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M A TH E M A TIC S  OF E LECTRO CARDIO G RAP HY

CHAPTER I

_  INTRODUCTION

Heart muscle belongs to a class of  l i v in g  structure  known as 

exc it ab le  t issue .  Such t issue is character ized by i ts  a b i l i t y  to generate  

an e l e c t r i c  f i e l d .  Body surface poten t ia ls  due to heart e x c i t a t io n  can be 

measured accurate ly  by an electrocardiograph.  The structure of  the poten­

t i a l  versus time curves recorded by an electrocardiograph often enables 

a s p e c ia l i s t  to diagnose cer ta in  heart a i lments .  Two types of mathema­

t i c a l  models in p a r t i c u l a r  are o f  special  in te r e s t  to  the e le c t r o c a r d i o l ­

o g is t .  In both types,  the body shape is approximated by a geometric con­

f ig u ra t io n  such as a sphere, c y l in d er ,  or e l l i p s o i d .  The spec if ic  

r e s i s t i v i t y  o f  the various body t issues must be assumed. The s p ec i f ic  

r e s i s t i v i t y  o f  the medium external  to the body must also be assumed. In 

one type of  model, the locat ion,  o r ie n t a t io n ,  and strength o f  the equiv­

a le n t  heart  generator  (a dipole or a double layer of  uniform strength ,  for  

example) is s p ec i f ied .  I t  is then required to der ive an equation fo r  the 

determination of  the po tent ia l  on the surface of  the "body." In the other  

type of model, the po te n t ia ls  on the surface of the "body" are given and 

the equivalent  heart  generator is spec if ied  as to type. I t  is then re ­

quired to der ive equat ions for the determinat ion of  the locat ion,  o r ie n -
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t a t io n ,  and strength o f  the equivalent  heart  generator .  Both of these 

types of  problems w i l l  be considered in th is  d i s s e r t a t io n .

Wil lem Einthoven was the f i r s t  to id e a l i z e  the human body as a 

s p ec i f ic  e l e c t r i c a l  conductor and the heart  as a s p e c i f i c  e l e c t r i c a l  

generator [ 1 ] .  He id ea l ized  the human body as a homogeneous, iso trop ic ,  

spherical conductor o f  f i n i t e  conduct iv i ty .  Space e x t e r io r  to this sphere 

had the same c o n d u c t iv i ty .  The heart was represented by a dipole located 

a t  the center  o f  t h is  sphere. The d i rec t io n  and strength of the dipole  

varied with t ime;  however, the axis of  the dipo le was assumed to l i e  in a 

f ixed  plane. Experimental ly ,  Einthoven studied the p otent ia l  di f ferences  

measured between three points on the body surface and a reference te rm ina l .

The three points on the body surface were chosen as a point  on the r ight

arm, the l e f t  arm, and the l e f t  leg. In his model, the corresponding 

points formed an e q u i l a t e r a l  t r i a n g l e .  The plane determined by th is  

t r i a n g le  coincides w i th  the plane of  the axis of  the d ipole.  The ve r t ic es  

o f  the t r i a n g l e  a lso  were on the surface of  the sphere. Einthoven then 

derived the expressions fo r  the p o ten t ia l  a t  the ver t ic es  of  the t r i a n g l e .

Bay ley notes the fo l lo wing  object ions to  th is  model [2 ] ;

a) The human body can hardly be considered as spher ical .

b) The e l e c t r i c a l  proper t ies of body t issues are nei ther  

homogeneous nor iso trop ic .

c) The equivalen t  heart  generator is not a dipole whose axis  

remains in a f ix ed  plane, nor is i t  a dipo le located a t  the 

"center"  o f  the body.

d) The contact  regions of  the ex t re m i t ie s  of the human body do 

not, in general ,  correspond to v e r t ices  of  an e q u i la te r a l  

t r i a n g l e .
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e) The human being does not normally l ive  in an environment whose 

e l e c t r i c a l  propert ies are the same as those of body t is sue .

Several other  models have been proposed th a t  attempt to  take in to  

account one or more of  Bay l e y ' s observat ions.  H i s t o r i c a l l y ,  the next 

model was proposed by Canf ie ld [ 3 ] .  He reta ined  a l l  of Einthoven's 

assumptions except one: the human body was imbedded in a i r ,  a good

in su la tor .  The boundary condit ion on the surface of  the sphere was that  

there be no curren t  outf low.  Canfield obtained the expression for the 

potent ia l  i n t e r i o r  to  and on the surface o f  the sphere.

Wilson and Bay ley [ 4 ]  have general ized  Canf ie ld 's  model consid­

erab ly .  While the body was s t i l l  represented as a sphere, the dipole  

representing the equ ivalen t  heart generator is located at  an a r b i t r a r y  

point  i n t e r i o r  to  the sphere. The axis of  the dipole is pointed in an 

a r b i t r a r y  d i r e c t i o n .  The sphere was imbedded in a i r .  They derived the 

equation for  the p o te n t ia l  everywhere i n t e r i o r  to and on the surface of  

the sphere under the boundary condit ion o f  no current  outflow from the 

surface of  the sphere.

in 1 9 3 9 , Bay ley [ 5 ]  used a double layer cap with a c i r c u l a r  rim to  

approximate the heart  generator .  The cap was o f  uniform strength.  The 

body surface was represented as a sphere. The center  of the c i r c u l a r  rim 

of the double layer  was coincident  with the center  o f  the sphere. Frank 

[ 6 ] general ized Bayley's model in 1953 so th a t  the center of  the rim no 

longer was coincident  wi th  the center of  the sphere. However, his model 

does require that  the axis o f  the rim pass through the center of  the  

sphere. Both Bay ley and Frank derived equat ions fo r  the p o ten t ia l  every­

where i n t e r i o r  t o  and on the surface o f  the sphere. The boundary condi-
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t i on of  no curren t  outflow from the surface of  the sphere was a lso  imposed 

in t h e i r  so lu t ions .

