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CHAPTER I 

INTRODUCTION

This paper Is intended to describe the experimental methods and 

analysis of data that lead to values for excitation cross sections of 

certain states of the helium atom. In some cases, the excitation is 

produced by the collision of a ground state atom with an already ex­

cited atom, leading to an excitation transfer. In other cases, we are 

interested only in excitation produced by electron impact. These two 

modes of excitation are measured in terms of the transfer cross section 

or electron excitation cross section respectively. Other methods of 

populating excited states include cascading (radiative transitions) from 

other states and absorption of resonance radiation. The fundamental ex­

perimental measure of the populating processes is determined by a measure­

ment of the photon emission rate from a particular excited state and is 

called the apparent cross section for excitation to that state. If the 

photon rate can be measured absolutely by comparison against a standard 

source the cross section so obtained is called an absolute apparent 

cross section. The population gain and loss rates from the excited state 

may then be equated and information obtained on the population process.

We shall also be concerned with the variation of the apparent cross
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section with the energy of the incident electron. In view of the im­

portance of the apparent cross section, a brief derivation follows.

Consider a gas which contains N ground state molecules per cm^.

If we project a steady beam of electrons along x through the gas and

suppose that each molecule offers a cross sectional area for collision 

of Q cm^, then the total target area in a segment of thickness dx in a 

beam of cross sectional area A will be NQAdx. The probability for 

collision between an infinitesimal electron and a gas molecule is thus

dP . . (1)

The probability that an electron will undergo a collision at x

is also proportional to the ratio of the number colliding per sec in

dx at X to the total number passing through dx per sec so that

using Eq. (1) we then have

One usually observes a segment of the beam from x^ to Xg. 

Integration of Eq. (3) over these limits yields

Ig = e ^^^^2 ^1^ = I^[1 - QNfXg-x^)] (4)

QN(x 2~x ^)» -|[QN(x 2-Xĵ) (5)
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The expression for the collision cross section is thus

_ _ 1̂ 2̂_______ AI_ ,,,
^ (x2-x^)IjN ■ AxI^N

Here is the number of electrons per sec entering the region 

of observation where AI electrons per sec collide.

We now consider inelastic collisions whereby an excited state 

k is produced. We use the word state in a broad sense to include any 

group of closely spaced states which are not optically resolved.

Under steady state conditions .the number of photons I^fk) emitted from 

state k per sec will be equal to the number of atoms excited to state 

k per sec. These in turn are equal to the number of colliding electrons 

per sec leading to the excitation. Equation (6) can then be written as

Q'(k)NAx 7 = 1  (k) (7)e p

where I/e is the beam current divided by the electronic charge. Equa­

tion (7) defines only the apparent cross section, Q'(k), for excitation 

to state k since in general there are processes other than electron ex­

citation which may contribute to I^(k). In many cases one can observe 

only photons corresponding to one of several transitions from state k. 

Denoting this rate by 1^ (k-̂ j ) we have

Q'(k)NAx J = B(kĤ j)Ip(k->j) (8)



where the branching ratio B(k^j) is defined by

I (k) 

p

If one is dealing with a system possessing cylindrical sym­

metry, and N(k,R) is the density of atoms in state k at radial 

distance R in the vicinity of a beam of current density j(R), then 

Eq. (8) becomes

Q'(k) I  Ax/“j(R)RdR = AxB(k + j)A(k-»j)/]jN(k,R)RdR (10)

Here A(k->-j) is the transition probability per sec for k ->• j emis­

sion. For convenience in later equations the integral on the R.H.S. 

(right-hand side) of Eq. (10) is taken equal to N(k)S, where N(k) is 

some average excited state density and N(k,R) is zero outside some 

area S. Equation (8) becomes

^Q '(k) = N(k)B(k->j)A(k^j) . (11)

A(k-»-j) for spontaneous dipole transitions have been tabulated by 

Gabriel and Heddle (1).



CHAPTER II 

DESCRIPTION OF EXPERIMENTAL APPARATUS

The Vacuum System

A block diagram of the vacuum system is shown in Fig. 1. The 

vacuum system is of conventional design with a major advantage of being 

constructed primarily of stainless steel. This eliminates costly down 

time for lengthy bake out procedures and also the need for a glass 

blowing specialist. The system is constructed so that its main portion 

may be covered by a specially constructed bake-out oven. It may be 

baked out automatically at a preset temperature (up to 400°C) and for 

a preset time.

Auxiliary equipment for pressure measurement includes a large 

McLeod gauge, a sensitive Pirani gauge, and an automatic scale-changing 

ionization gauge. These gauges are all of commercial manufacture.

The Optical System

The optical system arrangement is shown in Fig. 2. The lenses 

employed are of optical grade quartz. The windows in the yacuum sys­

tem are sapphire. The standard lamp also has a quartz window. The 

particular monochromator shown in Fig. 2 is a i meter focal length 

Jarrell-Ash. Gratings that are used with this instrument are blazed

5
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at 0.3, 0.6, 1.2, and 2.1 p. Also a & meter Jarrell-Ash with .5p blaze 

grating is used. The latter instrument is superior to the former in 

the U.V. spectral regions due to its lower light scatter. The i  meter 

instrument is useful in the I.R. region and has more light gathering 

power.

The indicated arrangement of the standard lamp in direct line 

with the collision chamber and monochromator allows for permanent

positioning of all optical components.

The Electronic System

The electronic system is shown in Fig. 2, in block diagram form. 

The essential features for automatically processing the data and re­

cording the apparent cross section as a function of electron energy are

the same as those described in a previous paper (2). A brief account 

of the operation is as follows.

Photons produced by electron impact in the collision region are 

focused by a lens on the entrance slit of monochromator. Those corre­

sponding to some k transition are transmitted and fall on the sensi­

tive surface of a light detector (photomultiplier tube or infrared de­

tector) . The signal developed is proportional to the photon rate and 

is of a square wave form'due to the modulation of the electron accel­

erating voltage. A tunable amplifier set at this modulation frequency 

reduces the relative noise content of the signal. Further signal to 

noise improvement is obtained through the use of a phase sensitive de­

tector. This detector rectifies and filters components of the input
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signal which bear a fixed phase relation to a reference source. The 

detector output is further amplified to a voltage suitable for input 

to the numerator of an analog divider.

The electron beam current, also of square wave form, develops 

a voltage across a low resistance which is rectified, amplified, and 

fed to the denominator of the analog divider. Assuming linearity of 

the various amplifiers and a constant gas density, the divider output 

is proportional to the apparent cross section. The output of the 

divider is connected to the vertical deflection plates of an oscillo­

scope and the accelerating voltage to the horizontal deflection plates. 

As the accelerating voltage changes a curve is generated which is 

termed the optical excitation function. One may also record the exci­

tation spectrum of the gas at constant voltage by slowly rotating the 

grating of the monochromator.

A major advantage over previous systems is the centrally 

located sine wave generator. In addition to serving as a reference 

signal to the phase detector and as a source signal for the square 

wave generator, the sine wave voltage is amplified by a push-pull 

amplifier and used to drive a synchronous motor chopper for the stand­

ard lamp light. One may set the sine wave generator at any desired 

frequency between 35 and 100 cps and still have the proper frequency 

and phase relationships between the beam signal, the standard lamp 

signal, and the reference signal.

Also shown in Fig. 2 is the arrangement of the standard lamp 

circuit. A regulated current supply sends current through the stand­

ard lamp via a standard ohm. The voltage drop across this resistor is
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measured by a sensitive differential voltmeter. This allows the stand­

ard lamp current to be measured to 5 significant figures. The tempera­

ture of the lamp ribbon as a function of current is obtained from 

General Electric Company, the lamp manufacturer.

The One Centimeter Beam Electron Gun

Much of the experimental data to be described in subsequent 

chapters depended on the successful design, construction, and operation 

of a rather large electron gun producing a one cm diameter beam. This 

gun, shown in Fig. 3, is basically of pentode design. It employs a 

Phillips dispenser cathode for electron emission. The first grid is 

maintained 10-30 V positive with respect to cathode and the second grid 

100-200 V positive with respect to cathode. The third grid is at cathode 

potential and serves as a "virtual" cathode. Grid No. 4 is grounded 

and serves as the final electron accelerating source when the cathode 

and third grid are raised to the desired negative potential above ground. 

Grid No. 5 is also at ground and serves to prevent divergent electrons 

from entering the collision chamber. The collision chamber is grounded 

through a low resistance current measuring device. The screened anode 

is biased 22 V positive with respect to the collision chamber and serves 

to trap secondary electrons.

The grid plates are machined from 304 stainless steel and the 

collision chamber is formed from the same material. Spacing insulators 

for the grids are 4 mm diam. pyrex spheres seated in under-sized holes 

drilled to the correct size for proper grid spacing. All grid plates
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12

have centrally aligned 1 cm diam. openings. Grid structures are formed 

over these openings using 8 crossed 0.01" diam, wires. Four wires form 

an inscribed square and the remaining four are woven and spot welded in 
such a manner as to form 9 smaller squares. The grid wries are tungsten 

except for the first grid which is made of nickel wire. The anode 

screen is gold plated and the anode face is also gold. The cathode is 

mounted using tungsten tipped stainless steel screws.

The gun shows good pentode characteristics which depend in vari­

ous degrees on the pressure and type of gas in which it operates.

Although designed primarily for high currents, the good energy 

resolution of this gun approaches that of guns designed for resolution, 
these latter types giving currents 100-500 times smaller.



CHAPTER III 

MEASUREMENT OF EXPERIMENTAL PARAMETERS

Standardization

The branching ratios in Eq. (8) are obtained from theoretical 

calculations. The other quantities must be measured experimentally. 

The measurements of N, Ax, and I in general offer no great difficulty. 

The main problem is in obtaining an accurate value for the photon rate 

from the excitation region. This is done by calibrating the detection 

system with a known photon rate from a standard lamp.

