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PREFACE

In this stud&, the dipole.éum rule for the oscillator strengths has
been evaluated using the non-relativistic harmonic. oscillator model and
the relativisfic equivalent harmonié¢ oscillator model. ‘Thé results of
the sum rules in.both cases are not identical. The bremsstrahlung
welghted cross. section has-also been calculated using the relativistic,
equivalent harménic oscillator model and compared with the well known.
result obtained with the non-relativistic harmonic oscillator model. A
relativistic correction factor for the bremsstrahlung weighted cross
section has been evaluated.

I would like to thank Dr. N: V. V. J: Swamy for his suggestion of
the problem and his patient guidance during the course of this work. I
would also like to thank the OSU Research Foundation and the Ministry of
National Defence of the Republic bf China for their support and encour-

agement.,
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CHAPTER I
INTRODUCTION

The experimental discovery of the giant dipole resonance stimulated
theoretical research in photo-nuclear reactions, While Goldhaber and’
Teller interpreted this in a unique way as a collective dipole vibration
of the neutrons and protons in the nucleus, efforts were made to apply
the knowledge of the well known atomic photo-effect to the nuclear
gamma absorption. Levinger and Bethe made an. extensive study of - the
dipole transitionms in nuclei. Their study covered

a) oscillator strengths in the dipole approximation,

b) sum rule for these.dipole oscillator strengths,

c) effect of neutron-proton exchange force on.the sum rule,

d) cross section for photon absorption integrated over energy,

e) mean energy for photon.absorption and a sum rule for .quadruple

transitions,

e) the dipole cross.section weighted by the %g-approximation:to.

the brumsstrahlung spectrum.
Before the work.of ‘Levinger and Bethe, Feenberg and Siegert. showed that
an attractive exchange force increased the summed oscillator strength .
above the value calculated on the basis of ordinary forces. Levinger
and Bethe used an,independent particle model of the nucleus, without .
Pauli CGorrelations between.the nucleons, and established that -quadrupole.

transitions are of negligible importance and that a suitable shell model



of the nucleus and an application of . time dependent perturbation.theory
to the nucleus-proton ‘interaction can explain even the -giant dipole
resonance without invoking a special hydrodynamical model .of colléctive
mutual oscillations of neutron and proton fluids.

On the experimental side besides an extensive ‘study of the gilant
resonant absorption, important centributions have been made‘in;fields
and angular distributions of y-n processes, photoneutron.cross sections,
photodisintegration of very light nuclei and the brunsstrahlung weighted
cross section. While there have been.noticeable discrepancies in the.
measurements of different groups using different techniques, the agree-
ment between theory and experiment has been. fair but not of such a
nature as to leave nothing to be desired. The Levinger-Bethe theory,
revised by Levinger later, has been increasingly helpful in understand-
ing photo-nuclear reactions. The existing‘theories ére~purely non-
relativistic and it may well be that the non-existence of an exact
relativistic nuclear model till now has prevented any consideration of
relativistic motions of nucleons in their interaction with photons,

The Equivalent Harmonic Oscillator model recently proposed by Swamy
and its application to the analysis of high energy electron scattering
experiments by Braun, encourage investigation of 1its suitability in
studying photo-nuclear cross sections. In this thesis two aspects of
nuclear photon absorption have been studied, the validity of the sum
rule for dipole transitions when relativistic .effects are included, and
secondly the improvement .in the agreement between theory and experiment
as far as brumsstrahlung weighted cross sections are concerned. The
isotropic harmonic.oscillator with spin-~orbit -coupling has long been

used as a shell model of the nucleus. In particular Levinger used this



modéel in his calculations. The EHO reduces to this in the non-relativis-
tic limit, which facilitates comparisons and the study of relativity as

a correction factor. While levinger did make use of the Dirac+Coulomb.
wave functions to study. relativistic radiative transitions in atoms,

this has not been done for nuclei so far.

The viewpoint of this work 1s not to assume the existence -of rela-
tivistic motions in nuclei but rather to astertain regions, of nuclel
where relativistic motions“maf be significant if in such cases the.
relativistic theoretical results show a significant improvement in their.

agreement with experiment as compared with non-relativistic calculations.



CHAPTER  I1
OSCILLATOR - STRENGTHS AND SUM RULE

The concept of oscillator strength and the sum rule orginated in

the scattering of electromagnic waves by.atoms, in particular the dis-

(1)

persion.low developed -by Kramers and Heisenberg

(2)

In -the same context Thomas and Kuhn' developed -a sum rule for the-

in quantum mechanics,

oscillator strengths in the electric.dipole approximation which was

based on the correspondence principle. It is interesting to note'that:
Heisenberg developed the most. fundamental relations. in quantum mechanics,
the well-=known quantum condition between x and Px’ [x, Px] = 1H, based
on the sum rule. In other words, the sum rule preceded quantum mechanics
in. a sense. For this reason.it is necessary to trace the development of .
the concept of oscillator ‘strengths and the sum rule,

In classical electrodynamics the total pewer. radiated from an:

oscillating dipole is given by. the expression(3)
4 . &
kK 212 w22
P S B2 - ) [1]
3c

where, ; is the oscillating dipole moment, ¢ the speed of light, and-w
the angular frequency.
This expression of course gives the total power radiated, .whereas
the ‘angular distribution is given.by the following expression,
4
dp . ¢ _13)? sine [2]

da 8ﬁc3‘




where the angle 6 is measured from the .direction of f. In the deriva-
tion of these resulté in'classiqal electromagnetic 'theory the energy of
flux 1s given by .Poynting's theorem and the power radiated per unit
solid angle is averaged over a.complete period of oscillation of ‘the
dipole.
Kramers(4) made the fundamental -assumption -that an. atom, when ex-.
posed to radiation becomes a sourve of secondary spherical wavelets,
which are coherent with the incident waves. A train of polarized har-

monic waves of frequency v, the electric vector of which at the point in

space where the atom 1s saturated is represented by
+ o
E = E fi cos 2mvt. [3]

is incident on the atom, E. here. is the amplitude and 4 is a unit vector,
The secondary wavelets can be described as orginating from an oscillating

dipole; the strength of which is given. by
>
B = P # cos (27vt - ¢) [4]

where P is the amplitude and fi' also a unit vector, while ¢ represents.
the phase difference between the,secondary and primary waves, The am-
plitude P will be proportional to the -amplitude E of the incident waves;
and this-is . the relationship that Kramers first calculated. Taking a
model of :the atom as an eleétron isotropically bound to a position .of

equilibrium, Kramers derived:

e2 1
P o= E—m——— [5]
b4 (vi - v7)




where e and m.are the charge and mas$ of an electron and’vl is one of

the natural frequencies of the electron.
If vlvz,..vr are the absorbtion frequencies .corresponding to the-

stationary. states ‘of.the atom,.then the formula ‘becomes generalized. to

2

e . 1
P = EI f, — — [6]

and here f, are constants which were actually determined experimentally

i
from the absorption lines.

Modifying this classical picture by both the.concept of stationary
states and transitions between them, Kramers was able to derive the.
following formula, applying the.correspondence principle that in the
limit of large quantum numbers or as Planck's constant (h) tends to zero,
the quantum mechanical system goes over into a classical system. Stated
differently, in the region where successive stationary states:of an atom,
differ only comparatively little from each other; the interaction between .
the atom and the field of radiation teénds to coincide with the interac~
tion to be expected on the basis of classical electrodynamic theory.

The superscript a refer to absorbtion and the superscript e refers to
emission in the .following formula, the A's are the Einstein.coefficients
representing . the probability of an isolated atom undergoing in unit:
time, transitions between stationary states giving rise-to either

emission or absorbtion of a,spectrai.lineh

2
a a e’ 1 e e
P = EZ A, T, _ - EZA T .
{71 1 m 4_”2(\)ia2 _ v2) i 373

2 ,

e 1 [

. e _ : 7]
o 4n2 (v, %% - V)



A characteristic time t for both emission and absorption is introduced
and ‘this represents the time in which the energy of a particle perform-
ing linear harmonic oscillations of frequency v is reduced.te 1l/e of its
value.. A T will be a dimensionless quantity f and this f represents the .
virtual oscillator strength., In the revised formula of Kramers, radia-
tion reaction, that'is the reaction of the atom on- the incident radia-
tion is taken into account. by the introduction of virtual harmonic os-
cillators and it is the number or the strength of these oscillators that
the f represents.

It is important to know that up to this point P represents the di-
pole moment induced by the electromagnetic wave that is incident .on the
atom and once- the dipole moment is known the radiation 1s.then.computed.
according to the classical formula. The differential scattering cross
section in classical theory is .given by the ratio of the intensity eof
the radiation in a particular direction to the intensity of incident
radiation,

When the atom is exposed»fé ekternal monochromatic radiation of
frequency v it not only emits -secondary monochromaticlsphericai waves
of frequency v which are coherent with the incident radiation but,
according to the correspondence principle, sphericakX waves of other
frequencies are also emitted, frequencies (v % V'), where hv' denotes
the energy difference.of the atom between .two stationary states. This
incoherent radiation is the Raman effect in the atoms and molecules.
Kramers and Heisenberg refined the original formulation of Kramers in a .
quantum mechanical but .still semi-classical treatment of the interaction .
of the atoms and the radiation. The model ‘of :the atom is that of an

oscillating dipole and the effort was to cglculate the dipole moment



induced in.the atom by the incident electromagnetic wave. However, the
possibility of -incoherent scattered waves has been introduced and the
formula.for the scattering moment developed by Kramers. and Heisenberg

from the correspondence principle is given by.

P(t) = E —=——) + cos (27Vt) | [8]

N
N

As in Kramer's original formula, once again, Tv.iS the decay time of

classically oscillating electron with fréquency v -

3c3m
22 2 [o]
8t e v

and the strength of the transition is -given by the number £

f = A T, [10]

where A denotes Einstein's probability coefficient.

The total intensity of scattered light per unit-time is given by
the application of classical electrodynamic formula for the radiation
from the‘oscillatipgvdipole, using the above dipole moment.,

It may be remarked incidentally that different types of scattered.
radiation and the transition between stationary states to which they -
give rise, should leave the energy distribution .in the black-body radia-
tion and statistical equilibrium distribution .of the atoms unchanged.

Before proceeding to the fully quantum mechanical derivation of the
well-known Kramers Heisenberg dispersion formula itAis‘worth mentioning
that Kuhn and;Thomas(z) noticed a sum rule. obeyed by the oscillator
strengths -corresponding to the above paragraph.

The -quantum mechanical derivation of sum rule and the correspondence



principle argument leads to.the following set of formulas.

Lights of frequencies Vis Y,

Hydrogen .atom to a number of higher states

...vY caﬁ‘induce transitions of the

Eqs EZ"'EY' For a radia-

tion with frequency v not close to one of the resonance-frequencies

2...v2_Thomas and Kuhn ‘assumed that the oscillating dipole moment

of the atom can be representing by

\)l, \Y

2

P _ 1 e Py

E - T2 mifl TTT 2 [11]
4m VT =

in analogy with classical dispersion theory. Here, as earlier, P and E
are the amplitudes of the dipole moment and electric véctor of the inci-
dent light.respectively and Py is the number of dispersion electrons
which is appropriate for the tramsition (o + i) and which number is,
assumed identical with the number of absorption électrons.

