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Abstract 

Thermogravimetry-Mass Spectrometry (TG-MS) and Variable-Temperature 

Diffuse Reflection Infrared Fourier Transform Spectroscopy (VT-DRIFTS) were used 

to investigate interactions of benzoic acid, salicylic acid, and acetylsalicylic acid with 

potassium, sodium, and calcium montmorillonite clays. The presence of adsorbates 

perturbed the environments of interlayer water molecules. Below 60 oC, heating 

adsorbate/clay samples resulted in changes to both the adsorbate and water molecule 

local environments.  Results described here show that TG-MS m/z 18 ion signal 

temperature profiles can be employed to selectively monitor water molecule desorption, 

which can provide information regarding thermal stabilities of interlayer water molecule 

environments.  VT-DRIFTS measurements below 60 oC also provided selective 

tracking of sample changes associated with water loss.  Absorbance band changes that 

occur in the O-H stretching vibration regions of infrared spectra reflected local 

environment changes to adsorbate and inorganic oxide hydroxyl groups and to 

interlayer water molecules. VT-DRIFTS C=O stretching and O-H bending vibration 

band changes are more dramatic and provide greater selectivity with respect to the 

nature of adsorbate molecule environment changes.  Dehydration by heating samples 

from ambient temperature to 60 oC resulted in complex changes to adsorbate acid group 

environments that depended on the structure of the adsorbate and the clay interlayer 

cation.   Above 60 °C, TG-MS results for samples containing acetylsalicylic acid 

indicated that it decomposed by reaction with water to form salicylic acid and acetic 

acid. Salicylic acid also decomposed, but at higher temperatures than acetylsalicylic 

acid, producing phenol and carbon dioxide. Results obtained at higher sample 
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temperatures provided information regarding adsorbate interactions with dehydrated 

environments as well as measures of relative adsorbate stabilities. Studies described 

here provide detailed characterizations of adsorbate environments within clay substrates 

and how these environments change as a result of dehydration. 

Additionally, the acid-base properties of [(FeL)2(µ-OH)]BPh4, [(FeL)2(µ-O)], 

and [FeLCl] (where L = the dianion of 2,2'-(2-Methyl-2-(pyridin-2-yl)-propane-1,3-

diyl)bis(azanediyl)-bis(methylene)diphenol) were characterized in acetonitrile. 

[(FeL)2(µ-OH)]BPh4 was reversibly deprotonated by strong bases such as 1,8-

Diazabicyclo[5.4.0]undec-7-ene (DBU). [(FeL)2(µ-O)] was titrated with benzoic acid 

under inert conditions, and the pKa of the hydroxo bridge in [(FeL)2(µ-OH)]+ was 

estimated to be 20.4, which is remarkably high compared to literature reports for other 

hydroxo-bridged diiron complexes.  



1 

Chapter 1 : Introduction 

1.1 Pharmaceuticals and Personal Care Products 

1.1.1 Use and Environmental Release of Pharmaceuticals and Personal Care Products 

Pharmaceuticals and Personal Care Products (PPCPs) encompass a wide range 

of chemical compounds. Pharmaceuticals include prescription and over-the-counter 

(OTC) drugs for humans and animals.[1] Personal care products include such external-

use items as shampoo, toothpaste, facial washes, moisturizers, and cosmetics, as well as 

agricultural pesticides and food preservatives, and many more.[2] The compounds 

found in these commodities are generally water soluble and very stable, which causes 

them to be persistent in the environment. Many of these are washed down the drain 

during use and find their way to municipal sewage or septic tanks.[2] Unused or out-of-

date prescription or OTC drugs are often flushed down toilets and so enter municipal 

sewage and septic tanks by that means, as do drug metabolites excreted by humans.[2] 

Septic tank overflow can lead to direct environmental contamination, while municipal 

sewage passes through waste water treatment plants (WWTPs). Unfortunately, WWTPs 

are not equipped to remove all of these types of contaminants, so they are able to enter 

the environment, either via reclaimed water or from sludge used for agricultural 

purposes.[1, 3-9] Additionally, PPCPs disposed in landfills may enter surface or 

groundwater via landfill effluent.[10-12] Concerns began to be raised as early as 1961 

regarding the potential impact of PPCPs on the environment, but at that time the 

instruments available were not capable of detecting the low concentrations of PPCPs in 

water sources.[13] As instrumental sensitivity and limit of detection have improved, 

research has increased in this area to elucidate the fates of PPCPs in the environment, 
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and within the past twenty years, this has become an area of intense research 

activity.[10, 14-16] The world population increased by approximately 0.8 billion people 

just between the years of 1999 and 2009.[17, 18] As the population increases, so does 

the worldwide production of PPCPs, so there is an urgent need to understand the effects 

they may have on the environment, as well as the extent of human exposure.[1, 10, 19]  

 

1.1.2 Investigations of PPCPs in the Environment 

Studies have been conducted to test levels of PPCPs in waste water effluent, as 

well as in surface and ground waters. Currently, the levels of PPCPs in drinking water 

do not seem to pose a problem because they are very dilute and are quickly broken 

down in water, although not much is known yet regarding the possible chronic effects 

of long-term exposure to low doses of contaminants under these conditions.[10, 15, 16, 

20] Additionally, PPCPs have been found to concentrate in soils, where they can be 

protected from degradation.[21] This could be a serious problem for several reasons. 

First, if PPCPs are washed back out of soils during heavy rainfall, they may be 

reintroduced to our water supplies during such times. Second, there is evidence that 

they may be taken up by plants, including crops, especially in cases where reclaimed 

water is used for irrigation.[22, 23] Humans may be exposed to PPCPs by eating 

contaminated crops, or by eating food produced from livestock exposed to PPCPs 

through crops. Additionally, if bacteria are exposed to antibiotics in soils, it may 

aggravate the already growing problem of antibiotic resistance.[5, 24] For these reasons, 

much research on PPCPs in the environment has focused on their interactions with 

soils.[25-27] The way that these interactions are typically studied is by batch 
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experiments or soil column experiments. In batch experiments, a small amount of soil is 

suspended in a solution containing the compound of interest, and the mixture is 

agitated. After a period of time, the concentration of the solution is tested to see how 

much of the compound was absorbed by the soil.[28] Soil column experiments involve 

pumping a solution of the compound of interest through a column packed with soil. The 

liquid that comes out the other end of the column is tested for the compounds, so the 

retention of various PPCPs by different soil types can be determined.[28, 29] These 

methods allow correlations to be established. For example, polar (hydrophilic) organic 

compounds have been found to be more strongly retained by soils containing higher 

percentages of clay,[30, 31] whereas nonpolar (hydrophobic) compounds are generally 

retained more strongly by soil samples which contain more natural organic matter 

(NOM).[29] One drawback to these approaches, however, is that they only allow 

correlations to be made, and do not shed any light on the actual mechanisms of 

contaminant-soil interactions at a molecular level.  

Other techniques which have been used to study contaminant-soil interactions 

are X-ray diffraction (XRD), nuclear magnetic resonance (NMR) spectroscopy, and 

thermal analysis methods, including thermogravimetry (TG), differential scanning 

calorimetry (DSC), and thermo-IR. Each of these techniques are able to provide some 

valuable information, but still have various limitations. XRD can be used to measure 

swelling of soil components upon adsorption of organic contaminants, but does not 

provide information as to the identity of the contaminant or its interactions with 

soils.[32-34] NMR can provide a great deal of information about soils, because it is 

capable of detecting both organic and inorganic components of soil.[35, 36] 
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Additionally, it is sensitive to the orientation of the adsorbate relative to the soil 

component. However, NMR signals are significantly disrupted by the presence of iron, 

which is a very common component of soil, and NMR requires the use of deuterated 

solvents, which are expensive.[37] Some NMR experiments also require long 

acquisition times.[35] TG and DSC can reveal temperatures at which reactions or 

desorption occur, but unless the evolved volatiles are captured and analyzed, it is not 

always clear exactly what processes are taking place.[38-40] Thermo-IR analysis of 

contaminant-soil interactions can provide useful insight into the environment and 

orientation of adsorbates. However, this technique utilizes thin films for analysis, which 

are extremely delicate and sensitive to heat, or pellets pressed with salts, which can 

interfere with the contaminant-soil interactions of interest.[41-45]  Clearly, additional 

methods of analysis are needed to further our understanding of anthropogenic 

contaminant interactions with soils in the environment. 

 

1.1.3 Overview of Research Goals 

The goal of this research is to take a systematic approach to studying this 

problem by investigating the interactions of PPCPs with soil components on a 

molecular level. If we can determine the mechanisms that govern the behavior of PPCPs 

in the environment, then we will be better equipped to predict the fate of given PPCPs 

based on their characteristics and on the characteristics of the soils. This type of 

understanding is essential for developing appropriate remediation actions.  In order to 

adopt a more systematic approach, we have chosen to start with polar organic 

compounds, specifically aromatic acids. Batch experiment studies of the sorption of 
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small aromatic acids to goethite conducted by Evanko, et al.,[46, 47] suggested that the 

nature and number of functional groups have a significant impact on organo-clay 

interactions. Research on benzoic acid, the simplest aromatic acid, has already been 

undertaken by our research group, and now our studies continue with salicylic acid and 

acetylsalicylic acid (aspirin) in order to provide a more detailed understanding of the 

effects that small structural differences have upon the interactions of these compounds 

with soils.  

We have chosen montmorillonite clay as the specific soil component for our 

studies because, as previously mentioned, polar compounds such as aromatic acids are 

more likely to be retained by the clay component of a given soil sample. The next 

sections outline the environmental significance of acetylsalicylic acid, salicylic acid, 

and montmorillonite, as well as the analysis techniques that we are using to study this 

problem.  
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1.2 Salicylic Acid and Acetylsalicylic Acid 

1.2.1 Structure and Properties of Salicylic Acid and Acetylsalicylic Acid 

The structures of salicylic acid and acetylsalicylic acid are shown in Figure 1.1, 

and the structure of benzoic acid is also shown for comparison.[48] 

 

 

Figure 1.1 – Left to right: benzoic acid, salicylic acid, acetylsalicylic acid (aspirin). 

 

Benzoic acid is the simplest aromatic acid, containing only two functional groups: an 

aromatic ring, or benzene group, and a carboxylic acid group, which consists of a 

carbon that is double-bonded to one oxygen and single-bonded to a hydroxyl (OH) 

group. Salicylic acid has the same structure with an additional hydroxyl group ortho to 

the carboxylic acid group. Acetylsalicylic acid has a similar structure, but instead of a 

hydroxyl group, it has an acetyl group in the ortho position. Figure 1.1 emphasizes the 

step-wise increase in complexity of structure from benzoic acid to salicylic acid to 

acetylsalicylic acid. This is important for our studies, because as complexity of 

molecular structure increases, complexity of spectral data increase significantly. 

Therefore it is important to compare data for similar structures in order to identify 

trends. 

 Salicylic acid and acetylsalicylic acid are both white, crystalline solids at room 

temperature. Salicylic acid has a molecular weight of 138.12 grams/mole (g/mol), a 
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melting point of 158.6 °C, a boiling point of 211 °C, and a density of 1.433 g/cm3. The 

molecular weight of acetylsalicylic acid is 180.16 g/mol, and its melting point is 136 

°C.[48] The pKa of salicylic acid is 2.98, and its solubility is 1.89 g/kg H2O. It is 

interesting to note that the pKa of salicylic acid is lower than that of most organic acids, 

which are typically around 4. This can be attributed to the hydroxyl group of salicylic 

acid stabilizing the carboxylate group by intramolecular hydrogen-bonding. The pKa of 

acetylsalicylic acid is 3.48, and its solubility is 2.5 g/kg H2O.[48]  

   

1.2.2 History and Use of Salicylic Acid and Acetylsalicylic Acid 

As long ago as 2400 years, the extract of willow bark was used to ease the pain 

of childbirth or a prolapsed uterus, as recommended by Hippocrates.[49] We now know 

that the compound responsible for the effectiveness of this treatment is salicylic acid. In 

fact, the Latin word for willow tree, “Salix,” provided the root for the name salicylic 

acid.[50] There is evidence of similar uses of plant extracts for pain relief throughout 

history, across several countries and continents, including Europe, Asia, and America. 

The first known synthesis of salicylic acid was performed by the German chemist, K. J. 

Lowig, by the oxidation of salicylaldehyde.[49] The modern procedure used to 

synthesize salicylic acid is more similar to that developed by Kolbe and Lautemann in 

1860, and further refined by Kolbe in 1874. This procedure involves the carboxylation 

of sodium phenoxide by carbonic acid. One of the common uses for salicylic acid at that 

time was as a replacement for phenol as an antiseptic during surgeries.[49] Phenol is 

quite foul-smelling, so replacing it with salicylic acid was a significant improvement. 
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 In 1875, a Swiss medical assistant named Buss began to study the application of 

salicylic acid and other salicylates as antipyretics.[49] This was the topic of his thesis 

for his State Medical Exam, which he followed up by performing experiments on 

animals and patients with various maladies, including typhoid fever. In 1876, physicians 

in Edinburgh and Berlin reported the use of salicylic acid to treat rheumatoid arthritis 

and rheumatic fever. While salicylic acid was generally found to be efficacious in these 

applications, Buss and others did notice some side effects. Salicylic acid is a gastric 

irritant, though this effect can be reduced by taking sodium bicarbonate together with 

salicylic acid. Currently, sodium bicarbonate is taken with acetylsalicylic acid, which is 

milder than salicylic acid, in order to reduce gastric distress.[49] Before it was replaced 

by acetylsalicylic acid, salicylic acid was the best-selling drug in the world.[50] 

Acetylsalicylic acid was first synthesized in 1853 by a French chemist, Charles 

Federich von Gerhardt.[49] He achieved this by reacting sodium salicylate with acetyl 

chloride. In 1869, a chemist named Kraut improved upon the procedure. By extracting 

the product with ether, he was able to obtain acetylsalicylic acid with greater purity.[49] 

Acetylsalicylic acid did not become widely used as a drug until 1899, when it was 

introduced by the Bayer company, and given its trademark name, “aspirin.” This name 

was chosen because “acetylsalicylic acid” was considered too long and too similar to 

the name “salicylic acid,” so its first letter, “a” was taken, and the rest of the name, 

“spirin,” was derived from the fact that salicylic acid was first isolated from plants in 

the Spirea family.[49] Aspirin became extremely popular, partly because its name was 

so well chosen, but also because it is a very effective antipyretic and anti-inflammatory 

agent. Because it is much milder on the stomach than salicylic acid, it has effectively 
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replaced salicylic acid for this market. Today, aspirin is one of the most popular over-

the-counter pain medications, rivaled only by acetaminophen. In Germany alone, for 

example, more than 500 tons of aspirin are sold per year,[51] and approximately 40,000 

tons of aspirin are produced worldwide.[52] According to the Aspirin Foundation, this 

is enough to make 100 billion tablets.[53] Roughly one-third of men over the age of 65 

take aspirin every day in order to reduce their risk of a heart attack.[54] 

 

1.2.3 Salicylic Acid and Acetylsalicylic Acid in the Environment 

In a preliminary risk assessment study published in 2008, acetylsalicylic acid 

was given an overall environmental risk ranking of 43 out of 313 based on multiple 

factors, including number of annual prescriptions dispensed, effluent concentration, 

surface water concentration, biological half-life, environmental half-life, and 

solubility.[5] In the presence of water, acetylsalicylic acid is easily deacetylated to form 

salicylic acid and acetic acid, as shown in Figure 1.2.  

 

 

Figure 1.2 – Decomposition of acetylsalicylic acid to form salicylic acid and acetic 

acid. 

 

Because of the ease of this transformation, acetylsalicylic acid’s impact on the 

environment has to be gauged primarily by the observation of salicylic acid. However, 
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salicylic acid is still widely used in its own right, and therefore is also released directly 

into the environment, even though it is no longer used as a pain reliever. Modern uses of 

salicylic acid include treatment for acne and various other skin conditions.[55] It is also 

used in some dandruff shampoos, as it expedites the loss of dead skin cells.[56] 

Salicylic acid also occurs naturally in the environment; as mentioned previously, 

it was first extracted from willow bark. It is found in many different plants, and is 

considered to be a plant hormone, as it plays important roles in the regulation of plant 

metabolism. Concentrations of salicylic acid in the range of 10-8 to 10-6 M (1.38 – 138 

μg/L) have been found to increase plant growth.[50] Salicylic acid has been detected in 

sewage influent at concentrations as high as 54 μg/L, and in sewage effluent at 

concentrations reaching 13 μg/L,[51] which is well within the range found to have an 

effect on plant growth.  

 

1.2.4 Retention of Salicylic Acid by Soils and Clays 

Celis, et al., utilized batch experiments to investigate the sorption and leaching 

of salicylic acid, phthalic acid (2,2-benzenedicarboxylic acid), and picloram (4-amino-

3,5,6-trichloropicolinic acid).[57] They concluded that aromatic acids can have highly 

varying sorption behaviors depending on the other functional groups present, and 

depending on the soil type. Of the acids investigated, salicylic acid was the least mobile 

and displayed the highest sorption. The trends observed also showed that salicylic acid 

adsorbs less strongly to soils containing more organic matter, suggesting that the 

mineral component is a more important contributor to sorption of polar molecules by 

soils. 
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Kubicki, et al., deposited acetic, salicylic, and benzoic acid, among others, and 

their sodium salts, onto montmorillonite and other types of clay, and used infrared 

spectroscopy to observe their interactions.[58] They recorded spectra after adsorption, 

and then washed the samples with water and recorded spectra again. Results varied for 

different clays, but for montmorillonite, most of the acids desorbed completely after 

rinsing, although they speculated that they might not be able to detect species remaining 

in the clay interlayer. Only salicylic acid still gave a weak spectrum after rinsing, which 

agrees with the findings reported by Celis, et al., that salicylic acid tends to be more 

strongly retained by clays than similar compounds. 

 

1.3 Montmorillonite 

1.3.1 Classification and Structure of Montmorillonite 

Montmorillonite is a member of the smectite subgroup of the Phyllosilicate 

class.[59] In previous years, the name “montmorillonite” was also used to describe the 

group, but more recently it has been replaced with the name “smectite,” and now the 

name “montmorillonite” is generally reserved only for the species.[60] 

Montmorillonites consist of tetrahedral and octahedral layers in a 2:1 ratio, having the 

formula (Al3.33Mg0.67)Si8O20(OH)4.[60] The substitution of magnesium ions (Mg2+) for 

aluminum ions (Al3+) in this formula causes the layers to have a residual negative 

charge. The space between the layers is referred to as the “interlayer.” The interlayer 

contains cations of variable charge which balance the residual negative charge of the 

layers. The number of charges needed for balance varies somewhat, but for smectites it 

is generally in the range of 0.6 – 1.3 milliequivalents per gram (meq/g) of clay.[60] This 
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value is called the “cation exchange capacity” (CEC). Samples of montmorillonite are 

usually distinguished based on the identity of the interlayer cation. For example, if a 

given sample of montmorillonite contains primarily sodium ions in the interlayer, it will 

be called “sodium montmorillonite.” The structure of montmorillonite is depicted in 

Figure 1.3. 

 

 

Figure 1.3 - Representation of the montmorillonite structure, with alternating 

tetrahedral (a) and octahedral (b) layers, surrounding the interlayer (c) which 

contains cations (large circles) interacting with water molecules.  
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1.3.2 Cation Exchange and its Effect on Interlayer Water 

The identity of the interlayer cation has a significant impact on the properties of 

a given sample of montmorillonite; in particular it affects the amount of water contained 

between the layers.[61] The water content also depends on the relative humidity, 

because clays act as desiccants and can absorb water from the air. The identity of the 

cation and the water content together determine the width of the interlayer space, also 

known as the basal spacing. The basal spacing of a completely dehydrated sample of 

montmorillonite is generally about one nm, or ten angstroms (Å), and it increases with 

increasing water content.[60] Water content and basal spacing of montmorillonites have 

been found to increase in discrete steps, corresponding to addition of single layers of 

water within the interlayer.[62] 

Ferrage, et al.,[63] studied the hydration properties of montmorillonites 

containing various interlayer cations using X-ray diffraction (XRD), and they reported 

that in a range from 0 – 80% relative humidity (RH), a given sample of montmorillonite 

could consist of a mixture of hydration states, from 0 – 2 water layers. According to 

their results, potassium montmorillonite consisted of a mixture of 0 and 1 water layer 

states between 0 and 80% relative humidity, gradually increasing from mostly 0 water 

layers at 0% RH to mostly 1 water layer at 80% RH. At 40% RH, potassium 

montmorillonite consisted of about 60% 0 water layer states and about 40% 1 water 

layer states, corresponding to a basal spacing between 11 and 12 Å. Sodium 

montmorillonite varied from 0 to 2 water layer states over the range of 0 – 80% RH, but 

over most of that range it consisted primarily of the 1 water layer state, with a basal 

spacing of 12.5 Å. Calcium montmorillonite also varied from 0 to 2 water layers over 
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that humidity range, but at 40% humidity and higher, it consisted of primarily the 2 

water layer state, with a basal spacing of around 15 Å. 

These effects can be attributed to several factors. First, calcium ions are doubly 

charged, whereas sodium and potassium ions are singly charged. Doubly charged ions 

coordinate water more tightly, and so montmorillonite samples containing doubly 

charged ions generally tend to be more hydrated.[64] The difference between sodium 

montmorillonite and potassium montmorillonite can be attributed to the larger size of 

the potassium ion. Because the charge of the potassium ion is spread out over a larger 

area, it attracts water even more weakly than the sodium ion does. Additionally, the 

potassium ion happens to be just the right size to fit neatly into the hexagonal holes of 

the montmorillonite layers, so only one side of the ion is available to interact with 

water.[65, 66] These factors cause the layers of potassium montmorillonite to be held 

together more tightly than other types of montmorillonite, stabilizing low hydration 

states.  

 

1.4 Interactions of Aromatic Acids with Montmorillonite 

1.4.1 Benzoic Acid 

Some research has already been conducted on the interactions of benzoic acid 

with montmorillonite. In a thermogravimetry study of benzoic acid/clay interactions, Lu 

et al. reported that benzoic acid desorption from sodium montmorillonite maximized at 

140 oC, which was lower than when the clay contained calcium interlayer cations (179 

oC).[38] They attributed the higher desorption temperature to stronger interactions 

between calcium ions and benzoic acid molecules.  
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The thermogravimetry-mass spectrometry (TG-MS) studies previously 

conducted by our research group for benzoic acid adsorbed on sodium and calcium 

montmorillonites yielded results that agreed with the results reported by Lu, et al., 

regarding the effect of the cation charge on the desorption temperatures of benzoic 

acid.[67] Namely, the higher charge of the calcium ion caused benzoic acid to desorb at 

a higher temperature. However, Lu and coworkers claimed that the desorption maxima 

of benzoic acid at 140 and 179 °C for sodium and calcium montmorillonites, 

respectively, represented the loss of all benzoic acid from the sample, but our TG-MS 

results suggested that this was not correct. We observed that some benzoic acid stayed 

on the clay to such high temperatures that it decomposed to form benzene and carbon 

dioxide, as evidenced by the appearance of MS signatures for both of those products. 

By using thermo-IR, Yariv et al. reported that the -C=O stretching vibration 

frequency of benzoic acid adsorbed on montmorillonite was dependent on the cation 

present in the clay interlayer space and the extent of clay dehydration.[41, 68] They 

found that singly charged cations, such as Na+, perturbed the -C=O stretching vibration 

the least relative to neat benzoic acid (dimer), whereas multiply charged cations, such as 

Ca2+, produced the largest wavenumber shifts. They proposed a model to explain their 

spectroscopic findings in which a water molecule bridges between the acid and cation.  

After prolonged heating in vacuum, the -C=O stretching vibration band was found to 

shift to lower wavenumbers and ultimately split into two peaks that were assigned to 

benzoic anhydride.  Yariv et al. reported that benzoic acid was still bound to clay even 

after heating in vacuum to temperatures above 150 oC, suggesting the presence of strong 

interactions.[68] Thermo-IR and thermogravimetry studies both reached the same 
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general conclusion, that benzoic acid more strongly interacts with interlayer cations 

carrying higher charge.  

Our variable temperature FTIR studies of benzoic acid on sodium and calcium 

montmorillonite confirmed the mechanism proposed by Yariv, et al., in which benzoic 

acid interacts with interlayer cations through water bridges.[69]  We also confirmed that 

the charge of the interlayer cation significantly affects interactions with benzoic acid. 

Additionally, we heated our samples to higher temperatures (260 °C) than Yariv and 

coworkers, which provided some interesting results that are in agreement with their 

findings, but provide additional details regarding molecular interactions.[70] We 

concluded that benzoic acid interactions with montmorillonite are primarily determined 

by the polar carboxylic acid functionality, and not the aromatic ring, because 

montmorillonite had very little effect on the vibrational frequencies associated with the 

aromatic ring. We also found that benzoic acid was still interacting with the interlayer 

cations through water bridges even at temperatures significantly above the boiling point 

of water, indicating that benzoic acid – water – cation interactions are very strong. 

 

1.4.2 Salicylic Acid and Acetylsalicylic Acid 

The literature regarding salicylic acid and acetylsalicylic acid interactions with 

montmorillonite is more sparse. Bonina, et al.,[71] observed the adsorption and release 

of salicylic acid by bentonite (which is 85% montmorillonite), and found that after 

soaking a 30 g sample of bentonite in a 0.0253 M solution of salicylic acid for two days, 

the clay contained 8.0% salicylic acid by weight. They also conducted thermal analysis 

of salicylic acid adsorbed on bentonite, and plotted the derivative thermogravimetric 
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curve. They observed three reaction peaks at 181 °C, 260 °C, and 408 °C, but they did 

not assign these peaks or explain what reactions were occuring. They also observed that 

clay dehydroxylation shifted from 691 °C for the neat clay to 648 °C for the salicylic 

acid loaded clay. 

Nakai, et al., used X-ray diffraction, DSC, and IR to study adsorption and 

decomposition of acetylsalicylic acid on sodium montmorillonite.[72] The focus of their 

study was on the use of these clays as fillers for drugs, and their main concern was the 

stabilities of the drugs on the clays at various humidities. Sample preparation simply 

involved grinding the crystalline drug together with the clay using a mortar and pestle, 

which was a logical approach for their applications, but probably does not allow 

significant intercalation into the clay interlayer, so it is not representative of typical 

environmental conditions. However, their results are still of some interest. For samples 

of 5% acetylsalicylic acid on sodium montmorillonite stored at 40°C and 0, 31.3, and 

79% relative humidity, they monitored the decomposition of acetylsalicylic acid over a 

period of nine days. Acetylsalicylic acid decomposed most slowly at 0% humidity, and 

most of the decomposition occurred in the first day, probably because the only water 

available was that adsorbed by the clay. X-ray diffraction was used to observe swelling 

of the clay at higher humidities, and it was thought that greater surface area would 

facilitate more rapid acetylsalicylic acid decomposition. In fact, less than 50% of the 

initial amount of acetylsalicylic acid was left after 9 days, vs. nearly 80% remaining 

after 9 days at 0% relative humidity.[72] 
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These studies provide some preliminary information, but it is clear that not 

much is known about the interactions of salicylic acid or acetylsalicylic acid with 

montmorillonite. 

 

1.5 Research Goals 

1.5.1 Thermogravimetry-Mass Spectrometry Studies 

Thermogravimetric (TG) analysis involves constant monitoring of sample mass 

during heating. Samples generally lose mass while being heated, but different rates of 

mass loss during different temperature intervals provide insight into the thermochemical 

processes that occur during the experiment. This technique has been used extensively to 

study clays in the past.[73] The thermal behavior of montmorillonite has been well 

characterized by this method, so it makes sense to conduct TG studies of clay samples 

with adsorbed organic acids and compare to thermal analysis data obtained for neat clay 

samples. In a 2011 review of thermal analysis approaches used to study organo-clay 

interactions, Yariv, et al., predicted that evolved gas analysis methods, such as 

thermogravimetry coupled with mass spectrometry, would be important moving 

forward in this field.[74] Combining the TG technique with mass spectrometry (MS) 

provides additional information, specifically regarding the evolution of volatiles from 

the clay surface. By profiling the intensities of species-specific mass-to-charge (m/z) 

values, we can determine exactly which species are desorbing at any given temperature. 

 The thermogravimetry-mass spectrometry (TG-MS) studies previously 

conducted by our research group for benzoic acid adsorbed on sodium and calcium 

montmorillonites illustrated the utility of TG-MS studies; the MS data gave much more 
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specific information than what has previously been reported for these systems. By 

continuing our TG-MS studies for salicylic acid and acetylsalicylic acid adsorbed on 

montmorillonite, we hope to elucidate trends that can be correlated with molecular 

structure.  

  

1.5.2 Diffuse Reflection Infrared Fourier Transform Spectroscopy Studies 

Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS) is a 

technique that involves shining infrared (IR) light on a powder sample. Because a 

powder sample consists of many tiny particles, it does not reflect all of the light at the 

angle of incidence, like a mirror would. Instead, each particle reflects, scatters, and 

absorbs some of the light, causing the phenomenon known as diffuse reflection. The 

scattered and reflected light is collected by an arrangement of mirrors and focused on a 

detector, allowing us to determine which wavelengths of light were absorbed by the 

sample. Molecular vibrations exhibit distinctive IR absorptions which are characteristic 

of their environment. This information allows us to determine the molecular interactions 

between salicylic acid and acetylsalicylic acid with montmorillonite. 

 When using DRIFTS for soil constituent analyses, spectral subtractions can be 

employed to isolate selected infrared spectral features from large bulk sample 

absorbances.  This is typically accomplished by subtracting mineral reference spectra 

from spectra obtained for the same material, but also containing substances of interest.  

Often, pretreatment processes (e.g. extractions) are employed to remove these 

substances from the reference samples.  As pointed out by Thomas and Kelley,[75] 

careful reference and adsorbate spectrum measurements are critical for obtaining 
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accurate difference spectra.  For this reason, they reportedly avoided studies with 

montmorillonites. Unlike many other minerals, montmorillonite structures consist of 

two inorganic sheets around a variable thickness water layer.  In order to measure an 

appropriate reference spectrum, it is necessary to precisely control the water content, 

which is difficult to accomplish.   Thus, depending on environmental conditions, 

samples may contain different amounts of water and infrared spectra would therefore 

contain varying water absorbance contributions, which would be difficult to remove by 

using spectral subtractions. 

 To avoid difference spectrum artifacts not associated with substances of interest, 

a sample perturbation analysis method can be employed.[76]  This approach can be 

explained with the aid of the diagram shown in Figure 1.4.   
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Figure 1.4 - Representation of the X local environment (A) before heating, (B) 

after dehydration, (C) after X desorption and (D) after X decomposition. 

 

At the top of the diagram (A), the species of interest is represented by X, which may 

also exist in charge carrying forms (Xn+ and Xn-), depending on its acid/base properties 

and local pH.  Each form may interact differently with its surroundings, contributing 

different absorbance features to measured infrared spectra.  The overlapping ellipses in 

Figure 1.4 represent X interactions with other organic substances (Org), water (H2O), 

cations (+), anions (-), and inorganic oxides (MaOb) that may be present in the sample.  

