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MATHEMATICS OF ELECTROCARDIOGRAPHY

CHAPTER |

INTRODUCTION

Heart muscle belongs to a class of living structure known as
excitable tissue. Such tissue is characterized by its ability tc generate
an electric field. Body surface potentials due to heart excitation can be
measured accurately by an electrocardiograph. The structure of the poten-
tial versus time curves recorded by an electrocardiograph often enaktles
a specialist to diagnose certain heart ailments. Two types of mathema-
tical models in particular are of special interest to the electrocardiol-
ogist. 1In both types, the body shape is approximated by a geometric con-
figuration such as a sphere, cylinder, or ellipsoid. The specific
resistivity of the various body tissues must be assumed. The specific
resistivity of the medium external to the body must also be assumed. In
one type of model, the location, orientation, and strength of the equiv-
alent heart generator (a dipole or a double layer of uniform strength, for
example) is specified. It is then required to derive an equation for the
determination of the potential on the surface of the 'body.'' In the other
type of model, the potentials on the surface of the ‘''body' are given and
the equivalent heart generator is specified as to type. It is then re-
quired to derive equations for the determination of the location, orien-
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tation, and strength of the equivalent heart generator. Both of these
types of problems will be considered in this dissertation,

Willem Einthoven was the first to idealize the human body as a
specific electrical conductor and the heart as a specific electrical
generator [1]. He idealized the human body as a homogeneous, isotropic,
spherical conductor of finite conductivity. Space exterior to this sphere
had the same conductivity. The heart was represented by a dipole located
at the center of this sphere. The direction and strength of the dipole
varied with time; however, the axis of the dipole was assumed to lie in a
fixed plane, Experimentally, Einthoven studied the potential differences
measured between three points on the body surface and a refer-ence terminal,
The three points on the body surface were chosen as a point on the right
arm, the left arm, and the left leg. 1In his model, the corresponding
points formed an equilateral triangle. The plane determined by this
triangle coincides with the plane of the axis of the dipole. The vertices
of the triangle also were on the surface of the sphere. Einthoven then
derived the expressions for the potential at the vertices of the triangle.

Bayley notes the following objections to this model [2]:

a) The human body can hardly be considered as spherical.

b) The electrical properties of body tissues are neither

homogeneous nor isotropic.

c) The equivalent heart generator is not a dipole whose axis

remains in a fixed plane, nor is it a dipole located at the
Yicenter' of the body.

d) The contact regions of the extremities of the human body do

not, in general, correspond to vertices of an equilateral

triangle.
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e) The human being does not normally live in an environment whose

electrical properties are the same as those of body tissue.

Several other models have been proposed that attempt to take into
account one or more of Bayley's observations. Historically, the next
model was proposed by Canfield [3]. He retained all of Einthoven's
assumptions except one: the human body was imbedded in air, a good
insulator, The boundary condition on the surféce of the sphere was that
there be no current outflow. Canfield obtained the expression for the
potential interior to and on the surface of the sphere.

Wilson and Bayley [4] have generalized Canfield's model consid-
erably. While the body was still represented as a sphere, the dipole
representing the equivalent heart generator is located at an arbitrary
point interior to the sphere. The axis of the dipole is pointed in an
arbitrary direction. The sphere was imbedded in air. They derived the
equation for the potential everywhere interior to and on the surface of
the sphere under the boundary condition of no current outflow from the
surface of the sphere,

In 1939, Bayley [5] used a double layer cap with a circular rim to
approximate the heart generator. The cap was of uniform strength. The
body surface was represented as a sphere. The center of the circular rim
of the double layer was coincident with the center of the sphere. Frank
[6] generalized Bayley's model in 1953 so that the center of the rim no
longer was coincident with the center of the sphere: However, his model
does require that the axis of the rim pass through the center of the
sphere. Both Bayley and Frank derived equations for the potential every-

where interior to and on the surface of the sphere. The boundary condi-
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tion of no current outfiow from the surface of the sphere was also imposed
in their solutions.

Since 1957, some models have appeared in the literature which
approximate the geometry of the body by solids other than spheres. Yeh
and Martinek [7] determined the potential due to an eccentric dipole of
arbitrary axis orientation in a prolate spheroid imbedded in an insulator.
In the same publication, Berry [8] presented L. J. Chu's [9] corresponding
solution for the oblate spheroid.

Okada [10] obtained the potential for a dipole oriented and
located arbitrarily in a homogeneous circular cylinder of finite length.
The potential of the dipole in a homogeneous elliptic cylinder of finite
length has been obtained by Mackey [11]. These cylinders are imbedded in
an insulator,

These models, except for Einthoven's, take into account the fact
that the human being lives in a medium of significantly different electri-
cal properties than those of human tissue. The four latter mentioned
models attempt to better approximate the body geometry. Frank's model,
while retaining the sphere to represent body geometry, is perhaps more
realistic in terms of the equivalent heart generator. These models,
except for Einthoven's and Canfield's, allow the location of the equiv-
alent heart generator to be at a point other than the ''center'' of the
body.

Studies by Rush, Abildskov, and McFee [12] show that the specific
resistivity of various body tissues and blood can vary significantly.

The first model to consider nonhomogeneity was published by Bayley and

Berry [13]. This was a two-dimensional model representing a '*horizontal'!,
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or transverse, section through the chest at the level of the cardiac
ventricles., The cross section was represented by three concentric circles.
The specific resistivity of the interior of the innermost circle corre-
sponded to that of blood. The annular region defined by the 'middle"
circle and the innermost circle had a specific resistivity corresponding
to heart muscle. The outer annular region had a specific resistivity
corresponding to that of lung tissue. The equivalent heart generator was
a dipole located in the ''middle' annular region. Orientation of the axis
of the dipole was arbitrary. Boundary conditions were that the potentials
and normal currents be continuous across the boundaries of the inner
annular region representing heart wall. The condition on the outer circle
was that there be no current outflow. The equations for the potential
everywhere were derived. The equations for the potential for the corre-
sponding three-dimensional problem (the circles replaced by spheres) were
also derived by Bayley and Berry [14].

Bayley and Berry later presented another two-dimensional nonhomo-
geneous model [15]. The cross section of the chest was represented by
five circles. The three innermost circles were concentric and represented
a slice through heart cavity, heart wall, and pericardial environment.

The outer two circles were concentric. But they were eccentric with
respect to the three innermost circles. The outer two regions represented
the lungs and body shell. The equivalent heart generator for the model
was a double layer arc of uniform strength located in the region repre-
senting heart wall. Each of the five regions was of different specific
resistivity. Space exterior to the 'body' slice was of still a different

resistivity. Boundary conditions were that the potentials and normal
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currents across each of the five circles be continuous. Equations for the
potential in each region were derived.

Equations for the potential in the analogous three-dimensional
mode| were also derived by Bayley and Berry [16]. Here, spheres replace
the circles of the two-dimensional model. An 'extra'' sphere was added
that delimited a region corresponding to the '"musculo-skelatal’ region of
the body. The double layer arc was replaced by a double layer cap of
circular rim and of uniform strength. While the endpoints of the double
layer arc in the two-dimensional model could be chosen arbitrarily, the
three-dimensional double layer cap was restricted. ([t was required that
the axis of the circular rim of the double layer cap be coincident with
the line of joining 'body'' center to '"heart'' center. The geometry is

depicted in Figure 1.