For very large frequencies of incident'radiation,this-reduces to

2
e

P 1 I
il nbe TR [12]
Tm Vv

It is known that the dispersion associated with the dispersion vector ?
is equal to

4
_dE _ Qmy)” |§|2 [13]

dt 3c3

-

and this simply gives the energy dispersed per unit time per atom as

)2 B2 . [14]

r
Iy
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T
If one substitutes iglPi = ] in this expression thén the well-known cross

section of Thomson is reproduced. It is this approximate agreement of
the -dispersion cross section with experiment that has established the

validity of the rule &I P, = 1. The connection with optical dispersion
1.

i
relation however is given by a calculation,.from the above. induced dipole
moment vector, of the dipole moment density or-dipole moment per uﬁit
volume, and the polarizability and relating that to the refractive index,
This of course is not the way in which the dispersion formula is useful
for dispersion in quantum mechanics. The quantity of importance and.
interest, therefore, is the oscillator strength WR;eh in classical theory
represents the number of dispersion electrons that participate in the
proper vibration in question. In quantum theory this‘number need not-be
an interger, it represents the strength of -the oscillator or what frae-.
tion of a given electron trated as .a cl#ssical oscillator contributes to.
the dispersion. By comparison of the formulas of Kramers and Kuhn it is
easily noticed that the oscillator strength f used by Kuhn is (A1) intro-
duced by Kramers namely the product of the Einstein's coefficient and

the decay time of electron. The Kramers Heisenberg derivation is not-
fully quantum mechanical not only because it was still obtained from the
correspondence principle way of calculating the dipole moment, but the.
oscillator strengths are not given in terms of quantum mechanical matrix
elements and most important of all the radiation field is not quantized.
As is well-known, the most accurate description of thé interaction of
matter and radiation involves quantizing the radiation field and treat-
ing the interaction between radiation ‘and atoms as a perturbation. The
transition probabilities and the cross section -are then calculated

according to time -dependent perturbation theory. The perturbing Hamil-
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tonian is

N 2

q - - (PeK)+'*2“—uA-2‘ [15]

int

=|o

and the.radiation field is quantized. One speaks not of electromagnetic.
waves being scattered by the atom but of photons and electrons and the
photon number and electron number before and after the collision. In
the case of dispersion therefore there are two possibilities which ex-
periments can not distinguish. A quantum of energy hv and momentum %}
is obsorbed by the atom or, more precisely by the electron in,the coulomb"
field. So in an intermediate state nd light quantum is present. The
excited electron then makes the transition to the final state and a
photon with energy hv' is emitted. /Oh‘fhe other hand it is equally
possible that in the field of the incident photon the electron first
emitted a hy', thus creating a intermediate state in which two light
qﬁanta‘hv, hv' are present and eventually the electron absorbs the in-
coming radiation hv. There is a possibility of -interference between
these two processes and therefore the matrix elements have first to be
added and then.the absolute squdre of their sum is introduced into the
formula of the time dependent perturbation theory for-the transition
probability. The matrix elements are computed in the basis of product
wave functions, the factors of which represent,the wave functions of the
photon and the electron in the initial and the final states. The vector:
potential in the interaction Hamiltomial given above is usually taken .to

be

T = a ce? [16]
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The time factor ‘is omitted here and 1is taken into account by the energy
conservation between the two stationary states and the photon. This

-> ->
leads to P * A being equal to
> > > o~ -1 knr
P*A = A (pe)e [17]

The presence of the exponential factor, often referred to as a retarda-
tion factor, complicates the evaluation of the integrals. However, in
the cases of experimental ‘interest (kr) happens to be a very small
quantity being the ratio of the linear dimension .of the atom (]‘.0-8 cm)

and. the wave length of the outgoing radiation (4000 x lO_'8 cm), In this

> >

long wave length approximation, therefore, the‘e-i ker can be replaced
by.1l and this is often referred to as a dipole approximation, because.
then.the quantum mechanical formula parallels the oscillating dipole in.
the Kramers Heisenberg formulation of dispersion theory. This fully
quantum mechanical formula is given in Heitler's Quantum Theory of.Radia-

tion(s)

Pnn, Pn n Pnn, Pcnn.
2 k i "ol o0’
d‘¢-'rokdg[—z(-E +k tTECE SR
o i o) i

+ Gnno cos 6]2 [18]

and ‘in, the case of coherent scattering

P noni Pn o Pnoni Pénino
de [—z( +

r 2 )
- E,.+ K E - E, - k.
o i o o i o

d¢ =

+ COS'e]z [19]
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In the.above formula if,no = n. then it corresponds the Rayleigh. scatter-.
ing, wherein the process of scattering the quantum state of the atom is
not changed. . If—no # n then the atom has made a transition.and this
corresponds to Raman scattering, where the incident photon '‘and the .out-.
going photon have different frequencies and the difference in energy is
used up in making a jump between stationary states by the atom on‘'which
the light is incident.

We now can introduce the ‘fully quantum mechanical definition of.the
oscillator strength from the above formula. The oscillator strength is-
as proportional to the numerator of the &wo terms in the cross section

formula.

2m \ b
£ v = % wn,n)<nlz[n’>{ [20]

This is the definition of the oscillator strength in the dipole approxi-
mation of the quantum mechanical interaction between radiation and
matter. - And the most important sum rule Thomas-Reiche-Kuhn.rule is now
a rule for the sum of the oscillator strength for all transitions which
start from a definite state n of.the atom. This happens to be a very
general rule which holds for any atom or molecule with or without'exter-.
nal fields, for any polarization.direction and no matter which (if any.
of  the various angular momentum operators are constants .of the motion).
For one electron this sum equals one and for z electrons this sum is

equal to the total number of electrons z. Stated simply, this sum is

v £ = 2 [21]

[N
(sometimes the notation fz is also used for fn'n)' Although it has been

established in agcofdance with the.correspondence principle by Thomas and
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Kuhn ‘the sum rule.can be derived simply by considering the following com-
mutator relations and using the properties of completeness of .the eigen-

functions of .a Hermitean Hamiltonian, and closure.

1
2m

P24 v,

Consider the‘double-commuta;or\[[z, g], z]. If H=
- then according to Heisenberg matrix mechanics we have, because

[z, v(x)] = o,
[, 8] = 2z - Bp [22]

using the quantum condition‘[z,'Pz] = iﬁ'and.[z; Px] = [z,~Py] =0, we .
have

2
[z, 8], 2] = [Py, - & [23]

m m
Taking the expectation value of both sides with respect to the normalized

eigenstate |O> of the Hamiltonian H,

oMb, Jo - -t

m

The left hand side equals

= EILE RIS <l 20—zt i e
Now | |
o lz,H])lny =0l zH|D — (ol Hz|W [26]
Hin>
{o|H = E, | - [l

f

Ea I | [27a]

<0\Ez)H]\ﬂ>=(En-El><o\zw> | 28]
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therefore,

o|lTz,n], z)lop=2 z (EM—EO)\@\ 2\*")[1 [29]

Hence the sum rule,

’ E;;‘£OV\:= 2;? EE:(EZW__EEO>\<ﬁ)lE}|M>(Z

2wy | [30]

Two things are very important in the above derivation, firstly that the
double commutator is equal to (%;) and secondly the matrix elements of P
are related to the matrix elements of Y through the Bohr frequency con-
dition., We will later see that these relations are not necessarily
valid in the case of a relativistic theory of electron, viz, if H happens
to be a Dirac Coulomb Hamiltonian instead of a non-relativistic Schr&-
dinger Hamiltonian for central fields.

The quantum mechanical T, R. K. sum rule can be said to correspond
to classical integrated power absorbtion for forced oscillation by a
charged oscillator or that it gives the classical Thomson cross section
for the forward scattering amplitude.

A third interpretation of the oscillator strength is through the

quantum mechanical expression for the electric.polarizability,

<
dipo\e mowevil - 2 5= | <tz V0>

e
eleciic field n Bn—E, [31]
= e 'p°”

n m ()\)o\:

Here the oscillator strength 1s the fraction of the electron bound by a

. , - s e . 2
linear sping of spring constant k_ "= m W
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We will now calculate the oscillator strength for nuclear case,
i.e., Y-ray absorbtion by nuclei. It is to be noticed that as far as
the physics and the quantum mechanical analysis are concerned, the ab-
sorbtion of optical photons by atoms and absorbtion of gamma rays by
nuclei are two similar processes, and it is in this way that Bethe and
Levinger applied the knowledge of atomic spectra to nuclear photon
absorbtion. The model of the nucli will be a shell model in which each
nucleon is moving independently of thé others in an average central field
described by an astropic harmonic oscillator potential., The energy
levels are given by En’ Eq. [32] En =‘ﬁwc 2v + & + %) and the normalized

single particle wave functions are given by lem(r.6.¢.)

Ui = Ro1 0 Yy (8,4) [33]

-
e T+ : oo =V .
qu(‘()—{\ T {T(X‘*}i)]z} (NY) e ‘F\(Q )>\Y>

EX
=

L
L z)?]_(\r'kQ‘Fiz = “3{
BRI RN, i Mw%“r%)%ﬁ“)

[34]
where, M is a Whittaker function and X represents the oscillator con-

AZYZ. These solutions have a definite parity (—)2.

stant /ié and X
A

This Hamiltonian has rotational symmetry writing z as r cos © =\/ %;-rYi

we get the parity selection rule for the matrix element of z, by con-

sidering the following integral:

=
Q\Q‘l Q: Q\Q'xQ} [35]

mf Mz w | \
\(Q-, \(Qz \(2\‘ A‘Q - 2 Dﬂ"") (Z S ‘) Cﬁmn_“\; CO oG

4“ (2Q3'\'\>
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. = = = ' = = o L}
In our case Ql 2, 22 1, 23 L' and m =W, m, =0 and my, =.m. The
Clebsch-Gordan. (c-) coefficients vanish whenever £' # & + 1 or & - 1
n' #m,

The selection rule for the magnetic gquantum number (m) is, there-

fore,

Am '-m=o0 [36]

m
B

The selection rule for the orbital quantum number (%).is, therefore,

AR = ' -2 =121 [37]

and -

vt wmlzlrewmy = f(w) — (v ent|v|rey  [38a]

(ze+2)(22+Y)

(za+1)(ze—1)

<\7' Q'—lm\Z‘\TQm): ] U — <\7'2_\l\(\\yq>

[38b]

< Q/mlzlvaw\> = O

for all other &', [3801

And the radial integral in the oscillator strengths becomes

CETIE \v e =§ R eai 00 Ry o0 ¥ ay

X

3 “‘E 41_
=:{2A'T(w+l+%) 2 T (o' wg+E) | |
ARAR NS VITT D] ) 2
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, Al |
X f X [\/‘\r-\--ﬁ;-\-%— y L +d ) Mw+1{+_g 2+ 00 dx

Evaluating the integral(lo), we get

vlanlyivay =

L
N ‘ T (et 2D T(U‘+L+§)}1X

A T Te'a)
€0 TEAHTUD) T H Tl
70T T e £) T et+E) Tlr-v'+1)

SN ,

S \ v Tk\-‘rw)
< ()

=0 Mi\v=m | Ttm+ %)

A

= (~\)\Hv——~' ' {T(\r'-u) T Cexex 3) ]Jz X

A Tr+) T (V've+=5)

l
Tle—v's) T (= +2>

X {(Q-\- 3) (v =)

_‘_v} [39]

From the above formula we get by algebraic manipolation the following

oscillator strengths.

_?V'Q—\W\ Ak h ‘ Ot
. = & EY z (\r'\‘Q"\-J{ =
vam 4 ¢ N ) (2a+) (22=1) [40a]

» _{\H—\ -1 w " \ 2 2
= = T w T + § —wm
T 2 e A () (2+1) (22-Y) [40b]
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VLrt owm <M \ (l+\>1 — W\l
4vzw\ A A \ v (ze+3) (2ex)) [40c]

V=l idw 2 M W+ — W n
M ()
A (2R+3) (RQ+) L0d]

As a result.of the'éelection rules on 'the quantum numbers v, % and m, in
the summation only a few terms survive namely v' = v, v + 1 for &' = 2+1
and v' = v,V - 1 for &' = & - 1. 1Incidentally it is to be noted that
the summation, as far as. the sum rule is concerned, has to be done on

all the quantum numbers which represent a particular state of a oné par-

ticle system. Carrying out this summation
C L-tm Nt L=t w ‘Q‘T Uil v ‘&V‘—\ Lriw
: = [41]
3%{“'" i T Tvam T e T Toom T \

We therefore get the sum equdl to 1. This is not unexpected because the
solutions form a complete set and are the eigenfunctions of the non-

relativistic Hamiltonian

A% 2 1 2.2 T42]

and therefore the double commutator relation Eq. (23), and the replace-
ment of P matrix element by the y matrix element are easily accomplish-.
ed. However, this calculation provides an algebric and numerical check

(18)

on the accuracy of the sum rule, | It-is pointed out by Fock that

the sum rule is really not valid if one goes to a more complicated sys—
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tem than Hydrogen atom. It is generally understood that if there are

z electrons the sum of the oscillator strength gives 'z.. This really
does not turn out to be. the casé if one bears in mind the identity of
the -electrons and that:.they obey the Pauli exclusion principle. The
requirement of antisymmetry on-the wave function of the many electron.
system results in the peculiar quantum mechanical effect of an exchange
integral. The single particle Hamiltonian should really be written as
the sum of three terms, the kinetic energy, potential energy and the-
exchange energy which has a sign opposite to the potential energy. -With
this Hamiltonian, the double commutator relation, which is the most im-
portant quantum mechanical equation that gives..rise .to the sum.rule, is
no longer the same because z in general will not commute with the ex~
change part of the Hamiltonian. In the case of the nuclear photo effect
Levinger and Bethe corrected the.sum rule for certain other reasons be-
cause in their original treatment they ignored the Pauli cerrelations.
The two particle nuclear force has; besides the ordinary interaction, an
exchange interactipn., This exchange interaction is.a dynamical part of -
the nuclear force and is not to be confused with a quantum mechanical
exchange arising from the antisymmetry of the wave function, i.e., aris-
ing from the Pauli.positional correlations 'in.the motions of the parti-
cles. They noticed that the final result of the sum rule has to be

()

corrected

- N—f (1 + 0.8%) [43]

=1

on

where N is the number of neutrons and Z the number of protons and A is
the sum of Z and N. ¥ is the fraction of attractive force for the

neutron-proton potential. In spite.of this, however, the sum rule has
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been.very helpful in understanding photo nuclear ‘reactions.. The most
outstanding photo nuclear reaction happens to be the gaint dipole’
resonance which is known to exist in almost 'all nucli except the really
light ones. In the.analysis of this resonant photo absorbtion the sum
rule plays an important part. .