The solid-state infrared spectrum measured for the system denoted in (A) will contain 

information regarding the vibrational modes of all constituents.  After heating the 
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sample represented by (A) to remove water (i.e. the perturbation), the resulting 

spectrum will represent a slightly different solid-state configuration (B).  A difference 

spectrum computed by subtracting the infrared spectrum obtained for (A) from the 

spectrum measured for (B) will contain spectral features representing the changes that 

occurred as a result of heating.  Specifically, the difference spectrum will contain 

positive features representing vibrations formed after water removal (i.e. related to new 

interactions) and negative features corresponding to vibrational modes that were lost 

due to the configuration change.  The size of the spectral features in difference spectra 

will depend on the number of perturbed species and the absorptivities of the affected 

absorbance bands.  Negative spectral features provide insight into the interactions 

between X and water in the initial configuration (A).  By continuing to heat the sample 

while measuring infrared spectra, the difference spectrum representing (C) – (B) sample 

configuration changes would contain negative features corresponding to vibrational 

modes associated with the dehydrated X molecule and its environment that were lost 

when it desorbed from the sample and the (D) – (B) difference spectrum would provide 

similar vibrational mode information, but for instances when X decomposed rather than 

desorbing.  Additional information regarding decomposition mechanisms may be 

obtained by determining the amounts and identities of decomposition products (Y and 

Z). In summary, this approach effectively removes the problems associated with using a 

different sample to obtain the reference spectrum. When we perturb the system by the 

addition of heat, the reference sample is the same material, but at a different 

temperature; therefore the only differences observed are the sample changes caused by 

heating, and not artifacts introduced by using a different material to obtain the reference 
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spectrum. This application of DRIFTS analysis is called variable temperature diffuse 

reflection infrared Fourier transform spectroscopy (VT-DRIFTS).[76] 

 Figure 1.5 shows examples of difference spectra that might be obtained by using 

the perturbation method depicted in Figure 1.4. In Figure 1.5a, spectrum changes caused 

by sample heating result in a hypothetical band shift from 1685 cm-1 to 1715 cm-1. This 

shift occurs without a change in band absorptivity, so band intensities do not change 

with temperature.  The resulting difference spectrum has a characteristic “derivative” 

shape, with a negative band minimum located at a slightly lower wavenumber and a 

positive band minimum at a slightly higher wavenumber than the shifting band maxima.  

Figure 1.5b shows a hypothetical difference spectrum that might result from the same 

band shift, but with a reduction in band absorptivity with increased sample temperature. 

Difference spectrum negative and positive band locations appear at about the same 

wavenumbers as shown in Figure 1.5a, but the positive band intensity is greatly 

reduced. In addition to band shifting due to molecular environment changes, difference 

spectra may reflect the loss of sample components or the gain of new functionalities 

formed by chemical reactions. In general, difference spectrum band shapes reflect net 

spectral variations associated with any sample changes that result in absorbance gains 

and losses.  Because of this, care must be taken when assigning difference spectra band 

constituents. When loss of functional groups over the selected temperature range can be 

confirmed, negative band intensities can in part be attributed to these losses. Positive 

bands may result from band shifts, or may appear as a result of new functionalities 

produced by temperature-dependent solid-state reactions. 



24 

 

Figure 1.5 - Effect of band shift on difference spectrum shape for (a) no 

absorptivity change and (b) absorptivity decrease after shift.  Dotted lines denote 

band center locations at 1715 and 1685 cm-1. 

 

  Figure 1.4 (A) potentially represents a very complicated system of simultaneous 

interactions. Soils typically contain numerous organic molecules, cations, anions, and 

inorganic oxides in differing amounts. This is why our studies are focused on a 

simplified system, consisting only of montmorillonite and a single adsorbate, such as 

benzoic acid, salicylic acid, and acetylsalicylic acid.  
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1.5.3 Summary of Research Goals 

By using TG-MS and VT-DRIFTS analysis of salicylic acid and acetylsalicylic 

acid adsorbed on sodium and calcium montmorillonite and comparing these results with 

those previously obtained for benzoic acid, we hope to elucidate adsorbate-clay 

interaction trends that can be correlated with molecular structure. We will also expand 

the previous studies to include samples of benzoic acid, salicylic acid, and 

acetylsalicylic acid adsorbed on potassium montmorillonite, in order to understand the 

effects of differing clay interlayer water contents on these interactions, because 

potassium montmorillonite contains significantly less water than sodium or calcium 

montmorillonite. The information derived from these studies will further our 

understanding of the transport mechanisms and fates of PPCPs in the environment. 
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Chapter 2 : Experimental 

2.1 Materials and Reagents 

Benzoic acid, salicylic acid, acetylsalicylic acid (aspirin), and K10 

montmorillonite were purchased from Sigma-Aldrich. Silver powder (100 mesh, 

99.95%) was purchased from Alfa Aesar. Sodium chloride and potassium chloride were 

purchased from Mallinckrodt. Calcium chloride and glacial acetic acid were purchased 

from Fischer Scientific. Chloroform and carbon tetrachloride were purchased from JT 

Baker Chemical Company. Phenol was purchased from EM Science (associate of 

Merck). All reagents were used as received without additional purification. 

 

2.2 Sample Preparation 

2.2.1 Preparation of Montmorillonite Samples by Cation Exchange 

Procedures for preparing montmorillonite samples containing predominantly the 

cation of interest (either K+, Na+, or Ca2+) were based upon published protocols.[77-79] 

K10 montmorillonite (4.9 g) was suspended in 100 mL of a 1 M solution containing the 

appropriate metal chloride. The suspension was stirred overnight, then allowed to settle. 

In suspension, clay particles form quasi-crystals, with structures that depend upon the 

cation.[80] The metal chloride solution was decanted, and the clay was resuspended and 

stirred in distilled water for several hours. Finally, the clay was washed with 300 mL of 

distilled water in small portions using vacuum filtration, then allowed to air dry. During 

the drying process, quasi-crystals in the solution coalesce to form larger particles.[79]  
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2.2.2 Loading of Clay Samples with Adsorbates 

The cation-exchanged clays were loaded with benzoic acid, salicylic acid, or 

acetylsalicylic acid by incipient wetness. Benzoic acid (0.01 – 0.03 g) was dissolved in 

carbon tetrachloride (10-20 mL) and salicylic acid (0.01 – 0.03 g) and acetylsalicylic 

acid (0.02 – 0.04 g) were dissolved in chloroform (10 – 20 mL), and the clay was 

suspended and stirred in the solution for 30 minutes at room temperature. The solvent 

was then removed by roto-evaporation for 90 minutes at room temperature.  The CEC 

for K10 montmorillonite was reported to be 0.8 meq/g.[81]  A montmorillonite sample 

containing 10% (w/w) benzoic acid, 11% (w/w) salicylic acid, or 15% (w/w) 

acetylsalicylic acid would have a ratio of approximately 1:1 adsorbate molecules to 

sodium or potassium ions, or 2:1 adsorbate molecules to calcium ions.  

 

2.2.3 Dilution of Samples in Silver Powder for VT-DRIFTS Analysis 

Silver powder diluent, which is highly scattering and inert for this application, 

was employed to eliminate spectral artifacts that appear in infrared spectra when neat 

samples are analyzed by DRIFTS.  Samples were prepared for VT-DRIFTS analysis by 

diluting with silver powder in a 5-95 ratio by weight (e.g. 5% (w/w)).  Typically 20 mg 

of the clay sample was diluted with 380 mg of silver powder. Approximately 15 mg of 

the resulting samples were employed for VT-DRIFTS analysis.  DRIFTS measurements 

of neat clays exhibit artifacts caused by the Reststrahlen effect,[82, 83] resulting in loss 

of spectral features over the affected wavelength range.  Specifically, increased sample 

reflectance occurs near the intense 1050 cm-1 inorganic oxide absorption band due to 

high sample refractive index, which results in an apparent loss of absorbance (i.e. an 
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increase in reflectance).  As shown in Figure 2.1, this phenomenon results in a distorted 

reflectance spectrum when the neat clay is analyzed by DRIFTS.  Fortunately, as 

illustrated by the dashed line spectrum in Figure 2.1, sample dilution can reduce the 

sample refractive index and eliminate this artifact.  Thus, to avoid complications caused 

by Reststrahlen effects, samples used for VT-DRIFTS studies were diluted in silver 

powder. 

  

 

Figure 2.1 - Reflectance spectra measured for neat (solid line) and 5% (w/w) 

CaMMT diluted in silver powder (dashed line). 
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2.3 Instrumentation 

2.3.1 General 

A Mettler-Toledo balance, model AB104-S/FACT, was used for weighing dry 

samples to the nearest 0.1 mg. A Lab-Line Instruments, Inc. L-C oven set to ~100 °C 

was employed for drying glassware before use with organic solvents. A Corning 

Stirrer/Hot Plate was used to stir solutions of adsorbates (e.g., benzoic acid, etc.) prior 

to adsorption on clays, and also to stir clays in metal chloride solutions for cation 

exchange. A Buchler Instruments VV-micro roto-evaporator was employed to stir and 

evaporate mixtures of clays with adsorbate solutions. 

 

2.3.2 Thermogravimetry-Mass Spectrometry 

Thermogravimetry – mass spectrometry (TG-MS) measurements were made by 

using a Du Pont Instruments 951 Thermogravimetric Analyzer (TGA) controlled by an 

IBM Personal System/2 Model 55 SX with Thermal Analyst software. TG-MS 

measurements were facilitated by connecting the TGA effluent output to a Hewlett 

Packard 5973 MSD quadrupole mass spectrometer, which was operated by a PC with 

Agilent ChemStation software.  For TG-MS analyses, approximately ten mg clay 

samples were loaded into TG platinum balance pans and then heated in 50 mL/min 

helium with a 5 ºC/min temperature ramp from ambient temperature to at least 650 ºC. 

A flow splitter valve was used to divert some of the TG effluent into the mass 

spectrometer (~15 mL/min).  For TG measurements in air, approximately two mg clay 

samples were employed with 50 mL/min air and a 5 ºC/min temperature ramp from 
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ambient temperature to 800 ºC.  A diagram of the sample environment within the TGA 

is shown in Figure 2.2. 

 

 

Figure 2.2 – Diagram of the sample environment within the TGA. 

 

 

2.3.3 Variable Temperature Diffuse Reflection Infrared Fourier Transform 

Spectroscopy  

Infrared spectra were collected by using a Mattson Instruments Inc. Nova Cygni 

120 FTIR.  The apparatus is described in detail elsewhere[84] and a schematic is 

provided in Figure 2.3.  A Madison Instruments, Inc. 0200-0004 (Middleton, WI) water-

cooled globar (silicon carbide) infrared radiation source was used because it allows for 

better signal-to-noise ratio at high wavenumbers than do air-cooled sources. 
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Figure 2.3 - VT-DRIFTS schematic representation. 

 

The sample compartment of this instrument is large enough to hold the diffuse 

reflection optics, a Harrick Scientific Inc. diffuse reflection accessory, and a modified 

Harrick Scientific Inc. sample holder environmental chamber.[84]  A representation of 

the stainless steel sample holder is shown in Figure 2.4. Potassium bromide windows 

were placed over apertures connecting the front and rear FTIR compartments to limit 

heat transfer from the diffuse reflection accessory (DRA) to the interferometer and the 

detector, which are particularly sensitive to temperature changes.  The detector was a 
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liquid nitrogen-cooled InfraRed Associated, Inc. J-5385-2 Mercury-Cadmium-Telluride 

(MCT) detector with a spectral range of 666-4762 cm-1. 

 

Figure 2.4 – Sample holder apparatus for VT-DRIFTS experiments. 

 

A stainless steel cover is placed on top of the sample holder during experiments 

and forms a gas-tight seal with the O-ring in the sample holder base. Purging inside the 

cover with helium allows for an inert sample environment. The cover contains zinc 

selenide windows that allow IR radiation to pass through with minimal loss of intensity. 

An Omega CHAL-010 precision fine wire thermocouple extends up through a hole in 

the stainless steel base and touches the bottom of the sample holder, which is a thin 

platinum foil. The sample holder is supported by a stainless steel post, which is 

contained within two quartz tubes. Between the inner and outer quartz tube is a coil of 

nickel-chromium resistance wire which is used to heat the sample. The sample heater 

was controlled by a Eurotherm Controls, Inc. model 818p temperature controller. A 

software macro program was employed to measure sample temperatures that were later 

correlated with acquired spectra.  A linear sample heating ramp and 10 mL/min helium 
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purge were used for analysis.  The sample was heated at 5 oC/min beginning from 

ambient temperature.  Infrared spectra were measured at 1 min (5 oC) intervals.   

 

2.4 Data Manipulation 

2.4.1 Thermogravimetry-Mass Spectrometry Data 

The TGA simultaneously measured temperature (°C) and sample mass (mg), 

and correlated those measurements with elapsed time (min). Percent mass was 

calculated by dividing each measured sample mass by the initial mass and multiplying 

the result by 100% (eq 2.1).  

% mass = (m/mi) × 100%    (2.1) 

The MS only correlated measured ion intensities with time (min), so the 

relationship between time and the temperature that was recorded by the TGA was 

needed to relate ion intensity values to sample temperatures. During experiments, the 

TGA and the MS were started as close to the same time as possible (within 

approximately 1 second) so that the data measured by the two systems could be 

correlated by recorded times. However, the two instruments did not record 

measurements at the same time intervals, so in order to achieve this, a temperature vs. 

time plot was first generated in Microsoft Excel from the data produced by the TGA. 

The heating curve was not quite linear (a linear equation produced temperature values 

with ± 20 °C error), so the data were instead fit to a fifth-order polynomial. In a 

different spreadsheet in Excel, the fifth-order polynomial was used to generate 

temperature data from the times recorded by the MS. The measured ion intensities were 

then plotted against the calculated temperatures to obtain the TG-MS data contained in 

the chapters that follow. The low temperatures calculated by this method still had a ± 5 
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°C error, so they were individually corrected to match the temperatures recorded by the 

TGA. This only needed to be done for data recorded during the first 7.5 minutes of the 

experiment, because temperatures calculated for time points after that were within 1 °C 

of those measured by the TGA. For this reason, individual corrections were only 

applied to m/z profiles which had a significant intensity during the first 7.5 minutes of 

the experiment (primarily m/z 18). The heating curves varied enough from one 

experiment to the next that a new fifth-order polynomial had to be generated for every 

experiment in order to ensure an accurate relationship between measured ion intensity 

values and calculated temperatures. 

 

2.4.2 VT-DRIFTS Data 

Infrared spectra were initially collected as interferograms, and were converted to 

single beam spectra by a Fourier transformation. Reflectance spectra were computed by 

dividing successively acquired infrared single beam spectra by diluent (i.e. silver 

powder) reference single beam spectra (eq 2.2) measured over the same temperature 

range.   

R∞ = R∞ (sample)/R∞ (reference)   (2.2) 

This practice reduces the loss of spectrum intensity due to detector saturation. 

Reflectance spectra were converted to “apparent absorbance” spectra (eq 2.3) in order to 

make use of baseline offset and slope correction facilities provided by the instrument 

software package.  

Apparent absorbance = -log(R∞)   (2.3) 
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After baseline correction, “apparent absorbance” spectra were converted back to 

reflectance spectra, and then converted to Kubelka-Munk format (eq 2.4) for display 

and subtractions, because the Kubeka-Munk function is linearly proportional to 

concentration.[84-86] 

f(R∞) = (1-R∞)2/ 2R∞    (2.4) 
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Chapter 3 : Thermogravimetry – Mass Spectrometry Investigations of 

Montmorillonite Interlayer Water Molecule Environment 

Perturbations caused by Aromatic Acid Adsorbates 

 

3.1 Introduction 

Results described here were obtained by using TG-MS to characterize 

interactions between potassium, sodium, and calcium montmorillonite interlayer water 

molecules and benzoic acid, salicylic acid, and acetylsalicylic acid adsorbates.  By 

comparing temperature-dependent mass loss and water desorption temperature profiles 

obtained for samples containing these adsorbates, differences in adsorbate-water 

interactions can be correlated with their functional group differences. Samples were 

heated to at least 650 °C, but results obtained below 200 °C, where most water loss 

occurs, are described here. Although mass spectral information for a wide range of m/z 

values were obtained during analyses, only m/z 18 (water) profiles are described here. 

TG-MS characterizations of processes for water loss from clay samples containing 

adsorbates provide insights into montmorillonite interlayer water perturbations by 

aromatic acid adsorbates. 

 

3.2 Results 

Mass loss curves for neat potassium, sodium, and calcium montmorillonites 

(KMMT, NaMMT, and CaMMT) are shown in Figure 3.1.   

 



37 

 

Figure 3.1 - Mass loss curves for neat KMMT (dashed line), NaMMT (dotted line), 

and CaMMT (solid line) 

 

 

Mass spectrometric (MS) analysis of volatiles released from neat clay samples 

while heating them confirmed that water loss was primarily responsible for sample mass 

changes.  Mass loss curves exhibit steep drops below 100 °C, caused by the loss of 

loosely bound water, including water not directly associated with interlayer cations.[61, 

87-89]  Above 100 oC, slopes of the curves decrease, and samples lose mass more 

gradually until about 400 °C. This temperature range most likely represents loss of 

interlayer water molecules more closely associated with cations.[88-91].  Near 400 °C, 

mass loss rates increase, likely due to dehydroxylation, which involves condensation 

reactions between neighboring hydroxyl groups on inorganic clay surfaces, resulting in 
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the release of water.[73]  Figure 3.1 shows that CaMMT had the highest interlayer 

water content.  KMMT contained significantly less water than the other two samples. 

The dependence of water content on the identity of the interlayer cation shown in Figure 

3.1 is in agreement with previous reports.[61, 63, 64, 66, 92]  For example, Ferrage, et 

al. found that at 40% relative humidity (RH), KMMT, NaMMT, and CaMMT contained 

primarily zero, one, and two water layers, respectively.[63]  The three mass loss curve 

shapes in Figure 3.1 are very similar after the initial loss of water (e.g. above 100 oC), 

confirming that the interlayer water content was the main structural difference between 

these clay samples.  

By comparing mass loss results obtained for samples with adsorbates to 

corresponding neat clay results, information regarding interlayer water contents for the 

adsorbate containing clays can be derived.  Effects of adsorbate on clay interlayer water 

content were found to be most dramatic for samples derived from KMMT because this 

clay contained the least amount of water (Figure 3.1).  For example, Figure 3.2 shows 

mass loss temperature profiles obtained for KMMT samples containing (a) benzoic 

acid, (b) salicylic acid, and (c) acetylsalicylic acid adsorbates.   
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Figure 3.2 - Mass loss versus temperature curves for potassium montmorillonite 

samples containing (a) benzoic acid, (b) salicylic acid, and (c) acetylsalicylic acid 

adsorbates.  Sample loading percentages are indicated for each curve. 

 

Mass loss profiles for samples containing these adsorbates with NaMMT and 

CaMMT were similar to those shown in Figure 3.2, and are shown in Appendix B.  
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Interestingly, sample mass losses between ambient temperature and 100 oC were about 

the same for all samples.  Because water is the primary constituent lost below 100 °C, 

this suggests that interlayer water contents were about the same for all samples.  By 

assuming that clay water content remained unchanged after introduction of adsorbates, 

mass losses attributed to clay water evolution from samples containing adsorbates were 

estimated at each measurement temperature by scaling neat clay mass loss 

measurements by the clay mass fraction in samples with adsorbates.  Mass loss curves 

for samples containing adsorbates were then “corrected” by removing estimated water 

loss masses from the adsorbate/clay sample mass loss curves.  If the presence of 

adsorbate truly had no effect on clay moisture content or water desorption temperatures, 

corrected mass loss temperature profiles should reflect adsorbate losses only.   

Figure 3.3 shows the results of subtracting scaled neat KMMT mass loss values 

from mass losses measured for each adsorbate/KMMT sample.  Dashed lines in Figure 

3.3 denote total adsorbate mass losses expected based on initial sample loadings.  

Corrected mass losses extended below maximum expected values (dashed lines) for the 

lowest loadings of each adsorbate.  For salicylic acid (Figure 3.3b), mass losses for 

samples containing 3.4 and 5.6% adsorbate loadings also exceeded expected maxima.  

For samples containing acetylsalicylic acid (Figure 3.3c), the 4.4% sample exceeded the 

expected maximum and the mass loss for the 7.4% loading sample reached the 

predicted maximum by 800 oC.  In contrast, mass losses were less than expected for 

samples containing the highest adsorbate loadings.   
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Figure 3.3 - Plots of mass loss differences calculated by subtracting corrected neat 

potassium montmorillonite mass losses from mass losses measured for (a) benzoic 

acid, (b) salicylic acid, and (c) acetylsalicylic acid containing samples plotted as a 

function of adsorbate loadings obtained at the selected temperatures.   
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Between ambient temperature and 100 oC, corrected mass losses did not change 

significantly and plotted values were near 100%, indicating that subtracting the scaled 

neat KMMT mass loss profile effectively removed clay water desorption contributions 

from adsorbate/clay sample mass loss profiles over this temperature range.  Above 100 

oC, corrected mass loss profile intensities decreased due to adsorbate loss.  Corrected 

mass loss profiles for KMMT samples containing benzoic acid (Figure 3.3a) exhibited 

two successive steps.  The initial mass loss rate maximized at about 150 oC and became 

relatively constant above 200 oC.  A second mass loss rate increase began near 400 oC 

and continued to about 475 oC.  The initial mass loss rates for samples containing 

salicylic acid (Figure 3.3b) maximized near 175 oC and then decreased above 200 oC.  

Mass loss rates for these samples increased again above 400oC.  Corrected mass loss 

profile shapes for samples containing acetylsalicylic acid (Figure 3.3c) were similar to 

those for salicylic acid. 

Corrected mass loss profiles for samples containing high adsorbate loadings did 

not reflect expected sample mass losses, suggesting that these samples may have 

contained less than the specified amounts of adsorbates.  Alternatively, the lower than 

expected mass losses may have resulted from incomplete removal of adsorbate, leaving 

high temperature residue in the form of char.  In fact, some samples became darker after 

heating, indicating the presence of char.  In order to determine if char formation was the 

primary source of the observed discrepancy, separate TG analyses of KMMT samples 

containing the highest loadings of each adsorbate were performed in air, using small 

sample sizes to maximize air access to clay surfaces, and the results are shown in 

Appendix C. The 10% benzoic acid/KMMT sample had a corrected mass loss of 9.8% 
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and the 11% salicylic acid/KMMT sample had a corrected mass loss of 11%, so it 

seems that char formation was primarily responsible for the discrepancies observed for 

those samples when helium was used as the carrier gas. The 15% acetylsalicylic 

acid/KMMT sample had a corrected mass loss of 13.8% in air, which is more than the 

corrected mass loss of 13.2% observed in helium, but is still somewhat less than the 

predicted 15%. However, several months had elapsed between sample preparation and 

analysis in air, so it is likely that some of the acetylsalicylic acid decomposed to form 

salicylic acid and acetic acid during that time, and some of the acetic acid may have 

evaporated. 

 Because mass spectrometer ion signal detection sensitivity greatly exceeds that 

for sample mass measurements, temperature dependent water evolution rate profiles for 

neat clays were represented by monitoring TG-MS m/z 18 (H2O
+) ion signal intensity 

rather than by mass loss curve derivatives.  The neat clay m/z 18 ion signal profiles 

shown in Figure 3.4 were baseline corrected to account for ambient water concentration 

variations and maximum intensities were normalized.  Due to this scaling procedure, 

m/z 18 ion signal versus temperature plot areas are not proportional to the total amounts 

of water evolved from samples.  Instead, this curve scaling method emphasizes 

differences in water evolution peak shapes. The peak shapes for neat NaMMT and 

CaMMT are consistent with those reported previously.[67]  The m/z 18 ion signal 

temperature profile for KMMT was qualitatively similar to that for NaMMT, which is 

not surprising because potassium and sodium are both monovalent cations and would be 

expected to have similar properties.  In contrast, the water evolution profile for 

CaMMT, which contains divalent Ca2+ interlayer ions, is much broader and extends to 
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higher temperatures.  This indicates that greater energy is required for removal of some 

water molecules from clay interlayer spaces when divalent Ca2+ is present compared to 

monovalent K+ or Na+.  Because of plot normalizations, curves for NaMMT and 

KMMT appear to have similar magnitudes.  However, mass loss results (Figure 3.1) 

clearly show that neat NaMMT lost more mass than neat KMMT over the displayed 

temperature range. 

 

Figure 3.4 - Normalized m/z 18 profiles for neat KMMT (dashed line), NaMMT 

(dotted line), and CaMMT (solid line) samples. 

 

 Figure 3.5 shows m/z 18 ion signal temperature profiles for (a) KMMT, (b) 

NaMMT, and (c) CaMMT samples containing various loadings of benzoic acid.  Plot 

baselines were offset for clarity.  Figure 3.5a shows that the presence of benzoic acid 

perturbed the water evolution profile for samples containing KMMT in a systematic 

manner.  With a 1% (w/w) benzoic acid loading, the water loss profile was very similar 

0 20 40 60 80 100 120 140 160 180 200

Temperature (oC)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 I
o
n
 I
n
te

n
s
it
y



45 

to that for the neat KMMT sample (0%), except that the peak maximum was shifted to 

slightly lower temperature and ion intensity was slightly greater above 150 oC.  The 

peak maximum shift to lower temperature suggests that some water molecules were 

more easily removed by heating when benzoic acid was present.  Conversely, the 

greater m/z 18 ion intensity above 150 oC indicates that some water molecules were 

stabilized by the presence of adsorbate.   

 

Figure 3.5 - M/z 18 ion signal temperature profiles for (a) KMMT, (b) NaMMT, 

and (c) CaMMT samples containing various loadings of benzoic acid. 

 

 

With higher benzoic acid loadings, the peak maximum shifted to even lower 

temperatures (the dotted line denotes 55 oC) and additional overlapping peaks appear 

above 100 oC that were not observed when heating the neat KMMT sample.  The lower 

profile maximum temperatures for samples containing benzoic acid compared to neat 

KMMT indicates destabilization of interlayer water molecules due to the presence of 
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adsorbate.  The relatively constant peak maxima temperatures for samples containing 3, 

5, and 10% (w/w) benzoic acid suggest that this destabilizing effect is independent of 

adsorbate loading above 1% (w/w).  Successive increases in m/z 18 ion intensity above 

100 oC with increasing benzoic acid loading suggests that increasingly higher 

proportions of interlayer water molecules are stabilized by adsorbate.  Maxima for 

overlapping water loss contributions detected above 100 oC shift to lower temperature 

with increasing benzoic acid loadings, which is consistent with a destabilizing water 

environment effect associated with higher adsorbate loadings.  In Figure 3.5b and 

Figure 3.5c, it is apparent that benzoic acid also perturbs the water molecules in 

NaMMT and CaMMT interlayer spaces.  Peak shapes for NaMMT m/z 18 ion signal 

temperature profiles (Figure 3.5b) exhibit trends similar to those for the samples 

containing KMMT.  However, systematic peak shape changes were less obvious when 

benzoic acid was adsorbed on NaMMT compared to KMMT, possibly because NaMMT 

contains more interlayer water, so that the overlapping high temperature contributions 

represent smaller fractions of total peak areas. Peak maxima shifts for NaMMT are less 

dramatic than for KMMT and do not reach 55 oC (dotted line).   

Water evolution temperature profiles for CaMMT samples containing varying 

benzoic acid loadings also exhibit trends.  The curve for the sample containing a 1% 

(w/w) benzoic acid loading was similar to the neat CaMMT m/z 18 ion signal 

temperature profile.  With higher benzoic acid loadings, the broad peak, characteristic 

of neat CaMMT and the CaMMT sample containing 1% (w/w) benzoic acid, was 

replaced by a narrower peak shape similar to those in Figure 3.5a and Figure 3.5b.  Peak 

maxima for m/z 18 ion intensity versus temperature plots for the benzoic acid/CaMMT 
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samples vary somewhat, but do not shift as much to lower temperatures as those 

obtained for samples containing KMMT and NaMMT. 

 Figure 3.6 shows m/z 18 ion signal temperature profiles for (a) KMMT, (b) 

NaMMT, and (c) CaMMT samples containing various loadings of salicylic acid.  Molar 

loadings of salicylic acid on these clays were the same as those used to prepare samples 

containing benzoic acid, but salicylic acid has a higher molecular weight, so weight 

percentages were slightly higher.   

 

Figure 3.6 - M/z 18 ion signal temperature profiles for (a) KMMT, (b) NaMMT, 

and (c) CaMMT samples containing various loadings of salicylic acid. 

 

Salicylic acid had an even more dramatic effect on clay interlayer water than 

benzoic acid.  Ion signal versus temperature profile variations were most apparent for 

the sample containing KMMT (Figure 3.6a).  Like samples comprised of KMMT and 

benzoic acid, low temperature peak maxima shifted to lower temperatures (dotted line 
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represents 55 oC) with higher salicylic acid loadings, and maxima for overlapping 

higher temperature contributions to these profiles also shifted to lower temperatures 

with increasing loadings.  Unlike the sample containing 10% (w/w) benzoic acid and 

KMMT, the higher temperature m/z 18 ion signal temperature profile component for the 

KMMT sample containing the highest salicylic acid loading (e.g. 11%) exceeded the 

low temperature component intensity.  Like the KMMT/benzoic acid results, peak 

maxima shifts and overlapping higher temperature contributions to m/z 18 ion signal 

temperature profiles were less dramatic for samples containing NaMMT (Figure 3.6b).  

In contrast to results obtained for samples containing benzoic acid, the CaMMT sample 

containing the lowest loading of salicylic acid (1.1%) yielded an m/z 18 ion signal 

temperature profile that was significantly narrower than the neat CaMMT temperature 

profile (Figure 3.6c).  Like the results obtained for CaMMT samples containing benzoic 

acid, low temperature peak maxima did not shift as much as those obtained for the 

KMMT and NaMMT samples and higher temperature profile contributions were less 

obvious than in the profiles obtained for those samples. 

 Figure 3.7 shows m/z 18 ion signal temperature profiles for (a) KMMT, (b) 

NaMMT, and (c) CaMMT samples containing various loadings of acetylsalicylic acid.  

Acetylsalicylic acid molar loadings were the same as the benzoic acid and salicylic acid 

molar loadings.  The profile for the sample containing 15% (w/w) acetylsalicylic acid 

on KMMT (Figure 3.7a) has a shape that is similar to that for the 11% (w/w) salicylic 

acid/KMMT sample (Figure 3.6a), in which the overlapping higher temperature peak is 

more intense than the low temperature peak.  Results obtained for the acetylsalicylic 

acid/NaMMT samples (Figure 3.7b) and acetylsalicylic acid/CaMMT samples (Figure 
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3.7c) exhibit trends similar to those observed for the corresponding samples containing 

salicylic acid (Figure 3.6b and Figure 3.6c), except that the profiles for the 15% 

acetylsalicylic acid loading include a depression above 100 °C for the NaMMT and 

CaMMT samples.  The temperature corresponding to this ion signal decrease 

reasonably matches the maximum evolution temperature for acetic acid evolution 

detected by MS for these samples.  Water evolution rates would be expected to decrease 

when acetic acid is produced because water that reacts with acetylsalicylic acid to form 

salicylic acid and acetic acid is not represented by m/z 18 ion signal temperature 

profiles.   

 

Figure 3.7 - M/z 18 ion signal temperature profiles for (a) K MMT, (b) Na MMT, 

and (c) Ca MMT samples containing various loadings of acetylsalicylic acid. 

