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Abstract 

 Turbulent blood flow in medical devices contributes to blood trauma, yet the 

exact mechanism(s) have not been fully elucidated. Local turbulent stresses, viscous 

stresses, and the rate of dissipation of the turbulent kinetic energy have been proffered 

as hypotheses to describe and predict blood damage.  

 In this work, simulations of experiments in a Couette flow viscometer, a 

capillary tube, and a jet were used to examine extensive properties of the turbulent flow 

field and to investigate contributing factors for red blood cell hemoglobin release in 

turbulence by eddy analysis. Moreover, flows in a Couette viscometer and a capillary 

tube were simulated to investigate the impact of Reynolds and viscous stresses on 

hemolysis prediction using computations. Also, the applicability of four different 

hemolysis power law models for the capillary tube flow was tested as a function of area 

averaged and time averaged Reynolds stresses, viscous, total, and wall shear stresses. 

Finally, the size of Kolmogorov scale eddies was used to define a turbulent flow 

extensive property, and a new hemolysis model was proposed. This empirical model 

can work well with devices that exhibit different exposure times and flow conditions. 

 It was found that hemolysis occurred when dissipative eddies were comparable 

in size to the red blood cells. The Kolmogorov length scale was used to quantify the 

size of smaller turbulent eddies, indicating correspondence of hemolysis with number 

and surface area of eddies smaller than about 10 µm. There was no evidence of a 

threshold value for hemolysis in terms of Reynolds and viscous stresses. Therefore, 

Reynolds and viscous stresses are not good predictors of hemolysis. In the case of 



xxi 

power law models, area averaged Reynolds stress with the Zhang power law model 

gave the smallest error.   



1 

1 Introduction and Background 

1.1 Motivation and Significance 

 Heart failure is one of several cardiovascular diseases affecting 5.1 million 

patients in the United States and causing more than 270,000 deaths in 2010.                

(Figure 1.1 [1]) Furthermore, 50% of people diagnosed with heart failure die within 5 

years. [2] 

 

Figure 1.1. Heart disease rates in U.S. [2] 
 

 Heart failure is initially treated with medications, life style changes like diet and 

exercise, and surgery. For patients at an advanced stage of heart failure, the only 

definitive option is a heart transplant. However, heart transplantation will help only 6% 

of an estimated 35,000 patients in the United States, leaving the rest requiring 

alternative therapies while they are waiting for an insufficient number of donor organs. 

[3] Therefore, different kinds of prosthetic heart devices have been designed and 
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developed to satisfy the need for donor organs such as total artificial hearts, portable 

pump-oxygenators, aortic balloon pumps, and ventricular assist devices (VAD). [3, 4] 

  

 Ventricular assist devices (VAD) are commonly used prosthetic heart devices 

and they introduce an efficient therapy to those patients who are in advanced level of 

sickness while they wait for a heart donor, or those are not suitable for transplantation. 

[4] Initially intended as a bridge to heart transplantation, VADs are now often employed 

as a destination therapy providing lifetime support. [4] There are three kinds of 

ventricular assist device: left ventricular assist device (LVAD), right ventricular assist 

device (RVAD) and bi-ventricular assist device (BiVAD), which simultaneously 

supports both sides. [5] A left ventricular assist device (LVAD) maintains the pumping 

function of the left ventricle, which is the main pumping chamber, because it pumps the 

blood to the whole body except the lungs (right ventricle pumps to the lungs). In 

LVAD, when blood exits from the left ventricle, it goes to the pump through an inflow 

conduit and exits from the pump through an outflow conduit into the body as shown in 

Figure 1.2. [6] Development and optimization of better designs of VAD devices will 

help patients to recover fast and return to their normal life. 
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Figure 1.2. (A) Location of the heart and the typical equipment needed for an 
implantable LVAD. (B) LVAD connection to the heart. [6] 
 

 Ventricular assist devices and artificial hearts create non-physiological blood 

flow conditions, [3] such as turbulence, [7, 8]  causing red blood cell (RBC) damage,  

an important consideration in the design of prosthetic heart devices. Turbulent flow 

means that irregular, random, chaotic, and multiscale flow conditions prevail with a 

wide range of time and length scales that cause harmful effects in blood, because of 

significant fluctuations in shear stresses and pressure. It is commonly accepted that 

turbulence effects are important to RBC damage causing hemolysis, i.e., release of 

hemoglobin from erythrocytes, which increases when cells are exposed to turbulent 

stresses. [9] While stress levels are well characterized for laminar flow fields, the 

effects of turbulence structure on hemolysis of blood cells are unclear. [9-11] Predicting 

and understanding the effect of turbulent stresses on erythrocytes would lead to more 

rational design of prosthetic heart devices. [9-11] 
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1.2 Blood and Blood Damage 

1.2.1 Blood Properties 

 Blood constitutes about 8% of an average adult’s body weight and its role is to 

transport material to and from tissue, prevent fluid loss, and defend the body. Blood is a 

mixture of plasma, which makes up 55% of blood’s volume, and blood cells, which 

makes up the remaining 45%. While plasma consists of water, protein, inorganic salts, 

and organic substances, blood cells include white blood cells, platelets, and red blood 

cells (erythrocytes). For every 600 red blood cells (RBC), there are around 40 platelets 

and 1 white cell, while the human body contains approximately 25 trillion erythrocytes. 

Red blood cells, which are composed of 90% hemoglobin, are constantly created in the 

bone marrow and stay alive approximately for 120 days. [12] (Figure 1.3 [13]) 

  

Figure 1.3. Cellular components of blood. [13] 
 

 The physical properties of blood are important in blood trauma studies. 

Generally, blood density is constant and is taken as 1050 kg/m3. Blood viscosity is 

shear-thinning, which means viscosity decreases when shear stress increases, and 
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depends on temperature and hematocrit. Blood is often assumed to be Newtonian in 

modeling of cardiovascular devices, [8] because blood can be treated as a Newtonian 

fluid for shear rates above 100s-1 that is found in many applied problems. [8] Mostly, 

Newtonian blood viscosity is taken as 3.0 – 4.0 centipoise (cP) at 37 oC. [10, 14, 15]  

Another consideration is the assumption of blood as a homogeneous fluid. However, 

blood has often been represented as a homogeneous fluid by many investigators. [10, 

16-18] Since blood contains suspended red blood cells in plasma, it has not always been 

considered as homogeneous, see for example the work of Antiga et al. [7] In all of the 

experiments of this study, blood was assumed to be Newtonian and homogeneous.  

 

1.2.2 Blood Damage and Shortfalls of Current Models 

 Prosthetic heart devices expose blood to non-physiological conditions, [3] such 

as turbulent blood flow, [7, 8] causing locally high shear stresses and significant 

pressure fluctuations in blood. These non-physiological conditions cause different kinds 

of complications including hemolysis, infection, anemia, secondary shear effects of 

immunosuppression, thrombosis, and bleeding. [3] (Figure 1.4 [19]) In this study, we 

will be concentrating only on hemolysis. Hemolysis happens when hemoglobin is 

released from erythrocytes (RBCs) as a result of destruction or of trauma to the RBC.  
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Figure 1.4. Ventricular assist device. [19] 
 

 Blood damage is often represented by empirical power law models that are 

consider it to be a function of the magnitude of the shear stress and of exposure time to 

high stresses.  Blackshear et al. [20] proposed the following commonly used equation: 

HI C tα βτ=                1.1
           
where HI, hemolysis index, is a measure of hemolysis, τ is shear stress, t is time of 

exposure to stress τ, and α, β, and C are constants to be determined experimentally. 

These constants have been obtained largely from laminar flow data with well-defined 

homogeneous stress and exposure time to that stress.  

 The power law equation [Eq. 1.1] was adopted by Giersiepen et al. [21], based 

on in-vitro laminar flow experiments with human RBC, to predict hemolysis 

downstream of aortic valves. Constants α, β, and C were determined from regression 

analysis applied to experimental data  for shear stresses less than 255 Pa and exposure 

times less than 700 ms. Heuser and Opitz [22] obtained their set of coefficients using 

laminar flow in a Couette viscometer  to determine hemolysis of porcine blood for 

exposure times less than 700 ms and shear stresses less than 255 Pa. Fraser et al. [23] 
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calculated hemolysis and obtained their set of coefficients in laminar flow for shear 

stresses less than 5 Pa and exposure times of less than 1.81s. Zhang et al. [24] examined 

hemolysis of ovine blood for exposure times of less than 1500 ms and shear stresses 

between 50-320 Pa and obtained power law constants by fitting the hemolysis results to 

Eq.1.1. These models are summarized in Table 1.1. Furthermore, many other 

investigators developed different mathematical expressions by using Eq. 1.1 for 

hemolysis estimation. [25-28] There are also more advanced models that consider more 

detailed information about RBC, such as pore formation of membrane, distortion of 

cells, and hemoglobin transport from cells. [29, 30] 

Table 1.1. Power law models and constants 
 

Power Law Models C α β 

Giersiepen et al. [21] 3.62*10-5 2.416 0.785 

Heuser and Opitz [22] 1.8*10-6 1.991 0.765 

Fraser et al. [23] 1.745*10-6 1.963 0.7762 

Zhang et al. [24] 1.228*10-5  1.9918 0.6606 

 

 Even though power law models have been helpful to understand mechanical 

trauma for several years, determining hemolysis as a function of shear stress and 

exposure time is not enough to fully identify damage to RBCs. Therefore, alteration of 

the power law models or the use of entirely different models have been proposed by 

several researchers. [15, 25, 31-37]  

 The biggest disappointment in the power law hemolysis models is the lack of 

universality of the model. As discussed above, the constants in the power law models 
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were entirely empirical, depending on specific flow conditions and device features. 

Moreover, since these models are purely empirical, they do not consider mechanical 

properties of the RBC while missing any physical basis. [38] 

 Another most important shortfall of power law models is that adjustment of 

power law constants has been used in order to force models based on laminar flow 

experiments to work for devices with turbulent flows.  However, these models are 

missing the general flow features of typical medical devices because they were derived 

from steady viscometer experiments with uniform shear stress. [30] The use of a 

particular power law expression derived from typical viscometer experiments [20, 22, 

39] is problematic for turbulent flows. Experimental determination of an average shear 

stress in these viscometers derives from the observed torque for a specified geometry, 

dimensions and operational speed of the unit. A single torque value, however, cannot 

describe the complexity of turbulent flows.  It is possible that the combined effect of 

local variations in flow field structure around a cell on hemolysis cannot be captured by 

a single value of stress.  

 To deal with hemolysis in a turbulent flow field, application of a power law 

model in a Lagrangian sense has also been employed.  However, analysis of hemolysis 

in devices with this method has yet to demonstrate consistent power law constants in 

large part due to the difficulty in characterizing turbulent stresses. [40] 

 

1.3 Effects of Turbulence on Hemolysis 

 Turbulence is a random, highly three dimensional, chaotic, irregular and 

multiscale flow condition that results in strong vorticity, high rate of mixing, with 
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pressure and velocity variations occurring over a wide range of time and length scales. 

[41] Rapidly moving impeller blades of heart devices is the reason for highly disturbed 

turbulent flow in/near these devices.  

 It is commonly accepted that turbulence has important effects on RBC damage. 

One of the most common and widely studied effects is hemolysis. While an increase in 

hemolysis is observed when cells are exposed to turbulent stresses, [9] the structure of 

turbulence in proximity to the blood cells and the fundamental mechanism by which 

cells are injured remain unclear. [9-11] Therefore, understanding and predicting the 

effect of turbulent stresses on erythrocytes is a major concern when designing prosthetic 

heart devices. [9-11] To deal with blood damage in turbulent flow, hemolysis has been 

examined using different stresses (Reynolds, viscous, wall shear, etc.) by several 

researchers.  

 Quinlan and Dooley [18] have presented an analysis for both laminar and 

turbulent flow. In their turbulent flow analysis, a model to predict shear stress on RBCs 

was developed by considering the effect of turbulent flow on an isolated cell. They 

applied their model to prosthetic valve data by Liu et al. [42] and investigated the 

relationship between true stress on blood cells and the measurable macroscopic stresses. 

Hemolysis occurs at the cellular scale and Reynolds stress does not directly describe 

microscopic flow field experienced by red blood cells. [18, 43-45]. Moreover, the stress 

distribution on the surface of the cell was affected by complicated local plasma flow 

around each cell. Quinlan and Dooley suggested that cells are exposed to low stress and 

acceleration by larger eddies. However, smaller eddies are responsible for causing the 

cells to experience high velocity gradients and fast velocity changes. Therefore, effect 
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of different length scales on cells cannot be captured separately by using Reynolds 

stresses. [18] Viscous stresses also characterize blood in macroscopic levels and they 

are not adequate to define the flow field near the cells to determine hemolysis. [18] Lee 

et al. [46] investigated viscous and Reynolds stresses for three different heart valves. 

The calculated maximum value of viscous shear stresses was small. Therefore, the 

effect of viscous stresses on cell trauma was neglected.   

 In the work of Hund et al., [8] the Navier Stokes and Reynolds Averaged Navier 

Stokes (RANS) equations were used to mathematically calculate the errors of predicted 

blood damage. It was found that significant error can be anticipated when Reynolds 

stresses are used in a power law equation to predict hemolysis. As such, if Reynolds 

stresses are used in blood damage calculations, the accuracy of the predictions would be 

doubtful. [8] However, Hund et al. also noted surprising success of some groups on 

predicting hemolysis by using Reynolds stresses. 

 The value of Reynolds stresses in predicting blood damage was also investigated 

by Jones. [47] Local viscous stresses were determined in turbulent flow and it was 

suggested that using local viscous stresses instead of Reynolds stresses to determine 

hemolysis was more reasonable. [47] Even though Reynolds stresses were used to 

correlate hemolysis results in the work of Sallam and Hwang, [48] viscous shearing was 

recommended as a potential mechanism. [49, 50] Other researchers have considered 

Reynolds stresses as having a similar effect as the viscous stresses in laminar flows. [17, 

42, 48, 51] 

 While turbulent stresses, the well-known Reynolds stresses, have often been 

considered responsible for hemolysis, [8, 9, 48, 51] other researchers have examined the 
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size of flow eddies relative to the size of the RBCs in order to identify the mechanism 

responsible for RBC trauma. [10, 42, 47, 52]  

 Turbulent flow eddies are known as an important mechanism on hemolysis. The 

smallest dissipative flow eddies in turbulent flow, known as Kolmogorov length scale 

eddies have a length scale that is described as  𝐾𝐿𝑆 = !!

!

! !
, where ν is kinematic 

viscosity and ε is the dissipation rate of turbulent kinetic energy. The dissipation 

mechanism of turbulent eddies is known as the Energy Cascade [53-55] in which large 

eddies break up continually and transfer their energy to smaller eddies (Figure 1.5). 

Viscosity effects are negligible for larger eddies but when eddies smaller, viscosity 

effects and dissipation become more important. Energy cascade continues until eddy 

sizes become so small (size of KLS) that viscous forces and dissipation become 

important. At the end of Energy Cascade, the small eddies with size of a RBC can 

interact with the cell and transfer their energy to the cell membrane causing membrane 

rupture and hemolysis.  However, if these eddies are larger than RBCs, the cells are 

displaced within the flow field and the cell membrane does not experience stressing or 

damaging. Thus, a relationship between dimensions of the turbulent eddies and the RBC 

damage can be obtained by examining the information of the smallest turbulent eddies. 

[56] Several researchers suggest that when KLS size is smaller, especially similar to 

RBC size, there will be more damage to RBCs. [10, 43, 47, 51, 57, 58] 
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Figure 1.5. A schematic representation of energy cascade in turbulent flow. [53] 
 

 Ellis et al. [51] determined KLS values as 7.1 µm in a turbulent jet study, and 

concluded that turbulent energy dissipates through the membranes of blood elements 

and ruptures them when turbulent eddies are similar in size with blood elements. Aziz et 

al. [10] calculated Kolmogorov length scales in a stirred tank reactor and concluded that 

Kolmogorov length scale correlates inversely with damage, i.e., smaller eddies cause 

more damage. Jones [47] also calculated Kolmogorov length scales and stated that 

when length scales are similar with RBC size, shearing becomes important for 

hemolysis. An approach based on KLS is closely tied to energy dissipation and can be 

computationally manageable.   
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1.4 Objectives 

 Turbulence in which large turbulent eddies break up continually and transfer 

their energy to smaller eddies has important effects on flow properties which a pump 

designer needs to pay attention. These effects include pressure head evaluation, and the 

prediction of shear stress, which are important in blood damage calculations. [3] It is 

commonly accepted that hemolysis increases when cells are exposed to turbulent 

stresses. [9] However, the structure of turbulence in proximity to the blood cells and the 

fundamental mechanism by which cells are injured remains unclear. [9-11] Therefore, 

understanding and predicting the effect of turbulent stresses on erythrocytes is a major 

concern when designing prosthetic heart devices. [9-11] 

Hemolysis calculation in turbulent flow is a big challenge because of complex 

flow conditions of turbulence, lack of experimental data, uncertainty of a threshold 

shear stress value, and, most importantly, the lack of understanding of turbulence 

structure in proximity to the blood cells and the fundamental mechanism of cell 

damage. This work fills a gap on understanding the mechanism of turbulence structure 

on hemolysis by performing Computational Fluid Dynamics (CFD) simulations on 

distinctly different and widely used geometries. 

 The primary objective of this work is to examine, for the first time, the 

correspondence of hemolysis to the surface area of eddies that are assumed to have 

diameters equal to the KLS length scale by using CFD simulations (we call this process 

eddy analysis).  The main hypothesis is that extensive measures of turbulent eddies with 

sufficient energy dissipation  could be a predictive indicator of trauma – the more of 

these eddies, the more exposure RBCs will have to them. It might also be envisioned 
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that the stresses within and between eddies cause damage. The damage to cells from 

such eddies will be greater for similar total exposure times in a flow field.  This is a 

measure of hemolysis based on an extensive property in turbulent flows. It thus takes 

into consideration that turbulence is a flow condition rather than a fluid property, in 

contrast to intensive measures.  

 Another objective of the present study is to consider a different aspect of the 

power law approach by testing applicability of area averaged, time averaged Reynolds, 

total, viscous, and wall shear stresses using reported power law parameters [21-24] 

utilizing hemolysis experiments in a capillary tube. Moreover, as discussed above 

several researchers calculated hemolysis by using different stresses such as Reynolds, 

viscous, and wall shear. Which characterization of turbulent stress relates best to 

hemolysis is an important consideration for application of the power law. If the 

dependence on Reynolds stresses is similar to what is seen for stresses in laminar flow, 

then one expects to see a large increase in hemolysis at some threshold value of the 

Reynolds stress, because of the exponential feature of the power law relationship. 

However, the issue of a value of the threshold turbulent stresses for hemolysis remains 

unsettled. [59] As such, in this research we investigate the effect of time averaged, area 

averaged Reynolds stresses and viscous stresses on hemolysis by conducting a threshold 

analysis.  

 Moreover, as discussed above, power law models often fail to predict hemolysis 

in medical devices because they were derived from steady viscometer experiments with 

uniform shear stress. [30] Therefore, we also propose a hemolysis model based on 

results  from three distinctly different devices: a jet, [57] a Couette viscometer, [60] and 
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a capillary tube. [9] We also perform eddy analysis on jet flow and investigate the 

relation between hemolysis and surface area of eddies. With eddy analysis on jet, we 

validate and support our previous work [61] in which we applied the same methodology 

to a  Couette viscometer [60] and a capillary tube. [9]      
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2 Methods 

2.1 Computational Fluid Dynamics 

 Computational Fluid Dynamics (CFD) is the study of fluid flow by using 

powerful computers. Simulation of fluid flow simply means that a series of well-known 

equations, i.e., Navier-Stokes equations, are solved in computers for a particular 

geometry and flow conditions. Solving the Navier-Stokes (N.S.) equations in 

supercomputers gave rise to the field of CFD and became one of the greatest 

achievements in fluid dynamics. [62] Governing equations for flow consist of the 

continuity equation, Eq. 2.1, and the momentum equation, Eq. 2.2 (Equations are in 

tensor form).  
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where Ui and Uj are the instantaneous velocity in the i and j directions respectively, ν is 

kinematic viscosity, ρ is density, p is pressure, and xi, xj are coordinate directions. It is 

well-known that there is no general solution to the N.S. equations, thus there is no 

general solution to turbulent flow problems. [63] The N.S. equations for simple 

turbulent flows at moderate Reynolds numbers, Re, can be solved numerically by direct 

numerical simulation (DNS). However, common applications that require high Re flows 

do not have a direct solution of N.S. equations. [41] Therefore, CFD techniques have 

been developed that include statistical approaches and methods such as finite difference, 
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finite volume, finite element, and spectral methods. A computational domain, which is a 

bounded region in space, is needed for flow simulation. Interaction between 

computational domain and the surrounding is represented by the boundary of this 

region. A solver is used to calculate the flow within the domain by using the 

information about the flow on the boundary. After boundary conditions are determined, 

the computational domain is discretized into a number of small cells, generating the 

computational mesh or grid. In each cell of the domain, discretized versions of 

governing equations [Eq. 2.1 and Eq.2.2] are solved numerically, and provide the flow 

field with regard to velocity and pressure (temperature and density, if needed). The 

solution changes with time for an unsteady flow therefore results are needed to be 

obtained as a function of time to yield temporarily varying flow field. On the other 

hand, there is only one solution for steady flow field (time independent). While several 

different numerical techniques (such as finite difference method, finite element method, 

spectral methods, and spectral element methods) are available, the finite volume method 

is the most commonly used numerical technique that is also generally available for 

commercial CFD codes.  In the finite volume method, the governing equations [Eq. 2.1 

and Eq.2.2] are integrated over each cell in the domain and the terms of the equations 

are approximated with algebraic expressions.  The number of unknowns (three velocity 

components and one pressure component) and the number of equations (one continuity 

equation and three momentum equation) are equal in incompressible, three-dimensional 

flow. When these equations are applied to each cell of the mesh (boundary conditions 

control the cells on the boundaries), there will be a system of algebraic equations that is 
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solved for the unknown variables in each cell. Because of the integration over each cell, 

the values of variables are spatial averages for each cell in the domain.  