Fig. l--Geometry of Model Assumed by Bayley and Berry [16].
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From analysis of an electrocardiogram, the cardiologist can deter-
mine a vector known as the ‘''resultant cardiac dipole''. Tﬂe direction and
magnitude of this vector are related to the distribution of electromotive
forces within the heart.region. Gabor and Nelson [17] presented'a me thod
for determining the location, orientation, and strength of this 'resultant
cardiac dipole' from potential measurements on the surface of the human
body. As a basis for this work, they assume that the human body is homo-
geneous and isotropic. It was not necessary for them:.to assume any
particular body shape. In their derivation of the system of equations for
the unknown location, unknown orientation, and unknown strength of the
resultant dipole, they did apply the boundary condition that there be no
current outflow from the body surface. The direction and the strength of
‘the dipole is determined by a surface integral. Integration is carried
out over all of body surface and the body surface potential is included
in the integrand. The system of equations for determining the location
of the equivalent dipole is linear. The constant terms are surface inte-
grals and the body surface potential is involved in the integrand.

Berry [18] derived the system of equations for determining the
equivalent dipoie location, orientation, and strength for a two-dimen-
sional, or planar, homogeneous and isotropic conductor., The boundary of
the conductor is required to be a simple, closed, orientable, and recti-
fiable curve, Space exterior to the conductor is required to be an
insulator. The direction and the strength of the equivalent dipole is
determined by a line integral. |Integration is carried out around the
boundary of the conductor. The boundary potential is involved in the

integrand. The system of equations for the determination of the location
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of the equivalent dipole is linear. The constant terms are line integrals
and the boundary potentials are involved in the integrand.

Berry then assumed that a cross section of the human chest could
be represented by a circle or an ellipse. Clinically, potentials can be
measured at only a limited number of points on the body surface. Thus the
line integrals were approximated by a modified trapezoidal rule. The
points in the approximation then correspond to electrodes at which the
potential is measured. The number of points in the approximation was
varied fron 6 to 72. Experimental data given by Bayley [19,20] was used
by Berry for the calculation of dipole location. Berry found that the
knowledge of the potential at as few as nine points was sufficient to
specify the location of the dipole within a circle of radius 5 mm. The
points were spaced at equal arc lengths around the ellipse.

Bellman et al [21] have developed a model that applies partic-
ularly to ventricular depolarization., The ventricles are divided into a
number of segments. A dipole is located at the center of each segment and
is oriented normal to the surface of the segment. The body is idealized
to be homogeneous, isotropic and of infinite extent. From potential
measurements on the surface of the body, it is required to dgtermine the
strengths of each of the dipoles as a function of time. Bellman chose the
number of ventricular segments as five and measures the potential at three
points on the body surface. Potential measurements are made at equal time
intervals of one millisecond. Eighty potentiais are measured then at each
of the three points on body surface. A specific form for the dipole
strength as a function of time is assumed. The form contains three

unknown parameters. The potential then at a point on body surface is
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assumed to be the sum of the free space potentials of the five dipoles.
Each such potential, termed 'produced-potential', is a function of fifteen
unknown parameters. The criterion for determining the parameters is that
the sum of the squares of the differences of the ''produced potentials"
and observed potentials be minimized. The minimization is carried out
by Bellman's technique of ''quasilinearization'' [22]. Bellman notes that
the computational load is considerable for an IBM 7044, The computational
technique involves the solution of 110 simultaneous linear differential
equations and solving a system of ten simultaneous linear equations at
each stage in the calculation, Bellman further notes that much remains
to be done in investigating the range of convergence of the method and the
determination of the effect of errors in the observed surface potentials.

The physiological implications of the models described here have
contributed greatly to cardiology. However, these implications will not
be discussed here. In chapter ||, theorems are derived that facilitate
the determination of the potential in problems involving circular and
spherical geometry. In chapter 111, theorems are derived that facilitate
the determination of the location and strength of some assumed equivalent

hesrt generators in problems involving circular and spherical geometry.



CHAPTER 11
MATHEMATICAL MODELS FOR ESTIMATION OF BODY SURFACE POTENTIAL

The first four theorems and two corollaries to be presented here
will characterize the solutions to some two-dimensional potential problems
associated with electrocardiography. Two-dimensional laboratory models are
easier to construct than three-dimensional models for purposes of experi=
mental verification of theory and evaluation of measuring or detecting
devices,

Theorems 5 and 6 are concerned with three-dimensional potential
problems. The purpose of the three-dimensional models is to predict body
surface potentia’s due to an assumed source-sink distribution.

The boundaries to be considered in the two-dimensional problems
will all be circular. The surfaces to be considered in the three-dimen-
sional problems will all be spheres.

The distributions of current sources and sinks giving rise to a
potential will be ''usual distributions! in the sense of Kellogg [23]. Thus,
distributions will be of the form of a finite number of point current
sources or sinks or a piecewise continuous distribution of point current
sources or sinks. The distributions can also be a finite number of current

dipoles, quadrupoles, etc., or a piecewise continuous current double layer

distribution. All such distributions will be bounded in the sense that
there exists a circle [sphere] of finite radius containing the distribution

10
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giving rise to the potential in two dimensions [three dimensions]. More-
over, the algebraic sum of all sources and sinks will be zero in any dis-
tribution to be considered herein. Henceforth the word ''distribution"
will be synonymous with the term ''usual distribution of zero net pole
strength.'

All boundaries or surfaces will divide the underlying two- or
three-dimensional space into a finite number of contiguous regular regions
[24]. In each region the resistivity will be constant. However, the
resistivities of the regions will differ in general. Moreover, the loca-
tion of the distribution giving rise to the potential is assumed not to
have any points in common with the boundaries or surface.

Under these assumptions, the following theorems are applicable
[25 )

a) The potentials of the distributions have partial derivatives
of all orders which are continuous at all points of free space
except at boundaries or surfaces separating regions of differ-
ing resistivity.

b) The potentials of all the distributions satisfy Laplace's
differential equation at all points of free space except at
boundaries or surfaces separating regions of differing resist-
ivity.

c) On a boundary or a surface separating regions of differing
resistivities, p, and p,, the potential is contiruous. The
normal derivatives are disconfinuous in general; but, the
normal component of the current flow across the boundary or

surface is continuous,
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A point is a point of free space provided it is exterior to some region
containing the distribution giving rise to the potential.

These assumptions are sufficient to guarantee that the potential
due to a usual distribution is developable in a convergent series of cir-
cular harmonics (two-dimensional problems) or spherical harmonics (three-
dimens ional problems) in each region of constant resistivity {26]. The
series is valid only at points of free space within or on the boundary of
a region,

Let (r,0) be polar coordinates of a point in the plane with refer-
ence to some arbitrary point and axis direction., Then the potential ® in

any region of constant resistivity in the plane is in general of the form

[27]
o(r,0) = (ay8 + by) (co Inr + do)
+ z:(ancos nB + bysin ng) (c,r™ +d, r %),
n=1
where a,, b, ¢;, and d, for i = 0,1,2,--~are constants. The potential

must be single-valued, Thus ap = 0. As the distributions giving rise to
the potential are bounded (in the sense described) and the algebraic sum
of the strength of the sources and sinks is zero, we may assume that the
reference potential may be taken to be zero at infinity. Thus bycy =0
and bod, = 0. Consequently, in the two-dimensional problems to be
considered here, the free space potential due to a distribution will be
of the form

Cp(r:e) =z (Cnrn + dnr—n)sn}

n=1

where S = a cosnf +b sin nd.
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Theorem 1. Let »(r,0) be the free space potential of a distribution which
lies interior to a circle C of radius a. |[|f the medium interior to C has
specific resistivity p, while all space exterior to C has specific resis-

tivity po, then the functions o, (r,n) and g (r,8) defined by

2

) - 1l -pi/p a
@1(r,6) —cp(r,e) +[] +pi/p0]c‘p<r )e>) r=a, (n
and w(r,8) = T+ éx/po o(r,8), r 2 a (2)

have the properties:
a) o,(r,0) and g (r,08) satisfy Laplace's equation interior to
their respective domains of definitions at all points of free
space.

b) on C: (a,G) = %(319):
gp;(a,08) _ 1 Swm(a,B)

.1 1
c) on C: o 5" - >

Proof: o(r,8) is harmonic for r =2 a. Therefore, o(a®/r,0) is harmonic
for r < a as a transformation by inversion leaves a harmonic function
harmonic [28]. As scalar multiples and sums of harmonic functions are
harmonic, then ¢, (r,8) is harmonic wherever o(r,8) is harmonic for r = a
[29). @ (r,0), a scalar multiple of ¢(r,8), is harmonic for r =a.
Conclusions b) and c) of the theorem may be verified directly.