 

3.3 Discussion 

The corrected mass loss curves for samples containing KMMT shown in Figure 

3.3 exhibit interesting trends that were less obvious but still present in profiles obtained 
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for the corresponding NaMMT and CaMMT samples.  Below 100 oC, corrected mass 

values were near 100%, suggesting that the subtraction method used to correct for water 

loss by scaling and removing the mass loss curve for the neat clay (Figure 3.1) was 

effective between ambient temperature and 100 oC.  By 800 oC, corrected mass losses 

for samples containing the lowest adsorbate loadings match or exceed expected values 

based on mixture compositions employed during sample preparation (dotted lines).  

Greater than expected mass losses for samples containing low adsorbate loadings may 

be due to these clays having higher water content than the neat clays.  Additional water 

may be incorporated into samples because of interlayer expansion due to incorporation 

of adsorbate.[41, 93, 94].  Void spaces produced by this expansion may be filled by 

additional water molecules.  Because corrected mass values remained near 100% at the 

start of sample heating, if the water content in these samples exceeded that for the 

corresponding neat clay, the excess water molecules must have been retained by 

samples below 100 oC.  In contrast to samples containing low absorbate loadings, mass 

loss was less than expected for samples containing the highest adsorbate loadings.  

However, during TG analyses in air, KMMT samples containing the highest loadings of 

benzoic acid and salicylic did reach the predicted mass losses (within 0.2%), suggesting 

that char formation was the most likely cause of the discrepancy observed during 

analyses in helium. The acetylsalicylic acid/KMMT sample did not reach the predicted 

mass loss, but that was probably due to decomposition of the acetylsalicylic acid and 

subsequent evaporation of acetic acid. 

Figure 3.3 shows that adsorbate mass loss begins near 100 oC for all samples.  

Above 500 oC, benzoic acid corrected sample masses remain relatively constant 
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whereas mass continues to decrease for samples containing salicylic acid and 

acetylsalicylic acid.  If adsorbate residues are responsible for mass losses above 500 oC, 

the profiles in Figure 3.3 suggest that residues derived from salicylic acid and 

acetylsalicylic acid are less stable than those derived from benzoic acid.  Mass losses 

above 500 oC for samples containing salicylic acid and acetylsalicylic acid are greatest 

for samples containing the highest adsorbate loadings.  This would be expected if high 

temperature residues were formed by reactions between adsorbate molecules, because 

these reactions would be better facilitated by increased adsorbate concentrations. 

Mass spectrometric water evolution profiles (Figure 3.5, Figure 3.6, and Figure 

3.7) show that the presence of adsorbates at 1% or greater loadings disrupt water 

molecule environments.  For all adsorbates, increasing the loading resulted in greater 

water evolution profile changes compared to the corresponding neat clay.  The presence 

of benzoic acid caused the smallest changes to evolution profiles.  Profiles for benzoic 

acid adsorbed on KMMT and NaMMT were similar, and indicated that some water 

molecules required less thermal energy for desorption, whereas other water molecules 

required more energy for desorption, relative to water desorbing from neat clays.  With 

a 1% benzoic acid loading, the CaMMT water desorption profile resembled that for neat 

CaMMT.  For higher benzoic acid loadings, profiles more closely resembled those 

obtained for KMMT and NaMMT.  Apparently, when small amounts (<3%) of benzoic 

acid were added to CaMMT, water molecule interactions with Ca2+ were only slightly 

perturbed.  Larger benzoic acid loadings led to greater destabilization of water molecule 

interactions with Ca2+, resulting in evolution profiles that more closely resembled those 

for samples containing KMMT and NaMMT.   
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Compared to results obtained for benzoic acid, salicylic acid loadings on 

KMMT, NaMMT, and CaMMT caused similar shifting of water evolution maxima, 

suggesting that the low temperature water environment destabilizing effects were 

similar to those observed for benzoic acid.  Above 100 oC, salicylic acid/clay sample 

profiles contained higher m/z 18 ion relative intensities than corresponding benzoic 

acid/clay samples, suggesting that more water molecules were stabilized by salicylic 

acid than by benzoic acid.  Like benzoic acid results, the m/z 18 ion signal intensity 

local maxima above 100 oC shifted to lower temperatures with higher salicylic acid 

loadings, indicating that the water stabilizing effects of salicylic acid decreased with 

increasing adsorbate loadings. 

Water evolution profiles for acetylsalicylic acid (Figure 3.7) were more similar 

to those obtained for salicylic acid (Figure 3.6) than to benzoic acid (Figure 3.5).  Mass 

spectrometric analyses of volatiles produced while heating acetylsalicylic acid/clay 

samples revealed that acetic acid formation began at about 60 oC and maximized 

slightly above 100 oC.  Thus, above 60 oC, acetylsalicylic acid/clay samples were 

transformed into mixtures of acetylsalicylic acid and salicylic acid, with the fraction of 

salicylic acid steadily increasing with increasing temperature.  Between ambient 

temperature and 60 oC, acetylsalicylic acid/clay water desorption temperature profile 

shapes were similar to those for salicylic acid, indicating that water environment 

destabilization effects were similar for these adsorbates.  This similarity is likely due to 

the presence of additional functional groups (hydroxyl group for salicylic acid and ester 

group for acetylsalicylic acid) that can participate in hydrogen bonding interactions.  

Above 100 oC, m/z 18 ion signal intensities for acetylsalicylic acid/clay samples 
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decreased because some water molecules reacted with acetylsalicylic acid to form acetic 

acid, which eliminated them from m/z 18 ion signal temperature evolution profiles.   

 Although mass loss versus temperature profile shapes for neat KMMT, 

NaMMT, and CaMMT samples were similar, TG-MS m/z 18 ion signal temperature 

profiles were significantly different between samples containing monovalent cations 

(e.g. KMMT and NaMMT) and CaMMT, which contains divalent Ca2+ (Figure 3.4).  

Greater thermal energy (i.e. higher temperature) was required for water desorption from 

CaMMT compared to KMMT and NaMMT.  Because the clay structures differ only in 

the identities of interlayer cations and water content, higher water desorption 

temperatures may be attributed to stronger interactions between water molecules and 

Ca2+ compared to K+ and Na+.  For samples containing KMMT and NaMMT, low 

adsorbate loadings caused water desorption rate maxima to shift to slightly lower 

temperatures, but the shapes of m/z 18 ion signal versus temperature profiles were not 

significantly altered.  In contrast, the lowest CaMMT adsorbate loadings were sufficient 

to alter the shapes of water desorption temperature profiles for salicylic acid and 

acetylsalicylic acid.  Previous work confirmed that benzoic acid interacts with Na+ and 

Ca2+ through bridging water molecules.  Thus, adsorbate effects on interlayer water 

environments likely arise from these interactions.  The fact that adsorbate mediated 

water environment disruptions were greatest for clays containing Ca2+ indicates that the 

interlayer cation charge was important for determining water molecule environments 

and suggests that adsorbate molecules preferentially perturbed water molecules nearest 

the cations, most likely by forming bridging water molecule interactions.  Compared to 

local environments in the absence of adsorbate, bridging water molecules would be 
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more shielded from bulk water molecules, which would hinder hydrogen bonding with 

other water molecules.  Thus, although formation of water molecule bridges between 

adsorbates and interlayer cations involves hydrogen bonding, the primary cause of 

interlayer water molecule environment disruption may derive from steric effects of 

adsorbate molecules blocking water-water hydrogen bonding interactions.  This would 

result in thermal destabilization of water molecules that are in the vicinity of cations but 

are not directly interacting with them.  The other possibility is that the ester and 

hydroxyl groups on acetylsalicylic acid and salicylic acid, respectively, form hydrogen 

bonds with interlayer water molecules, which would also block water-water hydrogen 

bonding interactions.  Above 100 oC, water molecule loss included water molecules that 

were involved in interactions with interlayer cations.[88-91].  With increasing adsorbate 

loadings, the increased m/z 18 ion signal intensity shifted to lower temperatures (closer 

to 100 oC).  This trend may be explained by increased intermolecular interactions 

between adsorbate molecules, which would be expected to occur at high adsorbate 

loadings and would lessen the impact of adsorbate disruption to water-water hydrogen 

bonding.  Increased adsorbate-adsorbate interactions at higher loadings would also 

facilitate high temperature condensation reactions that would result in char formation.  

Ferrage, et al.[89] proposed a calcium montmorillonite dehydration mechanism 

that included initial loss of interlayer water molecules that are not closely associated 

with cations followed by loss of water molecules from cation hydration spheres.  

Results described here are consistent with this model.  Aromatic acid adsorbates are 

retained within clay interlayer spaces below 100 oC and interfere with the water loss 

processes described by Ferrage et al. by altering intermolecular hydrogen bonding 



55 

interactions.  Local water molecule environment changes result in some molecules 

becoming less thermally stable, whereas others become more stable, compared to their 

stabilities in the absence of adsorbates. 

3.4 Summary 

Potassium, sodium, and calcium montmorillonites were used as adsorbents to 

characterize the effects of cation charge and water content on adsorbate/clay properties.  

Benzoic acid, salicylic acid, and acetylsalicylic acid represent three PPCPs that all 

contain aromatic acid functionalities.  Compared to benzoic acid, salicylic acid contains 

an additional hydroxyl group attached to the aromatic ring and acetylsalicylic acid has 

the same structure except that the hydroxyl group is replaced by an acetyl functionality.  

TG-MS results obtained for samples containing these adsorbates and montmorillonites 

with different interlayer cations and varying water contents were similar, but with subtle 

differences.  Observed similarities were most likely due to the fact that the aromatic 

acid group, which was common to all three adsorbate structures, was largely responsible 

for adsorbate-clay interactions.  The salicylic acid hydroxyl group and aspirin acetyl 

group provided additional hydrogen bonding effects compared to benzoic acid.  

Because primary interactions most likely consist of hydrogen bonding between 

adsorbate molecules and water molecules that bridge to interlayer cations, the use of 

detection methods that are capable of characterizing hydrogen bonding interactions 

should be well suited for future studies.  In fact, additional studies of the adsorbate-clay 

interactions by using infrared spectroscopy have been conducted, and are discussed in 

Chapter 4.  
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Chapter 4 : Variable Temperature Infrared Spectroscopy 

Investigations of Montmorillonite Interlayer Water Molecule 

Environment Perturbations caused by Aromatic Acid Adsorbates 

 

4.1 Introduction 

Results described here were obtained by using VT-DRIFTS to characterize 

interactions between potassium, sodium, and calcium montmorillonite interlayer water 

molecules and benzoic acid, salicylic acid, and acetylsalicylic acid adsorbates.  By 

comparing temperature-dependent infrared spectra obtained for samples containing 

these adsorbates, differences in adsorbate-water interactions can be correlated with their 

functional groups. Samples were heated to 400 °C, but results obtained below 60 °C, 

prior to acetylsalicylic acid decomposition and salicylic acid desorption, are described 

here. VT-DRIFTS characterizations of processes for water loss from clay samples 

containing adsorbates provide insights into montmorillonite interlayer water 

perturbations by aromatic acid adsorbates, and reveals details regarding the local 

environments of adsorbate molecules before and during dehydration processes. 

 

4.2 Results and Discussion 

Montmorillonite infrared spectra are dominated by strong features near 1050 cm-

1 corresponding to inorganic oxide vibrations and over the 2500-3750 cm-1 range due to 

O-H stretching vibrations.  The O-H stretching vibration band consists of overlapping 

contributions from inorganic oxide hydroxyl groups and interlayer water.[95]  

Vibrations of inorganic oxide Al-OH-Al functionalities are represented as a strong 
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absorbance band spanning the 3750-3550 cm-1 range with maximum intensity near 3630 

cm-1.[95]  Interlayer water molecule vibrations are affected by interactions with cations, 

inorganic oxide surfaces, and other water molecules, resulting in a broad absorbance 

band that extends from 3700 to about 2500 cm-1.  The stacked plots in Figure 4.1 and 

Figure 4.2 provide a comparison of neat montmorillonite infrared spectra with those 

obtained for samples containing adsorbates.  The small band at 3740 cm-1 in Figure 4.1a 

denotes inorganic oxide hydroxyl groups, most likely Si-OH and Al-OH,[96, 97] that 

are not involved in hydrogen bonding.  Addition of benzoic acid, salicylic acid, and 

acetylsalicylic acid (acetylsalicylic acid) adsorbates dramatically increases infrared 

absorbance below 3525 cm-1 (dotted line).   The presence of these adsorbates disrupt the 

montmorillonite interlayer water hydrogen bonding network and provide additional 

hydroxyl  functionalities, which  also adsorb in this spectral region.  Although all three 

adsorbates contain aromatic acid functionalities, which contribute to absorbance in this 

spectral range, salicylic acid also contains an aromatic hydroxyl group, providing 

additional infrared absorbance.   
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Figure 4.1 - VT-DRIFTS spectra representing the O-H stretching vibration region 

for samples containing (a) KMMT, (b) NaMMT, and (c) CaMMT. 
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Figure 4.2 - VT-DRIFTS spectra representing the C=O stretching vibration region 

for samples containing (a) KMMT, (b) NaMMT, and (c) CaMMT. 

 

The presence of adsorbate does not significantly affect the O-H stretching 

vibration band associated with inorganic oxide hydroxyl groups, suggesting that these 

functionalities primarily interact with water molecules, even when adsorbate is present.  
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Interestingly, the small 3740 cm-1 band is greatly reduced or absent in spectra obtained 

from samples containing adsorbate, suggesting that adsorbate molecules may interact 

with inorganic oxide hydroxyl groups that otherwise do not participate in hydrogen 

bonding.  Spectra for neat clay samples exhibit increasing contributions from water O-H 

stretching vibration band intensity in the order KMMT<NaMMT<CaMMT, which is 

consistent with TG-MS analysis results confirming that the water content of these clays 

increased in the same order.  The most significant differences in absorbance 

contributions from interlayer water for neat clay samples appear at high wavenumbers, 

suggesting that the water molecules added as a result of exchanging potassium cations 

for sodium and calcium cations were involved in minimal hydrogen bonding with their 

surroundings (i.e. more similar to bulk water). 

 Adsorbate interactions with montmorillonites involve hydrogen bonding to 

interlayer water molecules that bridge between cations and aromatic acid groups.[69]  

Hydrogen bonding perturbs the molecular vibrations of adsorbate and water molecules 

involved in the interactions.  For water molecules, these perturbations cause changes to 

O-H stretching and bending vibrations.  For adsorbates, vibrations involving the 

aromatic acid group are primarily affected.  Consequently, adsorbate infrared spectra 

exhibit variations in C=O stretching vibration band shape and position that depend on 

the properties of the clay interlayer cation.  This is illustrated by Figure 4.2, which 

shows ambient temperature C=O stretching vibration band regions of infrared spectra 

obtained for the neat clays and clays containing adsorbate.  Neat clay spectra exhibit 

little absorbance in this spectral region, except for relatively low intensity broad bands 

with maxima near 1630 cm-1 that can be assigned to water molecule bending vibrations.  
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The intensities of the 1630 cm-1 bands vary in the order: KMMT<NaMMT<CaMMT, 

and can be correlated with clay water content.  Small absorbance bands near 1606 cm-1 

for benzoic acid, 1618 cm-1 for salicylic acid, and 1610 cm-1 for acetylsalicylic acid that 

overlap the 1630 cm-1 water bending vibration band show little band shape or intensity 

dependence on the nature of the interlayer cation and most likely represent aromatic 

ring vibrations.  The more intense and broader absorbance bands above 1650 cm-1can be 

assigned to C=O stretching vibrations.  Figure 4.2 shows that the C=O stretching 

vibration band position and shape depend on both the adsorbate and the identity of the 

interlayer cation.  For all adsorbates, C=O absorbance bands are most similar for 

samples containing KMMT and NaMMT clays, which suggests that cation charge 

largely dictates the frequency of this vibration.  When adsorbed on KMMT, the benzoic 

acid C=O absorbance band appears as a broad feature with a maximum near 1700 cm-1.  

When adsorbed on NaMMT, the benzoic acid C=O absorbance band becomes more 

broad and the maximum shifts to lower wavenumber (~1688 cm-1) relative to the same 

band from the KMMT sample.  On CaMMT, the benzoic acid C=O absorbance band is 

sharper and the band maximum is shifted to lower wavenumber (~1677 cm-1) compared 

to results for samples containing KMMT and NaMMT.  The salicylic acid C=O 

stretching vibration band for the sample containing KMMT is much sharper than the 

benzoic acid band and appears at lower wavenumber (~1667 cm-1).  When adsorbed on 

NaMMT, the salicylic acid C=O bandwidth and band maximum are comparable to 

those observed for the KMMT sample.  On CaMMT, the salicylic acid band broadens 

and extends to higher wavenumber compared to results obtained for samples containing 

KMMT and NaMMT.  The C=O stretching vibration absorbance band obtained for the 
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acetylsalicylic acid/KMMT sample was broad and consisted of overlapping 

contributions at about 1710 and 1740 cm-1.  A similar overlap of bands at these 

wavenumbers was obtained for the acetylsalicylic acid/NaMMT C=O stretching 

vibration absorbance band.  In addition, a third overlapping absorbance contribution 

was apparent with maximum intensity near 1667 cm-1.  Compared to results obtained 

for samples containing KMMT and NaMMT, the acetylsalicylic acid/CaMMT sample 

C=O stretching vibration band was narrower, with the band maximum located near 

1710 cm-1.   

 

Figure 4.3 - Difference spectra obtained by subtracting the ambient temperature 

VT-DRIFTS spectrum from the spectrum obtained at 60 oC for (a) KMMT, (b) 

NaMMT, and (c) CaMMT neat clays.  The dotted line denotes 3400 cm-1. 

 

TG-MS studies showed that all sample mass losses detected by heating from 

ambient temperature to 60 oC resulted exclusively from water loss.  Therefore, infrared 

spectral changes detected over this temperature range can be attributed to sample 
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dehydration effects. Figure 4.3 shows difference spectra obtained by subtracting the 

VT-DRIFTS ambient temperature spectrum from one obtained after the sample 

temperature reached 60 oC for each neat clay sample.  Negative features represent 

absorbance that was lost by heating the sample and positive features denote absorbance 

spectrum gains.  The broad negative spectral features for each clay are associated with 

water loss, which reduces the overall O-H stretching vibration band intensity.  Each 

clay lost about 40% of the ambient temperature intensity at 3400 cm-1 after heating 

samples to 60 oC.  The negative difference spectrum band was smallest for neat KMMT, 

which had the lowest initial water content.  Two small overlapping positive bands were 

found at 3735 and 3696 cm-1, which can be assigned to inorganic oxide hydroxyl groups 

(Si-OH and/or Al-OH) that lost hydrogen bonding partners as a result of sample 

heating.  Negative bands for all three clay samples exhibit asymmetry near 3650 cm-1, 

where inorganic oxide hydroxyl group vibrations overlap interlayer water molecule 

absorbance bands.  The absorbance loss at 3650 cm-1 is most likely associated with the 

same inorganic oxide hydroxyl groups responsible for the 3735 and 3696 cm-1 positive 

bands.   Neat clay difference spectra have similar shapes with intensity minima located 

near 3400 cm-1, suggesting that water loss mechanisms were similar over this 

temperature range.   

 As described in Chapter 3, neat clay dehydration mechanisms were affected by 

the presence of adsorbates.  VT-DRIFTS results suggest that this perturbation depended 

on the quantity of adsorbate added to clay samples.  Figure 4.4-Figure 4.6 show VT-

DRIFTS difference spectra representing infrared spectral changes that occurred between 

ambient temperature and 60 oC for samples containing various adsorbate loadings.  Like 
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the neat clay samples, TG-MS analyses of adsorbate containing samples confirmed that 

mass loss occurred exclusively by dehydration.   

 

 

Figure 4.4 - Effects of benzoic acid loading on 60 oC – ambient temperature VT-

DRIFTS difference spectra for samples containing: a) KMMT, b)NaMMT, and c) 

CaMMT.  Numbers denote adsorbate percentages (w/w). 

  



65 

 

Figure 4.5 - Effects of salicylic acid loading on 60 oC – ambient temperature VT-

DRIFTS difference spectra for samples containing: a) KMMT, b) NaMMT, and c) 

CaMMT. Numbers denote adsorbate percentages (w/w). 
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Figure 4.6 - Effects of acetylsalicylic acid loading on 60 oC – ambient temperature 

VT-DRIFTS difference spectra for samples containing: a) KMMT, b) NaMMT, 

and c) CaMMT.Numbers denote adsorbate percentages (w/w). 

 

 

Difference spectra shown in Figure 4.4-Figure 4.6 were normalized with respect 

to negative O-H stretching vibration band minima so that band shape differences were 

more apparent.  For all samples, increased adsorbate loadings resulted in a greater shift 
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of the negative O-H stretching vibration band to lower wavenumbers, indicating a 

correlation between enhanced water molecule hydrogen bonding and adsorbate content.   

Figure 4.7-Figure 4.15 show plots of the same normalized VT-DRIFTS 

difference spectra shown in Figure 4.4-Figure 4.6, but for the C=O stretching vibration 

band region.  Each Figure consists of two plots.  The overlaid plots shown at the top of 

these Figures reflect the effect of adsorbate quantities on C=O band shape changes.  

Graphs at the bottom of each figure show how difference spectra change with 

temperature for samples containing the highest adsorbate loadings.  Negative bands at 

1630 cm-1, corresponding to loss of water bending vibrations, were the only spectral 

features detected for neat clay samples (i.e. 0% loading results) in this wavenumber 

region.  The 1630 cm-1 band remained relatively unchanged in spectra obtained for 

samples containing the lowest adsorbate loadings, but changed shape and shifted in 

spectra obtained for samples containing higher adsorbate loadings.  For the benzoic 

acid/KMMT sample (Figure 4.7a), systematic changes to C=O stretching vibration 

bands were apparent for loadings of 3-10%.  Negative features with minima located at 

1678 cm-1 and positive features maximizing at 1722 cm-1 increased in magnitude with 

increasing adsorbate loadings.  This “first derivative” peak shape is the result of a blue 

shift in the C=O stretching vibration band wavenumber caused by heating the sample.  

Although the magnitudes of negative and positive C=O stretching vibration band 

difference spectra features can be correlated with adsorbate loading, the band 

wavenumber shift was relatively constant.  This suggests that the nature of molecular 

interactions responsible for these C=O bands did not change, and that the number of 
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adsorbate molecules involved in these interactions increased with higher benzoic acid 

loadings.   

 

Figure 4.7 - Effects of a) benzoic acid loading (numbers denote w/w percentages) 

on normalized 60 oC – ambient temperature spectra and b) 60 oC water desorption 

temperature for the 10% benzoic acid/KMMT sample on VT-DRIFTS C=O 

stretching vibration band region difference spectra. 

 

Figure 4.7b shows that these trends were also evident for the 10% benzoic 

acid/KMMT sample as a function of increasing temperature.  Apparently, increasing 
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water loss for this sample resulted in a consistent blue shift of the C=O stretching 

vibration wavenumber, most likely indicating a decrease in adsorbate hydrogen bonding 

interactions.   

 

 

Figure 4.8 - Effects of a) benzoic acid loading (numbers denote w/w percentages) 

on normalized 60 oC – ambient temperature spectra and b) 60 oC water desorption 

temperature for the 10% benzoic acid/NaMMT sample on VT-DRIFTS C=O 

stretching vibration band region difference spectra. 

 



70 

Similar trends are evident in spectra obtained for the benzoic acid/NaMMT 

sample (Figure 4.8) except that the negative C=O stretching vibration band was less 

intense and its shape was more dependent on adsorbate loading.  For the 3% benzoic 

acid loading on NaMMT, the negative C=O stretching vibration band occurs near 1690 

cm-1 but no positive feature is discernible.  With 5% benzoic acid loading, the negative 

C=O stretching vibration band consisted of overlapping contributions with minima near 

1693 and 1653 cm-1 and a small positive band maximized at 1725 cm-1.  Negative bands 

at the same wavenumbers were detected for the sample containing 3% benzoic acid, but 

the relative intensity for the 1653 cm-1 band was much lower than the 1693 cm-1 band.  

Results obtained for the 10% benzoic acid/NaMMT sample (Figure 4.8b) at 60 oC 

included greater positive band intensity with a maximum near 1720 cm-1 and 

overlapping negative bands with minima at 1688 and 1662 cm-1.  Band locations in 

difference spectra obtained for the sample containing 10% benzoic acid at 40 and 50 oC 

were similar to those obtained for samples containing 3 and 5% loadings.  Thus, C=O 

stretching vibration band shape changes suggest that benzoic acid occupied at least two 

different environments prior to dehydration but adopted similar hydrogen bonding 

environments after water loss.  Furthermore, the two initial environments are affected 

by adsorbate loading, with the 10% loading exhibiting a slight temperature-dependent 

shift in C=O band wavenumber.  Adsorbate environment differences for samples 

containing KMMT and NaMMT are likely due to the increased interlayer spacing for 

NaMMT, allowing for greater flexibility in adsorbate orientations.   
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Figure 4.9 – Effects of a) benzoic acid loading (numbers denote w/w percentages) 

on normalized 60 oC – ambient temperature spectra and b) 60 oC water desorption 

temperature for the 10% benzoic acid/CaMMT sample on VT-DRIFTS C=O 

stretching vibration band region difference spectra. 

 

Difference spectra shown in Figure 4.9a exhibit a single negative C=O 

stretching vibration band near 1694 cm-1 in spectra obtained for the 4 and 10% benzoic 

acid/CaMMT samples and positive features above and below the negative band location 

for the sample containing 10% adsorbate.  This shape may be explained by the 

formation of a positive C=O stretching vibration band at 60 oC that was broader but had 
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lower absorptivity than the corresponding ambient temperature band.  The shapes 

exhibited in Figure 4.9 would be expected as a result of subtracting these overlapping 

features.  Figure 4.9b shows that this shape is maintained while heating the 10% 

benzoic acid/CaMMT sample.  Thus, for this sample, the main changes to the C=O 

stretching vibration caused by sample dehydration involve a decrease in absorptivity 

and a slight broadening of the absorbance band.  

Difference spectra representing the dehydration of samples containing salicylic 

acid and KMMT (Figure 4.10) indicate that the C=O stretching vibration of affected 

acid functionalities shifted from about 1660 cm-1to environments characterized by C=O 

band maxima at 1725 and 1695 cm-1.  The results obtained for salicylic acid/NaMMT 

samples (Figure 4.11) were very similar to those obtained for samples containing 

KMMT.  Results for KMMT and NaMMT suggest that a single salicylic acid 

environment characterized by a relatively high degree of hydrogen bonding interactions 

is replaced by at least two new environments having much less hydrogen bonding 

interactions when water is driven off from these samples.   
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Figure 4.10 - Effects of a) salicylic acid loading (numbers denote w/w percentages) 

on normalized 60 oC – ambient temperature spectra and b) 60 oC water desorption 

temperature for the 11% salicylic acid/KMMT sample on VT-DRIFTS C=O 

stretching vibration band region difference spectra 
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Figure 4.11 - Effects of a) salicylic acid loading (numbers denote w/w percentages) 

on normalized 60 oC – ambient temperature spectra and b) 60 oC water desorption 

temperature for the 11% salicylic acid/NaMMT sample on VT-DRIFTS C=O 

stretching vibration band region difference spectra. 

 

Results obtained for salicylic acid/CaMMTsamples with loadings of 3.4 and 

5.6% (Figure 4.12) were similar to those obtained for samples containing KMMT and 

NaMMT.  However, for the sample containing 11% adsorbate, the positive C=O 

stretching vibration band contribution at 1687 cm-1 was much greater than the higher 

wavenumber contribution.  Figure 4.12b shows that this effect was observed throughout 
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sample dehydration.  Apparently, compared to the samples with 3.4 and 5.6% salicylic 

acid loadings, the higher 11% loading caused a change in adsorbate environment after 

dehydration that was characterized by a dramatic increase in absorptivity at 1687 cm-1.  

 

 

Figure 4.12 - Effects of a) salicylic acid loading (numbers denote w/w percentages) 

on normalized 60 oC – ambient temperature spectra and b) 60 oC water desorption 

temperature for the 11% salicylic acid/CaMMT sample on VT-DRIFTS C=O 

stretching vibration band region difference spectra. 
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Figure 4.13 - Effects of a) acetylsalicylic acid loading (numbers denote w/w 

percentages) on normalized 60 oC – ambient temperature spectra and b) 60 oC 

water desorption temperature for the 15% acetylsalicylic acid/KMMT sample on 

VT-DRIFTS C=O stretching vibration band region difference spectra. 

 

The shapes of difference spectra obtained for acetylsalicylic acid/KMMT 

samples (Figure 4.13) were similar to those obtained for salicylic acid/KMMT samples 

(Figure 4.10), exhibiting a single negative C=O band and two overlapping positive 

features at higher wavenumbers.  However, the negative band (1698 cm-1) and the 

overlapping positive features (1772 and 1738 cm-1) were located at higher 
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wavenumbers.  This may be explained by the fact that acetylsalicylic acid molecules 

cannot form intramolecular hydrogen bonds like salicylic acid.  The lack of this 

hydrogen bonding contribution would lead to higher C=O stretching vibration band 

wavenumbers for acetylsalicylic acid compared to salicylic acid.  The intensity for the 

lower wavenumber contribution of the overlapping positive features became more 

intense with increasing adsorbate loading.  Figure 4.13b shows that the intensity of the 

negative C=O stretching vibration band is less variable as a function of temperature 

compared to the positive features.  This could result from a gradual shift in the 1738 cm-

1 feature to lower wavenumber with increasing temperature, which would increasingly 

cancel more of the negative C=O band intensity.  Results obtained for 

acetylsalicylic/NaMMT samples (Figure 4.14) were similar to those obtained for 

acetylsalicylic acid/KMMT samples, except that the positive features consisted of three 

overlapping contributions (1774, 1756, and 1734 cm-1).  Like the results obtained for 

samples containing KMMT, the relative intensity for the low wavenumber positive band 

component increased with increasing adsorbate loading and the negative feature 

intensity did not change with temperature as much as the overlapping positive features.  

In fact, increased intensity for the positive band canceled some of the negative band 

intensity for the 15% sample loading, causing it to be smaller and appear to shift to 

lower wavenumber relative to the 7.5% loading results (Figure 4.14a).  Negative C=O 

stretching vibration bands in temperature-dependent spectra obtained for the 15% 

acetylsalicylic acid/NaMMT sample were much broader and less well defined than 

those obtained for the samples containing 4.4 and 7.5% adsorbate.  Thus, for sample 

loadings below 15%, C=O stretching vibration band shape changes are consistent with a 
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single initial adsorbate environment that becomes multiple environments after 

dehydration.  In contrast, 15% sample loading results suggest that many  adsorbate 

environments exist at ambient temperature, but that they change into environments with 

adsorbate interactions similar to those detected for the lower adsorbate loadings after 

dehydration.   

 

 

Figure 4.14 - Effects of a) acetylsalicylic acid loading (numbers denote w/w 

percentages) on normalized 60 oC – ambient temperature spectra and b) 60 oC 

water desorption temperature for the 15% acetylsalicylic acid/NaMMT sample on 

VT-DRIFTS C=O stretching vibration band region difference spectra. 
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Figure 4.15 - Effects of a) acetylsalicylic acid loading (numbers denote w/w 

percentages) on normalized 60 oC – ambient temperature spectra and b) 60 oC 

water desorption temperature for the 15% acetylsalicylic acid/CaMMT sample on 

VT-DRIFTS C=O stretching vibration band region difference spectra. 