 CFD has been widely used to determine hemolysis as a function of flow field 

conditions found in cardiovascular devices and has often been used to analyze, improve, 

and optimize VADs. [23, 64-68] Correct measurements of flow parameters, such as the 

instantaneous spatial distribution of the rate of dissipation of turbulent kinetic energy 

(ε), are difficult in the laboratory, which makes CFD essential for these systems. 

Furthermore, several different implant designs can be created in silico and examined for 

a broad range of operating conditions without the time and expense necessary for the 

production and testing of prototype devices. For example, over the last decade several 

researchers have used CFD to develop, analyze, and optimize VADs. [64, 68] 

2.2 CFD Analysis  

 CFD analysis in this work includes the following steps: creating and modeling 

the experimental devices, meshing the geometries, solving the problem by setting up 

boundary conditions, and post processing using Fluent, Excel, and Matlab. All the 

simulations are performed in Fluent 14.0 by using a Dell Precision PC. Simulation time 

varies from order of seconds to hours depending the simulation type. Analysis of all the 

devices in this work was performed with a three dimensional model to represent the 

flow domains. Each analysis includes different setup, but the general setup is similar in 

different devices. 

 First of all, the experimental setup representing the flow domain was created 

using ICEM CFD (Ansys, Pittsburgh, PA), a preprocessing program of Fluent. After 

creating the geometry, the computational domain was discretized into a mesh. 
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Hexahedral elements were used for the meshing. After boundary conditions appropriate 

for each specific experiment were defined, the discretized mesh was imported into 

Fluent. For each turbulent simulation, a turbulence model was specified in Fluent. Most 

of the time k-ε and k-ω SST models were chosen, since they are the most commonly 

used models and have wide range of applicability. [41] Moreover, specific boundary 

conditions, such as the average inlet velocity, were specified for the fluid entering the 

domain.  

 In order to solve the problem in Fluent, another important step is to determine 

solution parameters that include determining the discretization method and 

convergence. Mostly, first or second order discretization schemes are used for all Fluent 

runs. In order to determine whether the problem solution converged or not, a specific 

convergence criterion was set for the simulation. After determining convergence 

criteria, the final step before running the program is to initialize the simulation. For 

turbulent flow simulations, simulations start with a slow velocity (or rotational velocity 

in Couette viscometer) such that the flow remained laminar, then the velocity was 

slowly increased in silico until the resulting parameters equaled the experimental 

parameters. This parameter can be experimental shear stress, experimental velocity or 

any other parameter depending on different experiments. Detailed explanations of 

turbulent flow simulations for different experimental systems are presented in Sections 

3, 4, and 6. After simulation started running, residuals and also some other monitors (if 

necessary) were monitored. Once they reach below convergence criteria, the simulation 

ended.  
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2.3 Modelling Turbulent Flow 

2.3.1 k-ε SST Turbulence Modelling 

 The turbulence k-ε model is a semi-empirical Reynolds Averaged Navier-Stokes 

(RANS) model, which solves model transport equations for the turbulent kinetic energy, 

k, and the turbulent kinetic energy dissipation rate, ε. The k-ε model is the most 

commonly used turbulence model which is also used in most commercial CFD 

codes.[41] Some of the advantages of the k-ε model are robustness, reasonable accuracy 

for wide flow ranges, and computational economy.[3, 8] The k-ε model is known to be 

inaccurate in capturing turbulent features in highly swirling flows and when secondary 

flows are present in non-circular ducts, and also in capturing non-zero normal-Reynolds 

stress (Re) differences. [8] Further, it is not very accurate when calculating fluid 

characteristics along the boundary during flow separation. [69] The flows simulated 

here do not fall in these categories. In this study, the turbulence k-ε model has been 

used with enhanced wall treatments to define and satisfactorily solve near wall flow 

conditions. The k-ε model has been commonly used to design prosthetic heart 

devices.[69-74] In the turbulence k-ε model, the turbulence kinetic energy,  𝑘 = !
!
𝑢!!𝑢!!, 

and the dissipation rate of turbulent kinetic energy, 𝜀 = 2𝜈𝑠!"! 𝑠!"! ,  (𝑠!"! =
!
!
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+
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where 𝑢!! and 𝑢!! are the mean fluctuating velocity in the i direction and j directions 

respectively, 𝑠!"!  is the mean fluctuating strain rate, ν is kinematic viscosity, ρ is density, 

µ	  is viscosity, µt is turbulent viscosity, Gk is the generation of turbulent kinetic energy 

due to the mean velocity gradients, and Sij is the mean strain rate. The standard values 

of model parameters are C2=1.9, Cµ=0.09 and the turbulent Prandtl numbers for k and ε 

are σk=1.0, σε=1.2.[75] These parameters were refined and determined over years from 

flow balance equations between production and dissipation based on several flow 

conditions.[75-77] 

 k-ω SST Turbulence Modelling 

 The k-ω model is the second most commonly used two- equation model after the 

k-ε model. [41] The k-ω SST model solves the model transport equations for turbulent 

kinetic energy, k and ω which is defined as kω ε≡ . Both k-ε and k-ω models solve the 

same equation for the turbulence kinetic energy and they differ when solving the second 

variable. The k-ω model is better on dealing with the viscous near-wall region and 

influence of streamwise pressure gradients when solving boundary-layer flows. While it 

has difficulty when solving non-turbulent free-stream boundaries, [41] the simulations 

in this work are not in that category. For the k-ω turbulence model, the shear-stress 

transport (SST) k-ω model was used in this study. Menter [78] created the k-ω SST 

model to obtain the best behavior of k-ε and k-ω models.  The k-ω SST model 

efficiently combines free-stream independence of the k-ε model in the far field region 

and accurate and robust formulation of the k-ω model in the near-wall region. [75] The 
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k-ω SST is developed as a non-standard k-ω model in which the last term of ω equation 

is multiplied with a blending function.  Blending function becomes zero close to walls 

(corresponding to the standard ω equation), while far from walls the blending function 

is 1 (leading to the standard ε equation). The k-ω SST model has also been used 

commonly to design prosthetic heart devices. [79-82] Transport equations of the k-ω 

SST model are as follows: 
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where Gk is the generation of turbulent kinetic energy due to the mean velocity 

gradients, Gω is the generation of ω, Yk and Yω are dissipation of k and ω due to 

turbulence, Dω is the cross-diffusion term. Calculation of all of the above terms is 

shown below.  
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where y is the distance to the next surface and Dω
+ is the positive portion of the cross-

diffusion term. 
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The model constants are ,1 1.176kσ = , ,1 2.0ωσ = , ,2 1.0kσ = , ,2 1.168ωσ = , 1 0.31a = , 

,1 0.075iβ = ,  ,2 0.0828iβ = , * 1a = , 0.52a∞ = , 0
1
9

a = , * 0.09β∞ = , 0.072iβ = , 8Rβ = , 

6kR = , 2.95Rω = , * 1.5ζ = , 0 0.25tM = , 2.0kσ = , 2.0ωσ = . 

2.4 Eddy Analysis 

 Fluid flow simulations produced time-averaged spatial distributions of the 

Kolmogorov length scale (KLS) for each particular geometry and experimental 

condition. The parts of the geometries in which KLS values were calculated are 
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described in the specific chapters, when we discuss each geometry separately. The same 

approach was applied for all of the systems in this work. We assume that the 

distribution of Kolmogorov length scales strongly reflects the distribution of small eddy 

sizes. Eddy analysis in the virtual geometries began by calculating the values of the 

KLS in the whole flow domains. With the assumption that the KLS values characterized 

regions containing spherical eddies of similar size, the total volume for that region led 

to the number and surface area of eddies representing each KLS value. We picked 

increments of 1µm for binning the KLS values and created surfaces for each specific 

KLS value in Fluent. Surface areas for every KLS were identified in Fluent.  

The total volume of regions containing dissipative eddies of similar spherical 

size was calculated by generating contours of KLS with increments of 1 µm in Fluent, 

calculating the area corresponding to each contour increment, and then integrating this 

area throughout the flow domain using contours at planes generated through the flow 

domain. Total volume calculation for each geometry is also discussed separately in the 

following chapters.  To find the number of eddies (Neddy) of a specific size, the total 

volume of the region was divided by the volume of one eddy (Veddy) that was calculated 

as   𝑉!""# =
!
!
𝜋 !"#

!

!
. Finally, the total surface area of eddies for each KLS value 

(Aeddy) was calculated as  𝐴!""# = 𝑁!""#4𝜋
!"#
!

!
. Eddy surface areas were used as a 

main parameter, because we envisioned that cell damage would take place at the 

interface between eddies due to shear forces acting on a cell, or possibly extensional 

stresses. This is a measure of hemolysis based on an extensive property in turbulent 

flows. It thus takes into consideration that turbulence is a flow condition rather than a 
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fluid property, in contrast to intensive measures. The use of extensive quantities 

accommodates the complexity of flows in medical devices, which may have 

considerable spatial variation in turbulence intensity among their parts.  A small, highly 

turbulent region in the device may contribute disproportionately to hemolysis so that the 

size of that region is important to the extent of damage. The goal was to determine the 

correspondence of hemolysis with extensive quantities rather than intensive, on a per 

unit volume basis for different values of KLS. In addition, cumulative values of these 

extensive quantities with increasing values of KLS were considered.   

 The main assumptions for eddy analysis of the dissipative turbulent length 

scales are as follows: 

i) KLS are assumed to correspond to uniform spherical eddies that have 

radius equal to the KLS; 

ii) All volume of the flow domain that displays a particular KLS is occupied 

by spherical  eddies with diameter equal to the KLS;     

iii) Turbulent flow in our simulated systems is fully mixed, so RBCs spend 

time in different zones of KLS values that is proportional to the volume 

of the flow domain occupied by these KLS values; 

iv) The presence of the RBCs does not affect the structure of the turbulence;  

v) The rheology of the fluid is Newtonian and homogeneous; 

vi) The k-ε and k-ω turbulence models are appropriate for use in the flow 

configurations examined herein.  



26 

 For assumption (i), application of eddy analysis in this study of hemolysis is 

limited to the extent that Kolmogorov length scales correspond directly to turbulence 

eddies. Moreover, choice of turbulence models for the calculation of the rate of kinetic 

energy dissipation and, thus, of KLS is quite important to the results. While 

Kolmogorov scales do not necessarily correspond to actual spherical eddies that are 

present in turbulent blood flow, we make the assumption that the distribution of 

Kolmogorov length scales is strongly correlated with the distribution of small eddy 

sizes. This is an Eulerian approach, in which we relate time-averaged extensive flow 

field properties obtained from turbulent eddy size distributions to hemolysis. Regarding 

assumption (vi), it should be recognized that one would need to fully resolve the 

turbulent field to have complete information about flow at the cellular scale, since one 

should not use macroscale turbulence information to obtain information about a time-

dependent microscale flow field around a cell or the blood damage response. [44] Flow 

is assumed to be fully turbulent. [83] Turbulence models adopted herein adequately 

predict the dissipation field of the turbulent kinetic energy. Other more accurate 

approaches to determining the dissipative length scales could be combined with the 

proposed eddy analysis. However, different turbulence models will have an impact on 

the final calculations for the KLS. We use here the k-ε and k-ω SST models, described 

in the previous section, which can provide the ε and ω fields, recognizing that other 

more sophisticated models for turbulence simulation (like large eddy simulations or 

direct numerical simulations) would provide more accurate results. While the KLS field 

calculated here is subject to uncertainties associated with the turbulence model, the 

approach proposed for the definition of small KLS eddies and the exploration of their 
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relation to hemolysis observed experimentally offers a fresh examination of the reasons 

for RBC trauma.  

 Returning to assumptions (iv) and (v), it is expected that cellular components of 

flow can influence turbulence in blood. For the experiments simulated, only washed red 

cells were used. In the case of whole blood, the effects of platelets and white cells 

should be negligible, since platelets and white cells are more than an order magnitude 

lower in number concentration than red cells and in blood they comprise a much smaller 

volume percent. Red cells comprise a high volume percent that will indeed affect 

turbulence. However, red cells have the ability to tank tread and the property of a very 

low membrane bending modulus (1-3 x 10-13
 ergs [84]). Therefore, calculation of the 

KLS based on Newtonian fluid properties will be valid for all of the simulations in this 

work since the suspensions are very dilute and can be considered homogeneous. 

(Details of eddy analysis are discussed in Appendix A). 

2.5 Reynolds Stress Calculation 

 In Reynolds stress (RS) calculations in this work, it is assumed that the 

simulated systems were well mixed in turbulent flow. Therefore, cells are assumed to 

spend on average the same amount of time in any location inside of the flow field. 

 Reynolds stress calculations were performed for the Couette viscometer and the 

capillary tube configurations at a post-processing stage. For both capillary tube and 

Couette viscometer experiments several lines (called rakes in Fluent) were created 

through the model geometry. Rakes were created equally spaced and each rake had 

several points that were equally spaced. Then, Reynolds stresses were calculated in each 

point of each rake and eventually there were more than 1000 different calculated 
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Reynolds stress values for both capillary tube and Couette viscometer. Time averaged 

velocity gradients at each point of every rake (𝜏! = 𝜇 ∗ !!!
!"

 on rakes aligned with the y 

axis and 𝜏! = 𝜇 ∗ !!!
!"
  along rakes aligned in the z axis) yielded viscous stresses. The 

total stress,  𝜏! =
!
!
∗ 𝜏!, was found at each point and the Reynolds stresses were 

calculated by taking the difference between viscous and total stresses 𝜏!" = 𝜏! − 𝜏!. 

Finally, the area averaged Reynolds stress, <τRe>, was calculated by using  

( )2 2
Re 1

1
Re 2

ri

Nbins

i i
i

r r

R

τ π
τ

π

−
=

∗ −
〈 〉 =

∗

∑
           2.16 

 

where 𝜏!"!! is the Reynolds stress at point ri, Nbins, is the number of points in each rake, 

and ri  is the distance of each point from the center of the capillary tube. For the Couette 

viscometer, rakes were created in the blue vertical plane shown in Figure 3.1(B). 

Calculations of area averaged viscous and Reynolds stresses were conducted similarly 

to the capillary tube, keeping in mind that the total stresses for the Couette viscometer 

were calculated as  

2 2

2 2 2

12 i o
r i

o i

R R
R R rθτ π
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−
          2.17 

      

where Ωi is the rotation rate of the inner cylinder, Ri is the radius of inner cylinder and 

Ro is the radius of outer cylinder. 
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3 Modelling Turbulent Flow and Cell Damage in a Couette 

Viscometer 

 Portions of this chapter have been reproduced from the following source. This 

paper has been published for publication in the Artificial Organs Journal: 

 
• Ozturk, M., O'Rear, E. A., & Papavassiliou, D. V. (2015). Hemolysis related to 

turbulent eddy size distributions using comparisons of experiments to 

computations. Artificial Organs, 39(12), E227-E239. Doi: 10.1111/aor.12572. 

 

 
3.1 Background 

 When RBCs are flowing through medical devices that are based on Couette 

flow, such as implantable rotary blood pumps, they can be affected by hemolytic and/or 

traumatic effects.[85] Therefore, a better understanding of behavior of blood and its 

constituents when they interact with these devices is possible by testing these devices to 

reduce blood damage and improve their design. [86] In general, Couette viscometers 

can provide high shear stresses with relatively short loading times, [22] but they have 

also been used for longer periods of exposure. The magnitude of the produced shear 

stress inversely depends on the gap width and proportionally depends on the relative 

speed of the two concentric cylinders. Concentric cylinder viscometer has commonly 

been used to study hemolysis in both laminar [22, 24, 37, 38, 87-90] and turbulent flow. 

[60] Moreover, it has been seen that a value of the threshold shear stresses in laminar 

and turbulent flow for hemolysis remains unsettled. Some of these studies are 

summarized below and also shown in Table 3.1. 

 When we review the studies of hemolysis in laminar Couette flow, Leverett et 

al. [90] used concentric cylinder viscometer in laminar flow to study effect of different 



30 

factors on blood damage which are centrifugal force, damage at the air-blood interface, 

viscous heating, relation between red blood cells and solid surfaces, and cell-cell 

interaction. Experiments were performed at shear stresses ranging from 500 – 4000 

dyne/cm2 and an exposure time of 2 minutes. As a result of experiments, damage was 

caused only by shear stress above the threshold shear stress of 1500 dynes/cm2. A 

Taylor Couette viscometer was used to explore effect of laminar shear stress and 

exposure time on red blood cell damage in a recent study by Arwatz et al. [38] 

Hemolysis of human blood was investigated for shear stresses from 50 to 500 Pa and 

for exposure times of 60-300 s. Based on their results and previous work, a viscoelastic 

strain-based hemolysis model was fitted to their data. While they were observing 

hemolysis for shear stresses as low as 50 Pa, they did not observe a hemolysis threshold 

value. Couette flow was also used in the study of Klaus et al. [89] to measure hemolysis 

using porcine blood and hemolysis was not observed until shear stress of 400 Pa and 

exposure times of 400 ms. In a further study of Klaus et al., [88] porcine and human 

blood was sheared in a Couette viscometer to compare the effect of blood types on 

hemolysis and platelet reduction for shear stress ranges of 6.5 Pa – 400 Pa and exposure 

time of 400 ms. Hemolysis and platelet reduction were similar in both blood types 

except for higher hemolysis measurements in which high standard deviations were 

observed. Paul et al. [37] used Couette viscometer to measure hemolysis for exposure 

times of 25-1250 ms and shear stresses of 30 – 450 Pa. Hemolysis levels were increased 

largely for shear stresses τ ≥425 and exposure times t ≥ 620 ms and hemolysis 

measurements were the same as hemolysis measurements of Klaus et al. [89] Boehning 

et al. [87] developed their  laminar Couette shear flow based on the set up of Klaus et al. 
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[88, 89], and Paul et al. [37] by using porcine blood at four levels of shear stresses (24, 

592, 702, and 842 Pa) and at two exposure times (54 and 873 ms). Experimental results 

showed a large increase of hemolysis for shear stresses above ~600 Pa at 873 ms. 

Heuser et al. [22] used Couette viscometer to shear porcine blood in a laminar flow field 

for exposure times less than 700 ms and shear stresses less than 255 Pa. Zhang et al. 

[24] examined hemolysis of ovine blood in a laminar Couette flow for exposure times 

of less than 1500 ms and shear stresses between 50-320 Pa and obtained slightly lower 

hemolysis values than Paul et al. [37]and Klaus et al. [89] 

 Although, Couette viscometers were used by several investigators to study 

hemolysis in laminar flow, hemolysis data in turbulent flow are rare. Therefore, it was 

quite a challenge for this study to find hemolysis data in turbulent flow. In this work, 

the Couette viscometer experiments of Sutera et al. [60] were simulated, where human 

erythrocytes were sheared for shear stresses from 100 to 4500 dynes/cm2 and for 

exposure time of  4 minutes. [60] Large increase of hemolysis was observed for shear 

stresses above 2500 dynes/cm2. 
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Table 3.1. A review of Couette viscometer studies for hemolysis 
 

Reference for 

Couette experiment 

Exposure 

time (s) 

Shear stress 

ranges (Pa) 

Shear stress threshold 

for RBC damage (Pa) 

Flow  

field 

Leverett et al. [90] 120 50 - 400 150 Laminar 

Arwatz et al. [38] 60 - 300 50 -  500 - Laminar 

Klaus et al. [89] 0.4 6.5 - 400 400 Laminar 

Paul et al. [37] 0.025 - 1.25 30 - 450 425 Laminar 

Boehning et al. [87] 0.054 – 0.873 24 - 842 600 Laminar 

Heuser et al. [22] < 0.7 < 255 - Laminar 

Zhang et al. [24] 1.5 50 - 320 - Laminar 

Sutera et al. [60] 240 10 - 450 250 Turbulent 

 

3.2 Methods 

3.2.1 Geometry and Computational Domain 

 The Couette viscometer of Sutera and Mehrjardi[60] utilized a rotating inner 

cylinder and a stationary outer cylinder. The rotor was 10 cm in diameter, 5 cm long 

and the gap between the cylinders was 2.07 mm, which allowed a maximum shear stress 

of 450 Pa. Washed, human erythrocytes in phosphate buffered saline (PBS)/glucose at 

low hematocrit (2%) were exposed to turbulent flow for a period of 4 minutes. Only 

1/32nd of the whole viscometer has been modeled and simulated to reduce 

computational time [Figure 3.1].    
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           (A)                                              (B) 

Figure 3.1. (A): Couette Viscometer, (B): 3D model of 1/32nd of viscometer.  
 