If photons of wavelength X emitted in solid angle are 

gathered by the optical system, they will generate a signal from the 

detector given by Ig which is proportional to the photon rate. The 

constant of proportionality, E(A^), is termed the efficiency of the 

detection system. This allows us to write for the photons originating 

in the electron beam and having isotropic angular dependence

. (12)

We now introduce a quantity P^^ which is the photon rate into 

unit solid angle radiated by unit area of a tungsten ribbon and trans­

mitted by a monochromator of triangular band pass of half width AX. If 

such photons from solid angle and source area A^ are collected by

13
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the detection system, we have for the corresponding detector signal 

ISL that

(13)

Eliminating E(A^) between Eqs. (12), (13) we have

(14)

Values for are calculated in the following manner. The 

photon flux from the tungsten ribbon at temperature T may be considered 

to be constant over a small wavelength interval 2AA. This flux may be 

calculated from Planck's law and the emissivity of the surface. The 

amount of radiation transmitted by the monochromator is then obtained 

by integration over its relative transmission function which is de­

fined as

T(A) = 1 + 

T(A) - I t

A—Ac
AA

A—Â
AA

A — AA < A < A 0 —  0

A < A < A + AA 0 —  —  0

(15)

(16)

We may then write

2 c e(A^,T)
M where

A +AA 0
T(A)dA = AA

A — AA 0

(17)

Here c is the velocity of light, e(A^,T) is the emissivity of 

tungsten, and is the second radiation constant. The above approxi­

mation is very good for AA < 100 X if T < 3000 “K and A > 2200 X. A
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1st order correction to is derived by West (3). Values of for 

AX = 16 X have been calculated by the author on an IBM 1410 computer 

for a temperature range of 1400 3000 “K in increments of 200 °K. The

values of used in the calculation run from 0.22y to 0.70y in incre­

ments of 0.002y and from 0.70y to 3.03y in increments of O.OlOy. The 

emissivity curves of DeVos (4) were digitized by a linear interpolation 

program for use in the above calculation. _

The monochromator pass band AX depends upon equal entrance and 

exit slit widths s in the following manner.

Here f is the focal length of the monochromator primary mirror 

and 0 the angle between the normal to the grating and the direction of 

the exit slit. is the ruling density of the grating. In terms of 

P^g we have

In order to determine the effective area A of the standardo
lamp ribbon, an image of the ribbon is focused on a screen inside the 

Faraday cage of the electron gun just behind the electron beam. This 

screen is provided with a horizontal slot of precisely measured area 

A^. All light through this slot is allowed to pass into the monochro­

mator. If and Rg are the object and image distances of the stand­

ard lamp lens, as shown in Fig. 4, then

\  ^  F  (20)
2
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Similarly, if the image of the center of the electron beam 

(which is well defined by the luminosity of excited atoms) is focused 

on the entrance slit, we have to a good approximation

?!
Ax = s —  (21)

^2

where r^, r^ are the object and image distance, respectively, of the 

beam focusing lens. Moreover, if D and d denote the diameters of 

limiting stops at distances of R and r from their respective sources, 

we also have

When Eqs. (19), (20) and (22) are substituted into Eq. (14) 

and the result substituted into Eq. (8) along with Eq. (21), we ob­

tain for the final form of the apparent cross section in terms of 

fundamental quantities

B(k^j)I P , cose e AirD^r^r^RnA,
I j • ''''

In some cases, a correction to Q'(k) must be made due to the 

anisotropy of the radiation Ip(k->j). The derivation of the correction 

term is given in Ref. 5 and consists of a multiplicative factor 

(1 - P/300) where P is the percentage polarization of the emitted ra­

diation measured at 90° to the beam direction.
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General Experimental Procedure

After checking for radiation produced by background gas, a de­

sired amount of gas is introduced into the vacuum chamber. The pres­

sure is read on a McLeod gauge and con.tinusously monitored on a Pirani 

gauge. N is determined from the pressure by the general gas law. Con­

trol experiments are then run and consist of the following:

Linearity check of Ig vs d%

Linearity check of Ig vs I

Linearity check of Ig vs N

Linearity check of Ig vs s

Control experiments with the standard lamp consists of

Linearity check of Ig^ vs 0%

Linearity check of Ig^ vs s

The detection system is then calibrated by obtaining Ig^ over 

the desired wavelength range at several different temperatures. Al­

though the ratio of P^^ cos6 to Ig^ should be constant at all stand­

ard lamp temperatures, some deviation is noticed, especially at low

temperatures. Some of the deviation can be ascribed to light scat­

tering in the monochromator and can be eliminated by properly chosen 
broad band pass filters. The procedure adopted in this experiment 

was to use an average value of the above ratio over the higher temper­

atures, where the deviation was approximately + 4 per cent for a
change of I_. by a factor of 5.SL
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Shortly after calibration of the detection system, a scan of 

the spectral lines is made at constant N and I. This yields Ig and 

when combined with the other parameters in Eq. (23) yields Q'(k). The 

optical path of the photons from the beam is first adjusted to agree 

with that of photons from the standard lamp by placing in front of the 

beam plates of quartz and sapphire. These are of the proper thickness 

to simulate the rear window of the vacuum system, the standard lamp 

lens, and the standard lamp window.



CHAPTER IV

ABSOLUTE MEASUREMENTS OF THE 2^P AND 2^P ELECTRON EXCITATION CROSS

SECTIONS OF HELIUM ATOMS

Description of the Experiment

Up to the present time, no absolute measurements on the cross 

sections of these lowest lying P states of helium have been available. 

This is mainly due to the fact that the transitions from these states 

lie in spectral regions where standard detection techniques are rather 

insensitive. This chapter is concerned with the experimental methods 

and analysis of data that lead to absolute values for the electron ex­

citation cross sections of the 2^P and 2^P states. For reference pur­

poses, an energy level diagram of helium is presented at the end of 

this chapter.

For the 2^P and 2^P states the transitions which were optically 

observed were the 2^P ->-2̂ 5 radiation at 20582 S and the 2^P radia­

tion at 10832 X. In order to measure this radiation a Kodak Ektron 

type N lead sulfide detector was used. The dimensions of the sensitive 

area were 0.1 x 1.0 cm. This detector has a time constant of approxi­

mately 500 microseconds and was operated at 25 “C. The apparatus used 

to measure the apparent cross sections is the same as shown in Fig. 2. 

An additional device was used in this experiment to average the excita­

tion functions automatically. This device, a Nuclear Data Model ND-800

20
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Enhancetron, samples the divider output at 1024 equally spaced incre­

ments during the accelerating voltage sweep and stores this information 

in its memory unit. On each successive voltage sweep the corresponding 

divider outputs are added to those previously stored. The additive na­

ture of the storage significantly reduces random noise.

The i meter Jarrell-Ash monochromator with a 2.Ip blaze grating 

was used for the infrared radiation while the i meter monochromator 

with a .5p blaze grating was used for detection of the radiation emit­

ted by the cascading states. In conjunctioq with the i meter instru­

ment, EMI 6256B and RCA 7265 photomultiplier tubes were used.

The Cascading States

Existing information concerning the apparent cross sections of 

those states that cascade to the 2^P and 2^P states was not complete 

enough to allow a detailed cascade analysis of these states at energies 

near their excitation threshold. For this reason, absolute apparent 

cross sections for 22 of these states were measured at 27 volts energy 

and a pressure of 5p. These values are presented in Table I along 

with the values of the 2 P states. The 2^P value here is corrected for 

imprisonment. The spectral lines marked * are unresolved. The 7^S 

value is interpolated from the 6^S and 8^S and used as a correction on 

the total transition to obtain the 5^D value.

The excitation functions for these states are presented in 

Figs. 5 and 6. The vertical scale for each function is fixed by its 

value at 27 volts given in Table I. The 5^D function contains
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contributions of about 10 ̂ 20 per cent from the 7^S. Smit, Heidman, 

and Smit (6) have reported near threshold excitation functions for 11 

of these states. The shape agreement is good if one allows for their 

slightly better energy resolution. It is estimated from the curves of 

these workers that the halfwidth energy spread of our beam at 5p is in 

the 0.4 to 0.5 eV range. This is quite good since the beam currents 

used for this data were 2 to 5 x 10  ̂amp.

Oscillograms of each family of cascading states were obtained 

by a multiple exposure technique, the monochromator being adjusted to 

the proper wavelength between exposures. The energy scale for each 

family is measured relative to the 2^P onset, which was taken at its 

spectroscopic value of 21.0 eV. When this is done, all other onsets 

appear very nearly at their corresponding spectroscopic values.

An interesting phenomenon occurs in the excitation region which 

the author has termed the "rainbow" effect. This is easily visible 

only with large electron beams of good energy resolution and is due to 

the potential gradient along the beam of approximately 2 volts/cm.

Owing to the spacing of the energy levels in helium threshold excita­

tion of these levels occurs selectively along the beam. One observes 

in order of increasing excitation the radiation 6678 and 5876 X (red­

dish-yellow) from n = 3 states, 5048 through 4471 X (greenish-blue) 

from n = 4 states, and 4438 & and lower (bluish-violet) from n = 5 and 

higher levels.
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Table I. Absolute Apparent Cross Sections of the 2^P and 2^P States 
and Cascading States.

Transition
observed

Initial
State

Apparent Cross Section(10~20 cjî,2)

(%) 27 eV Maximum

20582 2lp 286 1020
10832 23p 400 400
7281 3^S 56 58
7065 3^S 95 107
6678 3^D 32 36
5876 3^D 32 32
4922 4^D 14 19
4713 4^8 32 35
4471 4^D 14
4438 5^S 9.4 11
4387 5^D 7.6 11
4169 6^5 5.0 6.3
4144 6^D 4.2 5.9
4121 5^8 15 16

*4026 5 3d 7.5 7.5
*4025 7^S 2.9 3.8
4009 7^D 2.2 3.1
3937 8^S 1.8 2.5
3926 8^D 1.6 2.2
3867 6^8 8.5 8.5
3820 6^0 5.0 5.0
3733 ?3s 5.0 5.2
3705 7^0 3.3 3.3
3634 8^0 2.1 2.2
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Analysis of Data 

The 2^P State

The equation relating the steady state population gain and 

loss rates per unit volume for the 2^P state can be written as

Q(23p)^+ I [N(n3s)A(n3&+23p) + N(n3D)A(n3D+23p)]=N(23p)A(23p^23s) (24)
i>=3

Direct Electron Cascade Radiative Loss
Excitation

From Eq. (9) one sees that the branching ratio may be written

A(k j)

This equation, along with Eq. (11), allows one to express the 

population Eq. (24) as

(26),(23P, . ,.(23P) - + I & W

or simply

Q(23p)= Q'(23p) - Q^(23p) (27)

where the last term represents the cascading summation.