 

Overall, trends in difference spectra found for acetylsalicylic acid/CaMMT 

samples (Figure 4.15) were similar to those observed for benzoic acid/CaMMT 

samples.  Broad positive bands cancel much of the negative C=O stretching vibration 

band, leaving only residual positive intensity on either side of the negative band.  

However, this effect was more dramatic for the acetylsalicylic acid/CaMMT samples 
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than for the benzoic acid/CaMMT samples.  Figure 4.15b shows that a small positive 

band is superimposed on the negative C=O band near 1720 cm-1.  This may represent 

the band maximum of a positive feature that is not completely canceled by the negative 

band.  Figure 4.15b shows that the maximum of this positive residual shifts to higher 

wavenumber with increasing temperature. 

Figure 4.16 shows O-H stretching vibration region difference spectrum overlays 

for samples containing the highest adsorbate loadings on each clay.  Whereas negative 

band minima were found near 3400 cm-1 for neat clay samples, minima for samples 

containing KMMT and NaMMT were found about 200 cm-1 lower.  For samples 

containing CaMMT, minima occurred at higher wavenumbers, but were still below 

3400 cm-1.  In addition, although the negative O-H stretching vibration band loss for the 

neat clays was detected above 2800 cm-1, absorbance loss for samples containing 

adsorbate extended below 2800 cm-1.  With the exception of the benzoic acid/NaMMT 

sample, the 3740 cm-1 positive feature was absent in difference spectra.  This suggests 

that the neat clay inorganic oxide hydroxyl groups that lost hydrogen bonding partners 

and shifted vibration wavenumbers to 3740 cm-1 remained hydrogen bonded at 60 oC 

when samples contained adsorbate.  It is likely that these hydroxyl groups preferentially 

hydrogen bonded to adsorbate rather than water molecules.  For each adsorbate, results 

obtained for samples containing KMMT and NaMMT were the most similar, and broad 

negative band minima occurred at higher wavenumbers in spectra obtained for samples 

containing CaMMT compared to the other clays.  This trend may be associated with the 

fact that CaMMT contains a divalent cation whereas KMMT and NaMMT cations are 

monovalent.  Alternatively, the shift to higher wavenumber for samples containing 
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CaMMT may be associated with the higher water content of CaMMT compared to 

KMMT and NaMMT.  A larger fraction of the adsorbate/CaMMT sample interlayer 

water molecules may occupy environments that are more similar to those in neat 

CaMMT. 

 

Figure 4.16 - Difference spectra obtained by subtracting the ambient temperature 

VT-DRIFTS spectrum from the spectrum obtained at 60 oC for samples consisting 

of (a) 10% benzoic acid, (b) 11% salicylic acid, and (c) 15% acetylsalicylic acid 

adsorbed on the designated clays.  The dotted line denotes 3200 cm-1. 
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Figure 4.17 - Difference spectra obtained by subtracting the ambient temperature 

VT-DRIFTS spectrum from the spectrum obtained at 60 oC for samples consisting 

of (a) 10% benzoic acid, (b) 11% salicylic acid, and (c) 15% acetylsalicylic acid 

adsorbed on the designated clays. 

 

TG-MS analyses of samples containing adsorbates showed that mass loss below 

60 oC did not involve adsorbate desorption or decomposition processes (Chapter 3).  

Thus, infrared spectral changes detected between ambient temperature and 60 oC cannot 
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be attributed to adsorbate loss.  Instead, spectral variations must be attributed to changes 

in adsorbate local environments due to loss of water molecules.  Figure 4.17 shows 

overlays of difference spectra spanning the C=O stretching vibration band range for 

samples containing the highest adsorbate loadings on each clay.  Although the C=O 

stretching vibration band center locations before (i.e. at ambient temperature) and after 

(i.e. at 60 oC) sample dehydration for the benzoic acid/KMMT sample cannot be 

determined accurately, the minimum wavenumber for this band before water loss was 

1678 cm-1 and the maximum band center wavenumber after the shift was 1720 cm-1.  

The C=O stretching vibration band shift from ~1678 to ~1720 cm-1 resulted from a loss 

of hydrogen bonding for the aromatic acid functionality due to dehydration.  For the 

sample containing benzoic acid adsorbed on NaMMT, the negative C=O stretching 

vibration difference spectrum component exhibits two overlapping minima at 1662 and 

1687 cm-1, but the positive feature occurs at 1720 cm-1, which is the same as for the 

benzoic acid/KMMT sample.  This suggests that there were initially two distinct 

benzoic acid hydrogen bonding environments which, after water desorption, adopted a 

hydrogen bonding environment that was similar to the dehydrated benzoic acid/KMMT 

sample.  Compared to samples containing KMMT and NaMMT, the benzoic 

acid/CaMMT C=O functionality was involved in less intense hydrogen bonding.  

Therefore, the C=O stretching vibration band wavenumber did not shift as much after 

dehydration. 

 Figure 4.17b shows that the C=O stretching vibration band shifts for samples 

containing salicylic acid and clays with monovalent cations (KMMT and NaMMT) 

were similar, but differed significantly from spectra obtained for samples containing 
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benzoic acid (Figure 4.17a).  Negative bands representing C=O stretching vibrations 

prior to water loss exhibited minima at 1660 cm-1 for both samples.  Positive spectral 

features were broad, extended to 1750 cm-1, and consisted of overlapping contributions, 

suggesting that salicylic acid molecules adopted at least two different environments 

after water desorption.  For the salicylic acid/CaMMT sample, the negative C=O 

stretching vibration band minimum also appeared at 1660 cm-1.  However, unlike the 

monovalent clays, the blue shift due to water loss resulted in a sharper feature with 

maximum intensity at 1687 cm-1.  Thus, salicylic acid samples exhibited the same 

general trend as the benzoic acid samples, in which the C=O stretching vibration band 

shift was less when divalent Ca2+ was present compared to K+ and Na+. 

 Difference spectra representing C=O stretching vibration band changes resulting 

from heating clay samples containing acetylsalicylic acid are shown in Figure 4.17c.  

The negative C=O stretching vibration band location for the sample containing KMMT 

was at 1698 cm-1, which was much higher than in difference spectra obtained for 

benzoic acid and salicylic acid.  This indicates that acetylsalicylic acid C=O 

functionalities affected by the water loss were involved in less intense hydrogen 

bonding than either benzoic acid or salicylic acid.  Like the results obtained for salicylic 

acid, the positive difference spectrum feature representing adsorbate environments after 

dehydration consisted of at least two broad overlapping features.  However, the positive 

band intensity extended to higher wavenumbers (1800 cm-1) compared to the 

corresponding salicylic acid/KMMT spectrum (1750 cm-1).  Peak maxima for the two 

overlapping band components occurred at 1740 and 1770 cm-1.  Thus, compared to 

benzoic acid and salicylic acid, acetylsalicylic acid was involved in weaker hydrogen 
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bonding interactions before water desorption and adopted orientations that also involved 

weaker hydrogen bonding interactions after dehydration.  Results obtained for 

acetylsalicylic acid adsorbed on NaMMT were qualitatively similar to those for the 

KMMT sample, except that the negative C=O stretching vibration band was very broad.  

The difference spectrum obtained for the sample containing acetylsalicylic acid and 

CaMMT contained overlapping negative features with minima at 1710 and 1732 cm-1 

corresponding to C=O stretching vibrations that were lost due to sample dehydration.  

The corresponding overlapping positive C=O stretching vibration bands were located at 

1760 and 1780 cm-1.  Thus, the difference spectrum for the acetylsalicylic acid/CaMMT 

sample indicated that adsorbate hydrogen bonding interactions were weaker for this 

adsorbate/clay combination than any of the others. 

Liquid water consists of a dynamic hydrogen bonding network in which typical 

water molecules participate in 2-4 hydrogen bonds.[98-101]  However, the properties of 

confined water differ from the bulk liquid.[98]  In particular, cation hydration sphere 

characteristics are significantly perturbed when water molecules are restricted to 

movement in two dimensions.[102, 103]  Clay interlayer water molecules can be 

categorized into three types of local environments.  Some molecules are found near 

inorganic oxide layers, some occupy cation hydration spheres, and others fill voids.  

[104]  In addition to interactions between water molecules and inorganic oxide surfaces 

or cations, interlayer water molecules participate in hydrogen bonding with other water 

molecules.  The broad negative O-H stretching vibration bands in VT-DRIFTS 

difference spectra (Figure 4.3) reflect the net results of changes to interlayer water 

molecules caused by heating samples from ambient temperature to 60 oC.  Much of this 
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negative band intensity can be attributed to water molecule desorption.  However, O-H 

stretching vibration band properties may change for water molecules that remain with 

the clay if they experience local environment variations, such as: loss of hydrogen 

bonding, gain in hydrogen bonding, and variations in the strength of interactions with 

inorganic oxide layers and cations.  In fact, the positive difference spectra features at 

3696 and 3740 cm-1 are evidence of a disruption of interactions between water 

molecules and inorganic oxide hydroxyl groups.  Thus, loss of water molecules during 

sample heating initiates a reorganization of the remaining interlayer water molecules.  

The similarity of difference spectra shapes in Figure 4.3 suggests that mechanisms for 

water desorption and subsequent interlayer water reorganization are similar for the three 

clays, even though they initially contain different quantities of interlayer water.  

  

4.3 Summary 

The structures of benzoic acid, salicylic acid, and acetylsalicylic acid all contain 

an aromatic acid functionality.  All three adsorbates readily form dimers by hydrogen 

bonding through these groups.[105-108]  These aromatic carboxylic acid functionalities 

also participate in hydrogen bonding with interlayer water molecules and inorganic 

oxide hydroxyl groups.[109]  In addition, the hydroxyl and acetyl groups in salicylic 

acid and acetylsalicylic acid provide additional sites for hydrogen bonding.[105, 109]  

When placed within montmorillonite interlayer spaces, these adsorbates disrupt the 

hydrogen bonding network, which affects water molecule O-H stretching vibration band 

properties.  In general, hydrogen bond formation alters O-H stretching vibration band 

characteristics by increasing absorptivity (i.e. intensity), increasing band width, and 
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shifting absorbance maxima to lower wavenumber.[110-112]  Comparing difference 

spectra shown in Figure 4.4-Figure 4.6 with those in Figure 4.3 reveals that the presence 

of adsorbate molecules caused a general shift in water molecule O-H stretching 

vibration to lower wavenumber, suggesting that hydrogen bonding interactions were 

enhanced.   

Whereas variations in O-H stretching vibration wavenumbers provide 

information regarding trends in water molecule hydrogen bonding interaction strengths, 

shifts in C=O stretching vibration wavenumbers provide more specific information 

regarding changes in adsorbate local environments.  Results shown in Figure 4.17 

indicate that the salicylic acid C=O functionality is involved in greater hydrogen 

bonding interactions compared to the other two adsorbates.  This is most likely due to 

intramolecular hydrogen bonding between the aromatic hydroxyl functionality and 

carboxylic acid group.[105]  This intramolecular hydrogen bonding is also apparent 

after sample dehydration, resulting in positive C=O stretching vibration band features 

that occur at lower wavenumbers than the other adsorbates. 
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Chapter 5 : Thermogravimetry-Mass Spectrometry Investigations of 

Salicylic Acid and Acetylsalicylic Acid Desorption from 

Montmorillonite Clays 

 

5.1 Introduction 

 Results described here detail TG-MS studies of salicylic acid and acetylsalicylic 

acid desorption from potassium, sodium, and calcium montmorillonite clays, as well as 

desorption of benzoic acid from potassium montmorillonite. TG-MS analyses are used 

to identify volatiles evolved during sample heating. This information can be used to 

characterize desorption and decomposition processes effected by sample heating. 

Comparisons are made between the behaviors of these three aromatic acid adsorbates, 

and the effect of the interlayer cation is explored as well. 

 

5.2 Results and Discussion 

Nickels, et al. [67] studied the interactions between benzoic acid adsorbate and 

montmorillonites containing sodium and calcium cations.  To better understand the 

importance of cation charge and water content on adsorbate-clay interactions, those 

studies were extended by characterizing benzoic acid interactions with potassium 

montmorillonite.  Potassium ions fit better than sodium ions into inorganic clay layer 

hexagonal voids, so that less of the ion surface area is available for adsorbate 

interactions.[65, 66]  Although potassium and sodium cations are both monovalent, 

sodium ions are more polarizing.[64]  Thus, water molecules in sodium ion hydration 

spheres should be more stable than those surrounding potassium ions.  The introduction 
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of potassium to clay interlayer spaces reduces basal spacing, so that less water can be 

accommodated by the clay.  Thus, adsorbate-clay effects related to water content may 

be apparent after comparing analysis results obtained from samples containing sodium 

and potassium montmorillonites.   

Results from TG-MS analysis of a sample consisting of potassium 

montmorillonite (KMMT) containing 10% (w/w) benzoic acid are shown in Figure 5.1.  

Mass spectrometric signals for molecular ions representing water (m/z 18), carbon 

dioxide (m/z 44), benzene (m/z 78), and benzoic acid (m/z 122) are plotted as a function 

of sample temperature.  Below about 100 °C, water desorption was the only significant 

process responsible for mass loss.  Intact benzoic acid (m/z 122) began to desorb near 

100 oC and reached a maximum evolution rate at 151 °C.  The m/z 122 ion signal 

temperature profile also exhibited a broad, less intense feature between 250 and 450 °C.  

Above 400 °C, some benzoic acid decomposed to form benzene and carbon dioxide.  

The m/z 78 (benzene) ion signal temperature profile maximized at 436 °C, and m/z 44 

(CO2) maximized at 471 °C.  The m/z 78 ion signal temperature profile exhibits a local 

maximum at 151 oC, which coincides with the m/z 122 ion signal maximum.  The m/z 

78 ion signal responsible for this local maximum does not reflect the presence of 

benzene in TG effluent.  Instead, this ion signal is derived from benzoic acid 

fragmentation.   
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Figure 5.1 – Mass spectrometric ion signal intensity profiles representing water 

(m/z 18), benzoic acid (m/z 122), benzene (m/z 78), and carbon dioxide (m/z 44) 

measured during TG-MS analysis of a KMMT sample containing 10% benzoic 

acid. 

 

The ion signal temperature profiles shown in Figure 5.1 have similar shapes to 

those previously reported for NaMMT samples containing 10% (w/w) benzoic acid. 

[67]   This is not surprising, because sodium and potassium are both monovalent ions.  

Benzoic acid desorption began from both KMMT and NaMMT near 100 °C, but much 

higher temperatures were required for CaMMT, which contains divalent Ca2+.  These 

trends are in agreement with proposals from Nickels, et al.,[67] and others,[38, 41] who 

found that the charge on the interlayer cation is the determining factor for adsorrbate 

desorption temperatures.  Figure 5.1 contains some interesting differences when 

compared to previous benzoic acid/NaMMT results.  For example, the m/z 78 ion signal 
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temperature profile above 300 oC is less intense relative to the other ion signal profiles 

than it was when a benzoic acid/NaMMT sample was analyzed under similar 

conditions.[67]  In addition, the low temperature component of the m/z 122 profile in 

Figure 5.1 is more intense relative to the other ion signal profiles than it was for the 

benzoic acid/NaMMT sample.[67]  It should be noted that the ion signal intensity 

values plotted in Figure 5.1 do not accurately reflect the concentrations of the 

corresponding species.  In addition to vapor concentration, ion signal intensities depend 

on molecular ionization cross-sectional areas, ionization energies, and degree of 

fragmentation.  Despite this limitation, significant changes to relative ion signal 

temperature profile intensities between samples reflect variations in the importance of 

competing desorption/decomposition pathways.  More intense m/z 122 ion signals 

coupled with lower m/z 78 ion signals for the benzoic acid/KMMT sample compared to 

the benzoic acid/NaMMT sample indicate that more of the acid desorbed and less 

decomposed when the clay interlayer space contained potassium.  Apparently, 

compared to NaMMT, a smaller amount of benzoic acid was retained on KMMT at 

temperatures high enough to facilitate decomposition.  Mass loss results are in 

agreement with this assertion.  Mass loss results for KMMT and NaMMT samples 

containing 10% benzoic acid are compared to those for the neat clays in Table 5.1.  

Mass losses are divided into three temperature intervals: room temperature (RT) – 100 

°C, 100 – 400 °C, and 400 – 550 °C.  The lowest temperature range corresponded 

primarily to water loss for all samples.   
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Table 5.1 - Comparison of mass loss data for KMMT containing 10% benzoic acid 

(this work) to mass loss data for NaMMT containing 10% benzoic acid from 

Nickels, et al.[67] Neat clay data are presented for comparison. 

 

 Neat clays 10% BA loaded clays 

Temp Range KMMT NaMMT[67] K MMT NaMMT[67] 

RT-100 0.8% 1.0% 0.9% 1.1% 

100-400 1.2% 1.4% 7.5% 6.6% 

400-550 1.4% 1.7% 2.7% 3.3% 

Total 3.4% 4.1% 11.1% 11.0% 

 

Consequently, mass losses for the neat clays were similar to those for samples 

containing benzoic acid adsorbate.  Between 100 and 400 °C, which spans the 

temperature range corresponding to most benzoic acid desorption, the benzoic 

acid/KMMT sample lost 7.5% of its mass, whereas the benzoic acid/NaMMT sample 

lost only 6.6%.  For reference, neat NaMMT lost 0.2% more mass than neat KMMT 

over this temperature range.  As shown in Figure 5.1, benzene and carbon dioxide 

formed by benzoic acid decomposition dominated volatile products above 400 oC.  The 

benzoic acid/KMMT sample lost only 2.7% of its mass above 400 oC, whereas the 

benzoic acid/NaMMT sample lost 3.3% (0.6% difference).  For reference, neat NaMMT 

lost 0.3% more mass than neat KMMT over the same temperature range.  Interestingly, 

neither benzoic acid/clay sample lost as much mass as would be predicted based on an 

initial 10% (w/w) loading.  Assuming that benzoic acid/clay samples contained 90% of 

the water found in the corresponding neat clays (i.e. because 10% of the sample mass 

was due to adsorbate), the benzoic acid/KMMT sample lost about 8.0% and the benzoic 
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acid/NaMMT sample lost about 7.3% of the sample mass that could be attributed to 

benzoic acid.  Samples became darker after heating, possibly indicating char residue 

formation.  In order to confirm that residual char was responsible for the darker sample 

color and the less than expected mass loss, a TG analysis of the 10% benzoic 

acid/KMMT sample was carried out in air instead of helium (Appendix C).  Under these 

conditions, all benzoic acid should have been oxidized and therefore lost from the 

sample after heating it to 800 oC.  A small sample size of ~2 mg was employed and 

solid material was evenly spread throughout the sample pan to maximize air exposure to 

clay surfaces.  Under these experimental conditions and after compensating for water 

loss, the mass loss that could be attributed to benzoic acid was 9.8%, which was close to 

the expected 10%.  This result confirms that the presence of thermally stable residue 

was the primary cause of the discrepancy between predicted and observed mass losses 

when samples were heated in helium. 

 The fact that the benzoic acid/KMMT sample lost more mass at lower 

temperatures as a result of benzoic acid desorption, whereas the benzoic acid/NaMMT 

sample lost more mass at higher temperatures through benzoic acid decomposition 

indicates that NaMMT facilitated greater retention of benzoic acid to high temperatures.  

This may be associated with a higher water content for NaMMT, and consequently a 

larger interlayer spacing.[63]  The greater interlayer space may allow benzoic acid 

molecules to better align with interlayer cations, forming more thermally stable 

interactions.   

 For NaMMT and CaMMT, the temperature at which benzoic acid desorption 

begins was found to depend on adsorbate loading. [67]  It was postulated that the most 
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favorable adsorption environments were occupied first, and less favorable environments 

were populated only after favored adsorption sites were filled.[67]  TG-MS results 

obtained for benzoic acid adsorbed on KMMT show a similar trend.  Ion signal 

temperature profiles for benzoic acid (m/z 122; dashed line) and benzene (m/z 78; solid 

line) for KMMT samples containing various benzoic acid loadings are shown in Figure 

5.2.  The m/z 122 ion signal temperature profile consisted of at least two overlapping 

features.  At the highest loading (10% (w/w) benzoic acid), the lower temperature 

component of the m/z 122 profile was the most significant feature.  At a 5% loading of 

benzoic acid, the low temperature component of the m/z 122 ion signal temperature 

profile was significantly less intense, becoming comparable to the high temperature 

component.  For the sample containing a 3% benzoic acid loading, the low temperature 

component of the m/z 122 ion signal temperature profile was less intense than the high 

temperature component. The m/z 122 ion signal temperature profile for the sample 

containing 1% benzoic acid was barely detected above the baseline, indicating that a 

small amount of intact benzoic acid desorbed from the clay.  The m/z 78 ion signal 

temperature profile intensity above 300 oC decreased with decreasing benzoic acid 

loading, but changes were not as dramatic as they were for the m/z 122 profiles.  Thus, 

for small benzoic acid loadings, most adsorbate occupies environments that are stable at 

higher temperatures, resulting in benzoic acid loss by decomposition rather than 

desorption. These findings suggest that there are at least three possible environments 

available to adsorbates, corresponding to: (1) benzoic acid that decomposes above 400 

oC, (2) benzoic acid that desorbs between 200 and 425 oC, and (3) loosely held benzoic 

acid that desorbs between 100 and 200 oC.  These findings are in agreement with the 
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reported results of similar experiments for samples containing benzoic acid adsorbed on 

NaMMT and CaMMT.[67] 

 

 

Figure 5.2 - MS profiles for benzoic acid (m/z 122; dashed line) and benzene (m/z 

78; solid line) for KMMT samples containing various loadings of benzoic acid. 

 

To determine if other aromatic acids interact with montmorillonites in a manner 

similar to benzoic acid, and to elucidate the effects of different functional groups on 

adsorption behavior, salicylic acid and acetylsalicylic acid were separately loaded onto 

potassium, sodium, and calcium montmorillonites and studied by using TG-MS.  Ion 

signal temperature profiles for the most abundant volatiles evolved during TG-MS 

analyses of clay samples containing 11% (w/w) salicylic acid are shown in Figure 5.3.  

Salicylic acid loadings were selected to contain the same molar amounts of adsorbate as 
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benzoic acid samples.  Thus, an 11% (w/w) salicylic acid loading contains the same 

number of adsorbate molecules per gram of clay as a 10% (w/w) benzoic acid loading.  

Mass spectrometric ion signals representing water (m/z 18), carbon dioxide (m/z 44), 

phenol (m/z 94), and salicylic acid (m/z 120) are shown.  With the exception of m/z 

120, which corresponds to the salicylic acid mass spectrum base peak, ion signal 

temperature profiles were derived from molecular ions.  The molecular ion for salicylic 

acid occurs at m/z 138, which was detected during TG-MS analyses of samples 

containing 5.6 and 11% (w/w) salicylic acid, but was below the detection limit for 

samples containing less salicylic acid.  Figure 5.3a shows the results obtained for a 

KMMT sample containing 11% (w/w) salicylic acid.  At temperatures below 80 °C, the 

only significant sample change could be attributed to loss of water, as evidenced by the 

fact that only the m/z 18 ion signal profile intensity exhibited non-zero values.  
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Figure 5.3 - MS ion signal intensity profiles representing water (m/z 18), salicylic 

acid (m/z 120), phenol (m/z 94), and carbon dioxide (m/z 44) measured during TG-

MS analysis of a) KMMT, b) NaMMT, and c) CaMMT samples containing 11% 

salicylic acid. 
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Salicylic acid (m/z 120) began to desorb above 100 °C, and reached a maximum 

evolution rate at 153 °C.  Interestingly, phenol (m/z 94) and carbon dioxide (m/z 44) 

were detected in TG effluent at temperatures below 100 oC.  These substances were 

likely formed by salicylic acid decomposition.[113, 114]  TG-MS analyses of samples 

containing clays loaded with phenol revealed that it desorbed immediately after samples 

were heated, which was consistent with previous reports.[44, 115]  Therefore, the 

appearance of m/z 94 in TG-MS mass spectra obtained while heating salicylic acid/clay 

samples can be used to track salicylic acid decomposition.  Above 200 °C, salicylic acid 

decomposition competed with desorption, as evidenced by the increase in m/z 94 ion 

signal intensity, which maximized near 250 °C.  Unlike the results obtained for benzoic 

acid, the overlap between the m/z 120 and m/z 94 ion signal temperature profiles shows 

that there was no temperature range over which adsorbate desorption occurred without 

some decomposition.  Unlike phenol, carbon dioxide (m/z 44) desorption from clay 

surfaces was delayed.  Although the m/z 44 ion signal temperature profile exhibited a 

local maximum near 250 °C, the profile shape consisted of a broad peak with global 

maximum just below 500 °C.  According to Schaef, et al.,[116] carbon dioxide is not 

easily intercalated by clays that are excessively dehydrated or hydrated.  Rather, a small 

amount of interlayer water is optimal for carbon dioxide retention.  Apparently, carbon 

dioxide can be stabilized by interactions with interlayer cations, but if sufficient water is 

available, it can displace carbon dioxide from adsorption sites near cations.  Thus, 

unlike phenol, carbon dioxide desorption temperatures depend on clay characteristics.  

This explains why m/z 44 ion signal maxima occur at similar temperatures for clay 

samples containing salicylic acid and benzoic acid (Figure 5.1).  
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 Figure 5.3b shows results obtained for the NaMMT sample containing 11% 

(w/w) salicylic acid, which are similar to those for the KMMT sample containing the 

same salicylic acid loading.  The most significant difference between results obtained 

for samples containing KMMT and NaMMT was in the m/z 120 ion signal profiles.  

Although the m/z 120 ion signal temperature profile maximum was greater than the m/z 

94 profile for the KMMT sample, the opposite was observed for the NaMMT sample.  

This suggests that salicylic acid was more stable above 200 oC when adsorbed on 

NaMMT compared to KMMT.  Greater thermal stabilization of salicylic acid by 

NaMMT is also supported by the mass loss results compiled in Table 5.2.  Sample mass 

losses in three temperature intervals are provided: room temperature (RT) – 80 °C, 80 – 

200 °C, and 200 – 650 °C.   

Table 5.2 - Summary of mass loss data for salicylic acid loaded clay samples over 

selected temperature intervals (neat clay data are presented for comparison). 

 

 Neat clays 11% SA loaded clays 

Temp range KMMT NaMMT CaMMT KMMT NaMMT CaMMT 

RT-80 0.6% 0.9% 1.1% 0.7% 0.8% 1.0% 

80-200 0.5% 0.7% 1.1% 5.1% 4.6% 4.4% 

200-650 3.3% 3.3% 3.5% 7.7% 8.2% 9.6% 

Total 4.4% 4.9% 5.7% 13.5% 13.6% 15.0% 

 

Based on MS analysis of volatiles evolved while heating samples, water 

evolution was the only significant contribution to mass loss below 80 °C.  Salicylic acid 

desorption occurred primarily between 80 and 200 °C, whereas, above 200 °C, mass 
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loss could be attributed mostly to salicylic acid decomposition into phenol and carbon 

dioxide.  The KMMT sample containing 11% (w/w) salicylic acid lost more mass in the 

80 – 200 °C temperature range than the NaMMT sample (5.1 vs. 4.6 %).  Conversely, 

the sample containing 11% (w/w) salicylic acid adsorbed on NaMMT lost more mass in 

the 200 – 650 °C range than the KMMT sample (8.2 vs. 7.7 %).  Interestingly, the total 

mass losses (measured at 650 °C) for these two samples were about the same (13.5 % 

for KMMT vs. 13.6 % for NaMMT).  

 TG-MS results for the CaMMT sample containing 11% (w/w) salicylic acid are 

shown in Figure 5.3c.  There are two significant differences between the ion signal 

temperature profiles for this sample and the KMMT and NaMMT samples containing 

the same amount of salicylic acid.  First, salicylic acid began to desorb from CaMMT 

near 115 °C, which was 15 °C higher than for samples containing NaMMT and KMMT.  

This trend is consistent with results from a previous study of benzoic acid interactions 

with NaMMT and CaMMT, which found that benzoic acid began to desorb from 

CaMMT at 110 °C  and from NaMMT at 100 °C.[67]  This difference was attributed to 

stronger interactions between benzoic acid and Ca2+ ions because of the greater charge.  

It appears that salicylic acid desorption exhibits a similar effect.  Secondly, the m/z 120 

ion signal temperature profile intensity for the sample containing CaMMT is much 

smaller than the m/z 94 ion intensity.  This suggests that the CaMMT interlayer 

environment inhibits salicylic acid desorption more than the other clays.  This trend is 

corroborated by mass loss results (Table 5.2).  The CaMMT sample containing 11% 

(w/w) salicylic acid lost 4.4 % mass in the 80 – 200 °C temperature range, which is less 

than the mass lost by the NaMMT sample containing the same amount of salicylic acid 
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(4.6 %).  Although 0.2% is a small difference, Table 5.2 also shows that the neat 

CaMMT sample lost more mass in this temperature range than neat NaMMT (1.1 vs. 

0.7 %) due to its higher water content.  Additionally, the CaMMT sample containing 

11% (w/w) salicylic acid lost 9.6 % of its mass between 200 and 650 °C, which is 

significantly more than the 8.2% lost by the NaMMT sample containing the same 

salicylic acid loading.  

 Figure 5.4 compares ion signal temperature profiles for salicylic acid (m/z 120; 

dotted line) and phenol (m/z 94; solid line) for various loadings of salicylic acid on (a) 

potassium, (b) sodium, and (c) calcium montmorillonites.  For each clay, intact salicylic 

acid was only detected in purge gas effluent from samples containing high loadings.  

Rather than desorbing, salicylic acid initially present at lower loadings was thermally 

stable to temperatures high enough to facilitate decomposition, producing phenol and 

carbon dioxide.  This suggests that adsorption sites that better stabilized salicylic acid 

molecules were the first to be occupied.  After those sites were filled, additional 

salicylic acid occupied less stable environments.  This behavior is similar to that 

observed for the benzoic acid/KMMT sample (Figure 5.1) and described by Nickels, et 

al.[67]  Interestingly, the number of high stability sites available for each clay appears 

to be different.  CaMMT has the largest decomposition to desorption ratio, whereas 

KMMT has the lowest, and NaMMT is intermediate.  This order 

(KMMT<NaMMT<CaMMT) is the same as the order of increasing interlayer spacing 

for the neat clays.  CaMMT has the largest interlayer spacing, which may allow greater 

steric flexibility for salicylic acid adsorption orientations.  In contrast, because neat 
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KMMT has the smallest interlayer spacing, fewer salicylic acid orientations would be 

sterically permitted. 

 
Figure 5.4 - MS profiles for salicylic acid (m/z 120; dashed line) and phenol (m/z 

94; solid line) for (a) KMMT, (b) NaMMT, and (c) CaMMT samples containing 

various loadings of salicylic acid. 
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The clay samples containing 11% (w/w) salicylic acid did not lose as much mass 

as expected, which was also observed for samples containing benzoic acid.  However, 

TG analysis in air confirmed that these samples contained 11% (w/w) salicylic acid 

(Appendix C).  Like the benzoic acid samples, clay samples containing salicylic acid 

appeared darker after heating, suggesting that residual char had formed.   