 Using 1/32nd of the geometry was justified by considering the integral length 

scales in the computational domain when expressed in dimensionless viscous wall 

parameters. When walls are present in turbulent flow, it is customary to use 

dimensionless quantities that are based on the friction velocity,  𝑢∗, and the viscous 

length scale, 𝑙∗. The friction velocity is defined based on the fluid density, ρ, and the 

average wall shear stress, 𝜏!, as 𝑢∗ = !!
!

, while the viscous length scale is calculated 

from the fluid kinematic viscosity, ν, and the friction velocity as  𝑙∗ = !
!∗

). The range of 

the integral length scales in wall turbulence is about 1000 in viscous wall units, while 

the dimensions of our computational domain in the azimuthal direction was from 2174 

(for the lowest shear stress experiment, 50 Pa) to 6498 (for the highest shear stress 

experiment, 450 Pa. Both values are more than twice the typical value of 1000, 
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justifying the use of 1/32 of the viscometer in the azimuthal direction for the 

simulations. 

 

3.2.2 Computational Mesh Development 

 Grids for the geometry of the Couette viscometer [Figure 3.1(B)] was created 

using the Fluent 14.0 and its preprocessing program ICEM CFD (Ansys, Pittsburgh, 

PA). The flow domain of the Couette viscometer was represented by using a 1/32nd 

three dimensional model section of the experimental geometry, saving computational 

time while capturing the necessary flow features. Once a geometric shape had been 

prepared, meshing proceeded with formation of hexahedral elements throughout the 

entire geometry. After a computational mesh was created in ICEM CFD, it was 

imported into Fluent for solution of the incompressible Navier-Stokes equations. Mesh 

independence of the models was tested by refining the grid in regions of high mean 

velocity gradient until the percent difference for pressure loss and velocity profile at 

multiple cross sectional cuts between a more and less refined simulation solution was 

less than 3%. The final mesh used for the Couette viscometer included 33,600 cells and 

37,000 nodes with an average grid cell size of 4x10-3 mm3. Grid independence analysis 

was performed for several parameters to check mesh integrity and independence. 

Distributions of KLS and mean velocity magnitude results are shown in Figure 3.2. It 

can be seen from Figure 3.2 that velocity and KLS values in the Couette viscometer 

were independent of mesh size. 
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Figure 3.2. Top: Grid independence analysis for velocity. Bottom: Grid independence 
analysis for KLS. The k-ε model was used with enhanced wall functions. 
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3.2.3 Flow Simulations 

 Couette viscometer simulations were performed with symmetry boundary 

conditions at the top and the bottom of the domain (axial direction) along with periodic 

boundary conditions in the azimuthal direction. Also, no-slip boundary conditions were 

specified for the inner and outer walls of the viscometer (radial direction). The fluid 

properties for all simulations of the Couette viscometer consisted of a Newtonian 

rheological model with a viscosity of 0.001 Pa.s and a density of 998 kg/m3 [60]. The 

viscosity used in the simulations is not of physiological value, because this work 

involved simulations of the experimental study. Therefore, conditions representing the 

conditions of the actual experiments have been used. This included the geometries 

(dimensions, diameters, etc.), as well as the fluid properties and flow conditions. 

Therefore, the viscosity reported in the experimental paper was used for the Couette 

simulations. [60] The Newtonian and homogenous fluid assumptions are valid, since the 

suspensions used in the simulated experiments contained washed red blood cells.   

     Simulations were performed with the finite volume based Fluent simulator, 

using the 2nd order upwind discretization scheme, the presto interpolation scheme for 

pressure, and the simple scheme for pressure-velocity coupling. In the beginning of the 

flow simulations of the Couette viscometer, a slow rotational velocity was assigned to 

the inner wall (such that the flow remained laminar), then the velocity was slowly 

increased in silico until the resulting shear stress equaled one of the experimental shear 

stress values reported by Sutera and Mehrjardi. [60] After the rotational rate attained a 

value high enough to yield turbulent flow, the realizable k-ε model and enhanced wall 

functions, which increases model capability near the wall, were applied. The procedure 
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of increasing the rotation rate of the inner cylinder was repeated until all seven cases of 

different shear stress values (50-450 Pa) of the Sutera and Mehrjardi [60] experiments 

had been simulated (see Table 3.2). Simulations were considered converged when 

residuals for the velocity components, the continuity equations, and the equations of k, 

ε, and ω of the turbulence models fell below 1x10-5. The Reynolds number based on the 

inner cylinder velocity for Couette flow was determined by using the rotational velocity 

of the inner cylinder, Ωi, the radius of the inner cylinder, Ri, the gap width, h, and the 

kinematic viscosity, ν, as 𝑹𝒆 = 𝛀𝒊𝑹𝒊𝒉
𝝊
, giving values of 13390 (for lowest shear stress, 50 

Pa) to 47382 (for highest shear stress, 450 Pa). Sutera and Mehrjardi [60] stated that 

when the Taylor number (Ta) is higher than 400, the flow will be turbulent, therefore 

the Ta was also determined for the Couette viscometer as  𝑻𝒂 = 𝛀𝒊𝑹𝒊
𝟏 𝟐𝒉𝟑 𝟐

𝝊
. Calculated 

Taylor number values for the Couette viscometer range from 2725 (for lowest shear 

stress, 50 Pa) to 9641 (for highest shear stress, 450 Pa) (shown in Table 3.2), much 

higher than the critical Ta. Thus, flow in the Couette viscometer is fully turbulent. 
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Table 3.2. Model conditions for Couette viscometer experiments 
 

Shear 

Stress (Pa) 

Rotation 

Rate (rad/s) 

Experimental 

Hemolysis (%) 

Taylor 

Number 

Reynolds 

Number 

KLS Range 

(µm) 

50 130 1.403 2725 13391 4 – 16 

100 196 1.1364 4108 20189 3 – 13 

150 240 2.5448 5030 24721 2 – 12 

200 300 4.2883 6288 30901 2 – 11 

250 340 11.0547 7126 35022 2 – 11 

350 400 40.3351 8383 41202 2 – 11 

450 460 85.3609 9641 47382 1 – 11 

 

 Selection of turbulence model (k-ε or k-ω SST) was based on comparison to 

appropriate data obtained through direct numerical simulation (DNS) results and 

available in the literature. [91] The turbulence models for the Couette viscometer 

simulations were compared by using the DNS data of Pirro et al. [91] who simulated for 

the first time the Taylor-Couette flow in fully turbulent flow.  Mixed spatial 

discretization was used in their computational code that was the extension of the 

numerical method of Luchini and Quadrio. [92] Pirro et al. [91] calculated statistical 

quantities to compare their results with planar turbulent flow at same Reynolds number 

while also completing the deficiency of current experiments and observed large-scale 

rotating structures as a main difference to planar flow.  Couette viscometer simulations 

were simulated by using both k-ε and k-ω SST turbulence models and the simulation 

results and the DNS data of Pirro et al. [91]  were matched at corresponding friction 
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Reynolds number, Reτ, which was defined as 𝑅𝑒! =
!∗∗!!
!

, where 𝑢∗is the friction 

velocity,  h is the gap width, and ν is the kinematic viscosity. After simulations were 

performed, the mean velocity profiles for the near wall region were calculated using the 

dimensionless wall parameters. The dimensionless distance from the wall, y+, was 

calculated based on distance from wall, Y, and the viscous length scale, 𝑙∗, as 𝑦! = !
!∗

. 

The dimensionless velocity, u+, was calculated as    𝑢! = !!!
!∗

, where <U> is the mean 

velocity. The mean velocity profile for the Couette viscometer is plotted with the DNS 

data [91] in Figure 3.3. It can be seen from Figure 3.3 that using the k-ε model in the 

computation of the flow domain can describe the near-wall region better than the k-ω 

SST model.  
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Figure 3.3. Couette viscometer mean velocity profiles using both k-ε and k-ω SST 
models near wall for the DNS data of Pirro et al.[91] at Reτ =180 with Ωi=94 rad/s and 
τw= 30.7 Pa. 
 

After determination of the root mean square error for both models, the k-ε model was 

selected for simulation of the Couette experiments (Table 3.3).  

Table 3.3. Root mean square errors for the Couette viscometer experiments 
 

 

 

 

 

Root Mean Square Error Couette Viscometer 

k-ε Model 0.39 

k-ω SST Model 0.65 
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3.3 Results and Discussion 

3.3.1 Relation between Eddy Size Distribution and KLS 

 For the Couette viscometer, KLS values were first calculated on a vertical plane 

[blue plane in Figure 3.4]. The KLS values were the same when moving 

circumferentially, along the yellow plane in Figure 3.4. The calculated KLS values had 

a range between 1 µm and 11 µm for the highest average shear stress experiments (450 

Pa), while the maximum value of KLS was up to 16 µm for the lowest average shear 

stress experiments (50 Pa). The complete range of KLS and experimental conditions are 

shown in Table 3.2 

 The time-averaged spatial distribution of KLS values in a vertical plane (shown 

in red rectangle) is shown in Figure 3.4 for the Couette viscometer for the highest wall 

shear stress experiment.  

 

Figure 3.4. KLS values on the blue vertical plane of Couette viscometer by using k-ε 
turbulence model.  The inner cylinder, at x = 0 is rotating at Ωi = 460 rad/s and τw= 
450Pa.    
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It can be seen from Figure 3.4 that KLS values reach a maximum value at distinct 

locations in the Couette viscometer with lower values near the wall.  

 Estimation of the eddy sizes based on the Kolmogorov length scale provided a 

representative eddy size distribution.  Calculations were performed for 7 experiments of 

Couette viscometer as seen in Table 3.2. Results showed that the size distributions 

shifted to smaller values with simulations for increasing shear stress [Figure 3.5].  This 

shift reflects greater energy dissipation with higher angular velocities of the Couette 

viscometer.  

 

Figure 3.5. Probability distribution of KLS values in the Couette viscometer for all 
experiments (450 Pa – 50 Pa). The area under the each curve is equal to 1. 
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The increased presence of smaller eddies occurs in conjunction with greater 

hemolysis. This finding suggests that blood damage in turbulent flow could be predicted 

by looking more closely at Kolmogorov length scales as proposed previously by others. 

In the Couette viscometer, higher shear stresses show sharper eddy distributions [Figure 

3.5]. When the shear stress decreases, the eddy distributions are flatter, e.g., at 50 Pa the 

KLS are between 5 and 8 µm [Figure 3.5].  

3.3.2 The Effect of Eddy Surface Area on Hemolysis 

 The total surface area of the KLS-sized eddies per unit volume has been 

calculated for the seven experiments in the Couette viscometer as a function of the KLS 

values. Analysis to find a relation between eddy area and hemolysis continued by 

combining experimental results of each experiment of the Couette viscometer. A 

relationship between eddy surface area per volume and hemolysis is shown in Figure 

3.6 for the Couette viscometer simulation. Please note that for every figure of eddy area, 

eddy number, and eddy volume (both cumulative and not cumulative), each data point 

corresponds to observed hemolysis reported in the experiment of Sutera et al. [60] (% 

hemolysis values were digitized from original paper, as is shown in Table 3.2), while 

the eddy area (or eddy number, or eddy volume) for the specified KLS size was found 

from simulation of that experiment. The lines are plotted to guide the eye over the data 

points.  
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Figure 3.6. Hemolysis as a function of normalized eddy surface area in the Couette 
viscometer (experimental data from Sutera et al. [60]). 
 

It can be seen from Figure 3.6 that a transition in the shape of these lines occurs as KLS 

value goes from 6 to 8 µm.  For KLS above 6 µm, the lines curve back and up, 

suggesting no apparent dependence of hemolysis on the presence of eddies in this flow 

field. 

 Damage as measured by hemolysis appears to result from eddies below a certain 

size.  It appears from Figure 3.6 that the critical eddy size is 6µm for the Couette 

viscometer. However, given the uncertainty associated with the k-ε model, as discussed 

in Section 2.5, a more meaningful way to interrogate the data is to explore the 

cumulative data rather than data binned in KLS bins of 1µm. In order to examine the 
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cumulative effect of all eddies with a size less than a critical value, the KLS eddy 

surface area was summed up as the KLS values increased. The cumulative sum of eddy 

surface area values versus % hemolysis is shown in Figure 3.7 

 

Figure 3.7. Hemolysis as a function of cumulative eddy surface area in the Couette 
viscometer. 
 

It is clear from Figure 3.7 that hemolysis increases with increasing KLS eddy area per 

volume. Also note that, for higher KLS values, the curves begin to overlap with each 

other, the data almost collapse for eddies larger than 10 µm in the Couette viscometer.  

3.3.3 The Effect of Eddy Number on Hemolysis 

 The total number of the KLS-sized eddies per unit volume has been calculated 

for the seven experiments in the Couette viscometer as a function of the KLS values. 
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Relation between eddy number and hemolysis was found by calculating and combining 

eddy numbers for each experiments of Couette viscometer (Table 3.2). A relationship 

between eddy number per volume and hemolysis is shown in Figure 3.8. 

 

Figure 3.8. Hemolysis as a function of eddy number in the Couette viscometer. 
 

Similar with eddy area, eddy number also shows transition in the shape of the lines as 

KLS value goes from 6 to 8 µm although the effect is not as apparent as in Figure 3.6 

for area. For KLS above 6 µm, the lines curve back and up, suggesting no apparent 

dependence of hemolysis on the presence of eddies in this flow field. 

 Moreover, the cumulative effect of all eddies with a size less than a critical 

value was also examined for the eddy number by summing the KLS eddy numbers as 
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the KLS values increased. The cumulative sum of eddy number values versus % 

hemolysis is shown in Figure 3.9.  

 

Figure 3.9. Hemolysis as a function of cumulative eddy number in the Couette 
viscometer. 
 

It is clear from Figure 3.9 that hemolysis increases with increasing KLS eddy number 

per volume. Also, similar with eddy area, curves start to overlap for higher KLS values. 

For example, overlapping can be seen clearly for KLS ≥ 10 µm which is supporting the 

critical KLS size of 10 µm as determined by observations of Figure 3.7 in the previous 

section. 
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3.3.4 The Effect of Eddy Volume on Hemolysis 

 Same as in eddy area and eddy number, the total eddy volume of the KLS-sized 

eddies per unit volume has also been calculated for the seven experiments in the 

Couette viscometer as a function of the KLS values. Eddy volumes for each experiment 

of each KLS value were calculated and then combined with other experiments of 

Couette viscometer (Table 3.2).  Eddy volume per volume and hemolysis relationship is 

shown in Figure 3.10. 

 

Figure 3.10. Hemolysis as a function of eddy volume in the Couette viscometer. 
 

It can be seen from Figure 3.10 that again line shapes change when we go from smaller 

to larger KLS values.  Curving back of the lines can also be seen for KLS above 6 µm, 
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which also supports our previous plots suggesting no apparent dependence of hemolysis 

on the presence of such eddies in this flow field. 

 Additionally, the cumulative volume and hemolysis relation was also examined, 

in a similar manner to the eddy area and eddy number calculations. The cumulative sum 

of eddy volume values versus % hemolysis is shown in Figure 3.11. 

 

Figure 3.11. Hemolysis as a function of cumulative eddy volume in the Couette 
viscometer. 
 

As can be seen from Figure 3.11, hemolysis increases with increasing KLS eddy 

volume per volume. Please note that, eddy volume does not show overlapping for larger 

KLS values. Instead, lines tending to become vertical suggest little or no effect on 

hemolysis for larger KLS values. 
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3.3.5 Reynolds Stress Calculations and Threshold Analysis 

 Reynolds stress calculations were also performed for 7 experiments of the 

Couette viscometer [60] as seen in Table 3.2.  With varying amounts of hemolysis 

levels (1% - 85%) using the Couette viscometer, exploring the existence of a critical (or 

threshold) value provided a perspective to the importance of Reynolds and viscous 

stresses for hemolysis. Experimental % hemolysis values were obtained from the 

original work of Sutera and Mehrjardi [60] (Table 3.2). The spatial distributions of 

Reynolds Stress were found for each experiment of the Couette viscometer. Contours of 

constant stress were mapped for a given experiment and the threshold Reynolds Stresses 

were taken to be on the contour corresponding to the contour level enclosing a volume 

percent of the flow domain equal to the percent hemolysis. A histogram of results 

(Figure 3.12) showed that for the highest shear stress experiment (450 Pa), the threshold 

Reynolds Stress value was 417 Pa (shown with red color in Figure 3.12), which means 

that 85% (hemolysis level of 450 Pa experiment) of the spatial distribution of Reynolds 

Stress was above this value.  
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Figure 3.12. Distribution of Reynolds stresses in the Couette viscometer for 450 Pa. 
There were a total of 1071 mesh points examined on 21 different rakes in the Couette 
viscometer. 
 

When the next highest shear stress experiment (350 Pa) was observed, it was seen that 

the threshold Reynolds Stress value was 336 Pa, which is lower than the threshold value 

of the previous experiment (450 Pa). The same analysis was repeated for the entire 

sequence of lower shear rate experiments (350 Pa -50 Pa) and the frequency plots are 

shown in Figure 3.13.  

 

 



52 

 

Figure 3.13. Distribution of Reynolds stresses in Couette viscometer for all 
experiments (450 Pa – 50 Pa). There were a total of 1071 mesh points examined on 21 
different rakes in the Couette viscometer. 
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As can be seen from Figure 3.13 that the threshold Reynolds stresses shifted continually 

toward the lower end of the frequency plots. Threshold Reynolds stress values for the 

other six experiments (350-50 Pa) changed from 336 to 49 Pa. 

 When all the threshold Reynolds stress values are compared for Couette 

viscometer, it can be seen that results (Figure 3.14) for Reynolds stress, threshold values 

stretched over an order of magnitude.  

 

Figure 3.14. Estimated values of critical Reynolds stresses in the Couette viscometer 
for all the experiments (450 to 50 Pa). 
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If Reynolds stress were critical for hemolysis, one might expect to see a common value 

above which hemolysis is found, given that the exposure time of the RBCs in the 

Couette viscometer experiments was 4 min for all cases. However, results show that 

there was not a critical Reynolds stress leading to hemolysis (Figure 3.14). For example, 

for the 200 Pa experiment, the critical Reynolds stress value was 196 Pa. However, in 

the 150 Pa experiment, the critical Reynolds stress value was 147 Pa. If we rely on the 

200 Pa experiment, we accept the threshold Reynolds stress value for hemolysis to be 

196 Pa. When we look at the 150 Pa experiment, we would expect that there should not 

be any hemolysis at 150 Pa. When the other experiments are considered in the same 

way, it can be seen that there is not a common value of critical Reynolds stress for all 

experiments.  

3.3.6 Viscous Stress Calculations and Threshold Analysis 

 Viscous stress threshold analysis for the Couette viscometer was performed the 

same way as the Reynolds stress threshold analysis. Viscous stress calculation does not 

contain viscous stresses in or between turbulent structures. They were calculated from 

time averaged velocity gradients on several locations in the domain from  𝜏! = 𝜇 ∗ !!!
!"

 

on rakes aligned with the y axis and  𝜏! = 𝜇 ∗ !!!
!"

  along rakes aligned in the z axis. For 

each experiment of the Couette viscometer, the distribution of viscous stresses was 

found. Then depending on the hemolysis level of each experiment, the threshold viscous 

stresses were found. A histogram of results (Figure 3.15) showed that for the highest 

shear stress experiment (450 Pa), the threshold viscous stress value was found to be 1.2 
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Pa (shown with red color in Figure 3.15), which means that 85% (hemolysis level of 

450 Pa experiment) of the spatial distribution of Reynolds stress was above this value.  

 

Figure 3.15. Distribution of viscous stress in Couette viscometer for 450 Pa. There 
were a total of 1071 mesh points examined on 21 different rakes in the Couette 
viscometer. 
 

The same analysis was repeated for the entire series of lower shear rate experiments     

(350 Pa -50 Pa) and the frequency plots are shown in Figure 3.16. It can be seen from 

Figure 3.16 that the threshold viscous stresses were also shifted continually toward the 

lower end of the frequency plots similar to threshold Reynolds stresses.  
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Figure 3.16. Distribution of viscous stresses in Couette viscometer for all experiments. 
There were a total of 1071 mesh points examined on 21 different rakes in the Couette 
viscometer. 
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When all the threshold viscous stress values are compared and plotted together for 

Couette viscometer, it can be seen that viscous stress threshold values are also different 

for each experiment (Figure 3.17). As in the Reynolds stress, if viscous stress were 

critical for hemolysis, there should be a common value for a critical viscous stress 

above which hemolysis occurs. It should further be noted that these stress levels are 

below thresholds known for laminar flow experiments.  

 

Figure 3.17. Distribution of viscous stresses in Couette viscometer for all experiments 
(450 to 50 Pa). 
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 The threshold analysis of both Reynolds stress and viscous stress showed that 

the threshold stress was changing in each different experiment in the Couette 

viscometer. 