Since 1957, some models have appeared in the l i t e r a t u r e  which 

approximate the geometry of  the body by sol ids other than spheres. Yeh 

and Ma r t  i nek [7J determined the p o te n t ia l  due to an ec cen t r ic  dipole of  

a r b i t r a r y  axis o r ie n t a t io n  in a p ro la te  spheroid imbedded in an insu la tor .  

In the same pub l ica t io n .  Berry [ 8 ] presented L . J . Chu's [ 9 ]  corresponding 

solut ion fo r  the oblate spheroid.

Okada [ 1 0 ] obtained the p o te n t ia l  fo r  a dipole  or ien ted and 

located a r b i t r a r i l y  in a homogeneous c i r c u la r  cy l inder  of  f i n i t e  length.  

The po te n t ia l  of  the dipole in a homogeneous e l l i p t i c  cy l in d e r  of f i n i t e  

length has been obtained by Mackey [ 1 1 ] .  These cyl inders are imbedded in 

an in su la to r .

These models, except fo r  Einthoven's,  take in to  account the fact  

that  the human being l ives in a medium of  s i g n i f i c a n t l y  d i f f e r e n t  e l e c t r i ­

cal propert ies  than those of human t is su e .  The four l a t t e r  mentioned 

models attempt to b et ter  approximate the body geometry. Frank's model, 

whi le re ta in in g  the sphere to represent body geometry, is perhaps more 

r e a l i s t i c  in terms of the equivalen t  heart  generator .  These models, 

except for  Einthoven's and C a n f i e l d 's ,  a l low the locat ion o f  the equiv­

a le n t  heart  generator  to be a t  a point  other than the "cente r"  of the 

body.

Studies by Rush, Abildskov, and MeFee [ 1 2 ]  show that  the spec if ic  

r e s i s t i v i t y  o f  various body t issues and blood can vary s i g n i f i c a n t l y .

The f i r s t  model to  consider nonhomogeneity was publ ished by Bay ley and 

Berry [ 1 3 j .  This was a two-dimensional model represent ing a "ho r izon ta l" .
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or  t ransverse, sect ion through the chest at  the level o f  the cardiac 

v e n t r ic le s .  The cross sect ion was represented by three  concentric c i r c l e s .  

The spec i f ic  r e s i s t i v i t y  of the i n t e r i o r  of the innermost c i r c l e  corre ­

sponded to  that  of blood. The annular  region def ined by the "middle" 

c i r c l e  and the innermost c i r c l e  had a sped f i c  r e s i s t i v i t y  corresponding 

to  heart muscle. The outer  annular  region had a s p e c i f i c  r e s i s t i v i t y  

corresponding to  that  o f  lung t is sue .  The equivalent  heart generator was 

a dipole located in the "middle" annular region. O r ien ta t ion  of the axis 

of the dipole was a r b i t r a r y .  Boundary conditions were that  the potent ia ls  

and normal currents be continuous across the boundaries of the inner 

annular region represent ing heart  w a l l .  The condi t ion on the outer c i r c l e  

was that  there be no current  outf low.  The equations fo r  the potent ia l  

everywhere were der ived.  The equations for  the p o ten t ia l  fo r  the corre­

sponding three-dimensional  problem (the c i rc le s  replaced by spheres) were 

a lso  derived by Bay ley and Berry [ 1 4 ] .

Bay ley and Berry l a t e r  presented another two-dimensional nonhomo- 

geneous model [1 5 ] .  The cross sect ion of  the chest was represented by 

f i v e  c i r c l e s .  The three innermost c i rc le s  were concentr ic  and represented 

a s l ice  through heart  c a v i t y ,  heart  w a l l ,  and p e r ic a r d ia l  environment.

The outer  two c i r c le s  were concentr ic .  But they were eccentr ic  with  

respect to  the three innermost c i r c l e s .  The outer  two regions represented 

the lungs and body s h e l l .  The equivalent  heart  generator  for  the model 

was a double layer  arc o f  uniform strength located in the region repre­

senting heart  w a l l .  Each of the f i v e  regions was o f  d i f f e r e n t  spec if ic  

r e s i s t i v i t y .  Space e x t e r i o r  to  the "body" s l i c e  was o f  s t i l l  a d i f f e r e n t  

r e s i s t i v i t y .  Boundary condit ions were that the p o te n t ia ls  and normal
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currents across each o f  the f i v e  c i r c le s  be continuous. Equations fo r  the 

potent ia l  in each region were derived.

Equations fo r  the poten t ia l  in the analogous three-dimensional  

model were also der ived by Bay ley and Berry [ 1 6 ] .  Here, spheres replace  

the c i r c le s  of  the two-dimensional model. An "ex tra"  sphere was added 

that  de l imited  a region corresponding to the "musculo-skelatal"  region of  

the body. The double layer arc was replaced by a double layer cap of  

c i r c u l a r  rim and o f  uniform strength.  While the endpoints o f  the double 

layer arc in the two-dimensional model could be chosen a r b i t r a r i l y ,  the 

three-dimensional  double layer  cap was r e s t r i c t e d .  I t  was required tha t  

the axis of the c i r c u l a r  rim of the double layer cap be coincident with  

the l ine of  jo in in g  "body" center  to "heart"  center .  The geometry is 

depicted in Figure 1.

Fig.  1 .--Geometry of  Model Assumed by Bay ley and Berry [ l 6 ] .
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From analysis of  an electrocardiogram, the ca r d io lo g is t  can d e te r ­

mine a vector known as the "resu ltan t  cardiac d ip o le " .  The d i rect io n  and 

magnitude of  this vector  are related to the d i s t r i b u t i o n  of e lectromotive  

forces with in  the heart  region.  Gabor and Nelson [ 1 ? ]  presented a method 

fo r  determining the loca t ion ,  o r ie n ta t io n ,  and strength of th is  " resultan t  

cardiac d ipo le" from p o ten t ia l  measurements on the surface of  the human 

body. As a basis fo r  th is  work, they assume that the human body is homo­

geneous and iso t rop ic .  I t  was not necessary fo r  them:to assume any 

p a r t i c u l a r  body shape. In t h e i r  der iva t ion  of  the system of  equations fo r  

the unknown locat ion,  unknown o r ie n tâ t  ion, and unknown strength of the 

resul tant  d ipo le ,  they did apply the boundary condit ion  that  there be no 

current  outf low from the body surface.  The d i re c t io n  and the strength of  

the dipole is determined by a surface in te g ra l .  In teg ra t io n  is carr ied  

out over a l l  of body surface and the body surface p o ten t ia l  is included 

in the integrand. The system of  equations fo r  determining the locat ion  

of the equivalent  dipole is l in e a r .  The constant terms are surface i n t e ­

grals and the body surface p otent ia l  is involved in the integrand.