 Another interesting trend apparent in Figure 5.4 is that m/z 94 (e.g. phenol) ion 

signal temperature profile maxima shifted to higher temperatures for samples containing 

higher salicylic acid loadings.  It appears that higher salicylic acid concentrations 

provided a stabilizing effect, likely via hydrogen bonding.  Also, interactions between 

phenol molecules resulting from decomposition with salicylic acid molecules and other 

phenol molecules may have delayed desorption of phenol from the interlayer, which 

would shift m/z 94 ion signal temperature profile maxima to higher temperatures. 
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Figure 5.5 - MS ion signal intensity profiles representing water (m/z 18), acetic 

acid (m/z 60), salicylic acid (m/z 120), phenol (m/z 94), and carbon dioxide (m/z 44) 

measured during TG-MS analysis of a) KMMT, b) NaMMT, and c) CaMMT 

samples containing 15% acetylsalicylic acid. 
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Figure 5.5 shows TG-MS ion signal temperature profiles obtained for (a) 

KMMT, (b) NaMMT, and (c) CaMMT samples containing 15% (w/w) acetylsalicylic 

acid, which represents a molar content comparable to 11% (w/w) salicylic acid and 10% 

(w/w) benzoic acid.  Profiles for water (m/z 18), carbon dioxide (m/z 44), acetic acid 

(m/z 60), phenol (m/z 94), and salicylic acid (m/z 120) are shown.  Intact acetylsalicylic 

acid was not detected in TG effluent at any temperature.  Acetic acid evolution began 

for KMMT, NaMMT, and CaMMT samples at 75, 67, and 55 °C, and maximized at 

128, 112, and 108 °C, respectively.  Acetic acid was a decomposition product formed 

by a reaction between acetylsalicylic acid and water.  TG-MS analyses of samples 

containing acetic acid deposited on montmorillonites showed that it desorbs 

immediately upon heating.  Thus, the appearance of acetic acid in TG effluent signifies 

the occurrence of acetylsalicylic acid decomposition in the solid sample.  Salicylic acid 

is the other product of acetylsalicylic acid decomposition reactions.  It is less volatile 

than acetic acid and has a stronger affinity for the clay, therefore it did not immediately 

desorb from solid samples.  Acetic acid evolution maximized at about 90 °C for the 

KMMT and NaMMT samples, and at 94 °C for the CaMMT sample.  The fact that 

acetylsalicylic acid decomposition began at the lowest temperature for the CaMMT 

sample and at the highest temperature for the KMMT sample is most likely related to 

relative clay water content.  Water is a reactant in the decomposition reaction 

mechanism.  Therefore the presence of more interlayer water in CaMMT would shift 

the reaction equilibrium towards greater deacetylation.  KMMT contains less water, so 

greater energy is required for decomposition.  The interlayer water content of NaMMT 

is intermediate between KMMT and CaMMT, therefore decomposition reactions 
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require temperatures that are intermediate between those needed for KMMT and 

CaMMT.  Another possible explanation for the difference in acetylsalicylic acid 

decomposition temperatures could be the difference in width of clay interlayer space. 

CaMMT has the greatest interlayer distance, which could allow more flexibility for the 

transition states to maneuver in the hydrolysis reaction. In contrast, KMMT has the 

smallest interlayer space, which could sterically hinder the hydrolysis reaction from 

going forward. 

The shapes and maximum temperatures corresponding to m/z 94 and m/z 44 ion 

signal temperature profiles obtained for KMMT, NaMMT, and CaMMT samples were 

similar.  In fact, these profiles were also similar to those obtained for 11% (w/w) 

salicylic acid adsorbed on the same clays.  This suggests that phenol and carbon dioxide 

were formed at temperatures lower than those reflected by ion signal temperature 

profiles and that desorption maxima temperatures were determined by clay properties 

that were similar for the three montmorillonites.  Unlike results obtained for salicylic 

acid (Figure 5.3), the m/z 120 ion signal temperature profiles for samples comprised of 

acetylsalicylic acid adsorbed on KMMT and NaMMT consisted of overlapping 

contributions, suggesting at least two decomposition events occurred during sample 

heating.  The low temperature m/z 120 ion signal maxima occurred near 150 oC, which 

was about the same temperature as corresponding profiles obtained for samples 

containing salicylic acid (Figure 5.3).  Maxima for the higher temperature contribution 

occurred closer to 200 oC.  Results for the acetylsalicylic acid/KMMT sample (Figure 

5.5a) show that the m/z 120 ion signal temperature profile was significantly different 

from that obtained for the salicylic acid/KMMT sample (Figure 5.3a). Salicylic acid 
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began to evolve at 117 °C from the acetylsalicylic acid/KMMT sample compared to 100 

°C from the salicylic acid/KMMT sample.  Also, the salicylic acid/KMMT sample 

maximum evolution rate occurred at 153 °C, but the acetylsalicylic acid/KMMT sample 

profile contained two maxima, at 146 and 216 °C.  The m/z 120 ion signal temperature 

profile obtained for the sample containing CaMMT appeared to be a single peak with a 

maximum near 180 oC, which lies between the maxima observed for samples containing 

KMMT and NaMMT.  Apparently, although acetylsalicylic acid decomposition to form 

salicylic acid occurred by at least two steps for samples containing KMMT and 

NaMMT, this process occurred in a single step for the CaMMT sample.  This suggests 

that there were at least two adsorption environments for acetylsalicylic acid on KMMT 

and NaMMT that had significant potential energy differences but only one environment 

for CaMMT.  Results for the acetylsalicylic acid/CaMMT sample (Figure 5.5c) were the 

most similar to those for the salicylic acid/CaMMT sample (Figure 5.3c).  The m/z 120 

ion signal temperature profile maximized at 159 °C for salicylic acid and at 168 °C for 

acetylsalicylic acid, and desorption began at 80 °C from the acetylsalicylic acid loaded 

sample, compared to 115 oC for the sample containing salicylic acid.  The lower 

desorption onset temperature for the sample containing acetylsalicylic acid indicates 

that some salicylic acid decomposition products were unable to adopt thermally stable 

orientations, possibly because those adsorption sites were already occupied.   
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Figure 5.6 - M/z 60 (acetic acid) profiles for (a) KMMT, (b) NaMMT, and (c) 

CaMMT samples containing various loadings of acetylsalicylic acid. 
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Figure 5.6 shows m/z 60 (acetic acid) ion signal temperature profiles for (a) 

KMMT, (b) NaMMT, and (c) CaMMT samples containing varying acetylsalicylic acid 

loadings.  For the KMMT samples (Figure 5.6a), ion signal profiles began at about 75 

°C for the 15 and 7.4% (w/w) samples, and at about 95 and 130 °C for the 4.4 and 1.5% 

(w/w) samples, respectively.  The maximum rates of acetic acid evolution occurred at 

128, 133, 139, and 160 °C for the 15, 7.4, 4.4, and 1.5% (w/w) acetylsalicylic acid 

loaded samples, respectively.  Profiles for the NaMMT samples (Figure 5.6b) were 

similar to those for KMMT, but the m/z 60 profile began at a slightly lower temperature 

for the highest acetylsalicylic acid loading.  Acetic acid evolution was initially detected 

at 67, 88, 98, and 131 °C for samples containing 15, 7.4, 4.4, and 1.5% (w/w) 

acetylsalicylic acid, respectively.  The maximum acetic acid evolution rates occurred at 

112, 130, 134, and 160 °C for these samples.  The m/z 60 ion signal temperature profile 

began at lower temperature for the CaMMT sample containing 15% (w/w) 

acetylsalicylic acid (Figure 5.6c).  The m/z 60 ion signal temperature profiles for the 15, 

7.4, and 4.4% (w/w) samples started at 55, 85, and 107 °C, and maximized at 108, 130, 

and 153 °C, respectively.  The m/z 60 ion signal temperature profile for the 1.5% (w/w) 

acetylsalicylic acid/CaMMT sample was not detected above ambient noise.  

 The overlapping high temperature m/z 120 (salicylic acid) ion signal 

temperature profile component for the acetylsalicylic acid/KMMT sample (Figure 5.5a) 

coincides with a similar overlapping component in the m/z 60 (acetic acid) ion signal 

temperature profile, signifying that acetylsalicylic acid decomposition at these 

temperatures resulted in simultaneous production of salicylic acid and acetic acid.  The 

delay in acetylsalicylic acid decomposition to higher temperatures may be ascribed to 
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less water available for reaction in KMMT and NaMMT compared to CaMMT.  For all 

three acetylsalicylic acid/clay samples, some of the salicylic acid formed after 

acetylsalicylic acid decomposition was retained by the clay at sufficiently high 

temperatures that it decomposed to produce phenol and carbon dioxide, which was the 

primary decomposition mechanism for clay samples loaded with salicylic acid.  

 Figure 5.7 shows ion intensity temperature profiles for salicylic acid (m/z 120; 

dotted line) and phenol (m/z 94; solid line) for various loadings of acetylsalicylic acid 

on (a) potassium, (b) sodium, and (c) calcium montmorillonites.  The m/z 94 (phenol) 

evolution profiles were similar to those obtained for samples loaded with salicylic acid, 

suggesting that, at temperatures above 200 oC, there was little difference in adsorption 

behavior for salicylic acid directly adsorbed on clays compared to salicylic acid created 

in-situ by acetylsalicylic acid decomposition.  However, the salicylic acid evolution 

profiles (m/z 120) were different for samples loaded with acetylsalicylic acid vs. 

salicylic acid, especially at the highest loadings.  Interestingly, Figure 5.7 shows that 

salicylic acid desorbed from samples initially containing as little as 4.4% (w/w) 

acetylsalicylic acid.  In contrast, salicylic acid was retained by the clays until 

temperatures at which it decomposed when it was directly adsorbed.  For example, 

volatile salicylic acid was not detected for either the KMMT or NaMMT samples 

containing 3.4% (w/w) loadings (Figure 5.4a and Figure 5.4b), but the corresponding 

KMMT and NaMMT samples containing 4.4% (w/w) acetylsalicylic acid (Figure 5.7a 

and Figure 5.7b) exhibited m/z 120 ion signal intensity, although most of the salicylic 

acid remained on these samples to higher temperatures and subsequently decomposed to 

phenol and carbon dioxide.   
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Figure 5.7 - MS profiles for salicylic acid (m/z 120; dashed line) and phenol (m/z 

94; solid line) for (a) KMMT, (b) NaMMT, and (c) CaMMT samples containing 

various loadings of acetylsalicylic acid. 
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Additionally, salicylic acid evolution from the 5.6% (w/w) salicylic 

acid/CaMMT sample (Figure 5.4c) was not detected at any temperature.  However, 

salicylic acid was detected for acetylsalicylic acid/CaMMT samples containing 4.4 and 

7.4% (w/w) adsorbate (Figure 5.7c).  This may indicate that newly formed salicylic acid 

molecules were incapable of making sufficiently strong hydrogen bonds in the 

environment previously occupied by the acetylsalicylic acid molecules from which they 

originated.  Consequently, desorption was the more energetically favorable option.   

5.3 Summary 

Thermogravimetry-mass spectrometry was employed to characterize desorption 

of salicylic acid and acetylsalicylic acid from potassium, sodium, and calcium 

montmorillonites. Whereas salicylic acid exhibited behavior similar to benzoic acid in 

that the interlayer cation charge was the most significant factor affecting desorption 

temperature, acetylsalicylic acid behaviors were mostly dictated by clay water contents.  

In all cases, no intact adsorbate evolved from samples containing the lowest loadings, 

suggesting that without competition for adsorption sites, contaminants occupy the most 

energetically favored environments.  
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Chapter 6 : Variable Temperature Infrared Spectroscopy 

Investigations of Salicylic Acid and Acetylsalicylic Acid Desorption 

from Potassium, Sodium, and Calcium Montmorillonite Clays 

 

6.1 Introduction 

VT-DRIFTS was utilized to characterize salicylic acid and acetylsalicylic acid 

desorption from potassium, sodium, and calcium montmorillonite, as well as benzoic 

acid desorption from potassium montmorillonite. VT-DRIFTS provides information 

regarding solid-state sample changes during heating. It also allows characterization of 

local sample environment changes occurring throughout the heating process. 

 

6.2 Benzoic Acid Desorption from Potassium Montmorillonite 

Nickels, et al.,[70] utilized VT-DRIFTS to study desorption of benzoic acid 

from sodium and calcium montmorillonites. As a continuation of that study, desorption 

of benzoic acid from potassium montmorillonite was investigated by using VT-

DRIFTS. The size of potassium ions are a better match than sodium ions for clay 

inorganic oxide hexagonal voids, so less of the cation surface area is exposed for 

adsorbate interactions.[65, 66]  Although potassium and sodium cations are both 

monovalent, sodium ions are more polarizing.  Thus, water molecules in sodium ion 

hydration spheres should be more stable than those surrounding potassium ions.[64]  

The exchange of potassium ions for sodium ions in clay interlayer spaces reduces basal 

spacing, therefore less water can be accommodated by the clay.  Thus, adsorbate-clay 

effects related to water content may be apparent when comparing results obtained from 
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VT-DRIFTS analyses of adsorbate samples containing sodium and potassium 

montmorillonites.   

VT-DRIFTS measurements were made by heating benzoic acid/KMMT samples from 

ambient temperature to 400 oC.  Difference spectra employed for comparisons were 

calculated by subtracting a DRIFTS spectrum obtained at a specified temperature from 

a spectrum obtained at a higher temperature.  VT-DRIFTS spectral changes were 

identified by overlaying successively acquired spectra and monitoring band shape 

differences.  By using this method, several temperature ranges were identified over 

which band shape and location changes were minimal, but band intensity changes were 

apparent.  Since VT-DRIFTS spectra reveal changes occurring in the solid sample while 

heating, whereas TG-MS results represent volatiles evolved during heating, the 

temperature ranges identified by examining VT-DRIFTS difference spectra do not 

exactly match temperature ranges identified in TG-MS results. Spectral changes 

detected below 60 oC could be attributed solely to water desorption.  Those results are 

described in Chapter 4. VT-DRIFTS results obtained for the 10% benzoic acid/KMMT 

sample were similar between 60 and 137 oC, which constitutes the second temperature 

range investigated for this sample.  In fact, four temperature ranges were identified for 

this sample (Table 6.1). The integrated Kubelka-Munk function over 1650 – 1800 cm-1 

for spectra obtained for KMMT samples containing various loadings of benzoic acid is 

plotted vs. temperature in Figure 6.1. The temperature intervals shown in Table 6.1 are 

demarcated by dashed lines. 
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Table 6.1 – Temperature Intervals Identified in VT-DRIFTS Difference Spectra 

for 10% (w/w) Benzoic Acid/KMMT. 

 

Temperature Interval Identifier Temperature Interval (°C) 

Interval I RT – 60  

Interval II 60 – 137  

Interval III 137 – 198 

Interval IV 198 – 284  

 

 

Figure 6.1 – Integrated Kubelka-Munk function over 1650 – 1800 cm-1 in spectra 

obtained for KMMT samples containing various loadings of benzoic acid, plotted 

vs. temperature. Dashed lines denote temperature limits used for difference 

spectra calculations (Table 6.1). 
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temperature range. Based on this information, it would be expected that the total areas 

of positive and negative features over the 1650 – 1800 cm-1 range in the Temperature 

Interval I difference spectrum would be approximately equal. Figure 4.7 shows this to 

be correct. The 10% benzoic acid/KMMT sample showed a significant decrease in 

integrated peak area over Temperature Interval II. Spectra for samples containing lower 

loadings of benzoic acid also exhibited a decrease in peak area, but to a lesser extent. 

Thus, difference spectra over this temperature interval should primarily exhibit negative 

peaks due to loss of benzoic acid (Figure 6.2). Temperature Interval III is characterized 

by a continued loss of peak area, but less dramatic than Temperature Interval II. 

Temperature Interval IV also involves a net decline in peak area, but much less than for 

Temperature Intervals II and III. 

Figure 6.2 (top) shows VT-DRIFTS spectra obtained for a potassium 

montmorillonite sample containing 10% (w/w) benzoic acid measured at 60 and 137 °C.  

Figure 6.2 (bottom) shows the result of subtracting the spectrum measured at 60 °C 

from the 137 °C spectrum.  TG-MS analysis of this sample indicated that benzoic acid 

began to desorb from the clay near 117 °C, so the changes observed over the 60 to 137 

°C temperature range are due in part to benzoic acid desorption, although water loss 

was still a significant factor. The positive feature near 1000 cm-1 is due to changes in 

spectral features of the clay with heating. Similar features were observed in neat clay 

sample difference spectra over comparable temperature ranges, and at higher 

temperature ranges, so features similar to this appear in all of the clay samples 

presented here.    
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Figure 6.2 - VT-DRIFTS spectra for potassium montmorillonite containing 10% 

(w/w) benzoic acid over Temperature Interval II.  The overlaid spectra shown at 

the top were subtracted to produce the difference spectrum at the bottom. 

 

As shown in the difference spectrum, a loss of C=O stretching vibration band 

intensity occurred at 1689 cm-1, which is higher than was obtained for samples 
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ranges.[70] In contrast, other negative peaks in Figure 6.2 appeared at lower 

wavenumbers than they did in spectra obtained for NaMMT and CaMMT samples. The 

O-H in-plane bending vibrations appeared at 1414 and 1250 cm-1, which are lower than 
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the benzoic acid monomer.[117-119] The C=O stretching vibration at 1689 cm-1 is 

lower than that of the monomer, but higher than observed for the dimer.[108, 117-119] 

The fact that these band locations are more similar to values reported for the benzoic 

acid monomer than the benzoic acid/NaMMT and benzoic acid/CaMMT samples may 

be the result of the KMMT lower water content. More hydrogen bonding partners 

afforded by the higher water content in NaMMT and CaMMT would make the benzoic 

acid environment more like the dimer configuration. The negative aromatic ring C-C 

stretching vibration band at 1606 cm-1, on the other hand, occurs at about the same 

location as was previously reported for benzoic acid/CaMMT and benzoic 

acid/NaMMT samples.  This is consistent with the conclusion reached by Nickels, et 

al., that the aromatic ring was not significantly affected by the interlayer cation.[70]  

Benzoic acid/KMMT VT-DRIFTS spectra obtained at 137 and 198 oC are 

shown in Figure 6.3 (top) along with the calculated difference spectrum (bottom). 

Relative to the Temperature Interval II difference spectrum, the negative C=O 

stretching vibration band blue shifted to 1714 cm-1, whereas one of the O-H in-plane 

bending vibrations red shifted to 1405 cm-1, and the other O-H in-plane bending 

vibration remained at 1239 cm-1. The aromatic ring C-C stretching vibration band 

wavenumber shifted slightly to lower energy, appearing at 1602 cm-1. These trends are 

consistent with those observed for NaMMT and CaMMT samples containing benzoic 

acid at these temperatures, although the O-H bending vibrations occur at lower 

wavenumber and the C=O stretching vibration band shifts to higher wavenumber for the 

benzoic acid/KMMT sample compared to the NaMMT and CaMMT samples.[70] 
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Figure 6.3 - VT-DRIFTS spectra for potassium montmorillonite containing 10% 

(w/w) benzoic acid over Temperature Interval III.  The overlaid spectra shown at 

the top were subtracted to produce the difference spectrum at the bottom. 
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Figure 6.4 - VT-DRIFTS spectra for potassium montmorillonite containing 10% 

(w/w) benzoic acid over Temperature Interval IV.  The overlaid spectra shown at 

the top were subtracted to produce the difference spectrum at the bottom. 

 

 

6.3 Salicylic Acid Desorption from Potassium, Sodium, and Calcium 

Montmorillonite Clays 

Figure 6.5 shows ambient temperature DRIFTS spectra for samples containing 

11% (w/w) salicylic acid with (a) KMMT, (b) NaMMT, (c) CaMMT, and (d) silver 

powder. The inset shows an expansion of the salicylic acid C=O stretching and O-H in-

plane bending vibration regions, where the bands associated with salicylic acid are most 

easily distinguished from clay absorbances.  Salicylic acid absorbance band shapes and 

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

5001000150020002500300035004000

K
u

b
e

lk
a

-M
u

n
k

 F
u

n
c

ti
o

n

Wavenumber (cm-1)

137  C - 81  C

1691

1413

1606

1249

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5001000150020002500300035004000

198  C

284  C

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

5001000150020002500300035004000

Wavenumber (cm-1)

284  C - 198  C

1712

1603

1299



121 

relative intensities varied due to strong interactions with the clays, but were less intense 

than bands in the salicylic acid/silver powder spectrum, due to dilution.  The salicylic 

acid/silver powder sample contained 11% (w/w) adsorbate, whereas clay samples 

containing 11% (w/w) salicylic acid were further diluted 5:95 in silver powder, so they 

contained only 0.55% (w/w) salicylic acid.  The salicylic acid band that is most easily 

discerned corresponds to the C=O stretching vibration, which appears near 1667 cm-1 

for samples containing salicylic acid adsorbed on clays, and near 1659 cm-1 when 

salicylic acid was mixed with silver powder.  The salicylic acid/silver powder sample 

spectrum contains an absorbance at 1673 cm-1, which can also be attributed to the C=O 

stretching vibration.  Denisov, et al.,[105] reported the appearance of a peak at 1697 

cm-1, which they assigned to the salicylic acid monomer in dilute carbon tetrachloride 

solutions. In more concentrated solutions, a peak associated with the dimer at 1660 cm-1 

dominated.  Similar results were reported by Murray, et al.[120] It is likely that dilution 

in silver powder caused a similar effect,[121] and that some of the salicylic acid was in 

the dimer form and some was in the monomer form, which would account for the 

presence of two C=O stretching vibration bands. Because the C=O stretching vibration 

for salicylic acid/clay samples appeared near 1667 cm-1, it is likely that salicylic acid 

existed as a monomer in those samples, but that it formed hydrogen bonds with 

interlayer water molecules that reduced the C=O stretching vibration wavenumber. This 

effect is similar to that previously reported for a benzoic acid/clay sample.[70]  
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Figure 6.5 – Ambient temperature DRIFTS spectra of samples containing 11% 

(w/w) salicylic acid with (a) KMMT, (b) NaMMT, (c) CaMMT, and (d) silver 

powder. Inset shows expansion of the 1200 – 1850 cm-1 wavenumber range. 
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that the C=O stretching vibration was less affected by hydrogen bonding in the CaMMT 

environment compared to the KMMT and NaMMT environments.  

 

Table 6.2 – Vibration band assignments for salicylic acid. Assignments and 

salicylic acid dimer values taken from reference [122]. ν = stretching vibration, δ = 

in-plane bending vibration 

 

Vibration 

Assignment[122] 

Dimer[122] salicylic 

acid/silver 

powder 

salicylic 

acid/ 

KMMT 

salicylic 

acid/ 

NaMMT 

salicylic 

acid/ 

CaMMT 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

 

1658 

 

1659 

 

1667 

 

1666 

1668 

(shoulder 

near 1683) 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

 

1612 

 

1609 

 

1617 

 

1617 

 

1615 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1579 

 

1577 

 

1590 

(shoulder) 

 

1590 

(shoulder) 

 

1590 

(shoulder) 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1484 

 

1480 

 

1486 

 

1486 

 

1486 

δ(O-H)carboxyl + 

δ(O-H)phen + 

δ(C-H) 

 

1466 

 

1464 

 

1471 

 

1471 

 

1467 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

1444 

 

1443 

 

1444 

 

1448 

 

~1455 

(shoulder) 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1384 

 

1383 

 

1390 

 

1386 

 

 

1388 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(O-H)phen 

 

1325 

 

1322 

 

1343 

(weak) 

 

1344 

(weak) 

 

~1343 

(shoulder) 

ν(Ph-OH) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

1296 

 

1298 

 

1293 

(shoulder) 

 

1293 

(shoulder) 

~1295 

(weak 

shoulder) 

ν(C=C) +  

δ(O-H)carboxy + 

δ(C-H) 

 

1249 

 

1238 

 

N/A 

 

N/A 

 

N/A 

δ(O-H)phen + 

δ(C-H) 

 

 

1211 

 

1210 

 

N/A 

 

N/A 

 

N/A 
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The location of the C=O stretching vibration band at 1659 cm-1, as well as the 

other absobance bands found in the salicylic acid/silver powder spectrum, are consistent 

with those reported by Boczar, et al., for the salicylic acid dimer.[122]  They used 

theoretical modeling to aid in vibration assignments. Table 6.2 lists these assignments 

and their band location measurements, and provides a comparison to our results for 

salicylic acid diluted in silver powder, and also adsorbed on potassium, sodium, and 

calcium montmorillonites. Only the C=O stretching and O-H in-plane bending regions 

are included in the table, because they undergo the greatest changes when salicylic 

acid/clay samples are heated. It is interesting that in this region of the salicylic acid 

infrared spectrum, every absorbance is attributed to a combination of at least two, but 

usually three different motions of the molecule. It seems likely that intramolecular 

hydrogen bonding provides a more rigid structure, so that when one part of the 

molecule stretches or bends, other parts vibrate as well. This is not the case for benzoic 

acid or acetylsalicylic acid, which makes salicylic acid unique for studies described 

here.  

Salicylic acid/clay samples were heated at 5 °C/minute from ambient 

temperature to 400 °C, and spectra were collected every minute. Successive spectra 

were compared in order to identify significant transitions which occurred during 

heating. The identified transitions were used to demarcate temperature ranges of 

interest. Since VT-DRIFTS spectra reveal changes occurring in the solid sample while 

heating, whereas TG-MS results represent volatiles evolved during heating, the 

temperature ranges identified by examining VT-DRIFTS difference spectra do not 

exactly match temperature ranges identified in TG-MS results. Spectra collected below 
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60 °C show effects of water loss only, and are discussed in Chapter 4. Above 60 °C, 

four temperature intervals were identified in VT-DRIFTS spectra for 11% salicylic 

acid/clay samples (Table 6.3). Figure 6.6 shows the integrated Kubelka-Munk function 

obtained from successive spectra over the 1650 – 1800 cm-1 range for (a) KMMT, (b) 

NaMMT, and (c) CaMMT samples containing various loadings of salicylic acid, plotted 

vs. temperature. Dashed lines denote interval temperature limits used for difference 

spectra calculations (Table 6.3). 

 

Table 6.3 - Temperature Intervals Identified in VT-DRIFTS Difference Spectra 

for 11% (w/w) Salicylic Acid/Clay Samples. 

 

Temperature Interval Identifier Temperature Interval (°C) 

KMMT NaMMT CaMMT 

Interval I RT – 60  RT – 60 RT – 61 

Interval II 60 – 116  60 – 101  61 – 112 

Interval III 116 – 137 101 – 132  112 – 163  

Interval IV 137 – 178  132 – 178  163 – 194 

Interval V 178 – 264  178 – 275  194 – 264  
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Figure 6.6 – Integrated Kubelka-Munk function obtained from spectra over the 

1650 – 1800 cm-1 range for (a) KMMT, (b) NaMMT, and (c) CaMMT samples 

containing various loadings of salicylic acid, plotted vs. temperature. Dashed lines 

denote temperatures used for difference spectra calculations over selected 

temperature intervals (Table 6.3). 
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The integrated peak areas changed little over Temperature Interval I, although 

absorptivity increased slightly for the 11% samples. Figure 4.10, Figure 4.11, and 

Figure 4.12 show the difference spectra for salicylic acid/clay samples calculated over 

the 1650 – 1800 cm-1 range, and consistent with Figure 6.6, positive peak areas were 

slightly greater than negative peak areas. The integrated peak areas of the samples 

containing 11% salicylic acid show a steep increase over Temperature Interval II, 

indicating a marked increase in absorptivity due to local sample environment changes. 

Integrated areas decreased again below 100 °C for KMMT and NaMMT samples 

containing 11% salicylic acid, and at 100 °C for CaMMT containing 11% salicylic acid. 

TG-MS results for 11% salicylic acid/clay samples diluted in silver powder (5:95, w/w) 

are shown in Appendix D. Figures D.2 – D.4 show that salicylic acid began to desorb 

from KMMT and NaMMT near 100 °C, and from CaMMT above 100 °C.  The decline 

in integrated peak area began at temperatures slightly lower than those required for 

salicylic acid desorption. However, temperature measurement differences for VT-

DRIFTS and TG-MS could be the cause of these discrepancies. Temperature Intervals 

III, IV, and V all involve declines in peak area due to continued salicylic acid loss. 

Figure 6.7 shows overlaid VT-DRIFTS spectra obtained for the 11% salicylic 

acid/KMMT sample collected at 60 and 116 °C (top). This temperature range is 

characterized by water loss and the beginning of salicylic acid desorption, which is 

reflected in the difference spectrum negative bands representing loss of water and 

salicylic acid. Figure 6.8 and Figure 6.9 show VT-DRIFTS results obtained over 

corresponding temperature ranges (Temperature Interval II) for 11% salicylic 

acid/NaMMT (Figure 6.8) and 11% salicylic acid/CaMMT (Figure 6.9) samples.  
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Figure 6.7 - VT-DRIFTS spectra for potassium montmorillonite containing 11% 

(w/w) salicylic acid obtained over Temperature Interval II.  The overlaid spectra 

shown at the top were subtracted to produce the difference spectrum at the 

bottom. 
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Figure 6.8 - VT-DRIFTS spectra for sodium montmorillonite containing 11% 

(w/w) salicylic acid obtained over Temperature Interval II.  The overlaid spectra 

shown at the top were subtracted to produce the difference spectrum at the 

bottom. 
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Figure 6.9 - VT-DRIFTS spectra for calcium montmorillonite containing 11% 

(w/w) salicylic acid obtained over Temperature Interval II.  The overlaid spectra 

shown at the top were subtracted to produce the difference spectrum at the 

bottom. 
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KMMT sample has a more distinct peak at 3722 cm-1. These positive peaks represent 

the stretching vibrations of inorganic oxide hydroxyl groups that lost hydrogen bonding 

partners as a result of sample heating. The broad negative feature associated with loss of 

O-H stretching vibration band intensity due to water and salicylic acid loss has a 

minimum located near 3200 cm-1 for KMMT and NaMMT samples. The corresponding 

feature for the CaMMT sample is broader and the negative band minimum occurs at a 

higher wavenumber.  

 

Figure 6.10 - Expansion of the O-H stretching region of difference spectra for 11% 

salicylic acid on KMMT (left), NaMMT (center), and CaMMT (right). 
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Figure 6.11 – Expansion of the C=O stretching and O-H in-plane bending region of 

difference spectra for 11% salicylic acid on KMMT (left), NaMMT (center), and 

CaMMT (right). 
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in C=O intensity for salicylic acid and for benzoic acid below 60 °C are below the 

values reported for the benzoic acid monomer, but above those reported for the salicylic 

acid monomer[105] and observed for salicylic acid diluted in silver powder (Figure 

6.5). Perhaps in this environment, salicylic acid intramolecular hydrogen bonding has 

less of an effect on the C=O stretching vibration frequency, causing it to be closer to 

that observed for benzoic acid in a similar environment. However, as shown in Figure 

1.5, difference spectra maxima may appear at significantly higher wavenumbers than 

the band maximum that produces them, which may explain why the positive peaks in 

Figure 6.11 are higher than expected. One interesting trend is that the location of the 

salicylic acid C=O stretching vibration band loss was less dependent on the cation than 

the benzoic acid C=O stretching vibration band intensity loss. It may be that in the C=O 

group local environment before water loss, salicylic acid intramolecular hydrogen 

bonding reduced the effect of the cation on the C=O stretching vibration. Alternatively, 

salicylic acid molecules may not be oriented with the C=O group pointed directly at the 

cation, as predicted for benzoic acid. 