The apparent cross section for the 2^P state is shown in Fig. 

7 for two energy ranges at 5y pressure. Both represent averages of 9 

separate scans. At 27 eV Q'(2^P) = 4.0 x 10 ^^cmf. For the 20 to 30 

volt range, the cascade contribution was calculated using the data 

discussed in the last section. For the unmeasured cascading states
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(n >7 or 8), the small contribution to Q^(<7%) was determined by ex­

trapolation from a n ^ law where x was determined from the data of the 

lower states. The unmeasured excitation function shapes for high n 

were assumed to be similar to that of the highest state measured. The 

curves Q', Q^, and Q for the 2^P state are shown in Fig. 8.

In the higher energy range the shapes of the cascading states 

are similar and the corresponding corrections to Q'(2 P) are simpli­

fied. The corrected cross section over the entire energy range inves­

tigated is shown in Fig. 9. The x's on this figure are from the the­

oretical calculations of Massey and Moiseiwitsch (7).

The 2^P State

Here we must consider the additional population processes due 

to the imprisonment of resonance radiation. If we denote by g the 

fraction of resonance photons that are not absorbed by the gas but es­

cape to the absorbing walls of the collision chamber, then the popula­

tion equation for the 2^P state takes the form

[Q(2lp) +Q^(2lp)] J I +  (l-g)N(2lp)A(2lp ̂ l^S) =
(28)

N(2lp)[A(2lp + lls) + A(2lp+2ls)] .

Using the definition of apparent cross section and solving for the 

quantity of interest we find

Q(2lp) = 4'(2^P)—  [g A.C2|P.^liSl + 1] _ Q (2lp) . (29)
B(2lp^2^S) A(2lp^2lS) ^
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Limits on the value of g have been obtained by Phelps (8) for 

a collision chamber of cylindrical symmetry and radius R. From these 

values one may obtain g as a function of R and the pressure p for a 

line subject to Doppler broadening only. Gabriel and Heddle (1) have

applied the analysis of Phelps in order to obtain the electron excita­

tion cross section of the 3^P state. One may use a similar analysis 

to correct for the imprisonment of the 2^p state since detection of the 

infrared radiation from this state at pressures low enough to give zero 

imprisonment is practically impossible. Indeed, even at Ip pressure,

imprisonment is still about 93 per cent.

In practice the collision chamber is usually nearly enclosed at 

both ends, contains viewing windows, etc., so that one no longer has 

ideal cylindrical geometry. One must therefore attempt to determine 

an effective radius p. One substitutes different values of p and p in 

the R.H.S. of Eq. (29) to see if there is a unique value for Q(2^P) at 

all pressures. The values of Q'(2^P)/B(2^P-»-2^S) and Q^(2^P) are ob­

tained for various pressures from the experimental curves shown in 

Fig. 10. The quantity g(p,p) is evaluated over a range of values of 

for each pressure with the aid of the graph presented in Ref. 1. The 

results of this analysis for 100 volt electrons are shown in Fig. 11. 

Here are presented curves of Q(2^P) vs. p for the three pressures of 

(a) 60p, (b) 30p, and (c) 4.5p. One sees that for an effective radius 

of about 0.95 cm we have the solution Q(2^P) = 9.2 x 10 ^^cm^. Curves 

at higher pressures tended to yield lower values of Q(2^P) but at these 

pressures effects other than Doppler broadening become important as 

discussed in Ref. 8.
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The cross sectional area of the collision region under observa­

tion was 0.5 mm in thickness and situated 0.4 cm from the end plate of 

the collision chamber where the electron beam was admitted. The actual 

radius of the collision chamber was 1.5 cm but due to the presence of 

the end plate one would expect the effective radius to lie between 0.4 

and 1.5 cm. The calculated value 0.95 cm therefore seems reasonable.

The cascade contribution to the 2^P state at 100 eV shows 

pressure dependence due to the enhancement of the series population 

at high pressures. The series shows little or no pressure depen­

dence. The 2^P apparent cross section for two energy ranges is shown 

in Fig. 12. The shape of this function shows little pressure depen­

dence and is typical of other P̂ states. The top function represents 

an average of 25 scans at 4y pressure and the bottom function is an 

average over 9 scans at 8y pressure. Cascade corrections were ap­

plied at all energies in the manner described in the last section.

The corrected cross section is shown in Fig. 13. On this figure, x 

represents theoretical values of Massey and Mohr (9) and A represents 

theoretical values of Vainshtein and Dolgov (10).

The apparent cross sections of the series are significantly 

affected by polarization (up to 12%) and hence were corrected for this 

effect accordingly by the expression given in Chapter III. The polar­

ization correction for the series has a maximum value of only 4 per 

cent and hence was neglected.
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It was not possible to determine exact polarization values for 

the 2^P and 2^P radiation at low pressures due to weak signals. How­

ever, by using a Nicol prism, it was determined that the polarization 

was not more than 10 per cent from onset to 100 eV at lOp pressure.

A polarization value of 10 per cent would imply a correction to the 

apparent cross section of about 3 per cent.

Discussion of Results

The cross section for the 2^P state is noticeable for the 

fact that it approaches zero rapidly at energies beyond 100 eV in

complete agreement with the theoretical values. Beyond 200 eV all

the apparent cross section can be accounted for by cascade. The ex­

change distorted wave approximation calculation by Massey and 

Moiseiwitch (7) gives for the maximum of the 2^P cross section a 

value about 6 times the experimental result while their Born-Oppen- 

heimer approximation gives a maximum about 13 times as large. The 

almost exact agreement at 170 volts must be considered as somewhat 

fortuitous since the experimental error for this small a value of 

the cross section is large owing to the fact that cascade correction 

was 75 per cent of the total apparent cross section. There is ap­

parently a sharp resonance peak close to onset for the 2^P cross 

section similar to those observed for some of the apparent cross 

sections of low n in Figs. 5 and 6.

The result for the 2^P state is subject to more error than

the 2^P state due to the uncertainty in the correction for imprison­

ment effects. Hence one must consider the agreement with the Born
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approximation calculation (9) to be quite reasonable. The theoreti­

cal results (10) shown for the low energy range however predict more 

of a triplet shaped function and consequently show poor agreement with 

the experimental result.

Moussa (11) has studied the 2^P state by means of its radia­

tion to the ground state at 584 &. He estimated a cross section of 

870 X 10 at 100 eV which is in good agreement with the result ob­

tained here. However, there is poor agreement between the shapes of 

the excitation functions as Moussa obtained a maximum of 1080 x 10 

cm^ at 60 eV and 504 x 10 at 400 eV, as compared to 825 x 10 ^°cm^ 

and 560 cm^ from Fig. 13.

The apparent cross sections of the S and D states in Figs. 5 

and 6 deserve some discussion. There is little doubt that the peaks 

near threshold for the n = 3 states are associated with direct 

electron excitation since cascade processes start at a slightly higher 

energy. In particular, the sharp peak on the 3^D just above threshold 

is observed to be pressure independent up to 63p, while the broad 

maximum doubles in magnitude relative to the sharp peak. The onset 

of this broad maximum corresponds to that of the 4F state, and may be 

caused by 4F -+ 3^D cascade. Since the cascade analysis of the 2^P 

seems to indicate a similar peak due to direct electron excitation, 

one is tempted to associate some near threshold "resonance" effect to 

all non-optically allowed excitations. This is not entirely in agree­

ment with theory, as Massey and Moiseiwitsch (7) did not find a 2^P 

resonance peak using the exchange distorted wave method, but did find
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a 2^S resonance peak with this method. However, their 2^S cross 

section is in good agreement with experiment and the 2^P value is 

not.

Applications

One may determine the optical oscillator strength for the 2^P 

state from the behavior of the electron excitation cross section at 

high energies. According to Schram and Vriens (12), within the valid­

ity of the Bethe approximation the cross section for excitation to an 

optically allowed state n is given in terms of the oscillator strength 

f(n) by the equation

Aixâ R̂
Q(n) = f(n) ln[c(n)E] . (30)

Hera a^ is the Bohr radius, R the Rydberg, E(n) is the excitation 

potential of state n, E the electron impact energy, and c(n) is a 

constant which depends upon the shape of the curve expressing the 

dependence of f(n) on the momentum change of the incident electron. 

The optical oscillator strength for a transition is defined in terms 

of the matrix element for dipole transitions as

A graph of Q(2^P)E versus InE should therefore show a straight line 

at sufficiently high energy with a slope M given by
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Afrâ R̂
M = ---;-- f (2lp) (32)

E(2lp)

from which the oscillator strength may be calculated.

Such a graph is shown in Fig. 14. One sees that there is a

good straight line fit for energies greater than about 80 eV. The 

slope yields an oscillator strength 0.30. This is compared with ex­

perimental values in Table II. Also given are a few of the numerous 

theoretical values for the 2^P oscillator strength. The agreement

is well within the accuracy of this experimental value.

Holt and Krotov (18) have measured the excitation function 

for the metastable 2^8 state by using electric field quenching of the 

2^8 state. Their function is given in Fig. 15 and shows significant 

2^P cascade effects above 21 eV. The apparent cross section of the 

2^P state obtained in the present work may be used to correct the 2^8 

apparent cross section. The energy spread of the beam used by Holt 

and Krotov is close to the spread of the beam used in the present 

work. Holt and Krotov have shown that the 2^8 peak at 20.5 eV is af­

fected only a few per cent by unquenched 2^8. Hence an absolute value 

of the total metastable cross section at 20.5 eV could be used to fix 

the ordinate of their curve. The values reported in the literature 

for the total metastable cross section at the 2^8 peak are 5 x 10 ^^, 

(4.0 + 1.2) X 10 , and (2.6 + 0.4) x 10 ^^cm^ by Maier-Leibnitz (19),

8hulz and Fox (20), and Fleming and Higginson (21), respectively. The 

factor of 2 spread in these values may be reduced by examination of
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Table II. Experimental and theoretical values of oscillator 
strengths for 2^P states.

