn assumed tha-t the oscillating dipole moment 

of the atom.can be representing by 

9 

P 1 e2 r Pi 
= -- . E [11] 

E 4TI2 m i•l ~.2 _ \12 
l. 

in analogy witlJ. classical dispersion theory. Here, as earlier, P and·E 

ai;e ·the. amplituc:les of the dipole moment and electric vector of the inci-

dent light respectively and pi is the number of dispersion electrons 

which is appropriate for the transition (o-+- i) and which number is. 

assumed identical with the number of absorption electrons. 

For very large frequencies of incident radiation.this reduces to 

p - ... 
E 

[12] 

It is known that the dispersion. associa~wit)I. the dispersion vector P 
is equal to 

dE -- ... dt 

and this simply gives the energy dispersed per unit time per atom as 

dE 
- dt = 

4 e 

3 3 2 c m 

[13] 

[14] 
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r 
If one, substitutes i~lpi • 1 in this expression .then the well-~nown cross 

section of Thomson is reproduced. It is this approJdmat;e ·agreement of 

the dispersion cross section with experiment .that has estabJ,ished the 

validity of the ruJ,e f Pi = 1.. The conne.ction ·with optical dispersion 

r~lation however is given by a calculation, . from the above .. induced dipole 

moment vector, of .the dipole: moment density or -dipole moment pe:i;- unit 

volume, and the polarizability.and relating tqat to the refractive index! 

This of·course is not the way in which the dispersion formula is useful 

for dispersion in quantum mechanics.. The quantity of importance and .. 

interest, therefore, is the oscillator strength which in classic9-l theory 
: .. '""'·· 

represents the number of dispersion electrons that participate in the 

proper vibration in question. In quantum theory this number need not-be 

an interger, it represents the strength of .the oscillator or what frac-

tion of a given. electron trated as a classical oscil:l.ator. contributes to. 

the dispersion. By comparison of the formulas of K.ramers and Kuhn it is 

easily noticed that the oscillator strength f used by Kuhn is (A'r) intro-

duced by .Kramers namely the product of the Einstein '.s coefficient and 

the decay time of electron. The K.ramers Heisenberg derivation is not 

ful,ly quantum mechani_cal. not only becau1:1e it .was still obtained from the 

correspondence principle way of calculating the dipole moment_, but the. 

oscillator ·strengths are not glven in terms of quantum mechanical matrix 

elements and most important·of all t~e radiation field is ·not quantized, 

As is well-known, the most accurate description,of the interaction of 

matter and r~diation involves quantizing the radiat:i,.on field and treat-:-

ing the interaction between radiation and atoms as a perturbation. The 

t£ansition probabilities and th.e cross section are then calculated 

according to time dependent perturbation theory, The perturbing Hamil.,.. 
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tonian is 

2 - e (+ +A) + _e A2· · - -µ p ~ 2µ [15] 

and the radiation field is.quantized. One speaks not o:f electromagnetic 

waves being scattered by the atom but of photons·and electrons .and the 

photon number and electron number before and after the collision, · In 

the case of dispersion therefore there are two possibilities which, ex-

periments can not distinguish. hv A quantum of energy hv and momentum -
c 

is opsorbed by the atom or, more precisely by the electron in, the coulomb· 

field. So in an intermediate state no light quantum is present; The 

excited electron then makes the transi.tion to the final state and a 

photon with ene;rgy hv' is emitted, On the other hand it is equally 

possible that in the field of the incident photon the electron first 

emitted· a hv', thus creating a intermediate state in which two light 

quanta hv, hv' are present and eventually the electron absorbs the .in-

coming radiation hv. There is a possibility of .interference between 

these two processes and therefore the matrix elements have first to be 

added and tb,en the absolute square of their surii is introduced into the · 

formula of the time dependent pertul:'.bat~on theory for· the transition 

probability. The matrix elements are computed in the basis of product 

wave functions, the factors.of which represent the wave functions.of the 

photon and the electron in the initial and the final.states, The vector 

potential in tb,e interaction Hamilton.ial given above is usually taken ,to 

be 

+ 
A = A 

0 

++ 
A -i k·r 
e: e [16] 
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The time facto.r is omitted here and is taken into account by the energy 

conservation be.tween the two· stationary states :and the photon. This 

+ + 
leads·to P ·A being equal to 

+ + 
P • A = [17] 

The presence o~ the exponential factor, ·often referred to as a reta~da-. 

tion factor,. complicates ·the evaluat:µm o:f the.· integrals-. However_, in 

tqe cases of experimental ·int;erest (kr) happens to be a very small 

quantity being the ratio of the linear dimension,of the at()m (l0"°'.'8 cm) 

and, the wave length of the ·outgoing rad_iat:fron (4000 x 10"'."8 cm). In this 
++ 

-i k•r · long wave length approximation, therefore, the.e can be replaced 

byl and this·is often referred ta as a dipole approximation, because. 

then .. _th,e quant\J:Ill mechani_cal formula parallels the oscillating .dipole in . 

the Kramers·Heisenberg.formulation of dispersion theory. This fully 

quantu.m. mechanical formula is given,in-Heitler's Quantum.Theory of,Radia­

tion(S) 

and·in,the· case of coherent: scattering 

2 1 P n ni Pn:n J?n ni P.nin, d• r dQ [ E ( O;Q , 1 o + o o o) . = o . µ .i' E ... E. + I<:. E . - E - k •. 
0 . i 0 0 i 0 

2 + cos e] 

[18] 

[19] 
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In the.above formula if .n • n.then it.corresponds the Rayleigh scatter­
o 

ing, whereiq the process of scattering the quantum state of the atom is. 

not-changed. If ·n r n then the atom has made a transition.and this 
0 

correspond.s t9 Raman scattering, where the incident photon and the out-. 

going photon have different frequencies and the difference i~ energy is 

used. up in making a jump between stationary states by the atom on'which 

t~e light is incident. 

We now can introduce the fully quantum mechanical definition of.the 

oscillator strength from the above formula. The oscillator strength is 

as proportion~! to the numerator -of the two t.erms in the cro.ss section 

formula. 

,_ 
f = -~ w , ) <n I ~ I n' > ( nn' i;1 n n . [20] 

This is the definition of the oscillator strength in th.e dipole approxi"'-

mation of the quantum mechanical interacti<;>n between. radiation and 

matter. And the most· important sum rule Thomas..,.Reiche.,..K,uhn rule .is now 

a rule for the sum of the oscillator strength for all.transition$ which 

·start from a definite:state n of.the atom. This :tiappens to be a very 

general rule which holde, for any atom or molecule. with or without'exter-. 

nal fields, for any polarization -,direction and no ma1;:1tet: which· (if any. 

of. the various. angular momentum operators. are constants .of the motion). 

For one electron this sum equals. one and· for z ele.ctrons this sum is 

equal to the total number of electrons z. Stated simply, this sum is 

E f = z n' n 'n 
[21] 

n' 
(sometimes the notation f is also used .for f. , ) • Alth.ough it has be~n n · n n 

established in accor'dance with the , correspondence ·principle by Thomas and 
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Kuhn the sum rule·. can be derived. simply by considering the fol:lowing com-

mutator relations and using the properties .of completeness of <the eigen.,.. 

functiqns ·of .. a Hermitean Hamiltqnian, and closure. 

Consider the double ·commutator .[tz, g] 1 z]. 
1 +2 

If H "" 2m P + V (r) , 

then according to Heisenberg matrix mechanics we have, because 

[z, V(r)] = O, 

.. 
[ H] 1 [ p 2] = i'fi p z, . = -2 z, 

~· m z m z 

using the quantum condition ,[z, P) 

~ve 

= i~ and [z. P ] = x 

Hi . .·. 112 
[ [ z , H] , z} = [ -m 'P , z'l = -

- z · m 

[22] 

[ z, · P ] = ·o, we . y 

[23]• 

Taking the expectation vall,le of both .sides with respect to the normalized 

eigenstate lo> of the Hamiltqnian g, 

(ol[z) ~l" 
) 

[24] 

The left hand·si4e equals 

Now 

'(ol[~1H]\n)=(o\rH[vi)-(ol H~\n> [26] 

1-\\fl)::::: En In) [27a] 

( o I H =o E o < o \ [ 2 7b J 
• .. 

( O \ [ Z 1 H] \ n) = (El'\ - E o) ( o \ ~I vi/ [28] 
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therefore, 

Hence the sum rule, 

[30] 

Two things are very important in the above derivation, firstly that the 
2 

double commutator is equal to (~) and secondly the matrix elements of P 
m 

are related to the matrix elements of Y through the Bohr frequency con-

dition, We will later see that these relations are not necessarily 

valid in the case of a relativistic theory of electron, viz~ if g happens 

to be a Dl.rac Coulomb Hamiltonian instead of a non-relativistic Schro-

dinger Hamiltonian for central fields. 

The quantum mechanical T. R· K. sum rule can be said to correspond 

to classical integrated power absorbtion for forced oscillation by a 

charged oscillator or that it gives the classica.1 Thomson cross section 

for the forward scattering amplitude. 

A third interpretation of the oscillator strength is through the 

quantum mechanical expression for the electric polarizability. 

"' dipole. mow.evrt 'Z. - \ ( h\ ~ \o) I 
-~------ = '2 e L. ------
ele.c.1"\c. fie.Id \'\ £n - E 0 

[31] 

"' ---- -f-on - e L_ 

~• m Wo: 

Here the oscillator strength is the fraction of the electron bound by a 

2 
linear sping of spring constant K = nl w , on on 

:·' ·\ 
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We will now calculate the oscillator strength for nuclear case, 

i.e., "(-ray absorbtion by nucleL It is to be noticed that as :far as 

the physics and the quantum mechanical analysis are concerned, the ab-

sorbtion of optical photons by atoms and absorbtion of gamma rays by 

nuclei are two similar processes, and it is in this way that Bethe and 

Levinger applied the knowledge of atomic spectra. to nuclear photon 

absorbtion. The model of the nucli will be a shell model in which each 

nucleon is moving independently of the others in an average central field 

described by an astropic harmonic oscillator potential. The energy 

levels are given by E , Eq. [32] E = 1lw 
n n c 

3 (2v + i + 2> and the normalized 

single particle wave functions are given by U 1 (r.6.$.) - vm 

[33] 

[34] 

where, M is a Whittaker function and A represents the oscillator con­

stant IIDW and x = A2y2 • These solutions have a definite parity (-)t. 
7 

This Hamiltonian has rotational synunetry writing z as r cos e =~ rY~ 
we get the parity selection rule for the matrix element of z, by con-

sidering the following integral: 
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In our c~se R-1 = R-, R-2 = 1, R- 3 = R-' and m1 = m, m2 = o and m3 = m'. The 

Clebsch-Gordan. (c-) coefficients vanish whenever '.ll,~ 1:- R, + 1 or R, - 1 

m' 1:- m. 

The selection rule.for the magnetic "iuantwm number (m) is, there-

fore, 

~m - m' - m = o [36] 

The selectiOn rule for the orbital quantum number (R-).is, therefore, 

R,' - R, = ± 1 [37] 

and .. 

(\f' .R.+1 VY\ I"?\ \fl \.'YI>= [38a] · 

[38b] 

for all other R,'. 
[38c] 

And the radial integral in the oscillator strengths become~· 



X f -x-t M ""+·ht ) 4 +<1: ( -x) M "'+{+~ ,~+t ex) .a')( 
(10) Evaluating the integral , we get 

..L 
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TU.-+~) \U .. -t-~) Tlt+ ~) Tlv-+1) 

T l \.r1 + l + ~) T t \j - \J1-+ I ) 

. I 

xc 
In:. 0 

T \ I -t- ~\) 

Tl~+""+~) 

I 
\) + \T' 

(-1) I 
A 

..L 

\ T( \J1 +I) T c \r"-\-- l ;- ~) L' x 
\ T l v--\- I ) T ( v-' + Q. -+ ~) J 

X flv--v-1+1) Tl\r'-,,-_,.;.) . \ t (+ ~l ('-''-~+!) 