The above discussion is confined to non-relativistic quantum
mechanics. It is interesting to ask what happens to thé sum rule if in-
the computation of the oscillater strength, instead of non-relativistic
basis sets, relativistic basis.sets are used. This has never been.at~
tempted because of the unavailability of ‘a relativistical single parti-
cle nuclear model. Very recently a relativistic -equivalent harmonic.
oscillator model has-been'proposed(s), It is therefore tempting to use.
the exact relativistic eigenfunctions of .this Hamiltonian to compute, as
an approximation, the oscillator strengths and the sum rule. While a
détailed discussion of the relativistic osc¢illator is given in a later
chapter, the.important equations ‘and results will be reproduced here.

The eigenfunctions of the Hamiltenian happen.to be.

— (E——moZ
\‘I\rx»\_ L+ - )

4n (v rixitd)

N lv XM
] Sx (E—m) [44]

R
2A eI

It ‘is interesting to note that the radial functions occurring .in this
spinor are identical to the functions occurring in the nen-relativistic
harmonic-oscillator solutions. . Secondly, this relativistic Hamiltonian.
goes over .into the non-relativistic Hamiltonian in the limit.of low

velocities. This facilitates greatly the comparison between relativistic -
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and non-relativistic results and, in particular,. the evaluation of the
relativistic corrections, if any, that need to be made both in the o8-
cillator strengths as well as the sum.rule.

The Dirac quantum number ) in the eigenfunction va can be ex-

H
pressed in the language of orbital quantum ﬁumbe} % using the relatien

in Eq. -(52) and, -therefore, the eigenfunction Wv can be written as

X
function of quantum number v, £, and u?fof’a £HOSen j (or X) value as

in Eq. (70). The parity selection rules for the matrix element of z,
derived for the éﬁherical Harmonics YE(G.#) as in Eq. (36), Eq. (37) and
Eq. (38) can now be applied, to simplify the integrals and further the
radial integrals are the same as given in Eq, (39). The latter happens
to be so because the radial parts of .the ﬁave functions in the rela-
tivistic and non-relativistic cases are theséame. The oscillator:
strengths calculated uéing the eigenfunctionswgf E. H. O, Hamiltenian

are now formed as follows:: When initial state is chosen such that

j =28 +% (¢ <o), then, for j' = &' +% (X' < o) wé have’

" LAD'E VY
£ =4 = 2% (E,—Ev ‘
n T Texa w (En—Ex) T
Y 4+ pa+ (= +32)
"r(E:~moc‘ En)( Ev —w.C En)

X1 adhe (v+red) Joain = 4

kS

(En——vv\ocz)( EV\'~W\Qc‘)\]\r+ L+ = [45a]
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T XK+l M l

=wm
'( 'g\rx»\ = T (Ew—Ew) N

(etm+d) (A=m+d)
4(E: ""VV\@C.L En)< E:/ — \N\oQ‘ En')

X

(ze+1)"

X { 4>“<’th= (r+et+t) Jrrer=> 4

kN
(En=w)(EYy —me) Jort1x3 B

[45b]

and for j' = 2 - % we have

~ Hl g Vo= AN = W
+r\ T T e m = ~——/\‘?\T‘ (E“M E“) N (ZQ-\-\)Z X

A\-( E:""' W\oC2 E—n) ( E\j — W< E"")

X 4—M U—(4)\MC> (\I+Q~3->(\7+Q+z>

(za+3)" [45c]
?‘ M - \
VM = T — E«) N o(a+3DT
(Lrm+2) (=M +32) X

4 ( E: —VV\OC-‘ Ew) ( 'E\r\’2 “‘MOC‘ Eh')
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N4 4 p (o) ( En—moc™ )Z( Ev«—w\,,c")2
(Aep+ ) (L=—m+X)D (= 2+ 0"

[45d]

1
fz = o for all ‘other cases.

Then the sum rule,

v

:2:: 4:¥n = EZ: E:; 2:; "C\rxAA
n voooXD oA .

zwl (En—Em) (R+m+3Z)(g—Mm+32)
A 4 (En—moC En) (BEn— med Ew) X (20+3)

X{‘é A T (Ut RY (v rrE) =&+ 3Nk
XKr+84+ 3D (v 0+ ) (B —wel)(E W —wWod)

2 X
+ (Bu—wee) (Eg=md) (vais £)

-+ 4 W (v+) (E. ——\moc) (En‘-—-moc.‘>z
(R4p+2) (2=p+2) (DT

2w ((En = Eug) (Rausd) (L=M+%)
A 4 ( B, — m.c* En) ( E:{ - WMoch E“;) >\2(29.+D?

X{\e NATCT (Tx R i) (vatt ) 4+ 3K X
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X (a1 (v + 02 3) (Ba— me &) Buy — moc®)

11 11
F (Bu—me) (Ep,—=mMec®) (Ut )

4 ARV (AXRS) (var+2) (wadts)
(Rarm+x) (L=—mr¥) (=0+2D7

[46]

Because of the functional dependence of the terms on the energy E&
of the state it is obvious that the terms can not be. summed as easily as.
in the non-relativistic case. This is done numerically and the sum. gives
0.68 as against 1 in the non-relativistic case. The detail of the choice
of A, the oscillator parameter, is discussed elséwhere. This result, .
although it compares with Levinger‘s(ll) result of 0.85 for the Coulomb
field case (Levinger, incidentally includes retardation also), is ap-
proximate because of the nature of the derivation. For a realistic
theory the interaction of the proton with the electromagnetic field has
to be treated according to quantum electrodynamics.. This is done in a

later chapter.,



CHAPTER III-

THE RELATIVISTIC EQUIVALENT HARMONIC OSCILLATOR

As a preliminary to the introduction of the relativistic Equivalent

(8)

Harmonic Oscillator proposed by Swamy it is necessary to discuss the.
spin.angle functions. The spherical harmonics which form an orthonormal

set of functions in polar angle space are defined as

" wm " \mq
9, = (= (z2+1) (- iW d
\(Q (e,4) AT ()] Sin g dos o (Lose)mﬁ(me)e [47]

These satisfy the phase relation
-m m _m*
Y, = (L)Y, [48]

and the orthonormal property.

o 2

g SiM 6dB dkg \f: *(e)cg»)T:‘(e,LQ) == ém, émm/ [49]

2]

The well known spin functions for a particle of spin 1/2 are.given by

xij o= () ; xl:;"j + 8= (] [50]

with the spin up or:down,ms.= t % is taken along the Z axis. From these

two the spin-angle functions are now defined as
Xe=o O YT
X < T oM IR ¥ [51]

T=T%
where C are Clebsch-Gordan coefficients. These were also called spheri-

(9)

cal spinors by Rose and Biedenharn who first introduced them™"". 1In the

26
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above, the Dirac quantum number k simultaneously determines both 1 and j.
the latter being the usual total angular momentum quantum number relating
to the .quantum mechanical vector sum of.the orbital angular momentum and.
spin. This is an algebraic number which can take on all integral values
except 0. It is negative if the spin and orbital ‘angular momenta are
parallel and positive in.the other case. We thus have
for j = 2-% , kx =:2
[52]

s

for ¥ o=or+k , «

1 now can be treated ‘as.a function of k and one introduces 1(-k), de-
noted by the symbol %, as follows

for. j = &-% , 2. = 2-1

[53]

for 3 = %t+% , & = L+1

We note that: in either case~]K| j + 1/2. For each k there will be -

2|K|‘valués,of'u which can take on the half integrdl values:

U = o= %

5

, :-;-, ey £ (k] = ). [54]

‘ X 2.
The spin angle functions defined in Eq. (51) are eigenfunctions of J,
2 : ] > > -
Jz,,and L, where J is the total angular momentum J =L + S * U now re-.
fers to the projection quantum number u ==~Jz = lZ +~sz.= m + mé. The
XE are also eigenfunctions of the spin-orbit coupling operator intro-.

duced by Dirac.(in units of h = c = 1)

"ET D K e [55]

Since. -k and l(_K) are defined, it is easy to introduc’:e.xu as follows.
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W TG T N X 56

T=1x
The operator that connects the two spin-angle functions is

> > N
. -
f’—ri = Gor [57]

and the connecting relationship is

A RIS SO N [58]
tTXe 2O X =X

The explicit form of the spin-angle functions in all four important cases
is given below.

For the case j = £ =% (k > 0), k= % and 2 = 2 - 1

. _ PR . \(M'—"& \
M 2 a+\
Y [59a]

[ﬁm \(“**
L+

and

Nt

M—
’Q-{-u—“i
20— |\ \W/Q—
M'\‘z
[ [59b]
JEE=E Y

X =

=X

For the opposite case, where j = 2 +% (k <o), Kk = -2 =1 and & = & +1
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: , Y
f._ﬂ_xx_»\:r_, = 4
’-><M — =20+ | \(Q
X [59¢]

’ =M+ \(M'*‘E
2 2+t \
,XM _ ,‘ 10.-\-3 \(2 [59d]

— Y
~X FETES TG

N 23 ey /

The spin angle functions form an. orthonormal set in spin-angle space

{X XD = Sy G 2

where . the scalar produét. implies integration over the angles and summa-~-.

and.

tion over the spin indices.
Since multiplication of these spin-angle functions by any function
of r does not alter the angular properties of these functions, in parti-
2 > >

2 > A
cular their relationship to J , L, Jz’ oL+ 1 and o'r, we can intro~-

duce the spinors

vk u >~ xE F [61a]

vi

IV'-K u>=>1 xEK FVE [61b]

Here Fvl(r) is the normalized radial sclution of the non~relativistic

isotroplc harmonic oscillator

L
3 242 10 -\
, X T v+ z F RN
N TSR | (ei ) ) 2]

Now the orthonormal property of these spinors can be generalized.

<UJX’M, ] \)—XM> = gu‘\r' gxx’ éMM’ [63]
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v is the quantum number which, with 1, determines the oscillator energy

levels

Eq, = (2v + 1 + 3/2) %o [64]

The EHO is obtained by adding the interaction

2 G+l
vV o= 12 pi(or) —— [65]
]o-L + l]
to the free particle Dirac Hamiltonian (units of A = ¢ = 1)
>
= -P.
He, py (@) +py (o-F) [66]
This has exact eigenvalues and eigenfunctions as follows:
V] =
B VKU B WVKu. [67a]
| i ‘ ‘ \
E =J moz + 4% o+ lc] + %) [67b]

In. terms of the spinors given in Eq. (59) the above solutions‘_‘l/VKu are

given explicitly by

7

1o % ud

Miaat 4X (v +ixl+E) Sk (E —w,) ‘;-[68]

T =XKM
Zk\f\r+\x|+2 »

and the bound state normalized constant is-

(E - m.o)2 -
[1+—; = ] [69]
o+ ||+ %)
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Explicit forms of the solutions fro the two cases of importance j = f+s

and j = 2 - % are glven below for j = 2 + % (k < o)

( ’Q 4 M—%
\ \:;A:\z FWQ \(Q

0~ M*‘z un—-‘z
J 20+ P“Q 0

-1
2
)y (E-wmy LOE — o) < -
- I+ kY Q‘M-\'_z' "%
_%{*“ {~ X (e as)f | 22 [o i Jzz+z EQMquH

LD 2+M+}-F

2NV iy 22+3 ‘”’f‘

~

for ] =84 ~-% (k > o)

/ N
=My T \\,M—%
2+ ve te
A
',2+M+Jf by

. -1 _ >t | ]:\ra Y
\lj =1 4 LE=M)
X NCRL e N
4')\( 7-.) \ (E—W\o) Q‘\'M— ‘: \(“
2afurixdt Jre—) Moy
(E—w‘°) L-M—2 P
LZXJW{ 20-) ' ury
/

[70a]

[70b]

As was shown in ref. 14, 'in the non-relativistic limit; the EHO Hamil-

tonian yields the usual isotropic harmonic. esc¢illator Hamiltondan with

a spin-orbit coupling term of the Thomas-Frenkel form.