Experimental

Skerble and Lassettre (13) 0.268

Geiger (14) 0.312

This work 0.30

Theoretical

Schiff and Pekeris (15) 0.2762

Mott and Massey (16) 0.280

Ochkur and Brattser (17) 0.280
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the corrected Q'(2^S). In Fig. 15 the 2^P cascade has been subtracted

for a 2^S peak value of 4.0 x 10 ^®cm^. The value 2.6 x 10 ^^cm^ for

the 2^S peak would cause it to have a zero value at 23 eV. The true
-18peak value may be somewhat higher than 4.0 x 10 as a value of 

4.2 X 10 ^®cm^ would give 2.2 x 10 ^^cm^ at 22.0 eV, in agreement with 

the theoretical calculations of Massey and Moisciwitch (22). A compari­

son with this theoretical curve at the peak value (6 x 10 ^^cm^) would 

not be valid because of the finite energy spread of the electron beam. 

Shulz and Philbrick (23) measured the production of 2^S at an angle 

of 72° by inelastic scattering methods and found at 23 eV a value of 

0.21 times the peak value. This would occur in Fig. 15 if the peak 

value were 3.9 x 10 ''®cm̂ . Of course one must assume isotopic scattering 

in this case. It is concluded that the best agreement with theory and 

experiment for the 2^S peak at about 0.4 eV energy spread is close to 

4.0 X 10
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CAHPTER V

EXCITATION TRANSFER PROCESSES IN HELIUM 

Description of the Experiment

This experiment was undertaken in order to clarify the pro­

cesses which cause the apparent cross sections of various states to 

show marked dependence on the ground state density. Interest in the 

past has centered primarily on the behavior of the low n singlet and 

triplet D states with pressure. Early researchers (24,25) assumed 

that the excessively high populations of these states at pressures 

above a few microns were due to a process whereby a n^P atom was 

transferred to a n^D or n^D state of excitation by a collision with a 

ground state atom. While conforming to experimental evidence then a- 

vailable, the transfer cross section for such processes seemed some­

what large. In addition, a n^P ->-n̂ D transition for states with good 

Russell-Saunders coupling violates the Wigner spin conservation rule. 

To alleviate these difficulties, a model was intorduced by St. John 

and Fowler (26) in wliich the n^P excitation is transferred via a col­

lision with a ground state atom to the nF state. The excess excita­

tion of the D states is then due to F state cascade from many levels. 

This model yields smaller transfer cross sections and avoids violation 

of the Wigner spin rule since the total spin of an F state is not well 

defined.

46
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Energy considerations allow excitation transfer only between 

states of the same n, unless n is greater than about 12. A theore­

tical treatment of the problem by Bates (27) shows that the probabil­

ity for excitation transfer increases as the internal energy differ­

ence between initial and final excited states decreases. Excitation 

transfer effects involving n^P states are therefore less probable than 

those involving n^P states since the energy separation of n^P and n^L, 

n^L are several times larger than the corresponding n^P separations.

In addition, the n^P population input at 100 eV and high pressure is 

primarily due only to cascade whereas the n^P state excitation is 

due to both large electron impact cross sections and resonance radia­

tion imprisonment. The n^S and n^S states show little or no pressure 

dependence.

Since the introduction of the "multiple state" mechanism of 

St. John and Fowler the most important experimental work (28,29) has 

been confined to observations on radiation from the 3 to 6^P and from 

the 3 and 4 singlet and triplet D states. The experimental data to be 

described here are obtained from observations on the radiation from 

the following 36 states:

n^P n = 3 to n = 10

n^D n = 3 to n = 13

n^D n = 3 to n = 13

nF n = 4 to n = 9
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In view of the inequality (5) in Chapter I, one is limited as 

to the maximum pressure that can be used. Using the ionization cross 

section of Smith (30) and adding to it the total excitation cross 

section, one obtains a value of 5.5 x 10 ^cm^ for the total inelastic 

cross section at 100 eV. The total excitation cross section was de­

termined using the cross sections of the 2P states as given in Chapter 

IV along with the unpublished work of St. John, Kassik, and Nee on the 

other excited levels. Owing to gun construction, Xg - " ^.4 cm and

the error introduced in neglecting higher terms of the expansion in 

Eq. (4) is <_ 3% for pressures _< 70 y.

Presentation of Data 

The P and D States

Absolute values for the apparent cross sections of the P and D

states were obtained at 63y pressure, 8 x 10  ̂amp beam current, and

100 eV. At this energy the pressure dependence is maximum. The method

of standardization has been described earlier. The 1/2 meter Jarrell-

Ash was used with proper filters in conjunction with EMI 6256B and RCA 

7265 uncooled photomultiplier tubes. The data is presented in Table 

111. The branching ratios given in this table are calculated from the 

transition probabilities given in Ref. 1. Occasionally one finds what 

appears to be an error in these values. When this is the case, a cor­

rection is made by reference to the extensive study of helium transi­

tion probabilities by Niles (31). Extrapolation was used for n > 8.
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Table III. Absolute apparent cross sections at 100 eV, p = 63p, for 
and D states. N(k) is number density per 10  ̂ampere 

beam current for S = 0.25n cm^. B(k->-j) are branching ratios.

Transition
k^j

A
(%)

Q'(k) 
(10 *̂̂ cm̂ B(k^j) N(k)

(lO^cm-^)

3 ̂D->2 6678 74.5 1.00 1.9

4 lD-*̂2 ip 4922 42.5 1.37 2.6
5 lD-̂ 2 Ip 4387 18.2 1.54 2.1
6 1d^2 ip 4144 7.0 1.63 1.5

7 ̂ D^2 Ip 4009 3.2 1.78 1.1
8 ̂ D-̂2 Ip 3926 1.5 1.80 .72

91D-+2 Ip 3872 .80 1.78 .59

IQlD^jlp 3834 .42 1.79 .44

11 1d->2 Ip 3805 .25 1.82 .37

12lD->2lp 3784 .16 1.85 .29

ISlDnjlp 3768 .10 1.86 .24

33d-v23? 5876 54.5 1.00 1.2

4 3d->2 3p 4471 24.9 1.27 1.3

53o^2 3p 4026 19.1 1.40 1.9

6 3d->-2 3p 3820 13.0 1.50 2.1
7^0^2 3? 3705 7.6 1.58 1.8
8 3d-»-2 3p 3634 4.0 1.59 1.3

9 3d^2 3p 3587 2.3 1.60 1.0

Table III Continued



50

Table III (Cont’d.)

IQ^EH-Z^P 3554 1.2 1.61 .69

3532 .62 1.63 .52

123o->23p 3514 .32 1.65 .35

133D->23p 3500 .18 1.65 .24

2 P̂->-2 Ŝ 20580 6.14 X 105 902. 560.

3lp+2lS 5016 1.42 X lO^ 43.7 39.4

4^P^2^S 3965 2.60 X 103 37.5 16.5

5lp^2^S 3614 4.50 X 10% 34.3 5.5

6 P̂->2 Ŝ 3448 1.06 X 10% 31.4 2.2

7lp̂ -2̂ S 3355 40.4 30.7 1.3

8 P̂->2 Ŝ 3297 20.2 30.6 1.0

9lp+2lS 3256 11. 30.5 .7

10lp+2ls 3230 6. 30.4 .5
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The pressure variation of the apparent cross sections was 

then determined by the variation of (k j ) with pressure at con­

stant I. This data is presented in Figs. 17 and 18.

The F States

The apparent cross sections of the F states are very diffi­

cult to obtain owing to the fact that radiation from these states is 

in the infrared spectral region. The radiation 4F 3D at approxi­

mately 18, 695 X was measured using the i meter Jarrell-Ash monochro­

mator with 2.Ip blaze grating in conjunction with a Kodak Ektron Un­

cooled lead sulfide detector. It was not possible to resolve the nF 

radiation into its n^F 3^D and n^F ->■ 3^D components which are 

separated by 10 &.

The 5F 3D radiation at 12,790 %  is considerably weaker. It 

is possible, however, to obtain a reasonable signal from this radia­

tion using a PbS detector cooled to liquid nitrogen temperature. A 

fellow worker, J. D. Walker, is currently engaged in research with 

such detectors. The apparent cross section for the 5F state in 

Table IV should only be considered as approximate, as it is based on 

estimates from preliminary spectra obtained by Mr. Walker.

Values for the apparent cross sections for the higher F states 

were obtained using a liquid nitrogen cooled RCA 7102 photomulti­

plier tube. A spectrum showing radiation from these states is pre­

sented in Fig. 19. This spectrum was taken with the i meter monochro­

mator using a 1.2y blaze grating. Absolute values for these apparent
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cross sections were obtained by comparison with the 3^S apparent cross 

section (7281 R) and also with the 2^P apparent cross section (10,833R) 

in the following manner. From Eq. (23) we may write for the apparent 

cross section, denoting the wavelength independent quantities by K,

I*(A)
Q'(k) = Kj. P^g(A) cos0(A) B(k^j) (33)

I.(A')
Q'(k') = K— PigtA') cose (A') B(k'-vj’) (34)

If one has an accurate value of Q'(k), one may eliminate K between 

these two equations and obtain a value of Q'(k') in terms of Q'(k) 

and the standardization parameters evaluated at A and A'. As a 

check on Q'(k'), one may repeat the procedure using some other known 

apparent cross section, say Q'(k").

The Q'(S^S) and Q ’(2^P) values were used as Q'(k) and Q'(k'^ 

and had already been measured in conjunction with the work described 

in Chapter IV. The results obtained from each of these two lines 

agreed to within 10 per cent. This should be considered satisfactory 

in view of the fact that the 10,833 R line was standardized using a 

PbS detector, the 7281 R line standardized on a S-20 response P.M.T., 
and then both lines compared on a third standardized detector, i.e., 

the 7102 S-1 response P.M.T.