[39]. 

From the abqve formu],a we .get by algebraic manipolation the following 

oscillator .strengths. 

r\l+I l.-1 \'\\ 

lll"R.WI = 
[40b] 
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[40c] 

I/: 

[40d] 

1' 

As a result--of the selection rules .on 'the quantilm _nuril.b~rs v, 11.· and m~ in_ 

the summation only a few terms survive namely v' = v, v + 1 for JI.' = Jl.+l 

and v' = v v - 1 for JI.' = JI. - 1. Incidentally it is to be note~ that 1 

the summation, as far as the sum rule is concerned, has to be done on 

all the quantum numbers which. represent a partic~lar .state of a .. one par..:. 

ticle system. Carrying out·this·summati!'>n 

[41] 

We therefore get the :sum equa:l to 1. This is ·not unexpected be.oaus.e the 

solutions form a complete set'and are ,the ei,genfuri.ctions of the non~ 

relativist~c ·Hamiltonian 

H • 
~2 2 1 2 2 

--'i/ +-mw r 2µ 2 . 0 
:[42] 

and·therefore the double ommnutator relation Eq. (23), and the replace-: 

ment_ of p matrix element, by they matrix element .are easily. acc9mplish-. 

ed. However, this calcu~ation provides an algebr-ic and numerical check · 

on the accuracy of the suur rule. ' It ··is pointed out by Fack (\B) that 

the sum. rule. is really not valid if one goes to· a more. complicated sys-



20 

tem than Hydrogen ._atom. It is generally understood. that if there are 

z electrons .the sum of the oscillator strength gives z, .. · This really 

does· not turn out .to be .the ca.se if one. bears. in mind the identity of 

the electrons and that . they obey the Pauli exclusion principle.· The 

requirement of antisymmetry on. the wave function of the many electron·. 

system results in the peculiar quantum mechanical effect of an exchange 

integral. · The single particle Hamiltonian should really be written as 

the sum of three terms, the kinetic energy, potential energy.and the· 

exchange energy which has a sign opposite to the potential energy, ·With 

this ·Hamiltonian, the double commutator relation, 'which is the .most .im-

portant quantum mechanic.al equation that gives .. rise tG the. sum rule, is 

no longer the same because z in general will not commute, with the ex~ 

change part of the Hamilto.nian. In the case of the ntic'lear photo effect 

Levinger. and Bethe corrected the. sum rule fo.r ·certain other reasons be-

cause in their . original. treatment they ignored the Pauli correlations. 

The two particle nuclear force has; besides-the ordinary interaction, an 

exchange interaction. This exchange interaction is a dynamical part· of· 

the nucleiir fqrce and.is not to be confused with a quant;um mechanical 

exchange arising from the antisymmetry of the wav:e·function, i.e., aris-

ing from the Pauli positional correlations in the motions of the parti-

cles. They noticed that the final result of .the sum rule has to be 

correcte4 (7) 

l: f = NAZ (1 + 0 I sx) 
n on 

[43] 

where N is the number of neutrons and Z the number of proton!:\ and A is 

the sum. of Z and N •. x is the fraction of attractive force for the 

neutron ... proton po ten t;ial.: In spite of this, however, the sum rule has 
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been.very.helpful. in understanding photo'nuclear'reactions •. The mest 

outstanding photo nuclear. reaction happens to ·be .. the gaint ;dipole' 

resona~ce which is known t~ exist in almost 'all nucli except .the really. 

light on~s. In the analysb.of this respnant'photo absorbtion the sum 

rule plays . an important part· •. 

The ab9ve ,disc~ssion is . confined to non-relativistic quantum~ 

mechanics. It is interesting to, ask what happens· to the sum rule •if in' 

the computation .of ·the osc:f..llat;or strength, inste;:td of non'":'relativistic 

basis sets, relativistic bas.is. sets are us.ed. This has n~ver been .at-

tempted because of the unavailability of •a relativistica~ single part·i ... 

ale, .nuclear model. Very recently a relativistic .-equivalent -harmonic. 

oscillator ·model has·b~en·proposed(S)~ It is therefore tempti'!=lg t0 use. 

the ·exact .. relativistic eigenfunctions of .this Hamilton:l,.an to compute, as 

an appreximation, the oscillator stre~gths and the sum rule~ While .a 

deta,iled discussion of the rel;:1.tivist±c .escillator is given in a _later 

chapter, the.· import an~ equations 'and results .will be reproduced. here. 

The. eigenfunctio:Q.s ·of the Hamiltonian happen .. to be . 

y\rXM = 
\ \r X M) 

Sx { E - W\o) I ~ 
V--XJ>.t' 

2. "~ lj'+ \x\+¥. 

[44] 

It':f.s interesting to note that the radic!:!-1 functions occurring in ·this 

spino+.a+e identical to the funct±ons·occurring in the,non-relativistic. 

harmonic-oscillatqr sqlutions •. Secondly, this relativistic Hamiltonian. 

gpes.over,into the non-relativistic llamiltoriian in the limit'.pf low 

velocities. This .facilitates greatly the comparison be.tween relativistic· 
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and non-.relativistic results and, in par.ticular ~.the. evaluatic:m of, the 

relat~vistic corrections, if any, that heed to be made both in tQ,e ·os~ 

cillator strengths as .well .. as the sum. rule .. 

The Dirac quanto.m numlile:r X in the eigenfunction '1' · can, be ex-. v'l<.µ .. 
pressed in the language· of .orbital quantum number R. using tile relation 

in Eq •. (52) and, ·therefore, the eigenfunctiQn 'l'v)(µ cari ,be writtei1; as 
.. ' 

function of q(l{intum number v, R., : and µ·-for a: chosen. j (or )() v~1).1e. as . 
I 

in Eq. (70) •. The parity selection rules fo.r the matr.ix el,eiiient 'of .z, 
,,, 

derived for the Sphericl!l 'Harmonics Y~(.e.+) as in Eq. :<36), Eq. (37) and 
' ' 

Eq. (38) can now be applied, to simplify the inte-grals and further the 

radial in,tegral,s .are·the same as given in Eq. (39). The latter happens 

to be so because. the raqial parts of .. the wave functions .. in ·the rela.-

tivist:i,.c ·anc;l non-relativistic cases ar~ the· same. The oscillator· 

st:r.engths calculated using the eigenfunctions of E;· H, O. Hamiltpnian 

are now formec;l as ,follows', Whe!l. initial •state is clwsen,, such that 

j = R. + ~ ' (K < 0) ' then' for j I ... R. '. + ~ (KI < 0) we have 

' (Yl=f\J'"X-IM= 
Tn v-x1v.. ';. (En- En•) 

>.2.. c~ .. .R.-t-~/ 
(Q.+}A+~)(]-M+~) 

X \ 4- X-11'c' < 1r+ Q+ ~) J u-+.1.+ ~,-+ 

t E" -VYI,<.' )( E~' -1>1,c') J -r + h ~ J 
~ 

x 

[45a] 
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IV\= r = "":2._~ (E:~-Ei-.,1)------~-+ V\ t V-)( J-.-\ 11'1 )... "t l <._ I{+ I ) 

x ( Q+JA+-k) ( ~-M ;-k) 

4- l E~ - W\o (_~ E") ( E:, - \Mo~~ E~·) 

'J. \ 4 A' -Ii c' t v- + ~ + t) .J v- + o_ -t {: + 

( E 0 - WI,<-')(!:."' -vn,c_~) J -r+ 1.-t1, ) .,_ 

and for j' = 2 - ~we have 

I t \J\1-:X..\ . -Iv\· I< AA (~I\ 

+ ... , = -

x 

x 4- ;.,t° \J ( 4'/ ~,_c.,_ ).,_ ( 1..1-H. ·\ ~) ( v--\- Q.+ ~) 

(-z.k+"3.)-:z.. 

, 
r\I\ = r"+' -x M 

--\-\'\ tV-XM -

x ( l+M+~) ( Q-M + ~) X 
4 ( E~ - W\oC.~ E.-) ( E\'\~ - W\oC.~ E\':) 
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[4Sb] 

[4Sc] 
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n' 
f · = o for a:J_l other: c~ses. 
n 

Then·the. sum rule, 

\!'"' ')<.' M.' + V-XM 
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[45d] . 
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[46] 

Because of the. functi6nal depend~nce. of the terms· on. th,e energy E · .. v 

of the stat~ it is obvious .that the terms .can not be summed as easily as 

in the non..,..+elativistic case, This is done numerically and.the sum.gives 

0.68 as againstl in the.non.-relativistia case. The detail ·of the choice 

of A, the oscillator parameter, is discussed elsewhere. Th'is result, 

although it compares with Levinger's(ll) result of 0.85 for th,e Coulomb 

field case (Levinger, incidentally includes retardation also), is ap-

proximate because of the na.ture of the derivation. For a realistic 

theory the interaction of the proton with the electromagnetic field.has 

to. be treated according to quantum electrodynamics. , This is done· in a 

later chapter. 



CHAPTER III 

THE RELATIVISTIC·EQUIVALENT HARMONIC OSCILLATOR 

As a preliminary to the introduction.of the relativistic Equivalent 

Harmonic Oscillator proposed by Swamy(S) it is necessary to discuss the. 

spin angle functions, The spherical harmonics whic~ form an ortho~ormal 

set of functions in polar angle space are defined as 

These satisfy the.phase relation 

= [48] 

and the ort~onormal property 
~ ~~ I 

)
0 

:si" ecle )
0 

d ~ '(."*le, 'f) '( te, L\') ~ ~~Q' ~ .,,.111 [49] 

The well known spin functions for a particl~ of spin 1/2 are given by 

[so] 

with the spin up or down.m = ±.~is t~ken along the Z axis. From these 
S· 

two the spin-,angle functions are now defined as 

[51] 

I: == :t.1: 
where Care Clebsch-Gordan coefficients. These were also called spheri-

cal spinors by Ro.se and Biedenharn who first .. introduced them (9). In the 
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above, the Dirac quantum number K simultaneously determines both l.and j 

the latter being the usual total a~gular momentum quantum number relating 

to the quantum mechanical vector sum of.the orbital angular momentum and 

spin. This is a'Q. algebraic number ~which can take on all integral values 

except O. It is negative if tfye spin and orbital angular momenta are 

parallel ai;i.d positive in.th,e ot,her case~ We thus have 

for j = Q, - ~ K = Q, 

[52] 

for i = 1. + ~ K = ', -Q, -1 

1 now ca~ be t~eated as. a .. function of K. and one introduces, 1(-K), de-

noted by the symbol I, as follows 

We note. that in either case !Kl = j + 1/2 •. For each K there will;be 

2IKI values.of·µ which.can take·on the half .integral.values: 

µ = 1 3 5 +.- +- +-- 2' - 2' - 2' .... ~ [54] 

2 
The spin angle functions defined, in Eq. (51) ai;-e eigenfunctions.of J, 

J, and t2 ~ where J is·th~ total angular momentum j = ! + S • µnow re-. 
z 

fers to the projection quantu.m number µ = J z = lz + s z = m + ms. The 

xµ are also eigenfunctions of. the spin..,.orbit ·coupling operator intro- .. 
K· 

duced by Dirac,(in units.of h = c • 1) 

• (+ .+ ) µ µ cr•L + 1 X ~ -K. X 
K K 

[55] 

Since -K and 1(-K) are defined, it is easy to introduce ~~ as follows 
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~M= L c ~(-X) -L \X.\-1: '\M.- i: rx: ... 
-x ""'C µ..--c. ""'C M ll-)(.) 2. 

[56] 

-c:.'"' 1. i 
The operator that connects the two spin-angle functions is 

[57] 

and the connecting relationship is 

-+ r" xµ a • 
K 

= [58] 

The explicit form of the spin-angle functions in all four important cases 

is given below. 

For the case j = t - ~ (K > o), K = t and t = i - 1 

l(~ -

and 

-J .t-M.+i 
£..Q.-t-\ 

J {+M +-1: 
"2..11..+ ~ 

J .l-u--i 
L.ll-\ 

. ..l.. 