—

ST

Yz*(ﬁ, gx)

[71]
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The degeneracy of the energy levels of EHO is four times that of the
non-relativistic oscillator and a comparison of these degeneracies is

given in Table I.

TABLE I

DEGENERACY OF THE EHO AND THE NRHO

EHO NRHO

2 2 4

E° - m,o ¢ v + IKI Degeneracy E 2v + & Degeneracy
6A2 1 4 %~ﬁm 0 1
1012 2 12 -g—"ﬁw 1 3
1422 3 24 LEm 2 6
18>\2 4 40 %~ﬁw 3 10
2212 5 60 1—21-'ﬁw 4 15

26\ 6 84 1—23-'!"100 5 21




CHAPTER IV
BREMSSTRAHLUNG WEIGHTED CROSS SECTION
The - bremsstrahlung weighted cross section is defined as

o, = I (o/w) dw [72]

where L is the electric dipole cross section for the nuclear photo~-
effect weighted by the dW/W approximation to the bremsstrahlung spectrum.

% is rather easily compared with measured bremsstrahlung yields for

@

is not changed by the neutron-proton exchange force and, in the harmonic

photonuclear processes. As has been shown'by Levinger and Bethe

oscillator-approximation, of the nuclear shell model, %G is proportional
to the nuclear radius. For this reason sometimes:the experiment is used
as a means of determining the nuclear radius parameter L Experimental-
ly the total photonuclear cross section has been determined by measuring
the .attenuation .of the photon flux from betatron gamma rays or some

other copilous source, using a Compton spectrometer with good resolu-
tion(lz). The loss of intensity in ‘the incident photon stream is partly
due to nuclear absorption and partly due to electronic absorption. How-.
ever, since accurate theoretical cross sections are available for photon-.
electron-interactions such as the Compton.effect, pair production,
radiative corrections, it is possible to subtract the electronic absorp~

tion from the measured attenuation and get a fairly accurate value for.

the cross section due to nuclear absorption. This type of experiment is

33
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preferred to measuring the partial cross sections--v-p, v-n, V-V cross
sections--and summing these because of the uncertainties conCerhing the -
geometry involved in the latter, While the nuclear part .of the absorp-
tion is only a small fraction of the.total loss of photons ‘in.the inci-~
dent beam, in the case of light nuclei the nuclear part of the total
cross section happens to be well ‘distinguishable. Severél experiments
have been made on light closed-shell nuclei.

The cross section for a particle in.an initial state |0>‘to make a
transition to another stationary state |n> by photon absorption is ob-.
tained from the transition probability computed according to time de-
pendent perturbation theory in quantum mechanics. According to the
semiclassical theory of interaction of radiation with matter the photon .

is described by the. vector potential

i = 2'Aoe_ikx [73]

Here the gamma ray is assumed to be polarized along the Z axis and pro-
pagating along the x direction and the.amplitude Ab determines the num-.
ber of photons in the incident flux, In the nonrelativistic Schrodinger
theory the Hamiltonian for an electron in.a pure radiation field is

given by the gauge invariant substitution

PP+ %-K , E>E+e¢ [74a]
Such. that

>2 >2 e > > e > > e2+2. :

PP P +SPA+S AP+ S5 [74p]

Cc .

and . the Schrddinger equation becomes
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2
[élE f2+-§—§-K+%K.§+9—2—K2)+V]‘P=E\P 51

c

The term in KZ glves rise to second order transitions in which more than.

one photon is involved which is negligible and in the radiation gauge.

- e > > > >
VeA = 0, ¢ = 0, the two terms Tme (P*A + A*P) combine to give the per-
burbing potential
e3P - -1 [76]
me me

The transition probability between states»|0> and |n> is proportional to

the absolute square of the matrix element

<0 Aoe"ikx 5V |n> [77]
For photon energies of experimental interest and where the radiation is
observed far away from the atom kx is very small compared to 1 and hence
the exponential in the perturbing potential can be replaced by unity.
This is known as the dipole approximation or neglect of the retardation
factor. The time .factor is eliminated by conservation of -energy between
the ‘initial state of the particle |O>, the final state of the particle
|n> and the photon energy. The vector potential has, of course, to be
real and this necessitates the addition of the complex conjugate to the -
term in Equation (77), however, this leads to emission of a gamma ray and
hence can be set equal to zero in absorption probability calculations.
Applying Heisenberg matrix mechanics and the Bohr frequency rule, the
above matrix element can.be related to the oscillator strength as the

following steps show.

Since ‘ <0| £.V|n> = %<o| Pz‘|n> 78]



36

and -
Lop [n> = <olzla> = 2 -E) <0lz]n> = 1w _<0lzln>  [79]
m Z 4 *n ) ‘ ‘ on -

then the matrix element becomes, in the dipole approximation,
m
= F “on <0|z|n>. [80]

If ‘we compare with the definition of the oscillator. strengths, as given
in. Eq. (20), it is easy to see they are related by a.constant (-2).

The cross section for the absorption of ‘a photon of energy W = En ?_Eo

is,then,givenwby(7)
2 2 2 2
21°e%h _ 417e 2 _
Gon. uc fon - #c (En . Eo)|<0|zln> l [81]

From the above we get the bremsstrahlung weighted cross section for a one

particle quantum mechanical system.as

Q
1

O—01'].
[ 57 aw

b
2 2
4 2
- 45 tlolelw|? [82]
22 .
4 2
= ﬂ‘ﬁi <O|z |O>

In:the above the closure property has been used in the summation over n,
It is thus seen that the crux of the problem is to evaluate the ground
state .expectation value of the operator 22 for the appropriate.quantum
mechanical system.

For a .nuclear transition from the ground state [O>vto any excited
state ln>‘the wave functions of both the states have to be known. Rather

little is known of - the wave function of the ground state of the whole
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nucleus and much less of the exc¢ited state |n>. It is.therefore custom-
ary to work in some model of the nucleus and the one best suited to this
problem is the well known shell modél or the independentkpanticle.model.f
Bethe and'Levinger(7) were the. first to derive a‘formula for  the ﬂ
bremsstrahlung weighted cross section for the nucleus, proceeding along
the lines of the derivation given above for a one particle problem. If
we consider the displacement from the .center 'of mass of the nucleus, each
proton behaves as if its charge were eN/A where N is the neutron number
and, similarly, each neutron as if its charge were - eZ/A.. For a many
particle, system the appropriate operator in the dipole approximatien .is-
E Zi where Zi is the component of the displacement .along the direction

of polarization of the incident photon. Bethe and Levinger derived the

following formula for the bremsstrahlung weighted cross section
o, = [ (§§ dw
° w

z ]2f0> [83]

2
o G ol iz -

In the above the.suffix i refers to protons‘gnd the .suffix j to
neutrons, and the expectation value is taken With‘respect‘to the ground
state wave function of the nucleus |0>. The important consideration
then is to know‘the,ground state wave function as accurately as possible.
Levinger and Bethe used the Fermi.gas model and a.Hartree type product
many particle wave function with single particle plane wave functions as
factors, Levinger(l3) used a more realistic independent particle medel.
He chose the isotropic harmonic oscillator model and used a many parti-‘

cle wave function which was a product of two Slater determinants, one

representing antisymmetrized proten states and the other -antisymmetrized
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neutron states. In other words Levinger intreduced positional correla-
tions in .the motions of protons and neutrons separately. in.accordance.
with -the Pauli.principle, He arrived at the remarkably simple.formula

for the bremsstrahlung weighted cross section

o = 0,36 AM3

b mb [84]7

The above, has been used ever since»aé the phenomenological or semiempiri~
cal formula. for bremsstrahlung weighted cross section which, as seen
above, depends only on the mass number of the absorbing nucleus or more
appropriately the one parameter viz., the radius parameter which, in.

the harmonic oscillator approximation, can be. fixed from the oscillator

constant A,  The Pauli principle correlations'decrease o, since due to

b
the exclusion principle each proton is surrounded by an 'exchange hole'
‘in which there is a decreésed likelihood of finding another proton.. The
shell model, of course, ignores other dynamical correlations like the
spin dependent force between nucleons--attractive forces in a mutual
triplet spin state of ﬁwo nucleons and repulsive in ginglet states.
While ‘a detalled comparison of experiment and theory will be postponed
to a later chapter, it is important to note that the simple Levinger
formula is not in.agreement with experiment in all cases and there has-
been.need to look for corrections to this formula,

Thg simplest and most straightforward extension-of Levinger's
theory attempted in this work, is to replace the non-relativistic iso-
tropic harmonic oscillator by a relativistic oscillator model of the
nucleus(s)° As has been discussed in an earlier chapter, this~EHO

Hamiltonian .has the merit of analytical simplicity as well as a’physical-

ly significant non-relativistic limit; that of the isotropic oscillater
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with a spin orbit coupling of the Thomas-Frenkel form. The single parti-
cle states are then given by the spinor wave function ?VKH of the earlier
chapter and the ground state of the nucleus i1s described by the antisym-
metrized (protons and neutrons separately) wave function made up of these
single particle states in the usual way as a Slater determinant., This
makes sure that positional correlations are included. This ground state
wave function is used in Eq. (83) to compute the bremsstrahlung weighted
cross section. The following equations summarize the formula one ob-
tains when relativistic wave functions are used. They are naturally

more complicated than the non-relativistic formulas but in the approxi-
mation v/c--0 the simple formula of Levinger is obtained.

\

__ Ziﬁzﬁf . Z
6, = 7o <ol [%z_z;—%zi:z&] |o>
::::&Jﬁfi; ._Iﬂj = N1 ,
*\C A’. <O'<L:_zk‘o>+ Aw_ <Ol2\§ 2;2,;'\0> [ ]
. N 85

-z . z -

PR

&,
__2NZ_ _ |
B <O\<’%%Z‘ZJ‘O>

where 1 1, 2, 3, vov0 Z

Z+1,Z+2, ... Z+ N

N

and |O>, the ground state wave function of nucleus when Pauli principle
correlation is taken into account, can be expressed explicitly as fol-

lows:
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In the last equation Wa <$i) is the normalized wave  function vau

k g

of . the ith particle in the quantum state described by the quantum num~-
bers u, k, and u [= ak], then, the results of the required matrix ele-

ments in Eq. (85) are obtained as follows, by using the orthogonal

properties and the selection rules.

= | Z 2
Clzdlo -z Ol 28 v, @)

[87a]
z . 1 N - x
<ol Zi |o>——&-E <\qu(\f8)\ | \‘\H%(?i)>
[87b]
. \ Z 'z
O 2 Zv|O)=—1—— ¥
CEEAT AvEDR S I T NEH EARINTAN
L=k m
[87c]

>< <\110m K?\’)\ Z‘Lt \ \FQ’\K7¢})/\/
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(o)2;2p]0) - NKN )'):Z = O 2|0, (80

N e ) [87ﬂ
X <L\"qw‘(‘(\‘n)\ ZV|(\‘\JQ1(Y3')>
<olzi zj|o> =0 [87e]

Two questions arise in the application of the above'formula to'a
particular nucleus for purposés of comparison with éxperimental-resulté.
Firstly the quantum numbers,df the single particles outside closed
shells have to be fixed. This becomes. a problem if we remember that
the multiplicities and degeneracies .are not the same in the relativistie
and non-relativistic models. However, since the Dirac angular momentum
quantum number x relates to j it is realistic to choose the appropriate
quantum numbers in such. a way. that the experimentally known spin of the
nucleus (j value) is reproduced. The appropriate quantum numbers of the .
outermost nucleon.or nucleons in.the cases studied are given in Table II.
The second question -is the choice of the one parameter 'in.the oscillator
model--whether relativistic or non-relativistic--viz., the oscillator
constant A. In the non-relativistic case the equivalent uniform radius
of .the nucleus in.a linear function of the.oscillator constant, as can.

be -seen from the following equations:.
dvr|xive =—;\,_ (Z,U'-EQ‘\‘%) [88]

\

<XZ )nudeus =T (:—‘A—\ :\r ; (1 U0+ }z‘)(z Q-\-\)] [89]
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since,

k3

WFiuM}%wm

I

S <
—3 < X >muo\eu.$ [90]
such that-

|
Run§«(wvn = 'X [% g }; (Zv-&-l-k—%:)(z?.—i—\)l [91]

