
Ada Lovelace First Computer Programmer

Learning Leaflet: Women in Science
Lynx Open Ed
History of Science Collections
University of Oklahoma Libraries

																- Strate Stra	11 15 17
ne co	ompu	tation	by th	ne En	gine o	of the	Numb	pers of	Berr	oulli.	See Note G. (pa	ge 722 et s	eq.)				
	1V	Data.				037	Working Variables.					Result Variables.					
	1V ₁ 0 0 1	1V ₂ 0 0 0 2	1V ₃ 0 0 4	0V ₄ 0 0 0 0	0 0 0 0	ov ₆ ⊙ 0 0 0 0	0 V ₇ O O O O O O	0V ₈ 0 0 0 0 0	0V 9 0 0 0 0 0 0 0	⁰ V ₁₀ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	0V ₁₁ ○ 0 0 0 0	°V ₁₂ ○ 0 0 0 0	0V ₁₃ ○ 0 0 0	B ₁ in a decimal C	B ₃ in a decimal O ₁	B _s in a decimal Ost	0.
									<u> </u>					B_1	B_3	$\begin{bmatrix} B_{\delta} \end{bmatrix}$	I
	1	2	n	2n $2n-1$	2 n	2 n											The same of
	1			0	$\begin{bmatrix} 2n+1 \\ 0 \end{bmatrix}$						2n - 1						
		2				•••					$ \frac{2n+1}{2} \cdot \frac{2n-1}{2n+1} $						
			n								0		$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0$				THE PERSON
					•••					n-1							
		2				2 n	2 2				$\frac{2 n}{2} = A_1$						
											$\frac{2}{2} = \Lambda_1$	$B_1, \frac{2n}{2} = B_1 A_1$		D			
<i>n</i>												0	$\left\{ -\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2} \right\}$	B ₁			
	1									n-2			2 2 1 2 1				
	1					2n-1											
						2n-1	3	2n-1	1								
								3 0			$\frac{2n}{2} \cdot \frac{2n-1}{3}$						Marie Marie
	1					2n-2											
	. 1						4		20-	2	$\left[2n,2n-1,2n-2\right]$						
						2n-2			$\frac{2n-}{4}$		$\left\{ \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} \right\}$ $= A_3$						
A3		•••		***					0		0	B ₃ A ₃			B ₃		
= B ₃ A	3											0	$\left\{ A_3 + B_1 A_1 + B_3 A_3 \right\}$				
	. 1									n-3							
Here follows a repetition of Operations thirteen to twenty-three.																	
															*****		7
	1		n +	1		0	0										
	1			1	1		1			-							

Ada Lovelace, "Notes" to a "Sketch of the Analytical Engine Invented by Charles Babbage, by L.F. Menabrea," in *Scientific Memoirs* (London, 1843), vol. 3.

What is the difference between a calculating machine and a computer?

		Diagram for the c	ompu	tation	by
T			Data.		
Variables acted upon.	ariables ecciving change in the value on any Variable.	Statement of Results.		1V ₂ 0 0 0 2	1V ₃ O 0 0 4
1V. ×1V. 1V.	$\begin{cases} {}^{1}V_{2} = {}^{1}V_{2} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{1}V_{4} = {}^{2}V_{4} \end{cases}$	- = 2 n		2	n
		= 2 n - 1	1		
1 1 2V	,	=2n+1			
3 T 2V 1V	$\begin{bmatrix} 2V_5 = 0V_5 \\ 2V_4 = 0V_4 \end{bmatrix}$	$\Rightarrow = \frac{2n-1}{2n+1} \dots$			
	J - V 11 - V 11	$ \begin{vmatrix} -\frac{2}{n+1} & \cdots & \cdots \\ \frac{1}{2} & \frac{2}{n-1} & \cdots & \cdots \\ \frac{1}{2} & \frac{2}{n+1} & \cdots & \cdots \\ 1 & 2n-1 \end{vmatrix} $		2	
2V 1V	10 OV 10 = 1V 13	$=$ $-\frac{1}{2} \cdot \frac{1}{2n+1} = A_0 \dots$			
1v _1v, 1v	10	$ =n-1 \ (=3) \ \dots$	1		n
	$\int {}^{1}V_{2} = {}^{1}V_{2}$			2	Ī.,
8 + 11/2 +01/7	$\begin{cases} V_7 = V_7 \\ V_6 = V_6 \end{cases}$	$=\frac{2n}{n}=A_1$			l
9 + 11/6 - 11/7 31	$\begin{bmatrix} 11 & \cdots & & \\ & 1V_{11} = {}^{3}V_{11} \\ & & \end{bmatrix}$				
10 X 1V21 X 3V11 1V	$V_{12} = V_{11} = V_{11} = V_{11}$		1		
11 + 11/12+11/13 21	$V_{13} \cdots V_{13} = {}^{2}V_{13}^{12} = {}^{2}V_{13}^{13}$				

ON BABBAGE'S ANALYTITICAL ENGINE.

of a subtraction; and so on; but we shall not enumerate furpropriet it is desirable in all calculations, so to arrange the processes, that the offices performed by the Variables may be as uniform and fixed

passible. Supposing that it was desired not only to tabulate B₁, B₃, &c., but $\frac{1}{A_0}$, $\frac{1}{A_0}$,

projunced for the purpose.
The formula (8.) is interesting in another point of view. It is one articular case of the general Integral of the following Equation of

$$\frac{d^2}{dx^2} \left(z_{n+1} x^{2n+2} \right) = (2n+1) (2n+2) z^n x^{2n}$$

for certain special suppositions respecting z, x and n. The general integral itself is of the form,

$$z_n = f(n) \cdot x + f_1(n) + f_2(n) \cdot x^{-1} + f_3(n) \cdot x^{-3} + \cdots$$

and it is worthy of remark, that the engine might (in a manner more or less similar to the preceding) calculate the value of this formula upon most other hypotheses for the functions in the integral, with as much, or (in many cases) with more, ease than it can formula (8.).

Ada Lovelace: First Computer Programmer

Charles Babbage designed two kinds of mechanical computational machines: a "difference engine," or calculating machine; and an "analytical engine," which was far more. In 1840, Babbage presented his design for the "analytical engine" to a group of mathematical engineers in Turin, Italy. One of them, Luigi Menabrea, who would later become Prime Minister of Italy, published an account of Babbage's design in Geneva. With Babbage's encouragement, the daughter of Lord Byron, Augusta Ada King, Countess of Lovelace, translated Menabrea's article into English and added her own substantive commentary. Lovelace's notes went considerably beyond what Babbage and Menabrea had written. Her lengthy appended notes amount to 40 pages of very dense text compared with only 24 pages, lightly spaced, for Menabrea's article. Lovelace explained how Babbage's "analytical engine," if constructed, would amount to a programmable computer rather than merely a calculator. It would take input from punch cards, and store variables for use in diverse sequential operations. These 19th century mechanical operations are functionally equivalent to the conditional branching, looping, and parallel processing operations of early electronic computers. Although she specified how Babbage's engine could generate a Bernoulli series of numbers, Lovelace argued for the wider potential of the engine to produce analytical results beyond the realm of mathematics.

Kerry Magruder and Brent Purkaple

