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Abstract 

This study investigated spatial ability, domain knowledge, and domain real-

world experience as predictors of spatial skills.  One hundred seventy-seven 

construction science students participated in the study.  The study instrument included 

seven psychometric tests and two questionnaires.  Descriptive statistics, correlation 

analysis, and path analysis were used for the study.  Results from the study were 

inconclusive and did not provide answers to the research questions.  Correlations 

between variables were weak, although some were significant.  Additionally, results 

from the path analysis revealed a lack of direct effects between the hypothesized 

predictors and spatial skills.  It is possible that measurement error may have influenced 

the study results due to heterogeneity of sample, mixed measurement scales, and lack of 

item reliability.   

  The current study did however present a new conceptualization of spatial skills 

as an amalgamation of predictors – spatial ability, domain knowledge, and domain real-

world domain experience.  Recommendations for future research are for factor analyses 

of the variables domain knowledge and spatial skills.  There is also a need for greater 

reliability of items currently used to measure domain knowledge.  Given the 

inconclusive results, further research is needed before instruction for spatial skills can 

be advanced.      
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Chapter 1: Introduction 

Spatial problems are common in everyday life and many people face this type of 

problem on a daily basis.  A spatial problem may be as mundane as packing a suitcase 

to ensure it accommodates several days of travel needs.  Or, it may be a problem that 

involves navigating one’s way through a maze of streets and buildings to arrive at the 

desired location based on lines and directions from a two-dimensional (2D) map.  To 

successfully solve these problems one must employ his/her innate spatial abilities.  In 

addition to solving spatial problems, spatial abilities are used for other daily activities 

such as playing ball, computer gaming, or driving a car.  Spatial abilities that are 

germane to our everyday lives often provide the foundation for developing spatial skills 

in a particular area of routine activity or chosen profession.  The terms and references 

associated with spatial abilities and spatial domains are often interchanged; therefore, a 

glossary of terms is provided in Appendix A as an aid for readers. 

Skills have been described as the product of experiences, or bits of knowledge 

that are transferrable to different tasks and contexts (Lohman & Nichols, 1990).  Prior 

research has shown that spatial abilities follow a model in which spatial skills gradually 

increase rather than being a sudden and abrupt development of skill focused training 

(Lohman & Nichols, 1990).  Developing abilities into skills involves the translation of 

knowledge into action that is then manifested in one’s task performance (Odusami, 

2002).   Estimates are that the most successful individuals in over 80 professional 

occupations are required to apply spatial abilities in their daily tasks (Hegarty & Waller, 

2005).  Over time those abilities will manifest into spatial skills critical to their 

occupation.   
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Spatial based occupations reliant on spatial abilities include various types of 

engineers, scientists, draftsmen, designers and medical doctors.  As the demand for 

graduates from programs of spatial domains increases and it is expected to continue for 

many years to come.  A 2010 study published by the Georgetown Center on Education 

and the Workforce (Carnevale, Smith, & Strohl, 2010) reported that occupations in 

medicine and in the science, technology, engineering, and math (STEM) related fields 

are expected to be the two fastest growing categories of jobs by 2018.  The Georgetown 

study’s STEM category also includes occupations such as computer and mathematical 

science, architecture, engineering, life sciences, physical sciences, and social sciences.   

Building and construction science is a specialized area within the architecture 

and engineering domains.  Building and construction science professionals, also known 

as constructors or construction managers, are occupations requiring post-secondary 

education and certification of domain knowledge.  The United States Department of 

Labor released a report in 2014 predicting that 78,200 new construction science 

graduates will be needed between 2012 and 2022.  The demand predicted is increasing 

faster than the national average of anticipated graduates (U.S. Department of Labor, 

2014).   

Construction science professionals work closely with architects and engineers 

during the design and construction of a project.  Early in the preliminary design phase 

architects rely on construction professionals to review their conceptual drawings and 

models to determine the feasibility and constructability of the design.  Once the design 

is complete the constructor becomes the one responsible for converting the two-

dimensional (2D) drawings and three-dimensional (3D) models into reality as a facility 
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in the built environment.  At each point in the process, construction science requires one 

to combine their technical knowledge about materials, sequencing, and resources with 

their ability to visualize, orient, and rotate the drawing or models provided.    

In addition to the high demand for well-educated construction professionals, the 

industry is experiencing an evolution from a paper based linear process of 

communication about a project design and details to a digital based iterative 

communication process (Smith & Tardif, 2009).  The digital based process supports a 

more collaborative environment between architects, engineers, and construction 

managers and reduces many of the errors and omissions common in the traditional 

process.  The digital environment in construction science facilitates interaction with 3D 

computer models and information to support the visualization of information about a 

building project.  As a result, students in construction science programs are increasingly 

utilizing building information modeling (BIM) technology to (1) learn about building 

elements and their sequence of assembly, (2) understand alternative means and methods 

for assembly, and (3) solve problems that arise during the process of construction (Jin-

Lee, 2012) 

In addition to BIM, digital simulations, virtual reality, augmented reality, and 

laser scanning are examples of other technologies emerging for the 21st century design 

and construction of the built environment.  Each of the technologies listed provide some 

form of three-dimensional (3D) spatial representation of buildings, supplemented with 

interactive levels of spatial and temporal information.  The information available from 

each technology can be manipulated and extracted in various ways to solve complex ill-

structured problems associated with the construction domain.  As a consequence of the 
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emerging technologies, it is increasingly important that construction students think 

spatially and have the ability to reason about spatial problems.   Although questions 

exist about what types of spatial thinking are required by students when interacting with 

computer representations of data (Hegarty & Waller, 2005), research about visual 

analytics has shown that new technologies support spatial thinking (Thomas & Cook, 

2005)       

Thinking about a space and the relationship between objects occupying that 

space is one example of spatial thinking.  As you can imagine, professionals in spatial 

based careers must think spatially to perform their daily tasks and solve problems 

within their domain.  Spatial thinking is therefore the starting point for spatial based 

problem solving.  If thinking is the active use of one’s mind to form thoughts then 

spatial thinking is using the mind to form thoughts about space, objects in space, and 

the relationship between those objects.  Spatial problems are not only prevalent in the 

construction domain, but they are also common in the domains of science, technology, 

engineering, and mathematics (STEM), geology, medicine, and meteorology (Uttal et 

al., 2013; Wai, Lubinski, & Benbow, 2009).  An individual’s ability to visualize objects 

and their spatial relationship is an ability that is highly correlated with success in both 

scientific and technical domains (Hegarty, 2010; McGee, 1979; National Research 

Council, 2006).  

Critical to the success of construction professionals is the ability to translate 

spatial thinking into reasoning and solving spatial problems.  During the design and 

construction of a project the Architecture, Engineering, and Construction (AEC) 

professionals are challenged with complex ill-structured problems both within their 
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discipline and across the domain.  The complexity and ill-structuredness of problems 

has increased in recent years as 21st century buildings become more complex due to 

advancements with building systems and building technology.     

To meet the demand for AEC professionals, as well as other STEM occupations, 

it is important for students to receive a strong educational foundation that supports 

learning the essential skills necessary for success in these occupations.  The current 

study will investigate a set of three variables believed to be predictors of spatial skills.  

The prediction model is based on a review of the spatial based and problem solving 

literature.  The predictors are considered essential for success in all spatial domains 

(National Research Council, 2006); however, the current study will focus on students in 

the construction science domain. 

Although the current study proposes a comprehensive model (as shown in 

Appendix B) for spatial-based problem solving as a framework for research, this study 

focuses exclusively on the first of three stages – spatial thinking.  Each stage in the 

model represents one of the three constructs that influence an individual’s level of 

spatial problem solving.  The model was conceptualized based on literature from prior 

research in the areas of spatial ability, mental modeling, spatial reasoning, and problem 

solving.  The model was developed based on the National Research Council’s concept 

that spatial thinking approaches the idea of spatial problem solving by the coordination 

of space, representation, and reasoning (National Research Council, 2006, p. 27).  The 

idea that spatial thinking merely ‘approaches’ spatial problem solving initiated  

questions about how and through what process spatial thinking is linked to spatial 

problem solving.   
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At the core of spatial thinking are spatial abilities.  However, if spatial ability is 

simply a trait  (National Research Council, 2006), then there must be additional 

components that contribute to spatial thinking and spatial problem solving.  Consistent 

across the spatial ability, mental modeling, spatial reasoning, and problem solving 

literature is the importance of problem representations and its role in each cognitive 

processes (Dufresne, Gerace, Hardiman, & Mestre, 1992; Johnson-Laird, 1996, 2005; 

McCuen & Ge, 2013b; Newell & Simon, 1972; Schnotz & Bannert, 2003; Tversky, 

2005) .  Whether internal or external, problem representations is essential in spatial 

domains.  As a result, problem representations and its role in the problem-solving 

process were the catalyst for the proposed spatial problem solving model.       

It is assumed that each stage builds on the previous stage in the process.  The 

stages in ascending order are 1) spatial thinking, 2) mental modeling, and 3) spatial 

reasoning.  Spatial thinking is Stage 1 and the foundation; therefore, it is an imperative 

step that individuals have success at this stage if they are to have success in subsequent 

stages.         

Spatial Problem Representations  

 Spatial problem representations provide support for the problem-solving process 

and may be in form of internal or external (Hsi, Linn, & Bell, 1997).  Often both 

internal and external representations may be used in the problem-solving process.  An 

internal representation is generated after one combines the information perceived in a 

scene with their knowledge about the context (Pani, Chariker, Dawson, & Johnson, 

2005; Schnotz & Bannert, 2003).  Organization of the spatial relationships between 

objects is required.  It is important to understand that the resulting internal 
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representation forms a mental image that requires more than just perception; the 

accuracy of one’s organization and content of internal representations relies on internal 

knowledge about the world in which it was perceived.  A mental image is a surface 

level depiction only and does not include detailed information about the objects 

perceived, such as material properties.   

 Scaled computer generated models, diagrams, images, and graphs are all 

examples of external representations used in the construction domain.  External 

representations are considered cognitive tools that can provide support for the creation 

of a mental model and facilitate reasoning about the spatial problem by reducing the 

cognitive load during the spatial problem-solving process (Johnson-Laird, 1996; 

National Research Council, 2006; Tversky, 2005).  A recent study (McCuen & Ge, 

2013b) investigating construction science students’ approach and cognitive processes 

related to spatial problem solving found that internal representations were more 

frequently utilized than external representations.  The students attributed the lack of 

external representations to their lack of ability, knowledge, and real-world construction 

experience, indicating a lack of self-efficacy in their spatial representation abilities  

(McCuen & Ge 2013b).     

 The current study extends prior research about spatial skills through research 

that investigates spatial ability, domain knowledge, and real-world domain experience 

as predictors of spatial skills.  Each of the constructs in this study are essential to the 

spatial problem-solving process.  The first construct, spatial abilities contribute to the 

spatial problem-solving as they enable one to perceive spatial relationships, perform 

mental rotations, and visualize objects (National Research Council, 2006).  Second is 
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domain knowledge is built over time through practice and experience and contributes to 

solving spatial problems by adding one’s knowledge about the concepts, rules, and 

principles of the domain (Jonassen, 1997; National Research Council, 2006).  The third 

construct, real-world domain experience provides context and experience to the 

problem-solving process (Intons-Peterson & Roskos-Ewoldsen, 1989). 

 

Problem Statement   

 Spatial intelligence is acknowledged as a distinct characteristic required for 

success in many professional and technical domains (Cronbach, 1970; Hegarty & 

Waller, 2005).  Spatial intelligence combines spatial thinking, mental modeling, and 

spatial reasoning to solve complex spatial problems (National Research Council, 2006).  

It is important to understand the difference between a simple problem and complex 

problem.  According to Funke (1991) simple problems have five characteristics:  1) all 

the information is known for the problem; 2) precise goals are defined; 3) variables are 

clearly defined; 4) problem properties are stable; and 5) there is a rich semantic 

articulation of the problem.  Whereas, the six characteristics of a complex problem are 

much different:  1)  intransparency of variables; 2) multiple goals; 3) complex situation 

of connections between variables; 4) high degree of connectivity between variables; 5) 

dynamic situational developments; 6) time-delayed effects of actions (Funke, 1991).  

Typically problems in the AEC domain are not only complex, but also ill-structured.  

Sometimes they have no single correct solution or process to solve it; but sometimes 

they may involve multiple solutions and paths, which require one to provide 

justifications for the solution one chooses (Jonassen, 1997; Kitchener, 1983).   
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Prior research (Hegarty, 2010) indicates that many individuals lack competence 

in the selection and utilization of internal and external representations for spatial 

problem solving tasks; however, there is a gap in the literature about improving 

competence in this area.  On the other hand, there is an overwhelming amount of factor 

analytical research about spatial abilities (Cronbach, 1970; Uttal et al., 2013) from 

which there are conclusions about individual factors and associated contributions to 

one’s ability.  The literature points to spatial intelligence as the result of spatial 

thinking, mental modeling, and spatial reasoning without much detail about the 

variables and links between the three constructs.  The first component in spatial 

intelligence, spatial thinking, is a cognitive process that combines one’s spatial abilities, 

spatial skills, domain knowledge, and real-world domain experience (National Research 

Council, 2006).  Mental modeling is a cognitive process through which a mental model 

is generated in the process of problem-solving.  The mental model reflects the ontology 

of the domain in which the problem is situated and represents the real-world as the 

individual perceives the real-world  (Johnson-Laird, 1998, 2005).  Spatial reasoning is 

the third component of spatial intelligence and is reasoning that is a contextual domain 

specific cognitive process.  Spatial reasoning may be considered a three step process 

involving the 1) extraction of spatial structures from representations; 2) transformation 

of representations; and 3) drawing inferences about the cause-and-effect relationships 

based on temporal sequences (National Research Council, 2006). 

The literature is also missing substantive and rigorous inquiry about the 

variables associated with each construct that may contribute and influence one’s ability 

to solve spatial based problems. Further research is needed in the area of spatial 
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problem solving to 1) identify the variables for each construct, 2) investigate the 

influence of each construct, 3) analyze the results of rigorous research, and 4) apply 

research results to improve the design of instruction in construction and other STEM 

disciplines.   

As the demand for more construction science professionals increases, so does 

the need for instruction about spatial problem solving.  The use of technology for 

professional tasks as well as everyday tasks creates an environment in which individuals 

have more information to analyze and visualize than ever before requiring an increased 

level of spatial functioning (David, 2012).  Historically construction professionals had 

to create and manipulate two-dimensional (2D) drawings using internal and external 

representations as aids in understanding the multiple views, planes, and slices of a 

building.  To accomplish these spatial task, constructors relied heavily on their 

cognitive ability to mentally rotate a drawing from 2D to 3D and visualize the resulting 

representation.  The image in Figure 1 is that of a floor plan view with the north 

annotation and standard section symbol.  From this floor plan a constructor would have 

to create a representation to visualize the cross section shown in Figure 2.   
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Figure 1.  Two-dimensional plan view representation requiring mental rotation  

 

Figure 2.  Two-dimensional section view representation requiring mental rotation  

 

Although mental rotation remains a valuable spatial ability in construction 

science, spatial orientation and other visualization abilities are quickly gaining 

importance as spatial abilities.  For example, Figure 3 shows a 3D computer generated 
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model used to analyze multiple building elements and their locations.  To use the model 

for its intended purpose, one must be able to orient himself spatially in the model.  Once 

oriented, the viewer can then navigate through the model looking at spatial 

relationships, analyzing space use, and solving spatial problems.  Spatial problems due 

to incorrect locations of model elements are complex problems because of the inherent 

space constraints associated with the elements’ locations.  Additionally, these problems 

are typically ill-structured and require one to reason about multiple solutions to the 

problem.  This type of spatial problem can cause delays and cost overruns on a project 

if not solved in the 3D model.       

 

Figure 3.  Three-dimensional representation requiring spatial orientation  

 

An internal representation results in the formation of visual images, or 

visualizations, whereas an external representation results in a sketch or model of some 

type.  Mental rotations and spatial orientation are considered easier to measure and less 

complicated than visualizations (I. M. Smith, 1964).  For example, the classroom in 

Figure 4 is a project renovation with options being considered.  The building owner has 

decided that the room’s existing ceiling is no longer acceptable and would like 
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renovations to accommodate new technology and sound attenuation needs. The problem 

is that the existing utilities must remain in place and the new ceiling assembly added 

within the original vertical and horizontal boundaries of the space.  Additionally, the 

new ceiling assembly must be functional and visually appealing.      

 

  

 

Figure 4.  Picture image of room for renovation 

 

 Figure 5 is a computer generated external representation augmenting the existing 

space with the proposed renovations.  In the past the external representation would have 

been a hand drawn sketch; however, thanks to technology one’s internal visualizations 

can now be translated through computer software.  Visualization technology does not 

replace the importance of one’s own spatial ability to visualize and articulate that 

visualization through mental images.   
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Figure 5.  Three-dimensional representation requiring visualization 

   

Although Figures 1, 2, 3, and 5 were computer generated, a level of spatial skills 

is required to input and analyze the information from each representation.  Computer 

representations of buildings and their environments using building information 

modeling (BIM), virtual reality (VR), and augmented reality (AR) are quickly emerging 

as the primary mode of representation in the 21st century construction industry and will 

further the need for spatial skills to analyze their content.    

Investigating the entirety of the spatial based problem solving process proposed 

in the model available in Appendix B is beyond the scope of the current study; 

therefore, this research is designed to focus on investigating spatial skills, which is one 

of the spatial based problem solving components (National Research Council, 2006).  

Spatial skills are the result of combining one’s spatial abilities, domain knowledge, and 

real-world domain experience in the act of spatial thinking.  The expectation is that the 

conclusions from this research will be used to inform the design of instruction for the 

purpose of improving construction science students’ spatial thinking.     
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The Role of Spatial Skills in Spatial Thinking 

The ability to think about spatial relationships, manipulate objects in space, and 

visualize objects is essential to one’s success in the domains of architecture, 

engineering, and construction (National Research Council, 2006; Newcombe, 2013; 

Youssef & Berry, 2012).  For the purpose of the current study construction science and 

building science will be used interchangeably throughout when referring to the 

discipline responsible for transforming the intent of a building design into reality.  

Construction science is a post-secondary program of study for which students must 

complete coursework in the areas of design theory, analysis and design of construction 

systems, construction design, construction materials, site planning, along with basic 

building and site design.  Upon graduation from college, students enter the workforce as 

construction professionals responsible for the execution of the designed building 

through the coordination of skilled trades who actually assemble the building.  It is 

therefore important to design instruction using evidence from research investigating a 

combination of variables that interact and influence one’s level of spatial skills.  The 

current study uses a combination of existing psychometric tests and questionnaires to 

gather data about variables and the correlations between them.   