Corollary 1.1. If the medium exterior to C is made nonconducting, i.e.,

Pfo = @, then the solution to the special Neumamproblem of no current out-

flow from C for the circle is

]
%(":9)=CP(":9)+CPQ?.—,6 , r = a, (3)

Corollary 1.2. |If the medium exterior to C is nonconducting, then the

potential on the boundary C is exactly twice the value of the free space

potential.
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In applied problems, the free space potential of the distribution
is obtained easily, usually in closed form. |In electrocardiography, the
boundary potentials are the ones of main interest, for these are generally
the only potentials measured. Corollary 1.2 provides a remarkably simple
means of calculating these boundary potentials for two-dimensional homo-
geneous circle problems. For the particular distributions of an equal
strength source-sink pair and for a dipole, Nelson and Gastonguay [30]
deduced the conclusion of Corollary 1.2 from the solutions for these
particular distributions [31,32].

As an example, consider a dipole of strength M located at the
point (ro,8) in the plane. The axis of the dipole makes an angle @ with

respect to the polar axis. The free space potential of the dipole is (334

‘ _Mlr cos (8 - a) = rg cos (Bg - o)l
®(r,0) = 4+ ro° - 2rr, gos (6 - &) ‘ (4)

T
If the dipole is in a circular disk of radius a, and the specific resis-
tivity of the disk is p, while space exterior to the disk is of specific

resistivity pg, then according to Theorem 1,

_ 'r COS(G-QZ- r COS(en "a)
Py (r,0) =M L T r s - 2rroocos(6 - &)

(5)
1 - p. /o [ra® cos(B - g) - ror2cos(6y - J)]

I+ p,/pe/ \8" + rg2r2 - 2a®r,r cos (B - )

@ (r,0) = 2M [r cos(B = a) = rncos(8y - a)]. 6)

1 + 0,/ L r® 4+ rg® = 2rrocos(6 - &)
Particularization of the above to the corollaries is straightforward.

As another example, consider a double layer arc of strength M per
unit length with endpoints at (ro,0,) and {ro,8;) as replacing the dipole
in the preceding example. The free space potential of the double layer

arc is given by l1s5]
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-y rgsin(0, = 0) -1 nliln(ﬂ - 0,)
(r, 0) M[tan <; - rocos{s, - o/t " <} - rocos (A - )] (7

In the same manner as for the dipole example, application of Theorem 1|

yields

®, (r,8) = M{tan‘1<: rosin( - 6) + tan—l(~ Ta SIQKS - 62 21)

r - rocos{6, - 6) r = rocos (8
1 - 0,/p0 ~1(_far sin(61-6) 1/ rar sin(6-6,) ]
1+ pi/pc,} [ta a<-ror cos (A~ 9 T> * tan ( \a<-ror cos(e-92)> }’
_ M _of rasin(B;-8) -1 [ rgsin(6-8 ,
@ (r,8) = 1+ py/p0 [tan 1<-J‘-r°cos(81-9) + tan <}-rocos(9-825>] (9)

These equations were obtained by Bayley and Berry by first expanding the

free space potential into an infinite series and then applying the usual
technique of modifying the coefficients of the series to satisfy the
boundary conditions b) and c¢) of Theorem 1. Needless to say, applica-
tion of Theorem | produces the same result with a minimum of labor.
Theorem 1 now will be generalized to a geometric system in which
there are three regions of different resistivity. Let there be two con-
centric circles C, and C_ of increasing radii respectively a, and a,. The
medium interior to C, is of resistivity p,. The annular rcyion interior
to C, and exterior to C, will be of resistivity p,. All space exterior
" to C, is of resistivity p,. Let (r,n) be the free space potential of a
distribution located strictly interior to C,. Thus there is a circle C,
concentric with C, and of radius a, < a,, which contains the distribution.
Theorem 2: For the above geometric system with the free space potential
@(r,08) as assumed, the potential functions @, (r,0), pz(r,8), and pa(r,q)

defined by
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20 = 0+ ad (- 2) (0 2) oG ED ]
m=Q
(0D B E T

w9 = 2) af(+ 2o [ G5 e} (- )0 [G e )

a, =r = a,,

1

L z.A“ o ﬂigf:f' r,e], r 2 a,,

m=0

A= (0r[Q -2 - %?Ir/[(‘ -2 (1 + )] ata

have the properties:

s (r,0)

where

a) on C.: ©;(@;,0) = 941(a;,0), i=1,2,

1 3 1
b) on Cy: o, or Cpi(ai,e) —rﬂ

Proof: A method due to Power [34,35] will be used. The free space

d .
3¢ P+ (@,,9), i=1,2.

potential o(r,8) may be written as

xR
CP(":G) =X AL r7" S, r 2 ag,
n=1

where A} depends on n and ag. S,

is a circular harmonic of degree n.

(10)

(13)

The functions ¢, (r,n), wy(r,8), and ¢,(r,0) are assumed to be of the form

[+

9, (r,6) = E: (Ajr™™ +BIr")S,, a, sr <a,,
n=1

P (r, 9) =

T~ 8

-—

(A2r~" + B2r")S,, a, S r < a,,

s (r,0) = AprTS ., a, sr.

T
-

n

(14)
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The Al (except A!) and the B} are dependent on n, the radii a,, a,, a,,
and the resistivities p,, p,, and p;. Demanding that properties a) and

b) of the theorem hold true requires that

A2 = 2(1 + %:) AAL,
A2 = LAAL,
an
! o= ]- Rl' 'Ez' BL - .EZ a—L aQ - A‘
Bi = {(- £ (1+ 52) + (14 1) (- BVE) J T ",
B2 = 2(1- £2) a*"a A1,
Pa
where
- D1y (14 B2 - By - B2y @1)° 1
o, = {(1+ og)( + ps) + (1 pa)( pa)(32) .
Formally,
2ns
@y (r,0) = ZAir"‘Sn =4 ZABA'nr‘“Sn, = z { ZA, (%;—) }r'“Al‘,Sn,
n=1 n=| n=1 m=o0
28 —n
=4 )A 22 15t
Lo LG s,
m=0 n=]
The series ZA; r 2§, converges absolutely [36]. ZA,,A,'l r~"s, also con-
n=| n=1

©

verges absolutely by comparison with ZA; r~"S,. The series expansion

n=1
for &, converges absolutely for each value of n by the ratio test.
Therefore by a theorem of Hobson [37] the double series is absolutely
convergent and hence can be summed either first on m or a. The sum on n