\~-~ 

\:+~ 
[59a] 

[59b] 

For the opposite case, where j = i + ~ (K < o), K = -i -1andI•i+1 
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M t+u.+~ y~-~ 
rx_)( "2. Q. -t- I 

[S~cj 

J j_-U-\'~ Y:+~ 
and. "l.. fl "t- \ 

/( M (- J ~-;_~:3i 1~~-l' [59d] 

-)( J i+M +\ yM+i: J 
"2.J..-+3 \Q."\-\ / 

The.spin angle functions form an.orthonormal set'in.spin-angle space 

' < X ~, \ 'X~ ) = ~xx ~.,~' [60] 

where.the scalar product implies integration over the angles and'summa- .. 

tion.over the spin indices; 

Since.multiplication of these spin-angle functions by any function 

of r.does.not alter .the angular properties of ·these functions, in parti~ 

2 12, + + + .... 
cular their relat:f,.onshi·P to J , J z, cr • L + 1 and cr • r, we . can intro-

duce the spinors 

[6la] 

[6lb] 

Here Fv1 Cr) is the normalized radial solution of t~e ;non~relativistic 

isotropic. harmonic oscillator 

Nowthe orthonormal property of ·these spinors can be generalized. 

[63] 
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v is the quantum number which, with 1, determines the oscillat;:o,r energy 

levels 

Evl = (2v + 1 + 3/2) "fiw [64] 

The·EHO is obtained by addin~ the int~raction 

[65] 

to the free particle Dirac Hamiltonian (units of 'fl,= c = 1) 

+ '*. 
H = p . (m ) + p (cr ,p) 

fp 3 0 1 
[66] 

This has·exact eigenvalues.and eigenfunctions. as follows~ 

H '¥ = E. '¥ v1q1 vi<:µ. [67a] 

[67b] 

In, terms of the spinors given in. Eq, (59) the above solutions .'i'vi<:µ are 

given.explicitly by 

' \j )< .u) 

\~68] 

and the·bound state·normali.zed const;:ant is· 

(E - m ) 2 ~ 
[l .+ 2 0 ] 

4A. (v + j'i<:[.+ ~) 
[69] 
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Explicit forms of the solutions fro the two cases of importancej • JI,~ 

and j '"' JI, - ~ are given below for j = JI, + .~ (i< < o) 

for j = JI, - ~ (i< > o) 

J Q+µ+i "Flj Q y~-t 
,. "2.Q."T \ \ .. 

~(E-W\o) 
2 1'.j \l+\x\+1 

\ 

-\. ( E.-v\h) 

2..,\J \J -t\ X\-\-~ 

J J-+M++ 
· 2 Q.. ;- I 

·~ ( E-\'l'\,,) 

~A~\J-\-\X\+t 

[70a] 

[70b] 

As was shown in ref. 14; in the non.,-relativistic limit; the EHO Hamil-

tonian yields the usual isotropic harmonic oscillator ·Hamilton~an with 

a.spin ... orbit·coupling term of the Thomas-Frenkel form. 

[71] 
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The degeneracy of the energy levels of ERO is four times that of the 

non~relativistic oscillator and a comparison of these degeneracies is 

given in Table I. 

TABLE I 

DEGENERACY OF THE EHO AND THE NRHO 

EHO NRHO 

E2 2 4 
v + IKI Degeneracy E 2v + R, Degeneracy - m c 

0 

61.2 1 4 3 0 1 - .fi.w 
2 

101.2 12 5 1 3 2 -1lw 
2 

141-2 3 24 1..11w 
2 2 6 

181-2 4 40 9 3 10 --tiw 2 . 

221.2 5 60 ll 1iw 
2 4 15 

261- 2 6 84 13 1iw 
2 

5 21 



CHAPTER IV 

BREMSSTRAHLUNG WEIGHTED CROSS SECTION 

The bremsstrahlung weighted cross section is defined as 

= f (cr/w) dw [72] 

where crb is the electric dipole cross section for the nuclear photo­

effect weighted, by the dW/W approximation to the bremsstra,hlung spectrum. 

crb is rather easily compared with measured bremsstrahlung yields for 

photonuclear processes. As has been shown by Levinger and Bethe(?) crb 

is not changeq by the neutron-proton exchange force and, in the harmonic 

oscillator , approximation, of the nuclear shell model,. crb is proportiona:J. 

to the nuclear radius. For this reason sometimes the experiment is used 

as a.means of determining the nuclear radius parameter r , Experimental­
o 

ly the total photonuclear cross section has been determined by measuring 

the •attenuation .. of the pho to.n flux f r,om betatron ganuna , rays .or some 

other copious source, using a Compton spectrometer with good resolu"."' 

tion (lZ). The loss of intensity _in the inc:i,dent photon st.ream is partly 

due to nuclear absorption and partly due to. electronic absorption. How-. 

ever, since accurate theoretical cross sections are available for photon-

electron. interactions such as the. Compton effect, pair production, 

radiat:i,ve corrections, it is possible to subtract the-electronic absorp-

tion from the measured attenuation and get a fairly accurate.value for 

the cross section dl,l,e to nuclear absorption. This· type of experiment is 
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preferred to measuring the partial cross sections-~\1-p, \1-n, 'I)-\) cross 

sections--and summing these because of the uncertainties concerning the. 

geometry involved in the latter. While the nuclear part .of the :absorp.:.. 

tion is only a small fraction of the tota;L loss of photons 'in.the inci-

dent beam, in the case of light nucl.ei the nuclear part. of the total 

cross section ha,ppel).s to be well distinguishable. Several experiments 

have been made on light.closed-shell nuclei. 

The cross section for a particle in an initial. state lo> .to make a 

transition to another stationary state In> by photon absorption is ob-. 

tained from the transition probability computed according to time de-

pendent perturbation theory in quant4m mechani.cs. According to the 

semiclassical theory of interaction of .radiation with matt~r the photon. 

is described by the vector potential 

A = z A e-ikx 
0 

[73] 

Here the gamma ray is assumed to be polarized along the Z axis and pro-

pagating along the .x direction and the .. amplitude A0 determines the num-. 

ber of photons in the incident flux! In the nonrelativistic Schrodinger 

theory the Hamiltonian for an electron in.a pure radiation field is 

given by the gauge invariant substitution 

Such .. that 

+ + e+ 
P+P+-A 

c E + E + e~ 

2 +2 +2 e + + e +. + e +2 
p +p +cP•A+cA•P+2A 

c 

and the Schrodinger equation becomes 

[74a] 

[74b] . 
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2 1 +2 e++ e++ e+2 
[-- (P + - P•A + - A•P + -- A ) + V] ~ = E~ 2m c c 2 

c 

+2 
The term in A gives rise to second order transiti.ons in which more than 

one photon is involved which is negligible and in the radiation gauge 

+ e ++ ++ 
V•A • O, ~ = 0, the two terms -2-- (P•A + A•P) combine to give the per­mc 

burbing potential 

~ A.·-P = me 
iefi. + + 

- -A•V me 
[76] 

The transition probability between states lo> and In> is proportional to 

the absolute square of the matrix element 

I -ikx + I <O A e z•·V n> 
0 

[77] 

For photon energies of experimental interest and where the radiation is 

observed far away from the atom kx is very small compared to 1 and hence 

the exponential in the perturbing potential can be replaced by unity. 

This is known as the dipole approximation or neglect of the retardation 

factor. The time factor is eliminated by conservation of energy between 

the initial, state of the particle jo>, the final state of the particle 

In> and the photon energy. The vector pote11tial has, of course, to be 

real and this necessitates the addition of the complex conjugate to the · 

term in Equation (77), however, this leads to emission of a gamma ray and 

hence can be set equal to zero in absorption probability calculations; 

Applying Heisen,berg matrix mechanics and the Bohr frequency rule, the 

above ,matrix element can.be related to the oscillator strength as the 

following steps show. 

Since [78] 



36 

and-

i w <o.lzln> on · [79] 

then the matrix element becomes, in the di_pole approxi~ti9n, 

[80] 

If·we compare with the-definition of .the oscillator strengths, as given· 

in.Eq. (20), it is ea~y·to-see they are related by a,const!ilnt (-2). 

The cross section for the absorption of ·a photon of energy W • En -· E0 

is~ tl!,en· .given, by <7 ). 

CJ . .,;;, 
on. 

2 2 2; 
7Te'nf 
µc on = 

4 2 2 2 
7T e (E .- E0- ) I <O I z I n> I-
fie n 

[81] 

From the above .. we ·get. the bremsstrahlung weighte.d cross section fqr a one 

particl,.e quantum.mechanical system as 

CJ 

El"b = r ( on) dW w 
2 2 

Ll<olzln>l 2 47T e [82] .... 
~c n 

2 2 2 ·' 47T e .. 
.fie <ol.z lo> 

In· the above the closure.property has been used in the sununation over. n~ 

It is tqus seen that th,e crux of the problem is to eva1ua~e the. ground 

2 state expectation value ,of the operator z · for the appropr:J_ate .. quantu~ 

me~hanical system. 

For a nuclear transition from the ground state IO>·to any excited 

st~te In> the wave functions of both.the states have to be known. Rathep 

little is known· of .. the wave functipn of. the, ground stC!-te ·of the :whale 
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nucleus and· much less of the :excited state In>. tt is. there.tore. .. custom.:.. 

ary to work in sow.e · mqdel .. of the nucleus . and· the one best suit,ed to. this· 

problem· is the well known· shell mo.de! ·or the ind~pendent ~pa.rti,cl:e .model,. ' 

Bethe and Lev;f..nger(7) were the.first; to derive a 1 formula for·the 
t 

bremsstrahlung weighted croes·se~tion far the n\lclet;Ls; proceeding alo~g 

the lines of .. the derivatiaa given above for a ~me partic:lre problel'\l• · If 

we consider-the displacement from the center ·of .mass of ·the nucleus, each 

proton behaves as if its.charge were eN/A where_N is the neqtronnumber 

and, similarly, ea~h neu,tron as if its charge wet;"e - f#.Z/ A. , For a. many 

particle, system ·th~ appropr:f,.ate operator in the dipole approximation -_is· 

~ zi where zi is t'Q.e compone-qt of the displacement; . .along the direction 

of polarization of the'· incident .. pli,otoP.. Ifethe: and Levinger derived the 

following fol;'mula for the bremsstrahlung weighte4 cross section 

= /» (0 ~ dW 
0 w 

2 
<ic> (41T2) <O I [~ ~ zi - . ! ! zj J2 ro> [83] -

In the above the, suffix i refers to pro.t0"1S ·and t;he ,suffix j to. 

neutrons,, an~ t;:he expectation value .is. taken with r~spect ·to the groun4 

state wav.e function of the nucleus lo~. The important conside~ation 

then is to know the ground state wave function as accurately as possible. 

Levinger.and Bethe used the Fermi.gas model and a.Hart;ree ~ype product' 

many part:icl:-e wave function with, single.particle.plane wave func.tions as. 

factors~ Levinger(lJ) used a more realisti,c inc;lependent particle model. 

He chose the isotropic hai;-monic oscillator model. and used a many part~-

cle wave function which was a product of two Slater -d~terminants; one 

representing antisyI!ll;lletr;f..ze~ proton states. and the other·antisymmetrized 
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neutron states. In other words Levinger introduced' posit:i,onal, carreia-, 

t:tons'in.the motians 'Of .. protons a"Q.ci'neutrons,separately,in.accordance. 

with , the Pauli. principle,. He , arrived at the : remarkably ·simple .. formula 

for the bremsstrahlung weighted cross.section 

.. 0.36 .A4/ 3 mb [84] 

The above, has been used ever since.as the phenomenalogica~ or semiempiri­

cal formula, for bremsstrahlung weighted cr0ss sec.tion which, as seen 

above, depends only on. the .mass numbe,r of the absorbing nucleus or more 

appropriately the one. parameter viz •. , the radius parameter . whicQ., in . 

the harmonic oscillator approxi\UB.tion, can be.fixed from the.oscillator 

constant A..· The Pauli principle correlations·decrease ab since due,t'o 

the exclusion principle eE!-ch proton is surrounded by an 'exchange hole' 

in which there is a decreased likelihood of finding another proton. . The 

shell. model, of cours~, ignores other dynamical . corre,lations. like : the 

spin dependent force between.nucleons--attractive.forces·in a mutual 

tr,ipl~t spin state of two nucleons and repulsive in single_t states. 