Radiation from the transitions nF -»■ 3D for n 5 contains un­

resolved components. For example, the n^P ->■ 3^D transitions are ^  3oR 

from the nF ->■ 3D lines. However, the populations of the various n^P
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states are known from absolute measurements on the line intensities 

from these states in the visible. Thus one may calculate the con­

tribution of the n^P ->■ 3^D components to the total intensity of the 

unresolved line by using the appropriate branching ratio from the 

n^P state. In this way one finds a correction of about 5 per cent 

for all transitions nF ->• 3D, n = 5 to 9, except for n = 8. The 

correction to this line at 9530 S is approximately 70 per cent due 

to 7^D ->■ 3^P radiation. Values of apparent cross sections for the F 

states are given in Table IV. One notices that the 8F value seems 

somewhat small. This could in part be due to the uncertainty in the 

nature of the large correction. The 6^D -> 3^P line at 10,314 R is 

well resolved as can be seen from Fig. 19. The apparent cross section 

for this line is measured to be 1.92 x 10 ^^cm^. If this were to be 

predicted from the apparent cross section of the line 3820 a , i.e.,

B ^(6^D 2^P)Q'(6^D) = 8.7 x 10 ^^cm^, as given in Table III, one

would obtain 2.5 x 10 ^°cm^, a value about 30 per cent higher. This 

is due to the fact that the transition probability ratio (31)

A(6^D 2^P)/A(6^D ->■ 3^P) is only 3.5 whereas the measured photon

rates from the 6^D state have a ratio of 4.5. Such errors are not 

necessarily entirely due to intensity calibration, as can be seen 

by comparing A(6^D 2^P) given in Ref. (31) with the value given in

Ref. (1). Fortunately, the corrections to the other F states are 

small.
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Table IV. Apparent cross 
100 eV. N(k)

sections 
is for 10

of F states at 
3 ampere beam

p = 63p and 
current for

S = 0.25r c m ^ .

Transition
k j

X
(%)

Q'(k)
(10-^°cm2) B(k + j) N(k)

(lOScm-3)

4F 3D 18695 69 1.00 8.1

5F 3D 12790 (23) 1.59 5.3

6F 3D 10920 9.2 1.94 3.6

7F 3D 10034 4.2 2.22 2.5

8F 3D 9532 1.2 2.40 1.1

9F 3D 9216 0.9 2.48 1.2
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Transition Probabilities from F States

Rather than extrapolate from the few available F ->• D transi­

tion probabilities tabulated in Ref. (1), it seemed desirable to 

calculate as many of these as possible for the higher nF states, 

particularly in view of the fact that some of these values seemed 

to be in error. Hydrogenic transition probabilities were calculated 

since these are a very good approximation to helium transition prob­

abilities for highly excited states of large angular momentum. The 

hydrogenic transition probabilities were calculated using the con­

fluent hypergeometric series solution of the radial integral as out­

lined by Condon and Shortley (32). These values show close agreement 

with recent calculations of nF helium transition probabilities for 

n = 4 to 7 by Wiese and Smith (33) who used the Coulomb approximation 

of Bates and Damgaard (34).

Calculation of Transfer Cross Sections 

The F States

On the basis of the multiple state transfer theory, one may 

write for the population equation of the nF state

Qec(nF) ^  + vNN(n^P)Q^(n^P-vnF) = vNN(nF)Q^(nF+nlp) + N(nF)A(nF) (35)

Electron Transfer Gain Transfer Loss Radiative Loss
Excitation +
Cascade Gain
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Table V. Hydrogenic transition probabilities (first row) in units of 
10®sec~^ and inverse branching ratios (second row) for F-» D 
transitions. Asterisk indicates extrapolated values.

4F 5F 6F 7F 8F 9F lOF IIF* 12F*

3D 13.70
1.00

4.51
.630

2.14
.515

1.22
.452

.750

.416
.501
.403

.344

.386
.250
.380

.185

.378

4D 2.56
.370

1.29
.310

.729

.271
.458
.252

.308

.247
.218
.232

.150

.227
.110
.225

5D .720
.175

.430

.159
.273
.150

.186

.144
.129
.142

.094

.141
.070
.141

6D .320
.118

.192

.106
.116
.095

.081

.089
.053
.082

.042

.082

7D .142
.076

.082

.065
.060
.065

.042

.064
.028
.063

8D .059
.047

.043

.046
.030
.045

.020

.043

9D .033
.037

.022

.034
.015
.031

lOD .017
.026

.011

.023

IID .008
.016
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Here Q^^(nF) is the cross section for electron excitation to 

the nF state and includes possible cascade processes. Q^(n^P -+ nF) 

is the transfer cross section from the n^P to the nF state. The 

average relative velocity of the colliding atoms is v.

From the principle of detailed balancing we have

Q^(nF nip) = ^  (nlp ^ nF) (36)

where b is the ratio of the statistical weight of the nF state to 

that of the nlp and AE is the energy difference of these states. The 

exponential factor is approximately unity for n ^  4.

One may write Eq. (35) in terms of apparent cross sections by 

using Eq. (11). Using also Eq. (36) one finds from Eq. (35)

V NQ (nip nF)Q'(nlp)/A(nlp) + Q (nF)
Q'(nF) = ---------------------------------— ---- (37)

1 + vN Q^(nlp -> nF)/[bA(nF)]

This equation may be used to predict the pressure dependence 

of Q'(nF). We were only able to obtain a pressure curve for the 4F 

state since signals obtained from the higher nF radiation were very 

weak at pressures significantly lower than 63v. The observed pressure 

variation of Q ’(4F) is shown in Fig. 20 along with that of Q'(4lp).

As the pressure is decreased, the R.H.S. of Eq. (37) approaches 

Qec(^F) and Q'(4F) = Q^^(4F). Assuming this quantity is constant 

with pressure, at some high pressure one may solve Eq. (37) for 

Q^(4lp ->■ 4F) . With these constant values of Q^^(4F) and Q^(4lp ->■ 4F)
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one may predict values Q'(4F) from Eq. (37) at intermediate pressures. 

These values are also shown in Fig. 20 for Q^^(4F) = 1.3 x 10 ^^cm^ 

and Q^(4^P^4F) = 1.5 x 10 ^^cm^.

The value of b depends upon the statistical weight assigned 

to the 4F state. Considering the 4F state as a mixture of the singlet

and triplet states ^F^, ^F^^ ^F^, ^F^, and assuming the probability of

collisional excitation to any one of these states to be the same, one

would obtain b = 28/3. If on the other hand the breakdown in Russell-

Saunders coupling for the 4F state is only partial, the excitation 

transfer should favor the singlet state to some extent with b < 28/3. 

Kay and Hughes (29) found evidence for the latter case. The value

b = 14/3 was used in the calculations shown in Fig. 20 since it gave a

slightly better fit to the experimental values of Q'(4F) at the higher 

pressures. The larger value b = 28/3 causes a maximum change of only 

5 per cent in the denominator of Eq. (37) and only slightly affects 

the value of (4^P->-4F).

The excitation function of the 4F state shown in Fig. 21 at 

63p pressure closely resembles that of the 4^P state. This tends to 

confirm the idea that the dominant populating process of the 4F state

at this pressure is transfer from the 4^P state. The shape of the

excitation function at 8p resembles somewhat that of a state.

For the higher nF states Eq. (35) must be considered only as 

approximate since the possibility exists for excitation transfer to 

nG, nH, etc., states. Lin and Fowler (35) have shown that the trans­

fer processes under consideration here favor the selection rule AL = 2
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so that 5F -+ 5G should be small while 6F 6H could be considerable.

Neglecting such effects, and considering also that Q^^(nF) is small

at 63y pressure, one may obtain approximate values of the ->■ F 

transfer cross section from Eq. (37),

Q (nip .nP) . û l M l  [ aLüilli . alinlL j-1 . (33,
^ VN A(nlp) bA(nF)

These values will be presented later.

The D States

On the basis of the multiple state transfer mechanism, the 

pressure dependence of the D states can be explained by F state cas­

cade. The population equation for the D states may be written in 

the same form as Eq. (27) for either the or state separately 

or both considered as one state.

Q’(nD) = Q(nD) + Q^(nD) (39)

where

Q (nD) = I [B“^(kP->nD)Q'(kP) + B"^(kF->nD)Q’(kF)] . (40)
^ k

The P cascade term is < 5 per cent of Q'(nD). For triplet states 

the direct electron excitation Q(n^D) is negligible and for singlet 

states is obtained from low pressure data on Q'(n^D). At P = 63y 

and at 100 eV we may use the data from Table IV to obtain the F state 

cascade. Calculation of the R.H.S. of Eq. (39) in this manner gives
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for the n = 3 states

Q'(3D) = 122 X 10"^°cm2 (41)

which is 20 per cent direct excitation, 5 per cent P cascade and 75 

per cent F cascade. As given in Table III this quantity was measured 

using the total radiation from the 3^D and 3^0 states as

Q'(3D) = Q'CS^D) + Q'(3^D) = 129 x 10”^°cm2 (42)

It is also worthy of note that the nF state radiation measured 

ended on the 3D level. Hence, excepting the 5 per cent P cascade, the 

values in Eqs. (41) and (42) primarily represent measured input and 

output rates of radiation of the 3D state and are independent of 

transition probabilities.

Assuming negligible Russell-Saunders coupling for the collis- 

ionally populated nF states for n ^  5, their subsequent radiation via 

the 3^D and 3^D transitions will be in the ratio 3:1. This allows one 

to calculate contributions to the R.H.S. of Eqs. (39) for singlet and 

triplet states separately until one reaches the 4F ->■ 3D contribution. 

Here one finds the radiation rates must be approximately 1:1 in order 

to have agreement with Q'(3^D) and Q'(3^D) from Table III.

For D states higher than n = 3, the F cascade is unable to 

account for all the excess population of the D states. The discre­

pancy, denoted by Q*(nD), must be ascribed to some other populating 

mechanism. Its magnitude for some of the lower nD states is given in 

Table VI.



66

Table VI. Contributions to Q'(nD) in units of 10

nD Cascade 
P F '

Direct Electron 
Excitation Total Q’ (nD) 

(Table III) Q*(nD)

3^D 3.0 40.5 24 67.5 74.5 7

3^D 2.5 52.0 0 54.5 54.5 0

4^D 1.0 3.4 13 17.4 42.5 25.1

1.0 10.1 0 11.1 24.9 13.8

5^0 0.3 0.7 7.6 8.6 18.2 9.6

5^D 0.4 2.2 0 2.6 19.1 16.5

6 D̂ 0.1 0.2 4.2 4.5 7.0 2.5

e^D 0.2 0.6 0 0.8 13.0 12.2
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If one assumes Q*(nD) is due to excitation transfer from n^P, 

the transfer cross section may be calculated in a manner similar to 

Eq. (38), i.e.,

(«3,

Here b is the ratio of the statistical weights of the D state to the 

P state. These values are presented in Table VII along with values 

of Q^(n^P^nF) calculated by Eqs. (37) and (38).