2n
is now merely cp[(a-a—?- r,e], and hence (12) is established. Equations
1

(10) and (11) are established in the same manner.
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Theorem 1 is obtained as a special case of theorem 2 if either
P, = P Or pa =py. |f either of these equalities cn the resistivities
holds, A, = o form / o. |If p. =p,, the ciicle C; is superfluous. The
circle C; of radius a, may be identified with the circle C of radius a of
Theorem 1. The functions ¢z (r,8) and ¢; (r,0) each take on the form of
¢ (r,d) of Theorem 1. The function o, (r,8) is identified with the function
¢y of Theorem 1. |If p;, = p,, the circle C; is superfluous. The circle
C, of radius a. may be identified with the circle C of radius a of Theorem
1. The function o, (r,8) and o, (r,6) each take on the form of the function
@, (r,08) of Theorem 1. The function e (r,8) is identified with the function
@ (r,8) of Theorem 1,

A computational algorithm for an arbitrary number N of concentric
circles {€C;}, i =1, ..., Nwill now be presented. The distribution giving
rise to the potential is assumed to be strictly interior to a circle C,
which is concentric with and interior to C,. The radii of the system in
increasing order are a,, a,, a5, ..., ay. The interior of C, is of resist-
ivity p, while the resistivities of the annular regions bounded by C,_, and
C, are respectively p;, i =2, ..., N. All space exterior to C, is of

resistivity py, ;.

Theorem 3: If o(r,0) = E:AL r"S, is the free space potential of a dis-
n=1

tribution for the above system, the potential functions o (r,8), i =1,

«v.y N+ 1 defined by

Py (r,8) =Z (Aar™ + B;r") So, SN, @y STy, (17)

n=1
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-n

N+1
CpN+1(I',Q) =Z A, r Sp,an =T, (18)

n=1
where S is a circular harmonic of degree n, have the properties that
a) on C,Z qj&(ape) = Cpx+1(ai:e)1 i=1,2, ..., N,

] .
%F o (@,,08) = —— —? Pueqp(@g,0), i =1, 2, ..., N.

b) on C,: 3

1
Py
The A} (except A}) and B; are constants depending on n, the radii a,, and

the resistivities p,.

If Z, = B, AY"*]" (superscript '""t" denotes transpose), i = 1,
2, ..., N, then the constants A, i =2, ..., N+ land B}, i =1, 2,
.. N are computed recursively by
Zy =Gy, Z, =Gy - WZysys 1 =1, 2, ooy N = 1.

The matrices G, and W, are defined by

\ 1=AW, 07, i =2,..0, N,

(
l - / -2n
0 - -——.—-&L.Qi&l. a
1+ 0/P143 ! W
A, = i=2, ..., N (19)
0 =20,/Py42
2
\ 14p4 /P14 y
\
(:Z.QJL&LT_L 0
1+p: /P14y
Cx = i=|,...,N"]. (20)
1-ps/Pissy a, dn 0
14p /Pyyy 1 }’

Proof: Demanding that properties a and b of the theorem hold leads to

the matrix equation

UX =V, (21)
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where U is a block tridiagonal matrix of the form

(B, c! )
AL B, CiY O
U=
0 Cioy
\ A By )
where
( _ \
0 a,”
Al = i =2, N,
0 %l a, "1},
\ ! /
( al -a, " W
B, = i =1, s, N,
l_ag ] a, "
\ Py Pi+1 ]
[ -a} 0
C, = i=1, 2, , N- 1,
- al 0
k Pi+3 1 ’
and

t t t5t
x=[2,, 2, ..., 2,)

]
' -n ] 1 -n ¢
V=|-Ala, ,—p:A,,a1 , 0,0, ..., 0/,

The matrices B; are non-singular so we may premultiply both sides of (21)

by the matrix
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_ \
/811
[ 82_1 0
0
\ -1
BN )

The resulting matrix equation is
ux =y,

where U, is block tridiagonal of the form

\ . A, | I
The matrix | is the 2 x 2 identity matrix, and A; and C, are respectively
the matrices in (19) and (20). The recursion scheme follows directly.
The computational algorithm for the Al and B! is a direct modification of
Schechter's algorithm [38]). The scheme requires N inversions, 2 N addi-
tions, and 4 N multiplications of 2 x 2 matrices. The scheme is equiv-
alent to reduction by Gaussian elimination [39].

Application of theorem 3 to electrocardiography is limited to
when no distinction is made between heart wall and heart cavity in the
model. In this case, C, usually represents a transverse section of the
'outer'' heart wall. However, the ratio of the spe?ific resistivity of
the heart wall to the specific resistivity of blood is approximately 2.5

[12]. Thus it is desirable to let C, and C, respectively represent a
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transverse section of the "inner'" heart wall and ''outer'’ heart wall. |If
this is the case, then the distribution giving rise to the potential is
assumed to lie in the annular region exterior to C, and interior to C,.
The most refined two-dimensional model of interest pertaining to
electrocardiography has been presented by Bayley and Berry [15]., The

geometry of the model is shown in figure 2.

Fig. 2.--Geometry of Model of Bayley and Berry [15].

There are five circular regions. The three innermost circles are
concentric about a point O - representing heart center. The innermost
circle of radius R, represents the heart cavity. It is surrounded by the
circle of radius Ry, and the annular region represents the heart wall.

The third circle of radius R, defines an annular region regresenting the

pericardial environment.
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The outer two circles are concentric about a point O representing
body center. The region interior to the circle of radius R, and surround-
ing the system of circles concentric at 0' represents the lung region. The
annular region between the circle of radius R, and the outermost circle of
radius Rg represents the torso-shell,

The specific resistivities for the five regions above are respec-
tively p;, i =1, 2, ---, 5. The distribution giving rise to the potential
is a double layer circular arc of constant strength M per unit length
located arbitrarily within the heart wall region. The dipoles forming the
doublie layer are oriented with their moments normal to the circular arc.
The endpoints of the double layer arc are denoted Q, and Q,. The distance
between heart center 0' and body center 0 is denoted by c. The region
exterior to the circle of radius Rg (body surface) is of resistivity ps.
The expressions for the potential in the system of the three innermost
concentric circles are given in terms of polar coordinates ({,y) with
origin at 0'. The expressions for the potential in the system of the two
outermost concentric circles are given in terms of polar coordinates (r,0)
with origin at 0. The x-axis passes through body center and heart center,
The polar axes for both polar coordinate systems coincide with the x-axis.

Seven infinite series are required to define the potential every-
where. Boundary conditions on each of the five circles are that the
potential and normal current be continuous. The double layer arc lies on
a circle of radius (. The normal current must be continuous across this
circle exclusive of the circular arc which is occupied by the double layer.