3.4 Summary 

 The results presented up to now indicate that Reynolds stress or viscous stress 

cannot be used as a measure for hemolysis prediction, while KLS seem to be promising. 

When KLS smaller than about 10 µm exist in the flow, hemolysis is observed. Based on 

these findings, we move to examine different experimental settings to confirm these 

results.  
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4 Modelling Turbulent Flow and Cell Damage in a Capillary Tube 

 Portions of this chapter have been reproduced from the following source. This 

paper has been published for publication in the Artificial Organs Journal: 

 
• Ozturk, M., O'Rear, E. A., & Papavassiliou, D. V. (2015). Hemolysis related to 

turbulent eddy size distributions using comparisons of experiments to 

computations. Artificial Organs, 39(12), E227-E239. Doi: 10.1111/aor.12572. 

 

4.1 Background 

 Capillary tubes have also been used to study hemolysis in biomedical practice 

with the advantage of giving an opportunity to observe hemolysis when changing 

different parameters, such as tube diameter and length. Moreover, influence of different 

wall surfaces on hemolysis can also be examined easily. [93]   

 In the work of Bacher et al. [93], a capillary tube was used to examine the effect 

of wall shear stress, capillary material, hematocrit, and tube geometry (length and 

diameter) on hemolysis by shearing steer blood in laminar flow. Experimental results 

showed that cell surface interaction in the capillary tube was the main reason for 

mechanical hemolysis. Moreover, threshold level for shear stress was found to be 5000 

dynes/cm2 as a result of shearing blood for 10-2 seconds. [93] Keshaviah et al. [94] and 

Blackshear et al. [95] also studied hemolysis in capillary tubes with canine blood and 

observed the effect of entrance geometry on hemolysis in laminar flow. Blood was 

sheared for 10-2 seconds and the critical shear stress for hemolysis, which was 

dominated by entrance effects, was found to be 4500 dynes/cm2 for normal capillaries 

and around 7000 dynes/cm2 for capillaries with smooth, tapered entrance. [94, 95] The 

experiments of Keshaviah [94] were modeled in CFD study of Down et al., [96] where 
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it was also found that entrance effects in capillaries can be a significant factor 

contributing to hemolysis because of extensional stresses acting on cells. Yen et al. [97] 

recently aimed at the severe conclusion in a study combining simulation and 

experiments of capillary flow. Porcine blood was sheared for less than 6*10-5 s and 

results showed extensional stresses as main cause of hemolysis. The threshold stress 

value was found as 1000 Pa. In the present work, capillary tube experiments by 

Kameneva et al. [9] were simulated, in which bovine blood was sheared for shear 

stresses from 100 to 400 Pa and for cumulative exposure time of around 1 second. The 

effect of turbulent flow on hemolysis was examined and it was found that, hemolysis 

level was significantly larger in turbulent flow than in laminar flow for the same wall 

shear stress. Summary of the studies is also shown in Table 4.1. 

Table 4.1. A review of capillary tube studies for hemolysis 
 

References for Capillary 

tube experiments 

Exposure 

time (s) 

Shear stress threshold for 

RBC damage (dynes/cm2) 

Flow  

field 

Bacher et al. [93] 100 5000 Laminar 

Keshaviah et al. [94] 100 4500 - 7000 Laminar 

Blackshear et al. [95] 100 4500 - 7000 Laminar 

Yen et al. [97] 6*10-5 10000 Laminar 

Kameneva et al. [9] 0.025 - 1.25 425 Laminar and 

turbulent 
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4.2 Methods 

4.2.1 Geometry and Computational Domain 

 The length and the diameter of the capillary tube of Kameneva et al. [9] were 70 

mm and 1 mm, respectively, and the tube had conically shaped connectors (8 mm 

length) at each end of the capillary [Figure 4.1(B)].  

 

Figure 4.1. Left: 3D model of the capillary tube, Right: Flow loop used in experiments 
of Kameneva et al. [9] 
 

Hemolysis experiments were performed by circulating washed bovine red cells in 

phosphate buffered saline (PBS) at a 24% hematocrit through the capillary in a closed 

loop network providing multiple short term exposures to turbulent flow. Capillary tube 

was in a closed circulating loop [Figure 4.1(B)] which includes a pump, PVC tubing, a 

water bath, a collapsible reservoir, and a small glass capillary tube. [9] The average 

time for circulation of blood in the experimental loop was calculated from total volume 

of blood sample and volumetric flow rates that were specified in the original work. [9] 

Moreover, average residence time of blood in the capillary tube was calculated from 

known volume of capillary tube and experimental volumetric flow rates. The number of 
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circulations of blood in the experimental loop was calculated from the given 

experimental time and the time for one circulation of blood in the flow loop. Finally, 

estimated cumulative exposure time of blood was calculated from given experimental 

time and times of blood for one circulation in the loop and in the capillary (Table 4.2). 

Estimated cumulative exposure time was on the order of 1 second. Times for one 

circulation of blood in the loop and in the capillary and the number of circulations were 

different for each experiment (100 – 400 Pa). However, cumulative exposure time of 

blood in each experiment (100 – 400 Pa) was found as equal, as was stated in the 

original work. [9] Results of the calculations that are mentioned above are summarized 

in Table 4.2.  



63 

Table 4.2. Exposure time calculations in capillary tube experiments 
 

In Table 4.2, t(L) is the average circulation time of blood in the whole experimental 

loop, t(c) is the time for a single pass of blood in the whole capillary (including the 

conical shape connectors), t(n) is the residence time for a single pass of blood in the 

narrow part of capillary (excluding the conical shape connectors), N(L) is the number of 

passes through the capillary, texp(c) is the total exposure time for blood in the whole 

capillary (including the conical shape connectors), and texp(n) is the total exposure time 

for blood in the narrow part of capillary (excluding the conical shape connectors). All 

time units are in seconds.  

 

Experimental wall 

shear stresses, Pa 

t(L) t(c) t(n) N(L) texp(c) texp(n) 

100 104.8 0.23 0.023 52 12.04 1.19 

200 65.5 0.15 0.014 82 12.04 1.19 

300 46.2 0.103 0.0102 117 12.04 1.19 

400 39.3 0.088 0.0086 137 12.04 1.19 

 

4.2.2 Computational Mesh Development 

 The capillary tube [Figure 4.1(A)] was also meshed using Fluent 14.0 and its 

preprocessing program ICEM CFD (Ansys, Pittsburgh, PA). In the capillary tube 

geometry, a three dimensional model of the whole geometry with the conic entrance and 

exit regions was recreated. Meshing the entire geometries with hexahedral elements was 

performed after the geometries were created. Moreover, element orthogonality and the 
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mesh quality of the capillary tube was increased by using o-grids around the inlet and 

outlet region. After mesh creation in ICEM CFD, the flow geometries were imported 

into Fluent to solve the incompressible Navier-Stokes equations. Mesh independence of 

the models was tested on several parameters to check mesh integrity and independency 

by refining the grid in regions of high mean velocity gradient until the percent 

difference for pressure loss and velocity profile at multiple cross sectional cuts between 

a more and less refined simulation solution was less than 3%. The final mesh used for 

the capillary tube includes 1,773,099 cells and 2,023,864 nodes with an average grid 

cell size of 1x10-2 mm3. Distribution of KLS and mean velocity magnitude results are 

shown in Figure 4.2. It can be seen from Figure 4.2 that velocity and KLS values in the 

capillary tube were independent of mesh size. 
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Figure 4.2. Top: Grid independence analysis for velocity. Bottom: Grid independence 
analysis for KLS. The k-ω SST model was used. Simulations were performed at 
velocity of 11.89 m/s and the wall shear stress of 400 Pa. 
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4.2.3 Flow Simulations 

 Capillary tube simulations were performed with velocity inlet boundary 

condition at the domain inlet. The no-slip boundary condition was applied on the 

capillary walls. The fluid properties for all simulations of the capillary tube [9] 

consisted  of a Newtonian model with a viscosity of 0.002 Pa.s and a density of 1050 

kg/m3. Because the shear rates that were used in the capillary tube experimental study 

were much higher than 500 s-1, Kameneva et al. [9] assumed that blood was a single 

phase homogeneous Newtonian fluid. Same as in the Couette viscometer experiments, 

the Newtonian and homogenous fluid assumptions are also valid in capillary tube 

experiments, since the suspensions used in the simulated experiments contained washed 

red blood cells in phosphate buffered saline (PBS).   

 Solution parameters were specified as the 2nd order upwind discretization 

scheme, the presto interpolation scheme for pressure, and the simple scheme for 

pressure-velocity coupling for capillary tube simulations that were  performed with the 

finite volume based Fluent simulator. The flow simulations of the capillary tube 

experiments were started with a slow inlet velocity (such that the flow remained 

laminar).  The velocity was slowly increased in silico until the resulting shear stress 

equaled one of the experimental wall shear stress values reported by Kameneva et al. 

[9] After the velocity attained a value high enough to yield turbulent flow, the k-ω SST 

model was applied. The procedure of increasing the velocity was repeated until all four 

cases of different shear stress values of 100 to 400 Pa of the Kameneva et al. [9] 

experiments had been simulated (see Table 4.3). Convergence criteria were chosen as 

1x10-5 for the residuals of the velocity components, the continuity equation, and the 
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equations of k, ε, and ω of the turbulence models. The Reynolds numbers for the 

capillary experiments ranged from 2783 (for lowest shear stress, 100 Pa) to 6242 (for 

the highest shear stress, 400 Pa), as seen in Table 4.3. We assume that flow in the 

capillary tube is fully turbulent, since these Reynolds numbers are higher than the 

critical Reynolds number for pipe flow of 2100-2300. [53, 98] 

Table 4.3. Model conditions for the capillary tube experiments 
 

Wall Shear 

Stress (Pa) 

Inlet Velocity 

(m/s) 

Experimental 

Hemolysis (%) 

Reynolds 

Number 

KLS Range 

(µm) 

100 5.3 0.0954 2783 1 – 52 

200 8.1 0.1538 4253 1 – 39 

300 10.12 0.7625 5313 5 – 33 

400 11.89 1.9375 6242 4 – 29 

 

  The turbulence model (k-ε or k-ω SST) was selected by comparing the 

simulation results with Direct Numerical Simulation (DNS) data obtained from the 

literature in closely related flows. [99] The turbulence models for the capillary tube 

simulations were compared by using the DNS data of Chin et al., [99] who simulated 

turbulent pipe flow at 4 different friction Reynolds numbers (Reτ = 180, 500, 1002, and 

2003). They also compared the DNS data for boundary layer and channel, and found 

that statistical differences were negligible in these flows. Differences were found when 

comparing the transverse velocities and pressure fluctuations of channel and boundary 

layer. In this study, the simulation results and the DNS data were matched at 
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corresponding friction Reynolds number, Reτ, which was defined as 𝑅𝑒! =
!
!∗

 where R is 

the radius of the pipe and 𝑙∗is the viscous length scale in wall turbulence, defined 

as  𝑙∗ = !
!∗

  (recall that 𝑢∗ = !!
!

 ). Simulations were performed with both k-ε and k-ω 

SST models until obtaining the Reτ value that was given in the DNS data Chin et al. 

[99] After simulations were completed, mean velocity profiles were calculated for the 

near wall regions using dimensionless wall parameters (𝑦! = !
!∗

 and 𝑢! = !!!
!∗

). The 

mean velocity profile for the capillary tube is plotted with the DNS data [99] in Figure 

4.3. It can be seen from Figure 4.3 that using the k-ω SST in the computation of the 

flow domain can describe the near-wall region better than the k-ε model.  
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Figure 4.3. Capillary tube mean velocity profiles near wall using both k-ε and k-ω SST 
models for the DNS data of Chin et al. [99] at Reτ =180 and τw= 499.8 Pa. 
 
 

Root mean square errors for both models were determined and the k-ω SST model was 

chosen for the capillary tube simulations, (see Table 4.4).  

Table 4.4. Root mean square errors for the turbulence models in the capillary tube 
 

 

 

 

Root Mean Square Error Capillary Tube 

k-ε Model 1.32 

k-ω SST Model 1.04 
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4.3 Results and Discussion 

4.3.1 Relation between Eddy Size Distribution and KLS 

 KLS values were calculated between the conically shaped connectors [Figure 

4.1(A)], since the experimental hemolysis data were derived from that region. [9] 

Planes perpendicular to the capillary axis were created, the KLS values were calculated 

on each plane, and then analyzed (Figure 4.4).   

 

 

Figure 4.4. Planes in capillary tube.  
 

On each created plane, the KLS values exhibited a range as can be seen on Table 4.5. 

The first column of each experiment (100 to 400 Pa) indicates the location of the planes, 

while the second column show the smallest and the largest KLS values. For the planes 

that have different range of KLS values, they were analyzed separately. When the KLS 

ranges were the same for the planes, they were analyzed together. Calculations were 

performed for every plane and every KLS value of each plane for 4 experiments of the 

capillary tube seen in Table 4.3. 
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Table 4.5. KLS ranges in all of the planes in the capillary tube for all experiments (100-
400 Pa). The plane location of 20.4 mm is at the pipe entry.  
 

 

 
The range of KLS values observed in the capillary tube was between 4 µm and 29 µm 

for the highest wall shear stress, while the maximum value of KLS was up to 52 µm for 

lower shear stress simulations. The complete range of experimental conditions is shown 

in Table 4.3. 

 The time-averaged spatial distribution of KLS values in a vertical plane in the 

middle of the capillary is shown for the highest wall shear stress experiment in            

Figure 4.5. As can be seen from this figure, KLS values reached a maximum in the 

middle of the  capillary tube with minimum values near the wall.    
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Figure 4.5. KLS values of the plane in the middle of the capillary tube for the highest 
wall shear stress experiment (400 Pa, shown in Table 4.3) using the k-ω SST model. 
 

 A characteristic eddy size distribution was calculated by evaluating the eddy 

sizes based on the Kolmogorov length scale. As discussed before, calculations were 

performed for 4 experiments of the capillary tube as seen in Table 4.3. Results showed a 

similar shift with the Couette viscometer distribution (Figure 3.5), by having smaller 

values with simulations for increasing shear stress (Figure 4.6). This shift reflects 

greater energy dissipation with higher flow rates in the capillary tube. Moreover, similar 

with the Couette viscometer experiments, the number of smaller eddies increases at 

greater hemolysis in the capillary tube, suggesting that KLS analysis can help to predict 

blood damage in turbulent flow.  
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Figure 4.6. Probability distribution of KLS values in the capillary tube for all 
experiments (400 Pa – 100 Pa). The area under the each curve is equal to 1. 
 

When KLS distributions in the capillary tube (Figure 4.6) are compared with the 

Couette viscometer KLS distribution (Figure 3.5), it can be seen that, for a specific wall 

shear stress, the capillary tube has higher KLS values. For example, if we pick 100 Pa 

for the wall shear stress and 20% for the frequency of the eddy distribution in Figure 4.6 

and Figure 3.5, the range of KLS values for the capillary is between 10-12 µm and the 

range of KLS value for the Couette viscometer is between 4-6 µm. It can be concluded 

that Couette viscometer gives lower KLS values for the same wall shear stress values. 

The total stress in turbulent Couette flow is practically constant across the gap width, 

but it changes in the capillary from the wall to the center of the channel, leading to 
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different Reynolds stress profiles in the two flow configurations and, thus, to different 

turbulent kinetic energy dissipation patterns. Nevertheless, the figure also illustrates the 

difficulty in comparing turbulent flows in different devices, even when the wall shear 

stress is the same.  

4.3.2 The Effect of Eddy Surface Area on Hemolysis 

 The total surface area of the KLS-sized eddies per volume has been calculated 

for the four experiments in the capillary tube as a function of the KLS values. Analysis 

to find a relation between eddy area and hemolysis continued by combining 

experimental results of each experiment of the capillary tube. A relationship between 

eddy surface area per volume and hemolysis is shown in Figure 4.7.  Please note that in 

the figures of the rest of this section, each data point corresponds to observed hemolysis 

reported in the experiments of Kameneva et al. [9], while the eddy area (or eddy 

number, or eddy volume) for the specified KLS size is found from simulation of that 

experiment. The lines are plotted to guide the eye over the data points. In the capillary 

tube experiment, % hemolysis was not given directly in the original work [9]. We 

calculated hemolysis using the formula [22] 𝐻 % = !!"
!"

∗ 100 where, H is the 

percentage of hemolysis, Δ𝐻𝑏 is change of plasma hemoglobin as hemoglobin is 

released, and  𝐻𝑏 is the total amount of hemoglobin (hemolysis values can be seen on 

Table 4.3). 
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Figure 4.7. Hemolysis as a function of normalized eddy surface area in the capillary 
tube (experimental data from Kameneva et al. [9]). 
 

It can be seen from Figure 4.7 that, the data corresponding to KLS values above 5 µm 

indicate lines that curve back, showing no obvious relationship with hemolysis. 

 Eddies below a certain size seem to cause hemolysis as can be seen from Figure 

4.7 that the critical eddy size is 5µm for the capillary flow, respectively. Similarly with 

the Couette viscometer, we also examined the cumulative effect of all eddies with a size 

less than a critical value in the capillary tube experiments. The KLS eddy surface area 

was summed up as the KLS values increased. The cumulative sum of eddy surface area 

values versus % hemolysis is shown in Figure 4.8. 
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Figure 4.8. Hemolysis as a function of cumulative eddy surface area in the capillary 
tube. 
 

Figure 4.8 shows that hemolysis increases with increasing KLS eddy area per unit 

volume. Also, similar to the cumulative eddy area of the Couette viscometer (Figure 

3.7), the curves for larger KLS values start to overlap with each other. For example, 

overlapping can be seen clearly in the capillary tube for KLS ≥ 10 µm.  

4.3.3 The Effect of Eddy Number on Hemolysis 

 The total number of the KLS-sized eddies per unit volume has been calculated 

for the four experiments in the capillary tube as a function of the KLS values. Eddy 

number values were calculated and combined for each experiment of the capillary tube 
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and plotted with the experimental hemolysis (Table 4.3). A relationship between eddy 

number per volume and hemolysis is shown in Figure 4.9. 

 

Figure 4.9. Hemolysis as a function of eddy number in the capillary tube. 
 

Figure 4.9 also shows similar behavior as Figure 4.7 about eddy area, with having 

vertical lines for KLS values larger than 5 µm and indicating no obvious relationship 

with hemolysis. 

 Additionally, critical KLS size for hemolysis was also examined by looking at 

the cumulative effect of all eddies. Eddy number values were summed up to a specific 

KLS size and plotted with experimental hemolysis (Figure 4.10). Cumulative eddy 

number also indicated a similar relationship with cumulative eddy area in the capillary 

tube. When hemolysis increases, the cumulative eddy number was also increased. Also, 
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for larger KLS values (KLS ≥ 10 µm) again curves were overlapping by suggesting no 

difference on hemolysis with the smaller KLS values. 

 

Figure 4.10. Hemolysis as a function of cumulative eddy number in the capillary tube. 
 

4.3.4 The Effect of Eddy Volume on Hemolysis 

 Total eddy volume of the KLS-sized eddies per unit volume was the last 

parameter investigated on eddy analysis.  Similar analysis with eddy area and eddy 

number was performed for the eddy volume and hemolysis relationship. Eddy volumes 

were calculated for each experiment for every KLS size then plotted with experimental 

hemolysis. The eddy volume per volume and hemolysis relationship is shown in         

Figure 4.11. 
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Figure 4.11. Hemolysis as a function of eddy volume in the capillary tube. 
 

Eddy volume also shows similar relation as eddy area and eddy number in the capillary 

tube. Curves become vertical for KLS values bigger than 5 µm (Figure 4.11). 

 To investigate the eddy volume relation further and deeper, the cumulative 

volumes were also calculated for different KLS sizes and plotted with hemolysis. The 

cumulative sum of eddy volume values versus % hemolysis is shown in Figure 4.12. 
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Figure 4.12. Hemolysis as a function of cumulative eddy volume in the capillary tube. 
 

 As can be seen from Figure 4.12 that hemolysis increases with increasing KLS 

eddy volume per unit volume. Moreover, curves for larger KLS values are overlapping 

as well as tending to become vertical suggesting no  effect on hemolysis for larger KLS 

values. 

4.3.5 Reynolds Stress Calculations and Threshold Analysis 

 Calculations were performed for 4 experiments of the capillary tube [9] (Table 

4.3). Although, capillary tube experiments have lower degrees of hemolysis than these 

for Couette viscometer, they still have varying levels of hemolysis for each experiment. 

Hemolysis levels varied from 0.1% to 1.9% enabling threshold analysis in the same way 
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as in the Couette viscometer. Results show that for the highest shear stress experiment 

(400 Pa), the threshold Reynolds stress value is 272 Pa (shown with red color in Figure 

4.13), representing that 1.9% (hemolysis level of 400 Pa experiment) of spatial 

distribution of Reynolds stress was above this value.  

 

Figure 4.13. Distribution of Reynolds stresses in capillary tube for the highest wall 
shear stress (400 Pa) experiment. There were a total of 1071 mesh points examined on 
21 different rakes in the capillary tube. 
 