If, therefore, the uniform radius .of the nucleus is chosen in-accordance

with .the well known formula
R = r, Al/3 [92]

then from Eq. (91), the oscillator constant .is fixed depending on the
choice of ré. Levinger chose r =.1.2 fermis which was the best known
value from other experimental studies of nuclear sizes, coulomb energies
of ‘mirror nuclei, mesonic x-rays, etc., This way. of fixing the oscilla-
tor parameter is not applicable to the relativistic case easily. The:
energy of . the state pertaining to the quantum numbers enters the wave-
function implicitly and this leads to a transcendental equation for A
in the expression for the uniform radius., It has been noticed, however,
that the error involved in accepting the non-relativistic value is
negligible,

The nuclei chosen.for study lie in the regions of light nuclei, in-
termediate nuclei .and very heavy nuclei. Calculations have been made for -
representative nuclei for which both experimental data and non-relativis-
tic estimates exist. Detailed comparison of,the»relativisticHresults
with experiment is given.in the concluding chapter. Because of the com-
plicated nature of the formula (85), the cross sections had to be

numerically evaluated. The relevant computer program is appended.
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THE QUANTUM NUMBERS OF THE OUTERMOST NUCLEONS OUTSIDE CLOSED SHELLS

Ordinal No.
Nuclides, of K U
Nucleon
B 1
12 5 -2 =
6C 2
1
6 -2 5
9 -1 %
19
F 1
9 10 -1 5
1
41 =4 =
98Mo 2
42 . | L
42 4 >
. 1
81 =5 >
. T
82 -5 5
1
208 123 +3. >
Pb 1
82 . 124 +3 5
, 3
125 +3 7
3
126 +3 7




CHAPTER V
RELATIVISTIC OSCILLATOR STRENGTHS

The definition and calculation of oscillator 'strengths in the
earlier chapter are based on, the non-relativistic Schrddinger equation
for central fields. The interaction between the charged particle e and.
the radiation field (not quantized) is taken, in the radiation gauge, to
be

>
ik 2.3 [93]
me
Here,z is the vector potential which, in the cases of emission.and ab-

sorption of radiation accompanied by transition between stationary

states, is expressed as

4
[y
&Y
Y

[94]

>4
]
>
o
o®

where € is the unit .wvector in.the direction of polarization of .a linearly
polarized electromagnetic wave. ' From the above two equations one even-

tually introduces the osclllator strength as

2
fh'n = 2.Tmmn'n |<n'[z|n>] [95a]
or.
-2
farn T Fm wov I<n|Pz]n'>]|<n'|Pz|n>| [95b]

L
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It is the second expression which contains matrix elements of the momen=
tum operator between the appropriate stationary state wavefunctions of
the charged particle interacting with radiation, that makes transition
to relativistic theory convenient. It -is well known that for an ade-
quate description of the processes of absorption, spontaneous and in-
duced emission of radiation by matter consistent with experimental  facts,
it is necessary to quantize the electromagnetic field as well. In this
theory also the basic interaction of the charged particle with the

electromagnetic field, which is treated as a perturbation, is given by

e >,
- — AP [96]
0k.+
In the dipole approximation, or neglecting the retardation factor e r,

the oscillator strength is still given by Eq. (95). The justification

for this may be in the fully relativistic¢ and quantized derivation of

(5)

the Kramers Heisenberg Dispersion theory from which the oscillator

strength can.be extracted just as in the non-relativistic theory. Payne

(11)

and Levinger calculated the relativistic -oscillator.strengths both

in the dipole, approximation and in a more exact formulation including
the retardation factors, for the Dirac-Couldmb case. In other words,
in their calculations, the basis states of the charged particle are.the

solutions of the Dirac equation with the Coulomb potential. Jacobsohn

(ls)gave relativistic oscillator strengths for dipole transitions from

(16)

the L shell. Massey and Burhap calculated the.relativistic non-

retarded transition rate of K x-rays of ., Au. "While all these have been

79

numerical calculations in the main, through an entirely different ap-

proach Gell-mann, Goldberger and Thirring derived the 'sum rule for . di-
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pole transitions by considering the dispersion relation obeyed by the.
forward scattering amplitude of a bound electron scattering a high
energy photon. While their derivation agreed with the familiar Thomas-
Reiche-Kuhn sum rule, Levinger's. calculation disagreed.with this conclu-
sion and 'showed that:the scattering by a.free electron.and a bound elec-
tron of a high energy photon cannot be considered to be equal,

It is easy to see that the derivation of the sum rule made in the.
non-relativistic theory cannot be 'duplicated in:the relativistic theory.
For instance, the starting point in' the non-relativistic derivation was

the double commutator

[[#,2],z] [97]

the -expectation value of which ih the basis of ‘a compliete set of states
led to the sum rule. If we replace the non-relativistic central.field

Hamiltonian

1l »>2
B o= 5-F +V() [98]
by the Dirac Hamiltonian
> > _
H = pgn_+py 0P+ V(r) [99]

the double commutator vanishes as follows:

[m,2] = [p 5%, z] = - ip,0, [160a]
[[&, 21, z] = o [1000]
since [o,, 2] = [0, 21=0 [100c]
¥

This happens because of the .basic difference in the dynamical description,
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of the momentum of a particle in the two theoriés, In the non-relativ-
istic theory the momentum operator follow the Schrodinger prescription.
>

P = - 14V whereas in the relativistic.theory the momentum operator is

given by

P = mca [101]

and correspondingly the oscillator strergth is given by the expression

2
m ¢

2 .
2
fan = Fuos [ lagle] [102]
nn

This basic difference can also perhaps be related to the well known
phenomenon wherein the position operator in Dirac theory does not exact-
ly correspond to the position operator in the Schrodinger theory inas-
much as the particle can be localized only within an error in.measure-
ment corresponding to the Compton wavelength of the particle. Inciden-
tally it .is interesting to note that the above double commutator does
not -vanish.in the EHO case because the operator z does not commute with

the EHO potential .

2 > >
[z’ i')\ pl(onr)

T +1

- 1 %0 [103]
lo-L + 1

whereas z does commute with the Coulomb potential,ez/r; It is, there-.
fore, necéssary to.compute the oscillator. strengths and the sum rule

numerically starting from the basic matrix element’
<n'|%|n> [104]

using as basis functions the solutions of the EHO wvnu' While the

numerical results are.presented and discussed in the next chapter, there
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is one other point-to note. Usually the experiment does not distinguish
between the three mutually perpendicular directions along which the
photon may be linearly polarized. The oscillator strengths should,
therefore, be -averaged over the photon polarizations., Furthermore. in
all central fields, relativistic or non-rrelativistic, the chosen initial
state described by a given.set of quantum numbers is usually degenerate
in energy. Since.different sets of quantum numbers describing the
initial state can have the same energy, in the sum rule calculations it
will be meaningful if a further averaging is .done over the different
degenerate initial states. This question is not crucial in the non-.
relativistic case of a one particle system because, as Bethe and

Salpeter(l7)

have shown, once. the sum over photon.polarizations is
madeé, the result happens to be independent of the magnetic quantum num-
ber m because of the selection rules. Similarly the sum over m makes
the result«indepeﬁdent of the.orbital angular guantum number 2 and thus
it is immaterial whether or not this averaging over initial states is
done because. the sum over final states and average over photon polari-
zations makes the result independent of the quantum numbers of the
initial state. Some of the calculations of Bethe:and Salpeter are re~
produced here below. Unfortunately this is not the :case for relativis-
tic radiative transitions and this necessitates averaging over the

degenerate initial 'states.,

For a given v', the average oscillator strengths fh'n is -
‘g. L }z2m N _ P
nn 3 X ‘\rq,v-'o.a-\?—c-%|<\7QW‘"X‘L\\7'0_+\W\>\

M 2
_"W w\u,\r'eq Z_T % \ (V‘Q\M\ 'X»‘ v t~\W\'>\
[105a]
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' 2
3 { A (’\)“Q,V‘Q-H (‘W) | <velv)vlesi)]

LF%';\W‘U\)M)&Q-\ (“'L_) | Coalxlv Q"‘>'

20+l

[105b]
When summed over v' the sum. rule for the average oscillator strengths.
is ‘obtained as follows::

= o =35

2
+\ ) % (’\)\Tl,\r'q+\ ‘ Uiy iv e+l

. wi ? \ 2
+§? (ZQ-H) % @n,\r‘z—\ [ (el v e

|l

(et) (43 | Q(21=D
3 (22+1) > (2w

[105¢]
As in the non-relativistic case, when the sum. is broken.up into two
different summations,.one;cqrresponding to higher energy of the final
state (absorption) and another-corresponding to lower energy (emission),
absorption probability predominates over emission probability. In other
words the jumps corresponding to absorption make'a larger contribution
to the summed osclllator strengths.than.the ones corresponding .to

emission. As will be seen later, the end result happens to be an agree-.



ment with Levinger and Payne's conclusion even in the nuclear case.

rather ‘than with the Gell-mann, Goldberger, and Thirring's theorem.
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CHAPTER VI
RESULTS AND CONCLUSIONS

As mentioned in the previous chapter, for the relativistic case
the oscillator strengths and the sum rule had to be evaluated numeri-
cally. However, since the Pauli spinors xE in the solutions wvnu of the
EHO are built out of the solutions of the non~relativistic Schrédinger
equation for the isotropic harmonic oscillator, the calculations are
|

considerably simplified because of selection rules resulting'from the

orthogonality of the spherical harmonics as well as the radial functions.

<Qm‘ 'Q’m"yi_: g W gmm, | [106a]

<V 2 \ \Y’,Q > = g\r\r' [106b]

The final formula for the summed oscillator strengths becomes
4 : N S DA . [107]
L tn =3 2MC LLEL = — | <% | sl Loy
n' vOOX AU L w“"X’NE‘\'X
where there is a further averaging over all the degenerate states repre-
sented by the quantum numbers v, k and uj; v + ]K] being constant., In
the actual calculation .the state chosen.has the following quantum num-

bers and energy

v = o, lKl =3 or v=.1, lKl =2 or v =2, ]K[ =]

C — [108]
and B mo2 + 1422
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There is an interesting point of difference between the matrix elements
in the non-relativistic casé and in. the relativistic theory. In the
radial integrals, arising from the basic operator ai, one, gets.the |

radial matrix element

4
<vt|r|v' 2'>
where L' =2+ 1lor 2 -1
whereds. in the relativistic case, because of theiqperatorgaig one. gets

the overlap integral

<veplvt < k' ut> = 88 6 ! [209]

and this introduces, the selection rule v' = v, which simplifies>the
results considerably and‘reduces the -total number of final discrete
states to which transitions are probable., Since the .calculations are
done numerically it?ié necessary to choose one particular nucleus and

the one chosen .is 630u.. The oscillator parameter A is fixed by adjusting

29
the‘radius~of the equivalent uniform sphere to r, Al/3

fermis where r
has been cﬁosen as 1.2. This choice of the radius constant facilitates
comparisons with the_noﬁ;relétivistic cases. The maximum number of
final states to which a dipole transition is-probable from the initial
state IO, -3, %> happens to be 7. Using the formula in Eq. 107 and.
averaging over the.three directions of photon polarization as also the.
different degenerate states belonging to the energy lével'v +,lK| = 3,
the numerical ‘'value of the sum is b.§4 and thus slightly departs .from.
the non-relativistic value of 1. It-is, of course, to be noted that

the sum rule corresponds-to the transitions of the 29th particle in

that particular initial state, or stated more precisely, this sum rule
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is that of one particle in & given Initial state described by the quan-
tum numbers v =.0, K = =3 and g = %, The percentage departure from the
non-relativistic vélue is linked with the approkimate”prdcedﬁre used in
fixing the osc¢illator parameter A. In Chapter II. the sum rule was
evaluated in.a more approximatéﬁﬁay. Bethe's non-relativistic¢ deriva-
tion was changed to the extent of calculating thé matrix elements of z.
in the basis set WVKH in pléce.of the solutions of .the isotropic har~.
monic oscillator Uvem as the basis functions. The numerical value of
the sum.for the initial state [0, -3 %> for the nucleus A = 63 turns out
to be 0,91, This exhibits the unsatisfactory nature of.the appreoxima-
tion in the -evaluation of ‘the sum rule by this semi-relativistic method.
For the nuclei of expéfiﬁeﬁtal interest 12 16 19

2 180 2 oF
2OCaao; 42M098, 82Pb208, calculations of .the bremsstrahlung weighted

4
He ', 6C

cross section cb have been made using formula (85) in Chapter IV.  As.

usual the one adjustable parameter A has been chosen, following Levinger,

1/3 fermis. The

such that the radius of .the nucleus is_equal to rd A
effect of different. choices of rd, which 1is a‘matter-of.diSPQte in the
literature, has also been studied. The results are:summarized in Tables
III, IV and V. = Several comparisons have to be made. There. is the cémr
parison.of ‘the overall result with the simple formula 'derived by