The series expansions for the potentials are as follows:
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x sin ny (cos ny, - cos ny;), R, < { < Rj, (25)

= Z: [ 13 2 LY 3 Y
Vg = M ;AanBn T + C, R.Z .

x cos ng (r,® sin n6; - r,® sin nB,)

Lo (1 2 () ]

x sin nf (r,® cos nB, - r,® cos np,), max(r,,ry)Sr<R,,

(I‘, <)) ¢ H, (26)

1 , T \" r °
=Mz ;Aananan" [(;) +K4<E;;> ]
n=1

n H - n H
x cos nB (r,® sin nB; - r,® sin n@,)

nL asnadl () ex ()]

x sin ng (r,® cos nB, - r,” cos ng;), Ry s r <Rg, 27

-1 8

+ M

T

1

n

V, = MKg

I~ 8

lAB18283<l>n 8
n aPn n n v coS n

1

il

n

n

x (ry® sin n0O, = r," sin nfy,)

«©

] n
+ MKSZ = AB.'8,%8,° (-IF) sin nf

n=1

x (ry® cos nB; - r,® cos nh,), Rg < r < =, (28)

Here, M represents the strength per unit length of the double
layer arc. The restriction (r,8) ¢ H in (26) means that the series is

not to be used for points located interior to the circle of radius Rj.
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Also, r, and r, are respectively the lengths from 0 to the endpoints Q, and
Q, of the double layer arc. T, A,, K, (i =1, 2, ===, 5); B,* and C,*
(i =1, 2, 3) are constants. The approach to evaluate the constants was
from "inside-out!'. This is as follows:
a) K, and K, were evaluated from demanding that the potential and
normal current be continuous across the circle of radius R;.

b) A

. and T, were evaluated respectively in terms .of K, and C.*

by demanding that the normal current across the circle of
radius (y (exclusive of the arc occupied by the double layer)
be continuous.

c) B, and C,' were evaluated in term: of C,® by demanding that
the potential and normal current be continuous across the
circle of radius R,.

d) B8,° and €, were evaluated in terms of C_® by demanding that
the potential and normal current be continuous across the
circle of radius R;. To complete the evaluation, it is neces-
sary to perform an inversion so that the circle of radius R,
centered at O becomes concentric with the circle of radius R,
centered at 0'. This is done by choosing as the center of
inversion either of the two common inverse points for these two
circles. After evaluating the constants, the inverted poten-
tial expressions were reinverted back to the original system.

e) K;, an additive constant, wes evaluated demanding that the free
space potential of the double layer arc at an arbitrary point
be identical whether measured with respect to coordinates

originating at either 0 or 0',
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f) B,? and C,® were evaluated in terms of K, by demanding that the
potential and normal current be continuous across the circle of
radius R,.
g) Finally, K, and K. were evaluated by demanding that the poten-

tial and normal current be continuous across the circle of

radius Rg.
The values for K,, i =1, 2, ===, 5 are as follows:
K. = —2—— g =Jl=p2/py
L7 4py/py? 2T l4po/py’
Ks = 0y + Qg
K o= Bsfpe  ___2
T 14pg/ps’ F l+pg/pe

Here, a, and g, are the angles defined as follows. Let Q; be one endpoint
of the double layer arc. If 0 is taken as a center of inversion and R, as
the radius of inversion, let Q) be the inverse point of Q,. If Q, is the
other endpoint of the double layer arc, let Q) be the corresponding inverse
point. Angle q, then is < 0Q}0' (Q] is the vertex) and angle a, is< 0Qj0'.
Constants I’y and A, are
F,=1-2¢C) (G/R)®, Ay =1 - K (R /G)?", n=1, 2, ---.(29)

The constants B! and C} are

BL =2 R?:Q lG; + (pi+1/pi+2) ﬁ;JﬂL) i=1,2,3;n 1, 2,---,

(30)

cl 1, 2, 33

fom = (Piy1/Piyz) BLITon + (P1ey/Praz) BRI, i
n=1,2,---,
where

ab = R3P, + CE*LREE,, i =1, 2; n=1,2, ---,

(31)

ey
B
1}

RiZ, = CLTREM, i =1, 2, n =1, 2, ---,
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The following theorem complements Theorem 1. Let there be given a
circle C of radius a. The medium interior to C is of resistivity p, while
the medium exterior to C is of resistivity p,.

Theorem 4: Let o(r,n) be the free space potential of a distribution

located exterior to C. Then the functions o, (r,8) and  (r,n) defined by

pi(r,p) = 715%755 plr,g), r <a,
1- 2
@ (10) = or,e) - (5289 E&0), a < 1)

have the properties
a) o;(r,0) and ¥,(r,p) satisfy Laplace's equation interior to
their respective domains of definition at all points of free
space,

b) on C: ®¥,(a,8) = q(a,0),

¢) onc: - 2@.0 1 ¥alaie)
Py ar Po or
The proof is analogous to that of Theorem 1. The analogs of the corol-

laries to Theorem | are presented next.

Corollary 4.1: If the medium interior to C is made nonconducting, then

the solution to the special Neumann problem of no current into C is
2
a
%(r9e) = CP(F;B) + CP(_r;B); a < r.

Corollary 4.2: |f the medium interior to C is nonconducting, then the

potential on the boundary C is exactly twice the value of the free space
potential.
The analog in three dimensions of Theorem | has been derived by

Power [35].
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Theorem g: Let | (r,0,9) be the free space potential of a distribution
located strictly interior to 3 sphere S of radius a. Then if p; is the
resistivity interior to S while py is the resistivity exterior to S, then

the potential functions ¢, and &, defined by

3

1-p,/pg @ . (@
¢y (r,0,9) = ¢(r,8,9) + T:%T7%§ T8 =0,
_(._A_Ea.}" / ag M2l
* (o, dpo)® T M AE Bl dh
i
o (r,0,) =—2—-¢>(r 8,%)
e l+pi/po 77
1-p,/ a s . a®
* (l+pi/po;2r & N 8,00,
]
o= .EL/_EQ_ 1 S\ < x,

T+0,/po’
have the properties:
a) on S: @1(8,9,¢) = @o(a;Q)Qﬁ-

b) ons: —— 200 13,080
04 or Po ar

If the medium exterior to S is made nonconducting, i.e., py — ®, the
interior sphere theorem of Ludford, Martinek and Yeh [40] is obtained.
However, the historical credit for this theorem should belong to Helm-
holtz |41], who derived the result in slightly different form. In the
event the medium exterior to the sphere is nonconducting, the potential

on the surface of the sphere is given by

2
5,(2,0,0) = 2 3(a,0,0) + | $(2, 8,0)dn. (32)
]

This is to be contrasted with the two-dimensional theorem which states
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that the potential on the circle is exactly twice the free space potential.
The free space potential (for a distribution of zero net pole strength in
three dimensions) can be written as

«©

¢(r,8,p) =Z re-is ,or < oa,
n=1

where S, is a surface harmonic. The justification for this form of the
free space potentials follows in a similar manner as described for the

two-dimensional form [42]. Then the integral in (32) is

«© @
)‘az 1 o+l
S@FTu&@dX=z;%ﬁ S,, 0 Sr <a.
| n=1

Thus | & (a,0,0) | <3| @ (a,9,9 |- (33)

Equality can hold. To see this, consider the result of Canfield
[3] for an electric dipole of strength M located at the center of the
sphere. |f the direction of the z-axis of a Cartesian coordinate system
coincides with the dipole axis, then

8, (r,8) = M Cos e(l—; + é;';). : (34)

Taking r = a, we see that equality does hold in (33).