In the next highest shear stress experiment (300 Pa), it was seen that the threshold 

Reynolds stress value decreased to 229 Pa. Similar analyses were repeated for the lower 

shear rate experiments (200 Pa and 100 Pa) and the frequency plots are shown in         

Figure 4.14.  
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Figure 4.14. Distribution of Reynolds stresses in the capillary tube for all experiments 
(400 Pa - 100 Pa). There were a total of 1071 mesh points examined on 21 different 
rakes in the capillary tube. 
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 The threshold Reynolds stress values for each experiment showed that there 

were 4 different Reynolds stress threshold values for four different experiments (Figure 

4.15). As in Couette viscometer experiments, it was expected to see a common 

threshold. Results do not support Reynolds stress as a determining factor for hemolysis. 

 

Figure 4.15. Estimated values of critical Reynolds stresses in capillary tube for all the 
experiments (400 Pa – 100 Pa). 
 

4.3.6 Viscous Stress Calculations and Threshold Analysis 

 A similar procedure was applied to viscous stresses for the capillary tube. 

Viscous stress distributions were calculated for each experiment of the capillary tube 

and threshold viscous stresses determined. A histogram for the highest shear stress 

experiment is shown in Figure 4.16.  
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Figure 4.16. Distribution of viscous stress in the capillary tube for 400 Pa. There were a 
total of 1071 mesh points examined on 21 different rakes in the capillary tube. 
 

The same analysis was repeated for the entire series of lower shear rate experiments 

(300 Pa -100 Pa) and the frequency plots are shown in Figure 4.17. For every 

experiment of the capillary tube, a different threshold viscous stress value was found. 

All threshold stress values are also plotted in Figure 4.18. Threshold viscous stress 

increased with increasing shear stress with no common viscous stress value found for 

the capillary tube.  
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Figure 4.17. Distribution of viscous stresses in the capillary tube for all experiments 
(400 Pa - 100 Pa). There were a total of 1071 mesh points examined on 21 different 
rakes in the capillary tube. 
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Figure 4.18. Distribution of viscous stresses in capillary tube for all experiments. 
 

 

 It can be concluded as a result of Reynolds stress and viscous stress threshold 

analysis for the experiments of capillary tube that Reynolds and viscous stresses are not 

determining parameters for hemolysis. 
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4.4 Summary 

 The results of the capillary tube experiments were supporting the results of the 

Couette viscometer experiments.  Threshold analysis results showed that Reynolds 

stress and viscous stress are not determining parameters for hemolysis prediction, while 

KLS gives promising and also consistent results with the Couette viscometer. Results of 

Couette and capillary experiments showed that hemolysis is related directly with the 

total surface area of eddies with diameters of up to about 10 µm. This indicates that our 

method (eddy analysis) has applicability to work with distinctly different flow 

conditions (Couette and capillary) and, more importantly, with exposure times varied by 

orders of magnitude. We applied this method to another experimental setting (jet) to 

confirm these results and also to propose a hemolysis model in chapter 7.  
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5 Hemolysis Calculations Using Power Law Models  

 
5.1 Introduction  

 After examining the existence of threshold Reynolds and viscous stresses for 

both Couette viscometer and capillary tube in chapters 3 and 4 respectively, it was seen 

that Reynolds stress and viscous stress do not exhibit a threshold value for hemolysis. In 

order to explore this question further, we have used four commonly accepted power law 

models (Giersiepen et al. [21], Heuser et al. [22], Zhang et al. [69], and Fraser et al. 

[23]), which are of the form of Equation 1.1, to investigate the effects of area averaged, 

time averaged Reynolds, viscous, total, and wall shear stresses on hemolysis. 

Calculations were performed only for capillary tube experiments, because power law 

models are not expected to apply for the Couette viscometer experiments since they 

were conducted for the very long RBC exposure time of 4 min. Coefficients and the 

forms of the power law equations are shown in Table 5.1.  

 
Table 5.1. Power law models for hemolysis 
 

Giersiepen et al. [21] 𝐻𝐼 % = 3.62 ∗ 10!!𝜏!.!"#𝑡!.!"# 

Heuser et al. [22] 𝐻𝐼 % = 1.8 ∗ 10!!𝜏!.!!"𝑡!.!"# 

Zhang et al. [69] 𝐻𝐼 % = 1.228 ∗ 10!!𝜏!.!!"#𝑡!.!!"! 

Fraser et al. [23] 𝐻𝐼 % = 1.745 ∗ 10!!𝜏!.!"#𝑡!.!!"# 
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5.2 Methods and Calculations  

 Calculations of stresses were already discussed in chapter 2. Area averaged, 

time averaged Reynolds, total, and viscous stresses were calculated for four 

experiments of the capillary tube that can also be seen on Table 5.2. 

Table 5.2. Different types of calculated stresses in the capillary tube 
 

Experimental Shear 

Stress (Pa) 

Reynolds stress 

(Pa) 

Total stress 

(Pa) 

Viscous stress 

(Pa) 

100 36.8 68.6 31.8 

200 89.2 137.3 48.1 

300 146.4 206.0 59.6 

400 204.2 274.6 70.3 

 

After stresses were calculated, hemolysis calculations were performed by using the 

different power law models that are shown in Table 5.3. Regression analysis was 

performed to calculate the hemolysis index, HI, for different type of power law models 

by inserting the average Reynolds (τRe), total (τt), viscous (τv), and wall shear stresses 

(τw) instead of stress (τ) in the power law models.  Moreover, for the exposure time (t) 

in different power law models, the time that blood makes a single pass through the 

narrow part of capillary was used. That time was calculated in Table 4.2 at column 4 

which was shown as t(n) in Table 4.2. Since, the blood had multiple exposures by 

circulating several times in the experimental system of Kameneva et al. [9] the 

calculated hemolysis values were multiplied with the number of circulations of blood in 

the whole experimental loop, which was calculated and shown at the 5th column of 
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Table 4.2 as N(L). Finally, hemolysis predictions were compared with experimental 

hemolysis data of Kameneva et al. [9] by calculating standard errors.  All hemolysis 

calculations and the standard error are shown in Table 5.3. Standard error (SE) 

calculation was performed using the formula[100] 𝑺𝑬 = 𝒔𝒅𝒆𝒗
𝑵

 where sdev is the standard 

deviation and N is the number of observations that correspond to the four different 

experiments of Kameneva et al. [9] 

 

5.3 Results and Discussion 

 Results of regression analysis for calculated hemolysis index (HI) for four 

different power law models and standard error when calculations are compared to 

experimental measurements by Kameneva et al. [9] are shown in Table 5.3. 
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Table 5.3. Hemolysis calculations for four different power law models by using k-ω 
SST model. 
                             

Power Law 

Models 

Type 

of 

Stress 

Calculated 

HI for 

τw=100 Pa 

Calculated 

HI for 

τw=200 Pa 

Calculated 

HI for 

τw=300 Pa 

Calculated 

HI for 

τw=400 Pa 

Standard 

Error 

[100] 

Experimental 

Hemolysis Data 

[9] 

τw 0.0954 0.1538 0.7625 1.9375 0 

Giersiepen et al. 

[21] 

 

τRe 0.4106 3.9302 13.8268 32.0492 6.6658 

τt 2.0132 11.8869 34.1216 70.8037 14.8321 

τv 0.3455 1.0587 2.0452 3.2602 0.2485 

τw 6.5674 38.7766 111.3085 230.9699 49.3428 

Heuser et al. [22] 

 

τRe 0.0051 0.0335 0.0963 0.1944 0.3861 

τt 0.0188 0.0833 0.2028 0.3735 0.3513 

τv 0.0044 0.0114 0.0199 0.0296 0.4224 

τw 0.0497 0.2208 0.5372 0.9897 0.2126 

Zhang et al. [24] 

 

 

τRe 0.0514 0.3568 1.065 2.1868 0.0557 

τt 0.1905 0.8886 2.2428 4.2034 0.469 

τv 0.0445 0.121 0.2203 0.3323 0.3686 

τw 0.5049 2.3553 5.9447 11.1413 1.9226 

Fraser et al. [23] 

τRe 0.0043 0.0274 0.0775 0.1546 0.3947 

τt 0.0155 0.0673 0.1614 0.2943 0.3677 

τv 0.0037 0.0094 0.0164 0.0241 0.4234 

τw 0.0406 0.176 0.4217 0.7692 0.267 

  

 As can be seen from hemolysis predictions on Table 5.3 that the power law 

model of Zhang [24] gives the lowest standard error. The highest error was obtained by 
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using Giersiepen’s [21] power law model. When results were compared examining 

different stresses (Reynolds, viscous, total, and wall shear stresses), the best agreement 

between the experimental data and the power law models was obtained by using 

Reynolds stress. The worst agreement was obtained by using wall shear stress with 

Giersiepen’s [21] power law model. The greater error is expected because 300 and 400 

Pa are outside the range of the experimental conditions used to obtain Giersiepen’s 

model (stresses were less than 255 Pa and exposure times were less than 700 ms). Even 

though the 400 Pa experiment was higher than the experimental shear stress of Zhang’s 

model (exposure times of less than 1500 ms and shear stresses between 50-320 Pa), it 

still gave the smallest error with Reynolds stress. Fraser’s model is applicable for much 

lower shear stresses than the experimental conditions of Kameneva, but it still gave 

smaller errors comparable to Zhang and Heuser. These calculations illustrate the 

challenge in applying the power law models developed from homogeneous laminar 

flow measurement to the analysis of devices with complex turbulent flows. The above 

findings were also plotted for the best (Zhang’s) and the worst (Giersiepen’s) power law 

models using all different stresses in Figure 5.1. 
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Figure 5.1. Hemolysis predictions using different stresses. Top panel: H% with Zhang’s 
model [24] and bottom panel: H% with Giersiepen’s model. [21] 
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 The same analyses as discussed above was also performed for k-ε turbulence 

model to compare the hemolysis calculations using two different turbulence models.  

All the calculations are the same with the k-ω SST model except, we use the different 

stresses that are calculated by using the k- ε model. Results are shown in Table 5.4. 

Table 5.4. Hemolysis calculations for four different power law models by using k-ε 
model 
 
Power Law Models Type 

of 

Stress 

Calculated 

HI for 

τw=100 Pa 

Calculated 

HI for 

τw=200 Pa 

Calculated 

HI for 

τw=300 Pa 

Calculated 

HI for 

τw=400 Pa 

Standard 

Error 

[100] 

Experimental 

Hemolysis Data [9] 
τw 0.0954 0.1538 0.7625 1.9375 0 

Giersiepen et al. [21] 

 

τRe 1.0444 7.2103 21.8801 46.8193 9.7547 

τt 2.0132 11.8869 34.1216 70.8037 14.8321 

τv 0.0627 0.2067 0.4585 0.8122 0.2564 

τw 6.5674 38.7766 111.3085 230.9699 49.3428 

Heuser et al. [22] 

 

τRe 0.0109 0.0552 0.1406 0.2657 0.3725 

τt 0.0188 0.0833 0.2028 0.3735 0.3513 

τv 0.0011 0.003 0.0058 0.0094 0.4258 

τw 0.0497 0.2208 0.5372 0.9897 0.2126 

Zhang et al. [24] 

 

 

τRe 0.1109 0.5885 1.5549 2.9889 0.2249 

τt 0.1905 0.8886 2.2428 4.2034 0.469 

τv 0.0109 0.0315 0.0642 0.1057 0.4075 

τw 0.5049 2.3553 5.9447 11.1413 1.9226 

Fraser et al. [23] 

τRe 0.0091 0.0449 0.1125 0.2103 0.3841 

τt 0.0155 0.0673 0.1614 0.2943 0.3677 

τv 0.0009 0.0025 0.0049 0.0078 0.4261 

τw 0.0406 0.176 0.4217 0.7692 0.267 
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 When we compare the k- ε model with k-ω SST model, the power law model of 

Heuser et al. [22] gives the lowest standard error. The highest error was again obtained 

by using Giersiepen’s [21] power law model. When results were compared examining 

different stresses (Reynolds, viscous, total, and wall shear stresses), the best agreement 

between the experimental data and the power law models was obtained by using wall 

shear stress. The worst agreement was obtained by using wall shear stress with 

Giersiepen’s [21] power law model. Also it can be seen that when Table 5.3 and Table 

5.4 are compared only Reynolds and viscous stress results gave different hemolysis 

predictions because wall shear stress and the total stresses were same in both models. 

Table 5.5 summarizes the comparison of two models.  

 

Table 5.5. Comparison of k-ε and k-ω SST models 

Power Law 

Models 

Type of 

Stress 

Standard Error by 

Using k-ε model 

Standard Error by 

Using k-ω SST model 

Giersiepen et al. 

[21] 

τRe 9.5747 6.6658 

τv 0.2564 0.2485 

Heuser et al. [22] 
τRe 0.3725 0.3861 

τv 0.4258 0.4224 

Zhang et al. [24] 
τRe 0.2249 0.0557 

τv 0.4075 0.3686 

Fraser et al. [23] 
τRe 0.3841 0.3947 

τv 0.4261 0.4234 

 



96 

 As can be seen from Table 5.5, most of the time k-ω SST model gives the 

smallest standard error, which is shown as underlined and bold in the table, when 

compared to k- ε model.  

 One of the most significant findings of Kameneva et al. [9] was that turbulent 

and laminar flows with equal shear stress at the wall resulted in very different blood 

trauma. There are factors, therefore, in addition to wall shear stress that contribute to 

increasing hemolysis for turbulent flow conditions. The turbulence feature that leads to 

RBC trauma cannot be the Reynolds stresses acting the way viscous stresses act in 

laminar flows. Area averaged Reynolds, total, viscous, and wall shear stresses are 

plotted for the capillary tube in Figure 5.2.  

 

Figure 5.2. Changes of area averaged Reynolds, total, and viscous stress with four 
different wall shear stress. 
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  It is seen that the Reynolds stresses in a turbulent flow with the same wall shear 

stress as in laminar flow are in fact smaller than the laminar flow shear stresses (when 

they were both area averaged). It is obvious from Figure 5.2 that Reynolds stress is less 

in magnitude than the total stress for the same wall shear stress. Moreover, viscous 

stress is the smallest when compared to Reynolds and total stress for the same wall 

shear stress.   

5.4 Summary 

 When hemolysis predictions of 4 commonly accepted power law models of 

Giersiepen et al. [21], Heuser et al. [22], Zhang et al. [69], and Fraser et al. [23] were 

compared, the power law model of Zhang et al. [69] gives the lowest standard error. 

The highest error was obtained by using Giersiepen’s [21] power law model. Moreover, 

use of the Reynolds stresses rather than the total stresses or the viscous stresses in the 

power law formula is found to provide better agreement between model and 

measurements. It is commonly known by the researchers that power law models are 

flow regime specific and cannot be applied to specific locations in medical devices.  
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6 Modeling Turbulent Flow and Cell Damage in a Jet  

 Portions of this chapter have been reproduced from the following source. This 

paper has been submitted for publication to PLOS ONE journal: 

 
• Ozturk, M., Papavassiliou, D. V., & O'Rear, E. A. (2015). An approach to 

assessing turbulent flow damage to blood in medical devices. PLOS ONE. 

 
6.1 Background 

 Jet flow provides high stresses in short exposure times, which is similar to 

typical flow conditions in prosthetic devices. Therefore, jets have been commonly used 

in hemolysis experiments to imitate the nature of the cardiovascular flows. Blackshear 

et al. [101] used jet flow to study hemolysis in turbulent flow and calculated Reynolds 

stresses for exposure times of 10-5s. They found the critical Reynolds stress for 

hemolysis as 30,000 dynes/cm2 which was similar to Forstrom’s [57] jet experiment. 

Sallam and Hwang [48] also used jet flow to study hemolysis in turbulent flow. The 

critical Reynolds stress was found as 4000 dynes/cm2 in exposure times of less than 100 

s. Lu et al. [58] recalculated the threshold Reynolds stress of Sallam and Hwang [48] in 

a jet flow by using laser Doppler anemometer as 8000 dynes/cm2 with an exposure time 

of 10-3 s. The threshold stress value of Sallam and Hwang [48] was also re-determined 

in the theoretical discussion of Grigioni et al. [102]. Their work was not an 

experimental study; instead they performed a 3D stress analysis and calculated the 

threshold value as 6000 dynes/cm2 for exposure times of less than 10-2 s. In this study, 

the jet experiments of Forstrom [57], which is commonly cited in the literature by other 

researchers who also performed jet experiments, was modeled. Forstrom [57] 
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determined the threshold stress value for hemolysis as 40000 dynes/cm2 for exposure 

times of 10-5 s. A summary of these studies is presented in Table 6.1. 

 

Table 6.1. A review of hemolysis studies in jet flow for hemolysis 
 

References for jet 

experiments 

Exposure 

time (s) 

Shear stress threshold for 

RBC damage (dynes/cm2) 

Flow  

field 

Blackshear et al. [101] 10-5 40000 Turbulent 

Sallam and Hwang [48] <10-2 4000 Turbulent 

Lu et al. [58] 10-3 8000 Turbulent 

Grigioni et al. [102] <10-2 6000 Turbulent 

Forstrom [57] 10-5 40000 Turbulent 

 

6.2 Methods 

6.2.1 Geometry and Computational Domain 

 The experimental apparatus of Forstrom [57] includes a blood syringe, a needle 

(jet), a fluid syringe, a hydraulic cylinder assembly, and a velocity measurement 

assembly (right image on Figure 6.1). Jet flow occurred at the exit of the needle into a 

fluid syringe, in which hemolysis measurements were taken.  Therefore, only the needle 

and the fluid syringe were modeled in this work (shown within the red rectangle on the 

right image and separately on the left image on Figure 6.1). 
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Figure 6.1. (L): 3D model of the jet (the needle and the syringe), (R): Experimental 
setup of Forstrom et al. [57] 
 

In this study, conditions representing the environment of the actual jet experiment as 

described in reference [57] have been used. This included the geometries (dimensions, 

diameters, etc.), as well as the fluid properties and flow conditions. The diameter and 

the length of the needle were 0.0346 cm and 2.54 cm, respectively, and the syringe 

diameter was 1.9 cm with a length of 2.93 cm. Saline was injected through the needle to 

the fluid syringe, which was filled with human blood diluted with isotonic saline to a 
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hematocrit of 8%, at various velocities from 15.22 to 39.03 m/s (see Table 6.2). 

Hemolysis was determined for a stress period of 10-5 s. 

6.2.2 Computational Mesh Development 

 The geometry was meshed using Fluent 14.0 and its preprocessing software 

ICEM CFD (Ansys, Pittsburgh, PA). A three dimensional model of the needle and 

syringe was recreated. Meshing the entire geometry with hexahedral elements was 

performed after the geometry was created. Moreover, element orthogonality and the 

mesh quality of the needle and the syringe were increased by using o-grids around the 

inlet and outlet regions. After mesh creation in ICEM CFD, the flow geometry was 

imported into Fluent to solve the incompressible Navier-Stokes equations. Mesh 

independence of the model was tested by refining the grid in regions of high mean 

velocity gradient until the percent difference for pressure loss and for the velocity 

profile at multiple cross sectional cuts between a more and less refined simulation 

solution was less than 3%. Several parameters were used to check grid independence 

and integrity. Mean velocity magnitude and turbulent kinetic energy results are shown 

in Figure 6.2. It can be seen from Figure 6.2 that velocity values and turbulent kinetic 

energy values were independent of the mesh size. The final mesh used for the jet flow 

simulation included 2,295,593 cells and 2,684,919 nodes.  
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Figure 6.2. Top: Grid independence analysis for velocity for the highest velocity 
experiment (39.03 m/s) by using k-ω SST model Bottom: Grid independence analysis 
for turbulent kinetic energy for the highest velocity experiment (39.03 m/s) by using k-
ω SST model. 
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6.2.3 Flow Simulations 

 The simulations were performed with the finite volume-based Fluent simulator. 

The boundary conditions for the jet consisted of velocity inlet at the domain inlet and 

the no-slip boundary condition on the walls. Solution parameters were specified as the 

2nd order upwind discretization scheme, the standard interpolation scheme for pressure, 

and the simple scheme for pressure-velocity coupling. In the beginning of the 

simulations, a slow fluid velocity (such that the flow remained laminar) was assigned as 

the inlet velocity. The velocity was slowly increased until the resulting velocity equaled 

one of the experimental velocity values reported by Forstrom. [57]  After the velocity 

attained a value high enough to yield turbulent flow, the k-ω SST turbulence model was 

applied. Selection of turbulence model (k-ε or k-ω SST) was based on comparison of 

simulation results to theoretical predictions (see details below). The procedure of 

increasing the velocity was repeated until all thirteen cases of different velocity values 

(15.22 - 39.03 m/s.) of the Forstrom [57]  experiments had been simulated (Table 6.2). 

The fluid properties for all simulations of the jet consisted of a Newtonian model with a 

viscosity of 0.001 Pa.s and a density of 998 kg/m3. The Reynolds number (Re) for 

different cases of jet experiments was determined as 𝑅𝑒 = !"
!

 where U is velocity, D is 

jet diameter, and ν is kinematic viscosity. The range of Reynolds number was changing 

from 5241 (for the lowest velocity, 15.22 m/s) to 13,440 (for the highest velocity, 

39.03), as seen in Table 6.2. Flow in the jet is fully turbulent, since these Reynolds 

numbers are higher than the commonly accepted range of critical Reynolds number for 

jet flow of 2000-3000.[103-107] Simulations were considered converged when 
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residuals for the velocity components, the continuity equation, and the equations of k, ε, 

and ω of the turbulence model fell below 1x10-5.   