(13)

Levinger

o, = 0.36 AM3

b [110]

and then there is the comparison with the calculations made using non-
relativistic wave functions. To facilitate thé latter comparison the -

following percentage is shown.in Table III:
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RelativistiC' — nonreldativistic
' nonrelativistiac

X 100

Tables IV and V emphasizelthat?the above simple Lewinger's.phenomenologi-"
cal formula. is not strictly correct. The. constant .355 does not turn
out to be 'a nucleus-independent 'constant but happens.to be a function
of the mass number A. However it is very interesting to note that-a
simple modification of Levingér's formula can be proposed
r 2

o = 0.355 (=2 A3 ) [111]
where A 1s the correction factor which is - shown in-TablewV. This cor-
rection factor is itself dépendent.on A and is . slightly.sensitive to the
choice of r,e It may not be too wrong to say, however, that averaging
over all values of ro thé correction factor can be.taken to be .025A and

if this is substituted in Eq. (111) we can rewrite Levinger's fromula

with a modified multiplying constant

r L/a
o, = 0.364 (~2) a7/2

b 1.45 [112]

Unfortunately the comparison with experimenﬁ is'not very straightforward
because the experimental results themselves have appreciable uncertain-
ties in the measured cross section, as shown in Table -III., It is not
unreasonable to assert, howeVer,'that‘the relativistic values with the
choice]of'ro = 1.1 appear to fit experimental results better than-the
non—relativiq@ic calculations and are decidedly . superior to. Levinger's
simple . formula. Thg latter formula, though based on. the nonfrelatiViSv
tic harmonic.oscillator model, uses the approximation.N =-Z and hence
checks with our calculations for these types of nuclei. .The promounced

disagreement of Lévinger's formula with experiment happens to be.in the
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case of lead where .the relativistic calculations with.a.smaller radius
constant show very good agreement. It is quite probable, as has been
shown by Braun, that in such a heavy nucleus with such tight packing of
nucleons fhere may exist relativistic motions. To some extent this can
also be sald of a very light nucleus like helium where probably the.
nucleons almost simulate the motions of free particles. There 'is .
probably noticeable disagreement in the case of oxygen between theory.
and experiment and this is perhaps due to the existence of other modes
in particular, the giant resonance which this kind of .a theory cannot
take into account.

In conclugion it appears to.be safe to say that the dipole oscil-
lator strengths' sum rule is not applicable, at least without'suitable
modifications, to relativistic quantum mechanical systems. There is
strong ground for suspecting relativistic¢ motions 'in . helium and lead to
the extent that photonuclear reactions and the bremsstrahlung weighted
crogs section can be accepted ‘as representative -experiments. for nuclear

structure, The simple formula of Levinger needs the slight modification

suggested above,



TABLE III

BREMSSTRALUNG WEIGHTED CROSS SECTION o, IN UNITS OF 10727 op?
1 Non-Relativistic  Relativistic Levinger's  Experimental
Nucleus _ _ — Results Results
r =1.1r =1.2¢r =13 r =1.1 (2 r =1.2 () r =1.3 (2
(o] (o] (o] (o] (o] (o]
gHe 1.882  2.240  2.6R9 1.937 2.900 2.296 2.500 2.660 1.200 2.287 1.5 - .3.0
1§c 8.143  9.690 11.373 8.414 3.333 9.968 2.867 11.657 2.500 9.893 5.4 - 12.0
120 11.949 14.221 16.689  12.278 2.750 14.459 1.675 17.036 2.075 14.460 7.2 = 7.4
13F 14,985 17.833 20.929  15.455 3.142 18.313 2.692 21.420 2.347 18.262 11.4 - 16.8
38Ca 40.543  48.249  56.626  41.881 3.300 49.600 2.800 57.985 2.400 49.213 26 - 32
ZgMo 131.170 156.103 183.204 135.175 3.053 160.190 2.618 187.365 2.271  161.668 110 = 140
zgng 348.831 415.137 487.210 358.202 2.686 424.702 2.304 496.244 1.854  443.455 270 - 375

9s



TABLE IV

4/3
Gb/A
' Non-Relativistic ~ Relativistic Levinger's
Nucleus r =1.1  r =1.2 r =1.3 r =1.1  r_=1.2 r =1.3 Results
) ) ) 0o o )

gHe . 0.296 0.353. 0,414 0.305 - 0.362 0.419 0.36

120 0.296 0.353 0.414 0.306 0.363 0.424 0.36

120 0.296 0.353 0.414 0.305 0.359 0.423 0.36

or 0.296 0.352 0.413 0.305 0.361 0,422 0.36

;8ca 0.296 0.353 0.414 " 0.306 0.363 0.424 0.36

oMo 0.290 0.345 0.405 0.299 0.355 0.415 0.36
208 h o _ _ A

gac 0.283 -0.337 0.395 0.291 0.345 0.403 0.36

LS



TABLE -V

. VALUE OF ‘THE CORRECTION FACTOR A IN RELATIVISTIC AND NON-RELATIVISTIC CASES

| Non-Relativistic - Relativistic
Nucleus I - a0 e A R —
(ro =1.1) (ro'= 1.2) (ro.= 1.3) (ro =1.1) (ro =1.2) (ro\.\-_= ,‘l>'3>
gﬂe 0.000 0.000 0.000 0.116 0.100 0.048
lgC 0.000 0.000 0.000 0.400 0.344 0.300
lgO 0.000- 0.000 '0.000 0.440 0.268 0.332
lgF -0,053 -0.053 -0.058 0.543 0.458 0.392
ggCa 0.000 0.000 0.000 1.320 1.120 0.960
Zg_Mo -2.,000 ~2.000 ~2.000 0.931 0.514 0.180
208 " .
82Pb -9.337 -9,337 -9.,337 =4.,000 =-4.760 -5,653

8¢
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APPENDIX A

PROGRAM FOR THE REQUIRED MATRIX ELEMENIS IN THE-

CALCULATION OF OB WHEN NEHO MODEL .IS USED

This program, written in the FORTRAN IV language, will print out .

the required matrix elements of o, in Eq. (85) of Chapter IV when the

b
wave . functions of NRHO model is used in,|0>. The oseillator constant A

is not included in this program.

ZSQWO = “<01212|o>

ZIJWO = <b|zizi,lo>

The value of the variable N,'is the number of protoms in this pro=-
gram which must be changed for different nuclei. The input data are the
quantum numbers v, £, and'm of'the.protons. Making use of Eq. (85).and
the printed results the value of the bremsstrahlung weighted cross

section o, can be.calculated,

b

60



CARD
cocl
0002
0003
00C4
0005
00¢C6
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
ools
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
€031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045

0046

0047
0048
0049
0050
0051
0052
0053
c054

61

00000000011111111112222222222333333333344444444445555555555666666666671777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

sJoe
101
102
103
104
105
106
107

10

22

11

33

‘99

FORMAT (4F5.1)

FORMAT{1XyT595X94F10e195X¢ELLe4,F10.4)

FORMAT(1Xs13HSUM OF ZSQVLMsSXELlLl.4)

FORMAT(1Xy8HZSQWC TSy5XsE1lla4)

FORMAT(1X+215,410X44E20.4}

FORMAT(1X,EHZIJUNC [S,5XyEll.4)

FORMAT(1Xy14HSUM GF 2120 ISsEll.4)
S1{R1,R2)=SQRT(R1+R2+1.0/2.0)

S2(R3)=SCRT(R3+1.0)

S3{R4R5)=SQRTIR4+R5¢3,(/2.0)
S4IR6sRTI=SQRTU(RE6*R6-RT*RT) /((2.0%R6+1,0)#(2.0%R6-1.0)))
SS5(RByRI)=SQRTI((RB#]1.0)*(RB+1.0)-R9*RI)/((2.0%RB+3.0)*(2.0%RB+1.0
cn

REAL IV(130),IL{13C)oIM(130),IMS(130),2SQVLIF(130)

SUM=0,0

N=9

ALPHA=1.0

DO 10 I=l,N

READ(So 101 )IVEIY o ILCL ) IMUT ) IMS(T)
ZSQVLM(I)=(~1.0/ALPHA®ALPHA)# (2. 0%IV(I}+IL(1)+43.0/2.0)%(1.C/3.0)%¢(
Cl2.0%(3.0¢IMUTI*IMCTD-TLAI)*LIL(T)#1.0)))/((2.0%IL(T1)-1.0)%(2,0%]IL
ClI)+3,0))-1.0)

SUM=SUM+ ZSCVLM(T)

WRITE(69102) Do IVAI) o XLCTD o IMCT ), IMSCT),2ZSQVLMIT) oSUH
CONTINUE

WRITE(64103)SUM

ZSQWO=SUNM/A

WRITE(6+104)25CN0

SUMM=0,0

DO 20 L=1,N

D0 20 K=1,KN

IF(L.EQ.K) GO TC 99

IFCINSIL)-IMSIK) .NE.0.0) GQTO 99

TFCIMUL)-TMIK) oNE.O.O) GOTO 99

IFLIL(L)-IL(K) .EQ.1.0) GOTO 11

TFCIL(L)-ILIK) NE.-1.0) GOTOQ 99

IFCIVIL)-IVIK) .EQ. 0.0) GOTOD 22

IFCIVIL)=-IVIK) o NE.1.0) GOTO 99

ZILK =(-1.0/ALPHA)*SQRT (IVIL) h*SSUILIL)INMIL))
ZJKL 3(=1.0/ALPHAI*S2( IVIK) ) *S4LILIK), INM(K))

GO TC 100

ZILK ={1e0/ALPHAY*S3LIVIL)ZILLL)I*SSLILIL),IMIL))
ZJKL #{1,0/ALPHA)#SLUIVIK) ILIK) I #S4(ILIK), IN(K))
GOTo 100 .

TFCIVIL)-IVIK) .EQ. ~-1.0) GOTO 33
TFCIVIL)-IVIK).NE.O.O0) GOTC 99

ZILK =(1.,0/ALPHA)*SL(IVIL), lL(L))‘Sb(lL(L)olH(L))
ZJKL =(1.0/ALPHAY #SI(IVIK) 2, ILUK)I*SS{ILIK), IMIK))
G0 70 100 :
LILK =(=1o0/ALPHA*S2(TIVILI)*S4LILIL), IN(L))

TJKL u({~1.0/ALPHAY*SQRT(IVIK) ) *SS5(TLIK) 4 IN(K))

GO TC 100

ZILK=0.0



00000000011111111112222222222333333333344444444445555555555666666€666777717171117118
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CARC

0055 2JKL=0.0

0056 100 212J={~-1.0)*2ILK*ZIKL
0057 IF(212J.EQ.0.006C TO 20
0058 SUMM=SUMNM2TZJ

0059 WRITE(69105)LoKoyZILKy2ZUKL9ZI2J oSUMM
0060 20 CONTINUE

0061 ZIJIWNO=SUNV/(N*(K-1))
0062 WRITE(64107)SUMM

0063 WRITE(6,10£)21J4W0

0064 sTap

0065 END

0066 SENTRY



APPENDIX B

PROGRAM FOR THE REQUIRED MATRIX ELEMENTS IN THE:

CALCULATION OF % WHEN EHO MODEL IS USED

This program will print out.the same required matrix elements as-
the program given in Appendix A. The only difference is now the wave
functions of EHO model are used in ]0>. The oscillator constant A is

included in this program,

ZSQWO = <o|zizlo>

21zJ = <o|ziz |o>

i'

The input data are the quantum numbers v, Kk and u of each proton..