It should be emphasized that these values are not necessarily 

to be considered as final (except for n = 3) but rather to point out 

difficulties associated with a rigorous application of the multiple 

state transfer mechanism and other difficulties associated with a re­

turn to the original P̂ ->• D mechanism.

Discussion of Results

The results obtained here do support the multiple state 

transfer mechanism to a certain degree. In particular, the transfer 

4^P->4F can account for the behavior of Q'(4F) at high pressure both 

in magnitude and energy dependence. Also, the transfer mechanism 

3^P->3D is shown to be unimportant since the excess population of the 

3D states at high pressure is due to cascade from F states. It also 

appears that the Russell-Saunders coupling for the n > 5 nF states is 

weak and is only appreciable for the 4F state, in agreement with the 

calculations of Lin and Fowler (35). These three conclusions are 

also in agreement with the experimental work of Kay and Hughes (29)
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Table VII. Transfer cross sections from n^P state in units of 10
AE is the approximate energy difference between initial and 
final states. Error limits on this work are estimated.

n = 3 4 5 6

AE(n^P^nF)(10"^eV) 4.9 2.8 1.55
AE(nlp^nD) (10“ êV) 13 5.7 3.0 1.60

Q^(nlp ̂ nF) 1.5 2.1 2.3

Q^(n^P ->-nD) 0.1 .8 1.0 1.0

Q^(nlp ->-n3D) 0 .4 1.4 3.3

Total (this work) .1 ± .1 2.7 ± .3 4.5 ± .5 6.6 ± .7

Q^(n^P->-nF) (St.John and Nee) 1.4 1.9 2.1

Q^(n^P ->-nF) (Kay and Hughes) 2.0 6.4 13.
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who employed an entirely different experimental technique. These 

workers measured the effect of collisionally shortened n^P lifetimes 

along with F cascade components in the lifetimes of D states. They 

assumed the only important processes were ->■ F transfer and F ->■ D 

cascade. Their transfer cross sections increase with n even more 

than the total calculated in the present work allowing for ^P -> D 

transfer.

St. John and Nee (28) calculated the F state populations at 

different pressures and electron energies by solving the rather com­

plicated n^P population equation under the assumption that Q^(n^P->-nF) 

was proporational to n . The predicted D state cascade was compared 

with observation and gave a good fit to their 3^D data for x = 1 and 

Q^(4^P->-4F) = 1.4 X 10 ^^cm^, or x = 2 and Q^(4^P->-4F) = 1.2 x 10 

However, they also found that on the n = 4 level the predicted F cas­

cade was not quite sufficient for all 4^D excess population and even 

less sufficient for the 4^D state. The model x = 1 of St. John and 

Nee was used for comparison in Table VII. There is good agreement in 

the n^P ->• nF cross sections with this work.

It appears therefore that the simple model of P̂ -> F transfer 

and F D cascade is not sufficient to account for all the observa­

tions described in this chapter. For the F state cascade to be equal 

to the observed excess of Q'(nD), for low n, would require Q'(nF) to 

increase with n. This can be seen from consideration of the matrix 

equation for the cascade process

(B"1)Q'(F) = Q'(D) - Qg^CD) (44)
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where (B is the triangular infinite matrix whose most important 

elements are given in Table V, Q'(F) is a vector whose nth compon­

ent is Q'(nF), and the R.H.S. is a vector whose components are Q ’(kD) 

corrected for direct electron excitation and P cascade by Q^^(kD). 

Assuming that the inverse branching ratios B  ̂(nF kD) approach a 

limit with high n as is indicated in Table V, and neglecting the 

small ? cascade term to Q'(kD), one may calculate the Q'(nF) needed 

to satisfy Q'(kD) - Q(k^D). The results are given in Table VIII.

These difficulties can be removed on the n = 4 level by al­

lowing the possibility of a transfer interaction 4F t 4D. Even 

though AL = 1, AE = 0.0008 eV, so such a reaction should be favored 

over n^P ->nD, where AL = 1 and AE = .0057 eV. Since the 4F has both 

singlet and triplet character, the 4F ^ 4^0 transfer would remove the 

violation of the spin rule inherent in the assumed P̂ -*• interac­

tion. Calculations show that a transfer cross section Q^(4^F -+ 4^D)

= 1.7 X 10 ^^cm^ would account for Q*(4^D).

For the n ̂  5 levels, the situation becomes even more compli­

cated. One suspects some depopulating mechanism is at work on the nF 

states due to the rapid decrease of Q'(nF) with n and the subsequent 

slow increase of Q^(n^P->nF) with n. Transfer processes such as 

5G t  5^D, 6F t  6H, with AL = 2 and small AE, may be needed to com­

pletely remove violation of the spin rule and account for the small 

Q'(nF) for the higher n states.

At first glance, electron-ion recombination processes might 

seem to account for the observed behavior of the D states. The energy 

dependence of Q'(nD) at high pressure, while similar to the n^P states.
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Table VIII. Distribution of F state apparent cross 
sections needed to satisfy branching 
ratios and observed Q'(kD) excess.

k,n Q'(kD)-Q(klD)
(10-^°cm2)

Q'(nF) 
(10-^°cm2)

3 105. -

4 54.4 16

5 29.6 15

6 15.8 25

7 8.3 29

8 3.8 37

9 1.9 23

10 20

>10 58
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is also similar in shape to the ionization cross section curve for 

helium. Since the energy distribution of the ionized off electrons 

is sharply peaked at very low energy (36), and since neglecting 

these give a positive potential of several volts in the electron 

beam (37), one might argue the possibility that sufficient trapping 

of the slow electrons occurs to allow significant recombination. 

Granting this, one might further point out that since the calculated 

recombination coefficients favor high angular momentum (38), and 

favor triplet states over singlets (39), then observed effects might 

be attributed to such a process.

Using the hydrogenic recombination coefficients a calculated 

in Ref. 38 for 300 °K, one can calculate the electron density n^ 

needed to support the radiative dropout of, say, the 5^D state ex­

pressed by Q*(5^D) in Table VI.

Thus

a(53o)n| = Q*(53o) ^  (45)

and for 63p pressure, 1 x 10  ̂amp beam current, n^ = .8 x 10^^cm 3. 

Such an electron density is considerable and this rate could only be 

sustained if almost all slow electrons produced underwent volume re­

combination. This is easily seen from equating production rate per

cm3 to recombination rate per cm^.

Thus

Qi # =  “T̂e (46)
where is the ionization cross section and the total recombination
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coefficient. Eq. (46) gives = 1.1 x lO^^crn \  However, a(3^D)

= 2.6 a(5^D) implying Q*(3^D) = 43 x 10 ^®cm^ which would necessi­

tate small F cascade to 3^D, contrary to observation. Although 

Eq. (46) would give a linear dependence of Q*(n^D) with beam current, 

it is difficult to visualize total volume recombination at all pres­

sures, and certainly wall recombination must become important at some 

pressure. This would show up as a non-linearity of Q*(n^D) with I at 

some pressure, contrary to observation.

One sees from Figs. 17 and 18 that the and D states for 

high n show increasing depopulation effects as the pressure is in­

creased. Since the small values of Q'(nF) at high n and 63p indicate 

these states do not receive a large populating effect at high pres­

sure, one is faced with the question of what states are populated at 

the expense of these states. If one picked a level, say n = 10, and 

followed the excitation transfer process from state to state of in­

creasing angular momentum, remembering that An = 0, one would expect 

a populating effect with pressure at least by the time one reached 

L = 9, n = 10. Since radiative transitions favor decreasing L and 

low n, such a transfer of excitation would eventually tend to pre­

ferentially populate low n low L states with increasing pressure as 

observed. On the basis of such a cyclic process, one would expect 

the 5G ->• 4F radiation at approximately 4 microns wavelength to be 

considerable.

The possibility of considerable G ->• 4F cascade raises some 

interesting questions concerning the observed pressure dependence
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of the 4F apparent cross section as given in Fig. 20. If one sup­

poses that the only populating process of the 4F state is due to 

transfer from the 4^P state, then for pressures below about 30p one 

must have Q'(4F) ® N^. This is because Q'(4^P)“ N. As has been

shown, one may fit the data with an "s" shaped curve with a slope of

one in its central portion by assuming Q^^(4F) = 1.3 x 10 cm^.

Theoretical calculations of a highly sophisticated nature (Chun C. 

Lin, private communication) indicate a value of only 0.54 x 10 ^^cm^ 

for the direct electron excitation part of Q^^(4F). The data points

of the 4F state in Fig. 20 show enough scatter at low pressure to 

allow a linear decrease of the apparent cross section with pressure 

which could eventually approach the calculated value at a very low 

pressure of 0.4y. Such a small direct electron excitation cross 

section would imply that Q^^(4F) is mostly due to either G state cas­

cade or some unknown populating process.

There is too much consistency in the data to allow for signi­

ficant error in the measured value of Q'(4F). Such error would sig­

nificantly affect the fact that the total measured input into the 3D 

levels is within 5 per cent of the measured output from these levels 

at 63y. Indeed, even at 8y pressure, the 4F apparent cross section 

alone (about 15 x 10 ^^cm^) accounts for much of the pressure depen­

dent 3D apparent cross section (18 x 10 ^°cm^).

The radiation 4^D + 3^P at 19,094 S and 63y is well resolved. 

The various theoretical calculations of the branching ratio for this 

radiation are in good agreement. This might be expected in view of
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the fact that the 4^D state may only radiate to two lower states, 

whereas a state like the 6^D (mentioned earlier) may radiate to 6 

lower levels and consequently show poorer agreement among various 

theoretical calcualtions. Since the 4^D -+ 3^P and 4F -> 3D transi­

tions are only separated by a small wavelength interval, the stand­

ardization parameters may be assumed to be euqal for each. The ap­

parent cross section for the 4F state should then be equal to the 

product of 3 quantities, i.e., the ratio of the intensities of the 

18,695 and 19,094 8 radiation, the branching ratio for the 4̂ D->-3̂ P 

radiation, and the apparent cross section of the 4^D state (pre­

sented in Table III). This gives 5.75 x 0.27 x 42.5 x 10 =

66 X 10 ^^cm^ as compared to the independently measured value of 

69 X 10 ^^cmf.



CHAPTER VI

THE TEMPERATURE DEPENDENCE OF EXCITATION TRANSFER 

Description of Experiment 

Purpose

The work described in this chapter was actually undertaken 

prior to that described in the earlier chapters. At the time this 

work was undertaken, the multiple state transfer mechanism was 

thought sufficient to rigorously account for all excess D̂ popula­

tions at high pressure. Some anomalies in data interpretation re­

sulted which can now be accounted for in the light of the discussions 

of Chapter V.