 

Purpose of this Study  

After a review of the spatial based literature three gaps were identified.  It is 

important to address each of the three gaps to further research about spatial problem 

solving and inform instruction about spatial thinking and problem solving in spatial 

domains.  The first gap is that there is no clear conclusion about how each of the 
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processes, and sub-processes, in spatial thinking influence an individual’s success in 

solving spatial problems.  The second gap is that there is no clear conclusion about the 

relationship between mental models, internal representations, and external 

representations as events in the spatial problem solving process.  The third gap in the 

literature is the lack of conclusive evidence about how representations, transformations, 

and spatial reasoning influence an individual’s ability to solve ill-structured spatial 

problems.    

The objective of the current study was to understand spatial skill as a set of 

skills developed in the context of a domain and dependent on the following relationship 

between:  1) spatial ability, 2) domain knowledge, 3) real-world domain experience, and 

4) self-efficacy.  In the current study spatial ability, domain knowledge, and real-world 

domain experience are treated as direct predictors of spatial skills.  Self-efficacy was 

expected to mediate the relationships between each set of predictors and spatial skills.  

As previously discussed, a gap exists in the literature of spatial thinking about the 

relationship between spatial ability, domain knowledge, real-world domain experience, 

self-efficacy, and spatial skills.  Therefore, the research questions guiding the current 

study were developed to investigate if a relationship exists between the spatial thinking 

constructs.       

The current study focused on the following questions: 

Question 1:  Is spatial ability a greater predictor of spatial skills than domain knowledge 

and real-world domain experience?        

Question 2:  Is domain knowledge a greater predictor of spatial skills than spatial ability 

and real-world domain experience?     
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Question 3:  Is real-world domain experience a greater predictor of spatial skills than 

spatial ability and domain knowledge?   

Question 4:  Does self-efficacy mediate the relationship between spatial ability and 

spatial skills? 

Question 5:  Does self-efficacy mediate the relationship between domain knowledge 

and spatial skills? 

Question 6:  Does self-efficacy mediate the relationship between real-world domain 

experience and spatial skills?   

Question 7:  Is spatial ability, domain knowledge, or real-world domain experience 

more useful in predicting spatial skills?    

 

Significance of Study  

 It is expected that this study will contribute conceptually to the literature of 

spatial skills and spatial problem solving.  In the literature of spatial skills there is no 

clear demarcation between spatial abilities and skills.  Instead the terms are 

interchanged with little regard for the idea that skills are the result of experiences 

performing tasks in a context from which one’s natural abilities then develop into skills 

(Lohman & Nichols, 1990).   The current study attempted to establish a clear distinction 

between spatial abilities and spatial skills by investigating each construct using 

psychometric testing, which is designed to obtain a numerical estimate of an 

individual’s performance at some point in time (Cronbach, 1970).  Psychometric tests 

were also used to measure participants’ performance related to domain knowledge.   
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The majority of construction science problems involve either the manipulation 

of an existing form in space or the visualization of a form in space within a situated 

context.  The study is also expected to contribute to the literature based on the position 

that spatial abilities, domain knowledge, and real-world domain experience influence 

one’s spatial skills.  The literature includes evidence that declarative knowledge 

influences skills (Lohman & Nichols, 1990) and that experiences, other than training, 

influence the development of skills (Uttal et al., 2013).  Research questions 1, 2, 3, and 

7 were specifically written to guide the research design and analysis strategy during the 

investigation of constructs influencing spatial skills.     

Finally, the study is expected to contribute to the literature of spatial problem 

solving as a complex model comprised of three stages – spatial thinking, mental 

modeling, and spatial reasoning.  Although each stage is represented in the literature 

extensively, there is minimal reference to the possible relationships between the stages 

(National Research Council, 2006).  Thus, the current study attempted to establish the 

processes and sub-processes influencing spatial skills and their place in spatial thinking.  

Each of the research questions for the study investigated relationships between 

constructs in an attempt to further the literature of spatial thinking and improve the 

design of instruction for spatial thinking.         
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Chapter 2:  Literature Review 

   Success in the AEC industry and other technical spatial occupations requires 

that individuals be able to understand, draw, and comprehend technical drawings (Seel 

& Dörr, 1994).  Technical drawings and models are the primary form of communicating 

between the AEC disciplines.  Drawings and models are visual representations used to 

reason about alternatives in the planning and design phases as well as being used to 

solve problems during the construction and use phases of a facility.  Technical drawings 

may be two-dimensional (2D) ‘flat’ drawings or they may be three-dimensional (3D) 

‘model’ drawings.  In addition to 2D drawings and 3D models there are two more 

dimensions that may be unknown to someone outside of the domain, but they are part of 

the everyday life of a construction professional.  The two dimensions beyond 2D and 

3D are 4D and 5D.  The fourth dimension literally ‘builds’ the 2D or 3D representation 

of a building using a temporal sequencing of building elements in a paper or virtual 

mode of construction (Eastman, Teicholz, Sacks, & Liston, 2008).  The fifth dimension 

takes information from the 4D representation and adds cost relationships interdependent 

with the 4D time (Eastman et al., 2008).  The combination of multiple dimensions adds 

complexity to the already ill-structured nature of problems faced in the design and 

construction of a building.   

Other domains such as science, technology, engineering, mathematics and 

medicine also rely on individual spatial abilities to understand and solve domain 

specific problems.  Results from prior research (National Research Council, 2006) 

indicate that visualization and visual-spatial strategies are by the default domain-general 

problem solving approach used by novices.  Additionally, certain disciplines may be 
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dependent on spatial abilities because the discipline is grounded in real-world 

experiences that contain spatial objects and relationships  (Hegarty, Crookes, Dara-

Abrams, & Shipley, 2010; Hsi et al., 1997).  

To provide support for the current study within the context of the proposed 

spatial problem solving process, four bodies of literature are included in this review:  

ill-structured problem solving, spatial thinking, mental models, and spatial reasoning.  

This synthesis provides an overview of each body of literature applied to the AEC 

domain for context and supplemented with a critical analysis of the literature based on 

evidence from a recent study (McCuen & Ge, 2013b).  Participants in the referenced 

study were university students in their last semester of a construction undergraduate 

program from two consecutive calendar years.  Gaps in the research are identified in 

this synthesis indicating a need for more research in the area of spatial thinking, mental 

modeling, and spatial reasoning for the purpose of ill-structured problem solving in 

spatial domains.   

The existing literature reviewed addresses each construct in the process of ill-

structured spatial problem solving, but it does not explain the links between spatial 

thinking, mental modeling, and spatial reasoning.  Although this review is structured to 

provide a review of the literature by construct, it also indicates where those constructs 

may be interdependent within the process of ill-structured spatial problem solving.  The 

chapter is organized by topic into four sections.  The first section describes the types of 

problems and reviews the ill-structured problem solving.  The second section is a 

review of the literature about spatial reasoning.  In the third section a review of mental 

modeling is provided.  The fourth section reviews the processes and sub-processes of 
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spatial thinking including: spatial ability, spatial skill, domain knowledge, and real-

world domain experience.     

In addition to each of the processes in spatial problem solving, self-efficacy was 

integrated in the discussion due to its influence on personal accomplishments.  Self-

efficacy is a belief that interacts with one’s skills and impacts their task performance 

(Bandura, 1993).  The premise of this chapter is that spatial thinking, mental models, 

and spatial reasoning combine to form one’s spatial intelligence as an interdependent 

iterative process essential to solving ill-structured problems in spatial domains.  Self-

efficacy is also included in the process of ill-structured spatial problem solving as a 

factor that influences the process at different times and at different magnitudes even 

within a single individual.  Prior research has found that a construction science student’s 

belief about his ability to accurately perform a task can create a barrier and negatively 

influence his task performance (McCuen & Ge, 2013a, 2013b)         

    

Spatial Problem Solving 

An individual’s ability to solve problems has been described as a function of the 

nature of the problem, the way the problem is represented to and perceived by the 

problem solver, and individual differences that mediate the problem solving process 

(Jonassen, 2000).  The nature of a problem refers to the type of problem presented to an 

individual.  According to Jonassen (1997), problem types are defined as either puzzle, 

well-structured, or ill-structured.  The problem type that this review will focus on is ill-

structured, with a brief overview of puzzle and well-structured problems.  Individual 

differences in solving problems will also be discussed.  
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The way a problem is represented impacts an individual’s ability and therefore 

the problem representation provided to an individual should be based on the level of 

expertise that individual has about the domain or situation (Dufresne et al., 1992).  

Results from prior research (Dufresne et al., 1992) investigating the differences between 

the problem solving process used by an expert and that of a novice found that an 

expert’s domain knowledge is highly organized and therefore experts have the ability to 

integrate domain specific principles, concepts, and procedures in a more efficient way 

than that of a novice.  As a result, experts have the ability to recall domain knowledge 

and integrate it in a way that supports the creation of complex problem representations 

after a brief exposure to the problem (Dufresne et al., 1992).  Having the ability to store, 

relate, and use domain knowledge to create schema impacts how problems are 

represented and solved.   

One’s perception of a without problem refers to their ability to filter through the 

given information and determine what is relevant to the situation (Jonassen, 2000).  A 

major determinant of one’s ability to solve problems is individual differences, which 

include:  domain knowledge, structural knowledge, procedural knowledge, conceptual 

knowledge, domain-specific reasoning, cognitive styles, general problem-solving 

strategies, self-confidence, and motivation (Jonassen, 2000).  Aligned with self-

confidence and motivation is self-efficacy which is defined as an individual’s 

conviction that he can successfully execute the behavior necessary to produce the 

desired outcomes (Bandura, 1977).               

Individuals are challenged with different types of problems in both their work 

and everyday life.  According to Jonassen (1997) problems fall on a continuum and are 
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classified as:  1) puzzle, 2) well-structured, or 3) ill-structured.  Puzzle problems require 

no prior knowledge and is domain-independent.  Well-structured problems are the most 

commonly encountered problem in the classroom.  Jonassen (1997, p. 68) lists seven 

characteristics of a well-structured problem:  1) presents all the elements of the 

problem; 2) is well-defined problem with a probable solution; 3) limited number of 

rules and principles applied and organized in prescriptive arrangement with well-

defined, constrained parameters; 4) concepts and rules appear well-structured in a 

domain of knowledge that appears well-structured; 5) possess correct, convergent 

answers; 6) possess knowable, comprehensible solutions where relationships between 

decisions and choices of problem states is known or probabilistic; and 7) have a 

preferred, prescribed solution process.  Jonassen (1997) stated that, “…the effects of 

well-structured problems in school contexts have limited relevance and transferability to 

solving problems that are situated in everyday contexts…”  Therefore although this is 

the most common type of problem presented to learners in the classroom, well-

structured problems are not the most common type of problems in the real world.  The 

third type of problems, and most common in the design and construction of a building, 

are ill-structured problems, which are typically situated in, and emergent from, a 

specific context (Jonassen, 1997).   

Subsequent sections in this review present spatial thinking, mental models, and 

spatial reasoning as the three stages in the proposed processes for ill-structured spatial 

based problem solving.  Each section is titled in terms of its relationship to the proposed 

problem solving process model and includes a discussion with examples of how each 

stage influences problem solving for construction and the AEC domain.  Figure 6 is an 
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abbreviated depiction of each stage and the relationship between each stage in my 

proposed model of the ill-structured problem solving process.   A complete depiction of 

each stage with components, subcomponents, and information lines is included as 

Appendix B.  The arrowed lines in Figure 6 indicate the flow of information between 

stages.      

 

Figure 6.  Proposed ill-structured spatial problem solving process  

 

However, before starting the discussion about each stage the next section 

provides an overview of Jonassen’ s (1997) seven iterative steps in the ill-structured 

problem solving processes related to the three stages proposed in Figure 6.  

Ill-Structured Problems 

 An ill-structured problem is a real world problem for which there is no single 

correct solution to employ as a specific process to solve the problem (Kitchener, 1983).  

Jonassen (1997) elaborated on Kitchener’s definition and described the attributes of ill-

structured problems as appearing to be ill-defined because one or more of the problem 

elements are vague or unknown, with goals that are vaguely defined or unclear and have 

unstated constraints.  Jonassen described ill-structured problems as problems that 

possess multiple solutions, solution paths, or no consensual agreement on the 
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appropriate solution.  They have multiple criteria for evaluating solutions, have less 

manipulable parameters, and have no prototypic cases.  Ill-structured problems present 

uncertainty about which concepts, rules, and principles are necessary for the solution.  

They have relationships between concepts, rules, and principles that are inconsistent 

between cases and offer no general rules or principles for describing or predicting most 

of the cases.  In fact, according to Jonassen (1997) ill-structured problems have no 

explicit means for determining appropriate action and they require that learners express 

personal opinions or beliefs about the problem while making judgments about the 

problem which they must also defend.     

 Ill-structured problem solving does not occur in a systematic process but rather 

in a seven step iterative process which will be discussed in some detail (Jonassen, 

1997).  Following is a description of the seven steps and how each step aligns with the 

proposed spatial problem solving model in Appendix B.  According to Jonassen (1997), 

the first step is to articulate the problem space and contextual constraints which requires 

the problem solver determine what the nature of the problem is within the context from 

which the problem emerged.  In the architecture, engineering, construction domain this 

may be presented as a design problem or as a project management problem depending 

on the discipline.  For example, a constructor is given a building to construct and tasked 

with determining the most efficient means and methods to complete the project and 

ensure that the client is satisfied while the company makes a profit.  The alternatives are 

endless for how this might be accomplished therefore the constructor must first 

determine the problem space.  This step occurs in Stage 1 – Spatial Thinking for 
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Problem Representation – of the proposed ill-structured spatial problem solving process 

shown Figure 6.   

 The second, third, and fourth steps in the ill-structured spatial problem solving 

process occur in Stage 2 – Mental Model Created for Problem Solving – as indicated in 

Figure 1.  According to Jonassen, Step Two requires the problem solver to identify and 

clarify alternative opinions, positions, and perspectives of stakeholders because ill-

structured problems typically have divergent or alternative solutions to the problem.  

Step Three is the generation of all possible problem solutions and it is the step that 

relies on an individual’s prior experiences to guide them in the selection of a solution 

they know is achievable.  This is the step at which an individual builds their own mental 

model of the problem to help select a problem solution (Jonassen, 1997, p. 81). 

Assessing the viability of alternative solutions by constructing arguments and 

articulating personal beliefs is the fourth step where the solver is constructing their own 

argument and personal position statement about the solution.  The result of this step is a 

mental model that will support the solver’s decision and justify the solution chosen 

from all the alternatives (Jonassen, 1997).  Building on the example from the AEC 

domain presented above, Steps Two, Three, and Four occur in Stage 2, which is the 

point where the professional constructor processes the visual and textual information 

about a building into multiple mental representations of possible alternatives while 

striving to determine the most efficient means and methods for construction.  In this 

stage an individual’s spatial ability, domain knowledge, and real-world domain 

experience are required to process alternatives and propose a solution.  For example, the 

sequence of building elements’ assembly may vary and to determine the optimum 
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sequence the constructor must consider this activity from multiple perspectives.  

Because sequencing may vary due to access, resource availability, or the need to ensure 

that the building elements are protected from damage after installation, all possible 

solutions must be considered.  The sequencing of building elements is a cognitive task 

for which the constructor must create 4D mental models of the problem.    

Stage 3 in the ill-structured spatial problem solving process is anticipated to be 

the point at which Step Five from Jonassen’ s (1997) process occurs.  The model 

displayed in Figure 6 displays Stage 3 as a process influenced by inputs from Stage 1 

and Stage 2, but there is also an iterative process between Stage 2 and Stage 3.  This 

iterative process between stages aligns with Jonassen’s declaration that step five is not a 

separate post hoc reflective process but rather a metacognitive process that occurs 

throughout the previous four steps.  It is a metacognitive process that requires the 

problem solver monitor the problem space and solution options.   

The sixth step is to implement and monitor the solution selected and the seventh, 

and final step, is to adapt the solution (Jonassen, 1997).   Step Six is typically 

accomplished in the AEC domain with either a physical mock-up of the solution or with 

a virtual mock-up of the solution.  The virtual mock-up is facilitated by computer 

software for 4D modeling and is quickly replacing the physical mock-up as a tool that 

supports the sixth step.  Monitoring the solution in Step Seven leads to a better 

integrated mental model of the problem space with the transfer of the solution to other 

domain problems based on implications from their solution.      

As discussed in this section Jonassen’ s seventh step process for solving ill-

structured problems can be aligned with the three stages in the proposed ill-structured 
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spatial problem solving model.  The differentiator between the two is the spatial aspects 

associated with spatial problems not specifically addressed by Jonassen (1997).  The 

next three sections in this chapter provide a review of the literature associated with the 

spatial based stages in the ill-structured problem solving process along with a discussion 

about each stage, its components and subcomponents.      

 

Spatial Reasoning for the Evaluation of Problem Solution  

 Hsi et al. (1997) reported that their prior research investigating spatial reasoning 

strategies used by individuals in spatial domains found three distinctive types:  1) a 

holistic approach, 2) analytic step by step approach, and 3) pattern-based approach.  

Using these three strategies the researchers (Hsi et al., 1997) asked professional 

engineers to solve engineering-specific spatial tasks and describe aloud the strategy 

used.  The engineers’ responses indicate that they used individual strategies and also 

combined strategies on the tasks.  They reported that spatial reasoning is important and 

it contributes in many engineering activities, such as analyzing plans or creating a 

design (Hsi et al., 1997).  The findings from the Hsi et al. study described the 

application and support for the use of spatial reasoning by experienced professional 

engineers in the AEC domain, but their findings did not address how engineering 

students used spatial reasoning.  The participants in the current study were construction 

science students from the AEC domain and share with engineering students the need to 

solve spatial-based problems.  The components and subcomponents of spatial reasoning 

are discussed in this section in an attempt to formulate a better understanding about the 
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topic and to identify the fundamentals needed for novices to utilize this stage in their 

process of ill-structured spatial problem solving.     

 Fundamental to reasoning is going beyond the information given by a situation 

or problem (Bruner, 1973), although adding information to the information given does 

not necessarily equate to reasoning.  Instead Tversky (2005),  posits another way to go 

beyond the information given, that is, by transforming the information given in two 

separate ways:  1) represent the information internally or 2) represent the information 

externally.  As discussed in the previous section, the creation of a mental model is one’s 

internal representation of a problem and is essential for solving ill-structured problems.  

External representations for the AEC industry may be in the form of hand drawn 

sketches, computer generated 2D drawings, computer generated 3D models, or as some 

other virtual representation. Information may also be transformed through a process of 

transforming a representation from one type to another type (Tversky, 2005).  In this 

section representations and transformations are discussed as two approaches used for 

spatial reasoning and as components of a metacognitive process for the evaluation of 

possible solutions for an ill-structured problem.   

As indicated in the Appendix B process model, spatial reasoning is influenced 

by components from both Stage 1 – Spatial Thinking and Stage 2 – Mental Model 

Creation.  The discussion turns now to expand on representations, transformations, and 

spatial reasoning and their contribution to the process.    