Table 6.2. Model conditions for the jet experiments [57] 
 

% Experimental 

Hemolysis 

Saline velocity 

(m/s) 

Jet Reynolds 

number 

Range of KLS 

(µm) 

0.04 15.22 5241 1 - 168 

0.07 17.08 5881 1 - 155 

0.35 19.15 6594 1 - 153 

0.66 20.39 7021 1 - 143 

1.07 21.99 7572 1 - 139 

1.76 23.59 8123 1 - 137 

2.8 25.27 8702 1 - 133 

4.06 27.41 9438 1 - 128 

5.84 30.22 10,406 1 - 110 

7.78 33.22 11,439 1 - 116 

8.13 34.13 11,752 1 - 104 

9.89 36.7 12,637 1 - 112 

11.4 39.03 13,440 1 - 106 

 

 The validation of the turbulence models was conducted by simulating the jet 

experiment using both k-ε and k-ω SST turbulence models and then comparing 

simulation results with the theoretically predicted mean axial velocity, <U> profile and 

the spreading rate of the turbulent jet. [41] To compare the mean axial velocity profile, 

the centerline velocities, U0, and the jet half widths, r1/2, were calculated at different x/d 

values, in which x is the axial distance from the jet exit and d is the jet diameter.  

According to theory, when the axial distance (x) increases, the jet decays with 
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decreasing U0, and by increasing of r1/2. While the jet spreads and decays, the mean 

velocity profile changes, but the shape of the profile does not change. Moreover, when 

the profile of <U>/U0 is plotted with r/r1/2, all the curves at different x/d regions should 

collapse onto a single curve – in other words the mean velocity profile becomes self-

similar. [41] The mean velocity profiles for both k-ε and k-ω SST turbulence models at 

different x/d regions are plotted on Figure 6.3. Moreover, simulation results were 

compared to theory [98] using the following equations 

( )

2( )
3

2
2

3

2      
11 /
4

t

x
CU

x
C r x

ν
〈 〉 =

⎡ ⎤+⎢ ⎥⎣ ⎦

                      6.1 

 

where <Ux> is the mean velocity in x direction, ν(t) is the eddy viscosity, C3 is a 

constant, r is the radial distance, and the x is the axial distance. It can be seen from 

Figure 6.3 that using either the k-ε or the k-ω SST model in the computation of the flow 

domain does not result in significant differences and both agree with theory by 

demonstrating self-similarity at different x/d locations. [41] 
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Figure 6.3. Top: Mean axial velocity profile as a function of radial distance for k-ε 
turbulence model at different x/d locations. Bottom: Mean axial velocity profile as a 
function of radial distance for k-ω SST turbulence model at different x/d locations. The 
jet velocity for both models was 20.39 m/s. 
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 To compare the spreading rate, the variation of mean velocity along the 

centerline at different axial distances were calculated. According to theory, the ratio

0jU U  , where Uj is the jet exit velocity, should be linear with x/d, and should obey the 

following decay equation: 

( )
( )0

0

jU x x d
U x B

−
=               6.2 

 

where x0 is the virtual origin of the jet and B is the velocity decay constant. [41] 

Moreover, it is theoretically expected that the jet spreading rate, S, should be constant. 

The jet spreading rate is defined as follows: [41] 

( )1 2dr x
S

dx
≡                6.3 

 

( ) ( )1 2 0r x S x x= −                6.4 
 

The value of the spreading rate found  from theory with boundary layer equations in a 

turbulent round jet is given as [41] 

1 2
2

00

0.094
r

r UU S
U x =

∂〈 〉⎛ ⎞〈 〉 = − ≈ −⎜ ⎟∂⎝ ⎠
            6.5 

 

As can be seen from Equation 6.5, the theoretical value for spreading rate is given as 

0.094.  The variation of mean velocity and spreading rate for both k-ε and k-ω SST 

turbulence models were plotted on Figure 6.4. As can be seen from Figure 6.4, both k-ε 

and k-ω SST turbulence models show linear behavior as discussed above.   
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Figure 6.4. Left: Variation of spreading rate (top panel) and variation of mean velocity 
along the centerline (bottom panel) at different axial distances for k-ε turbulence model. 
Right: Variation of spreading rate (top panel) and variation of mean velocity along the 
centerline (bottom panel) at different axial distances for k-ω SST turbulence model. The 
jet velocity for these runs was 20.39 m/s. 
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The velocity decay constants and the spreading rates were calculated for both k-ε and k-

ω SST turbulence models and compared with the theoretical values on Table 6.3. 

Table 6.3. The spreading rate, S, and velocity decay constant, B for turbulent round 
jets. Simulation results are for a jet with U0 (x=0) = 20.39 m/s. 
 
 

 Theoretical 
value [41] 

Panchapakesan 
and Lumley 
[108] 

Hussein et al. 
[109] 

(hot-wire data)  

Hussein et al. 
[109] 

(laser-Doppler 
data)  

k-ε 
results 

k-ω SST 
results 

S 0.094 0.096 0.102 0.094 0.085 0.096 

B empirical 
constant 6.06 5.9 5.8 5.61 5.45 

 

As can be seen from the comparison in Table 6.3, the k-ε and k-ω SST turbulence 

models give slightly different results while obeying the theoretically predicted behavior. 

For this study, k-ω SST turbulence model was chosen because the k-ω SST model 

results in a spreading rate, S, value closer to the theoretical value of 0.094.   

 

6.3 Results and Discussion 

6.3.1 Relation between Eddy Size Distribution and KLS 

 Each specific experimental jet flow condition was simulated and the fluid flow 

simulations produced time-averaged spatial distributions of the Kolmogorov length 

scale (KLS). The main assumptions underlying our procedure have been presented in 

Section 2.5. Eddy analysis in the virtual jet was started by calculating the KLS values in 

the whole flow domain for each experiment (Table 6.2). Regions with similar 

turbulence intensity were assumed to be characterized by spherical eddies with sizes 
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reflected by KLS values. The number and the surface area of eddies for each KLS value 

were calculated from the total volume for that region as demarcated by its KLS value. 

The analysis was performed between the jet exit and the outlet of syringe since the 

experimental hemolysis data were derived from that region. [57] A series of vertical 

planes along and perpendicular to the jet axis were created that can be seen on Figure 

6.5.  

 

Figure 6.5. Planes in syringe for eddy analysis. The syringe was divided by 53 planes 
spaced as indicated in Figure 6.6. 
 

The distance between planes were chosen small to capture the whole domain. As can be 

seen on Figure 6.6, near the jet exit the distance between planes were chosen as 1 jet 

diameter (0.0346 cm), and the distance were chosen in the range of 1.5 jet diameter 

(0.0519 cm) to 3 jet diameters (0.1038 cm) starting from the middle of the syringe up to 

the end.  
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Figure 6.6. Positions and the number of planes in syringe. 
 

On each created plane the KLS values were different. For only one jet experiment 

(20.38 m/s), the KLS values are shown in Table 6.4 (others are not shown for 

simplicity).  For every plane out of 53 total planes, contour surfaces were created for 

each KLS in KLS bins of 1µm. For example; for plane 1, 143 different contour surfaces 

were created that correspond to the KLS range of plane 1 and 135 different contour 

surfaces were created for plane 2. This analysis was completed for all of the 53 planes, 

as shown in Table 6.4, to complete the 20.38 m/s experiment. The total number of 

contour surfaces for only 20.38 m/s jet experiment were around 7000. After data 

collection for this experiment was completed, the rest of the 12 experiments were 

analyzed the same way. The complete range of experimental conditions are shown in 

Table 6.2. The intersection of these planes with surfaces of constant KLS values defined 

volumes for eddy analysis.   
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Table 6.4. KLS values on planes for the 20.38 m/s jet experiment. After first 3 column 
(in pink color), the table continues on the next 3 columns (in yellow color). Plane 1 was 
located at the jet exit, and rest of the planes continue until the end of the syringe, where 
plane 53 was located. 
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 The total volume of regions containing dissipative eddies of similar spherical 

size was calculated by multiplying the interplanar distance of the segmented 

computational domain by the cross-sectional surface area of a region that was radially 

bounded by contours of KLS with increments of 1µm. After calculating the total 

volume and the number of eddies, the results were normalized by calculating eddy 

surface area, eddy number, and eddy volume per-unit-volume to create quantities that 

might be compared for different turbulent flow situations and experimental 

configurations.  We normalized our results by dividing with the total volume over 

which hemolysis is thought to occur. Our previous results [61] suggest smaller eddies 

are more damaging, so we used the total volume of the region in which KLS ≤ 10  µμm. 

The goal was to determine the correspondence of hemolysis with extensive quantities 

rather than intensive, on a per unit volume basis for different values of KLS. In 

addition, cumulative values of these extensive quantities with increasing values of KLS 

were considered.  

 The calculated KLS values ranged from 1µm to 106 µm for the highest velocity 

experiments (39.03 m/s), while the maximum value of KLS was up to 168 µm for the 

lowest velocity experiments (15.22 m/s). The complete range of KLS and experimental 

conditions are shown in Table 6.2. The time-averaged spatial distribution of KLS values 

on several lines at different axial positions of the syringe starting from the jet exit 

(x/d=0) for the highest velocity experiment is shown in Figure 6.7. 
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Figure 6.7. Changes of KLS values with increasing axial distance in the syringe starting 
from jet exit (x/d=0) to the syringe end (x/d=80) for the highest velocity experiment. 
 

It can be seen from Figure 6.7 that KLS values varied radially as well as axially. For a 

given axial location, turbulence is more intense near the centerline (y=0) as indicated by 

smaller values of KLS.  It can be seen that the turbulence intensity spreads radially as 

the distance from the jet increases. Moreover, since this study considers that smaller 

KLS values ( 10KLS ≤ µm) cause more damage, the regions containing small KLS 

values (from 5KLS ≤  to 10KLS ≤ )  were found for the highest velocity jet experiment 

as can be seen on Figure 6.8. The same analysis was also made for lower velocity jet 

experiments and it was found that the higher velocity created a larger region of smaller 

KLS values. This finding suggests that a larger region of smaller eddies ( 10KLS ≤ µm) 
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is associated with more hemolysis, since the highest velocity jet experiment exhibits the 

most hemolysis (Table 6.2). 

 

Figure 6.8. Regions showing from KLS ≤ 5 to KLS ≤ 10 in syringe for the highest 
velocity (39.03 m/s) experiment. 
 
 

 The size distributions of dissipative eddies were calculated based on KLS values 

for all 13 of Forstrom’s jet experiments (Table 6.2). These eddy size distributions are 

plotted on Figure 6.9. Results showed that for the highest velocity experiments, which 

exhibited higher hemolysis, the number of smaller eddies increased. The size 

distribution also shifted to smaller values with simulations for increasing velocity. 
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Figure 6.9. Probability distribution of KLS values in the jet for different mean jet 
velocities (39 m/s – 15 m/s). The area under the each curve is equal to 1. 
 

 

 The relation between distributions of eddies and hemolysis was also examined. 

The distribution of eddies was calculated by summing the number of eddies up to a 

specific KLS and plotting with experimental hemolysis on Figure 6.10. As can be seen 

from Figure 6.10, the greater dependence to hemolysis can be seen for KLS curves up 

to 10 µm. After this value, the dependence is becoming unimportant (this can be 

inferred from observing vertical KLS curves for larger KLS values).  This finding 

suggests that blood damage in turbulent flow could be predicted by exploring more 

closely the role of Kolmogorov length scale as proposed previously by others, and as 

suggested by our work for capillary flow and Couette flow.     



117 

 

Figure 6.10. Relation between KLS distributions and hemolysis up to specific KLS 
values. Each data point corresponds to observed hemolysis reported in the experiment. 
 

 

6.3.2 The Effect of Eddy Surface Area on Hemolysis 

 The surface area of KLS-sized eddies per unit volume has been calculated for 

the thirteen experiments in the jet as a function of KLS values. Analysis to find a 

relation between eddy area and hemolysis continued by combining experimental results 

for jet with the simulation results. A plot of eddy surface area per volume and hemolysis 

is shown in Figure 6.11. The analysis was done for every 1 µm KLS values, but only 

odd KLS values are presented for clarity. Please note that in the figures of the rest of the 

results section, each data point corresponds to observed hemolysis reported in the 
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experiments of Forstrom, [57]  while the eddy area (or eddy number, or eddy volume) 

for the specified KLS size as found from simulation of that experiment. The lines are 

plotted to guide the eye over the data points. In the jet experiment, % hemolysis was not 

given directly in the original work. [57] We calculated hemolysis using the formula [22]          

𝐻 % = !!"
!"

∗ 100 where H is the percentage of hemolysis, ∆𝐻𝑏  is change of plasma 

hemoglobin as hemoglobin is released, and 𝐻𝑏 is the total amount of hemoglobin.  ∆𝐻𝑏 

values were digitized from original work [57] and 𝐻𝑏 was given in the original work 

[57] (hemolysis values can be seen on Table 6.2). 

 

Figure 6.11. Hemolysis as a function of eddy surface area in jet for even values of KLS 
(experimental data from Forstrom [57], as seen on Table 6.2). 
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As can be seen from Figure 6.11, the shape of the lines changes when KLS values go 

from 8 to 10 µm. For KLS larger than 10 µm, the lines curve back and up, and become 

vertical for larger KLS values, suggesting no apparent dependence of hemolysis on the 

presence of such eddies in this flow field.  

 Figure 6.11 shows that eddies below a certain size are related to hemolysis and 

the critical eddy size for the jet experiment is 10 µm. Furthermore, the cumulative eddy 

area, which provides deeper understanding than eddy area binned in KLS bins of 1 µm, 

was also investigated.  It would offer an overall assessment of cell damage due to eddies 

of different sizes. Cumulative effects of all eddies with a size less than a critical value 

was examined by summing up the KLS eddy surface area as the KLS values increased. 

Figure 6.12 is a plot of the relation between cumulative sum of eddy surface area and % 

hemolysis. It is clear from Figure 6.12 that hemolysis increases with increasing KLS 

eddy area per volume. Only even values of KLS values are shown for clarity. Note that, 

for higher KLS values, the curves begin to overlap with each other especially for KLS 

values of KLS > 10 µm.  
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Figure 6.12. Hemolysis as a function of cumulative eddy area in the jet for even values 
of KLS. 
 
 

6.3.3 The Effect of Eddy Number on Hemolysis 

 The eddy numbers for every KLS size were calculated for all thirteen 

experiments of the jet experiment. Then, results for each experiments were combined 

and analyzed together and plotted with experimental hemolysis data (Table 6.2). A 

relationship between eddy number per volume and hemolysis is shown in Figure 6.13. 
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Figure 6.13. Hemolysis as a function of eddy number in the jet for even values of KLS. 
 

Similar results with eddy area are also obtained with eddy number. The shape of the 

lines are changing as KLS values go from 8 to 10 µm.  For KLS above 10 µm, the lines 

curve back and up, suggesting no apparent dependence of hemolysis on the presence of 

eddies in this flow field. 

 Additionally, the cumulative effect of all eddies were also examined for eddy 

number. Eddy number were summed up to a specific size and then plotted with 

hemolysis in Figure 6.14. 
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Figure 6.14. Hemolysis as a function of cumulative eddy number in the jet for even 
values of KLS. 
 

As can be seen from Figure 6.14, hemolysis is increasing with increasing number of 

KLS eddies. Also, for KLS values larger than 10 µm,  the lines start to overlap 

suggesting that larger KLS values do not contribute to hemolysis, which strentghens the 

argument that the critical KLS value is 10 µm.   

 

6.3.4 The Effect of Eddy Volume on Hemolysis 

 Similar analysis with eddy area and eddy number was performed for the total 

eddy volume. Eddy volumes were calculated and analyzed together for the experiments 
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of jet (Table 6.2). The calculated eddy volumes and experimental hemolysis is plotted 

in    Figure 6.15. 

 

Figure 6.15. Hemolysis as a function of eddy volume in the jet for even values of KLS. 
 

As can be seen from Figure 6.15, the lines change their shapes becoming vertical when 

KLS increases from 8 to 10 µm.   

 Additionally, the cumulative effect of all eddies was also examined for eddy 

volume. Eddy volumes were summed up to a specific size and then plotted with 

hemolysis in Figure 6.16. 
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Figure 6.16. Hemolysis as a function of cumulative eddy volume in the jet for even 
values of KLS. 
 

As can be seen from Figure 6.16, hemolysis is increasing with increasing volume of 

KLS eddies. Moreover, curves for larger KLS values are overlapping as well as tending 

to become vertical suggesting no  effect on hemolysis for larger KLS values. 

6.4 Summary 

 Results showed that there is a clear relationship between hemolysis and the total 

surface area of eddies with diameters of up to about 10 µm. A relation was not evident 

for larger eddies. This result supports our previous results (presented in Sections 3 and 

4) in which two very different experiments, a Couette viscometer [60] and a capillary 

tube [9] were analyzed.  
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7 Hemolysis Model for Systems of the Couette viscometer, the 

Capillary Tube and the Jet 

 Portions of this chapter have been reproduced from the following sources. These 

papers have either been published or submitted for publication in peer-review journals: 

 
• Ozturk, M., O'Rear, E. A., & Papavassiliou, D. V. (2015). Hemolysis related to 

turbulent eddy size distributions using comparisons of experiments to 

computations. Artificial Organs, 39(12), E227-E239. Doi: 10.1111/aor.12572. 

 

• Ozturk, M., Papavassiliou, D. V., & O'Rear, E. A. (2015). An approach to 

assessing turbulent flow damage to blood in medical devices. PLOS ONE. 

 
7.1 Introduction 

 As already discussed in Section 1.2, power law models are missing the general 

flow features of typical medical devices because they were derived from steady 

viscometer experiments with uniform shear stress. Therefore, we propose a new 

hemolysis model based on experimental results from three distinctly different devices; a 

jet [57], a Couette viscometer [60], and a capillary tube [9]. We assume that hemolysis 

is related to the surface area of eddies with sufficient stress and energy intensity to 

damage the cell. This way hemolysis can be examined based on an extensive property 

(eddy surface area) throughout the domain of turbulent flows. 

 

7.2 Methods 

 A series of tests was performed to find the best empirical model for all three 

systems that have varying levels of hemolysis as discussed in Sections 3, 4, and 6. The 

levels of hemolysis for the Couette viscometer experiments are changing from 1% to 
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85%, while for the capillary tube and the jet experiments hemolysis are changing from 

0.09% to 1.9% and from 0.04% to 11.4 %, respectively. The experimental hemolysis 

values of less than 5% were chosen to be used in the three systems, since more than 5% 

hemolysis is clinically irrelevant.  

 

7.3 Results and Discussion 

 To find the best fit to the Couette viscometer, the capillary tube, and the jet, 

regression analysis of different functions was carried out. The biggest challenge to find 

the best fit for these systems was the big differences between them. They are different 

in terms of exposure times, geometries, stress ranges and exposure type to stresses 

being continuous and cumulative. The capillary tube has multiple exposures in a flow 

loop as explained in Section 4.2.  First of all, to better observe the difference between 3 

systems, 3D plot of eddy area per volume is plotted on Figure 7.1. 
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Figure 7.1. Eddy area per volume for the Couette viscometer, the capillary tube, and the 
jet. 
 

Similar with the eddy area per volume, eddy number per volume is also plotted for three 

systems together. 
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Figure 7.2.  Eddy number per volume for the Couette viscometer, the capillary tube, 
and the jet. 
 

As can be seen from Figure 7.1 and Figure 7.2, these three systems show huge 

differences especially in terms of exposure time that differ by orders of magnitude - the 

Couette viscometer has the longest exposure time of 4 minutes compared to much 

shorter times for the other 2 systems. Even if they look similar in figures, the capillary 

tube and the jet were also different in terms of exposure times of 1 s and 10-5 s 

respectively.  

 Empirical fits of different types of functions were performed for both eddy area 

and eddy number. Moreover, every different function was also tested for the whole 
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range of hemolysis levels (presented in Sections 3, 4, and 6), for hemolysis levels of 

10%, and for hemolysis levels of 5% for each system. However, only results for 

hemolysis level of 5% is presented here for simplicity. Results of fitting eddy number to 

every different function is also not shown here for simplicity and also eddy number 

results are not shown, because they are mostly similar to eddy area results. The forms of 

several trial functions tested are summarized below. 

7.3.1 Regression of Power Law Functions 

 Regression analysis was started by testing a power law type model for the three 

systems. The function is of the form 

a b cHI EA t=                7.1 
 
where HI is hemolysis index (%), EA is cumulative eddy surface area up to 10 µm 

KLS, t is exposure time, a, b, and c are coefficients to be determined empirically. The 

same function was also tested for eddy number per volume. The function [Eq. 7.1] was 

fitted for 3 systems together as well as fitted separately for each system. Results of 

fitting 3 system together for the power law type function are presented in Figure 7.3. 