Figure 6.12 shows O-H stretching region difference spectra for KMMT (left), 

NaMMT (center), and CaMMT (right) containing 11% salicylic acid obtained over 

Temperature Interval III. The low temperature limits in Figure 6.12 coincided with the 

high temperature limits of Temperature Interval II (Figure 6.7-Figure 6.11).  Difference 

spectra shown in Figure 6.12 are  similar to those in Figure 6.10, likely because the two 

primary mechanisms responsible for O-H stretching vibration band intensity loss in this 

temperature range were water desorption and salicylic acid desorption, as in the 

previous temperature range. The bandwidths are somewhat narrower, and shifted to 
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slightly higher wavenumbers in Figure 6.12 than in Figure 6.10, especially for the 

CaMMT sample spectrum, which is due to reduced water content in the clay interlayer 

over this temperature range.  

 

Figure 6.12 – Expansion of the O-H stretching region of difference spectra for 11% 

salicylic acid on KMMT (left), NaMMT (center), and CaMMT (right). 

 

 

Figure 6.13 – Expansion of C=O stretching and O-H in-plane bending region of 

difference spectra for 11% salicylic acid on KMMT (left), NaMMT (center), and 

CaMMT (right). 
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Figure 6.13 compares the C=O stretching and O-H in-plane bending vibration 

band regions for KMMT (left), NaMMT (center), and CaMMT (right) samples 

containing 11% salicylic acid obtained over Temperature Interval III. Difference spectra 

in Figure 6.13 for samples containing KMMT and NaMMT are similar, and are also 

similar to difference spectra shown for Temperature Interval II. The primary difference 

relative to the previous temperature range is that the loss of C=O stretching vibration 

band intensities appeared at slightly higher wavenumbers. Also, the C=O stretching 

vibration band intensity gains were not as prominent as they were in the previous 

temperature range, and they appeared at significantly higher wavenumbers. Results 

obtained for the salicylic acid/CaMMT sample were significantly different from the 

other two clays. Interestingly, the upper temperature of this interval was higher for 

CaMMT (163 °C) than for the other two samples (132 and 137 °C). TG-MS results 

indicated that the maximum rates of salicylic acid evolution occurred near 150 °C for 

CaMMT and near 140 °C for KMMT and NaMMT, which are included within the 

temperature range for CaMMT, but not for the other two samples. Temperature 

intervals for difference spectra were selected based on transitions observed in VT-

DRIFTS spectra, without regard to TG-MS results, so the intervals selected are based 

on changes in the solid sample that do not necessarily result in the evolution of a 

gaseous product. However, the CaMMT sample lost significantly less salicylic acid by 

desorption than the other two samples, because a greater fraction of salicylic acid 

remained on CaMMT until it decomposed. The negative band associated with C=O 

stretching vibration band intensity loss for the CaMMT sample shifted to slightly higher 

wavenumbers (1668 vs. 1662 cm-1 in Figure 6.13 and Figure 6.11), but the loss at 1668 
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cm-1 appeared as a shoulder on the more intense loss at 1687 cm-1, suggesting that the 

majority of salicylic acid molecules lost during this temperature range were less 

strongly hydrogen bonded. The gain in C=O stretching vibration band intensity 

maximized at 1748 cm-1, which was 20 cm-1 higher than in the 61-112 oC temperature 

range. The remaining features of the CaMMT difference spectrum for this temperature 

range are similar to those obtained for Temperature Interval II, although some bands 

appear at slightly lower wavenumbers. This is consistent with previous observations 

that bending vibrations lose energy when hydrogen bonding partners are lost, whereas 

stretching vibrations gain energy.[41]  

Figure 6.14 shows VT-DRIFTS difference spectra O-H stretching regions for 

KMMT (left), NaMMT (center), and CaMMT (right) samples containing 11% salicylic 

acid corresponding to Temperature Interval IV. Negative features attributed to the loss 

of O-H stretching vibration band intensity were shifted to higher wavenumbers in this 

temperature range compared to lower temperature ranges, indicating that the lost O-H 

groups were involved in weaker hydrogen-bonding than those lost at lower 

temperatures, most likely because less water was present for hydrogen bonding. TG-MS 

results indicated that water evolution did not reach a minimum rate until 253 °C for the 

KMMT and NaMMT samples, and 260 °C for the CaMMT sample, so water loss was 

still occurring during this temperature interval.  
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Figure 6.14 – Expansion of O-H stretching region of difference spectra for 11% 

salicylic acid on KMMT (left), NaMMT (center), and CaMMT (right). 

 

 

Figure 6.15 – Expansion of C=O stretching and O-H in-plane bending region of 

diference spectra for 11% salicylic acid on KMMT (left), NaMMT (center), and 

CaMMT (right). 
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detected at lower temperature ranges, although minima for C=O stretching vibration 

band intensity losses continued to shift to higher wavenumbers, and most of the O-H 

bending vibrations shifted to lower wavenumbers. Difference spectra negative bands at 

1393 cm-1 for the KMMT sample and at 1398 cm-1 for the NaMMT sample were more 

prominent than they were in lower temperature difference spectra, where they were only 

visible as shoulders. The CaMMT sample spectrum contained the same two overlapping 

contributions for C=O stretching vibration band intensity loss as were found in the 112-

163 oC range (1668 and 1687 cm-1), but in this temperature range, 1668 cm-1 

corresponded to the band minimum, and 1687 cm-1 was a shoulder, indicating that more 

of the salicylic acid molecules lost were more strongly hydrogen bonded than in the 

112-163 oC temperature range. In fact, less strongly hydrogen bonded salicylic acid 

molecules would be expected to desorb at lower temperatures. 

Figure 6.16 shows VT-DRIFTS difference spectra O-H stretching vibration band 

regions for KMMT (left), NaMMT (center), and CaMMT (right) samples containing 

11% salicylic acid over the highest temperature range that yielded significant infrared 

band changes (Temperature Interval V). Although samples were heated to 400 °C, 

salicylic acid absorptions in spectra collected above the cutoff temperatures listed in 

Figure 6.16 were very broad and weak, and changes were very difficult to assign. 

Figure 6.16 shows that the O-H stretching vibration band intensity loss was shifted to 

higher wavenumbers in this temperature range compared to lower temperatures, likely 

due to the lack of hydrogen bonding partners. TG-MS results revealed that the evolution 

rate of intact salicylic acid steadily decreased over this temperature range, whereas the 

evolution rate of phenol, a decomposition product of salicylic acid, increased rapidly, 
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maximizing near 245 °C for KMMT and NaMMT samples and at 259 °C for the sample 

containing CaMMT.  

 

 

Figure 6.16 – Expansion of O-H stretching region of difference spectra region for 

11% salicylic acid on KMMT (left), NaMMT (center), and CaMMT (right). 
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increasing temperature are summarized for KMMT, NaMMT, and CaMMT samples in 

Table 6.4, Table 6.5, and Table 6.6, respectively.  

 

 

Figure 6.17 – Expansion of C=O stretching and O-H in-plane bending region of 

difference spectra for 11% salicylic acid on KMMT (left), NaMMT (center), and 

CaMMT (right). 
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Table 6.4 - Comparison of salicylic acid absorbance band locations over selected 

temperature intervals for 11% salicylic acid/KMMT. For temperature ranges, the 

wavenumbers shown represent the position of a negative peak in the difference 

spectrum. Vibration assignments taken from reference [122]. 

 

Vibration 

Assignment[122] 

Ambient 

Temperature 

116 –  

60 °C 

137 –  

116 °C 

178 –  

137 °C 

264 –  

178 °C 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

 

1667 

 

1666 

 

1668 

 

1671 

 

1678 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

 

1617 

 

1621 

 

1618 

 

1618 

 

1617 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1590 

(shoulder) 

 

1593 

 

1591 

 

1589 

 

1587 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1486 

 

1489 

 

1487 

 

1486 

 

1483 

δ(O-H)carboxyl + 

δ(O-H)phen + 

δ(C-H) 

 

1471 

 

1471 

 

1471 

 

1468 

 

1467 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

1444 

 

1442 

 

1435 

 

1428 

 

N/A 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1390 

 

N/A 

 

1397 

 

1393 

 

1390 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(O-H)phen 

 

1343 

(weak) 

 

1333 

 

 

N/A 

 

N/A 

 

1344 

ν(Ph-OH) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

1293 

(shoulder) 

 

1291 

 

1282 

 

N/A 

 

N/A 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

N/A 

 

1239 

 

1232 

 

1236 

 

1240 
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Table 6.5 - Comparison of salicylic acid absorbance band locations over selected 

temperature intervals for 11% salicylic acid/NaMMT. For temperature ranges, the 

wavenumbers shown represent the position of a negative peak in the difference 

spectrum. Vibration assignments taken from reference [122]. 

 

Vibration 

Assignment[122] 

Ambient  

Temperature 

101 –  

60 °C 

132 –  

101 °C 

178 –  

132 °C 

275 –  

178 °C 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

 

1666 

 

1664 

 

1667 

 

 

1669 

 

1675 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

 

1617 

 

1623 

 

1619 

 

1618 

 

1619 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1590 

(shoulder) 

 

1594 

 

1591 

 

1590 

 

1586 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1486 

 

1491 

 

1487 

 

1487 

 

1484 

δ(O-H)carboxyl + 

δ(O-H)phen + 

δ(C-H) 

 

1471 

 

1472 

 

1471 

 

1470 

 

1467 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

1448 

 

1445 

 

1440 

 

1430 

 

1423 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1386 

 

 

N/A 

 

N/A 

 

N/A 

 

1394 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(O-H)phen 

 

1344 

(weak) 

 

N/A 

 

N/A 

 

N/A 

 

1351 

ν(Ph-OH) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

1293 

(shoulder) 

 

1293 

 

1290 

 

1286 

 

1279 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

N/A 

 

1241 

 

1238 

 

1240 

 

1238 
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Table 6.6 - Comparison of salicylic acid absorbance band locations over selected 

temperature intervals for 11% salicylic acid/CaMMT. For temperature ranges, the 

wavenumbers shown represent the position of a negative peak in the difference 

spectrum. Vibration assignments are taken from reference [122]. 

 

Vibration 

Assignment[122] 

Ambient  

Temperature 

112 –  

61 °C 

163 –  

112 °C 

194 –  

163 °C 

264 –  

178 °C 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

1668 

(shoulder 

near 1683) 

 

1662 

1687 

(shoulder 

at 1668) 

1668 

(shoulder 

at 1687) 

 

1684 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

 

1615 

 

1623 

 

1618 

 

 

1618 

 

1615 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1590 

(shoulder) 

 

1592 

 

1587 

 

1583 

 

N/A 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1486 

 

1491 

 

1487 

 

1486 

 

1483 

δ(O-H)carboxyl + 

δ(O-H)phen + 

δ(C-H) 

 

1467 

 

1473 

 

1471 

 

1471 

 

1468 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

~1455 

(shoulder) 

 

1441 

 

1433 

 

1430 

 

1414 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1388 

 

1398 

 

1392 

 

1397 

 

N/A 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(O-H)phen 

 

~1343 

(shoulder) 

 

N/A 

 

N/A 

 

N/A 

 

1346 

ν(Ph-OH) +  

δ(O-H)carboxyl + 

δ(C-H) 

~1295 

(weak 

shoulder) 

 

1287 

 

1280 

 

1281 

 

1277 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

N/A 

 

1235 

 

 

1239 

 

1241 

 

1248 

 

In general, C=O stretching vibrations shifted to higher wavenumbers, and O-H 

in-plane bending vibrations shifted to slightly lower wavenumbers as continued sample 

heating resulted in more and more extensive sample dehydration, consistent with 
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observations for benzoic acid samples.[70] For benzoic acid, this indicated that at low 

temperatures, prior to water desorption, adsorbate vibrations were more similar to those 

for the benzoic acid dimer, whereas the loss of hydrogen-bonding partners resulted in 

vibrations more similar to the monomer. To determine if this trend also occurred for 

salicylic acid, density-functional theory calculations were performed at the B3LYP/cc-

pVTZ level and were compared to computational results reported by Boczar, et al.[122] 

(Table 6.7). Calculated vibrational frequencies were scaled by 0.9764.  Although the 

results for the salicylic acid monomer were more similar to those for the dimer than the 

corresponding values for benzoic acid, the trends were similar. The C=O stretching 

vibration of the monomer appeared at a higher wavenumber, whereas several of the O-

H in-plane bending vibrations appeared at lower wavenumbers for the monomer (Table 

6.7). Some of the vibrations, especially ring stretching vibrations, were not significantly 

different between the monomer and dimer. These results confirm that salicylic acid/clay 

sample dehydration has a similar effect on the salicylic acid environment to that of 

benzoic acid adsorbate. 
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Table 6.7 - Vibration band assignments for salicylic acid. Assignments and 

calculated salicylic acid dimer values were taken from reference [122]. Vibrational 

frequencies for the salicylic acid dimer and monomer were calculated at the 

B3LYP/cc-pVTZ level and scaled by 0.9764. ν = stretching vibration, δ = in-plane 

bending vibration 

 

Vibration 

Assignment[122] 

 

Dimer[122] 

 

Dimer 

 

Monomer 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

 

1655 

 

1655 

 

1691 

ν(C=O) + 

ν(C=C) +  

δ(O-H)carboxyl 

 

1614 

 

1614 

 

1618 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1580 

 

1580 

 

1584 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1486 

 

1487 

 

1489 

δ(O-H)carboxyl + 

δ(O-H)phen + 

δ(C-H) 

 

1459 

 

1458 

 

1461 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

1449 

 

1448 

 

1404 

ν(C=C) +  

δ(O-H)phen + 

δ(C-H) 

 

1380 

 

1381 

 

1365 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(O-H)phen 

 

1330 

 

1330 

 

1323 

ν(Ph-OH) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

1315 

 

1315 

 

1274 

ν(C=C) +  

δ(O-H)carboxyl + 

δ(C-H) 

 

1247 

 

1247 

 

N/A 

δ(O-H)phen + 

δ(C-H) 

 

 

1224 

 

1227 

 

1229 
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6.4 Acetylsalicylic Acid Desorption from Potassium, Sodium, and Calcium 

Montmorillonite Clays 

In a similar manner described for analysis of salicylic acid/clay samples, VT-

DRIFTS studies were employed to characterize temperature-dependent changes that 

occurred in KMMT, NaMMT, and CaMMT samples containing 15% (w/w) 

acetylsalicylic acid. Figure 6.18 shows ambient temperature DRIFTS spectra of 15% 

acetylsalicylic acid adsorbed on (a) KMMT, (b) NaMMT, (c) CaMMT, and (d) silver 

powder. The inset shows an expansion of the acetylsalicylic acid C=O stretching and O-

H in-plane bending regions, where the peaks associated with acetylsalicylic acid are 

most easily distinguished from the clay absorbances. Like salicylic acid, infrared 

absorptions corresponding to acetylsalicylic acid were significantly muted when 

adsorbed on the clays.  The most prominent acetylsalicylic acid/clay spectral features 

corresponded to the C=O stretching vibrations of  the ester and carboxylic acid groups, 

which appeared at 1753 and 1688 cm-1, respectively, for the silver-diluted sample. 

When adsorbed on clays, the carboxylic acid C=O stretching vibration band is located at 

1710 cm-1. The ester C=O stretching vibration band was not clearly visible in the 

CaMMT sample spectrum, but may be red shifted due to hydrogen bonding, so that it 

overlaps the broad 1710 cm-1 feature. Shoulders at 1740 and 1737 cm-1 represent the 

ester C=O stretching vibration bands in spectra obtained for KMMT and NaMMT 

samples, respectively.  
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Figure 6.18 - DRIFTS spectra of samples containing 15% (w/w) acetylsalicylic acid 

with (a) KMMT, (b) NaMMT, (c) CaMMT, and (d) silver powder. Inset shows 

expansion of the 1300 – 1900 cm-1 wavenumber range. 

 

Absorbance band locations in acetylsalicylic acid/silver powder spectral features 

are consistent with values reported by Boczar, et al., for the acetylsalicylic acid 

dimer.[123] They used theoretical modeling to assign these acetylsalicylic acid 

vibrations. Table 6.8 shows their band assignments and measured values, and provides a 

comparison to results obtained for samples of acetylsalicylic acid diluted in silver 

powder, and adsorbed on potassium, sodium, and calcium montmorillonites. Only the 

C=O stretching and O-H in-plane bending regions are included in the table, because 

those bands changed the most when samples were heated. 
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Table 6.8 – Vibration band assignments for acetylsalicylic acid (aspirin). 

Assignments and aspirin dimer absorbance values taken from reference [123].  ν = 

stretching vibration, δ = in-plane bending vibration 

Vibration 

Assignment[123] 

Aspirin 

Dimer[123] 

Aspirin/ 

Silver 

Powder 

Aspirin/ 

KMMT 

Aspirin/ 

NaMMT 

Aspirin/ 

CaMMT 

ν(C=O)ester 1754 1753 1740 1737 N/A 

ν(C=O)carboxyl + 

δ(O-H) 

1691 1688 1710 1710 1710 

ν(C=C) 1606 1604 1610 1610 1610 

ν(C=C) 1575 1574 ~1582 

(weak) 

~1581 

(weak) 

~1582 

(weak) 

ν(C=C) + δ(C-H) 

+ δ(O-H) 

 

1483 

 

1482 

 

1488 

 

1490 

 

1488 

ν(C=C) + δ(C-H) 

+ δ(CH3) 

 

1457 

 

1456 

 

1457 

 

1458 

 

1459 

δ(CH3) 1435 1434 ~1431  

(very 

weak) 

N/A N/A 

δ(O-H) 1420 1417 ~1412 

(shoulder) 

1413 ~1411 

(shoulder) 

δ(CH3) 1370 1369 1376 1378 1378 

δ(O-H) + 

ν(C=C) 

1306 1304 ~1305  

(shoulder) 

~1301 

(shoulder) 

~1305 

(shoulder) 

 

Like salicylic acid/clay samples, samples containing acetylsalicylic acid were 

heated at 5 °C/minute from ambient temperature up to 400 °C, and spectra were 

collected every minute. Successive spectra were compared in order to identify 

significant transitions that occurred during heating. The identified transitions were used 

to demarcate temperature ranges of interest. Spectra collected below 60 °C show effects 

of water loss only, and are discussed in Chapter 4. Above 60 °C, five more temperature 

intervals were identified in VT-DRIFTS spectra for 15% acetylsalicylic acid/clay 

samples (Table 6.9). 
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Table 6.9 - Temperature Intervals Identified in VT-DRIFTS Difference Spectra 

for 15% (w/w) Acetylsalicylic Acid/Clay Samples. 

 

Temperature Interval Identifier Temperature Interval (°C) 

KMMT NaMMT CaMMT 

Interval I RT – 60  RT – 60  RT – 61  

Interval II 60 – 91  60 – 96  61 – 71 

Interval III 91 – 137 96 – 142  71 – 107  

Interval IV 137 – 157  142 – 168  107 – 173 

Interval V 157 – 218  168 – 198  173 – 193  

Interval VI 218 – 264  198 – 254  193 – 280  
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Figure 6.19 – Integrated Kubelka-Munk function obtained from spectra over the 

1650 – 1800 cm-1 range for (a) KMMT, (b) NaMMT, and (c) CaMMT samples 

containing various loadings of acetylsalicylic acid, plotted vs. temperature. Dashed 

lines denote cutoff temperatures used for difference spectra calculations (Table 

6.9). 
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 Figure 6.19 shows the integrated Kubelka-Munk function over the 1650 – 1800 

cm-1 range in spectra obtained for (a) KMMT, (b) NaMMT, and (c) CaMMT samples 

containing various loadings of acetylsalicylic acid, plotted vs. temperature. Dashed lines 

denote temperatures used for difference spectra calculations over the temperature 

intervals indicated in Table 6.9.  Integrated peak areas do not change significantly over 

Temperature Interval I. Figure 4.13, Figure 4.14, and Figure 4.15 show significant 

positive and negative peaks, indicating significant changes to the local sample 

environment due to dehydration. TG-MS results (Figures D.5-D.7) indicated that 

acetylsalicylic acid did not decompose below 60 °C. Above 60 °C, integrated peak areas 

initially increased, but subsequently decreased for all three samples starting at 

temperatures below 100 °C. For the KMMT and NaMMT samples, Temperature 

Interval II included both increasing and decreasing portions of the integrated area plot, 

but Temperature Interval II was very narrow for the CaMMT sample, and did not 

include peak area decreases. The fact that the integrated peak area continued to increase 

even after acetylsalicylic acid began to decompose near 60 °C likely indicates that the 

changing environment for the remaining aspirin and salicylic acid molecules resulted in 

an absorptivity increase sufficient to counter absorbance losses caused by adsorbate 

loss. However, with the onset of salicylic acid desorption near 100 °C, adsorbate losses 

increased and the integrated peak area decreased over Temperature Intervals III – VI, 

although results for the NaMMT sample exhibited a local maximum in Temperature 

Interval III.  

Figure 6.20 shows overlaid VT-DRIFTS spectra obtained for the KMMT sample 

containing 15% acetylsalicylic acid collected at 60 and 91 °C (top). The 60 °C spectrum 
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was subtracted from the 91 °C spectrum to produce the difference spectrum (bottom). 

Temperature Interval II is characterized by water loss and the start of acetylsalicylic 

acid decomposition to form salicylic acid and acetic acid. VT-DRIFTS spectra and 

difference spectra obtained over Temperature Interval II are shown for the 

acetylsalicylic acid/NaMMT sample in Figure 6.21 and for the acetylsalicylic 

acid/CaMMT sample in Figure 6.22.  

 

Figure 6.20 - VT-DRIFTS spectra for potassium montmorillonite containing 15% 

(w/w) acetylsalicylic acid.  The overlaid spectra shown at the top were subtracted 

to produce the difference spectrum at the bottom. 
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Figure 6.21 - VT-DRIFTS spectra for sodium montmorillonite containing 15% 

(w/w) acetylsalicylic acid.  The overlaid spectra shown at the top were subtracted 

to produce the difference spectrum at the bottom. 
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Figure 6.22 - VT-DRIFTS spectra for calcium montmorillonite containing 15% 

(w/w) acetylsalicylic acid.  The overlaid spectra shown at the top were subtracted 

to produce the difference spectrum at the bottom. 

 

Expanded plots from 2400 to 3700 cm-1 of difference spectra contained in 

Figure 6.20-Figure 6.22 are shown in Figure 6.23. Like the corresponding results 
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Figure 6.23 – Expansion of O-H stretching region of difference spectra for 15% 

acetylsalicylic acid on KMMT (left), NaMMT (center), and CaMMT (right). 

 

 

Figure 6.24 – Expansion of C=O stretching and O-H in-plane bending region of 

difference spectra for 15% acetylsalicylic acid on KMMT (left), NaMMT (center), 

and CaMMT (right). 
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cm-1 for KMMT, 1705 cm-1 for NaMMT, and 1715 cm-1 for CaMMT samples. The 

trend that the negative C=O stretching vibration band reflected higher energy when 

acetylsalicylic acid was adsorbed on CaMMT compared to the other clays is consistent 

with previous findings for benzoic acid, and is consistent with a model in which 

acetylsalicylic acid carboxylic acid C=O groups interact with interlayer cations through 

water bridges.[41, 69, 70] Another similarity to results obtained for benzoic acid is that 

the KMMT and NaMMT samples show increases in C=O stretching intensity at higher 

wavenumbers, but the CaMMT sample does not. The CaMMT sample has negative 

shoulders near 1741 and 1771 cm-1, which is consistent with the behavior of all three 

samples at higher temperatures (vide infra). The acetylsalicylic acid/KMMT sample 

spectrum contains a negative peak at 1614 cm-1, likely due to loss of ring stretching 

intensity, and a negative peak at 1633 cm-1 which can be assigned to the loss of water 

bending vibration intensity. The NaMMT and CaMMT samples also lost water bending 

vibration band intensity, at 1633 cm-1 and 1629 cm-1, respectively. These features had 

shoulders near 1614 cm-1, likely representing loss of ring stretching band intensity. 

Because the ring stretching vibration band wavenumbers do not show a dependence on 

the cation, it is apparent that acetylsalicylic acid, like benzoic acid and salicylic acid, 

interacts with interlayer cations primarily through its polar carboxylic acid group, rather 

than the aromatic ring. 

Figure 6.25 shows difference spectra O-H stretching vibration band regions for 

(left to right) KMMT, NaMMT, and CaMMT samples containing 15% acetylsalicylic 

acid over Temperature Interval III. Most features are similar to those identified in 

Temperature Interval II (Figure 6.23), with the exception that the minimum for all three 
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samples appeared near 3400 cm-1. Although water still evolved from samples during 

this temperature range, there were fewer hydrogen bonding partners available compared 

to lower temperatures, accounting for slightly higher vibration energies associated with 

lost O-H groups.  

 

Figure 6.25 - Expansion of O-H stretching region of difference spectra for 15% 

acetylsalicylic acid on KMMT (left), NaMMT (center), and CaMMT (right). 

 

 

Figure 6.26 – Expansion of C=O stretching and O-H in-plane bending region of 

difference spectra for 15% acetylsalicylic acid on KMMT (left), NaMMT (center), 

and CaMMT (right). 
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The C=O stretching and O-H in-plane bending difference spectra regions 

corresponding to Temperature Interval III are shown in Figure 6.26. The loss of 

carboxylic acid C=O stretching vibration band intensity occurred at a higher 

wavenumber for CaMMT (1714 cm-1) than for KMMT (1708 cm-1) and NaMMT (1706 

cm-1) samples. The shoulders near 1768 cm-1 apparent in each spectrum may be 

assigned to the loss of ester C=O stretching vibration bands that had blue shifted to 

these wavenumbers at lower temperatures. The negative peaks near 1740 cm-1 for each 

sample can be attributed to loss of stretching vibration intensity of ester C=O groups 

that were still involved in hydrogen bonding. Acetylsalicylic acid decomposition 

occurred over this temperature range, which resulted in formation of salicylic and acetic 

acids. TG-MS results showed that acetic acid immediately evolved after it was formed, 

but that salicylic acid remained on the clay, beginning to desorb near 115, 100, and 81 

°C for KMMT, NaMMT, and CaMMT samples, respectively.  

 

Figure 6.27 – Expansion of O-H stretching region of difference spectra for 15% 

acetylsalicylic acid on KMMT (left), NaMMT (center), and CaMMT (right). 
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Figure 6.27 shows O-H stretching vibration band regions from difference 

spectra obtained for Temperature Interval IV. Although band minima still appear near 

3400 cm-1, bands are narrower compared to those obtained at lower temperatures, 

suggesting that fewer hydrogen-bonded O-H groups were lost over this temperature 

range. TG-MS results indicated that the maximum rates of salicylic acid evolution 

occurred near 140 °C for KMMT and NaMMT samples, and at 167 °C for CaMMT.  

 

Figure 6.28 – Expansion of C=O stretching and O-H in-plane bending region of 

difference spectra for 15% acetylsalicylic acid on KMMT (left), NaMMT (center), 

and CaMMT (right). 
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sample, except for a slight shoulder. This may indicate that most of the acetylsalicylic 

acid had been converted to salicylic acid at 173 oC for the sample containing CaMMT. 

Additionally, the fact that no C=O stretching vibrations were visible at higher 

wavenumbers (e.g., 1768 cm-1 in Temperature Interval III, Figure 6.26) suggests that 

the acetylsalicylic acid molecules with ester groups that lost hydrogen bonding had 

decomposed at lower temperatures, and only hydrogen bonded ester groups remained 

during Temperature Interval IV.  

The O-H stretching vibration band region difference spectra obtained for 

Temperature Interval V are shown in Figure 6.29. Spectral features were less broad and 

less intense than those obtained at lower temperatures, and minima for the KMMT and 

NaMMT samples were blue shifted to wavenumbers above 3400 cm-1 relative to spectra 

obtained at lower temperatures.  

 

Figure 6.29 – Expansion of O-H stretching region of difference spectra for 15% 

acetylsalicylic acid on KMMT (left), NaMMT (center), and CaMMT (right). 

 

Figure 6.30 shows the C=O stretching and O-H in-plane bending vibration band 

regions of difference spectra obtained for Temperature Interval V. These three spectra 
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are quite different over this temperature range. The KMMT sample exhibits a negative 

shoulder near 1745 cm-1, indicating loss of ester C=O stretching band intensity. This 

band is not apparent in difference spectra for the other two samples, likely because the 

conversion of acetylsalicylic acid to salicylic and acetic acids had completed for 

samples containing NaMMT and CaMMT.  This hypothesis is supported by TG-MS 

results for these samples. The carboxylic acid C=O stretching band loss was observed at 

1724 cm-1 for the KMMT sample, 1718 cm-1 for the NaMMT sample, and at 1699 cm-1 

for the CaMMT sample. The CaMMT sample spectrum also exhibits a distinct shoulder 

near 1684 cm-1, and a less obvious shoulder near 1670 cm-1. Over a similar temperature 

range, the salicylic acid/CaMMT sample difference spectrum contained a large negative 

band at 1668 cm-1 with a shoulder near 1687 cm-1 (Figure 6.15). The acetylsalicylic 

acid/CaMMT sample spectrum also contains a negative band at 1617 cm-1, which is 

significantly higher wavenumber than previously detected ring-stretching vibrations, 

but quite close to the negative band at 1618 cm-1 in Figure 6.15 obtained for the 

salicylic acid/CaMMT sample over a similar temperature range. Apparently, sufficient 

acetylsalicylic acid had been converted to salicylic acid over this temperature range that 

salicylic acid desorption was primarily occurring. The same effect may explain results 

obtained for the NaMMT sample, but the shoulder at 1682 cm-1 is located at a 

significantly higher wavenumber than the C=O stretching vibration band intensity loss 

detected for the salicylic acid/NaMMT sample over a comparable temperature range.  
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Figure 6.30 – Expansion of C=O stretching and O-H in-plane bending region of 

difference spectra for 15% acetylsalicylic acid on KMMT (left), NaMMT (center), 

and CaMMT (right). 

 

The difference spectra O-H stretching vibration band regions obtained from VT-

DRIFTS measurements over the highest temperature ranges (i.e. Temperature Interval 

VI) are shown in Figure 6.31. Band minima in spectra for all three samples occurred at 

wavenumbers above 3400 cm-1, which is consistent with a continuing trend of reduced 

hydrogen bonding with increased sample temperature.  

 

Figure 6.31 – Expansion of O-H stretching region of difference spectra for 15% 

acetylsalicylic acid on KMMT (left), NaMMT (center), and CaMMT (right). 
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Figure 6.32 – Expansion of C=O stretching and O-H in-plane bending region of 

difference spectra for 15% acetylsalicylic acid on KMMT (left), NaMMT (center), 

and CaMMT (right). 