Berry [18 ]  der ived the system of  equations fo r  determining the 

equivalent  dipole lo ca t ion ,  o r ie n t a t io n ,  and strength  fo r  a two-dimen­

s io n a l ,  or planar ,  homogeneous and isotropic conductor . The boundary of  

the conductor is required t o  be a simple, closed, o r ie n t a b le ,  and r e c t i ­

f i a b l e  curve. Space e x t e r i o r  to  the conductor is required to be an 

in s u la to r .  The d i r e c t io n  and the strength o f  the equivalen t  dipole is 

determined by a l ine in t e g r a l .  In tegra t ion  is c a r r ie d  out around the 

boundary of the conductor. The boundary p o ten t ia l  is involved in the 

integrand. The system of  equations for  the determinat ion of the locat ion
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o f  the equivalent  dipole is l in e a r .  The constant terms are l ine in tegrals  

and the boundary potent ia ls  are involved in the integrand.

Berry then assumed that  a cross section of the human chest could 

be represented by a c i r c l e  or an e l l i p s e .  C l i n i c a l l y ,  po ten t ia ls  can be 

measured a t  only a l imited number o f  points on the body surface.  Thus the 

l ine in tegra ls  were approximated by a modified trapezoidal  ru le .  The 

points in the approximation then correspond to electrodes a t  which the 

potent ia l  is measured. The number o f  points in the approximation was 

varied from 6  t o  72. Experimental data given by Bay ley [1 9 , 2 0 ]  was used 

by Berry fo r  the ca lcu la t io n  o f  d ipo le  locat ion.  Berry found that  the 

knowledge of the p o ten t ia l  a t  as few as nine points was s u f f i c i e n t  to 

specify the locat ion of  the dipole w i th in  a c i r c le  of  radius 5 mm. The 

points were spaced a t  equal arc lengths a round the e l l i p s e .

Bellman e t  a l  [ 21 ]  have developed a model that  appl ies  p a r t i c ­

u la r l y  to v e n t r ic u la r  d e p o la r iz a t io n .  The ventr ic le s  are divided in to  a 

number of  segments. A dipole is located a t  the center o f  each segment and 

is or iented normal to the surface o f  the segment. The body is idea l ized  

to be homogeneous, isotropic and of i n f i n i t e  exten t .  From po ten t ia l  

measurements on the surface of the body, i t  is required to determine the 

strengths of  each of  the dipoles as a funct ion of  t ime. Bellman chose the 

number of v e n t r ic u la r  segments as f i v e  and measures the p o ten t ia l  a t  three  

points on the body surface.  Po ten t ia l  measurements are made a t  equal time 

in te rva ls  of one m il l isecond.  Eighty potent ia ls  are measured then a t  each 

of the three points on body surface .  A spec if ic  form for  the dipo le  

strength as a funct ion of time is assumed. The form contains three  

unknown parameters. The p otent ia l  then a t  a point on body surface is
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assumed to be the sum of  the free space p o ten t ia ls  of  the f i v e  dipoles.  

Each such p o t e n t i a l ,  termed "produced-potent i a 1 " ,  is a funct ion of f i f t e e n  

unknown parameters. The c r i t e r i o n  fo r  determining the parameters is that  

the sum of  the squares of  the di f ferences o f  the "produced p o ten t ia ls"  

and observed p o tent ia ls  be minimized. The minimizat ion is carr ied  out 

by Bellman's technique of  "quas i1in e a r iz a t io n "  [ 2 2 ] .  Bellman notes that  

the computational load is considerable fo r  an IBM 7044. The computational  

technique involves the solu t ion of  1 1 0  simultaneous l in ear  d i f f e r e n t i a l  

equations and solving a system of  ten simultaneous l inear  equations a t  

each stage in the c a lc u la t io n .  Bellman fu r th er  notes that  much remains 

to be done in invest igat ing  the range of convergence of  the method and the 

determinat ion of  the e f f e c t  of  errors in the observed surface p o te n t ia ls .

The physiological  impl icat ions of the models described here have 

contr ibuted g rea t ly  to cardio logy .  However, these impl ications w i l l  hot 

be discussed here. In chapter I I ,  theorems are derived that  f a c i l i t a t e  

the determinat ion of  the p o ten t ia l  in problems involving c i r c u l a r  and 

spherical geometry. In chapter I I I ,  theorems are der ived that  f a c i l i t a t e  

the determination o f  the locat ion and strength of  some assumed equivalent  

heart generators in problems involving c i r c u l a r  and spherical  geometry.



CHAPTER 11

MATHEMATICAL MODELS FOR ESTIMATION OF BODY SURFACE POTENTIAL

The f i r s t  four theorems and two c o r o l l a r i e s  to be presented here 

w i l l  character ize  the solut ions to some two-dimensional p o ten t ia l  problems 

associated wi th  electrocardiography .  Two-dimensional laboratory models are  

eas ie r  to construct  than three-dimensional models fo r  purposes of exp er i ­

mental v e r i f i c a t i o n  of  theory and evaluat ion of measuring or detecting  

dev ices .

Theorems 5 and 6  are concerned with three-dimensional  potent ia l  

problems. The purpose of  the three-dimensional models is to predict body 

surface potent i a ' s due to  an assumed source-sink d i s t r i b u t i o n .

The boundaries to be considered in the two-dimensional problems 

w i l l  a l l  be c i r c u l a r .  The surfaces to be considered in the three-dimen­

sional problems w i l l  a l l  be spheres.