A1



CARD
0001
0002
0003
0004
0005
0006
0007
0008
0009
colo
0ol1l
0012

+ 0013

0014
0015
0016
0ol7
ools
0019
0020
0021
0022
0023
0024
0025
026
0027
0028
0029
0030
00131
0032
00233
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

00000
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000011111111112222222222333333323334444644444455555555556666666666717171711178

12345678901234567890123456789012345678901234567890123456789012345678901234567890

sJce
101
102
103
104
105

11

22

FORMAT(3FS.1}

FORMAT (1X,1544F10.145E15.4)

FORMAT(1X,8H2ZSQKC ISy10X,E15.4)
FORMAT(1X4215,5X44E20.41}

FORMAT(1X,SHZIZJWO IS410X4E20.4)

REAL V(130)+K(130),U(130),L(130),E(130),CAL13C),CB(130)y O(130),
12SQVKU(120),MC2,2SQVNK(130)
COALAB)==~1,07SQRT(ABS((A-R+0.5)/(2.0%A+1,.C)})
COBLAJB)}=SQRT(ABS((A+B+0.5)/(2,0%A+1.0})))
COC(A,B)=SQRT(ABS((A+B+0,5)/(2.0%A+1.0)}))
CODUA.BYsSCRT(ABS((A-B¢0.5)1/(2.0%A¢1.0}))
COE(A+B)=SQRT(ABS((A+8-0.5}/(2.0%A-1,.0}}}
COF(A+B)=SQRT(ABS((A-8-0.5)/12.0%A-1.0})1}}
COG{A+B)=~1,0%SQRT(ABS( (A-B+1.5)1/(2.0%A+3,0)})
COH(A+B)=SQRT(AES((A+B+1.5}/(2.0%A+3.0)1})}

N=82

A=208.0

RM=1,67239%(10.C%%(~24.0})

C=2,9976%(10.0%%10.0}

Ha1,05443%(10.0%%(-27.0)}

VEM=1,6%(10.C*%(~6.0})

MC2=RNsC#C

T=SQRT((42.0 *¥RMEVENS (AS$(-1,0/3.0}))/(H*H))
THC=T#H*C
SUM=0.0

DO 10 I=1,N
READ (5,101 (TI},K(I},ULI)
O(I)=SQRTIMC2%MC2+4. 0*THCH*THC*(V(I)+ABS(K(E))+0.5))
CACI)=(1.04((0(I}-NC2)9%2)} /(4. 0%THCHTHC*(VIT}+ABS(KITD)+0.5)) bu¥(-
10.5)
CBUI)=((K(TI)/ZABSU(K(I})}*(O(II-MC2)) /(2. 0%THC*SQRT(VII)+ABSIK(I))40
1.5))

IFIK{I}.6T7.0.0} GC TQ 11

Lil)=-1,0%K{1)-1.0

CALL SSIVUIN L(I) ULIN-0.5,51)

CALL SSUVII}LAI},Ul1)¢0,.5,52)

ZSQVKUCT = ((L(ED+U(ID+0.5)/7(2.,0%L(1)¢1,00)®S)+(
LILGI)-ULTI)+0.5)/(2.,0%L(1)#1.0))%S2

CALL SS(VII) L(T)+1.0,U(1)-0.5453)

CALL SSIVIINLUTIN+1.0,U(1)40.5,54)

ZSQUNK (D)=a((LII)-UlI)+1.5)/(2,0%L(1)¢+3,0))%S3
1 +UILEID#UCT)#1.5)/7(2,0%LLT1)+3,.0))%S54

G0 TC 22

L{T)=K(1)

CALL SSUVII),LUT)4ULI)=0.5,55)

CALL SSUIVID),LLI),ULI)+0,5,56)

ZSQVKULT )= ((LEE)~ULE}¢0.5)/(2.0%LLI)+1.0})%S5
140ILEI)*+UCTN40.5)/712.0%L(T1)}¢1.0))2S6

CALL SSIVID),LUI)=1.0,Ul1)=~045,57)

CALL SSUVII),LIT)-1.0,UC1)¢0.5,58)

ZSQUNKIT ) =((L(T)¢ULT)-0.51/(2.,0%L(1)-1.0))*S7
1 +0(LUII-ULT)-C.5)/712.0%L(I)-1.0))*S8

R2SQI= CACI)*CA(T)I*2ZSQVKUCII+CACII*CACTI*CR(II*CRUTDI*2ZSQVNK (i)

3
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CARD

C055 SUM=SUM+RZSQL’ :

0056 WRITE(69102) 1 oVUT)oKETDoUCT) 4L (T)CALT),CRUE),0(1)4RZSQI,SUM

0057 10 CONTINUE ‘

cosa ISCHC=SUM/N

0059 WRITE(6,103)2SQNKC

0060 . SUMM=0,0

0061 DO 20 J=1,A

0062 DO 20-#=14KN

0063 IF1J.EQ.*) GO YO 20

0064 TFIK{J)) 2C2,202,121

0065 121 TFIKIM)) 44,544,233

10066 33 LiJd)=K(y)

0067 L{M)=K(M)

0068 CALL AA(VIJI) sLEJIsULII=0.5oVIMIoLEM) sUIM)-0.5,21)

0069 CALL AAIVII) oL UJDsUTJIN40.5,VIM) o LIM),UIMI+0.5,22)

0070 CALL AA(VIU)oLUJ)-1.04U(I)=0.5:VIM))LIMI-1.0,U(M)-0.5,23)

0071 CALL AAVIJISLEI)I=1.0eUCII405,VIM)LIM)I=1.0,U(M)40.5,24)

0072 CALL AACVIM) oLEM) ULM)I=0.5,V{J) oL LJ),U(I)-0.5,25)

0073 CALL AAIVINM)JLIM)UIPI+0.5,V(J) oL LI 4 ULII40.5,26)

0074 CALL AA(V(M) sLINM)I=1.0:U(M)=0.5,VIJ)sL(I)=14CoU(J)-0.5,27)

007s CALL AA(VIM) (LUM)I-1.0,U(M)I+0.5,VIJ),eLEJ)~1,0,U(J)40.5,28)

0076 - LIVKLK sCOACLIJI UL I I*COAILIM),UIM) )*21+4CORILIJID,U(JII*CCBILL
co77 CM)JULN))*22 )
0078 ZTVNKL =COE(LGJ)yULIIIPCOE(LIMIyUIM)I*234COFILLID ULI) I*COF (L
0079 CIM) UM} )24

0080 ZJIVKKL =COAGLEJ)ULJIDISCCALLIM) UINM)I*254COBILLID ULIDDRCORILYL
0081 CM)UIM) )26 :

0082 ZJVNKK =COE(L(JI)sULIN ) *COECL (M) oUIMII*2THCCFRILLID,ULI) I*COF(L
0083 C{M),UIM) )*28

0084 G0 YO 1cC

0085 44 L{J)=K(J)

0086 LiM)=-1.0*K(M)-1.0

0087 CALL AAIVII)sL () oULJI)~0e5,VIM),LIM),UIMI-0.5,211)

ooes CALL AAIVEID oL (JD4UCII40.5,VIMI LM}, UIM)+0.5,212)

0089 CALL AAIVIJ) 2 LEJI=1o04U(I)-03oVIM) oL (M)4]1.04U(M}-0.5,213)

0090 CALL AAIVIJ)oLUJ)=1.04UtIN40.5,VIM)oLIM)S1.0,U(M}+0.5¢214)

o9l CALL AACVIFD oLIM) U(MI=0.5yVIJ) 4L 1J) U(J)-0.5,215])

0092 CALL AA(VIM)L(P)UIMI®0.5,VIJ)oL(J)yULII+0.54216)

co93 . CALL AA(VIF)LUF) 2] ,0,UIMI-0.54VIJ)oLIJ)-1.04U(JI}-0.5+217)

0094 CALL AA(VIM) L{M)#+1.04UINMI40.59V(J)yL{J)=1.0,U(J)+0.5,218)

0095 ZIVKLK =COAIL(J) UCINIRCOCEL(MI,UIM)I*Z114CORILIID,ULI) I*CODIL
C0s6 C(M),UlM))*212

€097 ZIVNKL =COE(L(J) U} ISCOGILIMI,U(MII*2Z1I+COF(LIJ) 4ULI))*COHL
€098 CLIM) Ui M) )®Z14

0099 TJIVKKL =CCALLIINyULI) ISCCCILIM) UIM))I*Z154COBILIID,U(I)I*CODIL
0100 CUM),U(M))*ZL6

0101 TJVNKK =COECLUJY yU LD IHCCOLLIM),U(M))*2) T7+COF(L{I),ULJ })*CONHL
0102 CLIM) qU(M))¥Z18

€103 60 Y0 100

0104 202 IF(K(M)) 66466,55

0105 55 LGJ)=-1.,0%K(J)-1.0

alce L{M}=K(M)

0107 CALL AA(VEJI) sLEI) 4UCJI-0.54VIMI oL (M) U(M)}-0.5,221)

0108 CALL AAIVIU) 2L EJ) sULI)+0.5,VIMI o LIM},UIM)I*+0.5,222)
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CARD

0109 CALL AALIVAI) o i) #1.05U(J)~0.5sVIM)LIMI=-1.CoUIMI~045,223)

0110 CALL AA(VII) ¢ fJ)41.04U(J)40.5,VIM)LIMI-1.0,U(M)+0.5,224)

o111 CALL AALVIMDLIM) sULM)I=0.54VIJ) L) 4U(U)~0.5,225)

0112 CALL AALVIM)ZLI®) UIFI+0.5,VII) oL (J)UCII40.5,226)

0113 CALL AA(VIM) 4 LEM)=1.0,UIMI-0.5,V(J)L(J)+1.0,U(J)-0.5,227)

0114 CALL AA(VIMI,LIPI-1.0,U(M)I4+0.5,V{J)sL{JI#1.0,U(J)+0.54228)

c115 LIVKLK sCCCULIJIoULIIIFCCALL (M UIM)I#Z214CCOIL (I, ULI) I#CCBIL
0116 CiMI,U(M))*222

o117 ZIVNKL =COGIL(J)4ULJ)I*CCE(L(MI,UIM))*Z2234CCHILIJ) ULJDI*CCF(
o118 CLIM) yU(M))*224

orls 2JVKKL =COCILUJ)4ULJIIISCCACLIM) ,U(NM))#Z25+CCCILEI) UCI) IHCORIL
0120 C(M) U(M))I*226-

0121 ZJVNKK =COGIL(J),ULJ) ) *CCECLINMI,UIM))IHZ2274COFRIL(J),ULJ))*COF(
0122 CL(M),UlM))*Z28

0123 G0 TC 100

0124 66 L{J)=-1.0%K(J)~-1.0

012% L(N)==1,C*K(M)-1.0

0126 CALL AAIVII)HLEI)yU(I)=0aBoVIMIL (M) yUIMI-0.5,231)

ot CALL AAIVIJ) 4LUI) yUCUI4+05,VIM)LIM),UIM)I*+0.5,222)

0128 CALL AAIVIJ) oL (J)#1.04U(J)-0.5,VI(M),LIR)+1.0,U(M)-0.5,233)

0129 CALL AAIVIJ)yL(J)#10,ULJ)#0.5,VIM)oLIMI+1.0,U(M)40.54234)

0130 CALL AA(VIP)sLIMI UIN)=0.5,vI(J)LEJI,U(J)}-0.54235)

0131 CALL AAIVIMIoLIMIQUIMIF0.5,VIJD4LIJ)4ULII4CL5,23¢€)

0132 CALL AA(VIN) JLIMI+103U(N)I~0.5,VI(J) oL (J)+1.0,U(JD~0.5,237)

0133 CALL AA(VINM), LIM)+1,0,U(M)I+0.5,V(J)oL(J)+1,CyU(J)+0.5,238)

0134 ZIVKLK COCILEJ) UL I*CCCIL(MI,UM) )*2214CODIL (S, U(J))*CODIL
0135 C(M),U(M))*232

0136 ZIVNKL =COGILII yULJ) I*COGIL (M) 4U(M) I *233+CORIL IS ,UCI)I*COHL
0137 CLIM) ,UlM)) %234

0138 LJVKKL =COCILUJI, ULJ) ) *COCIL (M) U(M) )*Z35+CODIL (I, ULJ) I*CADIL
0139 C(M),U(M) )*236 )

cl40 I JVNKK =COCILIJ)ULI) ) *COGILIM) UM )IFZIT+COHILII) yUCI)I*COHI
0141 CL(M),U(M))*238

0142 GOT0 100

0143 100 RZILK sCA(J)I*CA(M)*ZIVKLK +CA(JI*CA(MI*CB(JI*CB(M)*

0144 CZIVNKL

0145 RIJKL sCA(J)SCA(M)*ZIVKKL +CALJI*CA(MI*CB(J)*CB(M)*

0146 CZ JVNKK

0147 IF(RZILK.EC.0.0) GO TO 20

0148 IF(RZIKLL,EC.0.0) GO TO 20

0149 RZ1ZJ=(—=1.CI*RZILK#RZJIKL

0150 SUMM=SUMN+RZIZJ

0151 - WRITE(E,104) 3¢MyRZILKGRZIKLSR2ZIZJySUMM

0152 20 CONTINUE

01£3 B=N

0154 L1ZJ=SUFM/(B*(B-1.0))

0155 WRITE(64105)212J

0156 sTOoP

0157 END
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CARLC

0001 SUBROUTINE AA(RVL4RLL,RMLoRVKyRLKyRMK(ANS)
0002 S1(R1,R2)I=SQRT(ABS(R1+R2+1.0/2.0))

€003 S2(R3)=SCRT(ABS{R3+1.0)) .
C004 ) S3(R4yR5)=SQRT(ABS(R4+R5¢1.5))