While·a detailed comparison of experiment and theory will be 1postponed 

to a later chapter, it is importl,!,nt to note tha~ the simple ·Levinger · 

formula is nt:?t ·in ,agreement with experiment in all .cases anc;l .there 'has 

been. need.· to look· for co:J:'rectipns . to this ·formula,. 

The-simplest and most stra:i,ghtf~rward extension-.of Levinger's, 

theory attempted· in thi~ work.. is to. replace the non-relat:f:_yistiC ho­

tropic harmonic oscillator by a relativisti,c ·oscillator model of the 

nucleu~ (S). As has ·beet\ discussed in an earlier chapte-r., this ·EHO 

Hai;nilt0nian .,has the merit oi; analytical simplipity. as well as ~-'physical-: 

ly significant no:p. ..... relativistic limit9 that of the.isotropic oscil.lator 
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with a spin orbit coupling of the Thomas-Frenkel form. The single parti-

cle states are then given by the spinor wave function ~ of the earlier 
VKµ 

chapter and the ground state of the nucleus is described by the antisym-

metrized (protons and neutrons separately) wave function made up of .these 

single particle states in the usual way as a Slater determinant. This 

makes sure that positional correlations are included. This·ground state 

wave function is used in Eq. (83) to compute the bremsstrahlung weighted 

cross section. The following equations summarize the formula one ob-

tains when relativistic wave functions are used. They are naturally 

more complicated than the non-relativistic formulas but in the approxi-

mation v/c--0 the simple formula of Levinger is obtained. 

where i = 1, 2, 3, •••• Z 

j = z + 1, z + 2, •• 41 • Z + N 

and lo>, the ground state wave function of nucleus when Pauli principle 

correlation is taken into account, can be expressed explicitly as fol-

lows: 



40 

jo)= ~fZi 
[86] 

:: 
~ 

" ' 

. o. ... r;,) '"'Pa..,G~)----'fo.~l~l ~a~Y~.,1) "f&J~~~i>--~J~4'', 

/ 

+ In the last equation~ (y.) is the normalized wave· function~ 8ic i VKµ 

of .the ith pa~ticle in the quantum state described by the quantum num-

bers u, K, andµ [:: 8ic], then, the results of the required matrix ele­

ments in Eq. (85) are obtained as follows, by using the orthogonal 

propetties and the selectipn ru;Les. 

-< o I ~ ~ Io> = -:} t (Ya \ y.) \ ~ ... "I. \ '\.:J lY', )~ 
l==-1 t .. 1 O.t " '/ [87a] 

[87b] 

[87c] 
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( ol~, 'lj•l o)- N t~-1) "£ ~' H (~o.,l ~l\~i\ ~ .... ~"t1>/ 
J...i. \'!\ 

[87d] 

[87e] 

Two questions' arise in the application of the abc;ive•formula to·a 

particulj!lr nucleus. for purposes .of comparison .with experimental resul,t~. 

Firstly the quantum numbers J)f the single particles outside closed 

shells have to be fixed~ This becomes. a problem if we remember· .that 

the multiplfoitiea and degeneracies ,are· not ·the same in tqe rel!!ltivis·tic 

and non"!"relativistic models. · Howe~er, since the Dirac angulai;- momentum 

qua~tum number K relates to j it is realistic to choose the. appropriate. 

quantum numbers in .such.a way tha:t the experimentally known'spin of the 

nucleus (j value) is r~produce.d. 'fh:e appropriate, quantum nurit~e.rs of the . 

outerJll()st nucleon .. or nucleons in .. the cases ,stud:f.ed a:r;e given in Table· II. 

The second question ·is. the ch.oic~ of the one paramete,r ·in, the o~cillator 

model--whether re!l .. lativistic or non":relativistic~-viz ~· ~ the oscillator. 

constant A. In '!;he non-relativi~tic.case tQe equivalent uniform.radius 

of .the nu.cleus in .. a linear fu.nction of the, oscil,lator constant; aa can. 

be· seen· from the following eq1,1.at:f,ons: · 

[88] 

[89]' 
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since,· 

[90] 

such.that· 

[91]· 

If, therefore, the uniform radius .of ·the nucleus _is ·chosen ,in-accordance 

wi.th , the well known formula 

R = [92] 

then ft:'om Eq,. (91), the osc.illator canstfittt .is fixed depending on ,the 

cho.ic~ of r · • Levinger chose r = .1. 2 f ermis which was. the. best _known 
0 0 

vaJ,.ue from other experimental studies of .nuclear sizes, couJ,.omb energies 

of ·mirror nuclei; mesonj,c x-rays ,. etc~ This way. of fixing the oscilla-

tor parameter is not applicable to tqe relati vis ti.c case' easily. The· 

energy of.the state.pertaining to the quantuµi·numbers enters the ·wave· 

function implic:i,tly: and this leads to a t'~,anscendental equation for A 

in the expression for t~e uniform radius. It 1ha~ been noticed, however, 

that the error involved in accepting .the non-reJ,.ativistic value is 

negligible. 

The nuclei chosen .,for st:udy. lie in the :regions of light >nuclei, in- . 

teri;nediat;e·nuclei,and very heavy_nuclei. Calcul,ations have been mac;te·for 

representative .riucJ,.ei for which bt:lth experimental ·da~a ·and non,,..relativis-

t:i,..c estimates exist. Detailed comparison of. the relativistic .results 

with experiment is given.,in the concluding chapter. Because of the com-

plicated nature of tl'J,e foJ;"mula (85)~ the cross sectioIJ,s hac;l t() be 

numeric~lly .evaluated. The relevant computer ,program is appended. 
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TABLE II 

THE QUANTUM NUMBERS OF THE OUT:ERMOST NUCLEONS OUTSIDE CLOSED SHE.LLS 

Ordinal No. 
Nuclides, of v µ 

Nucleon 

12c 5 0 -2 + !. 
6 2 

6 0 -2 1 
2 

9 1 -1 + !. 
19F 

2 

1. 
.9 10 1 -1 

2 

98Mo 
41 0 -4 + !. 

2 

42. 
42 0 -4 1 

2: 

81 0 -5 + !. 
2 

82 0 -5 
r 

-2 

123 2 +3 +! 
2Q8Pb 2 

1 
82· 124' 2 +3 -2 

125 2 +3 3 +-
2 

126 2 +3 3 
2 



CHAPTER V 

RELATIVISTIC OSCILLATOR STRENGTHS 

The definition and c~lculation of oscillator strengths in the, 

earlier chapter are based on.the non-relativistic Schrodinger equaUon 

for central fields. The interaction between the charged particle e arid 

the radiation field (not quantized) is taken, in the.radiation gauge, to 

be 

iel'i !~v 
me [93] 

+ 
Here A is the vector potential which, in the cases of emissiOn-.and ab.-· 

sorption of radiation accompanied by transition between stationary 

states, is expressed as 

++ 
+ ±i k•r 
A = A· e e 

0 
[94] 

where e ie the unit .vector in, the direction of polarization of .a linearly 

pol.arized electromagnetic wave. From the above two equations ·on~ even..-

tually introduces the oscillator strength a~ 

[95a] 

or. 

f n'n [95b] 
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It is the second expression which contains matrix elements of ... the momen;: 

tUl,ll oper~tor between the ·appropriate station~ry state wavefunction~ of 

the ·charged particle interacting with radiation,' that ·ma~es ti:ansition 

to relativistic t~eory convenient. It,is well known that for·an ade-

quate description of the processes of 'absorption,. spontaneous and· in-

duced eiµssion of radiation by. matter consistent. with experimentaJ,. , fac·ts, 

it .is necessary to quantize the electromagnetic field as ·welL In this 

theory also the basic interaction of the cllatged particle with th~ 

elec;,tromagnetic field, which is treated as a perturbation, is given by 

e. -t + 
- -A0 P me [96] 

++ 
ik•r 

In the dipole approximation, or neglecting the retardation factor e. 

the oscillator strength is still given byEq. (95). The justification 

for.this may be in tQ.e fully relativistic an.d quantized derivation of 

the Kramers Heisenberg Dispersion theory(S) from which the oscillator 

strength can,be extracted just as in the non-relativ.istic theory. Payne 

(11} 
and Levinger calculated the relativistic ·oscillator .. strengths both: 

in tli.e dipole.approximation and in a more exact.formula1;:ion including 

the retardation factors, for the.Dirac-Coulomb case. In other words, 

in their caiculations; the ba$is states of t~e charged particle are.the 

solutions.of the Dirac eqtiation with the Coulomb potential,. Jacobsohn 

(lS)gave relativistic oscillator strengths for dipole· transitions·from 

(16) 
th~ L. shell. . ~s.sey and, Burhop · ca,lculated the, relativisti:c ,nori-. 

retarded trane}ition rate·of K x-rays of, 79Au. ·While all these have been 

numerical calculations in the main, through art entirely different.ap-

preach Gell-ma:Q.n, Goldberger and Thirring derived the ·sum rule for di-
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pole transitions by considering.the dispersion relation obeyed by the. 

forward scattering amplitu4e of a bound electr<;>n scattering a high 

energy photon. · While their derivation agreed with the familiar Thomas-

Reiche-Kµhn sum rule, Levinger 1s.calculation disagreed.with this conclu...;, 

sion and showed that' the scattering by a -free eleci;ron .. and a bound elec-

tro:n of. a high eri.e:t:'gy photon cam;1ot be, ccin1;1ide1;'ed to, be equal, 

It is easy to see that the derivat:f,.on of the.sum rule made in the 

non-relativistic theory cannot be ·dupl:Lca:ted ,in· the relativistic; theory. 

For instance, the starting point_in the non.-relativistic derivation was 

the double commutator 

[[H,Z],Z] [97] 

the expectation value of which, ih t~e basis of ·a comp:Lete set·of ·states· 

led to the sum rule. If we replace the non-relativistic central.field 

Hamiltonian 

H = _L P2 + V(r) 
nr 2m 

by the Dirac Hamiltonian 

the.double commutator vanishes as follows~ 
j,'. 

[H,Z] [pl 
-+ + z] - ip (j ... (j. p' = i z 

[[H, zJ,, z] = 0 

since [pi, zj -· [cri, z] = 0 

[98] 

[99] 

[~00a] 

[lOOb] 

[lOOc] 

This happens because of the .,basic·· difference· in the . dynamical description , 
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. .~ ' '''""'• '' 

of the momentum o! a.particle.in the·two.theories. In·the non-relativ~ 

istic theory the m.omenttim operator follow the Schrodinger prescription 

P ·. = - ifl.V whereas in the. relativistic theory the momentum operator is 

given by 

+· + 
P • m c a 

0 
[101] 

and correspondingly the oscillator strerigth is given ·by.the expression 

f. = 
n'n 

2 2m c · 
0 

.fi W I nn 

This basic difference can also perhaps be related to the well.known 

[102] 

phenomenon wherein the position opet:"ator in Dirac theory does not exact-

ly correspond to the.position operator·in the Schrodinger theory ina.s-

tn.uch ·as the part·icle can be. localized only within an error in .measure-

mertt.corresponding to the Compton wavelength of the.particle. Iticiden.,.. 

tally it ._is interesting to nqte that the above double com.mutator does 

not-vanish.in the ERO case because the operator z does not·commute with 

the .ERO potential:. 

++ 
[ 2 ++ cr.•L + l] ~ z, il p (cr•r) r 0 

1 rt.t + 11 

2 -whereas z does commute with the Coulomb potential,e /r. 
. 