Coefficients are presented in Table 7.1. As can be seen from Figure 7.3, power law type 

function do not yield a satisfactory fit for all three systems. The results presenting the fit 

for 3 systems separately are presented in the appendix (Figure 0.3).  

 After fitting the 3 systems together and fitting them separetly, we also fit every 2 

systems together to test the power law type function of Equation 7.1. The coeffcients for 

fitting every two system are presented in Table 7.1. Moreover, the figures for fitting 

every 2 systems together were also plotted, similarly Figure 7.3, and presented in the 

appendix  (Figure 0.4, Figure 0.5, and Figure 0.6).  
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Figure 7.3. Comparison of hemolysis from experiment and from our model [Eq. (7.1)] 
by fitting the 3 systems together. Top: jet, middle: capillary tube, bottom: Couette 
viscometer. 
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 We also tested the power law type model with binning the eddy area with 

different KLS sizes in the form of Equation 7.2. The reason of binning the eddy areas is 

that the distribution of eddy sizes in the three systems (i.e., jet, Couette viscometer, and 

capillary tube) is very different, especially in the jet experiment (distribution plots can 

be seen on Sections 3,4, and 6). Therefore, the contribution of an eddy area for a 

specific KLS size can be different in each of these systems. The fit equation is 

( ) ( ) ( )0 3 4 6 7 9a b c d e
KLS KLS KLSHI t EA EA EA− − −= + +           7.2

  
where a, b, c, d and e are experimental coefficients, EAKLS(0-3) is cumulative eddy 

surface area for KLS size of 0 to 3 µm. Similarly, the other two terms are eddy areas for 

KLS sizes from 4 to 6 µm and from 7 to 9 µm. Eddy number was also tested with the 

same function. The three systems were fitted together by using function [Eq. 7.2] and 

plotted with experimental hemolysis in Figure 7.4. Coefficients are presented in Table 

7.1. As can be seen from Figure 7.4, power law type function with binning the eddy 

area do not yield satisfactory fit for all three systems. 

 



132 

 

Figure 7.4. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.2)] by fitting the jet, capillary tube, and Couette viscometer together. Top: jet, 
middle: capillary tube, bottom: Couette viscometer. 
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Table 7.1. Power law type functions and model constants tested for empirical fitting of 
three systems together, every two system together and each system separate.  Please 
note that if the tested function does not have all the coefficients (a, b, c, d, e), the cell on 
the table left blank.  
 

            Coefficients 

Systems 

a b c d e R2 

3 systems together 

(Eq.7.1) 
7.88*10-5 0.785 0.042 - - 

Jet 0.08 

Capillary 0.24 

Couette 0.13 

Two systems 

together   

(Eq. 7.1) 

Jet and 

Couette 
4.17*10-10 1.79 0.06 - - 

Jet 0.88 

Couette 0.19 

Capillary 

and 

Couette 

3.94*10-4 0.57 0.44 - - 

Capillary 0.39 

Couette 0.12 

Jet and 

Capillary 
6.74*10-6 0.92 -0.06 - - 

Jet 0.20 

Capillary 0.55 

Each system 

separate  

 (Eq. 7.1) 

Jet 8.54*103 1.01 1.91 - - 0.11 

Capillary 4.28*10-7 0.4 51.25 - - 0.23 

Couette 6.87*10-4 0.605 0.072 - - 0.62 

3 systems together ( Eq. 7.2) 3.11*10-2 0.048 0.001 0.36 -0.04 

Jet 0.20 

Capillary 0.53 

Couette 0.05 
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7.3.2 Polynomial Regression 

 Another model we analyzed is a polynomial type function. We tried the 

following function with eddy area and eddy number of KLS up to 9 µm, and also with 

eddy areas and eddy numbers of different KLS bin sizes: 

2 2aHI b t c EA d EA e t f EA t= + ∗ + ∗ + ∗ + ∗ + ∗ ∗           7.3 
 

where EA is cumulative eddy surface area up to 9 µm KLS, a, b, c, d, e, and f are 

empirical coefficients. Equation 7.3 was used to fit the three systems together and 

plotted with experimental hemolysis in Figure 7.5. Coefficients are presented in Table 

7.2. As can be seen from Figure 7.5, similar to the power law type function, a 

polynomial function does not give acceptable fit for all three systems. 

 

Table 7.2. Polynomial function and model constants tested for empirical fitting.   
 

   Coefficients 

Systems 

a b c d e f R2 

3 systems 

together  

(Eq. 7.3) 

-0.66 1.12*10-5 -0.14 -1.15*10-11 5.56*10-4 2.17*10-8 

Jet 0.58 

Capillary 0.30 

Couette 0.75 
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Figure 7.5. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.3)] by fitting the jet, capillary tube, and Couette viscometer together. Top: jet, 
middle: capillary tube, bottom: Couette viscometer. 
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7.3.3 Exponential Regression 

 After testing the power law and polynomial functions, we also tested an 

exponential type model, with eddy areas grouped in different bin sizes. We fit three 

systems together as well as fitting them separately. The function is as follows: 

( ) ( ) ( )0 3 4 6 7 9a KLS KLS KLSEA EA EAHI t b e c e d e− − −= ∗ + ∗ + ∗ + ∗           7.4 
  

where a, b, c, and d are experimental coefficients, EAKLS(0-3) is cumulative eddy surface 

area for KLS size of 0 to 3 µm. Similarly, the other two terms are eddy areas for KLS 

sizes from 4 to 6 µm and from 7 to 9 µm. Results of fitting 3 system together for the 

exponential type function is presented in Figure 7.6. Moreover, the figures for fitting 

every system separately were also plotted and presented in the appendix (Figure 0.7). 

Coefficients of the fit are shown on in Table 7.3. As can be seen from Figure 7.6, 

exponential function is also not adequate for all three systems. 

 

Table 7.3. Exponential function and model constants tested for empirical fitting of three 
systems together and each system separately.   
 
       Coefficients 

Systems 

a b c d R2 

3 systems together 

(Eq.7.4) 
4.54*10-3 4.89*10-1 7.09*10-1 4.12*10-2 

Jet 0.05 

Capillary 0.10 

Couette 0.20 

Each system 

separate 

(Eq.7.4) 

Jet -1.17*106 -16.6 32.2 -3.68 0.77 

Capillary 1.37 -1.09 2.09 -2.54 0.802 

Couette -0.018 0.798 -11.7 16.6 0.797 
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Figure 7.6. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.4)] by fitting the jet, capillary tube, and Couette viscometer together. Top: jet, 
middle: capillary tube, bottom: Couette viscometer. 
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7.3.4 Linear Regression 

 After tests for power law, polynomial, and exponential function types failed  to 

yield satisfactory fits, we examined  linear functions with eddy area and eddy number of 

different bin sizes. We tested the following equation form:  

( ) ( ) ( )0 3 4 6 7 9a KLS KLS KLSHI b t c EA d EA e EA− − −= + ∗ + ∗ + ∗ + ∗      7.5 
 

where a, b, c, d, and e are experimental coefficients, EAKLS(0-3) is cumulative eddy 

surface area for KLS size of 0 to 3 µm. Similarly, the other two terms are eddy areas for 

KLS sizes from 4 to 6 µm and from 7 to 9 µm. Results of fitting 3 system together for 

the linear type function is presented in Figure 7.7. Coefficients of the fit are shown in 

Table 7.4. As can be seen from Figure 7.7, linear function gave much better agreement 

with the experimental data for all three systems when it does for other function types.  

 Another linear function we tried is very similar to Equation 7.5, only difference 

was to use the coefficient of exposure time as a power. This was tested to better observe 

contribution of exposure time since three systems have very different exposure times.  

Equation form: 

( ) ( ) ( )0 3 4 6 7 9a b
KLS KLS KLSHI t c EA d EA e EA− − −= + + ∗ + ∗ + ∗           7.6 

 

Changing the coefficient type of exposure time did not improve the fitting when 

compared to Equation 7.5. Results are plotted and presented in appendix (Figure 0.8). 

Coefficients were given in Table 7.4. 



139 

 

Figure 7.7. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.5)] by fitting the jet, capillary tube, and Couette viscometer together. Top: jet, 
middle: capillary tube, bottom: Couette viscometer. 
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 The next function we tested was also linear, but it has different bin sizes for 

eddy area and eddy number. The equation form is as follows:  

     

( ) ( )0 4 5 9a KLS KLSHI bt c EA d EA− −= + + ∗ + ∗            7.7
   
    
where a, b, and c are experimental coefficients, EAKLS(0-4) is cumulative eddy surface 

area for KLS size of 0 to 4 µm and EAKLS(5-9) cumulative eddy area for KLS sizes from 

5 to 9 µm. Results of fitting 3 system together for the linear type function are presented 

in Figure 7.8. Coefficients of the fit are shown in Table 7.4. As can be seen from Figure 

7.8, linear function with different bin size gave good agreement with the experimental 

data for all three systems. 

 

Table 7.4. Linear functions and model constants tested for empirical fitting.   
 

       Coefficients 

Systems 

a b c d e R2 

3 systems 

together (Eq.7.5) 
1.62*10-7 1.82*10-7 3.08*10-5 3.42*10-6 1.72*10-6 

Jet 0.67 

Capillary 0.58 

Couette 0.78 

3 systems 

together (Eq.7.6) 
-0.076 0.0198 3.77*10-5 3.20*10-6 1.60*10-6 

Jet 0.18 

Capillary 0.70 

Couette 0.23 

3 systems 

together (Eq.7.7) 
-0.25 1.36*10-4 2.18*10-5 2.38*10-6 - 

Jet 0.69 

Capillary 0.76 

Couette 0.66 
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Figure 7.8. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.7)] by fitting the jet, capillary tube, and Couette viscometer together. Top: jet, 
middle: capillary tube, bottom: Couette viscometer. 
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7.3.5 Proposed Hemolysis Model 

 Several other functions were tried with different bin sizes, different number of 

coefficients, and other functions. We do not present all of the different forms examined 

here. The best function found is a linear form, as follows:  

( ) ( ) ( )0 4 5 7 8 10a KLS KLS KLSHI t b EA c EA d EA− − −= + ∗ + ∗ + ∗         7.8 
 

where a, b, c, and d are experimental coefficients, EAKLS(0-4) is cumulative eddy surface 

area for KLS size of 0 to 4 µm and similarly, the other two terms are eddy areas for 

KLS sizes from 5 to 7 µm and from 8 to 10 µm. Equation 7.8 was used to fit calculate 

hemolysis for the three systems together and plotted in Figure 7.9. The coefficients for 

Equation 7.8 are presented in Table 7.5. 

      
Table 7.5. Model constants for Equation 7.8 for fitting 3 systems together and separate. 
 

       Coefficients 

Systems 

a (s-1) b (m-2) c (m-2) d (m-2) R2 

3 systems together 

(Eq.7.8) 
5.57*10-4 2.45*10-5 2.67*10-6 1.14*10-6 

Jet 0.61 

Capillary 0.82 

Couette 0.68 

Each 

system 

separate 

(Eq.7.8) 

Jet 1.028 4.10*10-8 2.19*10-5 2.50*10-8 0.78 

Capillary 2.41*10-7 5.43*10-5 2.14*10-6 1.25*10-11 0.98 

Couette 1.45*10-7 1.13*10-5 1.11*10-5 8.51*10-7 0.83 
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Figure 7.9. Comparison of experimental hemolysis and hemolysis from our model 
[Equation (7.8)] by fitting jet, capillary tube, and Couette viscometer together. Top: jet, 
middle: capillary tube, bottom: Couette viscometer. 



144 

 As can be seen from Figure 7.9 and R2 values on Table 7.5, the hemolysis model 

gives reasonably good agreement with experimental hemolysis values even though 

these systems have very different conditions.  The worst agreement was obtained with 

the jet experiment because it has much shorter exposure times (10-5 s) and much smaller 

KLS sizes as compared to the Couette viscometer experiment that has 4 minutes 

exposure time. We also fit the three systems separately by using Equation 7.8 and 

obtained coefficients for each experiment that can be seen on Table 7.5. By using the 

coefficients on Table 7.5 on Equation 7.8, hemolysis predictions were performed for 

three systems and shown in Figure 7.10.  
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Figure 7.10. Comparison of experimental hemolysis and hemolysis from our model 
[Equation (7.8)] by fitting jet, capillary tube, and Couette viscometer separately. Top: 
jet, middle: capillary tube, bottom: Couette viscometer. 
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 The linear model can fit the three system separately as well as fit them together. 

Non-linearity appearing in the plots results from the shift in the distribution to smaller 

eddy sizes with increasing turbulence. 

7.4 Summary 

 The results showed that power law, exponential, and polynomial type functions 

did not give good fits for the Couette viscometer [60], the capillary tube [9], and the jet 

[57] that have distinctly different flow fields and exposure times. The linear model 

(Equation 32) with different bin size of eddy area gave the best fit.  
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8  Conclusions and Future Work 

 The lack of a fundamental physical description of the hemolysis mechanisms in 

a turbulent flow field complicates a deterministic approach to hemolysis prediction. 

However, if the shear and/or extensional deformations of cells occur at the boundaries 

or within small eddies, then the probability of hemolysis might be expected to be 

proportional to properties of eddies in a device and the surface area of these eddies. 

 In this work, the relation between turbulence characteristics and hemolysis is 

examined for a Couette viscometer, a capillary tube, and a jet. Calculation of the 

Kolmogorov length scales for the Couette viscometer may be applicable to 

computationally investigate hemocompatibility of blood-wetted devices, such as in 

rotary VADs. Results of Couette, capillary, and jet experiments showed that hemolysis 

is related directly with the total surface area of eddies with diameters of up to about 10 

µm. This is comparable to the size of RBCs. This value has been calculated given the 

uncertainties incorporated in our analysis, and further experiments and more detailed 

simulations are needed for different flow configurations and other experimental setups 

to verify or modify the accuracy of this value. Based on the current findings, we cannot 

say that there is a cause and effect relationship. However, many investigators have 

looked at energy dissipation as a basis for hemolysis. The approach presented here aims 

to assess the effects of the intensity of energy dissipation on hemolysis. A relation was 

not evident for larger eddies. At present, additional investigation of eddy analysis to 

yield hemolysis predictions in other device and systems is required to confirm 

widespread applicably to blood-contacting devices. At this time, the KLS-based 
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approach might offer insight into the hemolytic changes due to proposed changes in 

design or operation of a device. 

 A new empirical model was also proposed to predict hemolysis in turbulent flow 

that takes into account the complexity of turbulence by giving varying weight to eddies 

of different sizes. The model was applied to the Couette viscometer, [60] the capillary 

tube, [9] and the jet. [57] Reasonable results have been obtained for flow fields and 

exposure times of the three distinctly different experiments. 

 The eddy analysis and the hemolysis model presented here can be applied in 

conjunction with various turbulence simulations, possibly across a wide range of 

conditions and devices. The prediction of the Kolmogorov eddy size distribution might 

then lead to an evaluation of whether a particular design of a medical device is more or 

less susceptible to hemolysis, and what changes need to be done in the design to 

increase the size of the Kolmogorov scales. If eddy analysis is to be investigated for 

broader application, additional measurements of hemolysis need to be made in turbulent 

flows as a function of exposure time for various KLS values, ideally with a nearly 

uniform KLS value throughout the flow field.   

 Eddy analysis as presented here does not explicitly take into account exposure 

time. We note two points in that regard. Results for the very different exposure times of 

the three systems examined suggest a possible a relationship for hemolysis from 

exposure time-eddy surface area plots. Moreover, the power law relationships teach us 

there is a much stronger dependence on stress than exposure time. An order of 

magnitude increase in exposure time (100.75) results in a factor of 5.6 compared to a 
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factor of 100 (102) for a comparable shear stress increase. A focus on energy dissipation 

and associated stresses may be justified in a well-mixed turbulent system.  

 Moreover, in this work, a threshold analysis for Reynolds stress and viscous 

stresses was conducted for a Couette viscometer and a capillary tube by assuming that 

systems were well mixed and cells on average spent the same amount of time in any 

location inside the flow field. Results of Couette and capillary experiments showed that 

there is not a common threshold value for Reynolds and viscous stress where hemolysis 

happens.  

 Therefore, it is seen that neither Reynolds nor viscous stress is a good predictor 

when determining hemolysis. At present, additional investigation of threshold analysis 

of Reynolds and viscous stresses in other devices and systems is required to confirm 

widespread applicably of this finding. At this time, this threshold analysis may offer 

insight into the hemolysis calculations by using Reynolds and viscous stresses.        

 When applying a power law model that takes into account stress and exposure 

time of the RBCs, use of the Reynolds stress rather than the total stresses or the viscous 

stresses in the power law formula is found to provide better agreement between model 

and measurements at least in both systems modeled. However, it appears the 

coefficients of the power law formulation must be empirically derived for each device. 

This is a disadvantage of this class of hemolysis models.  

  

 

 



150 

 References 

1. Centers for disease control and prevention. Heart disease facts and statistics. 
2015; Available from: http://www.cdc.gov/heartdisease/statistics.htm. 

2. Go, A.S., et al., Heart disease and stroke statistics-2014 update: A report from 
the American Heart Association. 2014. 

3. Fraser, K.H., et al., The use of computational fluid dynamics in the development 
of ventricular assist devices. Medical Engineering & Physics, 2011. 33(3): p. 
263-280. 

4. Givertz, M.M., Ventricular assist devices important information for patients and 
families. Circulation 2011. 124: p. e305-311. 

5. University of Michigan health system. Ciculatory and ventricular assist devices 
(VAD). 2015; Available from: http://www.med.umich.edu/cardiac-
surgery/patient/adult/ccs/vad.shtml. 

6. National Institutes of Health. Ventricular assist device. 2012; Available from: 
http://www.nhlbi.nih.gov/health/health-topics/topics/vad/. 

7. Antiga, L. and D.A. Steinman, Rethinking turbulence in blood. Biorheology, 
2009. 46(2): p. 77-81. 

8. Hund, S.J., J.F. Antaki, and M. Massoudi, On the representation of turbulent 
stresses for computing blood damage. Int J Eng Sci, 2010. 48(11): p. 1325-1331. 

9. Kameneva, M.V., et al., Effects of turbulent stresses upon mechanical 
hemolysis: experimental and computational analysis. ASAIO J, 2004. 50(5): p. 
418-423. 

10. Aziz, A., et al., The cumulative and sublethal effetcs of turbulence on 
erythrocytes in a stirred-tank model. Annals of Biomedical Engineering, 2007. 
35(12): p. 2108-2120. 

11. Bludszuweit, C., Three-dimensional numerical prediction of stress loading of 
blood particles in a centrifugal pump. Artificial Organs, 1995. 19(7): p. 590-
596. 

12. Sigma-Aldrich. Physical properties of blood and plasma. 2015  [cited 2015; 
Available from: http://www.sigmaaldrich.com/life-
science/metabolomics/enzyme-explorer/learning-center/plasma-blood-
protein/blood-basics.html. 

13. Penn Medicine. Formed elements of blood. 2002  [cited 2015; Available from: 
http://www.pennmedicine.org/encyclopedia/em_DisplayImage.aspx?gcid=1919
2&ptid=2&rgcid=003644&rptid=1. 

14. Arora, D., M. Behr, and M. Pasquali, Hemolysis computations in centrifugal 
clood pump using a tensor-based measure. Artificial Organs, 2006. 30(7): p. 
539-547. 

15. Behbahani, M., et al., A review of computational fluid dynamics analysis of 
blood pumps. Eur J Appl Math, 2009. 20: p. 363-397. 

16. Ge, L., et al., Characterization of hemodynamic forces induced by mechanical 
heart valves: Reynolds vs. viscous stresses. Annals of Biomedical Engineering, 
2008. 36(2): p. 276-297. 



151 

17. Grigioni, M., et al., Prosthetic heart valves' mechanical loading of red blood 
cells in patients with hereditary membrane defects. Journal of Biomechanics, 
2005. 38(8): p. 1557-1565. 

18. Quinlan, N.J. and P.N. Dooley, Models of flow-induced loading on blood cells in 
laminar and turbulent flow, with application to cardiovascular device flow. 
Annals of Biomedical Engineering, 2007. 35(8): p. 1347-1356. 

19. Park, S.J., S.S. Kushwaha, and C.G.A. McGregor, State-of-the-art implantable 
cardiac assist device therapy for heart failure: Bridge to transplant and 
destination therapy. Clinical Pharmacology & Therapeutics, 2012. 91(1): p. 94-
100. 

20. Blackshear, P.L., F.D. Dorman, and J.H. Steinbach, Some mechanical effects 
that influence hemolysis. T Am Soc Art Int Org, 1965. 11(1): p. 112-117. 

21. Giersiepen, M., et al., Estimation of shear stress-related blood damage in heart 
valve prostheses-in vitro comparison of 25 aortic valves. Int J Artif Organs, 
1990. 13(5): p. 300-306. 

22. Heuser, G. and R. Opitz, A Couette viscometer for short time shearing of blood. 
Biorheology, 1980. 17(1-2): p. 17-24. 

23. Fraser, K.H., et al., A quantitative comparison of mechanical blood damage 
parameters in Rotary Ventricular Assist Devices: shear stress, exposure time, 
and hemolysis index. Journal of Biomechanical Engineering, 2012. 134(8): p. 
081002. 