€005 S4(R6yRT7I=SQRT(ABSI(R6*R6-RT*RT)/( (2. 0#R6+41.0)*(2.0%R6-1.0))))
0006 © SS(RBWRI)=SQRT(AES(((RB+1.0)*(RB+1.0)}-RI*RI)/((2,0*RB+3.0)*
0007 C(2.0%R8+1.C))))

oocs ALPHA=1.0

0009 [F(ABS(RML).GT.RLL) GO TO 999

0010 [F(ABS(RVMK).GT.RLK) GO TCO 999

0011 IF(RVL-RMK.NE.O.0) GO TQ 999

col2 TF(RLL~RLK.EQ.1.C) GO TC 111

0ol3 IF(RLL-RLK.NE.~1.0) GO TO 999

0014 TF(RVL-RVK.EC.0.0) GO TO 222

0015 IF(RVL-RVK.NE.1.0) GO TO 999

0016 ANS=(~1.0/ALPHA)*SQRT(AES (RVL))*SS(RLL,RNL)
0017 GO0 10 71717

0018 222 ANS=(1.0/ALPHA)®S3(RVLRLL)*SS(RLL4RML)

0019 GO 10 777

€020 111 TF(RVL-RVK.EQ.-1.0) GO TO 333

0021 IF(RVL-RVK.NE.O0.0) GO TO 999

0022 ANS=(1.0/ALPHA)*S1(RVL,RLL)*S4(RLL,RML)

0023 GO 10 777

0024 333 ANS=(~-1.0/ALPHA)*S2(RVL)*S4(RLL,RML)

0025 GO TQ 777

Co026 999 ANS=0.0
0027 777 RETURN

0028 END

0029

0030

0011

0032

033

0034

c03s

0036

0037

€038

0029 : :

0040 SUBROUTINE SS(A,B4CsS)

0041 IF(ABS(C).CT.B) GO TQ 1

0042 §S=(~-1.0) *{2,0%A+8+41.5)%(1.C/3.0)%(((2,0%(3.0%C*
0043 1C-B*(B+41.0)))/((2.0%B-1.,0)%(2,0%8+3.0)))-1.0)
0044 GO TC 2

0045 1 $=0.0

0046 2 RETURN

0047 END

0048 SENTRY



APPENDIX C
PROGRAM FOR THE SUMMED OSCILLATOR STRENGTHS,

The summed oscillator strengths, I f., , where f_, was defined
nv nn : nn

in Eq. (107) of Chapter VI were calculated using this program. For the

given initial states,

The input data cards include all the degenerate initial states of

a given energy level and all the possible final states.

68



CARD
0001
0002
0003
0004
0005
0006
0007
ooo8
0009
0010
0011
0012
0013
0014
0015
0016
0017
cols
0019
0020
0021
0022
co23
0024
0025
c026
0027
0028
0029
0020
0031
0032
00133
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
€050
0051
0052
0053
0054
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$J08
101
102
103
104
105
106

10

FORMAT(3FS.1)

FORMAT(1X,15,3F1C.145Ky3E15.4)
FORMAT(1X21542F20.4410X,5SHFOR X)
FORMAT(L1X,215,2F20.4410X,5HFOR V)

FORMATU1X 421542F2C.4910X, SHFOR 2)

FORMAT (1X,4F20.4) - -
REAL V(130),K(13€),U(130),L(130},0(130),CA{130),CB(130),MC2
COA(A,B)=—1.0%SQRT(ABSI(A-B840.5)/(2.0%A+1,00))
COBIA,B)=SCRT(ABS(LA+B+0.5)/(2.0%A¢1.0)))
COC(A,B)xSQRY(ABS((A+B+40.5)/(2.0%A+1.0)))
COD(A,B)=SORTIABS{(A-B+40.5)/{2.0%A+1.0)))
COE(A,B)=SQRT{ABS{{A+8-0.5)/(2.0%A-1.0)))
COF(A,B)=SQRT(ABS{{A-B-0.5)/{2.0%A-1.0)))
COG{A,B)=-1,0¢SQRT(ABS{(A-B8+1.5)/(2.0%4+3,0)))
COHUABI=SQRT(ABS((A+B41.5)/(2.0%A+3.0)))

N=32

A=63,0 :

RM=],67239%(10.0%%(-24.0})
€=2.9979%(10.€%+10.0)
H=1.05443%(10.0%%(-27.0))
VEM=1.69{10.0%%(-6.0))

MC2sRMCHC

T=SORT((42.0  SRNVEM* (A%%(-1.0/3.0)))/(H*H))
THC=TH#H*C

DO 10 I=1,N

READ (5,101)VI1),K(T),ULl)
O(1)=SQRTIMC2¥MC2¢4 . CHTHCHTHC#(VIT) +ABS(K(1))+0.5))
CALT)=(1,0¢0(0(T)-MC2)#%2) /(4. OFTHCHTHC*IVITI*ABSIK(I))+0.5)) ¥ (=~
10.5)
CBUII=((K(I)/ZABSIKIT))IA(OCII-NC2) )74 2. 09THCHSQRY(V (I I+ ABSIKIT})+0
1.5))

WRITE(6,102) ToVUI)oKUID ULIDCALTCBET) CLTD
CONT INUE

00 60 J=1,12

SUMX=0,0

SUMY=0.0

SUN2=0.0

SuM=0.0

DO 20 M=l4h

[F(0(J).EQ.0(MI) GO TO 20

COEFF=(2,0#MC2) /(0{M)I-0(J))

IF (K(J),GE. 0.0 ) LE{JI=KLJ)

IF (K(M).GE. 0.0 ) L{M)I= K{M)

IF (K(M).LE., 0.0) L(M)= (~1,0)%K(M)-1.0

IF (K(J).LE. 0.0) Lid)= (=1.0)*K{J}~1.0
AA=CALJ)

AP=CA (M)

.88=CB(J)

BP=CE (M)

AxCOAILIJI ULJD)

B=COBLLEJ) ,ULID)

€=COCILLJ),utd))

D=COD(LEJN,ULI))



CARD
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
co71
0072
0073
0074
001738
0076
0077
0078
0079
0080
0081}
0082
0083
€084
cces
0086
ccar
0088
0089
0090
0091
0092
0093
€094
0093
€056
00s?
cosa8
0099
0100
0101
0102
o103
0104
0105
0106
0107
oica
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121
33

111

112

113

222

223

224

333

334

335

" 44

E=COE(LLJY,ULUY)
F=COF(L(J)ULJD})
6=COGILLJ),ULJID)
HsCOHIL(J}.UCJ))
AF=COA(LIM)UIM))
BF=COBILIM),U(M})
CF=CCCIL{M) U(M))
DF=CODIL(M),UIM))
EF=CCE(L(M),U(M))
FFaCOF(LIMI,UIMY)
GF=CCGIL(M),UIM))
HF=CORILIF),U(M))
IF (K(J)) 202,2C2,121
IF (K(M)) 44,44,33
LiJ)=K( J)
LiM)=K(N)

IF ((UIM)+0.5).EQ.(U(J)~-0.5)) GO TO 11
IF ((U(M)-0.5).EQ.U(J)I+0.5) GO TO222

IF (U(M).EC.ULJ)) GO TO 333
60 TC 20

IF (L(M).EQ.L(J)=-1.0) GO TO 112
IF (L{M}~1.0.EQ.L{J)) GO TO 113
GO TC 20

ABX=(AP¥AA®BB*RF*E )
AAY=(AP#AASBB*BF*E)

AAX=AAX®AA X

AAY=AAYRAAY

GO TC 99

AAX« (APSAASBPHEF*A)

AAV= (AP*AASBP*EF*A)

AAX=AAXEAAX

AAY =AAY®AAY

GO TO 99

TF(LIM) LEQ.L{J)=1,0) GO TO 223
IF (L{M)-1.0 .EQ.L(J)) GO TO 224
G0 TO 20 _
AAX=(AP*AASBR*AF*F)

AAX=AAX¥AAX

AAY=AAX

60 TO 99

AAX=(APYAASBPEF#B)

AAX=AAX¥AAX

AAY=AAX

GO 10 99

TFIL(M)LEQ.L(J)=1.0) GO TO 334
IF (L(M)-1.0.EQ.L(J)) GO TO 339
60 YO 20

AAZL=AP¥AASBR* (E¥AF~F¥BF)
AAZ=AAZL1*AAL]L

GO TO 99§
AAZL=AP*AASBP(EF*A-FF¥B)
AAZ=AAZ1I*AAZY

60 TC 99§

L(4)=K(J)



CARD .

c109
o110
o111
o112
0113
0114
0115
0116
0117
o118
0119
0120
0121
0122
0123
0124
o125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138

0139

0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
o158
0159
0160
0161
0162
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23

21

31

41

202

66

67

71

72

73

55

51

54

56

LiM)=(=1.CI9K(M)-1.0

IFIL{M) LEQ.L{J)~1.0) GO TO 23

GO TO 20

IF (U(M)+0.5.EQ.U(J)~0.5) GO TO 21
IF (U(M)~0.5.EQ.ULJI+0.5) GO TO 31
IF (UtM).EQ.ULJ)} GO TO 41

GO TC 20

AAX= AP*AA® (BB¥EFDF-BP*HFYA)
AAX=AAXSAAX

AAY=AAX

G0 TO 99 ‘

AAX=AP*AAS (BR#F*CF-BP*GF*B )
AAX=AAXSAAX

AAY=AAX

G0 TC 99

AAZ=AP#AA% (BB#( E#CF~F¥DF )~BP¥(ASGF+B*HF) )
AAZ=AAZ#AAL

GO TO 999

LEJ)=(=1.0)%K(J)~1.0

IF (K(M)) 55,5%5,66

LMY =K{M)

IF (LIM).EC.L{J}+1.0) GO TO 67

GO TO 20

IF (U(M)+0.5 .EQ. ULJ)-0.5) GC TO 7}

IF (UtM)-0.5 .EQ. ULJ)+0,.5) GO TO 72
IF (U(M)LEQ. ULJ)) GO TC 73

GO TC 20

AAX=AP*AA® (BE*G*BF-BP*FF*(C)
AAXSAAXSAAX

"AAY=AAX

GO TC 20

AAX=APEAA® (BB*H*AF-BP*D*EF)

AAX=AAXSAAX

AAY=AAX

GO TC 99 -
AAZL=APSAAS(BB¥(G*AF-H*BF )~BP #(CHEF-D*FF) )
AAZ=AAL®AAZ

GO TO $S6§:

L{M)=(~-1,0)%K(M)-1.0

IF (UIM)+C.5.EQ.ULJ)-~0.5) GO TCO 51

IF (U(M)-0.5.EQ,U(J)+0.5) GO TO 52

IF (UIM).EQ.U(J)) GO TO 53

GO TC 20 :

IF (L{MI.EQ.L{J)+#1.0) GO TC 54
IF (LUM)EQ.L{J}-1.0) GO TO 56
GO 70 20

AAX=(APSAASBB*G*LF)
AAX=AAXSAANX

AAY=AAX

GO TC 99

AAX®m ( APRAASBP*CH*HF)
AAXSAAXBAAX

AAY=AAX

GO 70 99
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52

58

59

53

531

532

99

999

20

60

SENTRY

IF (LI{M).EC.LLJI+1.0) GO TO S8
IF (LEM)+1.0.EQ.L(J)) GO TO 59
60 Y0 20

AAX= (AP AASBB*H*CF)
AAX=AAX®AAX

AAY=AAX

GO 10 99 .
AAX=(APSAASBP*D*GF)
AAX=AAXS®AAX

AAY=AAX

GO T0 99

IF (LIM).EQ.L(J)+1.0) GC TO 531
IF (L(M)+1.0.EQ.L(J)) GO TO 532
GO Y0 20

AAZ=AASAP*BB* (G*CF~H*DF )
AAZ=AAZ*AAZ

GO T0 99§
AAZ=AASAP*BP*(CHGF~D*HF)
AAZ=AAZ®AAZ

GO Y0 999

AAX=CCEFF*AAX

SUMX=SUMX+AAX .
WRITE(6+102)J9HyAAX, SUNX
AAY=AAY*COEFF :
SUMY=SUMY+AAY
WRITE(64104)4,M ALY, SUNY

GO T0 20 ‘
APZ=AAZSCCEFF

SUMZ=SUMZ2+8AZ
WRITE(6+105) 4, M, AAZ,SUNZ
CONTINUE

SUMxSUMX4+SUMY+SUNMZ

WRITE(6+¢106) SUMX,SUMY,SUNMZySUM
CONTINUE

sTop

END
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