Representations  

 Individuals use representations as aids to remember, understand, reason, and 

communicate about objects represented in space (National Research Council, 2006, p. 
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27).  As discussed in the spatial abilities’ section later in this chapter, representation 

may be internal in the form of a visualization or mental image.  The actual process of 

how one creates an internal representation is unclear (Smith, 1964); however, research 

indicates that an internal representation is generated after one combines the information 

perceived in a scene with their knowledge about the context (Pani et al., 2005; Schnotz 

& Bannert, 2003).  An internal representation forms a mental image that requires more 

than just perception; the accuracy of one’s organization and content of internal 

representations relies on internal knowledge about the world in which it was perceived.  

A mental image is a surface level depiction only and differs from a mental model in that 

a mental image does not include detailed information about the objects perceived, such 

as material properties or other information not visible in the mental image (Johnson-

Laird, 1996, 1998).   

Representations may also be external and in the form of artifacts such as graphs, 

diagrams, images, or scaled models.  When provided with a problem solving task, 

external representations are valuable in the acquisition and utilization of knowledge 

(Schnotz & Bannert, 2003).  External representations have also been described as 

cognitive tools that facilitate reasoning by offloading memory and processing, along 

with aligning abstract reasoning with spatial comparisons and transformations (Tversky, 

2005; Johnson-Laird, 1996).  According to the NRC (2006) report, an individual’s 

production of external representations of situations can aid with creating a mental model 

and provide a way to query one’s own memory about the situation.   

Results from a study by McCuen and Ge (2013b)  with undergraduate students 

in the domain of architecture and construction revealed that a different sequence of 
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events may actually occur when novices begin the process of solving a spatial problem.  

Participants in the study reported that they must first create a mental model of the 

situation before they could generate an external representation (McCuen & Ge, 2013b).  

Based on these results it is possible that the idea of a novice generating an external 

representation prior to creating a mental model is unlikely.  More research is needed to 

determine the optimal sequence between mental models and external representations if 

the sequence influences the ability of a novice to solve ill-structured problems.        

Transformations   

 Transformations can be thought of as mental operations on representations such 

that the transformations on representations resemble observable changes in things 

(Tversky, 2005).  Modern day research about mental images and how individuals 

transform images to visualize objects from different views began with the seminal study 

of Shepard and Metzler’s (1971) using nondescript block objects.  Although the study 

was a psychometric test of spatial ability focused on a participant’s ability to mentally 

rotate an object in space, transformations may also include transforming an object from 

one dimension to another dimension.  Participants in the Shepard and Metzler (1971) 

study were asked to compare two objects to determine if the blocks were the same 

object from different points of views.  Participants reported that they had to start 

comparing two views of the same object by first imagining one object as transformed, 

or rotated, to the same orientation as the other object before completing the task.  As 

with representations, for the purpose of this study transformations are considered a part 

of one’s spatial abilities used to support metacognitive analysis of a problem solution.  
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Both representations and transformation are discussed in the context of spatial 

reasoning in the section below.       

Spatial Reasoning  

 In their early work about spatial reasoning, Byrne and Johnson-Laird (1989) 

performed two experiments investigating the use of rules or models for the purpose of 

drawing inferences about 2D layouts requiring one model or multiple models.  The 

experiments did not include visual representations only verbal descriptions about 

objects in a spatial layout.  The results revealed that it was easier for participants to 

draw a valid spatial inference when the verbal description corresponded to just a single 

layout that did not require the creation of multiple mental models (Byrne & Johnson-

Laird, 1989).   

Since this study research continued to expand for the purpose of better 

understanding about the components and subcomponents of spatial reasoning (Hsi et al., 

1997; Knauff & Johnson-Laird, 2002; Shumway, 2013; Tversky, 2005).  It has evolved 

and is now understood that spatial reasoning is a skill that is operationalized through the 

transformation of inputs as they are perceived from the environment (National Research 

Council, 2006).  According to the National Research Council (2006) report,  spatial 

reasoning is contextual, domain specific, and is a cognitive process that occurs in three 

steps:  

1. Extract spatial structures using representations. 

2. Perform spatial transformations as necessary for problem solving. 

3. Draw functional inferences by establishing temporal sequences and cause-and-

effect relationships.   
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Each of the three steps in spatial reasoning relies on an individual’s ability to 

apply their spatial abilities, skills, and mental models to a problem in a domain specific 

context (National Research Council, 2006).  For example, the first and second steps rely 

on spatial abilities and skills.  The third step requires an individual to create a mental 

model to aid the reasoning process.  

  

Mental Models Created for the Spatial Problem Solving Process  

Two types of mental models are addressed in the literature.  The first type is 

those generated to represent propositions or textual descriptions (Johnson-Laird, 2005).  

The second type of mental model is the type generated to aid with reasoning to solve 

spatial problems (Jahn, Knauff, & Johnson-Laird, 2007).  This section focuses solely on 

the second type because it is the most relevant for this literature review.  Mental models 

are defined as a mental representation of a problem, also known as the problem space 

(Newell & Simon, 1972), and consist of structural knowledge, procedural knowledge, 

reflective knowledge, images and metaphors of the system, and strategic knowledge 

(Jonassen & Henning, 1999).  A mental model is situated in the domain for which the it 

was created and the parts of the mental model may be representative of a situation in  

either the real-world or in an imaginary world (Garnham, 1999).  According to Johnson-

Laird (2005), mental models are created by a person to represent the world as the world 

is perceived and mental models are the basis for thinking.  Given that mental models are 

a cognitive process, they cannot be directly inspected by psychologists and the only 

evidence that mental models exist is indirect.  Even though it is impossible to physically 
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observe a mental model, this has not deterred researchers from their pursuit to 

understand the role of mental models in reasoning to solve spatial based problems.    

For the purpose of this review, mental models are considered a primary stage in 

the process of ill-structured spatial problem solving.  Due to the characteristic of ill-

structured problems they may have alternative solutions, which will then require the 

generation of multiple mental models.  Consequently these types of problems are 

considered more difficult and create more cognitive load on working memory (Johnson-

Laird, 1996).  The following discussion about mental models begins with the topic of 

mental images and how they compare and contrast with mental models.  The primary 

focus is on the characteristics of mental models and how they are generated by 

individuals to solve spatial problems.     

Mental and Visual Images 

A mental image based on a visual scene is the result of perceptual processing in 

which objects and symbols are perceived and organized as an internal depictive surface 

representation (Schnotz & Bannert, 2003).  Visual images and visual perceptions are 

based on the same cognitive processes therefore the conclusion has been made that 

visual images perception-proximal representations (Kosslyn, 1994).  The perception 

process however represents properties of objects much more finely grained than does a 

visualization of an object (Langland-Hassan, 2011).  Visual images may be used by an 

individual in their visualization of a situation, but they increase the demand for 

cognitive resources, which in turn, can impede their use for reasoning (Knauff & 

Johnson-Laird, 2002).     
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In experiments investigating the use of visuospatial information compared to the 

use of visual images, Knauff and Johnson-Laird (2002) discovered that the content of 

assertions matter.  For example if the content of an assertion about spatial relationships 

is relevant to inference then reasoning proceeds smoothly however if the content of 

assertions generates visual images that are irrelevant to an inference then reasoning is 

impeded (Knauff & Johnson-Laird, 2002). Visualizations that include spatial 

relationships are more general in their representation of the spatial properties than are 

visual perceptions of an image and therefore are preferred as an aid for spatial 

reasoning.   

Mental Models 

Since the 1970s, the modern theory of mental models has developed to a point 

where it rests on three principles as presented by Johnson-Laird (Johnson-Laird, 2013a).  

The first principle being that each mental model represents what is common to a set of 

possibilities.  The next principle is that mental models are iconic (Johnson-Laird, 

2013a) and their structure corresponds to the structure of the object or situation that it 

represents (Johnson-Laird, 2005).  The third principle is the principle of truth, which 

reduces the load that mental models put on working memory because they only 

represent what is true at the expense of what is false (Johnson-Laird, 2013a).  Thus, the 

description of mental models can be summarized as follows:   

 Mental models are iconic in that the parts of a mental model are 

interrelated in the same way that the parts of the object or visual scene 

perceived are interrelated (Johnson-Laird, 2013a; Langland-Hassan, 

2011).  
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 Mental models underlie the experience of imagery (Johnson-Laird, 

1998). 

 Mental models may contain elements that cannot be visualized  

(Johnson-Laird, 1996, 1998).   

 Mental models represent a possibility (Johnson-Laird, 2013b). 

Along with his description of mental models Johnson-Laird (1998) further 

explained a mental model as 1) representing a set of individual objects in a visual scene 

by a set of mental tokens, 2) representing the properties of the individual objects by the 

properties of the tokens, 3) representing the relations among the individual objects by 

the relations among the tokens, 4) representing only certain aspects of the visual scene, 

and 5) representing several distinct sets of distinct possibilities for the current state of 

affairs.  Based on the literature reviewed for this synthesis it is reasonable to conclude 

that the creation of mental models occurs in Stage 2 of the ill-structured problem 

solving process as shown in Appendix B.            

Although mental models underlie mental imagery (Johnson-Laird, 1998), there 

are five distinct ways in which mental models differ from mental images.  The first 

difference is that mental models are a sensory unspecific representation because the 

information used to create a mental model is typically obtained through various sensory 

modalities (Schnotz & Kürschner, 2008).  Secondly, mental models are more schematic 

than visual images (Schnotz & Bannert, 2003; Tversky, 2005).  Another difference is 

that mental models are ‘runnable’ for the purpose of determining function or causal 

inferences (Tversky, 2005).  The fourth difference is that a mental model may represent 

several distinct set of possibilities for the situation (Johnson-Laird, 1998).  The final 
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difference is that mental models are more abstract and are elaborated on using an 

individual’s real-world knowledge unlike a visual image (Schnotz & Bannert, 2003, p. 

147).   

The fact that an individual’s real-world experience influences their mental 

model representation is consistent with findings from interviews in which study 

participants revealed that their lack of real-world domain experience impacted their 

ability to solve the building design problem given (McCuen & Ge, 2013b).  Even with 

the three distinct differences described in the preceding section there is evidence that 

mental models and mental images are related, and that objects in an individual’s 

representations can be concrete things or abstract concepts (National Research Council, 

2006).  According to Johnson-Laird (1998), mental models underlie mental images even 

though models may contain elements that are not visualizable and an individual’s 

cognitive process of transforming spatial objects is dependent on the underlying model 

for that visual scene (Johnson-Laird, 1998).   

Although Johnson-Laird (1998) draws the conclusion that mental models are 

likely the basis for how individuals reason about spatial relations between objects 

further research is needed about the relationship between mental models and spatial 

reasoning.  I argue however that mental models are only one part of the basis for spatial 

reasoning and that spatial intelligence, or adapted spatial thinking (Hegarty, 2010), also 

influences spatial reasoning.  According to Hegarty (2010), there are two important 

components of spatial intelligence are about representation use.  The first component is 

about an individual’s choice and use of internal representations, such as mental images 

and visualizations.  The second spatial intelligence component is about an individual’s 
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choice and use of external representations, such as diagrams and computer generated 

3D models.  Other components of spatial intelligence include spatial navigation, 

relation between spatial objects, and spatial orientation (Hegarty, 2010).   As with much 

of the other topical literature included in this review, the spatial reasoning literature is 

presented in a silo with few references to the other two stages in the process of ill-

structured spatial problem solving. The next section reviews the spatial reasoning 

literature and its relevance to the AEC domain.     

        

Spatial Thinking Supports Problem Representation  

 Intelligence is understood to be an individual’s ability to think and learn 

(Cronbach, 1970).  Hegarty (2010) defines spatial intelligence as adaptive spatial 

thinking that involves thinking about shapes, objects in space, and spatial processes 

using visualization techniques along with more analytic thinking processes.  Based on 

Hegarty’s (2010) definition, spatial thinking is conceptualized in this review as the 

compilation of four components applied to domain specific problems.  The four 

components are spatial ability, spatial skill, domain knowledge, and real-world domain 

experience.  Spatial abilities are based on cognitive processes that include perception, 

transformations, and visualization (Linn & Petersen, 1985; National Research Council, 

2006; Velez, Silver, & Tremaine, 2005).  Spatial skills are developed abilities learned 

within a specific domain (National Research Council, 2006).  Domain knowledge and 

real-world domain experience add the context in which problems are to be solved and 

are discussed in the problem solving section above.  Context is an important aspect for 
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generating domain specific mental models to solve ill-structured problems (Johnson-

Laird, 1998; Jonassen, 1997).    

 In this synthesis of literature spatial thinking is considered Stage 1 in the process 

of solving ill-structured spatial problems.  The following subsections discuss each 

component and its subcomponents along with examples of spatial thinking in the 

context of the AEC domain.   

Spatial Abilities 

The first component to spatial thinking is spatial ability (Hegarty, 2010).  

Thurstone (1957) presented spatial ability as one of the seven primary mental abilities. 

Spatial abilities and spatial skills are characteristics unique to an individual and the two 

are closely related.  In fact, it is often difficult to discern between spatial ability and 

spatial skill in the literature as authors often treat the two as interchangeable.  There is a 

difference however between the two terms.  The Merriam-Webster (Merriam-Webster, 

2012) defines ability as a natural aptitude or acquired proficiency and skills as a 

developed ability.  The National Research Council’s (2006) definition for each term 

further supports the interdependence with their definition of abilities as innate and 

something that a person is born with, whereas skills are characteristics that a person 

develops from their innate abilities through practice and application.  The concept of 

spatial abilities is based on the premise that a person’s innate ability to perform mental 

operations on an object establishes that person’s level of spatial abilities (Myers, 1958; 

National Research Council, 2006, p. 26).  A person’s spatial abilities are related to a set 

of spatial skills and are associated with the retrieval, retention, and transformation of 

visual information about a spatial context (Velez et al., 2005).  Although related, spatial 
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abilities and spatial skills are different.  Spatial skills are developed in context whereas 

spatial ability is a general type of characteristic.     

In a meta-analysis about spatial ability, Linn and Peterson (1985) defined spatial 

ability as a person’s skill in representing, transforming, generating, and recalling 

symbolic, nonlinguistic information.  Although the interdependence of the two 

characteristics is apparent in this definition, the authors included a list of four specific 

mental operations performed by individuals on spatial objects and information.  The list 

of mental operations is as follows:   

1. Represent spatial information which may be in the form of an internal 

mental image, an external sketch, or both.   

2. Transform representations of objects for the purpose of spatial reasoning.  

3. Generate spatial information from data based on perceived inputs and 

objects within the spatial reference.    

4. Recall information based on the context and spatial domain.   

In addition to the four requisite cognitive operations above spatial abilities can 

be thought of as actions on objects in space, and those actions occur on a continuum 

making the individual actions interdependent.  According to the NRC (2006) the 

continuum of spatial abilities includes the following three actions that must be executed 

given a problem in a spatial context.  The three actions are:  1) perceive spatial 

relationships between entities, 2) perform mental rotation on objects, and 3) visualize 

objects as a mental image.  Each action is linked together as an element in a continuum 

for which all three must be present to constitute one’s spatial abilities.  The following 

sections provide a discussion with examples about each element of spatial ability.   
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The first element of spatial ability is spatial perception (National Research Council, 

2006) and it is represented in Figure 2 as the first input to spatial abilities.  Perception is 

a process that occurs in two steps.  The first step is a pre-attentive process and is the 

step at which a person detects an input, discriminates between objects, configures the 

inputs, and establishes precedence between inputs (Winn, 1994).  Given this definition 

it is reasonable to conclude that a person’s pre-attentive process is the point in 

perception at which their innate spatial abilities would engage to process the spatial 

inputs.  The second step in perception is an attentive top-down cognitive process that is 

influenced by pre-existing knowledge for the purpose of interpreting objects and their 

relations (Winn, 1994).  The attentive process aligns directly with the definition of 

spatial skills, which is discussed in the next section of this chapter.    

In summary, spatial perception is defined as the ability to know that an object is 

in a particular direction, at a particular distance, along with encoding spatial features 

and objects as they exist in the real world (National Research Council, 2006).  The 

literature lists six aspects of spatial perception for which descriptions about how these 

aspects are utilized by the AEC domain when given a graphical representation, image, 

or real-time experience of a visual scene follow.  Aspects one, two, and three require 

that an individual have the ability to distinguish figures from ground, recognize 

patterns, and evaluate size in a visual scene.  These three aspects are important for 

individuals in all of AEC disciplines due to the standards of symbolism, nomenclature, 

and conventions of representation utilized by the domain to communicate during the 

design and construction of a building.   Discerning texture, recognizing color, and 

determining other attributes of the represented elements are the remaining three aspects 
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of spatial perception.  In a graphical or modeled representation of a building prior to 

construction the texture of each material is represented by a unique symbol and color 

applied to represent a scheme.   

After encoding the perceived spatial features, a person then creates an internal 

representation (Winn, 1994).  The literature defines internal representations as a 

depiction of the object perceived in a scene combined with a person’s perceptual 

organization of the spatial relations between objects in the scene (Pani et al., 2005).  

Internal representations resulting from perception are surface level only and contain no 

additional information about the properties of the perceived object (Schnotz & Bannert, 

2003).  For example, a person perceives the front of a house and encodes the house 

features such as, bottom of wall, roof shape, window locations, and color.  The person 

then combines the features of the house with their internal knowledge about the world 

to create a visual image (Schnotz & Bannert, 2003).  The house depicted in the mental 

image however only includes surface level perceptions and it is void of other properties 

about the spatial features, such as the wall thickness or the 3D geometry of the roof 

(Schnotz & Bannert, 2003).  Although spatial perception does not include detailed 

information about the object, it does rely on a person’s internal knowledge about the 

world to create a mental image.   A study (Velez et al., 2005) investigating factors that 

have an effect on the formation of mental images revealed two results particularly 

relevant to this review.  The first result indicated that the point from which a person is 

viewing an object has an effect.  The second is that the complexity of the object being 

perceived matters.   
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The second element on the continuum of spatial ability is transformation.  

Transformations are best described as manipulations performed on mental 

representations of spatial features of objects captured through spatial perception of the 

world (National Research Council, 2006).  According to the NRC (2006) report, 

examples of transformations are:  changing perspective, changing orientation, 

transforming shapes, changing size, moving wholes, reconfiguring parts, zooming in or 

out, enacting, and panning.    

Transformation is a sub-process of spatial ability that is present as an individual 

characteristic and may be enacted when needed and as often as needed (National 

Research Council, 2006).  In the process of solving a spatial problem transformations 

may be necessary at the beginning while identifying the problem and once again as part 

of an individual’s evaluation after creating a mental model of the problem and solution.  

For example, if given graphical or modeled representations of a building from a single 

point of view an individual in the construction domain must be able to transform the 

external representations to a different point of view to gain more information about the 

building for logistics planning and sequencing of building elements.  On most occasions 

this will require multiple transformations to identify a solution and evaluate the 

solution.  Therefore transformations are included as a component in Stage 1 and Stage 3 

of the ill-structured spatial problem solving process.           