The d is t r ib u t io n s  o f  current  sources and sinks g iv ing r ise to a 

p o te n t ia l  w i l l  be "usual d is t r ib u t io n s "  in the sense of  Kellogg [2 3 ] .  Thus, 

d is t r ib u t io n s  w i l l  be of  the form of  a f i n i t e  number of  point  current  

sources or sinks or a piecewise continuous d i s t r i b u t i o n  of  point current  

sources or s inks.  The d is t r ib u t io n s  can a ls o  be a f i n i t e  number of current  

dipo le s ,  quadrupoles, e t c . ,  or a piecewise continuous current  double layer  

d i s t r i b u t i o n .  A l l  such d is t r ib u t io n s  w i l l  be bounded in the sense that  

there ex is ts  a c i r c l e  [sphere]  of  f i n i t e  radius conta in ing the d is t r ib u t io n

10
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giving r ise to the p o te n t ia l  in two dimensions [ three dimensions]. More­

over,  the a lg ebra ic  sum of  a l l  sources and sinks w i l l  be zero in any d is ­

t r i b u t i o n  to  be considered herein.  Henceforth the word " d is t r ib u t io n "  

w i l l  be synonymous wi th  the term "usual d i s t r i b u t i o n  of  zero net pole 

strength ."

A l l  boundaries or surfaces w i l l  d iv ide  the underlying two- or 

three-dimensional space in to  a f i n i t e  number o f  contiguous regular regions 

[ 2 4 ] .  In each region the r e s i s t i v i t y  w i l l  be constant .  However, the 

r e s i s t i v i t i e s  of  the regions w i l l  d i f f e r  in genera l .  Moreover, the loca­

t ion of the d i s t r i b u t i o n  giving r ise to the p o te n t ia l  is assumed not to  

have any points in common with the boundaries or surface.

Under these assumptions, the fol lowing theorems are appl icab le

[25 ]:

a) The p o te n t ia ls  of  the d is t r ib u t io n s  have p a r t i a l  der iva t ives  

of a l l  orders which are continuous a t  a l l  points of  f ree  space 

except a t  boundaries or surfaces separat ing regions of d i f f e r ­

ing r e s i s t i v i t y .

b) The p o t e n t ia ls  of a l l  the d is t r ib u t i o n s  s a t i s f y  Laplace's  

d i f f e r e n t i a l  equation at  a l l  points o f  f ree  space except at  

boundaries or surfaces separat ing regions of d i f f e r i n g  r e s i s t -  

iv i  ty .

c) On a boundary or a surface separat ing regions o f  d i f f e r i n g  

r e s i s t i v i t i e s ,  and pg, the p o te n t ia l  is continuous. The 

normal d e r iva t ive s  are discontinuous in general ;  but , the 

normal component of  the current  f low across the boundary or 

surface is continuous.
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A point  is a point of  f ree space provided i t  is e x t e r i o r  to some region 

containing the d is t r i b u t io n  giv ing  r ise  to the p o t e n t i a l .

These assumptions are s u f f i c i e n t  to guarantee that  the potent ia l  

due to a usual d is t r i b u t io n  is developable in a convergent series of  c i r ­

cular  harmonics (two-dimensional problems) or spherical harmonics ( three-  

dimensional problems) in each region of  constant r e s i s t i v i t y  ; 2 6 ] .  The 

series is va l id  only at  points of  f ree space w i th in  or on the boundary of  

a region.

Let ( r , 0 )  be polar  coordinates of a point  in the plane with r e f e r ­

ence to some a r b i t r a r y  point  and axis d i re c t io n .  Then the po ten t ia l  cp in 

any region of  constant r e s i s t i v i t y  in the plane is in general of  the form

[ 2 7 ]

cp(r,9) = (ao0 + bo) (co Inr + do)

+ ^  (a^cos n0 + b„sin n0) (c„r'" + d ^ r ' “) ,  

n=l

where a^,  b j ,  c^, and d̂  for  i = 0 , 1 , 2 ,  —  are constants.  The potent ia l  

must be s in g le -va lu ed .  Thus aq = 0. As the d is t r ib u t io n s  giving rise to  

the p otent ia l  are bounded ( in  the sense described) and the algebraic sum 

of  the strength of  the sources and sinks is zero,  we may assume that the 

reference po ten t ia l  may be taken to be zero a t  i n f i n i t y .  Thus bgCo = 0 

and bgdo = 0. Consequently, in the two-dimensional problems to be 

considered here, the free  space p o tent ia l  due to  a d i s t r i b u t io n  w i l l  be 

o f  the form

<p(r,0) = Y  + cl„r"“)S „ ,

n=l

where = a^cosnB +b^sin n9.
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Theorem 1. Let cp(r,0) be the free space po te n t ia l  of a d is t r ib u t i o n  which 

l ies i n t e r i o r  to a c i r c l e  C of  radius a. I f  the medium i n t e r i o r  to C has 

spec if ic  r e s i s t i v i t y  p, while a l l  space e x t e r i o r  to C has s p e c i f ic  re s is ­

t i v i t y  P o , then the functions cpi(rjG) and %  ( r ,  8) defined by
2

c P i ( r , 0 )  = c p ( r , 0 )  +  [ |  + " p ^/ ^ ]  cp r  ^  a ,  ( 1 )

and cfb(r,0)  =  ̂ ^ tp ( r ,0 ) ,  r ^ a, (2 )

have the propert ies:

a) cpi(r,0)  and % ( r , 0) s a t is f y  Laplace's equation i n t e r i o r  to  

t h e i r  respect ive domains of d e f in i t io n s  at  a l l  points of f ree  

space.

b) on C: cpi (a ,  8) = %  (a, 0 ) ,

r )  o n  c -  - L  ( a , 8)
p. ar pb ar '

Proof: cp(r,0) is harmonic fo r  r à a . There fore,  cp(a^/r,0) is harmonic

for  r ^ a as a transformation by inversion leaves a harmonic funct ion  

harmonic [ 2 8 ] .  As sca la r  mult iples  and sums of  harmonic funct ions are  

harmonic, then cpi(r,0)  is harmonic wherever cp(r,0) is harmonic fo r  r ^ a 

[ 2 9 ] .  % ( r , 0 ) ,  a sca la r  m ul t ip le  o f  cp(r ,0) ,  is harmonic for  r ^ a .