Theorem 6 may be applied to obtain a generalization of Frank's
model [6].

let there be given an x-y-z Cartesian coordinate system C.
Consider the point 0', located a > 0 units from the origin 0 of C on the
z-axis, to be the origin of an x'-y'-z' Cartesian coordinate system C'.
Positive directions of z and z2' coincide. Respectively x' and y' axes are
translates of the x and y axes, The r'-9'-¢p' spherical coordinate system
S' has 0' as origin and the r-g-¢ spherical coordinate system S has 0 as

origin.
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Let there be given an electrical double layer cap with a circular
rim whose axis coincides with the z-axis of C (and hence with the z'-axis
of C'). Let the center of the circular rim be at the point 0'' whose
spherical coordinates with respect to S' are (b,0,0). Let the radius of
the circular rim be c, The double layer cap is further assumed to lie on
the surface of a sphere centered at 0' with radius h = / b® + c2. The
moment of the double layer is a constant M. The free space potential V'
at a point P whose coordinates with respect to S' are (r',9',¢') with

r' >h is known to be [ 6 ]

Vi(r,6) = Z )" e, (cos 61 PLD). (35)

Here, y is the conductivity of the medium. P, is the Legendre Polynomical
of degree n. P'n(%) is the derivative of Pn(%) with respect to b/h.
Suppose the double layer axis is rotated so that the point 0" is
now located at the point (b,8 ,% ) with respect to S'. A direct applica-
tion of the addition theorem [43 ] for Legendre functions yields the free
space potential V'(r',0',p') for the double layer cap with circuiar rim

centered at (b,8 ,%):

vi(r;8,9) = 2TYT :g Z Zo{(m-l) r n [(:ﬁ) ]P G ) Pa (Cos &)

x P; (Cos 8') Cos [m(CP'CPo)]}, r' >h,

where €, is the Neumann factor, € =1, €, =2 for m # 0.

The free space potential V(r,8,9) with respect to S is then

- 2"” €y (n-m+k) h 7 b
V(e,8,9) = S nz ,,,ZO kAo1 (nk+1) (:+mr2k)'k! @ P 56
x (9-) ¥ (Cos &) Py ¥(Cos 8) Cos [(m-k) (cp-qb)]} r >a + h.

r
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Suppose now a sphere of radius R >a + h centered at the origin of S.
Application of Theorem 6 yields the potential function &(r,@,q) for the
system such that the normal derivative of &(r,8,q) vanishes on the surface

of the sphere. The result is

© n m
27 Mc® €. o (n-m+k) ! hy2 ¥+ b
3(r, Ay0) = vy h? Z Z Z{(n-k+l)(n+m-2k).'k.’ (a) P"“‘(h)
n=1 m=0 k=0 (37)

x Piz(Cos &)[E) +@) @) (£2)" Pr¥ (Cos 6)Cosl (m-k) (>-) I},

a+h<r <R.
Physically, the origin O of the coordinate system corresponds to body center,
0' corresponds to heart center, and the double layer cap is located in the
heart wall, At the surface of the body, or on the surface of the sphere,

the potential is

] n m

_ 2m Mc® U p=y (2n+1) (n-m+k) ! by @k

3(r,8,0) = y h? Z Z Zn(n-k+ﬂ (n+m=2k) 'k! (R) (h)
n=1 m=0 k=0

b (38)
. x Paoy (F) PiZE(Cos By) P 7*(Cos p) Cos T(m-k) (¢re) J.

Bayley and Berry [16] obtained the potential functions for an
axially symmetric double layer in a nonhomogeneous sphere system. The
geometry of the system consisted of three concentric spheres about the
point 0' surrounded by three concentric spheres about the origin of S. The
sphere with the smallest radius R, about 0' denotes the '"heart cavity' and
the medium interior to the sphere is of resistivity p,. The second sphere
about 0' has radius R, and denotes the outer 'heart wall". The medium in
the annular region is of resistivity pa. The third sphere about 0' is of
radius R; and denotes the 'pericardial environment'. The resistivity of

this region is p;. The smallest sphere about the origin 0 is of radius R,.
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The medium interior to this sphere and exterior to the concentric spheres
about 0' denotes the ''lung region'' and is of resistivity p;. Concentric
with the '"lung region'' is a sphere of radius R,. This delineates the region
corresponding to the '"musculo-skelatal' shell of the body and is of resis-
tivity ps. Finally, the last sphere is of radius Ry. The surface of this
sphere corresponds to the 'body surface' while the region delineated
corresponds to the 'body fat pad''. The medium in this region is of resis-
tivity p;. The potential functions for the various regions were derived in
a similar manner as described for the two-dimensional model. The geometry

is shown in figure 3, Y

Fig. 3.--Geometry and Notation of Model Assumed by Bayley and Berry [161].

The potential on the surface of the ''body' is of particular

interest. This is given in the following theorem.
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Theorem 6: The surface potential for the system described above is

® n m
. 21 Mc o Z z \ ,,el_ (2n+1) (n=m+k) ! ntl ok
¢(Re,8,%) = L n(n-k+1) (n+m-2K) /K" (R ) )
=} m=0 k=0

(39)
x Pn-k(_)Pn-k(cos & )P (Cos B) Cos [ (m-K) () ].

The coefficients D  are defined by

= A8 82B%8%, n=1, 2, ...,

where
n+1 1-po/ Ry 2t
Ay = 1) 2B () eel2,.,
(— )+Pa/91
(2n+l) Rf:;l
B! = - i=1,2,3,4; n=1,2,...,
G.,i,'l* —n—)(pi+1/pl+2)6n
al = Rgp: 4+ (ﬂﬁl) ci*t; i=1,2,3,4; n=1,2,...,
81 = RIFLY - Ca*t RENTY; i=1,2,3,4; n=1,2,...,
. o
a'i- Il lA'l/ -] 1‘1 H
cl= , nifi 04+2) B O 1,2,3,4; n = 1,2,...,
Q-;,*'(T) (Pe+1/P142)B2
cs = 1.

While the coefficient B; can be written explicitly, the expres-
sions are quite cumbersome. For a given set of radii and resistivities,
the coefficients can be computed numerically very rapidly in this recur-

sive fashion by an electronic computer for any value of n.



CHAPTER 111

MATHEMAT | CAL MODELS FOR ESTIMATION OF HEART

PARAMETERS FROM BODY SURFACE POTENTIAL MEASUREMENTS

A number of investigators have been interested in characterizing
an equivalent heart generator to account for the potentials observed at
the surface of the human body [17,44,45]. As is well knéwn, there are
any number of distributions that create the same surface potential on a
poor conductor imbedded in an insulating medium [46,47]

Current techniques of electrocardiography assume that the body
surface potentials are due to a single dipole and that the human body
tissues are electrically homogeneous. {n general, it is found that the
assumption of a single dipole does not adequately account for the body
surface potentials [47,48]. Other investigators have suggested adding a
quadrupole or multipoles of higher order to the dipole as an equivalent
heart generator [44, 47, 49, 50]. In these publications, the human body
is assumed to be a homogeneous conductor.

Let p(Xo,Yos20) be a current source density distribution which is
zero outside the spherical domain V consisting of all points r < a,. The

potential ¢ at a point outside V is given by the following series [46]:

35
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Go = L{i z 'Tki.:_])—'— {SS ngygzél—m_K P (X0 ,Y020) dxodYod‘/o}

{n-m-k
n=0 m=0 k=0

T ay‘az"" ¥ [ ] } r >3- (ko)

The series shows that all that can be found out about the current distri-

bution p in r £ a, by measurements of potentials outside r = a, are the
properties represented by the magnitudes of the integrals in the above
series,

If r is sufficiently greater than a,, the derivatives of 1/r for
larger values of n become so small as to be incapable of measurement.
Thus, in practice, all that can be obtained by potential measurements are
the values of the integrals in the above series for n less than some finite
value that decreases as the distance r increases.