The basic idea of this experiment was to obtain information 

concerning the dependence of the transfer process on the relative 

velocity of the colliding systems. This was to be accomplished by 

measuring the temperature dependence of the various experimental 

parameters associated with the population equations of the interested 

states. This necessitated the following specialized equipment.

The Vacuum Furnace

A diagram of the vacuum furnace is shown in Fig. 22. Heating 

in the central zone is produced by radiation from hot tungsten filaments.
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There are 30 filaments, each 11 cm In length and arranged with cylin­

drical symmetry. Each filament is helically wound (28 turns) of 

0.015 inch diam. wire. The windings are alternately clockwise and 

counter clockwise to provide for magnetic field cancellation. About 

9 amperes of current per filament produced a filament temperature of 

approximately 2500 ®K. Surrounding the filament assembly is an 

OFHC* copper cylinder which is maintained at near room temperature 

by coolant coils.. .These are also of OFHC copper and their total 

length inside the vacuum chamber is about 6 feet. The cylinder had 

12 longitudinal slots milled into its outside surface to accomodate 

the cooling coils. These were pressed into the slots and clamped 

with a stainless steel retaining jacket. The copper cylinder is 

highly polished and serves as a reflector to concentrate the radiant 

energy from the filaments toward the axis of the cylinder. The OFHC 

current input at the top of the chamber was drilled to accomodate 

coolant flow. The outside and bottom of the chamber are jacketed 

with coolant coils and the top of the chamber serves as the base of 

a circulated open top water resevoir. The filament support discs 

are constructed of 0.020" molybdenum.

The power source is a 3-phase rectifier rated at 500 amperes 

at 6 V. An A.C. source would tend to produce large fluctuating 

electromagnetic fields inside the furnace.

A
Oxgen-free, high conductivity.
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The High Temperature Electron Gun

The electron gun, shown in Fig. 23, was actually designed 

to operate at much higher temperatures than it was subjected to in 

this experiment. Refractory materials used were tantalum, tungsten, 

molybdenum, and sapphire. It is difficult to asse..Me such mater­

ials by spot welding techniques. Even when accomplished, bimetal­

lic welds may cause flexure with temperature changes. Nuts and bolts 

of these materials are not available in the required sizes nor can 

they be readily machined. For these reasons, the electrical leads to 

the various electrodes are under spring tension. This maintains the 

entire gun structure in a rigid configuration while allowing easy 

dismantling for maintenance.

The electron gun is essentially a tetrode device employing 

shaped focusing electrodes (40) and an oxide coated cathode. The 

beam was collimated to 1 mm diam. before entering the Faraday cage. 

Energy resolution was determined by the retarding potential differ­

ence method to be about 0.8 eV at 100 eV energy. In this method, 

the Faraday cage potential is made to approach that used to accel­

erate the electrons. The current cut-off curve may be differentiated 

to yield the energy distribution curve. See Fig. 24.

The entire gun assembly is inserted into the central region 

of the furnace where it is heated by radiation absorption from the 

tungsten filaments. The interior of the Faraday cage is fitted with 

8 radial fins extending from the wall toward the beam. This in­

creases the interior surface area and allows for better gas-surface
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temperature equilibrium. A tungsten-tungsten +26% rhenium thermo­

couple is attached to one fin and serves as an indication of the 

interior surface temperature. The thermocouple also serves as beam 

current to ground return. The thermocouple voltages were measured 

to within + 5 x 10  ̂V. A calibration curve of temperature versus 

voltage as given in Ref. 41 was used. This was corrected to proper 

cold junction temperature. This curve was checked by comparing 

thermocouple temperatures against a calibrated mercury thermometer 

in a circulated oil bath up to 700 “K. The interior Faraday cage 

temperature versus furnace current is shown in Fig. 25.

The excitation radiation was observed through a slot in the 

Faraday cage. This slot is lined up with a similar one on the op­

posite side of the Faraday cage, and these in turn are aligned with 

slots in the corresponding sides of the reflector. The rear window 

of the vacuum chamber was replaced with a light trap. A dark back­

ground is thus provided for observation of the beam excitation.

Cathetometer measurements indicated that the vertical shift 

of the electron gun due to thermal expansion of the supporting 

structure was not more than 0.003". The beam homogeneity in a verti­

cal direction is such that a small displacement on this order is un­

detectable .

The effect of the rectifier ripple current on the electron 

beam was also found to be undetectable. This was checked by tuning 

the detection equipment to the frequency of the ripple.
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Figure 25. Faraday cage temperature versus furnace current.
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Data Acquisition

The light detection equipment used was essentially the same 

as that shown in Fig. 2. In spite of the slot arrangement in the 

Faraday cage, some background radiation entered the optical system 

from the furnace region at the higher Faraday cage temperatures.

The excitation radiation was modulated at 100 cps and had a usable 

signal to noise ratio provided its intensity was greater than about

0.3 per cent of the blackbody background radiation. For the 5876 S 

radiation, this limit was reached at a Faraday cage temperature of 

about 1000 °K. Much background radiation at this temperature wds 

due to reflection from the 1600 °K tungsten heating filaments. A 

"dummy" beam consisting of a neon glow tube was placed so as to be 

visible through the Faraday cage slots. This was modulated at 100 

cps and A. C. detected while the Faraday cage was heated to 1000 ®K. 

The 5764 line intensity remained constant up to 800 ®K and increased 

by 2 per cent from 800 °K to 1000 ®K. No useful data could be ob­

tained for spectral lines in the red or infrared.

The variation of Q'(k) with temperature was determined by 

measuring the variation of Ip(k -> j)/IN with temperature. The main 

difficulty here was to obtain the ground state density inside the 

Faraday cage as a function of temperature. The procedure finally 

adopted was as follows :

The intensity of the radiation 5^S -»■ 2^P at 40 eV impact energy 

shows good linearity with pressure since it is affected only by
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direct electron excitation and only 2 per cent P cascade, I^/I 

for this radiation versus pressure is shown in Fig. 26, If one 

knows the ground state density inside the Faraday cage at 300 °K 

from pressure measurements in the system outside the cage (also 

at 300 °K), then one may use I^/I for the 4438 R radiation to deter­

mine the ground state density for higher temperatures. N versus 

temperature is given for several temperatures in Fig. 27. One may 

also calculate the density of a gas at temperature T inside a nearly 

closed can by consideration of the flux through an opening small 

compared to the mean free path. If the gas outside the can is at 

temperature then

iN(T^) v(T^) = iN(T)v(T) (47)

giving
T ,

N(T) = N(T^)( Y  ) (48)

Due to the large surface area of the cooled reflector seen by the 

gas outside the Faraday cage, one would expect it to have a ve­

locity distribution and density characteristic of 300 °K. The 

density N(T) calculated from Eq. (48) with = 300 °K is also 

shown in Fig. 27 and shows reasonable agreement with the N(T) de­

duced from the 4438 R radiation.

Although apparent cross sections versus temperature were 

obtained for several other states, only those of the 4^P, 3^D, and 

4^D states are amendable to some degree of unambiguous interpreta­

tion at the present time. The gas in the system exterior to the
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Figure 26. Intensity per unit beam current versus pressure for the 5^S'*-2^P transition.
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Faraday cage was continuously monitored at 63y pressure by a Pirani 

gauge and the excitation energy held at 100 eV. The Q'(k) versus 

temperature curves were normalized to their values at 300 ®K. In a 

previous calculation (42), the values of the apparent cross sections 

at 300 °K were obtained by comparison with the 3^D value given in 

Ref. (28). This gave 52, 26.6, and 2550 x 10 ^^cm^ for the 3^D, 4^D, 

and 4^P values respectively. For the present calculation we will use 

the values 54.5, 24.9, 2600 x 10 which were determined in the more

recent measurements of Table III. Q'(k) vs. T are shown in Figs. 28, 

29, and 30.

Analysis of Data

On the basis of the multiple state transfer theory, and neg­

lecting the small P cascade and electron excitation gain, one may 

write the following equations ;

Q'(33d)=c I B"^(nF +3D)Q'(nF) + d Q'(4F) (49)
n=5

1
Q ’(43d ) = c % B" (nF->-4D)Q'(nF) (50)

n=5

Here, c is the fraction of hF atoms, n > 4, that are triplet in na­

ture and d is the fraction of 4F atoms that are triplet in nature. 

From Table V one sees that to a good approximation B ^(nF -+ 3D) - 

a^B  ̂(nF ->• 4D) up to n = 12 where a^ = 1.66. Using this relation 

in Eq. (50) and subtracting Eq. (50) from Eq. (49) gives

Q'(4F) = -| [Q'(33D)-a^Q'(43D)l . (51)
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Figure 28. The apparent cross section of the 3^D state versus temperature.
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Figure 29. The apparent cross section of the 4^D state versus temperature.
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Using Eq. (38), Chapter V, one obtains

i  [Q'O^D) - a,Q'(43D)]
Q^(4lp ̂ 4F) = ------------------------------------------  (52)

The data in Chapter V indicated a value of d = i, and con­

sequently b = 14/3. The quantity 9 may be calculated from the dis­

tribution function in Ref. (43) as

V = 4(kT/mm)^ . (53)

This equation assumes a Maxwellian velocity distribution of the gas 

in the Faraday cage characteristic of the wall temperature T. The 

accomodation coefficient of helium on tantalum is approximately 0.04 

from Ref. (44). This means that on the average an atom with energy 

corresponding to 300 ®K will need 25 wall collisions before it ac­

quires an energy characteristic of the wall temperature. By coating 

the inside of the Faraday cage with graphite, the accomodation coef­

ficient is increased so that only about 10 wall collisions are re­

quired. The solid angle subtended at the center of the Faraday cage 

by the apertures in the wall is about 0.014 x 4ir. Since the mean 

free path is on the order of the radius, the probability that an 

atom having a random direction will undergo a wall collision is 

roughly (1-.014), and for 10 such collisions this probability is
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(1-.014)^^ or about 0.9. The probability of a wall collision is in­

creased by increasing its surface area through the radial fin ar­

rangement mentioned earlier. Other verification that the distribu­

tion in the can is approximately Maxwellian is that the density in 

the can followed from the flux formula.