Conclusions b) and c) of  the theorem may be v e r i f i e d  d i r e c t l y .

Corol lary 1 . 1 . I f  the medium e x t e r i o r  to C is made nonconducting, i . e . ,

Po then the so lu t ion  to the special  Neumannproblem of  no current  ou t­

flow from C fo r  the c i r c l e  is

cpi(r ,0)  = cp(r,^ + cp(^ 0 r s a .  (3)

Corol lary  1 . 2 . I f  the medium e x t e r io r  to C is nonconducting, then the 

p otent ia l  on the boundary C is exact ly  twice the value of the f re e  space 

p o t e n t i a l .
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In appl ied problems, the free space potent ia l  of the d is t r i b u t i o n  

is obtained e a s i l y ,  usually in closed form. In electrocardiography,  the 

boundary po ten t ia ls  are the ones of main i n t e r e s t ,  for  these are general ly  

the only po ten t ia ls  measured. Corol la ry  1.2 provides a remarkably simple 

means of c a lc u la t in g  these boundary pote n t ia ls  for  two-dimensional homo­

geneous c i r c l e  problems. For the p a r t i c u l a r  d is t r ib u t io n s  of  an equal  

strength source-sink p a i r  and for  a d ip o le .  Nelson and Gastonguay [ 3 0 J 

deduced the conclusion of Corol lary 1.2 from the solut ions fo r  these 

p a r t i c u l a r  d is t r ib u t io n s  [31,321.

As an example, consider a dipole of strength M located a t  the 

point  ( ro,9o)  i " the plane. The axis o f  the dipole makes an angle ccwith 

respect to the po lar  a x is .  The free  space potent ia l  of the dipole is [ 3 3 J

I f  the dipole is in a c i r c u la r  disk of  radius a ,  and the s p e c i f ic  re s is ­

t i v i t y  o f  the d isk  is Pj while space e x t e r i o r  to  the disk is of  s p ec i f ic  

r e s i s t i v i t y  Pq , then according to Theorem 1,

4. ~ p./Ob'^  / ra^ cos (9  ~ oJ ~ rpr^cosiBo -  a ) \  1
X I + p j / p p . / \ a ' ‘ + ro^r^ -  2a^rq r cos (6 -  a) /  J

- V r ^ c o n ^ -  J ' }

P a r t i c u l a r i z a t i o n  of  the above to the c o r o l l a r i e s  is s t ra ig h t fo rw ard .

As another example, consider a double layer  arc of strength  M per 

unit  length w it h  endpoints at  ( rg,  and (rg, Bg) as replacing the dipole

in the preceding example. The free space p oten t ia l  of  the double layer

arc is given by [ 1 5 I
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In the same manner as for  the d ipole example, ap p l ica t io n  of  Theorem 1 

yields

(8 )

[ » " - e e S r ^ )  ^ » )

These equations were obtained by Bay ley and Berry by f i r s t  expanding the 

f ree  space p o ten t ia l  into an i n f i n i t e  series and then applying the usual 

technique of  modifying the c o e f f i c i e n t s  of  the series to  s a t i s f y  the 

boundary condit ions b) and c) of  Theorem 1. Needless to  say, appl ica­

t io n  of Theorem 1 produces the same resu lt  with a minimum of labor.

Theorem 1 now w i l l  be genera l ized  to a geometric system in which 

there are three regions of  d i f f e r e n t  r e s i s t i v i t y .  Let th ere  be two con­

c e n t r ic  c i r c l e s  and C, of  increasing rad i i  resp ec t ive ly  a^ and a^. The 

medium i n t e r i o r  to  is of r e s i s t i v i t y  p^. The annular  region in t e r io r  

to Cg and e x t e r i o r  to w i l l  be of  r e s i s t i v i t y  Pg. A l l  space ex te r io r  

to Cg is of  r e s i s t i v i t y  p^. Let cp(r,n) be the free  space po tent ia l  of a 

d i s t r i b u t i o n  located s t r i c t l y  i n t e r i o r  to  . Thus there  is a c i r c l e  C, 

concentr ic  wi th  and of  radius a^ < a^,  which contains the d is t r ib u t io n .

Theorem 2 : For the above geometric system with the f re e  space potent ia l  

cp(r,9 ) as assumed, the p o t e n t ia l  funct ions cp̂  ( r ,  8 ) ,  ( r ,  8 ) ,  and ( r ,g )

def ined by
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c p i ( r ,8 )  = c p ( r , 8 )  0 ^ ) ^ ]

m=o

+ 0  "  ■ & ) 0  ■ K t )  ( r t - ) , 8 ] } , a o ^ r ^ i ,  ( '0 )

cte(r,0) = 2 A.-g[l + ^ ? [ ( ÿ ) r , e ] +  ( l  " V [ ( ^ )
m=o

03

( 1 1 )

% ( r , 8 )  = 4 2  A. CO |" (^ ^  r , e ] ,  r s ag, (12)

m=o

where
1 + 1

* ■  '  < - ' ) ■ [ ( '  - 1 ) 0  -  t ) T / [ ( '  "  f e ) 0  *  t ) ]

have the proper t ies ;

a) on C j:  cpi (a^ , 8) = 43i + i (a 1 , 8) ,  i = l ; 2 ,

b) on C;: cpj (a ^ ,  0) = ^  cpi + i (a j ,  q) ,  i = 1 , 2 .

Proof: A method due to  Power [3 4 ,3 5 ]  w i l l  be used. The f ree  space

p o tent ia l  cp(r,0 ) may be w r i t t e n  as

CO

cp(r,8 ) = ^  a ;  r - "  S„, r ^ , (13)

n=l

where Ag depends on n and a ^ . $„ is a c i r c u l a r  harmonic of  degree n.