[103] 

It is, there-, 

fore, nece~sary to.compute the oscillator,strengths. and the sum rule 

num.ericall,.y starting from tb.e;b'asic matrix element' 

<n' l"<iln> [104] 

using as basis functions .the solutions of· the EKO · 'i' • While the . . . vi<:µ 

numerical results are .. presented and diScussed in the next chapter, there 
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is one.other point-to note. Usually the experiment does not distinguish 

between the three mutually perpendicular directions along which the 

photon may be linearly polarized~ The oscillator streqgths should, 

thereforeJ be averaged.over the photon polarizations. Furthermore.in 

all central fields, relativistic or non,,..reJ,.ativistic, the chosen initial 

state described by· a given. set of quantum numbe.rs is usually degenerate 

in .. energy. Since. different sets. of quantum numbers describing the 

initial state can have the same energy, in the !sum rule calculatio.ns it 

will be meaningful if a further averaging is done· over the different· 

degenerate initial states.; This question is not-crucial in the-non-. 

relativistic case .of a one particle syatem because, as Bethe and 

Salpeter(l7) have shown, once the sum over photon polarizations is 

made, the result happens to be independent of the magnetic.quantum num-

berm because of.the selection rules. Similarly the sum over- m makes 

the result independent of the orbital angul~r ct~ntum number R. and thus 

it is immaterial whether or not this averaging over initial states is 

done because. the sum over final st.ates and average over photon polari-

zations makes the result independent of the quantum numbers of the 

initial;state. Some of .the calculations of Bethe•and Salpeter are re-

pr9duced here below. Unfortunately this is not the case·for relativis-

ti.c ·rac;iiative transitions· and this necessitates averaging over the 

degenerate initial ·states. 

For a ilriven v' , the averag· e oscillator ·strengths f ·. is · 
0 n'n. 

r I f 2VV1 lo. 

"i"h11'1 =- 3 \ -:r- c,yll"\1 '1"1i.+I L[- ~ I < 'V ~ W\ I 'X ~ \ \j, Q.+I ~>\ 

-+ ~;: w"J.' u-'t-1 t: c \ < \j .2. W\ I '><d ""' e..-1 \tV\, > \ 1_ 

'VI ~ ~' ) 

[105a] 
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[lOSb] 

Mien summed.over v' the sum.rule.for the average oscillator strengths. 

is·obtained as follows:. 

-__l_ 
- 3 

1 

( Q. +\) (<. ll-t ~) 

lz.~-t\) 
I 
~ 

R l' 2- -\) ·: 
l <-ll+\) ::; 

[105c] 

As'· in th~ non~relativistic case~ when the sum is• broken ":up into two 

different summations, one, ,c()rresponding to higher eti:ergy of the final 

state (absorption) and another corresponding to lower.energy (emissi,on), 

absorption prQbability predominate,s over emission probability. In other 

word,s the jumps corresponding to absorption m!ilke·a latger·conttibution 

to the summed osc;/-llator st:rengths.than:-.the one~ corresponding.to 

emission. As.will be seen later,- the end result happens.to.be.an agree-. 



ment with Levinger and Payne's.conclusion even in the nuclear case. 

rather ·than with the Gell-mann, Goldberger, and Thirring's theorem. 

50 



CHAPTER VI 

RESULTS AND CONCLUSIONS 

As mentioned in the previous chapter, for the relativistic case 

the oscillator strengths and the sum rule had to be evaluated numeri-

cally. However, since the Pauli spinors xµ in the solutions ~ of the 
K VKµ 

ERO are built out of the solutions of the non-relativistic Schrodinger 

equation for the isotropic harmonic oscillator, the calculations are 

considerably simplified because of selection rules resulting from the 

orthogonality of the spherical harmonics as well as the radial functions. 

[106a] 

[106b] 

The final formula for the summed oscillator strengths becomes 

{i _J_ ~ L I - "< 2-Wlo( LL LL 
I t'\Y\ ...> \[/ \/I I ' ' 

h ~ r\ l 

where there is a further averaging over all the degenerate states repre­

sented by the quantum numbers v, K and µ; v + IKI being constant. In 

the actual calculation the state chosen.has the following quantum num-

hers and energy 

and 

v = o, !Kl = 3 or v • 1, IKI = 2 or v = 2, !Kl • 1 

En = 1m 2 + 14A2 
0 

[108] 
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There is an interesting point 'Of difference between the.matrix eleJllents 

in .the nes>n-relat~vistic case and· in. the relad.v::tstic theory, · In ·the . ' ~. ' 

ra~ial int~grals; ariSitl-g from· the basic 'operator a , one, gets .. the . L .. 

radial matrix element · 

<v.t Ir J v' R. '> 

where t' =I+ l~or I -.1 

whez;:eas. in the relativistic case, beca'\ise. of the ~r.a..tor._ai; one. gets 

the overlap integral 

<vKµ Iv' _. . 1¢ ~ µ ' > • OV'"" '" 0 . ' 0 ... · K 1 .""K µµ 
[a.09] 

and th:j..s introduces.the selection.rule v' • v; which simplifies the 

results consideral;>ly an,.d'reduces the tc;>tal nUm.ber·of final.discrete 

states tQ which t+ansi.tions ·are probabl~. Since the .. calculations· are 

done. numerically it;.•is necessary to choose. ~ri.e. _pa:tticular nucleuli! and 

the one chosen .. is·~:cu •. Theoscillator parameter A. is fixed by adjusting 

the radius of the equivalent uni;.form sphere to r Al/3 fermis where r 
0 . 0 

has been chosen as 1.2; This choiC~ of the radius _cqnst.ant .,facilitates 
A•'.· 

cQmparisqns·with the. non ... relativistic cases~ The maximum number of 

final st~tes to which a dipol,e ·transition .is ·probable f.iom the initial. 

state lo, -3,. ~>. h,appens to be.7. Using the formula in Eq. 107 and. 

averaging ove+ the:thteT directions of photon polarization as also ~he. 

different degenerate states. belonging to the energy level'v + : I KI - ' 3 ~ 

the numerical'value of the sum is b.94 and thu~ slightly departs.from. 

the non-relativistic value· of 1 ~ It -is, of co.urse, ·to be· noted that 

the ·sum rule cor+.esponds. to the trat!-sitions. of the 29t~ ·particl~ in 

th,at particula+ initial state, or stated more precis~y, tb,is .sum rule 
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is that of one partfcle in .a given· initial state descr.ib.ed by, the quan.,-, 

tum nuriibers·v •.o~ K • '-3 and.µ•~. The percentage.dep.ar.ture'from the 

non.,-relativistic. value is linked with' the appro:X:imat.e. ... p:cocedure used in 

fixing the.oscillator parameter A. In· Chapter II.th.a sum.rule was 

evaluated in.a more approxima.t-a:'Way. Bethe's non-relativistiC deriva~· 

tion was. changed .to the extent of cakulating the· matrix elements of z, 

in the basis. set '!' · in place, of the solutions 'of ._the isotropic . har-. vi<µ 

monic oscillator U as. the basis functions. the numetical value .of vem 

the sum: for the initia+ stat:e lo, -3 ~~for the nucleus A• 63 turns out 

to .be O~ 91. This exhibits the unsatisfactory nature of. the approxima-

tion in the ·evaluation of ·the sum rule 'by this semi-relativiet:4c method'· 

4 12 . 16 19 
For the nu.clei of exper~ental in.terest 2He , 6c , 80 · , 9F , 

40 98 208 
20ca , 42'flJ.o , 82Pb , calculations· of .. the bremsstrahlung weighted 

cross · section crb have been made using form~la (85) · in Ch~pter IV. As . 

usual the one· adjustable parameter.A has been chosen; fallowing Levinger, 

such that 
·. . 1/3 

the radius of .the nucle'l,ls is .equa+ to r 0 A fermis~ The 

effect of different. c~oices of r~, which iS a.matter ·of dispute in the 

li tera tu re, has also bee.n · s tu_died. The· results are:. summarized in Tables. 

III,. IV and V. Sevet:al comparisons have·to.be made. There.is the com":" 

pari_son.of ·the ove+all result with the simple formula ·derived by 

. (13) 
L.evinger 

- 0.36 A413 [110] 

and· then there is the comparison·with the calculations made using non-

relativistic wave· functions.:. To facilitate. the li;i.tte+ comparison the · 

follow:i,ng percentage is shown, ,in Table III: 



Relativistic· - rtortrelat:ivistic · x 100 
nonrelativistic 
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Tables IV and V emphas.ize .that· .. the above. simple 'Le:..,:in~.'.,s .. :phenemenologi-

cal formula. is not strictly correct. The canst.ant • 355 does not turn 

out to .be'a nucleus-independent 'constant but happens,to be,a function 

of the mass· number A. However it is very interesting to note that·a 

simple modification of Levinger's formula can be proposed 

... 
2 

0.355 (~) Al/3 (A + a) 
1.45 [111] 

where /J.. is the correction factor which is shown in· Table .V. This cor-

rection factor is itself dependent on A and is slightly.sensitive to the 

choice of r... It may not be. too wrong to say, however, that· averaging 
0 

over all values of r the c0rrection factor can be taken to be. • 025A and 
' 0 

if this is substituted in Eq. (111) wecan rewrite Levirtger's fromula 

with a.modified multi~lying constant 

= 0.364 (~) A4/ 3 
1.45 [112] 

Unfortunately the comparison with experin,terti is ·not very straightforward 

because the experimental ·results themselves have·apprec;iable uncertain-

ties in the measured cross·section, as shown in Table·III. It is not 

urtreasonable ·to assert, however, ·that· the relativistic values with tl}e 

cho,ice ,of r = L 1 appear to fit experimental results better than -.the 
0 

non-relat:iyi~·~ic calculations and are· decidedly supe:r,ior to Levinger 's 

simple.formula. The latter formula; though based on.the non-relativis~ 

tic harmonic.oscillator model, uses the approximation.N = Z and hence 

checks with our calculations for these types of nµclei •. The pronounced 

disagreement of i,evinger's formula with experiment.happens to be.in the 
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case of lead where .the relativistic c~lculations· with .. a .. auller radius 

constant show very good agreement. It is quite pro-b.abl.e ,'. as .has been 

shown by Braun, that in such a·heavy nucleus with isu.chtight .packing of 

nucleons there may exist relativistic motion~. To s0me. ,exte11t ·this· can 

also be said of a very light nl;lclel.ls like helitim .where prob.ably the 

nucle.ons ,.almost simulate the motions of free part·icles. There 'is 

probably noticeable disagreement in the case of oxygen between theory. 

and experiment and this is perhaps due to the existence of other modes 

in particuJ,ar, the giant resonance which this·kind of a theory cannot 

take intq account, 

In conclusion it appeat:s ··to .be safe· to say that the dipole .oscil­

lat.or strengths' sum rule is not applicable, at .least without' suitable 

modifications,, to relativistic quantum mech.anical systems. There is 

strong ground for suspecting relativistic motions'in.helium and lead to 

the extent that photonuclear .. reactions and the bremsstrahlung weighted 

cross section can.be accepted as.representative experiments.for nuclear 

structure. The simple formula of Le:vinger needs .. the slight modification 

sugges·ted above. 



TABLE III 

BREMSSTRALUNG WEIGHTED CROSS SECTION ob IN UNITS OF l0-27 cm2 

Nucleus Non-Relativistic Rela,.~i vis tic Levinger's 
Results 

r = 1.1 r = 1~2 r = L3 r = 1.1 (%) r = L2 (%) r = 1.3 (%) 
0 0 0 0 0 0 

4 
2He 1.882 2.240 2. 6'29 1.937 2.900 2.296 2.soo 2.660 1.200 2.287 

12 
6c 8.143 9.690 11.373 8.414 3.333 9.968 2.867 11.657· 2.500 9.893 

160 
8 

11. 949 14.221 16.689 12.278 2.750 14.;459 1.675 17.036 2.075 14.460 

19F 
9 14.985 17.833 20.929 15.455 3.142 18-.313 2.692 21.420 2.347 18.262 

40 
20Ca 40.543 48.249 56.626 41.881 3.300 49.600 2.800 57.985 2.400 49.213 

98 
42Mo 131.170 156.103 183.20.4 135.175 3.053 160~190 2.618 187.365 2.271 161.668 

208Pb 
82 348.831 415.137. 487.210 358.202 2,;686 424.702 2.304 496.244 1.854 443.455 

Experimental 
Results 

1.5 - - 3.0 

5.4 - 12.0 

7.2 - 7.4 

11.4 - 16.8 

26 - 32 

110 - 140 

270 - 375 

lTI 
~ 



TABLE IV 

o /A4/3 
b 

Non-Relativistic Relativistic ievinger's 
Nuclel,ls = i~l =- 1..2 ,;., 1.3 r -= l~l 

- . 