24. Zhang, T., et al., Study of flow-induced hemolysis using novel Couette-type 
blood shearing devices. Artificial Organs, 2011. 35(12): p. 1180-1186. 

25. Arvand, A., M. Hormes, and H. Reul, A validated computational fluid dynamics 
model to estimate hemolysis in a rotary blood pump. Artificial Organs, 2005. 
29(7): p. 531-540. 

26. Bludszuweit, C., Model for a general mechanical blood damage predication. 
Artificial Organs, 1995. 19(7): p. 583-589. 

27. Chan, W.K., et al., Numerical investigation of the effect of blade geometry on 
blood trauma in a centrifugal blood pump. Artificial Organs, 2002. 26(9): p. 
785-793. 

28. Song, X., et al., Computational fluid dynamics prediction of blood damage in a 
centrifugal pump. Artificial Organs, 2003. 27(10): p. 938-941. 

29. Arora, D., M. Behr, and M. Pasquali, A tensor-based measure for estimating 
blood damage. Artificial Organs, 2004. 28(11): p. 1002-1015. 

30. Vitale, F., et al., A multiscale, biophysical model of flow-induced red blood cell 
damage. American Institute of Chemical Engineers Journal, 2014. 60(4): p. 
1509-1516. 

31. Chen, Y. and M.K. Sharp, A strain-based flow-induced hemolysis prediction 
model calibrated by in vitro erythrocyte deformation measurements. Artificial 
Organs, 2011. 35(2): p. 145-156. 

32. Goubergrits, L. and K. Affeld, Numerical estimation of blood damage in 
artificial organs. Artificial Organs, 2004. 28(5): p. 499-507. 

33. Grigioni, M., et al., A novel formulation for blood trauma prediction by a 
modified power-law mathematical model. Biomechanics and Modeling in 
Mechanobiology, 2005. 4(4): p. 249-260. 



152 

34. Gu, L. and W.A. Smith, Evaluation of computational models for hemolysis 
estimation. ASAIO J, 2005. 51(3): p. 202-207. 

35. Kataoka, H., et al., Influence of radial clearance and rotor motion to hemolysis 
in a journal bearing of a centrifugal blood pump. Artificial Organs, 2006. 
30(11): p. 841-854. 

36. Kim, N.J., et al., Parametric study of blade tip clearance, flow rate, and 
impeller speed on blood damage in rotary blood pump. Artificial Organs, 2009. 
33(6): p. 468-474. 

37. Paul, R., et al., Shear stress related blood damage in laminar couette flow. 
Artificial Organs, 2003. 27(6): p. 517-529. 

38. Arwatz, G. and A.J. Smits, A viscoelastic model of shear-induced hemolysis in 
laminar flow. Biorheology, 2013. 50: p. 45-55. 

39. Grigioni, M., et al., The power-law mathematical model for blood damage 
prediction: analytical developments and physical inconsistencies. Artificial 
Organs, 2004. 28(5): p. 467-475. 

40. Taskin, M.E., et al., Evaluation of Eulerian and Lagrangian models for 
hemolysis estimation. American Society for Artificial Internal Organs 2012. 
58(4): p. 363-372. 

41. Pope, S.B., Turbulent flows, ed. C.U. Press. 2000, New York, USA. 
42. Liu, J.S., P.C. Lu, and S.H. Chu, Turbulence characteristics downstream of 

bileaflet aortic valve protheses. J Biomech Eng, 1999. 122(2): p. 118-124. 
43. Li, C.P., C.W. Lo, and P.C. Lu, Estimation of viscous dissipative stresses 

induced by a mechanical heart valve using PIV data. Annals of Biomedical 
Engineering, 2010. 38(3): p. 903-916. 

44. Quinlan, N.J., Mechanical loading of blood cells in turbulent flow. 
Computational Biomechanics for Medicine. 2014, New York: Springer New 
York. 

45. Yen, J.H., et al., The effect of turbulent viscous shear stress on red blood cell 
hemolysis. J Artif Organs, 2014. 

46. Lee, H., E. Tatsumi, and Y. Taenaka, Experimental study on the Reynolds and 
viscous shear stress of bileaflet mechanical heart valves in a pneumatic 
ventricular assist device. ASAIO J, 2009. 55(4): p. 348-354. 

47. Jones, S.A., A relationship between reynolds stresses and viscous dissipation: 
implications to red cell damage. Annals of Biomedical Engineering, 1995. 
23(1): p. 21-28. 

48. Sallam, A.M. and N.H.C. Hwang, Human red blood cell hemolysis in a 
turbulent shear flow: contribution of Reynolds shear stresses. Biorheology, 
1984. 21(6): p. 783-797. 

49. Sallam, A.M., An investigation of the effect of Reynolds shear stress on red 
blood cell hemolysis. 1982, University of Houston. 

50. Sallam, A.M. and N.H.C. Hwang, Influence of red blood cell concentrations on 
the measurement of turbulence using hot-film anemometer. Journal of 
Biomechanical Engineering, 1983. 105: p. 406-410. 

51. Ellis, J.T., T.M. Wick, and A.P. Yoganathan, Prosthesis-induced hemolysis: 
mechanisms and quantification of shear stress. J Heart Valve Dis, 1998. 7(4): p. 
376-386. 



153 

52. Dooley, P.N. and N.J. Quinlan, Effect of eddy length scale on mechanical 
loading of blood cells in turbulent flow. Annals of Biomedical Engineering, 
2009. 37(12): p. 2449-2458. 

53. Davidson, P.A., Turbulence: An introduction for scientists and engineers. 2004, 
New York: Oxford University Press. 

54. Hinze, J.O., Turbulence: An introduction to its mechanism and theory 1st 
Edition ed. 1969: McGraw-Hill. 

55. Richardson, L.F., Weather prediction by numerical process. 1922, Cambridge: 
Cambridge University Press. 

56. Pinotti, M. and E.M. de Faria, Critical flow regions in tissue artificial heart 
valve assessed by laser doppler anemometer in continuous flow. J Braz Soc 
Mech Sci Eng, 2006. XXVIII(3): p. 259-263. 

57. Forstrom, R.J., A new measure of erythrocyte membrane strength-the jet 
fragility test. 1969, University of Minnesota. 

58. Lu, P.C., H.C. Lai, and J.S. Liu, A reevaluation and discussion on the threshold 
limit for hemolysis in a turbulent shear flow. Journal of Biomechanics, 2001. 
34(10): p. 1361-1364. 

59. Goubergrits, L., Numerical modeling of blood damage: current status, 
challenges and future prospects. Expert Review of Medical Devices, 2006. 3(5): 
p. 527-531. 

60. Sutera, S.P. and M.H. Mehrjardi, Deformation and fragmentation of human red 
blood cells in turbulent shear flow. Biophys J, 1975. 15(1): p. 1-10. 

61. Ozturk, M., E.A. O'Rear, and D.V. Papavassiliou, Hemolysis related to turbulent 
eddy size distributions using comparisons of experiments to computations. 
Artificial Organs, 2015. 39(12): p. E227-E239. 

62. Moin, P. and J. Kim, Tackling turbulence with supercomputers. Scientific 
American 1996. 276(1): p. 62-68. 

63. Tennekes, H. and J.L. Lumley, A first course in turbulence. 1972, U.S.: MIT 
Press. 

64. Burgreen, G.W., et al., Computational fluid dynamics as a development tool for 
rotary blood pumps. Artificial Organs, 2001. 25(5): p. 336-340. 

65. Izraelev, V., et al., A passively suspended Tesla pump left ventricular assist 
device. American Society for Artificial Internal Organs, 2009. 55(6): p. 556-561. 

66. Morsi, Y.S., et al., Numerical analysis of the flow characteristics of rotary blood 
pump. Journal of Artificial Organs, 2001. 4(1): p. 54-60. 

67. Nguyen, V.T., et al., Experimentally validated hemodynamics simulations of 
mechanical heart valves in three dimensions. Cardiovascular Engineering and 
Technology, 2012. 3(1): p. 88-100. 

68. Wu, J., et al., Computational fluid dynamics analysis of blade tip clearances on 
hemodynamic performance and blood damage in a centrifugal ventricular assist 
device. Artificial Organs, 2010. 34(5): p. 402-411. 

69. Zhang, Y., et al., Design optimization of an axial blood pump with 
computational fluid dynamics. ASAIO J 2008. 54(2): p. 150-155. 

70. Apel, J., F. Neudel, and H. Reul, Computational fluid dynamics and 
experimental validation of a microaxial blood pump. ASAIO J, 2001. 47(5): p. 
552-558. 



154 

71. Chua, L.P., et al., Computational fluid dynamics of gap flow in a biocentrifugal 
blood pump. Artificial Organs, 2005. 29(8): p. 620-628. 

72. Mitoh, A., et al., Computational fluid dynamics analysis of an intra-cardiac 
axial flow pump. Artificial Organs, 2003. 27(1): p. 34-40. 

73. Schenkel, A., M.O. Deville, and M.L. Sawley, Flow simulation and hemolysis 
modeling for a blood centrifuge device. Computers and Fluids, 2013. 86: p. 185-
198. 

74. Yano, T., et al., An estimation method of hemolysis within an axial flow blood 
pump by computational fluid dynamics analysis. Artificial Organs, 2003. 27(10): 
p. 920-925. 

75. ANSYS Fluent 14.0: Theory guide. 2011, Canonsburg, Pennsylvania: ANSYS 
Inc. 

76. Reynolds, W.C., Fundamentals of turbulence for turbulence modelling and 
simulation. 1987. 

77. Rodi, W., Turbulence models and their application in hydraulics. 1993. 
78. Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering 

applications. The American Institute of Aeronautics and Astronautics 1994. 
32(8): p. 1598-1605. 

79. Al-Azawy, M., A. Turan, and A. Revell. Investigating the use of turbulence 
models for flow investigations in a positive displacement ventricular assist 
devices. in IFBME Conference. 2015. IFMBE Proceedings. 

80. Carswell, D., et al., A CFD model for the prediction of haemolysis in micro axial 
left ventricular assist devices. Appl Math Model, 2013. 37: p. 4199-4207. 

81. Kido, K., et al., Computational fluid dynamics analysis of the Pediatric tiny 
centrifugal blood pump (TinyPump). Artificial Organs, 2006. 30(5): p. 392-399. 

82. Song, X., et al., Studies of turbulence models in a computational fluid dynamics 
model os a blood pump. Artificial Organs, 2003. 27(10): p. 935-937. 

83. ANSYS Fluent 14.0, User's Guide. ed. 
84. Evans, E.A. and R. Skalak, Mechanics and thermodynamics of biomembranes: 

part 1. CRC Critical Reviews in Bioengineering, 1979. 3(3): p. 181-330. 
85. Sutera, S.P., Flow-induced trauma to blood cells. Circulation Research, 1977. 

41: p. 2-8. 
86. Watanabe, N., et al., Deformability of human red blood cells exposed to a 

uniform shear stress as measured by a cyclically reversing shear flow generator. 
Physiological Measurement, 2007. 28(5): p. 531-545. 

87. Boehning, F., et al., Hemolysis in a laminar flow-through Couette shearing 
device: an experimental study. Artificial organs, 2014. 38(9): p. 761-765. 

88. Klaus, S., et al., In vitro blood damage by high shear flow: human versus 
porcine blood. The international Journal of Artificial Organs, 2002. 25(4): p. 
306-312. 

89. Klaus, S., et al., Investigation of flow and material induced hemolysis with a 
Couette type high shear system. Materials Science and Engineering Technology, 
2001. 32(12): p. 922-925. 

90. Leverett, L.B., et al., Red blood cell damage by shear stress. Biophysical 
journal, 1972. 12(3): p. 257-273. 



155 

91. Pirro, D. and M. Quadrio, Direct numerical simulation of turbulent Taylor-
Couette flow. European Journal of mechanics - B/Fluids, 2007. 27: p. 552-566. 

92. Luchini, P. and M. Quadrio, A low-cost parallel implementation of direct 
numerical simulation of wall turbulence. Journal of Computational Physics, 
2006. 211(2): p. 551-571. 

93. Bacher, R.P. and M.C. Williams, Hemolysis in capillary flow. Journal of 
Laboratory and Clinical Medicine, 1970. 76(3): p. 485-496. 

94. Keshaviah, P.R., Hemolysis in the accelerated flow region of an abrubt 
contraction. 1974, University of Minnesota. 

95. Blackshear, P.L., Hemolysis at prosthetic surfaces. 1972, Marcel Dekker: New 
York. p. 523-562. 

96. Down, L.A., D.V. Papavassiliou, and E.A. O'Rear, Significance of extensional 
stresses to red blood cell lysis in a shearing flow. Annals of Biomedical 
Engineering, 2011. 39(6): p. 1632-1642. 

97. Yen, J.H., et al., The effects of extensional stress on red blood cell hemolysis. 
Biomedical Engineering: Applications, Basis and Communications, 2015. 27(5): 
p. 1550042. 

98. Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport phenomena. Second ed. 
2002, New York: John Wiley & Sons, Inc. 

99. Chin, C., J.P. Monty, and A. Ooi, Reynols number effects in DNS of pipe flow 
and comparison with channels and boundary layers. International Journal of 
Heat and Fluid Flow, 2014. 45: p. 33-40. 

100. Chapra, S.C. and R.P. Canale, Numerical methods for engineers. 2010. 
101. Blackshear, P.L., et al., Shear wall interaction and hemolysis. Transactions 

American Society for Artificial Internal Organs, 1966. 12: p. 113-120. 
102. Grigioni, M., et al., A discussion on the threshold limit for hemolysis related to 

Reynolds shear stress. Journal of Biomechanics, 1999. 32(10): p. 1107-1112. 
103. Vargas, R.R., The effects of varying levels of turbulence in a submerged 

turbulent jet, in Albert Nerken School of Engineering. 2001, The Cooper Union. 
104. Xia, L.P. and K.M. Lam, Velocity and concentration measurements in initial 

region of submerged round jets in stagnant environment and in coflow. J Hydro 
Environ Res, 2009. 3: p. 21-34. 

105. Ungate, C.D., D.R.F. Harleman, and G.H. Jirka, Stability and mixing of 
submerged turbulent jets at low reynolds numbers. 1975, Massachusetts Institute 
of Technology: M.I.T. Energy Laboratory. 

106. Lee, J.H. and V.H. Chu, Turbulent jets and plumes - A Lagrangian approach. 
2003, Massachusetts, USA: Kluwer Academic Publisher. 390. 

107. Hulet, C., Interaction phenomena of submerged jets and fluidized solids, in 
Chemical and Biochemical Engineering. 2006, The University of Western 
Ontario. 

108. Panchapakesan, N.R. and J.L. Lumley, Turbulence measurements in 
axisymmetric jets of air and helium. Part 1. Air jet. J Fluid Mech, 1993. 246: p. 
197-223. 

109. Hussein, H.J., S.P. Capp, and W.K. George, Velocity measurements in a high-
Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. Journal 
of Fluid Mechanics, 1994. 258: p. 31-75. 



156 

 

Appendices 

Appendix A 

Eddy Analysis 

 The first step of eddy analysis is calculating Kolmogorov length scale (KLS) 

values in the flow domain. Kolmogorov length scale is described as  𝐾𝐿𝑆 = !!

!

! !
, 

where ν is kinematic viscosity and ε is the dissipation rate of turbulent kinetic energy. 

Since, KLS is not directly available in Fluent, KLS calculation was defined as a custom 

field function for every experiment of every simulated system. As can be seen on      

Figure 0.1, the formula of KLS was defined in the Definition box of the Custom Field 

Function in Fluent.   

 

 

Figure 0.1. Custom field function for KLS in Fluent. 
 

KLS calculations were determined for the entire flow domains of each experiments of 

every system (the Couette viscometer, the capillary tube, and the jet). For capillary tube 

and jet, several planes were created and for the Couette viscometer a vertical plane was 
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used (since the KLS values were the same when moving circumferentially as can be 

seen in Figure 3.4). Plane creations were already discussed for all the systems in 

Sections 3, 4, and 6 for the Couette viscometer, the capillary tube, and the jet, 

respectively. The important point when creating planes is that planes are needed to be 

created in a distances so that KLS values stays constant between them. Therefore, 

several trials are needed to find the places where KLS values stays constant.   

 After calculating KLS values in each plane, a contour surface was created for 

each KLS in KLS bins of 1 µm.  Contour surfaces were created using Iso-Clip option in 

Fluent. As can be seen from Figure 0.2, Iso-Clip window shows the KLS range of each 

plane for the Custom Field Function for KLS that was presented in Figure 0.1. Plane list 

can be seen on the right part of Figure 0.2 for the specified experiment of specific 

system.  

 

 

Figure 0.2. Creating contour surfaces for KLS in Fluent. 
 



158 

Contour surfaces were created by choosing each plane and then creating KLS bins of 

1µm for the entire KLS range of each plane. Number of contour surfaces change depend 

on the number of experiments of each system and the number of planes for every 

experiment of each system. Approximate numbers of contours surfaces for each system 

is shown in Table 0.1.  

 

Table 0.1. Number of contour surfaces for simulated systems 
 

Experimental 

systems 

Total number of 

experiments 

Approximate total number 

of contour surfaces 

Couette viscometer 7 100 

Capillary tube 4 1700 

Jet 13 7000 

 

 Surface area of each contour surface was calculated in Fluent and imported into 

Excel. It is important to check that total surface area of contour surfaces for a specified 

plane has to be equal to the surface area of that specific plane. The rest of the eddy 

analysis was completed by post-processing in Excel.  

 The total volume of regions containing dissipative eddies of similar spherical 

size was calculated by multiplying the interplanar distance of the segmented 

computational domain by the cross-sectional surface area of each KLS value with 

increments of 1µm. Eddy volume for each KLS size was calculated as   𝑉!""# =

!
!
𝜋 𝐾𝐿𝑆/2 !. The number of eddies (Neddy) of a specific size was calculated by dividing 

the total volume of the region and the volume of one eddy (Veddy). Finally, the total 
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surface area of eddies for each KLS value (Aeddy) was calculated 

as  𝐴!""# = 𝑁!""#4𝜋 𝐾𝐿𝑆/2 !. The results were normalized by calculating eddy 

surface area, eddy number, and eddy volume per-unit-volume to create quantities that 

might be compared for different turbulent flow situations and experimental 

configurations.  

 After all the calculations were performed for each experiment, all of the 

experiments of every systems were combined and analyzed together.  For each KLS 

size, calculated eddy surface areas (or eddy numbers or eddy volumes) were combined 

together and plotted with experimental hemolysis. 

 

List of Equations for Eddy Analysis 

 Equations for the eddy analysis was summarized below and also presented in 

Table 0.2. 

• Kolmogorov length scale (KLS):  
 

1 43

KLS ν
ε

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

   (1) 

• Total volume of region for each specific KLS (Vtotal): 
 

surface area (from Fluent)*length of the domaintotalV =   (2) 
   

• Volume of one eddy (Veddy): 
 

34
3 2eddy

KLSV π ⎛ ⎞= ⎜ ⎟
⎝ ⎠

   (3) 

 

• Number of eddies (Neddy):  
total

eddy

VNeddy
V

=    (4) 



160 

 

 

 

• Total surface area of eddies for each KLS value (Aeddy): 
 

2

*4* *
2eddy eddy
KLSA N π ⎛ ⎞= ⎜ ⎟

⎝ ⎠
   (5) 

 

   
 

Table 0.2. Computational equations of eddy analysis in excel for the highest shear 
stress (450 Pa) experiment of the Couette viscometer.  
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Appendix B 

Results for Hemolysis Models of Different Functions 

 Additional results that show comparison between experimental hemolysis and 

hemolysis from our model are presented in this section.  

 Figure 0.3 shows the results presenting the fitting 3 systems separately by using 

the power law type function (Eq. 7.1). Figure 0.4, Figure 0.5, and Figure 0.6 present the 

results for fitting every 2 systems together (Couette viscometer-jet, jet-capillary tube, 

and capillary tube-couette viscometer) by using the power law type function (Eq. 7.1). 

Figure 0.7 illustrates, results for fitting every system separately by using exponential 

type function  (Eq. 7.4).Figure 0.8, displays the results for fitting the 3 systems together 

by using a linear type function (Eq. 7.6). 
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Figure 0.3. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.1)] by fitting the jet, capillary tube, and Couette viscometer separately. Top: jet, 
middle: capillary tube, bottom: Couette viscometer. 
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Figure 0.4. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.1)] by fitting the Couette viscometer (top) and jet (bottom) with power law 
function. 
 



164 

 

 

Figure 0.5. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.1)] by fitting the jet (top) and capillary tube (bottom) with power law function. 
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Figure 0.6. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.1)] by fitting the capillary tube (top) and the Couette viscometer (bottom) with 
power law function. 
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Figure 0.7. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.4)] by fitting the jet, capillary tube, and Couette viscometer separately. Top: jet, 
middle: capillary tube, bottom: Couette viscometer. 
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Figure 0.8. Comparison of experimental hemolysis and hemolysis from our model       
[Eq. (7.6)] by fitting the jet, capillary tube, and Couette viscometer together. 