The funct ions cp̂  ( r ,  q ) , %  ( r ,  8 ) ,  and cpg(r, 8) are assumed to  be of the form

9 i ( r , 8 ) = y  ( A y  + B;r °)Sg ,  a^ s r 5 a^, (14)
n=l

CO

%  ( r , 8 ) = ^  (A^r '" + B^r")Sg, a^ ^ r s a^,  (15)
n=l

cft3(r,0) = 2  A : r - ' S °3
n=l

a ,  ^ r .  ( 1 6 )
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The An (except A^) and the^Bg are dependent on n, the radi i  ag, a^,

and the r e s i s t i v i t i e s  p^, Pg, and pg. Demanding that  propert ies a) and

b) of  the theorem hold true requires that

A: = 2 ( 1  + ^ )  AnAi,

An = ^AnAi,

Bi = { ( 1- + ( 1+ ^ ) ( 1- ^ ) ( f ^ ) " “ }ai-^“AnA'n,
Pg Pa P2 Pa °  2

B: = 2 ( 1-  a / % A ^ ,
Pa

where

:3d
\  = { ( 1+ ^ ) ( i +  + ( 1- ^ ) ( i -  r \

Forma 1ly .

° Ps P3 Ps P3 ^ 2

%  ( r , 8 )  = ^ A „ r  “Sn = 4 ^  A n A \ r  “S„, = ^  ^  A„ (|^ -) } r  “A^Sn,
"2

n»l n* l  n=l m=o

CO 00

m=o n«l
00 ”

The ser ies ^  r~“Sn converges absolutely  [ 3 6 ] .  r '"Sn also  con-

n« 1 11= 1

00

verges absolu te ly  by comparison with ^ A ^  r " “Sn. The ser ies expansion

n=l

f o r  An converges abso lu te ly  fo r  each value of  n by the r a t i o  t e s t .  

Therefore by a theorem of  Hobson [ 3 7 ]  the double ser ies is absolute ly  

convergent and hence can be summed e i t h e r  f i r s t  on m or n. The sum on n 

is now merely 'P r ,  8^, and hence (12) is es tab l ished.  Equations

( 1 0 ) and ( 1 1 ) are es tabl ished  in the same manner.
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Theorem 1 is obtained as a special  case of  theorem 2 i f  e i t h e r  

Pj = p- or Pa = Py. I f  e i t h e r  of these e q u a l i t i e s  on the r e s i s t i v i t i e s  

holds, Am = o for  m /  o. I f P̂  = Pa, the c i r c l e  Ci- is superfluous. The 

c i r c l e  Ci of radius 3 i may be id e n t i f i e d  with the c i r c l e  C of  radius a of

Theorem 1. The funct ions cpa ( r , 8 ) and %  ( r ,  8 ) each take on the form of

qb ( r ,o )  of Theorem 1. The funct ion c p i ( r , 0) is i dent i f i ed  wi th the funct ion  

% of Theorem 1. I f  p̂  = Pg, the c i r c l e  Ci is superfluous.  The c i r c l e  

Cg of  radius a^ may be id e n t i f i e d  with the c i r c l e  C of  radius a o f  Theorem

1. The funct ion c P i ( r ,0 ) and cp̂  ( r ,  8 ) each take on the form of  the funct ion  

cpi(r,0)  of  Theorem 1. The funct ion cpB ( r ,  8 ) is i d e n t i f i e d  with the funct ion  

cftj ( r ,  0) of Theorem 1 .

A computational a lgori thm fo r  an a r b i t r a r y  number N of  concentr ic  

c i r c le s  { C j } ,  i = 1, . . . ,  N w i l l  now be presented. The d i s t r i b u t i o n  giving  

r ise  to the p otent ia l  is assumed to be s t r i c t l y  i n t e r i o r  to a c i r c l e  Co 

which is concentr ic with  and i n t e r i o r  to C^. The rad i i  of  the system in

increasing order are , a^,  a^,  . . . ,  a,^. The i n t e r i o r  of  Ĉ  is of  r e s i s t ­

i v i t y  p  ̂ whi le  the r e s i s t i v i t i e s  of  the annular regions bounded by C^.^ and 

Cl are resp ect ive ly  p i , i = 2,  . , . ,  N. A l l  space e x t e r io r  to Ĉ  is of  

r e s i s t i v i t y  Pn+ i -

Theorem 3 : i f  cp(r,0 ) = ^  Aj r""Sn is the f ree  space poten t ia l  of a d is -

n=l

t r i b u t ion fo r  the above system, the p o ten t ia l  funct ions cp i( r ,0 ) ,  i = 1 ,

. . . ,  N + 1 def i  ned by

cpi(r ,9)  ( A i r - “ + B^r ' )  S . ,  i s N, a i _ i  ^ r & a . ,  (17)

n=l
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, v  N+l -n
cPn+1  ( r ,  A) = 2 ,  ̂ I";

n= 1

( 1 8 )

where is a c i r c u l a r  harmonie o f  degree n, have the propert ies  that

a) on C,: cp̂  ( a , ,  8) = c p i+ i ( a i , 0 ) ,  i 1, 2, . . . ,  N,

b) on Cj: cp, (a ^, D) = — — %  + i ( a , ,  8) ,  i = 1, 2, . . . ,  N.
Pi or p, + 1 or

The A‘ (except A,)  and are constants depending on n̂  the rad i i  a ,  ̂ and 

the r e s i s t i v i t i e s  p , .

I f  Z, = fBg, Ag'  ̂  ̂(superscr ipt  " t "  denotes transpose) ,  i = 1,

2, . . . ,  N, then the constants A‘ , i = 2 ,  N + I and 8 , ,  i = I ,  2,

. . .  N are computed recurs ive ly  by

Zp, = G;.,, Z, = G, -  WjZ i+ i ,  i = 1, 2, . . . ,  N -  1.