=:1.2 r 0 = L3 Results 
r r r r 

0 0 0 0 ' 0 

4He 
2- 0.296 0.353 0,414- 0.305. o. 3.62 0.419. o.36 

12c 
6 0.296 0.353 0.414 0.306 0.363 ·0.424 0.36 

160 
8 0.296 0.353 o.414 0.305 0.359 0.423 0.36 

19F 
9 0.296 0.352 0.413 0.305 0.361 0.42·2 0.36 

40 
20Ga 0.296 0.353 0.414. 0.306 0.363 0.4.24 0.36 

98 
42Mo 0.290 0.345 0.405 o. 2-99 0.355 0.415 0.36 

208Pb 0.283 
. \ 

0.395 0.291 0.345 0.4.03 0.36 --'(). 33J 
82' V1 

-...J 



Nucleus 

4 
2He 

12c 
6 

160 
8 

19F 
9 

40 
20Ca 

98 
42!°1° 

208Pb 
82 

TABLE ·V 

VALUE OF THE CORRECTION FACTOR /:J. IN RELATIVISTIC AND NON-RELATIVISTIC CASES 

Non-Relativistic Relativistic 

/:J. 11 /:J. 11 /:J. 
(r = 1.1) 

0 
(r = L2) 

0 
(r = 1.3) 

0 
(r = 1.1) 

0 
(r = 1.2) 

0 

0.000 0.000 0.000 0.116 0.100 

0.000 0.000 o.ooo 0.400 0.344 

0.000 o.ooo o.ooo 0.440 0.268 

-0.053 -0.053 -0.053 0.543 0.458 

0.000 0.000 0.000 1.320 1.120 

.,..2 .000 -2.000 -2.000 0.931 0.514 

-9.337 -9.337 -9.337 -4.000 -4.760 

/:J. 

(r -,= 1. 3) 
0 - - -

0.048 

0.300 

0.332 

0.392 

0.960 

0.180 

-5.653 

VI 
00 
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APPENDIX A 

PROGRAM FOR THE REQUIREP MATRIX ELEMENTS IN THE 

CALCULATION OF crb WHEN NEHO MODEL.IS USED 

This program, written in the FORTRAN IV language, will print out" 

the required matrix elements. of crb in Eq. (85) of Chapter IV when the 

wave.functions of NRHO model is used in, lo>. The os'i!illator constant A. 

is not included in this program. 

ZSQWO .. ( <Olzi2 1o> 

ZIJWO = <blzizi,lo> 

The value of the variable N, is the number of protons .in this pro­

g~am which must be changed for different.nuclei. The input data are the 

quantum numb~rs v, t, and·m of the protons, Making use of Eq. (85) and 

the .. printed results the value of the bremsstrahlung weighted cross 

section crb can be.calculat~d. 
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CARD 
CO Cl 
0002 
0003 
OOC4 
0005 
OOC6 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
OOlit 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
OOH 
0035 
0036 
0037 
0038 
0039 
0040 
OOitl 
0042 
0043 
OOitit 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
00'52 
0053 
C054 
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SJOB 
101 FORMAT 14F5.ll 
102 FORMATllX1J515X14Fl0.115X,Ello41Fl0.41 
103 FORMAfllX113HSUM OF ZSQVLM1'5X1Ell.41 
104 FORMATllX,SHZSQWC IS15X1Ell.41 
105 FORMATllX1215,lOX 14E20.41 
106 FORMATllX,eH11JWC IS,5X,Ello41 
107 FORMATClXelitHSUfll OF ZIZJ IS,Ell.41 

SllRl,R21•SQRTIRl+R2+1.0/2.0I 
S21R31•SCRT(R3+1.0I 
S31R4eR51•SQRTIR4+R5+3oC/2.0I 
S41R6,R71•SORTCIR6•R6-R7•R71/(12.0•R6+lo01•12.0•R6-l.Olll 
S51R8,R91•SQRTlllR8+1.01•1R8+1.0l-R9•R91/112.0•R8+3.0l•l2.04R8+l.O 

Cll I 
REAL JVl1301tlLC13CltlMtl301tlMSl1301tZSQVlfllll301 
SUH•O.O 
N•9 
ALPHA•l .O 
DO 10 1•111\ 
READl5el0111Vlll1ll(ll,JHlll1IHSlll 
ZSQVLHlll•l-lo0/ALPHA•ALPHA1•12.0*IVlll+ILll1+3.0/2.0l•ll.CJ3.0l•I 

cr2.0•13.0•IHlll•IH(ll-IL(ll~llLlll•l.Olll/112.0•IL(ll-l.Ol•l2.0•IL 
cu 1+3.0tt-1.01 

SUH•SUM+ZSCVLMlll 
WRITEl6110211elVllltlLIJl,IHl111IMSlll,ZSQVLMlll ,SUM' 

10 CONTINUE 
WRITEl611031SUfl 
ZSQWD•SUfll/I\ 
WRITE(6,1041ZSQWO 
SUMfl•OoO 
DO 20 L•l1N 
DO 20 K•ltN 
IFILoEO.KI GO TO 99 
IF(JfllS(Ll-IMSlkl~NE.0.01 GOTO 99 
lf(JMl~l-JM(Kl.NE.0.01 GOTO 99 
J~(ILILl-IL(KI .eo.1.01 GOTO 11 
IFllLILl-ll(KI oNE.-1.01 GOTO 99 
IFIJVILl-IVIKl.EQ. 0.01 GOTO 22 
IFllVILl-IV(KloNE.1.01 GOTO 99 
ZILK •C-l.O/ALPHAl•SQRTIJV(Lll•S511LILl,lfllllll 
ZJKL •(-1.0/ALPHAl•S211VIKll•S411LIKl,lflllKll 
GO TO 100 

22 ZILK •ll.O/ALPHAl•S311Vlll11lllll•S511LILl1IMILll 
ZJKL •lloO/ALPHAl•SlllVIKl11L(Kll*S411LIKl1IMCKll 
GOTO 100 . 

11 IFllVCLl-IVCKl.EQ. -1.01 GOTO 33 
IFllVILl-JV(Kl.NE.0.01 GOTO 99 
ZILK •ll.Ol•LPHAl•SlCIVILltlLILll•S4llLILl1IHILll 
ZJKL •ll.O/ALPHAl•S311VIKl11LfKll•S511LIKl1IMIKll 
GO TO 100 

33 ZILK •f-lo0/ALPHAl•S211VILll•S4CILIL),lfllllll 
ZJKL •C-l.0/ALPHAl•SQRTIJVIKll•S511LIK11lflllKll 

, GO TO 100 
99 .ZILK•O.O 



CARil 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 . 
0064 
0065 
0066 

000000000llllllllll222222222233333333334444444444555!155555566666U66617717717778 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

ZJKL•O.O 
100. ZIZJ•f-1 .. 0l•ZILK•ZJKL 

IFIZIZJ.EQ.O.OIGC TO 20 
SUMM•SUM"+ZIZJ . 
WRITE16,lO!tL,K,ZILKoZJKL,ZIZJ 

20 CONTINUE 
ZIJWO•SU""/IN•CN-ltl 
WAITEl61 lOllSUMM 
WRITEl61106IZIJWO 
STOP 
END 

SENTRY 

1SUMM 

"·; ,' 
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~PENDIX B 

PROGR,AM FOR THE REQUlRED MATRIX ELEMENTS IN THE 

CALCULATION OF crb WHEN EHO MODEL IS USED. 

This program will print out.the same required matrix elements as· 

t~e ·program given ·in, Appendix A~ The· only dif f.erence is now the wave 

functions.of EHO model are used in lo>. The oscillator.constant A is 

included in this program. 

ZSQWO - <olz/lo> 

ZIZJ ... <O I zi zi , Io> 

The input data ,are the quantum numbers .v, i<: and·µ of each proton •. 



CARD 

000000000111111111122222222223!333333334444444444,5555555556666666666lllllll7ll8 
1234561890123456789012~456789012345678901234561890123456789012345678901234561890 

0001 SJDB 
0002 101 FORMATl3F5.11 
0003 102 FORMAT llX 115,4FlO.le5El5.41 
0004 103 FORMATl1Xe8HZSQWC 1s,1ox,El5.41 
0005 104 FORMATC1Xe215e5Xe4E20.41 
0006 105 FORMATl1Xe9HZIZJ~D 1s.1ox,E20.41 
0007 REAL Vll301eKfl3011Ull3011Lll3011Ell301tCAl1301eCBl13011 0Cl301t 
0008 lZSQVKUl1301e~C2eZSQVNKl1301 
0009 COAIA,81•-l.O•SQRTIA!SllA~B+0.51/12.0•A+l.Clll 
0010 COBIA,Bl•SQRTIABSllA+B+0.51/12.0•A+l.Olll 
0011 COCCA1Bl•SQRTIABSCIA+B+0.51/C2.0•A+l.Olll 
0012 CODIAoBl•SQRTIABSI IA-B+0.51/12.0*A+l.Ol I I 
0013 COEIA1Bl•SQRTIABSllA+B-0.51/C2.0•A-1.0lll 
0014 COF IA 18 l•SORT CABS UA-B-0.51/ 12.0•A-l .Otl I 
0015 COGIA1B I •-1.0*SORT IABSI IA-B+l. 51/C 2.0•A+3.0111 
0016 COHIAoBl•SQRTIABSICA+B+l.51/C2.0*A+3.0lll 
0017 N•82 
0018 A•208.0 
0019 RM•l.67239*110.0••l-24.0ll 
0020 C•2.9979•110.0••10.0I 
0021 H•l.05443•110.0••l-27.0ll 
0022 VEM•l.6•110.C**'-6·011 
0023 MC2·R~•c•c 
0024 T•SQRTCl42.0 *RM*VE~•CA**l-1.0/3.0111/IH*Hll 
0025 THC•T*H*C 
0026 SUM•O.O 
0021 DO 10 l•l,N 
0028 READ l5el011VllleKllleUlll 
0029 Olll•SORTIMC2•MC2+4.0•THC•THC•CVCll+ABSCKllll+0.511 
0030 CAlll•ll.O+llOlll-MC21*•21/14.0•THC•THC•IYll)+ABSCKllll+0.5111**1-
0031 10.51 
0032 C8Cll•llKlll/ABSIKlllll*IOlll-MC211/12.0•THC•SORTIYIIl+ABSIKllll+O 
0033 1.511 
0034 IFIKCll.Gl.O.OI GD TD 11 
0035 Llll••l.O•Klll-1.0 
0036 CALL 55.CVI 11,LC 11.uo 1-0.!l,Sll 
0037 CALL SSIVllleLllleUlll+0.51521 
0038 ZSQVKUlll•llLlll+Ulll+0.51/12.0•LCll+l.Oll•Sl+C 
0039 lCLCll-Ulll+0.51/12.0*Llll+l.011•52 
0040 CALL 551Vlllellll+l.O,UCll-0.5,531 
0041 CALL SSCVlll1LCll+l.o,uc11+0.5,S41 
0042 ZSQYNK lll•l(llll-Ulll+l.51/12.0•LCll+3.0ll*S3 
0043 1 +CCLCll+UCll+l.51/C2.0•Llll+3.0ll•S4 
0044 GO TO 22 
0045 11 L(ll•Klll 
0046 CALL SSCVCll1Llll1UCll-0.5,S51 
0047 CALL SSCVClleLClleUCll+0.51561 
0048 ZSQVKUCll•llLCll-UCll+0.51/12.0•Llll+l.011•55 
0049 l+CILlll+Ulll+0.51/12.0•Llll+l.011*56 
0050 CALL SSCYCll1Llll-l.O,u111-o.5,5ll 
0051 CALL SSCVlll1Llll-l.01Ulll+0.5,S81 
0052 ZSOYNKlll•llLlll+Ulll-0.51/12.0•llll-l.Oll•Sl 
0053 1 +llLlll-UCll-C.51/12.0•Llll-l.011*58 
0054 22 RZSQI• CAlll*CAlll•ZSQVKUlll+CAlll•CACll•CElll*C8111•ZSQVNK Ill 
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CARD 
C055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 