 

Figure 6.32 shows the C=O stretching and O-H in-plane bending vibration band 

regions from difference spectra obtained for Temperature Interval VI. The difference 

spectrum for the CaMMT sample (right) is very similar to the difference spectrum for 

the salicylic acid/CaMMT sample obtained over a comparable temperature range 

(Figure 6.17). Apparently, little acetylsalicylic acid remained at this temperature, so 

mainly salicylic acid loss features were detected in the difference spectrum. This is 

consistent with TG-MS results for this sample, which indicated that the m/z 60 profile 

(acetic acid, which maximized at 103 °C) was returning to baseline at 200 °C, and that 

salicylic acid desorption and decomposition processes dominated, as shown by the m/z 

120 profile, which exhibited a maximum evolution rate at 167 °C, and the m/z 94 

profile, which maximized at 263 °C. The KMMT and NaMMT samples spectra in 

Figure 6.32 contain bands similar to those obtained for salicylic acid/clay samples over 

comparable temperature ranges (Figure 6.17), but also exhibited acetylsalicylic acid 
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cm-1 (KMMT and NaMMT samples, respectively). TG-MS results indicated that the 

m/z 60 profile extended to higher temperatures for samples containing KMMT and 

NaMMT than for CaMMT samples, which would explain why spectra would reflect 

loss of acetylsalicylic acid along with salicylic acid desorption, even though salicylic 

acid was decomposing during this temperature range. The salicylic acid evolution rate 

steadily decreased during this temperature range, and the phenol evolution rate 

increased, maximizing at 238 °C for the NaMMT sample and at 254 °C for the KMMT 

sample. Changes in selected acetylsalicylic acid vibration band locations as a function 

of temperature are summarized in Table 6.10, Table 6.11, and Table 6.12. 
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Table 6.10 - Comparison of acetylsalicylic acid absorbance band locations over 

selected temperature intervals for 15% acetylsalicylic acid/KMMT. For 

temperature ranges, the wavenumbers shown represent the position of a negative 

peak in the difference spectrum. Vibration assignments are taken from reference 

[123]. 

 

Vibration 

Assignment[123] 

Ambient  

Temperature 

91 –  

60 °C 

137 –  

91 °C 

157 –  

137 °C 

218 –  

157 °C 

264 –  

218 °C 

ν(C=O)ester 1740 N/A 1743 1745 1745 N/A 

ν(C=O)carboxyl + 

δ(O-H) 

1710 1699 1708 1714 1724 1726/ 

1682 

ν(C=C) 1610 1614 1608 1610 1610 1614 

ν(C=C) ~1582 

(weak) 

1575 1567 1561 1554 1546 

ν(C=C) + δ(C-H) 

+ δ(O-H) 

 

1488 

 

1496 

 

1492 

 

1488 

 

1486 

 

1482 

ν(C=C) + δ(C-H) 

+ δ(CH3) 

 

1457 

 

1461 

 

1455 

 

1455 

 

1452 

 

N/A 

 

δ(CH3) ~1431  

(very weak) 

N/A N/A 1424 N/A N/A 

δ(O-H) ~1412 

(shoulder) 

1417 1409 N/A N/A N/A 

δ(CH3) 1376 1384 1374 1376 1376 1378 
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Table 6.11 - Comparison of acetylsalicylic acid absorbance band locations over 

selected temperature intervals for 15% acetylsalicylic acid/NaMMT. For 

temperature ranges, the wavenumbers shown represent the position of a negative 

peak in the difference spectrum. Vibration assignments are taken from reference 

[123]. 

 

Vibration 

Assignment[123] 

Ambient  

Temperature 

96 – 60 

°C 

142 –  

96 °C 

168 –  

142 °C 

198 –  

168 °C 

254 –  

198 °C 

ν(C=O)ester 1737 N/A 1741 1745 1745 N/A 

ν(C=O)carboxyl + 

δ(O-H) 

1710 1705 1706 1710 1718 1722/ 

1679 

ν(C=C) 1610 ~1615 1608 1610 1614 1615 

ν(C=C) ~1581 

(weak) 

1569 1567 1560 1553 1548 

ν(C=C) + δ(C-H) 

+ δ(O-H) 

 

1490 

 

N/A 

 

1492 

 

1487 

 

1486 

 

1482 

ν(C=C) + δ(C-H) 

+ δ(CH3) 

 

1458 

 

1462 

 

1455 

 

1453 

 

1451 

 

N/A 

δ(CH3) N/A ~1438 N/A N/A ~1420 N/A 

δ(O-H) 1413 1417 1411 1407 N/A N/A 

δ(CH3) 1378 1386 1376 1378 1378 ~1380 
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Table 6.12 - Comparison of acetylsalicylic acid absorbance band locations over 

selected temperature intervals for 15% acetylsalicylic acid/CaMMT. For 

temperature ranges, the wavenumbers shown represent the position of a negative 

peak in the difference spectrum. Vibration assignments are taken from reference 

[123]. 

 

Vibration 

Assignment[123] 

Ambient  

Temperature 

71 – 61 

°C 

107 –  

71 °C 

173 –  

107 °C 

198 –  

173 °C 

280 –  

193 °C 

ν(C=O)ester N/A N/A N/A N/A N/A N/A 

ν(C=O)carboxyl + 

δ(O-H) 

1710 1715 1714 1713 1699/ 

~1684 

1683 

ν(C=C) 1610 1614 1608 1612 1617 1614 

ν(C=C) ~1582 

(weak) 

1594 N/A ~1584 ~1580 N/A 

ν(C=C) + δ(C-H) 

+ δ(O-H) 

 

1488 

 

1494 

 

1497 

 

1489 

 

1486 

 

~1480 

ν(C=C) + δ(C-H) 

+ δ(CH3) 

 

1459 

 

1459 

 

1455 

 

N/A 

 

1451 

 

N/A 

δ(CH3) N/A 1434 N/A 1432 1433 N/A 

δ(O-H) ~1411 

(shoulder) 

1413 1413 N/A N/A 1405 

δ(CH3) 1378 1376 1376 1378 1374 N/A 

 

The C=O stretching vibrations of the carboxylic acid and ester functionalities 

shifted to higher wavenumbers while samples were heated and loss of water resulted in 

the loss of hydrogen bonding partners. Although the stretching vibrations associated 

with the aromatic ring were not significantly affected by sample dehydration, the O-H 

in-plane bending vibrations shifted to slightly lower wavenumbers when samples were 

heated. This is consistent with the behavior observed for samples containing benzoic 

and salicylic acids, which exhibited spectra similar to their respective dimers at lower 

temperatures but shifted towards monomer characteristics at higher temperatures. 

Vibrational frequencies for the acetylsalicylic acid monomer were calculated at the 

B3LYP/cc-pVTZ level and scaled by 0.9764, like the calculations for the salicylic acid 

monomer described in section 6.3. These calculated frequencies are compared to 
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experimental results for the acetylsalicylic acid dimer diluted in silver powder in Table 

6.13. These results show that the acetylsalicylic acid monomer exhibits higher energy 

C=O stretching vibrations than the dimer, but lower energy O-H in-plane bending 

vibrations, indicating that acetylsalicylic acid/clay sample spectra also shifted from 

more dimer character to more monomer character when samples were heated. 

 

Table 6.13 - Vibration band assignments and experimental values for the 

acetylsalicylic acid (aspirin) dimer, and calculated values for the aspirin monomer. 

Assignments taken from reference [123].  ν = stretching vibration, δ = in-plane 

bending vibration 

 

Vibration 

Assignment[123] 

Aspirin/ 

Silver 

Powder 

Aspirin 

Monomer 

ν(C=O)ester 1753 1794 

ν(C=O)carboxyl + 

δ(O-H) 

1688 1745 

ν(C=C) 1604 1609 

ν(C=C) 1574 1579 

ν(C=C) + δ(C-H) 

+ δ(O-H) 

 

1482 

 

1484 

ν(C=C) + δ(C-H) 

+ δ(CH3) 

 

1456 

 

1443 

δ(CH3) 1434 1439 

δ(O-H) 1417 1337 

δ(CH3) 1369 1364 

δ(O-H) + 

ν(C=C) 

1304 1302 

 

6.5 Summary 

 Desorption of salicylic and acetylsalicylic acids from potassium, sodium, and 

calcium montmorillonite clays were characterized by using VT-DRIFTS. Difference 

spectra provide information about adsorbate environment changes on a molecular level. 

Adsorbate aromatic ring vibrations exhibited little to no dependence on the identity of 
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clay interlayer cations, indicating that aromatic acids interacted with cations through 

polar carboxylic acid functional groups rather than aromatic rings. Stretching vibrations 

of carboxylic acid C=O functionalities were most affected by interlayer cations, 

showing that the acid group plays a key role in adsorption interactions with clays. 

Whereas benzoic acid and acetylsalicylic acid likely adopt orientations with carboxylic 

acid C=O groups hydrogen bonded to water molecule bridges and oriented directly 

towards cations, salicylic acid may not be oriented with its C=O group aligned with a 

cation. Alternatively, it may orient in a similar configuration, but intramolecular 

hydrogen bonding may reduce the sensitivity of the C=O group to the local 

environment. 
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Chapter 7 : Conclusion 

When adsorbate/clay samples were initially heated, temperature-dependent 

changes involved loss of water and subsequent reorganization of the hydrogen bonding 

network.  Affected hydrogen bonds may involve interlayer water, inorganic oxide 

hydroxyl groups, and adsorbate functionalities.  Each of these sample constituents may 

participate in multiple hydrogen bond interactions.  Bonding interactions from multiple 

hydrogen bonds are not additive.  For example, when X-H is involved in two hydrogen 

bonds, each interaction makes the X-H bond more polar, which strengthens both 

hydrogen bonds.[124]  This property explains the tendency for bulk water to form 

hydrogen bonded chains and rings.[98]  These structures are transient, with constituent 

hydrogen bonds continually breaking and reforming.  The confines of montmorillonite 

interlayer spaces restrict hydrogen bonding networks to mainly two-dimensional 

structures.[98]  In addition to water-water interactions, water molecules fill cation 

hydration spheres and form hydrogen bonds with inorganic oxide hydroxyl groups, 

further restricting the hydrogen bonding network flexibility.  When adsorbates with 

hydrogen bonding capabilities are introduced, additional restrictions are placed on the 

hydrogen bonding network.  Sample dehydration continues at higher temperatures and 

is accompanied by adsorbate desorption and decomposition reactions.  Water loss due 

to dehydration causes interlayer distances to contract, which further confines adsorbate 

molecules.  Thus, interlayer dimensions and therefore adsorbate local environments 

continuously change with increasing sample temperature.  In fact, temperature-

dependent sample changes resulted in a continuously varying solid-state structure.  

Consequently, different types of interactions were observed at different temperatures.  
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Many of the interactions characterized at high temperatures could not have occurred at 

lower temperature because a change in sample structure was required before these 

interactions were possible.   

Information regarding interactions of small aromatic acid adsorbates with 

montmorillonite clays was collected via three different techniques: sample mass loss 

measurements, mass spectral analysis of volatiles evolved during heating, and FTIR 

analyses of clay surfaces. Mass loss data provided information regarding the 

temperatures at which sample losses occurred. Comparison of mass loss results for clay 

samples containing adsorbates with results obtained for neat clays made it possible to 

distinguish losses due to adsorbates from losses due to water, but did not provide 

information regarding what substances or processes were responsible for mass losses. 

Mass spectral analysis was the most sensitive analysis technique employed in these 

studies, and provided specific detail regarding which substances desorbed, and by 

inference, which substances decomposed at various sample temperatures. The 

temperatures at which desorption and decomposition occurred reflected the thermal 

stabilities of various adsorbate environments.  Typically, loosely bound adsorbates 

desorbed at lower temperatures than more tightly bound molecules.  Thus, mass 

selective ion signal temperature profiles associated with adsorbate desorption and 

decomposition for samples containing various interlayer cations and adsorbate loadings 

were compared to assess relative adsorption site thermal stabilities.  Multiple TG-MS 

peaks indicated the presence of multiple adsorbate environments.  Although mass 

spectrometric analyses did not directly provide information regarding solid state sample 

changes, clay analyses by FTIR provided structure-specific information regarding 
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temperature-dependent changes to solid sample constituents, which was complementary 

to the information derived from thermogravimetry and mass spectrometry.  Infrared 

spectroscopy provided a sensitive method for characterizing changes to hydrogen 

bonding environments.  In general, increased hydrogen bond interactions resulted in O-

H stretching vibration band absorptivity increases[110, 125] and O-H and C=O 

stretching vibration band maxima red shifts.[112, 126, 127]  By combining the 

information provided by these three analysis techniques, a better assessment of 

temperature-dependent sample changes was possible than could have been 

accomplished by any of the three techniques separately. 

At ambient temperature, the fact that infrared spectral features associated with 

adsorbates were significantly distorted compared to spectra for the neat acids indicated 

the presence of strong interactions with clays.  Below 60 oC, heating adsorbate/clay 

samples resulted in changes to both the adsorbate and water molecule local 

environments.  Results described here show that TG-MS m/z 18 ion signal temperature 

profiles can be employed to selectively monitor water molecule desorption, which can 

provide information regarding thermal stabilities of interlayer water molecule 

environments.  These profiles exhibit systematic changes that can be correlated with the 

quantities of adsorbate added to clay samples.  Maximum water evolution rates shifted 

to slightly lower temperatures for samples containing adsorbates, indicating that some 

water molecules lost during heating were destabilized, relative to the neat clay 

environment, by the presence of adsorbates.  In addition, enhanced m/z 18 intensity was 

detected at higher temperatures in the m/z 18 profiles for samples containing 

adsorbates, which suggested that some water molecules were stabilized when 
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adsorbates were present. These seemingly contradictory findings are consistent with 

molecular reorganization of the hydrogen bonding network during sample dehydration.  

VT-DRIFTS measurements below 60 oC also provided selective tracking of sample 

changes associated with water loss.  Absorbance band changes that occur in the O-H 

stretching vibration regions of infrared spectra reflected local environment changes to 

adsorbate, inorganic oxide hydroxyl groups, and interlayer water molecules.  Rather 

than revealing changes to specific hydroxyl functionalities types (i.e. inorganic oxide 

hydroxyls, cation hydration sphere water molecules, etc.), all VT-DRIFTS difference 

spectra contained broad O-H stretching vibration band features.  In fact, even when 

differences were calculated by subtracting spectra acquired over small (i.e. 5 oC) 

temperature increments, broad negative O-H stretching vibration bands were obtained.  

This suggests that water molecule desorption does not occur in a stepwise fashion based 

on initial environment.  Instead, as soon as the most loosely bound water molecules are 

removed, the remaining water molecules rearrange to form an assembly with lowest 

potential energy.  This dynamic rearrangement affects adsorbate molecules because 

some water molecules that were involved in adsorbate hydrogen bonding may adopt 

more stable orientations that no longer involve this hydrogen bonding.  Consequently, 

adsorbate molecule vibrations that are affected by hydrogen bonding can be altered, 

resulting in a frequency change, absorptivity change, or both.  These changes are 

detected as band shape variations in difference spectra.  For adsorbates employed in 

these studies, hydrogen bonding interactions between aromatic acid functional groups 

and the clay local environment stabilize these molecules.  Thus, changes to carboxylic 

acid C=O stretching and C-O-H bending vibration band shapes reflect changes in local 
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environment caused by sample dehydration.   Although TG-MS m/z 18 ion signal 

temperature profile shape changes associated with sample water loss were subtle, VT-

DRIFTS C=O stretching and O-H bending vibration band changes were more dramatic 

and provided greater selectivity with respect to the nature of adsorbate molecule 

environment changes.  Results described and interpreted in Chapter 4 demonstrate the 

sensitivity of this perturbation sample analysis technique.  Dehydration by heating 

samples from ambient temperature to 60 oC resulted in complex changes to adsorbate 

acid group environments that depended on the structure of the adsorbate and the clay 

interlayer cation.  Samples containing KMMT yielded the least complexity.  This can be 

attributed to the small ambient temperature basal spacing of KMMT, which restricts the 

range of orientations that adsorbate molecules can adopt.  When adsorbed on KMMT, 

benzoic acid difference spectra features were consistent with a blue shift in C=O 

stretching vibration band location and minimal change in absorptivity with increasing 

sample temperature.  Blue shifts were also observed for salicylic acid and 

acetylsalicylic acid adsorbed on KMMT.  VT-DRIFTS difference spectra obtained for 

all three adsorbates on KMMT confirmed that the local environments formed as a result 

of sample dehydration involved higher C=O stretching vibration frequencies, which 

would be consistent with a reduction in hydrogen bonding interactions.  However, 

unlike benzoic acid, salicylic acid and acetylsalicylic acid results suggested that water 

desorption resulted in the formation of at least two distinct new local environments.   

The NaMMT and CaMMT clays have larger ambient temperature basal spacings and 

support higher water contents, allowing more steric flexibility for adsorbate molecule 

orientations.  This results in more complicated adsorbate spectral changes, which 
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sometimes involve significant C=O stretching vibration band absorptivity changes 

along with temperature-dependent band shifts.  VT-DRIFTS results tended to be most 

similar for the salicylic and acetylsalicylic acid samples, both of which show evidence 

for the creation of multiple new local environments after dehydration.  Unlike 

acetylsalicylic acid, salicylic acid contains an aromatic hydroxyl group that can form 

intramolecular hydrogen bonds with the aromatic acid functionality or intermolecular 

hydrogen bonds with inorganic oxide hydroxyls, interlayer water, or other adsorbate 

molecules.  Difference spectra contained features consistent with salicylic acid 

intramolecular hydrogen bonding.  The fact that results obtained for salicylic acid were 

most similar to those obtained for acetylsalicylic acid suggests that additional hydrogen 

bond interactions associated with hydroxyl (salicylic acid) and ester (acetylsalicylic 

acid) functionalities not available with benzoic acid were responsible. 

 Above 60 °C, TG-MS results for samples containing acetylsalicylic acid 

indicated that it decomposed by reaction with water to form salicylic acid and acetic 

acid. Acetic acid was not retained by the clays, so the m/z 60 (i.e. acetic acid molecular 

ion) ion signal temperature profile reflected the temperature range over which 

acetylsalicylic acid decomposition occurred. When adsorbed on the clays, salicylic acid 

also decomposed, but at higher temperatures than acetylsalicylic acid.  VT-DRIFTS 

results obtained for samples initially containing salicylic acid indicated that between 60 

and 100 °C, the loss of clay interlayer water resulted in new changes to salicylic acid 

local environments. The acid group C=O stretching vibration band shifted to higher 

wavenumbers with increased temperature, whereas the O-H in-plane bending vibrations 

shifted to lower wavenumbers. VT-DRIFTS difference spectra obtained for 
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acetylsalicylic acid/clay samples, on the other hand, contained negative spectral features 

that could be attributed to loss of acetylsalicylic acid and to changes in the 

environments of remaining adsorbate molecules. 

 Above 100 °C, TG-MS results indicated that salicylic acid desorbed from 

samples containing relatively high loadings of salicylic acid or acetylsalicylic acid, 

whereas samples containing lower adsorbate loadings tended to retain the salicylic acid 

to higher temperatures.  VT-DRIFTS difference spectra for these samples contained 

intense negative features associated with salicylic acid, along with positive C=O 

stretching vibration band intensity above 1700 cm-1, indicating that the local 

environment of these more thermally stable molecules was changing due to continued 

dehydration and the related contraction of the clay interlayer.  

 Above 200 °C, salicylic acid desorption processes gave way to decomposition, 

which produced phenol and carbon dioxide.  Acetylsalicylic acid/CaMMT VT-DRIFTS 

difference spectra were nearly identical to those obtained for salicylic acid/CaMMT 

samples over a similar temperature range, because almost all of the acetylsalicylic acid 

had been converted to salicylic acid.  Difference spectra for the KMMT and NaMMT 

samples containing acetylsalicylic acid also strongly resembled the difference spectra 

for the KMMT and NaMMT samples containing salicylic acid, but small negative bands 

associated with acetylsalicylic acid C=O stretching vibration bands were also apparent. 

 The level of detail achieved by TG-MS and VT-DRIFTS for adsorbate-clay 

interaction studies far exceeded that possible by using other analysis methods and 

conventional batch experiments or soil column studies, which are the most common 

methods used to characterize soil contaminant adsorption processes.  Those studies 
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provide empirical results, such as that polar contaminants adsorb preferentially to the 

clay component of soils, but do not provide information regarding adsorbate-clay 

interactions at the molecular level. TG-MS and VT-DRIFTS have proven to be sensitive 

and powerful tools for analysis of adsorbate-clay interactions. Results from studies at 

the lowest temperature range (i.e. below 60 oC) are most relevant to interactions of 

pharmaceuticals and personal care products with soils in the environment.  They 

provide information regarding variations in adsorbate molecule local environments 

caused by clay water content changes.  Soil contaminant transport processes are 

primarily related to increased water solvation due to rainfall, which would involve 

changes to adsorbate hydrogen bonding within clay interlayer spaces.  Results obtained 

at higher sample temperatures provide information regarding adsorbate interactions 

with dehydrated environments as well as measures of relative adsorbate stabilities. 

Studies described here provide a unique and detailed characterization of adsorbate 

environments within clay substrates and how these environments change as a result of 

dehydration. Results are consistent with a hypothesis originally proposed by Yariv, et 

al.,[41] that polar molecules interact with montmorillonite interlayer cations through 

water bridges, and that benzoic acid molecules align with the acid C=O group oriented 

toward the cation. VT-DRIFTS results suggest that salicylic acid and acetylsalicylic 

acid likely adopt similar orientations, but the effect of the cation on salicylic acid C=O 

stretching vibration frequency is mitigated by intramolecular hydrogen bonding.[105] 

On the other hand, salicylic acid may adopt a slightly different orientation, in which the 

C=O group still interacts with the cation through a water molecule bridge, but is not 

oriented directly toward the cation.   
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Figure 7.1 – Depiction of a salicylic acid molecule interacting with a cation through 

a water bridge. Dashed lines denote hydrogen bonds.  

 

Figure 7.1 shows a depiction of a salicylic acid molecule interacting with a 

cation through a water bridge, with an orientation similar to that proposed for benzoic 

acid. Dashed lines denote hydrogen bonds. Hydrogen bonding between the O-H and 

C=O group would likely decrease the sensitivity of the C=O stretching vibration to its 

local environment.  

The acetylsalicylic acid ester group was extremely sensitive to its local 

environment, with C=O stretching vibrations appearing at wavenumbers low enough to 

overlap with the carboxylic acid C=O stretching vibration near 1712 cm-1 for the 

CaMMT sample containing 15% (w/w) acetylsalicylic acid, and shifting to 

wavenumbers above 1770 cm-1 as sample heating resulted in the loss of hydrogen 

bonding partners. Acetylsalicylic acid molecules may orient themselves within the 

interlayer in such a way that both the acid and ester C=O groups may be oriented 

toward a cation. Unfortunately, VT-DRIFTS studies do not provide information 

regarding the structures of adsorption sites.  Infrared spectra merely provide information 



179 

regarding molecular vibrations.  However, molecular modeling can be employed to 

calculate molecular vibration frequencies for selected molecular orientations.  Thus, 

specific adsorption site conformations can be tested by calculating molecular vibration 

frequencies absorptivities and comparing them with VT-DRIFTS measured values.  By 

combining the perturbation VT-DRIFTS technique described here with molecular 

modeling calculations, it should be possible to determine the relative positions and 

characterize interactions between adsorption site constituents. 
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Chapter 8 : Acid/Base Properties of Non-heme, (Hydr)oxo-bridged 

Diiron Coordination Complexes 

8.1 Introduction 

 8.1.1 Acid/Base Properties of (Hydr)oxo-bridged Metalloenzymes and Metalloproteins 

The chemistry of metalloenzymes is truly remarkable. Some of them are capable of 

catalyzing reactions much more efficiently than modern technology.[128] These 

enzymes contain within their active sites one or more “biological” metals; that is, a 

metal which may naturally occur in such an active site or be substituted therein, 

including calcium, magnesium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, 

molybdenum, tungsten, cadmium, and mercury.[129] Which metal or metals are present 

affects the chemistry of the active site, since different metals have different properties. 

However, even the behavior of the same metal may vary depending on its coordination 

environment. Iron is commonly found in the active sites of enzymes and proteins 

because it is so abundant in nature.[130-133] Within an active site, iron may be 

coordinated by a porphyrin group, and the iron-porphyrin system is referred to as a 

heme unit. When iron is coordinated by other types of ligands, it is known as non-heme 

iron. Iron in a heme unit may have very different properties than it would in a non-heme 

setting.[129] Even the chemistry of non-heme coordinated iron units is dependent on 

the individual ligands, or combinations thereof. 

Many enzymes and proteins contain more than one metal within their active sites, 

sometimes multiple ions of the same metal and sometimes more than one type of metal. 

In sites where there are two or more metal ions present, they are often bridged by 

simple ligands such as oxo, hydroxo, or carboxylato groups.[134, 135] In order to 
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perform their functions, these active sites generally pass through transition states, in 

which the oxidation states of the metals may be different, and they may temporarily 

bind different ligands. In some cases, a transition may involve the transformation of the 

oxo group to a hydroxo group, or vice versa, so the acidity of the hydroxo proton is an 

important factor affecting active site function.[136-139] 

 

8.1.2 Non-heme (Hydr)oxo-bridged Diiron Enzymes and Proteins: Structure and 

Function 

 There are several important examples of enzymes and proteins containing non-

heme, (hydr)oxo-bridged diiron active sites which have diverse functions, from oxygen 

transport and DNA replication and repair to C-H bond activation for conversion of 

methane to methanol. One such protein is hemerythrin, which is used by marine 

invertebrates to transport oxygen instead of hemoglobin or myoglobin.[135, 140] The 

active site of hemerythrin consists of two iron (III) ions which are bridged by two 

carboxylate amino acid residues and one oxo group.[136, 141] In its fully reduced state, 

known as deoxyhemerythrin, both irons exist in the +2 oxidation state. One is 

coordinated by three histidine residues in addition to the bridging groups, making it 

hexacoordinate, and the other is coordinated by two histidine residues, making it 

pentacoordinate. They are bridged by a hydroxo group, rather than an oxo group (Figure 

8.1).[136, 137, 141, 142] Deoxyhemerythrin binds dioxygen to form oxyhemerythrin. In 

that process, dioxygen removes the proton from the bridging hydroxo group and binds 

to the pentacoordinate iron center, so that in oxyhemerythrin, both iron centers are 
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hexacoordinate iron (III), and the bridging ligand is again an oxo group.[136, 137, 141, 

142] 

 

Figure 8.1 – Schematic showing the iron coordination environments within 

deoxyhemerythrin and oxyhemerythrin. Figure adapted from reference [143]. 

 

 Another example of an enzyme containing a non-heme, (hydr)oxo-bridged 

diiron active site is ribonucleotide reductase (RNR), which is found in Escherechia coli, 

mammals, and viruses, where it catalyzes the conversion of ribonucleotides to 

deoxyribonucleotides.[144, 145] In its reduced state, the active site of RNR contains 

two iron (II) centers bridged by two glutamate residues.[135, 146] When this site reacts 

with molecular oxygen, both iron centers are oxidized to the +3 state, and an oxo bridge 

is formed between them (Figure 8.2).[135, 146]  

The exact details of the reaction pathways of the RNR active site are still not 

fully known, but it has been established that one intermediate structure contains a diiron 

(III, IV) active site, still bridged by one glutamate and one oxo ligand, and also bridged 

by a third group.[146, 147] Some evidence has suggested that the third ligand is another 

oxo group, but most evidence points to a hydroxo ligand.[146, 147] 
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Figure 8.2 – Representation of the active site of RNR. Figure adapted from 

reference [143]. 

 

 Another very interesting enzyme containing a non-heme, (hydr)oxo-bridged 

diiron active site is soluble methane monooxygenase (sMMO), which is found in 

methanotrophic bacteria and catalyzes the conversion of methane into methanol.[148, 

149] sMMO has mainly been studied in the methanotrophs Methylococcus capsulatus 

(Bath), called Mc for short, and Methylosinus trichosporium OB3b, called Mt for 

short.[149] The resting state of sMMO is known as MMOHox. MMOHox contains a 

diiron (III) core bridged by two hydroxo ligands. Each iron center is also coordinated by 

one histidine and two glutamate residues. One iron is also coordinated by a water 

molecule, so it is hexacoordinate, whereas the other iron center is only pentacoordinate. 

In the reduced form, MMOHred, both iron centers are reduced to the +2 oxidation state. 

Both hydroxo bridges leave, so that the iron centers are bridged by two of the glutamate 

ligands instead. A representation of the MMOHox and MMOHred states of sMMO are 

shown in Figure 8.3. 

The catalytic cycle of sMMO begins with O2 binding to MMOHred. The first 

transition state after that step may be a mixed-valence diiron (II, III) superoxide species, 
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but as of 2011 this was still unconfirmed.[149] The next intermediate, which has been 

directly observed, is a peroxodiiron(III) species; however, its exact structure still has not 

been confirmed. The sMMO intermediate which is capable of activating the C-H bonds 

of methane is known as intermediate Q. It contains a diiron(IV) core with two oxo 

groups, but it is unclear whether the oxo groups both bridge the iron centers, or if one is 

a terminal oxo ligand.  

 

 

Figure 8.3 – Representation of the diiron active sites within the resting (MMOHox) 

and reduced (MMOHred) states of sMMO. Figure adapted from reference [143]. 

 

 Though the catalytic cycle of sMMO does not involve a direct conversion 

between a bridging hydroxo and oxo ligand, reaction rates for the formation of the 

peroxodiiron(III) species and its conversion to intermediate Q were found to be pH 

dependent, indicating that proton transfer is a rate determining step for these 

processes.[149] Though the exact mechanisms are still uncertain, there is likely a proton 

transfer from the terminal water molecule to the bridging carboxylate oxygen, followed 

by a second proton transfer from the resulting terminal hydroxo ligand to the bridging 
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peroxo group. This information makes it clear that the acid-base properties of this 

enzyme are essential to its function. 

 Yet another interesting enzyme is purple acid phosphatase (PAP), which is 

found in plants, animals, fungi, and bacteria. PAP has an Fe(III)-M(II) active site, where 

M can be Fe, Zn, or Mn.[150] Its name stems from its characteristic purple color (λmax = 

510-560 nm; ε = ~ 3000-4000 M-1 cm-1) which is the result of a charge transfer 

transition from a tyrosine ligand to the iron(III) center.[138] An example of a PAP 

active site is shown in Figure 8.4. 

 

 

Figure 8.4 – Representation of the active site of red kidney bean PAP. Figure 

adapted from reference [150]. 