As one sees from Fig. 30, the apparent cross section of the 

4^P state drops with increasing temperature. Since one may calculate 

the depopulating effect due to Doppler broadening of the resonance 

line, any remaining temperature dependence may be ascribed to trans­

fer depopulation. The population equation for the 4^P state may be 

written

Qec(4^P) + (l-g)N(4lp)A(4lp+lls) + vNN(4F) -g Q^(4^P->4F) =

(54)
vNN(4^P)Q^(4^P->4F) + N(4^P)A(4^P) .

Using the definition of apparent cross section, one finds after some 

algebraic manipulation

Q (4lp) - Q'(4lp)[gA(4^P> l^S) + A(4^P ^j)]/A(4^P)
Q^(4lp +4F) = -SS--------------------------------------------  (55)

VN ra* (4",PI - _&1(4F) 1 
I A(4lp) b A(4F) J

Here A(4^P ->j) denotes transition probability to all states other than 

1^8. The only quanity here which is an unknown function of tempera­

ture is Q'(4F). At 300 °K the second term in the denominator is only
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10 per cent of the first and could be neglected for a zeroth order 

approximation. A better approximation would be to retain this term 

and consider it constant at its room temperature value. Taking 

Qec(4^P) = 158 x 10 ^°cm^ from Ref. (5), and Q^(4^P->-4F) from Table 

VII, Eq. (55) may be solved for g at room temperature in terms of 

known quantities. The quantity g is a function of the absorption 

coefficient k and imprisonment radius p. From the graph in Ref. (1) 

one has

g(kp) = 0.9(kp)’^-^, k p > 6 . (56)

The temperature dependence of the absorption coefficient is seen 

from the relation

k(T) = A(4lp-Hls) ( ~  )^ N(T) . (57)
Sit ' w d ^ S )

Here X = 3965 & and the w's are statistical weights. At 300 °K, 

p = 63p, k = 40 cm  ̂ giving p = 1.3 cm from Eq. (56). Since N(T) 

is known, k(T) may be calculated at higher temperatures yielding 

values of g through Eq. (56).

Discussion of Results

The temperature dependence of the transfer cross sections 

is obtained by substitution of measured and calculated quantities 

in the right-hand side of Eq. (52) or Eq. (55). The results for
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the two methods of calculating Q^(4^P ->■ 4F) are given in Fig. 31.

One notices that the value of Q^(4^P ^4F) calculated from Eq. (52) 

at 300 °K is only about one-half the value which was calculated 

from Q'(4F) in Chapter V. This discrepancy is due to the assump­

tion in Eq. (50) that all the 4^D is due to F cascade. Adding the 

term Q*(43d ) from Table VI to the right-hand side of Eq. (50) would 

give the same Q^(4^P 4F) as deduced in Chapter V. In view of the

unknown nature of the source and temperature dependence of the addi­

tional populating term Q*(4^D), a quantitative interpretation of 

Qj.(4̂ P ^ 4F) as given in Fig. 31 would be difficult.

If one attempted to pursue this method of analysis to higher 

states, some difficulty is encountered, Calculation of Eq. (51) for 

higher states would yield

Q'(nF) [Q'(n-1 ^D) - a^Q'(n3o)] . (58)

The requirement that Q'(nF) be positive sets a limit on the relative 

sizes of the apparent cross sections of any two neighboring 

states. This is not realized to within experimental error on the 

n = 4,5, and 6 states as can be seen from the "crowing" together of 

these states at high pressure in Fig. 17. The transfer "hump" at 

100 eV on the 5 and 6^D excitation functions is also more pronounced 

than on the other functions.
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Figure 31. The 4^P to 4F transfer cross section versus temperature.
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The transfer cross section calculated from Eq. (55) should 

be considered as more reliable. The calculated points shown in Fig. 

31 show considerable scatter but seem to show a linear dependence 

with temperature. If one were to assign error bars to these points 

on the somewhat arbitrary basis of + 5 per cent deviation in the ap­

parent cross sections used, one would indeed find a linear relation 

with temperature to within experimental error. This also applies to 

the data calculated from Eq. (52). It was pointed out in the pro­

ceeding paragraph that consideration of the term Q*(4^D) would cause 

agreement in the values of Q^(4^P 4F) at room temperature. Allow­

ing this term to be due to a populating process that increased 

linearly with temperature would produce reasonable agreement at the 

higher temperatures also.

One particular motivation for this experiment was to test 

the hypothesis presented in Ref. (26) that very high n states, say 

n = 15 to n = 24, were responsible for the observed pressure effects 

of the low nD levels. Here it was argued that states higher than 

about n = 24 would be collisionally ionized at room temperature since 

E(a>) - E(n) is less than kT. Hence such states would not contribute 

to the transfer process. At 1000 °K, the energy of relative motion 

is sufficient to ionize states higher than about n = 12. However, 

the values of Q'(3^D) and Q'(4^D) at this temperature are little 

different from what one would expect from pressure effects alone. It
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is therefore concluded that states higher than n = 12 have little 

effect on the 3^D and 4^D populations. This is again in agreement 

with the results of the preceeding chapter.



CHAPTER VII

Conclusion

Helium gas has been bombarded by electrons under controlled 

conditions of pressure, temperature, electron energy and beam cur­

rent. Radiation rates from 51 transitions have been measured over 

the spectral range of 3230 to 20,582 S.

The apparent cross sections of the 2^P and 2^P states have

been examined in the light of new and detailed information concern­

ing the cascading to these states from higher states, particularly

in the low energy region near onset. Excitation functions of the 

^S, D̂, ^S, and states have been obtained in this energy range. 

Absolute measurements of the apparent cross sections of 22 of these 

states have been presented. These measurements have allowed the 

calculation of the electron excitation cross sections of the 2 P̂ 

and 2 P̂ states after the latter state had been corrected for imprison­

ment. The electron excitation cross sections have been compared with 

theory. The apparent cross section versus pressure curve of the 2^P 

state approaches a value expected for nearly complete imprisonment 

and shows no collisional depopulation effects. The 2^P ->■ l^S oscil­

lator strength has been obtained from the electron excitation cross 

section curve. The apparent cross section of the 2^P state has been 

used to correct that of the 2 Ŝ near threshold.
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The pressure dependence of apparent cross sections has been 

obtained at 100 eV for the states up to n = 10, the and 

states up to n = 13, and the 4F state. The low n states show a popu­

lating effect which is approximately proportional to the pressure 

while the high n states show a depopulating effect which is approxi­

mately inversely proporational to pressure for the higher pressures. 

Apparent cross sections for the high nF states, n = 5 to 9, have 

been obtained at 100 eV and 63y pressure. The excess population of 

the 3D states at this pressure can be quantitatively accounted for 

by F state cascade. Indications are that even at low pressure 

(about 8y) the F state cascade may account for the excess 3D popula­
tion.

Excitation functions of the 4F state have been obtained for 

pressures of 63 and 8y. The shape of the function at high pressure 

suggests that the dominating populating process for this state is ex­

citation transfer from the 4^P. However, the pressure dependence of 

the 4F apparent cross section makes it necessary to assume an addi­

tional populating mechanism. Since theoretical calcualtions show 

direct electron excitation to be small, this mechanism is attributed 

to G state cascade.

Corrections for direct electron excitation and cascade have 

been made to the apparent cross sections of the 4, 5, and 6D states 

at 100 eV and 63y pressure. It has been found necessary to postulate 

additional populating mechanisms for these states. Transfer cross 

sections from the to the F and D states have been calculated.



101

These seem somewhat small for the high nF states and somewhat large 

for the states (because of the spin rule). On the n = 4 level 

the additional populating mechanism for the 4^D state is thought to 

be collisional transfer of excitation from the 4F state. This is 

consistant with the large 4F state population, the Wigner spin rule, 

and the closeness of the energy balance.

By heating the gas in a specially designed electron gun, the 

temperature dependence of the 4^P, 3^D, and 4^D apparent cross sec­

tions has been obtained. Assuming the collisional depopulation of 

the 4^P state is to the 4F, the transfer cross section thus obtained 

is proportional to the gas temperature. In addition, it has been 

shown that under the assumption of the collisional ionization of very 

high n states the 3^D and 4^D apparent cross sections are indepen­

dent of the effects of states of n > 12.

It is difficult to assign experimental error to the measure­

ments reported in this paper. In many cases comparison with other 

experiments and with theory is not possible. Since the apparent 

cross section is the fundamental experimental quantity whose manipula­

tion leads to the results reported herein, as estimate of its error 

would be useful.

The data in Table I and in Figure 17 were compared for the 3, 

4, 5, 6^D and the 3, 4^D by converting the 100 eV data to peak value 

apparent cross section using excitation functions obtained at 5y 

pressure. The data were taken several weeks apart. The maximum de­

viation from the mean was 5.5 per cent and the average was 3.7 per 

cent.
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Ihe data of St. John, Miller, and Lin was compared with that 

of Table I for the 3, 4, and 5^8, Ŝ, and D̂. The was not com­

pared because of its strong pressure dependence even at low pressure. 

The maximum deviation from the mean was 11.5 per cent and the aver­

age was 6.0 per cent. The data of Table I shows in general good

straight line fits when Q'(nK) is plotted versus n on log-log paper. 

Although there may be no a priori reason for this to be so, it does 

indicate some degree of consistency.

Errors in the theoretical transition probabilities used prob­

ably are no more than + 10 per cent for low n states. For calcula­

tions involving the 2^P, 3^D, 3^D, 3^S, 3^8, and 4F states, such as 

cascade analysis, these errors are minimized since the branching 

ratios involved are unity.

Error limits on measurements involving considerable noise 

such as low pressure infrared and weak (high n) transitions in the

visible may vary from + 20 per cent to + 50 per cent.
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