The most common transformation in the literature is mental rotation which is 

defined as a mental operation for the reorientation of a perceived object (Cohen & 

Kubovy, 1993).  The task of mentally rotating an object is performed during the 

imagining process, or visualization, of what an object would look like from a different 
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view or to determine if an object will fit within a certain space (National Research 

Council, 2006; Rock, Wheeler, & Tudor, 1989; Shepard & Metzler, 1971; Vandeberg & 

Kuse, 1979).  Rotations may differ in complexity and be executed based on cognitive 

strategies unique to individuals.  For example rotations may be performed as sets of 

points in which an object rotates around a fixed single axis or rotations may be a 

continuous change of an object’s slant direction in a circle around an axis (Pani et al., 

2005).  Other studies (Rock et al., 1989) have investigated if rotations may be done by 

an individual imagining themselves moving around the perceived object.   

Results from the early research of Shepard (1982) about mental rotation 

revealed that a person’s skill in performing mental rotation correlates with their 

performance on complex spatial reasoning tasks.   The ability to mentally rotate a 2D 

object into a 3D object is an example of the type of mental rotation needed in spatial 

domains such as architecture, engineering, construction, and geosciences.  Other studies 

since Shepard’s first research about mental rotation (Shepard & Metzler, 1971) have 

investigated the question of whether someone can imagine how a perceived object will 

look from a viewpoint other than the original view, have had contradictory results about 

this ability (Rock et al., 1989).     

Visualization is the third and perhaps the most commonly investigated and 

discussed element of spatial ability.  In his review of the early literature about spatial 

abilities, McGee (McGee, 1979) discovered the most common definition of 

visualization as an imagining process in which other spatial abilities are relied upon to 

support visualization.  Another definition of visualization is that it is an individual’s 

ability to imagine how an object looks in a different view or moving in space (National 
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Research Council, 2006).  More recently the phenomenon of visualization was 

described as form of sensorimotor reasoning comprised of an individual’s beliefs about 

the way perceived visual scenes unfold (Langland-Hassan, 2011).  Visualization is an 

analog imagery process that is useful for simple problems however results from an 

investigation of spatial thinking in mechanics, medicine, and chemistry revealed that 

professionals augment visualization with more analytic processes when faced with 

complex real world problems (Hegarty, 2010).  Analytic processes for solving ill-

structured problems are discussed in detail in the section about mental models later in 

this review.   

A study designed to demonstrate the relationship between problem solving and 

spatial abilities focused on the relationship between participants’ performance on spatial 

ability tests and solving domain specific problems (Kozhevnikov, Motes, & Hegarty, 

2007).  In their study Kozhevnikov et al. (2007) found a significant correlation between 

visualization, a component of spatial ability, and the overall accuracy of solutions to the 

domain specific problems.  Based on their results, the researchers speculated that high 

spatial ability may enhance an individual’s ability to understand domain specific 

concepts and principles (Kozhevnikov et al., 2007).  What is unclear however is the role 

of spatial skills and its influence on spatial abilities.  These results only further the need 

to investigate if spatial abilities alone contribute to solving spatial problems or if other 

components of spatial thinking contribute as well.   

Additionally it is unclear in the spatial ability and problem solving literature 

exactly how one’s efficacy about their spatial ability influences their spatial skill 

development and their application of skills in the problem solving process.  For 
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example, if an individual attributes their spatial ability as an acquirable skill that can be 

improved through increased domain knowledge and competencies then they are more 

likely to pursue the challenge of an ill-structured spatial problem.  In contrast if one 

considers their spatial ability as an inherent capacity then they will more likely attribute 

their performance to their inherent intellectual ability and have a negative impact on 

their effort to pursue the challenge of an ill-structured spatial problem (Bandura, 1993).    

Spatial Skills 

As discussed in the section above about spatial abilities, many authors do not 

distinguish between spatial ability and spatial skill; however, they should not be treated 

as interchangeable but rather as interrelated.  In fact, spatial ability is actually a 

component of an individual’s spatial skills (National Research Council, 2006).  The 

distinguishing characteristic between the two is that spatial abilities are general whereas 

spatial skills are the result of applying one’s spatial abilities in a given context.  The 

NRC (National Research Council, 2006) defines spatial skills as cognitive skills that are 

learned within a specific context and are supported by tools and technologies.  As a 

result the cognitive skills learned are domain specific and expand on an individual’s 

spatial abilities.  This is an important distinction for educators to consider when 

designing instruction to teach spatial thinking.   

Spatial skills are cognitive skills associated with an individual’s ability to 

retrieve, retain, and transform visual information about a spatial context (Velez et al., 

2005).  As a result of the link between spatial skills and context it is reasonable to 

conclude that instruction should be designed with spatial elements and spatial problems 

germane to the domain of study.  Based on the results from a 2006 study conclusions 
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were made that when an individual learns about spatial aspects in a particular domain 

their spatial skills develop in terms of their 1) declarative knowledge about space, 2) 

perceptual knowledge about space, and 3) cognitive operations.    

In summary, it remains unclear based on the literature as to how each 

component of spatial thinking – spatial abilities, spatial skills, domain knowledge, and 

real-world domain experience - influences an individual’s ability to create 

representations for the purpose of solving spatial problems.  Given the definition of 

spatial intelligence by Hegarty (2010), the literature supports spatial thinking as the 

means by which an individual creates a visualization of a situation, however 

visualization is only one subcomponent in spatial abilities and it is not enough to solve 

an ill-structured spatial problem.  Visualization must be backed up by an independent 

representation of the problem in which abstract information about the situation is also 

included (Johnson-Laird, 1998).  Combining a visualization with abstract information 

about the given situation is the foundation necessary to generate a spatial based mental 

model.  Mental models and their application to solving ill-structured spatial problems 

are discussed in more detail later in this chapter.           

Domain Knowledge 

 According to the National Research Council (2006), visualization is a spatial 

ability in which an individual creates a mental representation of a situation as an aid for 

use in solving domain specific problems.  Domain knowledge is important and 

contributes to creating an accurate problem representation.  Domain knowledge is 

something that is built over time through practice and experience (National Research 

Council, 2006).  Students in spatial domains acquire knowledge from the classroom and 
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practice problems, which is then supplanted with real-world domain experience.  

Knowledge about a domain includes specific propositional information, concepts, rules, 

and principles (Jonassen, 1997).  According to Johnson-Laird (1998), individuals build 

mental models based on their understanding of concepts relevant to the situation which 

ultimately depends on their tacit domain specific conceptual knowledge.  Mental 

models and their components are discussed in detail later in this review; however, 

suffice it to say at this point that if someone lacks domain specific conceptual 

knowledge they will be unable to generate a mental model of the situation.  Because ill-

structured problems are domain specific, knowledge and real-world domain experience 

play a major role in an individual’s ability to successfully solve domain specific 

problems (D. Jonassen, 1997).      

 When tasked with solving an ill-structured spatial based problem in a recent 

study (McCuen & Ge, 2013a, 2013b) participants reported that drawing from the 

concepts and principles learned about the topic in the classroom aided in their ability to 

reason about the problem; however, they could not visualize alternative solutions 

because they had not seen the problem in a real-world context.  Generalizing the reports 

by novice participants leads to the conclusion that domain knowledge and real world 

experience are essential in their creation of mental representations to use as an aid in the 

problem solving process.   

Real-World Domain Experience 

 In an investigation about the possible effects of real-world domain experience 

on individual’s ability to imagine the spatial relationship between two points, a study by 

Intons-Peterson and Roskos-Ewoldsen (1989) revealed that participants’ real-world 
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experience with the objects in the study had a significant impact on the study’s 

outcomes.  For example, a participant’s familiarity with the weight or color of an object 

effected the mental images created of that object.  In another study, researchers 

interviewed the participants about their internal and external representation techniques 

used to solve an ill-structured problem, which revealed a relationship between their 

ability to apply spatial skills and their previous real-world experience in the domain to 

solve the given problem (McCuen & Ge, 2013a, 2013b).   

In a two-year study investigating how individual experiences and prior 

knowledge influence a construction science students’ ability to visually represent 

problems internally and externally to solve spatial problems found that novices 

associate their ability directly to what they have experienced in the domain (McCuen & 

Ge, 2013a, 2013b).  One participant, Mel, had two years of real-world experience 

reported regularly using external representations to communicate a problem and its 

solution to others.  He described how his real-world experience had influenced his 

representations:   

I just draw on my experience.  I was always someone who understood how 

systems and things went together.  Ever since I was a little kid…you know when 

I would see something work out or how something goes together I would 

expand on that and understand how other things might go with it..” (McCuen & 

Ge, 2013b, p. 322).  

Findings from interviews with novices in another study (McCuen & Ge, 2013b) 

also indicated that the majority of participants attributed their ability to generate some 

type of mental representation of the problem to their real-world experience in the 
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domain.  Evident from the reports by participants in these two studies is the importance 

of experience to solving ill-structured spatial problems.  The fact that the participants’ 

real-world experience impacted their ability to represent the problem aligns with the 

first step in the process to solve ill-structured problems.  As discussed in the problem 

solving section of this review, the first step is articulation of the problem space and 

contextual constraints which is accomplished by the problem solver determination of 

what the nature of the problem is within the context from which the problem emerged 

(Jonassen, 1997).     

Additionally, the findings contribute to a conclusion that self-efficacy about 

one’s ability to solve the problem at hand is related to their personal accomplishments 

afforded through real-world domain experience.   

Self-efficacy 

In an exploratory qualitative study completed by McCuen and Ge (2013a, 

2013b), construction science students revealed participants’ beliefs about their ability to 

successfully perform spatial-based tasks was related to their domain knowledge and 

real-world domain experience.  Participants with lesser amounts of real-world domain 

experience believed they lacked spatial ability because of it, and therefore did not 

perform well on the spatial tasks.     

A meta-analysis of self-efficacy research (Multon, Brown, & Lent, 1991) 

revealed evidence of a relationship between one’s self-efficacy beliefs and their 

academic performance and persistence.  The study showed that a student’s self-efficacy 

beliefs account for approximately 14% of the variance in academic performance and 

12% of variance in academic persistence.  According to Bandura (1977) an individual 
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draws from their performance accomplishments in one area to transfer efficacy about 

their ability to perform successfully on similar tasks and similar situations.   

The prior research (Merchant et al., 2012) about spatial ability and self-efficacy 

has revealed relationships and how the two variables influence student learning and 

performance related to problem solving tasks.  In a study investigating relationships 

between perceptual and psychological processes in the spatial domain of chemistry, the 

relationship between chemistry learning, presence, self-efficacy, usability, and 3D 

virtual reality features were tested.  Results revealed a significant positive relationship 

between spatial orientation, self-efficacy, and students’ performance on chemistry 

learning test (Merchant et al., 2012).  Another study also found a significant correlation 

between an engineering student’s self-efficacy and their spatial ability based on a self-

efficacy test developed and utilized to compare with the student’s performance on a 

spatial ability test (Towle et al., 2005).  Whereas Ackerman, Kanfer, and Goff (1995) 

research offered an integrated perspective with links between personality dimensions 

and performance criteria.  Results revealed performance measures in tasks, including 

spatial abilities, were moderately to highly correlated with self-concept and self-

estimates of ability which in turn had a direct effect on task self-efficacy (Phillip L. 

Ackerman et al., 1995).   

Based on the prior research, self-efficacy is expected to influence spatial 

problem solving; however, the relationship between self-efficacy, real-world 

experience, and spatial skills is unclear.  
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Summary    

Although research about the topics discussed in this review is gaining 

momentum, there is a lack of effort to integrate the topics as a process model for further 

research.  A review of the literature revealed three gaps that exist both within topics and 

across topics.  As a framework to guide research about the identified gaps, I have 

organized the topics by stages and propose the process model of ill-structured spatial 

problem solving shown in Appendix B.   

The first gap is in Stage 1 where there is no clear conclusion about how each of 

the components, and subcomponents, in spatial thinking influence an individual’s 

success in solving spatial problems.  As mentioned at the beginning of this chapter 

spatial thinking is the foundation for ill-structured spatial problem solving which is 

essential for the success of construction science students.  Given the importance of 

spatial thinking, the current study was dedicated to investigating the interactions among 

spatial ability, domain knowledge, real-world experience, self-efficacy, and spatial skill.   

There is also gap with no clear conclusion about whether there is a strategy for 

sequencing the creation of mental models, internal representations, and external 

representations to improve outcomes from the spatial problem solving process.  The 

third gap in the literature is the lack of conclusive evidence about how representations, 

transformations, and spatial reasoning influence an individual’s ability to solve ill-

structured spatial problems.   The hope is that the second and third gaps were addressed 

and rigorous research pursued in an attempt to fill in both gaps.   

The objective of the current study was to understand spatial skill as a set of 

skills developed in the context of a domain and dependent on the following relationship 
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between:  1) spatial ability, 2) domain knowledge, 3) real-world domain experience, and 

4) self-efficacy.  In the current study spatial ability, domain knowledge, and real-world 

domain experience are treated as direct predictors of spatial skills.  Self-efficacy is 

expected to intervene and mediate the relationships between each set of predictors and 

spatial skills.  The literature reviewed in this chapter indicate that spatial skills represent 

the point in the ill-structured spatial problem solving process at which there is a lack of 

understanding about its input in the process and its relationship to a student’s 

performance.  Ultimately students must have relevant spatial skills to support them in 

their creation of mental models and spatial reasoning to solve complex ill-structured 

problems.   

The first spatial skills’ predictor is spatial ability which consists of visualization, 

spatial relations, and spatial orientation (Lohman, 1988).  The use of psychometric tests 

to measure one’s spatial ability and predict success in some categories of problem 

solving, technical occupations, math, engineering, and architecture courses gained 

popularity following the successful mass testing of World War I soldiers (Cronbach, 

1970; I. M. Smith, 1964).  The genesis of tests for spatial abilities can be traced back to 

the early work of Thurstone (1957) in which he had shown that there was a distinct 

difference between spatial ability and verbal ability and as such a distinction between 

verbal and spatial intelligence.  His work also presented seven primary abilities as 

factors associated with visual thinking:  (1) perceptual speed, (2) space visualization, (3) 

space rotation, (4) space relations, (5) speed of closure, (6) flexibility of closure, and (7) 

visual memory.  



54 

Numerous factor analytical studies have been done to investigate Thurstone’s 

visual thinking factors.  Prior studies (Cronbach, 1970; Shepard, 1982; Shepard & 

Metzler, 1971) have used small-scale paper and pencil tests that include graphical 

representations of a problem and multiple choices from which the test taker selects the 

correct solution.  Each test is designed to measure one factor exclusively; however, 

there are multiple tests that measure the same factor.  Preference has been for tests that 

correlate highly with the factor of interest.  As a result of all the interest in individual 

differences in spatial ability, researchers expanded to investigate the factor structure of 

spatial ability, which revealed evidence that there are in fact several separable 

subcomponents of spatial ability (Lohman, 1988).  The current study not only 

investigates the separate subcomponents of spatial ability, but it approaches spatial skill 

as a composition of separate subcomponents. 

Domain knowledge is the second predictor and is described as the knowledge 

developed over time through one’s practice integrating domain specific information, 

concepts, rules, and principles (Jonassen, 1997; National Research Council, 2006).  

Additionally one develops spatial declarative knowledge through domain activities that 

through practice and feedback (Lohman & Nichols, 1990).  The current study 

investigated domain knowledge specifically in the categories of structural assembly and 

graphical representation.  Both categories are fundamental to construction science and 

are categories for which students receive focused instruction.   

The third predictor, real-world domain experience is achieved by completing 

domain specific tasks in the real-world context (McCuen & Ge, 2013b).  The quantity 
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and type of real-world experience within an AEC company are the two types of real-

world experience investigated by this study.  

 

Research Questions 

The current study focused on the following questions: 

Question 1:  Is spatial ability a greater predictor of spatial skills than domain knowledge 

and real-world domain experience?        

Question 2:  Is domain knowledge a greater predictor of spatial skills than spatial ability 

and real-world domain experience?     

Question 3:  Is real-world domain experience a greater predictor of spatial skills than 

spatial ability and domain knowledge?   

Question 4:  Does self-efficacy mediate the relationship between spatial ability and 

spatial skills? 

Question 5:  Does self-efficacy mediate the relationship between domain knowledge 

and spatial skills? 

Question 6:  Does self-efficacy mediate the relationship between real-world domain 

experience and spatial skills?   

Question 7:  Is spatial ability, domain knowledge, or real-world domain experience 

more useful in predicting spatial skills?        

A quantitative research methods study was designed to investigate the questions 

above and accept or reject the following hypotheses.  To determine the appropriate 

sample size to test the hypotheses it was necessary that each hypothesis included the 

effect size expected as a result of testing the set of predictors.  Effect size indicates the 
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proportion of total variation in the dependent variable that is predicted from the set of 

independent variables, the quality of the predictor variables included in the study, and 

the quality of relevant predictor variables not included in the model (Cohen, 1988).   

Hypothesis 1:  The relationship between spatial ability and spatial skills is moderate 

with a medium effect compared to the relationship between spatial skills and domain 

knowledge or their spatial skills and real-world domain experience.  A medium effect 

size is hypothesized based on the argument that skills are developed through practice in 

context and the study is designed to include context.         

Hypothesis 2:  The relationship between domain knowledge and spatial skills is 

moderate with a medium effect compared to the relationship between spatial skills and 

spatial ability or their real-world domain experience. A medium effect size is 

hypothesized based on the argument that skills are developed through practice in 

context and the study is designed to include context.          

Hypothesis 3:  The relationship between real-world domain experience and spatial skills 

is strong with a high effect compared to the relationship between spatial skills and a 

student’s spatial ability or their domain knowledge. A high effect size is hypothesized 

based on the findings from a similar study (McCuen & Ge, 2013b) and the argument 

that real-world domain experience improves one’s ability to create relevant mental 

models.    

Hypothesis 4:  Self-efficacy will be a partial mediating variable on the relationship 

between spatial ability and spatial skills.   

Hypothesis 5:  Self-efficacy will be a partial mediating variable on the relationship 

between domain knowledge and spatial skills.   
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Hypothesis 6:  Self-efficacy will be a partial mediating variable on the relationship 

between real-world experience and spatial skills.   
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Chapter 3: Methodology 

Participants 

 Students enrolled in accredited undergraduate construction science programs at 

three universities were recruited to participate in the study.  Based on a priori power 

analysis and after considering rules of thumb concerning the minimum sample size 

needed for carrying out structural equation modeling (Kline, 2011), I sought to obtain a 

minimum sample size between 150 and 200 participants.   