 

The diiron form of PAP is found in mammals, where it plays a variety of roles, 

including iron transport, formation of reactive oxygen species, and increased bone 

resorption.[138, 150] Its involvement in bone metabolism is perhaps its most interesting 

function, as it makes it a target for anti-osteoporotic drugs.[150] Within the active site 

of PAP, the iron(III) center is always coordinated by an aspartate, a tyrosine, and a 

histidine residue. The divalent metal ion is coordinated by two histidines and an 
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asparagine, and the two metal centers are always bridged by an aspartate ligand.[138] 

Based on spectroscopic and crystallographic evidence, the active site is also thought to 

contain a hydroxo bridge between the two metals, but many of the crystal structures 

obtained did not have sufficient resolution to rule out the possibility of an oxo 

bridge.[138, 139, 150-155]  The μ-hydroxo group is thought to be the hydrolysis-

initiating nucleophile, suggesting that its pKa is an important factor affecting the 

function of the enzyme.[138, 139]  

 

8.1.3 Acid-Base Studies of Non-heme (Hydr)oxo-bridged Diiron Model Complexes: 

Motivation and Progress 

 One motivation for developing synthetic models for the active sites of 

metalloenzymes is simply to better understand their chemistry and function. A better 

understanding of PAP, for example, could lead to better treatment of osteoporosis.[150] 

Comparing the observed properties of intermediates in the catalytic cycles of enzymes 

to properties of well-characterized model complexes can help to elucidate the structures 

of transient states which would be otherwise difficult to pin down. A further motivation 

for producing model complexes which mimic the chemistry of enzymes is to eventually 

achieve the function of the enzyme synthetically. For example, methane is an important 

fuel, but it is inefficient and expensive to transport methane over long distances because 

of its low energy density.[156] Methanol is much more efficient to transport, and is 

used for many industrial purposes in its own right, so if methane could be cheaply and 

efficiently converted to methanol, it would be a significant improvement.[156] 
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Unfortunately, the current industrial methods of converting methane into methanol 

either require high inputs of energy or use costly materials.[128] 

 Since the acid/base properties of many of these enzymes are essential to their 

functions, it is important to gain a full understanding of these properties. Studies of the 

acid/base behavior of synthetic model complexes will help to gain better insight into the 

function of the enzymes that they model. There have been a number of studies on the 

acid/base properties of (hydr)oxo-bridged dimanganese complexes, with reported pKa 

values ranging from -2.0 to 8.35 in water and from 6.8 to 16.2 in CH3CN.[157-163] The 

pKa value was estimated to be between 14 and 17 for one heme iron(III)-Cu(II) complex 

bridged by a hydroxo ligand,[164] and between 16.7 and 17.6 for another.[165] The 

first instance in the literature of a transformation between the oxo- and hydroxo-bridged 

form of a diiron complex was reported by Armstrong and Lippard.[166] Several 

acid/base studies have been performed on hydroxo-bridged diiron complexes since 

then,[167-171] but only two studies reported pKa values for the μ-hydroxo ligand.[172, 

173] Zheng, et al., synthesized and characterized a series of diiron(III) complexes with 

[μ-O(H)]2 cores and found that the protons on the bridging groups had pKa values 

ranging from 15.9 to 17.6 in CH3CN.[172] Cui, et al., reported the reversible 

protonation of the oxo-bridge in the diiron(III) complex [(LFeCl)2(μ-O)][PF6]2 (L = 4-

((1-methyl-1H-imidazol- 2-yl)methyl)-1-thia-4,7-diazacyclononane). They found the 

resulting hydroxo bridge to have a pKa of 6.1 in aqueous solution. They also reported a 

mixed-valence diiron(II,III) version of the complex, and reported the pKa of its hydroxo 

bridge to be 10.3.[173] 
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8.1.4 Progress in the Houser Research Group 

Our group previously reported the synthesis and coordination chemistry of the 

ligand 2,2’-(2-methyl-2-(pyridine-2-yl)propane-1,3-

diyl)bis(azanediyl)bis(methylene)diphenol (H2L).[174] This ligand has an N3O2 donor 

set; the N donors originate from two amine groups and a pyridyl group, and the O 

donors are both phenolate groups, which, when deprotonated, cause the ligand to be 

dianionic (Figure 8.5). 

 

Figure 8.5 – Scheme depicting structure of H2L and synthesis methods for 

[(FeL)2(μ-OH)]BPh4 and [(FeL)2(μ-O)]. 

 

Our group also reported the synthesis and initial characterization of the 

asymmetric, unsupported hydroxo-bridged diiron(III) complex [(FeL)2(µ-OH)]BPh4 

(Figure 8.6) and its related monomeric complex, [FeLCl].[175] Additional 

characterization and an alternative synthesis for [(FeL)2(µ-OH)]BPh4, as well as the 

synthesis and characterization of [(FeL)2(µ-O)], have also been presented by our group 

(Figure 8.5 and Figure 8.7).[176] [(FeL)2(µ-OH)]BPh4 and [(FeL)2(µ-O)] are 

asymmetric because the amine hydrogens of the ligand coordinated to one of the iron 

centers in each complex donate hydrogen bonds to the phenolate oxygens of the ligand 

coordinated to the other iron center. In a sense, these hydrogen bonds add extra support 

for the “unsupported” (hydr)oxo bridges. On the other hand, they force the complex into 
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an arrangement in which the Fe-O-Fe bond angle is strained. This hydrogen bonding is 

unique to our ligand system, and its effect on the behavior of our complexes is quite 

interesting. Usually there is a significant difference in Fe-O-Fe bond angle between 

unsupported oxo-bridged diiron complexes and hydroxo-bridged diiron complexes. 

Oxo-bridged complexes usually fall between 160 – 180°,[134] with a few exceptions in 

the 139 – 145° range,[169, 177-179] whereas there are only a few instances of  non-

heme, unsupported hydroxo-bridged diiron complexes, with reported Fe-O-Fe bond 

angles including 147° for a hydroxo-bridged diiron(II) complex,[180] and 159° for a 

hydroxo-bridged diiron(III) complex.[181] The Fe-O-Fe bond angle for our hydroxo-

bridged diiron complex fell at the low end of the expected range (139°), but the 

corresponding angle for the oxo-bridged diiron complex was only slightly larger (144°), 

suggesting that the hydrogen-bonding of the ligands forces the complex into a strained 

configuration. 

The spectroscopic properties of [(FeL)2(µ-OH)]BPh4, [(FeL)2(µ-O)], and 

[FeLCl] were characterized in CH2Cl2.[175, 176] The monomer [FeLCl] exhibited a 

LMCT feature with λmax = 519 nm (ε = 2,590 M-1 cm-1), so it appeared purple. To the 

naked eye, [(FeL)2(µ-OH)]BPh4 appeared to be identical in color, though more intense, 

because its LMCT had λmax = 516 nm (ε = 6,580 M-1 cm-1; Figure 8.8). In contrast, λmax 

for [(FeL)2(µ-O)] appeared at 420 nm (ε = 7900 M-1 cm-1), so it appeared bright orange 

(Figure 8.8). 
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Figure 8.6 – Crystal structure of [(FeL)2(μ-OH)]BPh4. The counter ion, trapped 

solvent molecules, and H atoms are omitted for clarity, except for N9A and N20A 

amine and μ-hydroxo H atoms. H-bonding interactions are represented by dashed 

lines. (Figure adapted from reference [175]). 

 

 

Figure 8.7 – Crystal structure of [(FeL)2(μ-O)]. H atoms are removed for clarity, 

except those involved in H-bonding interactions, which are represented by dashed 

lines. (Figure adapted from reference [176]). 

 



191 

 

Figure 8.8 – Left: photograph of [(FeL)2(μ-O)] (orange powder) and [(FeL)2(µ-

OH)]BPh4 (purple powder). Right: photograph of solutions of [(FeL)2(μ-O)] and 

[(FeL)2(µ-OH)]BPh4.  

 

8.1.5 Research Goals 

The goal of this research project was to thoroughly characterize the acid/base 

properties of [(FeL)2(µ-OH)]BPh4 and to determine the pKa of its hydroxo ligand. 

Because of the distinct difference in the visible absorbance spectra between the 

hydroxo- and oxo-bridged forms, UV-visible spectroscopy was extremely useful for this 

purpose. Titrations with various acids and bases under different conditions were 

performed and monitored by UV-vis, and the results are described in the following 

section. 

 

 8.2 Stability of [(FeL)2(µ-OH)]BPh4 in Dichloromethane and Acetonitrile 

Initially there was some concern that the hydroxo-bridged dimer might not stay 

intact in solution, and that it might break apart into monomers, or have some sort of 

equilibrium between a dimer and two monomers. However, the mass spectrum (MS) 
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shows a peak which can only be attributed to a hydroxo-bridged dimer, and the cyclic 

voltammetry (CV) data show two reduction waves, attributed to the reduction of first 

one iron center, then the other, to Fe(II).[175] If the dimer were to completely split into 

two identical monomers, one would expect to see only one reduction wave, and if the 

dimer existed in equilibrium with a monomeric species, one would expect to see three 

waves, one for each type of iron center present in solution. Finally, the diffuse-

reflectance UV-visible (DR-UV/vis) spectrum of the solid complex was obtained by 

Anna Jozwiuk, and found to be almost identical to its UV-vis spectrum in 

dichloromethane. This confirms that, while a hydroxo bridge may not be as resistant to 

dissociation as on oxo bridge, there is still enough preference for that configuration to 

keep this complex together in solution. The hydrogen bonds between the phenolate 

oxygens of one ligand and the amine hydrogens of the other ligand in the complex may 

provide the extra stability needed. 

 Dichloromethane (CH2Cl2) is a good solvent for the hydroxo-bridged complex, 

and it had been the solvent of choice for most characterization (MS, CV, UV-vis), but 

there is very little pKa data for CH2Cl2 available. Consequently, acetonitrile (CH3CN) 

was chosen for titrations. The MS and CV data in CH3CN were very similar to that in 

CH2Cl2. The visible spectrum displayed a peak at 496 nm instead of 516 nm as in 

CH2Cl2, but this could be attributed to a solvent effect. The spectrum did not change 

after days or even weeks, implying that the complex is stable in CH3CN. 
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8.3 Titrations of [(FeL)2(µ-OH)]BPh4 with Various Bases 

Preliminary exploration of the acidity of [(FeL)2(µ-OH)]BPh4[175] suggested 

that it has a very high pKa because it did not appear to be completely deprotonated by 

either triethylamine or proton sponge (pKa values in CH3CN = 18.82 and 18.62, 

respectively).[182] Our investigations corroborated those initial results. Under 

atmospheric conditions, addition of 100 μL aliquots, each containing approximately 

2700 equivalents of Et3N to [(FeL)2(µ-OH)]BPh4, shifted the peak maximum from 496 

nm to 480 nm (dashed line, Figure 8.9). Any further addition of Et3N (dotted line, 

Figure 8.9) did not shift the peak significantly closer to 412 nm, which is the λmax 

observed for [(FeL)2(µ-O)] in CH3CN.  

 

Figure 8.9 - Titration of a 7.5 x 10-5 M solution of [(FeL)2(µ-OH)]BPh4 (solid line) 

with 100 μL aliquots (2700 equivalents each) of triethylamine.  
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Titrations with proton sponge yielded similar results; addition of 1000 

equivalents of proton sponge only shifted the peak to 485 nm (Figure 8.10), so we 

concluded that the pKa of the hydroxo bridge must be significantly higher than 18.   

 

Figure 8.10 - Titration of an 8.55 x 10-5 M solution of [(FeL)2(µ-OH)]BPh4 (solid 

line) with proton sponge. 

 

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) was selected as a base because of its 

relatively high pKa in CH3CN (24.34),[182] and its bulky size, which makes it unlikely 

to compete for coordination to the iron sites. Initial titrations with DBU, in which 

aliquots containing 0.1 equivalent were added, showed that just 1.5 equivalents could 

shift the peak to 440 nm, with an isosbestic point at 460 nm (Figure 8.11). Further 

addition of base had no discernible effect; 1.7 equivalents of DBU were added in the 

titration pictured in Figure 8.11, but the spectra for the 1.6 and 1.7 total equivalent 

aliquots overlay with the 1.5 total equivalent spectrum. 
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Figure 8.11 – Titration of 8.55 x 10-5 M solution of [(FeL)2(µ-OH)]BPh4 with 0.1 

equivalent aliquots of DBU. 

 

In order to investigate this strange behavior, we added 2 equivalents of DBU all 

at once, and observed the spectrum change over time. Initially the peak shifted all the 

way to 420 nm, but after four minutes the peak already appeared to be shifting back 

towards its original position, and it continued to shift over the next day. Water from the 

air may have been re-protonating the complex, but the lack of an isosbestic point 

suggests that some other process may also have been occurring. (Figure 8.12). We 

hypothesized that some sort of decomposition was occurring after the initial 

deprotonation of the hydroxo bridge. In order to further support this idea, we again 

added 2 equivalents of DBU at one time to a solution of the hydroxo-bridged dimer, 

then immediately added 2 equivalents of trifluoromethanesulfonic acid (commonly 
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known as triflic acid, or HOTf). The resulting spectrum, when corrected for dilution, 

was virtually identical to the original spectrum of the complex, suggesting that the 

deprotonation is reversible. 

 

 

Figure 8.12 - Addition of 2 equivalents of DBU to an 8.55 x 10-5 M solution of 

[(FeL)2(µ-OH)]BPh4 (solid line) and the subsequent peak shift over time. 

 

The reversibility of the deprotonation was also tested using the solution from 
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(HOTf), was added to see if the original spectrum of the complex could be reproduced. 

Addition of one equivalent of HOTf only shifted the peak slightly, but addition of 2 

equivalents caused a shift to about 500 nm, which is slightly higher than the usual peak 

maximum for the complex of 496 nm (Figure 8.13). Addition of a 3rd equivalent of 

HOTf shifted the peak only slightly further, and though a 4th equivalent was added, the 
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resulting spectrum is not shown because it overlaps almost exactly with that for the 3rd 

equivalent. 

 

Figure 8.13 – Titration of the “Next Day” solution from Figure 8.12 with HOTf. 

 

8.4 Acid-base Chemistry of the Monomer 

Because we suspected that the monomer could exist in an acid-base equilibrium 

with the hydroxo-bridged dimer, an attempt was made to synthesize the monomer 

[FeLCl] according to the procedure from ref. [175], with slight modifications (see 8.8 

Experimental).  A CH2Cl2 solution of the product gave a visible spectrum with a peak at 

533 nm, rather than the 519 nm previously reported.[175] Addition of approximately 

one equivalent of DBU shifted the peak to about 516 nm, suggesting conversion to the 

hydroxo-bridged dimer (Figure 8.14). This would be possible because when the 

synthesis is performed under atmospheric conditions, the extremely hygroscopic FeCl3 
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would be able to absorb some water, which could then be present in the crystal lattice of 

the product and would not be easily removed, even by drying under high vacuum. 

Addition of DBU could cause the formation of hydroxide ions, which could replace the 

chloride ligands, and successively cause formation of the hydroxo-bridged dimer.  

 

Figure 8.14 – Titration of a 1.46 x 10-4 M solution of [FeLCl] with one equivalent of 

DBU in 0.1 eq aliquots. 

 

Addition of approximately 2 more equivalents of DBU (3 total), shifted the peak 

to around 420 nm, suggesting deprotonation of the hydroxo-bridge (Figure 8.15). 
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Figure 8.15 – Continuation of titration from Figure 8.14, beginning after one 

equivalent of DBU was added, continuing with aliquots containing 0.2 equivalents 

of DBU up to 3 equivalents total. 

 

 

8.5 Behavior of [(FeL)2(µ-O)] in Acetonitrile 

The UV-vis spectrum of [(FeL)2(µ-O)] in CH2Cl2 exhibited λmax = 419 nm. Its 

behavior in CH3CN was less straightforward, however. A relatively concentrated 

solution (4.3 x 10-4 M) initially had a spectrum identical to the spectrum in CH2Cl2, and 

did not change for the first hour, but after three hours the peak had shifted from 420 to 

435 nm, with a shoulder appearing around 490 nm (Figure 8.16).  
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Figure 8.16 – Initial spectrum of a 4.3 x 10-4 M solution of [(FeL)2(µ-O)] in 

acetonitrile (solid line) and after 3 hours (dashed line). 

 

The initial spectrum of a more dilute solution (6.5 x 10-5 M) matched the 

appearance of the dashed line in Figure 8.16, suggesting that whatever process was 

occurring was able to happen more quickly at lower concentration. The dilute solution 

was titrated with HOTf, and after 0.6 equivalents were added, the peak shifted from 435 

to 490 nm, with an isosbestic point around 454 nm (Figure 8.17). 
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Figure 8.17 – Titration of a 6.5 x 10-5 M solution of [(FeL)2(µ-O)] with HOTf. 

 

Addition of another 0.1 equivalent of HOTf (1.1 equivalents total) shifted the 

peak to 500 nm, but it did not continue to pass through the isosbestic point. Further 

addition of HOTf shifted the peak a little farther to the red, suggesting dissociation of 

the complex into monomers. Addition of excess HOTf shifted the peak ever farther 

towards the red, and resulted in eventual bleaching of the solution. This is probably an 

indication that the protonation of the amine and phenolate groups of the ligand cause it 

to become unbound from the iron ions. 
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8.6 Air-free Titrations of [(FeL)2(µ-O)] with Benzoic Acid 

In order to avoid further complications, solid benzoic acid (HOBz), which is 

easier to dry, was selected and solutions were prepared in a glove box under nitrogen. 

An air-free titration of [(FeL)2(µ-O)] with benzoic acid shifted the peak from 412 nm to 

489 nm, with an isosbestic point at 442 nm (Figure 8.18). Though 489 nm is slightly 

different than 496 nm, as is usually observed for [(FeL)2(µ-OH)]BPh4 in acetonitrile, in 

this case the counter ion is benzoate (OBz-) rather than tetraphenylborate, which would 

accept a hydrogen bond from the bridging O–H, thus slightly weakening its bond 

strength and thereby slightly changing the coordination environment of the iron ions. 

The precise isosbestic point at 442 nm is evidence that no other side reactions were 

occurring, such as the coordination of benzoic acid to the iron centers. 
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Figure 8.18 – Titration of [(FeL)2(µ-O)] (9.1 x 10-5 M) with up to 2.5 equivalents of 

benzoic acid in CH3CN to generate [(FeL)2(µ-OH)]+ monitored by UV-visible 

spectroscopy. 

 

The equilibrium constant, Keq, was calculated at several points throughout the 

titration, based on the change in absorbance at 505 nm, because that region of the 

spectrum showed the greatest change. Keq is defined as: 

  

The change in absorbance makes it possible to determine the fraction of the complex 

that still exists as [(FeL)2(µ-O)]  and how much has been converted to [(FeL)2(µ-OH)]+ 

at any given point in the titration, because the complex is assumed to exist entirely as 

[(FeL)2(µ-O)]  at the beginning of the titration and [(FeL)2(µ-OH)]+ at the end. [OBz˗] is 

then assumed to be equal to [[(FeL)2(µ-OH)]+], and [HOBz] is assumed to be equal to 
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the amount of benzoic acid added at that point, minus [OBz˗].Then, the Ka of the 

complex was calculated from Eq. 2:[157, 172]  

 

   Ka(complex) = Ka(acid)/Keq       (2) 

 

where Ka (acid) = 3.09 x 10–22 (pKa = 21.51) in acetonitrile.[183] The titration was 

performed in triplicate (Figure 8.19), and Ka(complex) was calculated at several 

different points between the start and endpoint of each titration, and the average value 

for each titration was determined. The average of those values is 5.3 ± 1 x 10–22 (pKa = 

21.3 ±0.1). 

 

Figure 8.19 - Change in absorbance at 505 nm of 9.1 × 10-5 M [(FeL)2(μ-O)] with 

addition of benzoic acid (9.1 × 10-4 M) in acetonitrile. 
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 However, the values calculated from different points within the same titration, 

rather than showing random variability due to error, showed a trend. The value 

calculated for the pKa increased as the titration progressed. This makes sense, because 

as more benzoic acid is added, more benzoate is available to hydrogen bond to the 

bridging hydroxo proton and to the amine proton. This has the effect of making the 

protonated form even more stable, thus raising the apparent pKa. The actual pKa can be 

estimated by plotting the observed pKa vs. the quantity of benzoic acid added to the 

system (Figure 8.20).  

 

 

Figure 8.20 - Change in calculated pKa value for [(FeL)2(μ-O)] as more equivalents 

of benzoic acid were added. The theoretical value if no benzoic acid were present 

was estimated from the y-intercept; 20.4 in this case. 
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The y-intercept represents the theoretical pKa if no benzoic acid had been added; 

in this case, 20.4. A similar analysis of the other two titrations gave values of 20.3 and 

20.6, respectively. Even though these estimates are lower than the values calculated by 

averaging all of the various determinations of Ka(complex), they are still unusually high 

values, even for a diiron complex. The closest values we have observed in the literature 

were published by Zheng, et al., for their series of complexes with (μ-oxo)(μ-

hydroxo)diiron(III) cores, having pKa values in acetonitrile ranging from 15.9 to 

17.6.[172] It has been observed that phenolates are more strongly electron donating than 

pyridine and other N-donor ligands, which would result in more electron density on the 

iron centers.[158] This may be an important factor contributing to the high pKa that we 

observed. 

 

8.7 Conclusion 

 In conclusion, the acid-base properties of [(FeL)2(µ-OH)]BPh4, [(FeL)2(µ-O)], 

and [FeLCl] were characterized in CH3CN. [(FeL)2(µ-OH)]BPh4 was reversibly 

deprotonated by strong bases such as DBU. Addition of acid to [(FeL)2(µ-OH)]BPh4 

caused protonation of the hydroxo bridge to form a labile water molecule, which likely 

led to the dissociation of the complex into monomers, 2[FeL]+. Spectroscopic evidence 

suggested that in the presence of OH-, [FeLCl] spontaneously formed [(FeL)2(µ-OH)]+, 

and further addition of base removed the hydroxo proton to form [(FeL)2(µ-O)]. The 

oxo bridge of [(FeL)2(µ-O)] seems to be so basic that in CH3CN, it can be protonated by 

atmospheric H2O. Finally, [(FeL)2(µ-O)] was titrated with benzoic acid under inert 

conditions and the pKa of the hydroxo bridge in [(FeL)2(µ-OH)]+ was estimated to be 
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20.4. This is remarkably high compared to literature reports for other hydroxo-bridged 

diiron complexes. There are several possible factors that may contribute to the high pKa 

observed for this complex. First of all, the hydrogen bonding between the two ligands 

forces the Fe-O-Fe bond into a bent configuration (<145°), which likely favors the 

protonated form over the deprotonated form. Second, phenolate ligands are known to be 

strongly electron donating, which decreases the Lewis acidity of the ions to which they 

are coordinated. A decrease in the Lewis acidity of the iron ions in an oxo-bridged 

diiron complex would increase the basicity of the oxo-bridge. Finally, in the 

deprotonation reaction of benzoic acid by [(FeL)2(µ-O)], the benzoate anion is likely 

stabilized by hydrogen bonding to the ligand’s amine proton, facilitating proton transfer 

from benzoic acid to the oxo-bridging ligand. 

 

8.8 Experimental 

8.8.1 General Procedures 

Unless otherwise stated, all reagents were used as received from commercial 

sources. 2-methyl-2-(pyridine-2-yl)propane-1,3-diamine (ppda) was synthesized 

according to the published procedure.[184] 2,2'-(2-Methyl-2-(pyridin-2-yl)-propane-

1,3-diyl)bis(azanediyl)-bis(methylene)diphenol  (H2L) was synthesized according to the 

published procedure.[175] Solvents were doubly purified using alumina columns in an 

MBraun solvent purification system (MB-SPS). UV-visible spectra were recorded using 

a Shimadzu UV2401PC spectrophotometer.  
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8.8.2 Complex Syntheses 

[(FeL)2(µ-OH)]BPh4 and [(FeL)2(µ-O)] were synthesized according to the 

published procedures.[176] To synthesize [(FeL)2(µ-OH)]BPh4, 0.143 g 

Fe(ClO4)3·6H2O in 1 mL methanol was mixed with a 10 mL methanol solution 

containing 0.117 g of ligand (L) and 0.075 g Et3N. The solution, which turned dark 

wine-red, was stirred for one hour at room temperature (RT), then 0.160 g NaBPh4 was 

added and a purple precipitate (ppt) immediately formed. The slurry was refluxed 

overnight and the ppt collected by filtration, washed with methanol and diethyl ether, 

and dried. The powder was collected (0.180 g), dissolved in CH2Cl2, and a small 

amount of insoluble residue was removed by filtration through celite. The product was 

crystallized by pentane diffusion into the CH2Cl2 solution. Only the crystalline product 

was used for characterization and titrations. 

To synthesize [(FeL)2(µ-O)], 0.1495 g of [(FeL)2(µ-OH)]BPh4 were dissolved in 

14 mL CH2Cl2 under an inert atmosphere. A 1 mL solution containing 0.0236 g 

cobaltocene (CoCp2) was added with stirring. The color of the solution changed 

immediately from dark purple to orange, with the simultaneous formation of a yellow 

ppt. The solution was stirred for an additional 15 minutes, then 30 mL of diethyl ether 

(Et2O) was added to complete the precipitation. The remaining steps were performed in 

air. The ppt was removed by filtration, and the filtrate was concentrated under high 

vacuum, then dissolved in acetone. Crystals were produced by pentane diffusion into 

the acetone solution. Only the crystalline product was used for characterization and 

titrations. 
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[FeLCl] was synthesized by the previously published method, but using a 

different crystallization technique.[175] Anhydrous FeCl3 (0.0324 g) was added to a 5 

mL CH2Cl2 solution containing 0.076 g ligand and 0.08 g Et3N, and the solution turned 

dark red. After stirring for two hours at RT, the solution was filtered to remove any 

unreacted solids. The filtrate was placed in a small vial inside a larger vial containing 

hexane, and a cap was placed on the larger vial. The crystalline product was obtained by 

very slow evaporation of the CH2Cl2 into the hexane. 

8.8.3 Titrations of Complexes 

Titrations of [(FeL)2(µ-OH)]BPh4 with various bases were carried out as 

follows: Et3N was added in 100 µL aliquots (2700 equivalents each) to an acetonitrile 

solution of [(FeL)2(µ-OH)]BPh4 (7.5 × 10–5 M). Solution of proton sponge in 

acetonitrile (3.3 × 10–2 M) was added in increments of 500 equivalents to an acetonitrile 

solution of [(FeL)2(µ-OH)]BPh4 (8.6 × 10–5 M). Acetonitrile solutions of DBU or TMG 

(8.6 × 10–3 M) were added to an acetonitrile solution of [(FeL)2(µ-OH)]BPh4 (8.6 × 10–5 

M) in increments of 0.1 equivalent of base up to 1.2 equivalents, then in increments of 1 

equivalent up to 4 equivalents. In all cases, a UV-visible spectrum was recorded after 

each addition of base to the sample. 

Air-free titrations of [(FeL)2(µ-O)] with benzoic acid (BZA) were monitored by 

UV-visible spectroscopy. Acetonitrile solutions of [(FeL)2(µ-O)] (9.1 × 10–5 Μ) and of 

benzoic acid (9.1 × 10–4 Μ) were prepared under nitrogen atmosphere. The solution of 

[(FeL)2(µ-O)] was placed in a cuvette fitted with a septum, and the benzoic acid 

solution was introduced in increments of 0.08 equivalents of benzoic acid to [(FeL)2(µ-

O)] using an airtight syringe. The temperature was held constant at 25° C.  
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Appendix A: List of Abbreviations 

 

CEC   cation exchange capacity 

CH2Cl2 dichloromethane 

CH3CN acetonitrile 

CoCp2  cobaltocene 

CV  cyclic voltammetry 

DBU  1,8-Diazabicyclo[5.4.0]undec-7-ene 

DRIFTS diffuse reflection infrared Fourier transform spectroscopy 

Et3N  triethylamine 

Et2O  diethyl ethere 

FTIR  Fourier transform infrared spectroscopy 

H2L 2,2'-(2-Methyl-2-(pyridin-2-yl)-propane-1,3-diyl)bis(azanediyl)-

bis(methylene)diphenol 

HOBz benzoic acid 

HOTf trifluoromethanesulfonic acid (triflic acid) 

IR infrared 

M molarity, or moles/liter 

MMO methane monooxygenase 

MMT montmorillonite 

MS mass spectrometry 

OBz- benzoate 

OTC over-the-counter 
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PAP purple acid phosphatase 

PPCPs pharmaceuticals and personal care products 

ppda 2-methyl-2-(pyridine-2-yl)propane-1,3-diamine 

RH relative humidity 

RNR ribonucleotide reductase 

RT room temperature 

sMMO soluble methane monooxygenase 

TG thermogravimetry 

TG-MS thermogravimetry-mass spectrometry 

UV-vis  ultraviolet-visible spectroscopy 

VT-DRIFTS variable temperature diffuse reflection infrared Fourier transform 

spectroscopy 

WWTPs waste water treatment plants 

XRD  X-ray diffraction 
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Appendix B : NaMMT and CaMMT Mass Loss Curves 

 
Figure B.1 - Mass loss versus temperature curves for sodium montmorillonite 

samples containing (a) benzoic acid, (b) salicylic acid, and (c) aspirin adsorbates.  

Sample loading percentages are indicated for each curve. 
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Figure B.2 - Mass loss versus temperature curves for calcium montmorillonite 

samples containing (a) benzoic acid, (b) salicylic acid, and (c) aspirin adsorbates.  

Sample loading percentages are indicated for each curve. 
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Appendix C : TGA Analyses in Air 

 
Figure C.1 – Mass loss versus temperature curve for 10% (w/w) benzoic 

acid/KMMT analyzed in air. 

 

 
Figure C.2 – Mass loss versus temperature curve for 11% (w/w) salicylic 

acid/KMMT analyzed in air. 
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Figure C.3 – Mass loss versus temperature curve for 15% (w/w) acetylsalicylic 

acid/KMMT analyzed in air. 
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Appendix D : TG-MS Analyses of Silver-Diluted Samples for Comparison to VT-

DRIFTS Results 

 
Figure D.1 - Mass spectrometric ion signal intensity profiles representing water 

(m/z 18), benzoic acid (m/z 122), benzene (m/z 78), and carbon dioxide (m/z 44) 

measured during TG-MS analysis of a KMMT sample containing 10% benzoic 

acid. The whole sample was diluted 5:95 (w/w) in silver powder. 

 

 
Figure D.2 - Mass spectrometric ion signal intensity profiles representing water 

(m/z 18), salicylic acid (m/z 120), phenol (m/z 94), and carbon dioxide (m/z 44) 

measured during TG-MS analysis of a KMMT sample containing 11% salicylic 

acid. The whole sample was diluted 5:95 (w/w) in silver powder. 
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Figure D.3 - Mass spectrometric ion signal intensity profiles representing water 

(m/z 18), salicylic acid (m/z 120), phenol (m/z 94), and carbon dioxide (m/z 44) 

measured during TG-MS analysis of a NaMMT sample containing 11% salicylic 

acid. The whole sample was diluted 5:95 (w/w) in silver powder. 

 

 
Figure D.4 - Mass spectrometric ion signal intensity profiles representing water 

(m/z 18), salicylic acid (m/z 120), phenol (m/z 94), and carbon dioxide (m/z 44) 

measured during TG-MS analysis of a CaMMT sample containing 11% salicylic 

acid. The whole sample was diluted 5:95 (w/w) in silver powder. 
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Figure D.5 - Mass spectrometric ion signal intensity profiles representing water 

(m/z 18), acetic acid (m/z 60), salicylic acid (m/z 120), phenol (m/z 94), and carbon 

dioxide (m/z 44) measured during TG-MS analysis of a KMMT sample containing 

15% acetylsalicylic acid. The whole sample was diluted 5:95 (w/w) in silver 

powder. 

 

 
Figure D.6 - Mass spectrometric ion signal intensity profiles representing water 

(m/z 18), acetic acid (m/z 60), salicylic acid (m/z 120), phenol (m/z 94), and carbon 

dioxide (m/z 44) measured during TG-MS analysis of a NaMMT sample 

containing 15% acetylsalicylic acid. The whole sample was diluted 5:95 (w/w) in 

silver powder. 
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Figure D.7 - Mass spectrometric ion signal intensity profiles representing water 

(m/z 18), acetic acid (m/z 60), salicylic acid (m/z 120), phenol (m/z 94), and carbon 

dioxide (m/z 44) measured during TG-MS analysis of a CaMMT sample 

containing 15% acetylsalicylic acid. The whole sample was diluted 5:95 (w/w) in 

silver powder. 
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