'0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
OC84 
0085 
0086 
0087 
ooee 
0089 
0090 
0091 
0092 
C093 
0094 
0095 
C096 
0097 
C098 
0099 
0100 
0101 
0102 
0103 
0104 
0105 
01C6 
0107 
0108 
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SUM•SUM+RZSQI 
WRITEl6ol0211,VllloKlll,Ulll,L(lltCAlll,C8111,0llltRZSOl,SUM 

10 CONTINUE 
ZSOWCaSUl'/P\ 
WRITE(6,1031lSO~C 
SUMM•O.O 
DO 20 J•l,t. 
DO 20·"*8·1-t" 
IFIJ.EQ.MI GO TO 20 
IFIKCJll 2C212021121 

121 IFIKIHll 44144133 
33 LIJl•KIJI 

LCMl•KCIO 
CALL AACVCJl1LIJl1UIJl-0.51VCMl1LIMl1UCMl-0.5,Zll 
CALL AAIVCJl,LCJl1UIJl+0.5,VCMl,LIMl 1U(Ml+0.5,Z21 
CALL AACVCJl1LCJl-1.o,ucJ1-o.5,VCMl1LCMl-1.0,UCHl-0.5,Z31 
CALL AAIVIJl1LCJl-1.o.uCJl+0.5,VCMl,LCMl-l.O,UCMl+0.5,Z41 
CALL AACVCMltLCHloUIMl-0.5oVtJloLIJl,UCJl-0.5,Z51 
CALL AACVIMl1LCMl0UCMl+0.5,VCJl,LCJl,UCJl+0.51Z6I 
CALL AACVCMl1LIMl-1.o,u1M1-o.5,VIJl,LIJl-l.C,UIJl-0.5,Zll 
CALL AAIVIMl,LCMl-l.O,UCMl+0.5,VIJl,LIJl-l.O,UCJl+0.5,Z81 
ZIVKLK •COAILIJl,UCJll•COAILIMl,UIHll•Zl+COBCLIJl1UIJll•CCBILI 

CHI 1UI Ill l•Z2 
ZJVNKL •COEILIJl1UIJll•COECLIMl1UIHll•Z3+CCFILIJl1UIJll•COFCL 

CIMI 1UIMI l•Z4 
ZJVKKL •COAILIJl1UIJll•CCACLIMl,UIHll•Z5+COBCLIJl1UIJll•COBCLC 

CHI 1UCHI l•Z6 
ZJVNKK •COECLIJl1UCJll•COEILIMl1UCHll•Zl+CCFILIJl1UIJll•COFCL 

CCMl,UCHll*Z8 
GO TO lCC 

lt4 LCJl•KIJI 
LIHl•-l.C•KIMl-1.0 
CALL AAIVIJl,LIJl,UIJl-0.5,VIMl 1LIHl,UIHl-0.5,Zlll 
CALL AAIVIJl,LIJl,UIJl+0.5,VIMl,11Ml,UCHl+0.5,Zl21 
CALL AAIVIJl0LIJl~1.o,u1J1-o.5,y1M1,LIMl+l.O,UIMl-0.5,Zl31 
CALL AAtVCJl,LIJl~1.o,u1Jl+O.~.VIMl,LIMl•l.OtUIMl+0.5,Z141 
CALL AA1VIMl,LIMl,UIMl-0.5,VIJl,LIJl,UIJl~0.5,Zl51 

CALL AACVCMltLCMl,UIMl~0.5,VIJloLIJloUIJl+0.5,Zl61 
CALL AACVll'loLl~l•l.OoUIMl-0.5,VIJl,LIJl-l.OoUIJl-0.5,Zl71 
CALL AAIVIMloL(Ml+l.O,UIMl+0.5,VIJl,LIJl-l.OoUIJl+0.5,Zl81 
ZJVKLK •COAILIJl,UIJll•COCILIHl,UIMll•Zll+COBILIJl,UIJll*CODIL 

CIMI ,UIMI l•Zl2 
ZIVNKL •COECLIJl,UIJll*COGCLIMloUIMll•Zl3+COFILIJl,UIJll•COHI 

CLIMl,UIMllU14 
ZJVKKL •CCAILIJl,UIJll•CCCILIHl,UIMll•Zl5tCOBILIJloUIJll•CODIL 

Cl Ml ,UIMI l*Zl6 
ZJVNKK •COEILIJl,UIJll*CCGILIHl1UIMll•Zll+COFILCJl,UCJll•COHC 

CLIMl1UIMll•Zl8 
GO TO 100 

202 IFIKIMll 66,66,55 
55 LCJl•-1.0•KCJl-l.O 

UHl•KCMI 
CALL AACVIJl,LCJloUIJJ-0.5,VIMl,LIMl,UIMJ-0.5,Z2ll 
CALL AAIVIJl,LIJl,UIJl+0.5,ylMloLIMl,UIMl+0.5,Z221 
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0109 CALL AACVtJ•·~·~1+1.o,ucJ1-o.s,vcM1,LCM1-1.c,uc111-o.5,Z231 
0110 CALL AACVCJt.~JJl+l.OtUCJl+0.51VCMl,LCMl-1.o.uc111+0.s,z21t1 
0111 CALL AACVCMl~~1~1.uc111-o.5,VCJl,LCJl,UCJl-0.5,Z251 
0112 CALL AACVCMl,~·~),UCl'l+0.5,vCJl,LCJl,UCJl+0.5 1 Z261 
0113 CALL AACVCMl,LJMJ-1.o,ucM1-o.5,VCJl,LCJl+l.01UCJl-0.5,Z271 
Olllt CALL AACVCl'l,LCl'l-l.01UCMl+0.51VCJl1LCJl•l.01UCJl+0.5,Z281 
0115 ZIVKLK •CCCCLCJl,UCJJl•CCACLCMl1UCMll•Zll+CCDCLCJl,UCJll•CCBIL 
0116 CIMl1Ul~ll•Z22 , 
0117 ZIVNKL •COGCLCJl,µJJll•CCECLCMl1UIMll•Z23+CO~CLCJl1UCJll•CCFC 
0118 CLIMl,UCMll•Z24 
01'19 ZJVKKL •CDC I LI JI t !J.tJ,11 •CCA Ill M 1,u c" I I •Z25•CCC IL CJ 1, u CJ n•coecL 
0120 CIMl,UIMll•Z26-
0121 ZJVNKK •COGC LI JI ,µ,l,Jrl l~CCE c LI" I 1UCM11•Z21+CO ... LIJ1,uc J H•COF c 
0122 CLCMl,UIMll•Z28 
0123 GO TC 100 
0121t 66 LIJl•-1.0•KCJl-l.O 
0125 LCMl•-1.C•KCMl-l.O 
0126 CALL AAI VI JI tll J 1,u CJ 1-0.,,,,v IM I 1LIM 1,uc M 1-0 .5 ,Z31 I 
Ol2il CALL AACVCJI 1LIJI 1UCJl+0 •. 5,v'c'M11LIMI 1UCMl+0.51Z321 
012!8 CALL AA CV C JI , LI JI+ l .o, U CJ 1-0. 5, V CM I , LIM I +l. 0, UC M 1-0. 5, Z3 31 
0129 CALL AACVCJl1LIJl+l.01UCJl+0.51VIMl1LCMl+l.01UCMl+0.5,Z341 
0130 CALL AACVll'l1lCMl1UCMl-0.5,VCJl,LIJl,UCJl-0.5,Z351 
0131 CALL AAIVCMl1LCl'l1UIMl+0.51VC)ltLCJl,UCJl+C.5,Z3EI 
0132 CALL AACVCl'l1LCMl+1.o,ucM1-o.5,VCJl,LCJl+l.O,UCJl-0.5,Z371 
0133 CALL AACVIMl1LIMl+l.01UCMl+0.5,VCJl,LCJl+l.C1UIJl+0.5,Z381 
0134 ZIVKLK •COCCLIJl,UCJll•CCCCLCMl,UCMll•Z~l+CDDCLIJl1UCJtl•CODCL 
0135 CCMlt~~Mll•Z32 . 
0136 ZIVNKL •COGCLCJl1UCJll•CDGCLCMl,UCMll•Z33+CO~ILCJl,UCJll•COHI 
0137 CLCMl,UIMll•Z34 
0138 ZJVKKL •CCCl~IJt1UCJll•COCCLCMl,UCMIJ•Z35+CODCLCJl,UCJll•CDDCL 
0139 CCMl1UIMll•Z36 
Cl40 ZJVNKK •CDGCLCJl1UCJll•COGCLCMl,UCMll•Z31+COHCLCJl,UCJll•CDHC 
Olltl CLIMl,UCMll•Z38 
Ollt2 GOJD·lOO . 
Ollt3 100 RZILK •CACJl•CACMl•ZIVKLK +CACJl•CACMl•CBIJl•CBIMI• 
0141t CZJVNKL 
0145 RZJKL •CACJl•CACMl•ZJVKKL +CACJl•CACMl•CBCJl•CBCMI• 
0146 CZJVNKK 
Olltl JFCRZILK.EC.0.01 GD TO 20 
Ollt8 IFIRZJKL.EC.0.01 GO TO 20 
0149 RZIZJ•C-1.Cl•RZILK•RZJKL 
0150 SUMM•SUl'l'+RZIZJ 
0151 WRITEl61104IJ1MtRZILK1RZJKLtRZIZJ1SUMM 
0152 29 CONTINUE 
0153 B•N 
0154 ZIZJaSUl"M/CB•CB-1~011 
0155 WRITEC6,l051ZIZJ 
0156 STOP 
0157 END 
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0001 SUBROUTINE AACRVL1RLL,R,L,RVK1RLK,R,K,ANSI 
0002 SllRl1R21•SQRTIABSCRl+R2+1.0/2.0ll 
0003 S2CR31•SQRTCABSCR3+1.0ll 
0004 S3IR4,R5lsSQRTCABSCR4+R5+1.511 
0005 S4CR6,R71•SQRTCABSCCR6•R6-R7•R71/CC2.0•R6+1.0l•C2.0•R6-l.Ollll 
0006 S5CR8oR9l•SQRTCABSCCCR8+1.0l•lR8+1.0l-R9•R91/CC2.0•R8+3.0I• 
0001 c12.o•R8+1.c1111 
0008 ALPHA•l.O 
0009 lflABSIR'Ll.GT.RLLI GO TO 999 
0010 IFIABSCR,Kl.GT.RLKI GO TO 999 
0011 IFCR,L-R~K.NE.0.01 GO TO 999 
0012 IFCRLL-RLK.EQ.1.01 GO TO 111 
0013 IFCRLL-RLK.NE.-1.01 GO TO 999 
0014 IFCRVL-RVK.EQ.0.01 GO TO 222 
0015 IFCRVL-RVK.NE.l.01 GO TO 999 
0016 ANS•l-1.0l•LPHAl•SQRTCABSCRVLll•S5lRLL1R,ll 
0017 GO TO 777 
0018 222 ANS•Cl.0/ALPHAl•S3lRVL,Rlll•S5CRLL,RMLI 
0019 GO TO 777 
C020 111 IFCRVL-RVK.EQ.-1.01 GO TO 333 
0021 IFCRVL-RVK.NE.0.01 GO TO 999 
0022 ANS•CloO/ALPHAl•SlCRVL,RlLl•S4CRLL,RMLI 
0023 GO TO 777 
0024 333 ANS•C-l.Ol•LPHAl•S21RVLl•S4CRLL,RMLI 
0025 GO TO 777 
0026 999 ANS•O.O 
0027 777 RETURN 
0028 ENO 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 SUBROUTINE SSCA,B,C,SI 
0041 IFCABSCCl.GT.BI GO TO 1 
0042 S•C-1.0t •C2.0•A+B+l.5t•Cl.C/3.0l•CCC2.0•C3.0•C• 
0043 lC-e•cB+1.01111cc2.o•B-1.01•12.o•B+3.ottt-1.01 
0044 GO TO 2 
0045 1 S•O.O 
0046 2 RETURN 
0047 ENO 
0048 SENTRY 
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APPENDIX C 