The typical age of students in undergraduate construction science programs 

ranges from 18-23 years of age; however, based on reported years of real-world domain 

experience it was noticed that some participants were older than this specified age 

range.  A total of 177 undergraduate students participated in this study with 161 being 

male, and 16 female.  The gender composition of participants is consistent with the 

gender composition in the industry (Sewalk & Nietfeld, 2013) 

Context 

 The selection of universities from which to recruit students was based on the 

researcher’s familiarity with the construction program, enrollment size, and 

approximate equal representation from the two types of accreditation for U.S. 

construction programs.  It was also important to select universities with accredited 

programs that would provide some variety in course offerings.  Moreover, the study 

instruments were administered in a variety of different topical courses in the 

construction curricula.  However, the categories of topics in the study design aligned 

with the curriculum content standards required for accreditation by the American 



59 

Council for Construction Education (ACCE) and the Accreditation Board for 

Engineering and Technology (ABET).   

The ACCE accreditation standards include five curriculum categories: 1) 

general education, 2) mathematics and science, 3) business and management, 4) 

construction science, and 5) construction.  The ABET accreditation standard (“ABET,” 

n.d.) requires effective development of curriculum to support student learning outcomes 

in three areas.  The first area required by ABET is mathematics and the application of 

mathematics above the level of algebra and trigonometry, such as integral and 

differential calculus.  The second area required is technical content and focus on applied 

aspects of science and engineering, including equipment and tools common to the 

discipline.  The third required area of study required by ABET is physical and natural 

science that includes laboratory experiences appropriate to the discipline.   

In both ACCE and ABET programs, the curriculum for underclassmen (i.e., 

freshmen and sophomores) focuses heavily on general education courses and the 

foundation courses necessary for the domain specific courses.  Upperclassmen, juniors 

and seniors, have progressed into the domain specific coursework where they will apply 

the general education, math, science, and business course knowledge to domain specific 

concepts for the purpose of analysis and problem solving.  Most construction education 

programs also require upperclassmen to complete an internship with a company in the 

building and construction industry.  Given the distinction between the coursework and 

opportunity for real-world experience by upperclassmen compared to underclassmen, 

expectations are that both domain knowledge and real-world domain experience will 

have an effect on student’s spatial skills.     
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Participants at the Mid-western state 1 university construction program were 

recruited from freshman level Computers in Construction course, an entry level course 

with instruction about spreadsheet and 3D software applications.  Sophomore level 

participants were recruited from the Construction Documents and Quantity Surveying 

course, a course designed to teach print reading of 2D paper copies of building 

drawings.  Junior students were recruited from the Project Controls Management 

course, which is designed for students to further understand construction controls using 

2D building drawings and project information contained in descriptive text documents.  

Finally, senior level participants were enrolled in the program’s Capstone for 

Construction course.  In the Capstone course students utilize all forms of project 

documents – 2D, 3D, and text – to analyze and develop a feasible plan for the building’s 

construction.   

At the Mid-western state 2 university participants were recruited from three 

courses.  The first course was a sophomore level Concrete Construction course in which 

students learn the material properties and methods for installation of concrete in 

different building system uses.  Junior level students were recruited from the 

Construction Law course, a course designed to deliver instruction utilizing case studies 

to evaluate the impact of regulations and statutes on the industry.  The third group of 

participants at the Mid-western state 2 university were enrolled in the Construction 

Capstone course.  As with the Capstone course at the first university, content for this 

course required students utilize all forms of project documents for analysis and 

development of a plan to construct the building. 
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At the Western state university, sophomore, junior, and senior level participants 

were enrolled in the same Design-Build course.  The course requires students to utilize 

project documents – 2D, 3D, and text – to prepare an interdisciplinary approach to the 

design and construction of the proposed building.    

  

Procedures 

 The study procedures included the following four steps:  (1) select instruments 

and validate research procedures, (2) contact course instructors for access to participant 

pools, (3) recruit participants, and (4) administer the study.  The implementation 

procedures are diagrammed in Figure 7. 
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Figure 6.  Study procedures 

 

Step 1:  Select instruments and validate research procedures  

  Instruments to test spatial ability were selected from the Educational Testing 

Services kit of factor referenced cognitive tests 

(http://www.ets.org/research/policy_research_reports/monographs/kit_of_factor_referen

ced_cognitive_tests). To validate the research procedures, a small group of building 

science students were recruited to complete the questionnaires and tests as a pilot.  

Masters level construction science students were recruited for the pilot.  The primary 

purpose was to validate the research procedures and verify that the instrument’s items 

http://www.ets.org/research/policy_research_reports/monographs/kit_of_factor_referenced_cognitive_tests
http://www.ets.org/research/policy_research_reports/monographs/kit_of_factor_referenced_cognitive_tests
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and that the online tool would meet the study purpose and procedures.  The first spatial 

visualization item on the spatial skills instrument was found to have an error in the 

answer options available.  The item was immediately revised prior to administering it 

for the study.       

Step 2:  Contact course instructors  

 Instructors at three accredited construction/building science university programs 

in the U.S. were contacted and access requested to recruit students enrolled in their 

course during the spring 2015 semester.  A brief overview of the study’s purpose, tests, 

procedures, and an internet link to the instrument for their review was provided.  

Instructors were informed that if they agreed to participate they would be asked to 

dedicate in-class time for the principal investigator to recruit participants.  Additionally, 

they were asked to integrate the study’s participation in their course as a class activity 

with regular credit or extra credit given for participation to improve the rate of 

participation.  Instructors at the Midwestern state 1 and Midwestern state 2 required 

participation in the study as an in-class activity.  The Western state instructor offered 

extra credit for student participation. Instructors were also informed that they would be 

given a $25 gift card for providing access to recruit the students in their course.    

A total of six instructors (five plus the principal investigator) allowed access to 

students in eight courses at three universities.  All three universities were state public 

institutions.  Two of the universities were in one mid-western state and the third was 

located in a western state.  The instructors were asked to identify courses at each school 

that would provide a diverse group with a mixture of underclassmen and upperclassmen 
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represented.  Once the courses were identified, the principal investigator contacted the 

students for their participation.   

Instructors at each site were asked to provide access to computers or require all 

participants to supply their personal computer with internet access to complete the 

online instrument.  The Mid-western state 1 and the Western state universities met the 

computer and internet requirement; however, the instructors at the Mid-western state 

university did not require to students have laptop computers or have computer labs 

available at the course times.  This site required a paper version of the study instrument 

and a proctor to administer the timed sections.    

Step 3:  Recruit participants     

 A brief overview of the study’s purpose was provided to the students in the 

courses by the principal investigator seven days in advance of the date instructors 

agreed to the study being administered.  The overview served to recruit students to 

participate and was done face-to-face or through Skype™.  Participants were informed 

of the date on which the instrument would be administered in their course, and they 

were asked to bring their personal computer/laptop, paper, pencil, and calculator.    

Accommodations would be made if a participant forgot their laptop and they could 

borrow one or they would be given permission to complete the instrument using one of 

the school’s desktops in the computer lab.  Participants were informed that they would 

also be allowed to use a calculating device (cell phone, calculator, or computer); 

therefore, they would be expected to arrive with the device.   

Additionally, students were informed that by participating in the study they 

would be eligible for a $25 gift card to be randomly drawn from the list of participants 
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in each course.  Students were informed that the lack of consent to participate in the 

study did not affect their eligibility for the gift card.  All students in the courses at the 

mid-western schools were required to participate as an in-class activity; therefore, all 

were eligible for the drawing.   

 The name of each participant at the two mid-western sites in attendance on the 

study day were submitted by the instructors in a list format for the drawing.  

Participants at the western state site completed the online instrument as extra credit 

outside of class for which the instructor required a screen shot of the last page 

indicating completion.  Participants submitted their screen shot to the course instructor 

who then submitted their names to the principal investigator for the drawing.  The 

requirement for participants to submit a screen shot was the method chosen by the 

course instructor to verify participation for extra credit in the course.  Students were 

informed that their participation made them eligible to be entered in the drawing for a 

$25 gift card to be drawn from names of participants in their course.  Table 1 lists each 

site, student classification in the program, and the number of participants by 

classification.   
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Table 1  

Participants 

Site Classification Number of Participants 

Mid-western state 1 

Freshman 16 

Sophomore 21 

Junior 18 

Senior 10 

Mid-western state 2 

 

Freshman 

 

0 

Sophomore 28 

Junior 30 

Senior 32 

Western state 

 

Freshman 
0 

Sophomore 3 

Junior 4 

Senior 15 

 

Step 4:  Administer the study 

 Paper and pencils were provided for participants arriving to the study sites 

without these supplies.  Participants were allowed to use any type of device for 

calculating purposes (cell phone, calculator, or computer).  Calculators and computers 

were available for participants to borrow if needed at one of the mid-western 

universities and at the western state university. 

At the designated start time of the class session at the mid-western schools 

students were notified to begin.  At the mid-western site with computers participants 

were given the electronic address to access the online instrument in the Qualtrics™ 

survey tool. At the mid-western site using the paper version the instrument was 
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distributed and participants were informed that the principal investigator would proctor 

the study due to the time limit set for each section.   

The first page of the instrument provided participants with information once 

again about the study purpose and procedures.  A consent form followed and 

participants were required to indicate their consent.  Participants who did not consent 

were linked to the same questions in a different instrument to separate the data for 

reporting purposes.  After consent the online participants started through the instrument, 

free to advance through sections at their own pace as long as it did not exceed the set 

time limit for each section.  When a participant reached the time limit the instrument 

would automatically advance to the next section with the instructions and then begin the 

time clock.  The principal investigator proctored the paper version of the instrument, 

timing each section and stopping any progress beyond the time limit.  The entire class 

progressed through the instrument together.  Participants that finished a section early 

were asked to sit quietly until the entire class completed the section and they advanced 

as a group.  Participants not finished with a section when time expired were required to 

stop working and turn the page to the next section.      

One gift card was awarded to a randomly selected participant in each course for 

a total of eight $25 gift cards.  Additionally each of the five instructors was awarded a 

gift card for allowing access to their students.  The intent for having gift cards 

associated with participation was to incentivize students and instructors to participate.  

It was expected that by incentivizing students to participate it would motivate them to 

perform their best.  Offering gift cards to the instructors was expected to motivate them 
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to agree to dedicate one hour of class time to the study, which for some was the length 

of an entire session.     

 

Research Design 

 A structural equation model was created and path analysis was used to examine 

the relations between predictors and the criterion, with self-efficacy as a mediating 

variable between the predictors and criterion.  In the design of this study, there are three 

predictors, or constructs (spatial ability, domain knowledge, real-world domain 

experience), one partial mediating variable (self-efficacy), and one dependent variable 

(spatial skills). The spatial ability predictor included three independent variables – 

spatial rotation, spatial orientation, and visualization.  Modeling and visualization, 

bidding and estimating, and geomatics were the three independent variables for the 

domain knowledge predictor.  The two independent variables for real-world domain 

experience were amount and type.  A total of eight independent variables were included 

in this study.  The partial mediating variable was self-efficacy and the dependent 

variable was spatial skills.  The study was designed to investigate the relationships 

between (a) spatial ability and spatial skills; (b) domain knowledge and spatial skills; 

(c) real-world domain experience and spatial skills; along with (d) self-efficacy and 

spatial skills.  The partial mediation model of the current study’s design is shown in 

Figure 8.   
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Figure 7.  Partial mediation research model 

 

 

Instruments 

The tests of spatial ability, domain knowledge, and self-efficacy were administered 

to all participants.  A brief questionnaire was used to gather information about the 

participants’ real-world domain experience and general demographic information.  

Existing measures and instruments were used to determine a student’s level of spatial 

ability, domain knowledge, and self-efficacy.  A questionnaire and test for spatial skills 
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measured real-world domain experience and spatial skills based on the measures 

described above.   Scoring on the tests were classified qualitatively as low, average, or 

high.  The quantitative score levels associated with each classification align with 

standard grading conventions used by many educators at U.S. institutions of higher 

education.  A score of 80% or better was considered a high score.  Scores between 60% 

- 79% were considered average scores.  Finally, a score of 59% or less was classified as 

a low score.   

Test items to measure domain specific spatial skills were created and required 

that participants apply their spatial ability, building science knowledge, and real-world 

domain experience to answer each item.  Spatial skills items were contextualized 

graphical representations germane to the building domain.  The current study was a 

non-experimental study designed to answer research questions 1 – 6 using identical 

questionnaires and tests for all the participants.  The research questions, variables, 

research design, instruments, and analytical techniques are summarized in Table 2 

below.  The complete study instrument is available in Appendix C 

 

Table 2  

Study questions, variables, tests, and data analysis 

Research Question Variables  Tests  

Question 1:   

Is spatial ability a 

greater predictor of 

spatial skills than 

domain knowledge and 

real-world domain 

experience?   

 

IV1:Visualization 

IV2:Spatial relations 

IV3:Spatial orientation 

 

DV:  Spatial skills 

 

 Paper Folding test (IV1) 

 Card Rotation test (IV2) 

 Spatial Relations test (IV3) 

 

 Spatial Skills for 

Construction Science test 

(DV) 
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Question 2:   

Is domain knowledge a 

greater predictor of 

spatial skills than spatial 

ability and real-world 

domain knowledge?       

 

IV1: Modeling and 

Visualization  

IV2:Bidding and 

Estimating 

IV3: Geomatics 

 

DV: Spatial skills 

 

 Associate Constructor 

Level 1 – Construction 

Fundamental test – select 

items (IV1, IV2, IV3) 

 

 

 Spatial Skills for 

Construction Science test  

(DV) 

   

Question 3:   

Is real world domain 

experience a greater 

predictor of spatial skills 

than spatial ability and 

domain knowledge?    

 

IV1:Type of 

experience 

IV2: Duration of 

experience 

 

DV: Spatial skills 

 

 Self-report questionnaire 

(IV1, IV2) 

 

 

 

 Spatial Skills for 

Construction Science test 

(DV) 

Question 4:   

Does self-efficacy 

mediate the relationship 

between spatial ability 

and spatial skills? 

 

IV1:Visualization  

IV2:Spatial relations 

IV3:Spatial orientation 

 

MV: Self-efficacy 

 

 

DV: Spatial skills 

 

 Paper Folding test (IV1) 

 Card Rotation test (IV2) 

 Spatial Relations test (IV3) 

 

 Self-report Self-efficacy 

questionnaire (MV) 

 

 Spatial Skills for 

Construction Science test 

(DV) 

 

Question 5:   

Does self-efficacy 

mediate the relationship 

between domain 

knowledge and spatial 

skills? 

 

 

IV1: Modeling and 

Visualization  

IV2: Bidding and 

Estimating 

IV3:  Geomatics 

 

MV: Self-efficacy 

 

 

 

DV: Spatial skills 

 

 

 Associate Constructor 

Level 1 – Construction 

Fundamental test – select 

items (IV1, IV2, IV3) 

 

 

 Self-report Self-efficacy 

questionnaire (MV) 

 

 Spatial Skills for 

Construction Science test 

(DV) 
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Question 6:   

Does self-efficacy 

mediate the relationship 

between real-world 

domain experience and 

spatial skills?   

 

IV1:Type of 

Experience  

IV2:Duration of 

experience 

 

MV: Self-efficacy 

 

 

DV: Spatial skills 

 

 Self – report Real-World 

Domain Experience 

questionnaire (IV1, IV2) 

 

 

 Self-report Self-efficacy 

questionnaire (MV) 

 

 Spatial Skills for 

Construction Science test 

(DV) 

   

Question 7:   

Is spatial ability, domain 

knowledge, or real-

world domain 

experience more useful 

in predicting spatial 

skills?        

 

IV1:Spatial ability 

 

 

 

IV2:Domain 

knowledge 

 

 

 

IV3: Real-world 

domain experience 

 

 

 

DV: Spatial skills 

 

 

 Paper Folding test , Card 

Rotation test, Spatial 

Relations test (IV1) 

 

 Associate Constructor 

Level 1 – Construction 

Fundamental test (IV2) 

 

 

 Self – report Real-World 

Domain Experience 

questionnaire (IV3) 

 

 Spatial Skills for 

Construction Science test 

(DV) 

 

Table 3 provides an overview of the study instruments organized into five 

sections, including each questionnaire or test name, the time allotted to complete the 

section, and general purpose of the questionnaire or test.  Summing up the amount of 

time dedicated to each section, it was estimated that a total time of 59 minutes was 

required for participants to complete the study instruments.  The time allowed for each 

test in the online instrument was controlled by the computer software.  Given that 
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maximum time allowed for each test or questionnaire was set and that participants were 

prohibited from returning to a previous section, no one exceeded the 59-minute time 

frame.   

 

Table 3  

Survey/test, time sequence, and purposes for each 

Section Survey/Test Name Time  Purpose 

1 

Self-efficacy instructions 

Pre-test self-efficacy questionnaire 

 

1 minute 

2 minutes 

Collect data to measure 

participant’s self-efficacy 

about spatial skills, spatial 

ability, domain 

knowledge, and real-

world domain experience. 

    

    

2 

Spatial skills instructions 

Spatial skills test 

1 minute 

14 

minutes 

 

Collect data about 

participant’s spatial skills. 

3 

 

 

Domain knowledge instructions 

 Domain knowledge modeling 

and visualization 

 Domain knowledge 

geomatics 

 Domain knowledge bidding 

and estimating 

 

 

1 minute 

3 minutes 

 

8 minutes 

 

6 minutes 

 

 

Collect data about 

participant’s domain 

knowledge using items to 

measure each of the three 

domain knowledge factors 

selected.   

4 

 

 

Spatial visualization instructions 

 Spatial visualization – Paper 

Folding Test 

 

Spatial orientation instructions 

 Spatial orientation – Cube 

Comparisons Test 

 

Spatial relations instructions  

 

 

1 minute 

 

6 minutes 

 

1 minute 

 

6 minutes 

 

1 minute 

 

 

 

 

 

Collect data about 

participant’s spatial 

abilities using items to 

measure each of the three 

primary spatial abilities 

factors. 
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 Spatial relations – Card 

Rotations Test 

6 minutes 

5 

Demographics and real-world 

domain experience questionnaire 

 

2 minutes 

 

Collect general 

demographic data and 

data about the 

participant’s amount and 

type of real-world domain 

experience 

 
 

Total time required to complete 

all instruments 

 

59 

minutes 

 

 

Self-efficacy Instrument  

Section 1 of the current study’s instrument consisted of a 16 item self-efficacy 

Likert-type questionnaire about how confident they were in their ability to successfully 

solve a problem that requires spatial skills.  The items in this section of the instrument 

were adapted from Bandura’s self-efficacy measures of efficacy expectations (Bandura, 

1977) which have consistently shown reliability and validity between .70 and .89 

(Multon et al., 1991).   

Participants were asked a question such as “How confident are you in your 

ability to rotate a building from a 2D plan view into a 3D view?”  A scale of 1 to 10 

was intended to measure each participant’s confidence with 1 being “certain I cannot”, 

5 was “moderately certain I can”, and 10 was “certain I can”.  The items in section 1 

were adapted from Bandura’s measures of self-efficacy (Bandura, 1977, 1993).  Self-

efficacy was measured prior to any of the tests in the hope that the results would be 

more likely to reflect a participant’s true confidence before worrying about how they 

had performed on the tests.     
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Spatial Skills Instrument  

The second section of the instruments included nine items designed to measure 

spatial skills.  Items in this section were designed specifically for the current study and 

paralleled the factors measured by the legacy tests in in Section 3, specifically spatial 

visualization, spatial orientation, and spatial rotation.  Given the measure of spatial 

skills was developed for this study, no there is no prior information about the reliability 

or validity of this measure.   