The matr ices G, and W, are def ined by

W, =

C l ,  i = 1 ,

[ l - A , W , _ i r " C i ,  i = 2 , . . . ,  N,

Ai =

C, =

.  J  - Pi/pi,+ i a - 
1 + P i / P i + i

Q iZ p ,  /p,.). I
1 + P l / P l + l

~ 2 pj /pt  + -I
1 + P i  /  P i + 1

a * “ 
1 + P i / P i + i  ‘

-en

( 1 9 )

(20)

Proof; Demanding tha t  propert ies a and b of  the theorem hold leads to  

the matr ix  equat ion

UX = V, (21)
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where U is a block t r id ia g o n a l  matr ix  of the form

where

and

U =

Ai = i = 2, . . .  N,

Bi =

— D \

Ci = i = 1, 2; N -  1,

P i + 1 '

r  *•  ̂ t ' lt
X = [_^i> . • • >

V = 1 -  Ai a , - " ,  0 , 0 , o j

The matrices Bi are non-singular  so we may prem ul t ip ly  both sides of (21) 

by the matr ix
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63- '

B - i

The result ing matr ix  equat ion is

UiX = Vi,

where is block t r id iag o n a l  of  the form

' I c,

Ag I Cg

A3 I C3

Cm- 1

An I

The matr ix I is the 2 x 2  id e n t i t y  m atr ix ,  and Aj and Cj are respect ive ly  

the matrices in (19) and (20 ) ,  The recursion scheme fol lows d i r e c t l y .

The computational a lgor i thm for  the Aj and Bj is a d i r e c t  mod if ica t ion  of  

Schechter's a lgori thm [ 3 8 ] .  The scheme requires N inversions,  2 N add i ­

t io n s ,  and 4 N m u l t ip l i c a t io n s  of 2 x 2 matr ices.  The scheme is equiv­

a len t  to  reduct ion by Gaussian e l im in a t ion  [39^.

Appl ica t ion o f  theorem 3 to electrocardiography is l imited to  

when no d i s t i n c t i o n  is made between heart wal l  and heart c a v i ty  in the 

model. In th is  case, usual ly represents a transverse sect ion of  the 

"outer" heart w a l l .  However, the r a t i o  of the s p e c i f i c  r e s i s t i v i t y  o f  

the heart wal l  to the s p e c i f ic  r e s i s t i v i t y  of  blood is approximately 2.5  

[ 1 2 j .  Thus i t  is des i rab le  to  le t  and Cg respect ive ly  represent a
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transverse sect ion o f  the " Inner” heart wall  and "outer"  heart w a l l .  I f  

th is  is the case,  then the d is t r i b u t io n  giving r ise  to  the p otent ia l  is 

assumed to l i e  in the annular region e x te r io r  to and in t e r io r  to C ̂ .

The most ref ined two-dimensional model of in te res t  perta in in g  co 

e lectrocardiography has been presented by Bay ley and Berry [15J . The 

geometry of the model is shown in f igure 2 .

U c ^

Fig.  2. — Geometry of  Model of Bay ley and Berry [15J-

There are f i v e  c i r c u l a r  regions. The three  innermost c i r c le s  are 

concentric about a point  0 -  representing heart center .  The innermost 

c i r c l e  o f  radius represents the heart c a v i ty .  I t  is surrounded by the 

c i r c l e  of radius Rg, and the annular  region represents the heart  w a l l .

The th i rd  c i r c l e  of  radius R3 def ines an annular region representing the 

p e r icard ia l  environment.



2 3

The outer two c i rc le s  are concentric about a point 0 represent ing  

body center .  The region i n t e r i o r  to the c i r c l e  of  radius R4 and surround­

ing the system of  c i r c le s  concentr ic  at  O' represents the lung region. The 

annular region between the c i r c l e  of radius R4 and the outermost c i r c l e  of 

radius Rc, represents the t o r s o - s h e l l .

The spec if ic  r e s i s t i v i t i e s  fo r  the f ive  regions above are respec­

t i v e l y  Pi ,  i = 1, 2, ----- , 5 . The d is t r ib u t i o n  giving r ise  to the potent ia l

is a double layer c i r c u l a r  arc o f  constant strength M per un i t  length 

located a r b i t r a r i l y  w i th in  the heart  wal l  region. The dipoles forming the 

double layer  are or iented  with t h e i r  moments normal to  the c i r c u l a r  arc.

The endpoints of the double layer  arc are denoted and Qg. The distance

between heart center O' and body center  0 is denoted by c. The region 

e x t e r i o r  to the c i r c l e  of  radius R5 (body surface) is of  r e s i s t i v i t y  pg.

The expressions for  the p o ten t ia l  in the system of the three innermost 

concentr ic  c i r c le s  are given in terms of  polar coordinates ( C , y )  with  

o r i g i n  a t  O' .  The expressions fo r  the potent ia l  in the system of  the two 

outermost concentric c i r c le s  are given in terms o f  po la r  coordinates ( r ,0 )  

with o r ig i n  at  0. The x -ax is  passes through body center  and heart  center .  

The polar  axes for both polar  coordinate systems coincide with the x -ax is .

Seven i n f i n i t e  ser ies are required to def ine the p o ten t ia l  every­

where. Boundary condit ions on each of  the f i v e  c i r c l e s  are that  the 

p o te n t ia l  and normal current  be continuous. The double layer  arc l ies  on 

a c i r c l e  o f  radius Ço . The normal current must be continuous across this  

c i r c l e  exclusive of the c i r c u l a r  arc which is occupied by the double layer .  

The ser ies expansions for  the po te n t ia ls  are as fol lows:
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X sin ny (cos -  cos nVi ) ;  Rg ^ C ^ Rs; (2 5 )

V s - « I  ( 7 +
n=l

X COS n0 ( r \ °  s in  n8^ -  s in  nGg)

[ C D ” - . < * ) " ]+

n=1

X sin  n0 ( r , ” cos n8g -  cos nP^),  max ( r  ^, fg)

( r , 8 )  i  H, (26)

Ve ■ » i  [ ( 7 ) "  * '<‘ ( 7 7 ) ’ ]
n=l

X cos n6 (r^® s in  nGj -  s in  n8p)

+ M ^  ^  ( ^ 1  ^  + K, ]

n=l

X  sin n0 (rg*  cos n0g - cos no^), & r s R5 , (27)

V, = MK̂  ^  I  A „ B / b D b „ "  ( 7  ) “ cos nP 

n=l

X (r ,D s ; n nOj - Pp" sin nfL,)