PROGRAM FOR THE· SUMMED OSCILLATOR STRENGTI:l:S, 

The sununed ·oscillator strengths, 1: f · 1 , where f , was defined 
n' n n · n n 

in Eq. (107) of Chapter VI were calculated using this program. For the 

given initial states, 

SUM • 

The input ·data cards include all the degenerate initial states of 

a given energy level anq all the possible final states. 
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CARD 
0001 SJOB 
0002 101 FOAMATl3F5.ll 
0003 102 FORMATllX 0 15,3FlC.l,5X,3El5.41 
0004 103 FORMATllXo215,2F20.4,10Xo5HFOR XI 
0005 104 FORMATllX,215,2F20.lt,10Xo5HFOR YI 
0006 105 FORMATl1Xo215o2f2C.4olOX,5HFOR ZI 
0001 106 FORMAT llX 0 4F20.41 
0008 REAL Vll301,Kll3Cl,Ull30ltLl1301t01130l,CAll301tCBl1301,MC2 
0009 COAIA,Bl•-l.O•SQRTIABSllA-B+0.51/12.0•A+l.Olll 
0010 COBIA,Bl•SQRTIABSllA+B+0.51/12.0•A+l.Olll 
0011 COCIA,Bl•SQRTIABSllA+8+0.51/12.0•A+l.Olll 
0012 CODIA,81•5QRTIABSllA-8+0.5J/C2.0•A+l.OJIJ 
0013 COEIAoBl•SQRTIABSICA+B-0.51112.0•A-l.OllJ 
0014 COFCA,81•SQRTIA8SllA-8-0.51/12.0•A-l.OJll 
0015 COGCA,81•-l.O•SQATIABSllA-B+l.5J/C2.0•A+3.0llJ 
0016 COHIA,81•SQRT(ABSllA+8+1.51/12.0•A+3.0lll 
0017 N•32 
0018 A•63.0 
0019 RM•l.67239•110.0••l-24.0ll 
0020 C•2.9979•110.C••10.01 
0021 H•l.051t43•110.0••l-27.0ll 
0022 VEM•l.6•110.0••l-6.0ll 
0023 MC2•A~•C•C 
0024 T•SQATll42.0. •A~•VEM•IA••l-1.0/3.0111/IH•Hll 
0025 THC•T•H•C 
0026 DO 10 l•lt~ 
0027 READ 15,lOllVllltKlll,Ulll 
0028 OllJ•SQRTIMC2•MC2+4.C•THC•THC•IVlll+ABSIKllll+0,511 
0029 CAI I l=l l •. Otl 101Il-MC21U21/14.0•THCHHC•IVI1 l+ABSIKI I I l+0.5 ll IUl-
0030 10.51 
0031 CBI I l•llKI 11/ABSIKI II ll•COll l-MC21 llC2.0HHCUQAHVll l+ABSI Ill 11 ltO 
0032 lo511 
00 3 3 WR I TE 16 .t 10 2 I I 11111 I , K 11 I , U IJ I , CA 11 It CI! 11 I , C 111 
0034 10 CONTINUE 
0035 00 60 J•l,12 
0036 SUMX•O.O 
0037 SUMY•O,O 
0038 SUMZ•O.O 
0039 SUM•O.O 
0040 00 20 M•lt~ 
0041 IFIOIJl.EQ.OIMll GO TO 20 
0042 COEFF•l2.0•MC21/IOIMl-OIJll 
0043 IF IKIJl.GE. O.O I LIJl•KIJI 
004'i IF IKIMl.GE. O.O I LIMI• KIMI 
0045 IF !KIMI.LE. 0.01 LIMI• l-l.Ol•KIMl-1.0 
OO'i6 If IKIJl.LE. 0.01 LIJI• 1-1.0l•KIJl-l.O 
OO'i7 AA•CAIJI 
OO'i8 AP•CAIMI 
OO'i9 .BB•CBIJI 
0050 BP•Cl!IMI 
0051 A•COAILIJl,UIJll 
0052 B•COAILIJl,UIJll 
0053 C•COCILIJloUIJll 
0054 D•COOILIJl,UIJll 



UllD 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
con 
0072 
0013 
0014 
0075 
0016 
0071 
0078 
0079 
0080 
008l 
ooea 
00193 
0084 
CC85 
0086 
0087 
0088 
0089 
oocio 
0091 
0092 
0093 
C094 
OOQ5 
001l6 
OO'il7 
COil& 
001l9 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
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E•COECLC Jt ,U(Jt I 
F•COF C LC JI ,u CJ t I 
G•COG CLC J t.UC J 11 
H•COHCLCJl,UCJll 
AF•COAILCMl,UIMlt 
8F•C08CLCMl,UIMlt 
CF•COCILCMl,UCMll 
DF•CODILCMt,UCMll 
EF•CCECLlMl,UCMll 
FF•CDF(LIMl,U(Mll 
GF•CCGCLIMl,UIMll 
HF•COHCLCMl,UCMll 
IF CKIJll 202,202,121 

121 IF IKCMll 44,44,33 
33 LIJl•KI JI 

LCMl•KIMI 
IF CCUIMl+0.51.EQ.CUCJl-0.511 GO TO Ill 
IF llUIMl-0.51.EQ.UIJl+0.5) GO T0222 
IF CUIMl.EQ.UCJll GO TO 333 
GO TC 20 

111 IF ILIMl.eO.LIJl-1.0I GO TO 112 
IF ILCHl-1.0.EQ.LIJll GO TO 113 
GO TC 20 

112 AAX•tAP•AA•ee•eF•EI 
AAY•IAP•AA•88•BF•EI 
AAX•AAX•AAX 
OY•f.AV*'•AV 
GO TC 99 

113 AAX•IAP*AA•BP•PF•At 
AAY•CAP*AA•BP•FF•AI 
UX•UXUAlC 
AAY •UYUAV 
GO TO 99 

222 IFILIMl.EQ.LCJl-loOI GO TO 223 
Ip: ILIMl-1.0 .EQ.LCJll GO TO 224 
GO TO 20 

223 AAX•IAP•AA•BB•AF•fl 
AAX•AAX•AAlC 
AAY•AAX 
GO TO 99 

224 AAX•CAP•AA•BP•EF•81 
AAX•AAICUAlC 
/AAY•AAX 
GO TO 99 

333 JFCLIMl.EO.LIJl-1.0I GO TO 3J4 
IF ILIMl-1.0.EQ.LIJll GO TO H!i 
GO TO 20 

33/t AAZl•AP•AA•BB•IE•AF-F•BFI 
AAZ•UZ l*UZl 
GO TO 99':l 

335 AAZl•AP+AA•8P•CEf•A-FF•81 
An•AAZl•UZl 
GO TC 9':lll 

44 LIJl•KIJI 



CARD 
Cl09 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0121 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
010 
0144 
0145 
0146 
0141 
0148 
0149 
0150 
0151 
01!52 
0153 
0154 
0155 
0156 
0157 
01511 
0159 
0160 
0161 
0162 
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LCMl•C-1.Cl•Klllt-l.O 
IFILIMl.EQ.LIJt-1.0t GO TO 23 
GO TO 20 

23 IF IUIMt•0.5.EQ.UCJl-0.51 GO TD 21 
IF CUCMl-Oe!l.EQ.UIJt•0.51 GO TO 31 
IF IUIMl.EQ.UCJtl GO TO 41 
GO TO 20 

21 AAX•AP*AA•IBB•E•CF-BP•HF•At 
AAX•AAX*AAX 
AAY•AAX 
GO TO 99 

31 AAX•AP•AA•IBB•F•CF-BP•GF•Bt 
AAIC•AAIC*AAX 
AAY•AAX 
GO TC 99 

41 AAZ•AP•AA•IBB•CE*CF-F•DFl-BP•IA•GF+B•Hfll 
AAZ•AAZ*AAZ 
GO TO 999 

202 LIJl•l-l.Ol*KIJl-1.0 
IF CKIMtl 55,5!1,66 

66 llMt•KCllt 
IF CLCMl.EQ.LCJt•l.OI GO TO 67 
GO TO 20 

61 IF CUIMl+0.5 .eo. UIJl-0.51 GO TD 7l 
IF IUCMl-0.5 .EQ. UCJt+0.51 GO TO 72 
IF CUCMl.EQ. UIJll GO TC 13 
GO TC 20 

11 AA>C•AP*AA•CBB•G•BF-BP•FF•Ct 
AAIC•AA>C*AAIC 
AAY•AAIC 
GO TC 20 

72 AAX•AP•AA•CBB•H•AF-BP•D•EFI 
AAIC•AAX*AAX 
AAY•AAIC 
GO TO 99 

13 AAZ•AP•AA•CBB•CG•AF-H•Bfl-BP•IC•EF-D*FPtl 
AAZ•AAZ•AAZ 
GD Tll 999 

55 LCMl•C-1.0l•KCMl-1.0 
IF IUIMt+0.5.EQ.UCJl-0.51 GD TD !11 
.IF IUCMl-0.5.EQ.UCJl+0.51 GO TO !12 
IF CUIMl.EQ.UCJll GO TD 53 
GO TC 2(1 

!ll IF CLCMl.EQ.LCJl+loOI GD TD !14 
IF lllMl.EQ.LIJl-loOI GO TO 56 
GO TO 20 

!lit AAIC•IAP•AA•BB•G•CFI 
AAIC•AAx•AAll 
AAY•AAX 
GO TD 99 

56 AAX•IAP*AA•BP•C•~FI 
AAIC•AAXUAIC 
AAY•AAX 
GO TO 99 
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CARD 
0163 52 IF ILIMl.EQ.LIJl+l.01 GO TO 58 
0164 IF ILIMl•l•O•EO.LIJll GO TO 59 
0165 GO TO 20 
Olt6 58 AAX•IAP*AA•8B•H•CFI 
0167 AAX•AAX*AAX 
0168 AAY•AAX 
0169 GO TO 99 
0170 59 AAX•IAP•AA•BP•D•GFI 
0171 AAX•AAX•AAX 
0172 AAY•AAX 
0173 GO TO 99 
0174 53 IF ILIMl.EQ.LIJl+l.01 GO TO 531 
0175 IF ILCMl•l.O.EO.LIJll GO TO 532 
0176 GO TO 20 
0177 531 AAZ•AA*AP*BB•IG•CF-H•DFt 
0178 AAZ•AAZ•AAZ 
0179 GO TO 999 
0180 532 AAZ•AA•AP•BP•IC•GF-D*HFI 
0181 AAZ•AAZ*AAZ 
0182 GO TO 999 
0183 99 AAX•CCEFF•AAX 
0184 SUMX•SUMX+AAX 
0185 WRITEC611031J1M1AAX1SUMX 
0186 AAY•AAY*COEFF 
0187 SUMY•SUMY+AAY 
0188 WRITEl611041J1M 1AAY1SUMY 
0189 GO TO 20 
0190 999 AAZ•AAZ•CCEFF 
0191 SUMZ•SUMl+AAZ 
0192 WRITEl611051J1M1AAZ1SUMZ 
0193 20 CONTINUE 
0194 SUM•SU~X•SUMY+SUflZ 
0195 WRITEC611061 SUMX,SUflY1SUMZ1SUM 
0196 60 CQNTINUE 
0197 STOP 
0198 END 
0199 SENTRY 
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