Although the items in this section were developed based on the items in Section 

3, items in this section were contextualized and designed to reflect the construction 

science domain.  A spatial visualization item from Section 2 is shown in Figure 9.  An 

example of the question item was “Given the floor plan with the section cut below, 

decide whether image A or image B represents the section view from the west looking 

east in the building.  Select A if image A represents the section from the west looking 

east or select image B if image B represents the section view from the west looking east.  

To be successful participants had to combine 1) spatial ability to visualize the correct 

3D image from the given 2D image; 2) domain specific graphical knowledge, and 3) 

real-world domain experience about building elements to complete each task.     

   

Floor Plan Image A Image B 

Figure 8.  Example of spatial skills item  
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Domain Knowledge Instrument  

Section 3 tested participants’ domain knowledge in three subsections with items 

extracted from three sections of a comprehensive eight hour certification exam for entry 

level construction graduates.  The items were selected from the American Institute of 

Constructors (AIC) Associate Constructor (AC) or Level 1 exam.  The Associate 

Constructor program is accredited by the American National Standards Institute (ANSI) 

under ANSI/ISO/IEC 17024 for Personnel Certification Bodies (“ANSI Accreditation 

Services,” n.d.).  Currently over 50 U.S. Construction Management Programs require 

students take the exam as part of their curriculum (“American Institute of 

Constructors,” n.d.).  The AC exam measures construction student knowledge in 10 

categories.  Table 4 displays the subject areas measured by the AC exam, the weight of 

each subject area relative to the exam score, and the number of exam questions used for 

the current study. 

 

Table 4  

 

Associated Constructor (AC) exam subjects 

Subject area  Weight  

Number of 

questions 

used 

Communication skills 13% 0 

Engineering concepts 5% 0 

Management concepts 12% 0 
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Materials, methods, and project modeling and 

visualization  

10% 3 

Bidding and estimating  12% 4 

Budgeting, costs, and cost control 12% 0 

Planning, scheduling, and schedule control 12% 0 

Construction safety 7% 0 

Construction geomatics  2% 3 

Project administration  15% 0 

 

According to the AIC study guide the Level 1 exam objective is to measure the 

academic knowledge of entry-level construction professionals upon graduation.  It also 

states that the exam includes some questions that require applied knowledge.  However, 

the type and amount of real-world domain experience required to correctly answer the 

questions are basic and does not require extensive industry experience.  Reliability and 

validity about the measures used for the AC exam are not published and when requested 

from AIC my request was denied.  Measures were selected and utilized with AIC’s 

permission for the current study.  Reliability of measures was assumed based on the 

ANSI certification of the exam.   

Subject areas for this study’s instrument were selected deemed most relevant to 

spatial skills.  The subject areas selected were:  (1) materials, methods, and project 

modeling and visualization, (2) bidding and estimating, and (3) construction geomatics.  

Items were selected from each subject area based on the spatial representation content, 

and the point at which students would typically receive instruction about the item’s 
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content.  As a result of the selection method used, domain knowledge items revealed a 

low internal consistency and should be changed for future studies.  

The three subjects combine for 24% of the total items on the AC exam.  With 

permission from the American Institute of Constructors, select items were used for the 

current study instrument.  Each subject area and its relationship to the current study are 

discussed next.   

The first subject area tested three items from the AC exam’s testing materials, 

methods, and project modeling and visualization category.  Items in this section were 

designed to measure students’ ability to read and interpret the drawings and schedules 

of project materials and methods in architectural, civil, structural, and mechanical 

systems’ plans.  The knowledge measured in this particular subject area is essential for 

success in any building related discipline.  The act of reading and interpreting drawings, 

and models, requires all three spatial ability factors.  Participants were allowed three 

minutes to complete this section.   

The construction geomatics subject, or field surveying of spatially referenced 

information, was the second subject area tested by the current study.  Items in this 

subject area measured participants’ ability to establish distances and elevations from 

established geospatial points, layout of a project based on geospatial points, and ability 

to interpret a topography map of the project site and surroundings. Four items were 

selected for the current study and participants were given eight minutes to complete the 

calculations and answer the questions.  One item from the geomatics section was 

“Given a rectangular structure that is 60’9” long by 42’6” wide, what is the diagonal 
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measurement in feet and inches for squaring up the structure during layout?”.  Four 

multiple choice options were given to select from for the answer.   

The final subject tested in this section was bidding and estimating, which 

focused on the entire bidding process to build a facility.  Participants were given six 

minutes to interpret the drawings and complete the calculation necessary to answer the 

questions.  Each question required a quick quantity takeoff of building materials and 

systems using project drawings or models.  Items in this subsection were selected 

because they require all spatial ability factors to read, interpret, and calculate quantities 

for space represented by the drawings and models.   

It was expected that participants would perform best answering the construction 

geomatics items given its grounding in fundamental mathematics and trigonometry.  

The items were designed as basic word problems with common building terminology 

referenced in the problem, thus limiting the domain specific knowledge required.  The 

bidding and estimating items were expected to be the most difficult for the majority of 

participants below the senior level due to the complexity of the problem and 

understanding of bidding and estimating procedures typically introduced at the upper 

classmen level.     

Spatial Ability Instrument 

Section 4 of the instrument included three subsections, with two tests in each 

three subsections.  The tests used in this section are all existing tests and seminal to 

research in the area of spatial ability.  Additionally, the tests have been used numerous 

times to measure spatial visualization, spatial orientation, and spatial visualization.  The 

long history of factor analytic studies of spatial ability tests provides an understanding 
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of the measures tested (Carroll, 1993; Hegarty & Waller, 2005).  Scientific study of 

spatial abilities began in the early 20th century and subsequently tests were created in 

the mid-20th century to measure different spatial abilities factors (Hegarty & Waller, 

2005).  Based on the literature of spatial abilities, existing measures for spatial relations, 

spatial orientation, and spatial visualization were selected (Cronbach, 1970; Hegarty & 

Waller, 2005; Lohman, 1988).  The measure for spatial ability has consistently shown 

good reliability of between .70 and .80 on average (Guilford & Zimmerman, 1948; 

Lohman, 1988; Mayer & Massa, 2003).  All items for the spatial ability measure are 

included with the entire instrument in Appendix C.   

The first subsection tested spatial visualization using the Paper Folding Test 

(“Research: Kit of Factor-Referenced Cognitive Tests (1976 Edition),” n.d.), which 

included two tests with 20 items each, or 40 items total.  Participants were allowed three 

minutes to complete each of the two sections.  According to Lohman (1988) tests for 

spatial visualization contain the most difficult spatial tasks due to the sequencing of 

stimuli transformations and the complexity of stimuli used.  The second test measured 

participants’ spatial orientation using the Cube Comparisons Test (“Research: Kit of 

Factor-Referenced Cognitive Tests (1976 Edition),” n.d.).  Lohman (1988) defined 

spatial orientation as the ability to imagine how a stimulus will appear from another 

perspective. It included two parts for which participants were allowed three minutes to 

answer 21 questions in each part, for a total of 42 items in six minutes.  The third test 

was the Card Rotations Test (“Research: Kit of Factor-Referenced Cognitive Tests 

(1976 Edition),” n.d.), which required participants to perform speeded mental rotations 
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of simple 2D items. Spatial relations were measured using 10 items in two parts, for a 

total of 20 items.  Participants were allowed three minutes for each section of 10 items.    

Selection of these tests was based on prior research (Hegarty & Waller, 2005) 

and the tests used to identify spatial ability factors in five studies considered primary 

works in this area of research.  While the five studies include additional factors, 

measures, and tests, the three spatial tests selected for the current study were each used 

in all five studies.  Ultimately the three factors identified by Lohman (1988) were used 

along with three of the five tests he used.  The use of spatial tests for vocational 

prediction for occupations in spatial based domains is common, particularly in domains 

such as engineering and architecture (Cronbach, 1969)   

Real-world Domain Experience Instrument 

Section 5 included six multiple choice items about general demographic 

questions along with the amount and type of real-world domain experience.  The items 

in Section 5 were questions about the participant’s real-world domain experience, in 

particular the amount and type of experience.  The complete instrument is available for 

review in Appendix C.   

    

 Data Analysis Strategy 

My data analysis strategy involved computing Pearson’s correlations in order to 

explore the zero-order relationships among my variables.  Following, I planned to 

utilize path analysis to test the predictive relationships among my study variables 

according to my hypothesized model.  Assuming my model might not exhibit a perfect 
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fit to the data, I planned to re-specify the model based on both empirical and theoretical 

criteria and re-assess its fit to the data.   

Kline (2011) described path analysis as a structural model for observed variables 

that represents hypotheses about effect priority.   Correlation analysis and path analysis 

are utilized together as a procedure for structural equation modeling that supports the 

evaluation of relationships between a dependent variable and one or more independent 

variables.  The flexibility afforded by computer programs supports structural equation 

modeling as one for forecasting the outcomes using psychological tests and ratings as 

predictors of an individual’s success in an occupation or area of study (Cohen, 1988).   

Data analysis for the current study required two separate processes due to 1) the 

different type of items and instruments in the study, and 2) because one collection site 

used a paper version of the instrument.  The paper instrument added an extra step to 

convert the data in an electronic format.  Figure 10 is a flow chart for the online 

instrument analysis process on the left and the paper instrument analysis process on the 

right.  Both processes start with Step 1 which was the point at which the participants’ 

submitted their responses to the questions.  Within the process some sub-processes were 

required and are included in the discussion about each step.  For the purpose of visual 

clarity the sub-processes are not indicated in the workflow diagram.  Additionally, the 

workflow discussion is organized by instrument type therefore the entire online 

instrument process will be discussed first.  A discussion about the process for the paper 

instrument data analysis will immediately follow.   

The items on both instruments were identical and common to both processes 

was the need to score each test using a test key.  The spatial skills test key was created 
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by the principal investigator who also created the items.  The domain knowledge tests 

key was based on the AC exam answers provided for the selected questions.  Each of 

the spatial ability test keys was provided with the kit purchased from Educational 

Testing Services.  The score for each test was then converted to a code representing the 

score specific to each particular test.   
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Figure 9.  Administering the study for the group receiving online instruments and 

the group receiving the paper instrument. 

  

Online Instrument

Step 1

Export from Qualtrics to Excel  
spreadsheet

Step 2

Calculate test scores in Excel 
spreadsheet

Step 3

Input scores and scaled item responses 
into SPSS

Step 4

Perform descriptive analysis

Step 5

Perform correlation analysis 

Step 6

Import to SPSS AMOS

Step 7

Perform path analysis

Paper Instrument

Step 1

Collect instruments

Step 2

Manually score paper tests

Step 3

Input scores and scaled item responses 
into Excel spreadsheet

Step 4

Input scores and scaled item responses 
into SPSS

Step 5

Perform descriptive analysis

Step 6

Perform correlation analysis

Step 7

Import to SPSS AMOS

Step 8

Perform path analysis



85 

Online Instruments and Paper Instruments  

This section provides a general description about how the online and paper 

instruments were administered to the study’s participants as shown in Figure 10, along 

with a brief description of the procedures for scoring and general data analysis.  The 

instruments administered in each of the three settings contained identical items.  

However, the Qualtrics software was used to administer the online instrument.  A 

digital timer is available as a standard feature of the software and the timer was used for 

each section in the online instrument.  The paper version required that the researcher 

time each section using a stop watch.  To accurately time each section, participants 

using the paper version were required to stop at the end of each section.  As a result, 

participants completing the section early were required to wait for the researcher to call 

time for one test and then start time for the next test before the participant could 

advance.  The difference in timing procedures between the online and paper version 

may have created some variance in the test results.    

Qualtrics also stored the data and formatted it for export to a Microsoft Excel 

spreadsheet, whereas the paper version required manual input of the responses to a 

spreadsheet.  The data was displayed by rows and columns in Excel.  A row was 

displayed for each participant and a column displayed for each item by a primary and 

secondary number.  An example from the Excel is shown in Table 5.  The anonymous 

participant is identified as a unique Qualtrics generated code in the far left column.  At 

the top the number Q115_1 represents the multiple choice options available for the 

answer.    
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Table 5  

Example of response in Qualtrics 
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1 

 

#NULL 

         

 

To better understand the relationship between the data displayed in Table 5 and 

the item, Figure 11 is a screen capture of question 115 with all available options for the 

answer shown.  All test items with multiple choice answers were displayed in this 

manner and the data exported similar to the example in Table 5.  Some multiple choice 

items allowed more than one choice while others allowed only one choice.      

 

Figure 10.  Example of spatial relations item 

 

Each test was scored and input in the Excel spreadsheet as a percentage of 

correct answers.  Scores for each test were then input into IBM SPSS Statistics 22, 

hereafter referred to as SPSS, file created for the current study.  The responses to 
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Likert-type items were also input to the same SPSS file with the test scores.  After 

scores and responses were all input to SPSS, descriptive statistics and correlation 

analysis were performed.   

The results from the correlations were then input to SPSS AMOS and the 

original model was run and returned as just identified.  As a result, the model was re-

specified and two domain knowledge variables were trimmed leaving only the domain 

knowledge geomatics variable as a predictor of spatial skills.  The model was re-

specified to make the model consistent with the evidence which is a standard practice 

when using structural equation modeling (SEM) path analysis (Kline, 2011).  

Additionally, the value of α was set higher than the conventional value of .05 to avoid 

Type II error associated with false claims from not rejecting the null hypothesis in 

accept-support testing (Kline, 2011, p. 194).  The higher α value of .10 was set prior to 

running the re-specified model.  Consequently the second model’s fit was improved.       

Analysis software     

Two computer software programs were used to analyze the data.  First, 

descriptive statistics and Pearson correlations were generated using IBM SPSS Statistics 

22 software.  Listwise deletion was used to handle missing data in SPSS for the 

descriptive statistics and correlation analysis.  The correlations were then used as input 

into a Structural Equation Model (SEM) in SPSS AMOS where path analysis was used 

to test the hypotheses and evaluate relationships among the variables in the model.  

Multiple stochastic regression imputation was used in AMOS to substitute a predicted 

value for any missing data.   
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Chapter 4 Results  

 The goal of this study was to investigate spatial skills as a set of skills developed 

in the context of a domain and dependent on the relationship between the following 

variables respectively:  1) spatial ability, 2) domain knowledge, 3) real-world domain 

experience, and 4) self-efficacy.  Spatial ability, domain knowledge, and real-world 

domain experience were treated as direct predictors, or constructs, of spatial skills.  The 

criterion, or dependent variable, in the model was spatial skills.  Additionally, self-

efficacy was expected to intervene and mediate the relationships between the three 

predictors and spatial skills.   Figure 12 shows the initial hypothesized path model, 

which was created to test hypotheses and was based on the literature, prior research, and 

research questions focused on investigating the relationship between the model’s 

predictors and its criterion.  The arrows            in the hypothesized model represent the 

direct effects from the study’s hypotheses and implies that X is causally prior to Y (X 

affects Y), with the understanding that other causes of Y may exist (Kline, 2011) 
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Figure 11.  Initial hypothesized model 

 

As mentioned in Chapter 3, data were collected from students at three accredited 

construction programs in the U.S. Two of the programs were located at mid-western 

state universities and one western state university.  A total of 177 undergraduate 

students participated in the study.  Results from the data analyses are reported in the 

following three sections.  A detailed discussion about the descriptive statistics is 

provided in the first section.  Correlations between variables are discussed in the next 

section.  The last section discusses results from the path analysis.     

Descriptive Statistics 

To best evaluate the predictors of spatial skills the instrument designed for this 

study included seven tests and two questionnaires.  As a result of the various sections in 

the instrument the scales used to measure the variables were different therefore a 

detailed discussion about the results is provided immediately following Table 6 below. 
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Table 6  

Descriptive statistics 

Measure M S.D. Skewness Kurtosis Cronbach’s 

α 
Domain knowledge modeling 

and visualization 
1.49 .93 -.16 -.86 .27 

Domain knowledge geomatics 1.99 1.07 .12 -.49 .35 

Domain knowledge bidding and 

estimating 
1.06 .97 .51 -.77 .46 

Spatial ability 7.54 2.55 -.35 -.04 .75 

Spatial skills 6.83 1.45 -1.08 .1.96 .29 

Real-world domain experience 4.30 3.49 .25 -1.39 ** 

Self-efficacy 7.29 1.35 -31 -.17 .96 

  

 A test was used to measure domain knowledge modeling and visualization that 

included three equally weighted questions based on a total possible 100 points.  

Participants’ response to each question was either correct or incorrect and no partial 

credit was given.  Scoring for answers was one correct answer equaled 33 points, two 

correct answers equaled 67 points, and three correct answers equaled 100 points.  The 

scores then were coded as follows: 1 = 33 points, 2 = 67 points, and 3 = 100 points.  

The codes were then input into SPSS.  If a grade was assigned to correspond with the 

means for domain knowledge modeling and visualization, it would reveal a score of 

50% or a grade of F.   

The test for domain knowledge geomatics included four equally weighted 

questions based on a total possible 100 points.  Responses were marked as either correct 

or incorrect and then coded based on the number of correct answers where 1 = 25 

points, 2 = 50 points, 3 = 75 points, and 4 = 100 points  
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Domain knowledge bidding and estimating was measured using a test with three 

equally weighted items for which the participants’ answers were either correct or 

incorrect.  Scores were based on the number of correct answers with 1 = 33, 2 = 67, and 

3 = 100.  The bidding and estimating test demands a higher level of domain knowledge 

and the results from this analysis reveal the lowest score of all the tests.   

A total of three tests with two sections each were administered to measure 

spatial ability.  The first test was spatial visualization with 10 questions in each of the 

two sections.  The second spatial ability test was spatial orientation with 21 questions in 

each of the two sections.  Spatial rotation was the third test and it included 10 questions 

in each of the two sections.  Consistent with all test in this study, the participants’ 

responses were scored as either correct or incorrect with all questions being equally 

weighted.  To score the tests, the two sections in each test were combined and all 

questions weighted equally.  Participants’ answers were evaluated and the resulting 

scores based on the total number of questions marked correctly.  Codes for the spatial 

visualization and spatial rotation scores were:  1 = 10, 2 = 20, 3 = 30, 4 = 40, 5 = 50, 6 = 

60, 7 = 70, 8 = 80, 9 = 90, and 10 = 100.  Scores for the spatial orientation test were 

calculated as 1 = 5, 2 = 10, 3 = 14, 4 = 19, 5 = 24, 6 = 29, 7 = 33, 8 = 38, 9 = 43, 10 = 

48, 11 = 52, 12 = 57, 13 = 62, 14 = 67, 15 = 71, 16 = 76, 17 = 81, 18 = 86, 19 = 90, 20 = 

95, and 21 = 100.   