Suppose potentials Vo are measured on the surface of a sphere S of
radius R > ay due to the distribution p. Suppose the potentials can be
measured to € > o accuracy, i.e., |@o - qbl < ¢ everywhere on S. Let N be

sufficiently large such that everywhere on S

%)) e

n=N m=o k=0

{ S S S Xon 5Tk p(X05Yo0 520) dxodYodZoj

* Srsyrerrr [3]
Ox"oy¥koz® r | <e.

r=R
The existence of such an N is guaranteed by the uniform convergence of
the series. Then the numerical evaluation o,y OFf the first N terms of

the sum on n in the series for ¢, approximates ¢, to ¢ accuracy.
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Let there be given a second distribution p'{Xy,ys,20) distinct from
0(%0,Ye,20) which also vanishes outside V. The potential ) at a point out-
side V is given by a series of the same form as that for «, with p' replac-

ing p. Suppose the distribution p'(xy,ys,24) is such that
C ¢ o
‘S\Sygygzon . k[pl(x01YOJzo) - Q(onYo)Zo)]dxodYodzo =0

forn =0, 1, ===, N-1. If o5 \ is the sum of the first N terms of the
series for ¢y, then W,y = %o, n everywhere on S. Either truncated series
of course yields the same numerical approximation to V.

In particular, it has been shown [U6] that p'(xq,Ye,20) can be con-
sidered as a superposition of a point source, a current dipole, a cu-rent
quadrupole, ---, a 2%"! multipole located at the origin.

In equation (40) the term corresponding to n=o can be considered

as the potential of a source at the origin of strength

q = S S S P (%05 Y020 ) dxodyodzg
v

whose unit potential is

bo = %~
The integral defining q is exactly the total current in V. For a volume
conductor with insulated body surface (as is the case in the theory of
electrocardiography) there is no normal current across V. Hence q = 0.
There are three terms for n = | in equation (40). They can correspond to
potentials of three components D,,D,,D, of a vector representing a dipole
at the origin. The components are defined by

Du = S S Suop(xo’YO’ZO)dxodYr\dZO’ M= X,Y,2.
v
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The potentials due to the unit components of the dipole are

bu "'gﬂ[] B, 0= xy,2

The nine terms of the type for n = 2 in equation (37) can corre-
spond to the potentials of nine components Qug, M = X,y,z and 0 = X,y,z of
a dyadic representing a quadrupole at the origin. The components are

defined by

Quo = S S S “chp(XO:Yo:Zo) dxodygdzg, M = X,Y,2, 0 = X,Y,2
v

The potentials due to the unit components of the quadrupole are

Yuo = ; [—] = %g 2r3s M T X525 0= X,¥,2
Here Sug = | when 4 = o and §yg = 0 when u # o.

For larger values of n there are triadics, tetradics, ---,
éolyadics representing 2° - poles, 2% - poles, ---, 2" poles at the origin.

Graphical arrangements of dipoles and quadrupoles are given in [46].
Thus Mo, n can be expressed as
¢8,N =q Vo + D,y + D4, + 0.y, + Qeylies + Qylyy
+ QpVzz + 2Quy¥xy + 2QxoV¥x, + 2Qy ¥y, + =77,
where q = 0 for problems in electrocardiography and the series terminates

with the inclusion of the potentials due to all components of the 2""!

pole and the multipoles of lower order.

Suppase now that the human body geometry is represented as a
sphere of radius R. Suppose that % ,n is the free space potentiaivdue to
the electrical activity of the human heart. Taking q as zero and assuming
the human body is immersed in air, the potential &(R,8,p) on the body

surface is determined by substituting qg,N in equation [32]:
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PR 0,0 = D,[24x (R, 8,0 + § ¥, 08°,8,0)dM]
1

£ 0,124, (R,0,0) + ) 4, ORZ,8,@)d1]
]

(41)

+ 0,026, (R,0,0) + § ¥.0R%,8,0)1]
1

[>-]

+ Q,,[Z\Pxx(R, SJCP) +S ‘hxx()\Rz) B)CP)dx]
1

+ ===,

when the transformation X = R sin §cos ¢, vy =R sin 6 sin o, z =R cos g
has been made to spherical coordinates.

The equivalent heart generator is determined when the constants
Dy, Dy, D, Qgys ..., @re determined. Suppose there are m of these
constants to be determined. Then potential measurements at m + | points
on the spherical surface representing the body can be made at points P,,
Pay === P,,,. This generates from (41) a linear system of the form

$(P,) - 8(Py)) =a,,0_+a,,0, +a,,D, + --~---

3(P,) - 8(P,) =a,,D, + a,,D, +a,,D, + -====-

2(Puyy)=8(Py) = a,,D, + 3,50y + 245D, + --==--
The right hand sides of the above equations consist of m terms., The
points P,, P,, === P,,, must be chosen such that the determinant of the
coefficients does not vanish,

The above process of determining an equivalent heart generator is

due to Martinek, Yeh, and DeBeaumont [49]. Slight variants of the above
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process have been presented by Plonsey [50 ] and Geselowitz [44]. The
approach, however, is clinically impotent because nothing can be inferred
about the actual heart generator which is located in the heart muscle which
is not at the center of the body. Also, the effects of the differing
resistivities of body tissue are not considered. The above type of approach
was considered by Wilson et al (48] in 1946 and rejected as being clini-
cally useful,

A better approach is due to Gabor and Nelson [17]. Here, the
equivalent heart generator is assumed to be a dipole. But the location of
the dipole is to be determined along with its orientation and strength.
Again, the principal objections to their approach are that the actual heart
generator is not a dipole nor are the differing resistivities of body
tissues taken into account. However, it will be shown here that the Gabor-
Nelson equations can be used to characterize what is believed to be the
actual heart generator. Moreover, the differing resistivities of the body
tissues can be taken into account.

Consider first the two-dimensional problem of determining the
equivalent dipole by the Gabor-Nelson equations when the actual generator
is a double layer arc. The boundary of the conducting medium is circular
and the medium is homogeneous. Further, the conducting lamina is imbedded

in an insulator. The Gabor-Nelson equations then are [18]

27 27
M, = kRS V cos 8do, My = kRS V sin 6d§,

0 0 (42)

21 27
, X Mg =y My = kR2S V cos 26d9, x M, + yM, = kRBS V sin 26d86.
0 0
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R is the radius of the circular lamina, k is the conductivity of the

V(R,0) is the potential on the boundary of the lamina.

1

lamina, and V
M, and M, are respectively the x and y components of the moment of the
equivalent dipole, and X and ; respectively are the x and y coordinates
of the equivalent dipole,

The boundary potential V for a uniform arc of double layer in the

homogeneous circular lamina is [15]

o]
V = MZ-:; R""[cos nB(risin np, - r3 sin ng,)
n=1

(43)

+ sin ng(ricos n, - r} cos ng,) 1.

M is the moment per unit length of the double layer arc. The endpoints of
the double layer arc are at (x,,y,) and (xz,y,), where x;, = ry cos g, ,
Y, = rysin gy, i =1,2. Substituting (43) into equations (42) and carry-
ing out the integrations yields the following theorem:
Theorem 7: The equivalent dipole location for a uniform double layer arc
in a homogeneous circular conducting lamina imbedded in an infinite insu-
lating medium is at the midpoint of the straight line segment joining the
ends of the double layer arc. The orientation of the equivalent dipole is
perpendicular to this line segment., The strength of the equivalent dipole
is proportional to the product of the moment per unit length of the arc
and the length of the line segment joining its endpoints.

In terms of the notation as defined above,
(72) (x;, + x,), vy = (1/2)(y, +v,), (k)

Mo = 2nkM(y, = vo), M, = 2nkM(x, - x;).

X

The dipole is oriented at the angle tan™ (M,/M,) with respect to the x-axis

of the coordinate system.
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The boundary potential V for a uniform double layer arc in the
nonhomogeneous circular laminar of Bayley and Berry [15] is obtained by
setting r = R; =R in equation (27). The resistivity ps is made infinite.