The scores from each section of each test were combined, resulting in a summed 

score for each test.  The summed scores were then used to compute a total spatial ability 

using the Compute Variable function in SPSS.  Possible scores for the new computed 

variable ranged from .50 to 12.83.   
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Nine equally weighted questions were included on the spatial skills test.  As 

with the other tests in this study the participants’ answer to each question was scored as 

either correct or incorrect.  A participant’s score reflected the number of points earned 

for the total number of questions answered correctly, therefore 1 = 11, 2 = 22, 3 = 33, 4 

= 44, 5 = 56, 6 = 67, 7 = 78, 8 = 89, and 9 = 100.  Compared to the means for the score 

on tests in the domain knowledge category and spatial ability category, the means of the 

spatial skills test represented the highest ‘grade’ at a mid C range.      

The real-world domain experience was a self-report variable computed based on 

a participant’s total real-world domain experience multiplied by the type of experience.  

Type of experience was classified as either part-time or full time and coded as 1 = part-

time or 2 = full-time.  Time for both categories was coded as:  1 = 1 -6 months; 2 = 7 – 

12 months; 3 = 13 – 18 months; 4 = 19 – 24 months; and 5 = over 24 months of real-

world domain experience.   

Self-efficacy was measured using a questionnaire with 16 Likert-type items.  

Participants answered questions about their level of confidence performing spatial and 

domain knowledge based tasks.  A scale of 1 to 10 was used for responses with 1 being 

‘Certain I cannot’, 5 being ‘Moderately certain I can’, and 10 being ‘Certain I can’.  As 

shown in Table 6, the overall reliability estimates based on Cronbach’s alpha for this 

questionnaire was α = .96.  This is expected given the items were adapted from 

Bandura’s (1977, 1993) recommendations for self-efficacy measures.               

 Review of the participants’ mean test scores revealed an overall poor 

performance.  Although it is quite possible that the poor performance is due to a lack of 

knowledge and ability there are other possible explanations for this poor performance.  
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First reason may be due to the lack of encouragement for participants to earn the best 

score they could which is particularly important when ability test are administered 

(Cronbach, 1970).  Participants were verbally instructed to perform their best, however 

due to the anonymity of the test no grade or other reward was given for performing well 

on the tests.  The second reason for the poor performance may be that the participants 

may not have wanted to do well.  A participant’s desire to do well will affect their 

results on tests (Cronbach, 1970) and because all participants may not have the intrinsic 

motivation to perform well their performance may have reflected this characteristic.  

Participants may not have understood the test instructions due to their level of education 

or poorly written instructions.  The only new set of instructions written for this 

instrument were the spatial skills test instructions; however, results indicate that this 

was the test on which participants performed the best, so the low performance may not 

be due to unclear instructions.  The idea that spatial skills test instructions were poorly 

written may not be the only reason for poor performance.  All the tests were timed and 

this may have contributed to their poor performance as well.  Another reason for the 

overall poor performance may be a result of participants’ lack of knowledge and ability.   

Of the 177 participants in this study only 57 were classified as seniors in their 

respective construction science program.  The domain knowledge and spatial skills tests 

were probably too advanced for the 16 freshmen, 52 sophomore, and 52 junior level 

students in the study.  Expectations were that these lower level classes would perform at 

a lower level than the seniors due to the content of the curriculum.  In particular, a 

lower level of performance by freshman and sophomore students because the Domain 

Knowledge Bidding and Estimating test, and the Geomatics test, include items that 
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require knowledge of topics for which instruction is delivered in upper level course 

work for juniors and seniors.  In the end the research design to include underclassmen 

may have been a flawed approach to assessing domain knowledge and its relationship to 

spatial ability for construction science students. Possible modifications to the research 

procedures might be to limit the participants to senior level or modify the test questions.      

In addition to poor performance by participants, a review of the results in Table 

6 reveals low reliability in the measures for all three of the domain knowledge tests and 

the spatial skills tests.  The low reliability of measures may be due to one or all of the 

following reasons: 1) unclear or ambiguous questions; 2) participants guessing, 

misinterpreting questions, or fatigue; and 3) the test procedures may not have been 

standardized (Creswell, 2012).  In this study all three reasons above are possible and the 

second and third reason above are highly probable.  As discussed previously only 55 of 

the 177 participants in this study were senior level students therefore guessing answers 

for the domain knowledge and spatial skills questions by the other 122 participants is 

highly probable.  Also, total time to complete the tests and associated questionnaires 

was approximately one hour; therefore, student fatigue is probable.  Lastly, the test 

procedures were not standardized due to the lack of access to computers at one site with 

92 participants.  Expectations are that each of these factors contributed to the low 

reliability on the domain knowledge and spatial skills tests.   

Correlations  

The correlations among the variables are shown in Table 7.  The data indicated 

that the only correlation for the variable domain knowledge modeling and visualization 

was with real-world domain experience and although positive, it was very weak (r = 
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.16, p < .05).  The domain knowledge modeling and visualization variable did not 

correlate with any of the other variables in this study and was eventually trimmed from 

the hypothesized model in the path analysis of the data. Of the three domain knowledge 

tests, the modeling and visualization test contained the most basic and fundamental 

content and was expected to at least have some level of correlation with the other two 

domain knowledge tests.   

The variable domain knowledge geomatics had a significant weak correlation (r 

= .25, p < .01) with domain knowledge bidding and estimating; self-efficacy (r = .17, p 

< .05); and spatial skills (r = .21, p < .01).  Domain knowledge bidding and estimating 

had a significant weak correlation with self-efficacy (r = .23, p < .01) and real-world 

domain experience (r = .22, p < .01).  Self-efficacy had a significant weak correlation 

with real-world domain experience (r = .24, p < .01) and spatial ability (r = .18, p < 

.05).  The correlation between real-world experience and spatial ability (r = .33, p < 

.01), although still considered weak, it was the largest correlation between all of the 

variables.  Intuitively this was expected but no conclusions can be drawn other than 

there is some low level evidence of a significant relationship between real-world 

domain experience and spatial ability.   The variable spatial ability also had a significant 

weak correlation with spatial skills (r = .27, p < .01).              
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Table 7 

  

Correlations of variables 
 1 2 3 4 5 6 7 

Domain 

knowledge- 

modeling 

and 

visualization 

---       

Domain 

knowledge- 

geomatics 
.10 ---      

Domain 

knowledge 

bidding & 

estimating 

.14 .25** ---     

Self-

efficacy .07 .17* .23** ---    

Real-world 

domain 

experience 
.16* -.02 .22** .24** ---   

Spatial 

ability -.03 .09 .14 .18* .33** ---  

Spatial 

skills 
-.00 .21** .03 .14 .06 .27** ---- 

Note, Predictor 1 = Domain Knowledge Modeling and Visualization; Predictor 2 = Domain 

Knowledge Geomatics; Predictor 3 = Domain Knowledge Bidding & Estimating; Predictor 4 = 

Self-efficacy; Predictor 5 = Real-world Domain Experience; Predictor 6 = Spatial Ability; 

Criterion = Spatial Skills  

*p<.05, **p<.01 

 

 Overall the correlation analysis results indicate some significant, although weak, 

relationships between the variables in this study.  Of particular interest are the 

significant correlations between the 1) domain knowledge geomatics predictor and the 

criterion spatial skills, and 2) the predictor spatial ability and the criterion spatial skills.    
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Path Analysis 

Output from the correlations, along with the model shown in Figure 12, was 

then input into SPSS® Amos where maximum likelihood estimation was used to test 

the model and generate subsequent models.  Multiple imputation was performed using 

stochastic regression for any missing data.  It was determined that the hypothesized 

model was just identified with zero degrees of freedom; therefore, global fit statistics 

could not be computed.  As a result, the non-significant paths (p >.10) between 

variables was trimmed to determine the most parsimonious representation of the data.  

The paths trimmed from the hypothesized model were 1) domain knowledge modeling 

and visualization to self-efficacy, 2) domain knowledge geomatics to self-efficacy, 3) 

self-efficacy to spatial skills, 4) domain knowledge modeling and visualization to 

spatial skills, 5) domain knowledge estimating and bidding to spatial skills, and 6) real-

world domain experience to spatial skills.  The trimmed model was then rerun in Amos.   

The resulting model is a recursive parsimonious model with four degrees of 

freedom that includes six observed variables and two unobserved variables as shown in 

Figure 13.  The parsimony normed fit index (PNFI) for this model was .256 achieved by 

trimming the hypothesized mode and rerun the data.  The unobserved exogenous 

variables are the disturbance, or error (residual) term, and represents the unexplained 

variance in self-efficacy and spatial skills.  The error terms represent other possible 

influences on self-efficacy and spatial skills that are not explained in the specified 

model.  The error terms are designated with the symbols        and               

in the model.  Given the modest sample size of 177 for this study, p <. 10 was adopted 

for the resulting model.  The significant (p <. 10) path coefficients between the retained 

e1

 
 

e1 

e2 
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variables are shown in Figure 13.  The resulting model shown illustrates the 

relationships between the hypothesized predictors and criterion as well as the effect size 

each predictor has on the criterions.   

 

Figure 12.  Resulting study model 

  

The resulting exogenous variables are 1) domain knowledge bidding and 

estimating, 2) real-world domain experience, 3) spatial ability, and 4) domain 

knowledge geomatics.  The hypothesized model included only one endogenous 

variable, spatial skills.  Analysis of the data and subsequent trimming of the original 

model resulted in two endogenous variables for the final model, self-efficacy and spatial 

skills. The fact that the analysis resulted in self-efficacy as an endogenous variable was 

not hypothesized, it is an interesting result that is consistent with the findings from 

interviews with construction sciences in prior research (McCuen & Ge, 2013b).     
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The resulting model fit was good as indicated by the fit indices shown in Table 8 

below.  Interpretation of the fit indices was done with an understanding that no set of fit 

statistics is definitive and they come with a distinct set of limitations as described by 

Kline (2011).  The first limitation is due to the value of fit statistics is an overall fit; 

therefore, some parts of the model may actually be a poor fit because the fit statistics 

consolidates many discrepancies into a single measure.  The second limitation is in the 

fact that a single fit statistic may show a good fit reflects only one aspect of fit and must 

be viewed accordingly.  The third limitation is that inspecting the values of fit statistics 

tells little about where the model may depart from the data because the direct 

relationship between values of fit and degree or type of misspecification is minimal.  

The fourth limitation is that limitation the predictive power of a model is not reflected 

in the fit statistics, but rather is relatively independent characteristics of a model.  The 

fifth limitation is perhaps the most important in that a good fit does not necessarily 

mean the results are meaningful (Kline, 2011, p. 193).   Model fit cannot be determined 

by a single index; therefore, five fit indices are reported in Table 8.    

 

Table 8  

Fit indices of resulting model 

Model df χ2 p GFI CFI RMSEA RMR 

Resulting Model 4 3.409 .492 .966 1.00 .00 .07 

  

The first model fit index shown in the table is the model chi-square (χ2) statistic, 

which although it is considered to be the basic test for model fit, it may be more 
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appropriate to call it a measure of badness-of-fit (Kline, 2011; Shumaker & Lomax, 

2010). The goal is for a non-significant χ2, and, with the resulting model’s p = .492, this 

goal was achieved.  Overall χ2 = 3.409 (p = .492) indicates that the model is consistent 

with the covariance data, more specifically that the sample variance-covariance and the 

theoretical variance-covariance matrices are consistent.  The next fit indexes reported 

are the goodness of fit (GFI) and comparative fit index (CFI).  Although the two 

indexes measure fit, the GFI is an absolute fit index and the CFI an incremental fit 

index.  The GFI estimates the amount of covariance in the sample data matrix explained 

by the model.   

The CFI is explained as an index that measures the relative improvement in fit 

of the resulting model over the independence model (Shumaker & Lomax, 2010).  The 

CFI has been criticized in the literature, because the baseline model is used as the 

independence model.  The baseline model assumes that there are zero covariance 

among observed variables which is highly improbable (Kline, 2011).  A value of 1.0 

indicates the best fit for both indexes.  As shown in Table 8 the resulting model’s 

indexes are GFI = .994 and CFI = 1.0, both of which fall within the range of good fit for 

the resulting model.   

The RMSEA, or root mean square error of approximation, is a parsimony-

adjusted index that is follows a noncentral chi-square distribution, and it is scaled as a 

badness-of-fit index for which a value of zero indicates the best fit.  The RMSEA value 

for this study was 0 and therefore considered to be a fit.  The last index shown in Table 

8 is the root-mean-square residual (RMR), and it is based on covariance residuals.  The 

acceptable level for the value of this index differs with some understanding that the 
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value should be about zero for acceptable model fit (Kline, 2011) and others stating that 

there is no defined acceptable level (Shumaker & Lomax, 2010).  The problem is that 

the RMR is computed with unstandardized variables and as result its range depends on 

the scales of the variables.  When the scales of observed variables differ, interpretation 

of the RMR value can be difficult.  The RMR for the resulting model in this study was 

.07, which may be considered less than a good fit however the scales for the observed 

values in this study did differ.  Given the variation in scales used, the RMR value 

should be interpreted with caution.   

As discussed in this section, after trimming the hypothesized model the resulting 

model fit was good.  The resulting model’s Chi-square and fit indices support this 

conclusion.  No further conclusions can be drawn when there is a good fit to a model 

other than what is stated in this section.  Given the amount of errors in the data for this 

study, no conclusions can be drawn from the analysis (Shumaker & Lomax, 2010).  

Even with minimal measurement error, a good fitting model should not be interpreted as 

the only model of the relationship among the variables.  Other models may exist that 

have yet to be identified.  Additionally, the direct effect of a predictor on a criterion 

should not be interpreted as predictor X causing criterion Y (Kline, 2011; Shumaker & 

Lomax, 2010).   

 

 Summary of Results 

A review of the correlation coefficients and SEM path analysis revealed that 

there were some relationships among variables. The significant correlations between 

variables were all weak; however, the results indicated that the relationships were 
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positive. Of particular interest were the correlations between 1) domain knowledge 

geomatics predictor and the criterion spatial skills (r = .21, p < .01,) and 2) the predictor 

spatial ability and the criterion spatial skills (r = .27, p < .01).     

Results from the path analysis also indicate a positive weak relationship between 

some variables.  Spatial ability had a significant direct effect of .14 on self-efficacy; 

real-world domain experience had a significant direct effect of .13 on self-efficacy; and 

the significant direct effect of domain knowledge bidding and estimating on self-

efficacy was .20.  Spatial ability had a .25 direct effect on spatial skills, and the direct 

effect of domain knowledge on spatial skills was .19.  Self-efficacy emerged; however, 

as a second dependent variable, with no effect on the hypothesized dependent variable 

spatial skills.  Table 2 displays the research questions of this study, variables, and 

analyses used for the current study.   

 Due to the low correlations, weak relationships between variables, and large 

amount of measurement errors, the current study results are inconclusive and thus the 

research questions cannot be answered and the hypotheses cannot be confirmed.  

Results from the current study are poor to marginal and initiate questions about the 

research design, selected measures, and the data analysis strategy used to investigate 

predictors of spatial skills in the domain of construction science.  The discussion in 

Chapter 5 addresses the results and different factors that may have influenced the 

results.   
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Chapter 5 Discussion and Conclusions 

The objective of the current study was to understand spatial skill as a set of 

skills developed in the context of a domain and interrelated with:  1) spatial ability, 2) 

domain knowledge, 3) real-world domain experience, and 4) self-efficacy.  Although 

the term spatial skill is interchanged frequently with spatial ability in the literature, the 

current study adopted the NRC (2006) definition of spatial skills as being cognitive 

skills that are learned within a specific context and are supported by strategies to 

combine data into visualizations, tools to create visualizations, and technologies such as 

computer-aided visualizations.  As a result, the cognitive skills learned are domain 

specific and expand on an individual’s spatial abilities.  In the current study spatial 

ability, domain knowledge, and real-world domain experience were examined as direct 

predictors of spatial skills.  Self-efficacy was expected to mediate the relationships 

between each set of predictors and spatial skills.   

After a critical review of the literature and prior research, it was evident that to 

understand how individuals solve spatial problems there must first be an understanding 

about spatial thinking.  The current study focused on the lack of conclusion about how 

each process, and sub-process, of spatial thinking influence an individual’s success in 

solving spatial problems.  The comprehensive model shown in Appendix B represents a 

proposed process and the current study focused on Stage 1.  In Stage 1 spatial ability, 

domain knowledge, and real-world experience combine and form one’s spatial skills.    

The current study investigated spatial ability, domain knowledge, real-world 

domain experience, and self-efficacy as predictors of an individual’s spatial skill.   
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Overview of the Results 

 One hundred and seventy-seven undergraduate construction science students 

from three U.S. universities participated in the current study.   The participants included 

16 freshmen, 52 sophomores, 52 juniors, and 57 seniors.  Of the 177 participants, 161 

were male and 16 were female.  The study instrument tested participants’ spatial skills, 

spatial visualization, mental rotation, spatial orientation, modeling and visualization, 

geomatics, bidding and estimating.  The instrument included a questionnaire about the 

participants’ self-efficacy about applying their spatial ability, domain knowledge, and 

real-world experience to solve spatial problems.  A questionnaire was also included for 

participants’ to indicate the amount and type of real-world experience they had in the 

construction domain.  Overall performance on the tests was poor, except the spatial 

skills test on which the students’ performance was considered average by conventional 

U.S. academic scoring practices.  The poor performance on the spatial visualization 

Paper Folding Test was similar to the results when previously administered to a 

different group of participants.  The previous study results revealed an average score of 

54% for freshmen and 68% for senior students, both of which are considered poor 

performance scores on a scale of 1 – 100 points (McCuen & Eseryel, 2012)      

Within the spatial ability research there is a belief that all individuals have some 

level of innate spatial ability (Smith, 1964); therefore, the expectation was that all 

participants in this study would have utilized their innate spatial ability to perform 

everyday spatial based activities.  It seemed reasonable to expect that participants would 

have applied some general spatial abilities for navigation to a location or participation 
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in sports that require one to judge distance and location.  It was also expected that 

participants classified as juniors or seniors would perform better than the freshmen and 

sophomores who have limited domain knowledge and less real-world domain 

experience.        

Reliability and Correlation  

 Because the results from the correlations and reliability analyses of the current 

study are marginal, the results of the path analysis about the relationship among spatial 

ability, domain knowledge, real-world domain experience, and self-efficacy are 

inconclusive.  Therefore, the discussion in this chapter addresses both analyses and 

possible reasons for the outcomes.  A test’s reliability is critical and a low score 

reliability will be detrimental subsequent analyses (Kline, 2011).  Poor reliability 

reduces the power of tests and attenuates the effect size below the true population value 

and ultimately attenuates the observed correlation between two variables (Kline, 2011) 

influencing the results of an entire study; therefore effort is dedicated in this section to 

understand how the research design, study instrument, and sample influenced, or 

limited, this study’s results.  The discussion begins with a look at the reliability of the 

tests and questions administered for this study.  Immediately following is a discussion 

about the correlation analyses between variables in the study.  It is suspected that 

several factors might influence a participant’s performance and consequently the 

reliability and correlation of tests and questionnaires.   

Reliability of measures 

Factors influencing test reliability are:  test length, clarity of questions, 

standardized test administration procedures, sample homogeneity, and the participants 
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mental and physical being (Creswell, 2012; Cronbach, 1970; de. Gruijter, & van der 

Kamp, 2008; Kline, 2011)  

A review of the study’s procedures and tests may explain some of the results 

related to the list of influences on performance.  The reliability coefficients for both the 

test of spatial ability (α = .75) and the self-efficacy questionnaire (α = .96) were high.  

High reliability of the tests measuring spatial ability can be credited to the fact that all 

three tests were well established general tests that are frequently used to measure an 

individual’s general spatial ability.  All three of the spatial ability tests have been 

available since the mid-20th century and consequently validated with multiple 

confirmatory factor analyses confirming the reliability of factors and their measurement 

(Lohman, 1988).  The same is true for the self-efficacy items that were an adaptation of 

items based on factors validated since conceptualized by Bandura (Bandura, 1977, 

1993).  Reliability coefficients for the other four tests however were low to moderate 

and are discussed next.      

 Each of the three tests for domain knowledge used in the current study 

instrument contained excerpts from the full length tests, which had many more items 

within each.  The current study domain knowledge modeling and visualization test (α = 

.27) only had three items whereas the full length test contains 30 items.  The domain 

knowledge geomatics (α = .35) tested participants using four of six items from the full 

length test.  The third domain knowledge test (α = .46) assessed participants’ bidding 

and estimating knowledge using three questions from the 36 item full length test. 

Selecting only a few items from each of the domain knowledge tests may be one 

probable reason for the low reliability scores because there was no delineation between 
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items and difficulty their range of difficulty.  According to classical test theory longer 

tests are more reliable (Embretson, 2000).  More items for each measure could have 

increased the tests reliability for the domain knowledge measures.  The variation in test 

administration procedures may also have influenced test performance between the 90 

participants tested with the paper instrument and the 87 that took the online tests.  

Although the two instruments were identical, the paper test required a human proctor to 

time the sections while the online instrument displayed a timer at the top of the screen 

in each section.  Another possible reason for the low reliability may be attributed to the 

heterogeneity of participants in terms of major study classification.  Because the 

questions used to measure domain knowledge were from a standardized test for a 

certification exam of construction students at the senior or post graduate level, many of 

the items on the tests were probably too advanced for the typical underclassmen. 

Finally, the 59 minutes required to complete the study’s instrument could have caused 

fatigue and distress, especially for the underclassmen who may have been frustrated by 

the level of item difficulty.        

Spatial skills were measured using a test for which the items were created and 

were never administered to a heterogeneous sample like the current study sample.  The 

items were verified prior to the study; however, the group members were Master’s level 

students and were expected to have the contextual spatial knowledge.  The resulting 

Cronbach’s alpha was low at .29, and similar to the domain knowledge reliability may 

have been due to the low number of items, the variation in test administration 

procedures, and the heterogeneous group of participants.   

Correlation between measures 
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Factors influencing correlation coefficients are:  correction for attenuation, level 

of measurement, restriction of range in data values, missing data, nonlinearity, outliers, 

confidence intervals, effect size, significance, sample size, and power all can play a role 

(de. Gruijter & van der Kamp, 2008; Shumaker & Lomax, 2010). The correlation 

analyses for the observed scores in the current study revealed five significant weak 

correlations between pairs of predictors:   

 Domain knowledge bidding and estimating correlated with domain knowledge 

geomatics (r = .25, p < .01). 

 Domain knowledge bidding and estimating correlated with self-efficacy (r = .23, 

p < .01). 

 Domain knowledge bidding and estimating correlated with real-world domain 

experience (r = .22, p <. 01). 

 Real-world domain experience correlated with self-efficacy (r = .24, p < .01). 

 Real-world domain experience correlated with spatial ability (r = .33, p < .01). 

Additionally, the correlations between two of the predictors and the criterion 

were weak, but significant.   

 Domain knowledge geomatics correlated with spatial skills (r = .21, p < .01). 

 Spatial ability correlated with spatial skills (r = .27, p < .01).    

Given that three of the results listed above are the Pearson correlation coefficient 

between psychometric tests, they were corrected for attenuation to yield a true score 

correlation.  Attenuation is simply the unreliable measurement error in scores; however 

results from correcting for attenuation is not accepted in all research and thus should be 

interpreted with caution.  Correction for the measurement error in the three test scores 
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was performed based on the psychometric theory assumption that observed data contain 

measurement error and a Pearson correlation coefficient computed with the observed 

score will have a different value than one computed with the true score  (Cronbach, 

1969; de. Gruijter, & van der Kamp, 2008; Shumaker & Lomax, 2010).  To correct for 

measurement error, the correlation (r) between the observed scores on X (rxx) and Y 

(ryy), the Cronbach alpha coefficient for X scores, and the Cronbach alpha coefficient for 

Y scores were used and resulted for the new computation.  Pearson correlation 

coefficient, corrected for attenuation (r*)  

𝑟 ∗𝑥𝑦 = 

𝑟𝑥𝑦

√𝑟𝑥𝑥𝑟𝑦𝑦

 

Once corrected for attenuation the correlations improved from weak to moderate as 

shown below: 

 Domain knowledge bidding and estimating correlated with domain knowledge 

geomatics (r = .63, p < .01).   

 Domain knowledge geomatics correlated with spatial skills (r = .67, p < .01). 

 Spatial ability correlated with spatial skills (r = .57, p < .01).    

There were four significant weak correlations which were not corrected for 

attenuation because scores for the associated instruments were calculated using either a 

non-test or mixed measurement scale.  For example, real-world had a significant weak 

correlation with self-efficacy; however, both were categorical measurements therefore 

neither were psychometric tests.  The assumption of measurement error only applies to 

psychometric tests (de. Gruijter, & van der Kamp, 2008).   

 The current study used different scales across tests and questionnaires.  

Categorical scales were used to measure self-efficacy and real-world domain 
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experience, while nominal scales were used for test scores.  Given that the type of scale 

used and the range of a variables values affects the statistical analysis (Shumaker & 

Lomax, 2010), the variation in the level of measurement between questionnaires and 

tests compromised correlation coefficients.  The use of the same scale across variables 

would certainly help with interpretation of results.  Additionally, the correlations for 

mixed scale items could not be adjusted to correct for measurement error.    

While causal relationships cannot be drawn from correlations, it is evident that 

some associations exist between variables in this study.  Once corrected for attenuation 

the strongest correlation was between domain knowledge geomatics and spatial skills (r 

= .67, p < .01).  This is not surprising because both are domain specific.  Geomatics is 

used to test participants’ knowledge about field surveying of spatially referenced 

information.  Items measured participants’ ability to establish distances and elevations 

from established geospatial points, layout of a project based on geospatial points, and 

ability to interpret a topography map of the project site and surroundings.  The items 

required calculations using trigonometry, applying mathematical skills to construction 

context.   

Domain knowledge bidding and estimating correlation with domain knowledge 

geomatics was the second strongest once corrected for attenuation with Cronbach’s 

alpha at .63.  The two variables analyzed were hypothesized as predictors of spatial 

skills and when adjusted revealed a moderate association.  Also improving when 

corrected for attenuation, was the correlation between spatial ability and spatial skills (r 

= .57, p < .01), which aligns with the expectation that spatial ability predicts spatial 

skills.      
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Four correlations were left uncorrected.  They were:  1) domain knowledge 

bidding and estimating with self-efficacy; 2) domain knowledge bidding and estimating 

with real-world domain experience; 3) real-world domain experience with self-efficacy 

and; 4) real-world domain experience with spatial ability.  Of the remaining four 

correlations left uncorrected for attenuation, the strongest correlation is between real-

world experience and spatial ability (r = .33, p < .01).  This result is consistent with 

reports (McCuen & Ge, 2013a, 2013b) from student interviews in a study over two 

consecutive years that investigated senior level building science students’ spatial 

abilities.  Findings from the interviews revealed that the majority of students associate 

spatial ability with real-world experience and their performance testing spatial abilities 

directly attributable to their amount and type of real-world domain experience.   

Path Analysis 

 The path analysis results provided partial support for two of the study’s 

hypotheses.  Partial support was found for spatial ability as having a direct effect on 

spatial skills.  There was also partial support for domain knowledge geomatics as 

having a weak effect on spatial skills.  Although weak as a direct effect, these are the 

same two associations discussed in the previous correlation section for which the 

correlations improved with correction for attenuation.  Real-world experience 

significantly correlated with spatial skills (r = .67, p < .01), but it had no direct effect on 

spatial skills in the path analysis, which indicates the need to reconsider the real-world 

experience variable.  Given that the observed correlation matrix used for the path 

analysis included correlations not corrected for attenuation, a reasonable conclusion is 

that the subsequent path analysis results were negatively affected.          
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Limitations of this Study 

 Even with its limitations there are indicators that relationships exists between 

the spatial skills criterion and the three predictors of spatial ability, domain knowledge, 

and real-world experience.   As pointed out in the chapter’s preceding sections, several 

areas exist in which the research design could be improved for future research.  The 

lack of significant findings from the study can be attributed to the imperfect design 

which led to low reliability and subsequent weak correlations and direct effects.   

As discussed earlier in this chapter, I believe the research design greatly influenced 

the results of the study.  For example, although the sample was limited to a single 

population of construction science students, they varied greatly in their classification as 

a student in the major.  It is expected that as students advance through the curricula their 

domain knowledge increases; however, the variation of participants’ domain knowledge 

within the sample may have influenced the reliability.  Test length influences reliability 

as students may become fatigue or frustrated due to the time and cognitive load.  

Additionally, the inconsistency in testing procedures may have also influenced the 

reliability (Shumaker & Lomax, 2010).   The online instrument included a timer which 

was prominently displayed on the screen.  The displayed timer was counting down the 

time remaining for the section, whereas students completing the paper version of the 

instrument did not have the constant reminder of the time remaining and may have 

failed to pace themselves to allow for completing the test.  Finally, the differing levels 

of measurement may have also contributed also to the low reliability of the test results.        
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Implications for Future Research  

 The study design must be revisited and improved to ensure reliable data first and 

establish a solid foundation for subsequent analyses (Kline, 2011).  As mentioned in the 

previous section, the first step should be to confirm the factors for domain knowledge 

and spatial skills are actually factors of the respective constructs.  The domain 

knowledge factors assumed for the current study were modeling and visualization, 

geomatics, and bidding and estimating.  The three factors tested are safe to assume as 

domain knowledge given their use on the ANSI certified AC exam; however, real-world 

experience may also be a factor of domain knowledge.  There is no known research 

supporting real-world domain experience as a factor of domain knowledge, however 

there was weak correlation between the two variables and the results raise the question 

for further investigation.  An analysis of the domain knowledge variable should be 

performed to determine if real-world domain experience is a factor of domain 

knowledge.  Prior to the factor analysis, a task analysis to map domain knowledge tasks 

to the concepts, principles, and procedures associated with each domain knowledge task 

should be completed first.      

 The items for the spatial skills test were created based on the three factors tested 

by the spatial ability tests – spatial visualization, spatial orientation, and spatial rotation 

– contextualized to a domain specific 3D representation.  It seemed reasonable to 

conclude that the factors would be valid; however, a factor analysis should be 

completed to verify the items actually measure spatial skills.  Additionally, the test 

length should be re-examined to avoid test fatigue (Shumaker & Lomax, 2010).    
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Once the factors are confirmed and the tests re-examined, the sample should be 

narrowed within the population of construction science students from all classification 

levels to senior level students only.  Doing so will provide a more homogeneous sample 

that better fits the highest level of knowledge expected for the tests.  It is expected that 

homogeneity will lead to overall improved performance within the sample.   

In regards to the study’s instrument, ways to improve it would be to change the 

levels of measurement to a nominal scale for all tests and eliminate the self-efficacy 

questionnaire.  Secondly, the overall instrument length should be reduced by 

eliminating the spatial relations test.  Results from Carroll’s (1993) analysis of more 

than 90 data sets revealed a lack of consistent evidence for the separation of the spatial 

relations factor from the spatial visualization factor.  In fact, only 7 of the 94 data sets 

he examined showed evidence for separation of the two.  Eliminating this test would 

reduce the time to complete the study instrument by seven minutes.  Additionally, the 

lack of evidence for self-efficacy as a mediating variable warrants removal of the 

questionnaire and would reduce completion time by two minutes.  Combined time 

savings by eliminating the two parts would be nine minutes.     

The fact that there were inconsistent procedures for administering the current 

study’s instrument was unexpected.  For future studies the online instrument will be 

used exclusively.  The variability in procedures is an opportunity for variance in 

instructions, timing, and possible errors in scoring tests.   

Visualization formation is another subject for future research that was not 

investigated by the current study, but has surfaced through the literature review (Smith, 

1964) and previous studies (McCuen & Ge, 2013a, 2013b) associated with the current 
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study.  The ability to manipulate rigid forms, mechanically or mentally, is a proven 

ability of visualization.  Three-dimensional visualizations formation is a necessary skill 

for students in the architecture, engineering, and construction disciplines.  However, 

follow-up interviews in a previous study sought to understand how senior level 

construction science students form a 3D visualization when given a 2D drawing.  

Participants were tested, scored, and interviewed about their approach and process.  The 

findings revealed that several approaches were used, including procedural based and 

spatial form manipulation (McCuen & Ge 2013a).  Although the study was based on 

participants’ mental manipulation of rigid forms and similar to studies from the 

literature, the rigid forms were domain specific thus extending a participant’s general 

spatial ability to include elements of domain knowledge.  Visualizing a design or 

problem solution requires the ability to form a visualization that is situated but without a 

baseline form to start the process.  This type of visualization is classified as dynamic or 

environmental, compared to static visualizations measured by paper and pencil tests 

(Hegarty & Waller, 2005; Smith, 1964).        

 

Implications for Instructional Design   

 Visuospatial ability was identified as an important skill for success for scientific 

and technical occupations since the early 1900s when testing first started and used 

mechanical manipulation of objects (Hegarty & Waller, 2005; I. M. Smith, 1964).  Mid-

20th century saw testing for spatial ability evolve from mechanical manipulation to 

paper and pencil testing.  Twenty-first century students studying in the major areas of 

STEM are more accustomed to digital representations of forms that can be manipulated 
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using commercial off-the shelf (COTS) software.  So while the investigation of spatial 

ability needs to continue, a stronger understanding of its implications for STEM 

education should be the focus.  

 Results from the current study were weak to moderate and therefore cannot be 

interpreted as support for any particular approach to instructional design.  The results 

did show moderate relationships between some variables once corrected for attenuation 

however they should be used with caution and are not generalizable.  However, results 

do support redesigning the instrument for further investigation.  A recent meta-analysis 

by Uttal et al.(2013) found evidence that spatial skills are highly malleable and training 

for spatial skills to be effective, durable, and transferrable indicating the need for 

instructional design for spatial skills.   

 

Conclusion     

 There is little agreement in the spatial literature about the factors and processes 

involved with spatial ability.  The literature however does emphasize the importance of 

spatial ability for problem solving in spatial domains (Carter, Larussa, & Bodner, 1987; 

Smith, 1964; National Research Council, 2006; Wai et al., 2009).  Spatial skill is a term 

that is present in the literature; however, it is used interchangeably with spatial ability 

and its use seems random.  There is no evidence that the two constructs are 

synonymous; however, they are frequently treated as such.   

Spatial research is typically designed to test spatial ability using psychometric 

tests that are void of domain specific symbols or references.  The absence of domain 

references appears to contradict the literature references to skill as an individual 
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attribute that is developed out of ability.  To interchange spatial ability and spatial skill 

as equivalent seems presumptuous; therefore, the current study investigated spatial 

ability, domain knowledge, and real-world experience as predictors of spatial skill.  

Although results of the study did not support the hypotheses, the study took the first 

step to identify and investigate predictors of spatial skills.  Results from the study found 

only partial support for spatial ability as having a direct (weak) effect on spatial skills, 

in addition to partial support for domain knowledge geomatics as having a weak effect 

on spatial skills.   

The current study contributes to the advancement of spatial thinking and spatial 

problem solving in two ways.  First, this study provides a new conceptualization of 

spatial skills as an amalgamation of three predictors – spatial ability, domain 

knowledge, and real-world experience.  Second, the study highlighted gaps in the 

spatial skill literature accentuated by the lack of evidence about the combination of the 

individual characteristics required as inputs in a process that transitions from abstract 

general spatial ability considered innate, to applied spatial ability in domain specific 

contexts.  Additional studies are needed to investigate factors that contribute to spatial 

skills and advance the research about spatial problem solving in domain specific 

contexts.     
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Appendix A: Glossary of Terms 

Construction Science – Domain that requires that professionals understand the design 

and spatial attributes of a building project prior to its transformation from concept to 

reality.   

Domain knowledge – Knowledge built over time through practice and experience based 

on specific information, concepts, rules, and principles germane to the domain.    

External representations – Depictions of objects in space such as graphs, diagrams, 

images, or scaled models.  

Ill-structured problems - Problems that possess multiple solutions, solution paths, or no 

consensual agreement on the appropriate solution.  They have multiple criteria for 

evaluating solutions, have less manipulable parameters, and have no prototypic cases. 

Internal representation – Result of perception with surface level information only about 

the properties of the perceived object.  Also referred to as a mental image or visual 

image.    

Mental image - See internal representation. 

Mental model – The representation of a problem in which the parts of the model reflects 

the ontology of the domain in which it is situated, representing the world as the world is 

perceived.   

Mental rotation – Most common type of transformation performed on a perceived 

object. 

Spatial ability – Innate capability or general characteristic about objects and the 

relations between objects in space.    
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Spatial intelligence - Adaptive spatial thinking that involves thinking about shapes, 

objects in space, and spatial processes using visualization techniques along with more 

analytic thinking processes 

Spatial perception – A two-step process involving the input and configuration of 

objects, and the interpretation of objects based on pre-existing knowledge. 

Spatial reasoning – A contextual, domain specific, cognitive process that occurs 

through: 1) the extraction of spatial structures using representations; 2) transformation 

of representations; 3) functional inferences drawn based on temporal sequences and 

cause-and-effect relationships.   

Spatial skills – Developed spatial abilities within a context through practice and 

application. 

Spatial thinking – Conceptualized as the compilation of spatial ability, spatial skill, 

domain knowledge, and real-world domain experience, applied to domain specific 

problems. 

Transformations – Manipulations performed on internal representations of spatial 

features of objects.   

Visual image – see internal representation. 

Visualization – An imagining process of how an object looks in a different view or 

moving in space.   
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Appendix B:  Ill-Structured Spatial Problem Solving Process 
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Appendix C:  Study Instruments 
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