Thus K, = 1. The equation for the boundary potential is

<
It

M }:% D,R""[cos ng(r3 sin ng, - rJ sin n@,)
n=! (45)

+ sin ng(r) cos ng; - rf cos ng,)],

D

D

A, BLBZBS,
The coefficient D, is obtained from equations (30), (31), and (32). As
before, the endpoints of the double layer arc are at (x,,y,), where
X, = r, cosg , y, =r, sing,, i = 1,2, Substituting (43) into (42) and
carrying out the integration yield the following theorem:
Theorem 8: The Gabor-Nelson equations when applied to the nonhomogeneous
conducting lamina of Bayley and Berry [15] yields the following location
(x,y) for the equivalent dipole:

e DB, ), Y= DEI G+ (16)

1 1

The strength of the equivalent dipole is

M, = 2nkD M(y, = vy ), My, = 2rkD M(x, = x,).

The dipole is oriented at the angle tan™ (M /M,) with respect to the x-axis
of the coordinate system,

Therefore, to correct for nonhomogeneity, the x and ; coordinates
above must be multiplied by D,/D, to obtain the true location (x,,y,) of
the midpoint of the line segment joining the endpoints of the double layer
arc. Note that the orientation of the equivalent dipole, however, is
unaffected by the nonhomogeneity of the conduqting lamina.

For a spherical medium, the Gabor-Nelson equations are [17]
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2n no
M, = kR~ g g V PS(cos 8) sin 6 cos @ da doy,
0 0
20 1
M, = kR2 S giv S (cos 0) sin 8 sin o df do,
00
20 @
M, = kR® S S V PS(cos 0) sin 6 d6 dy,
00
(47)
2w
XM, + yM, = %Ra S S V PZ(cos 6) sin 8 sin 2¢p d6 dop,
00
2
7M, + ;M, = —g-kR3 S S v Pé(cos 8) sin @ sin ¢ do dep,
00
VAL 1
XM, + zM_ = %kRa S S V P3(cos ) sin pcos ¢ dn do.
00

Mx, My, and M, are respectively the x, y, and z components of the strength
of the equivalent dipole. The location of the equivalent dipole is at the

point (x,y,z). The P; (cos n) occurring in the integrands are the

Legendre's associated functions of degree j and index i [51]). V is the
potential on the surface of the sphere.

The surface potential of a uniform double layer cap in a homo-
geneous-sphere surrounded by an insulating medium is given by equation (37).
Substituting (37) into equations (47) and carrying out the integrations
yields the following theorem:

Theorem 9: The equivalent dipole location for a uniform spherical double
layer cap in a homogeneous conducting sphere is at the midpoint of its

circular rim. The orientation of the equivalent dipole is normal to the
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rim. The strength of the equivalent dipole is proportlional to the product
of the moment per unit area of the double layer cap and the area of its
rim.
In terms of the notation for equation (37),

b sin 6y cos g, Yy = b sin fo sin ¢, 2 =a + b cos 8, (48)

X

M, = 41PMc®k cos o sin Ay, M, = br*Mc3k sin ¢ sin &,
M, = 4PMc®k cos 6.

The surface potential for a uniform double layer cap in the non-
homogeneous spherical conductor of Bayley and Berry is given by equation
(39). Substituting (39) into equation (47) and carrying out the integra-
tion yield the following theorem:

Theorem 10: The Gabor-Nelson equations when applied to the nonhomogeneous
spherical conductor of Bayley and Berry [16]. yields the following location

(;, ;, ;) for the center of the rim of the double layer cap:

X=b (—3—2) sin 8 cos @, y = b (—g-a) sin B sin @,
1 1
o, (49)
z = (33)(3 + b cos &).
1

The moment components are
My = bPMc2D,keosqy, singy, M, = 4T°Mc®Diksing sin fy,
M, = 4r°Mc®Dk cos &.

Therefore, to correct for nonhomogeneity, the ;, y, and z coordi-
nates above must be multiplied by D,/D, to obtain the true location (;,,,
Yu, 2,) of the center of the rim of the double layer cap.

The application of the Gabor-Nelson equations in respectively
either two or three dimensions yields the location of the midpoint of the
double layer arc or the center of the rim of the double layer cap when the

calculated locations (x, y) or (x, y, z) are multiplied by the factor



45
(D../D,). The orientation of the line segment joining the endpoints of the
double layer arc or the rim of the double layer cap are also obtained from
the Gabor-Nelson equations without any correction for nonhomogeneity. The
endpoints of the double layer arc or the radius of the rim of the double
layer cap are still unspecified. However, physiological considerations

dictate that the heart generator must lie in or on the heart wall, roughly

0.5 cms thick.



CHAPTER IV

SUMMARY

Ten theorems and four corollaries have been presented. With the
exception of Theorem 5, all are the work of this author. These theorems,
all concerned with potential theory, were motivated by applications to
the medical science of electrocardiography.

Theorem 1 provides an elegant solution to the problem of deter-
mining the potential everywhere in a plane due to a distribution located
interior to a circle whose specific resistivity differs from that of the
surrounding media. The theorem is elegant in that the potential at a point
P is simply given as a linear combination of the free space potential at P
of the distribution and the free space potential of the distribution at
the inverse point of P with respect to the circle. The method of proof
of Theorem 2 was originally used by this author to prove Theorem 1. The
boundary conditions across media of differing resistivity as assumed in
Theorems 1 thru 6 are derived, for example, in |52]. As the proofs of
Theorems 1 and 4 are so simple, it is somewhat surprising that these
theorems apparently have not been published previously.

Theorem 2 deals with two concentric circular media of differing
resistivities with the rest of the plane of still another resistivity.

Here the potential everywhere due to a distribution located interior to

45
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the innermost circle is given in terms of infinite series involving the
free space potential of the distribution,

Theorem 3 is an algorithm suitable for machine computation of the
potential anywhere when N concentric circular media of differing resistiv=
ities are involved. For applications to electrocardiography, N would
never be greater than six,

Theorems 2 and 3 are concerned with potentials in concentric
circular media. A more physically realistic model of a transverse cross
section of the human chest is obtained when the geometry consists of two
systems of concentric circular media, with one system eccentric to the
other. Such a two-dimensional nonhomogeneous model was presented by
Bayley and Berry [15]. In this case, the distribution was a double layer
circular arc.

Bayley and Berry (16 | published the solutions for the potential
everywhere in a three-dimensional analog of their two-dimensional nonhomo-
geneous model (15]. The distribution was a double layer cap. However,
the double layer cap was required to be concentric about the line joining
""heart'' center and 'body'' center. Theorem 6 removes this restriction and
allows the double layer cap to be located anywhere in the '"heart wall."
By particularizing the resistivities, the radii, and the double layer cap
location and strength in equation (39), the effects of abnormal resistiv-
ities on the potentials at the surface of the '"body'' can be studied with
the use of a computer. Perhaps such studies will result in significant
clinical interpretations.

Theorems 7 and 9 show that the Gabor-Nelson equations [17] can be
applied to the determination of the orientation and strength of an.equiv-

alent double layer arc or doubie layer cap respectively in two-dimensional
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or three-dimensional homogeneous conductors, This is significant in that
the clinician believes that the heart generator is a double layer cap
rather than a dipole as used by Gabor and Nelson.

Theorems 8 and 10 show further that the Gabor-Nelson equations can
be applied to the determination of the orientation and strength of an
equivalent double layer arc or double layer cap respectively in two-
dimensional or three-dimensional nonhomogeneous conductors. Theorem 10
could be applied to obtain an approximation for the strength and orientation

of the heart generator in a human subject.
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