00

+ MKs][ 7  A„B„^B„=BD ( ^ 7  3  sin n0 

n=l

X (rg°  cos n 02 -  cos nO^), R5 ^ r ^ (2 8 )

Here, M represents the strength per unit  length o f  the double 

layer  a rc .  The r e s t r i c t i o n  ( r , 0 )  0 H in (26) means that  the ser ies  is 

not to be used for  points located i n t e r i o r  to  the c i r c l e  of  radius R3 .
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Also, and are respect ive ly  the lengths from 0 to the endpoints and

0.2 of the double layer  a rc .  A„, (i = 1, 2 , -----, 5 ) ;  and

(i = 1, 1,  3) are constants.  The approach to evaluate the constants was 

from " ins id e -out" .  This is as fol lows:

a) and Kg were evaluated from demanding that  the p o ten t ia l  and 

normal current  be continuous across the c i r c l e  of radius .

b) An and Tn were evaluated respect ive ly in terms of  Kg and 

by demanding that  the normal current  across the c i r c l e  of  

radius Cq (exclusive of the arc occupied by the double layer)  

be cont i nuous.

c) and Cq’’ were evaluated in term; of by demanding that

the p o te n t ia l  and normal current  be continuous across the 

c i r c l e  of  radius Rg.

d) and were evaluated in terms of C b y  demanding that  

the p o te n t ia l  and normal current  be continuous across the 

c i r c l e  of  radius R^. To complete the e va lu a t io n ,  i t  is neces­

sary to perform an inversion so that  the c i r c l e  of  radius 

centered a t  0  becomes concentric with the c i r c l e  of  radius R̂  

centered a t  O' .  This is done by choosing as the center of  

inversion e i t h e r  of the two common inverse points fo r  these two 

c i r c l e s .  A f t e r  eva luat ing the constants,  the inverted poten­

t i a l  expressions were reinverted back to  the o r ig in a l  system.

e) K3 , an a d d i t i v e  constant , was evaluated demanding that  the f ree  

space po ten t ia l  o f  the double layer arc a t  an a r b i t r a r y  point  

be id e n t ic a l  whether measured with respect to  coordinates  

o r ig in a t in g  a t  e i t h e r  0 or O' .
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f )  B a n d  C were evaluated in terms of  K4 by demanding that the 

p o ten t ia l  and normal current  be continuous across the c i r c l e  of  

radius R^.

g) F in a l l y ,  and K5 were evaluated by demanding that the poten­

t i a l  and normal current be continuous across the c i r c l e  of  

radius Rg.

The values fo r  Kj,  i = 1, 2, — , 5 are as follows:

K = ___ 2___  _ l-pp./pi
1+Ps/Pi '  " 2  -  I+P2 / P 1 '

K3 "

K. = K.
I+ Ps /Ps '  " 1+Ps/Pe'

Here, and cts are  the angles def ined as f o l l o w s .  Let be one endpoint  

o f  the double layer  a r c .  I f  0 is taken as a cen te r  o f  inversion and R a s  

the radius o f  in v e r s io n ,  l e t  Q{ be the inverse p o in t  of  Q. .̂ I f  Qp is the  

oth er  endpoin t  of  the double l aye r  a r c ,  l e t  be the corresponding inverse  

p o in t .  Angle then is <  OQ^O' is the v e r t e x )  and angle  Og i s < O Q g O ' .

Constants Fn and A„ are

r „  = 1 -  Ci  (Co/Rg)^" ,  A,  = 1 -  Kp (R j /C o )^%  n = 1, 2,  - - - . ( 2 9 )

The constants  Bi  and Ci  are

Bn = 2 R^fy Icxi + ( P i + i / P i  + 2 ) i = I ,  2, 3; n = 1, 2 , - - - ,

(30)
Ci = [oC -  ( p i + i / P i + 2 ) PiJTon + ( p i + i / P i + 2 ) 0 i j  S  i = 2 , 3;

where

n = 1 , 2 , - - - ,

a i  = R î+ 2  + Ci+ i  R t f i ,  i = 1 , 2 j n = 1, 2 , — ,
(31)

Pi = Rïfg - Ci+i  R t : i ,  i = 1 , 2 ; n = 1 , 2 , — ,
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R|% n = 1 , 1,  — ,

= R|" -  R|% n = 1 , 2 , — .

The fo l lowing  theorem complements Theorem 1. Let there be given a 

c i r c l e  C of  radius a.  The medium i n t e r i o r  to C is of  r e s i s t i v i t y  pj while

the medium e x t e r i o r  to  C is of r e s i s t i v i t y  pg.

Theorem 4 : Let q)(r,o)  be the free  space potent ia l  of a d i s t r ib u t i o n

located e x t e r i o r  to C. Then the functions cp i ( r ,0) and %  ( r , g) def ined by

2
cp

% ( r , 0 ) =cp ( r ,e )  -  4) ( ^ , 6 ) ,  a g r ,

have the propert ies

a) cpi ( r , 6 ) a n d c p g ( r , 0) s a t i s f y  Laplace's equat ion i n t e r i o r  to 

t h e i r  respect ive domains o f  d e f in i t i o n  a t  a l l  points of f ree  

space,

b) on C; (a,  0 ) = (a, 0 ) ,

c) on C- —  = _L
’ Pi ar ôr •

The proof  is analogous to  that  of Theorem 1, The analogs of  the c o ro l ­

la r ie s  to  Theorem 1 are presented next .

Coro] lary 4 . 1 : i f  the medium i n t e r i o r  to C is made nonconducting, then

the so lu t io n  to  the special  Neumann problem of no current  in to  C is
gZ

Cfb('">0 ) = cp(r,e) + cp(— , e ) ,  a < r .

Coro l la ry  4 . 2 : I f  the medium i n t e r i o r  to C is nonconducting, then the

p o te n t ia l  on the boundary C is e xa c t ly  twice the value of  the free  space 

p o t e n t i a l .

The analog in three dimensions of  Theorem 1 has been derived by 

Power [ 3 5 ] .
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Theorem s : Let l ( r,ü, '?)  be the f ree  space potent ia l  of a d i s t r i b u t i o n

located s t r i c t l y  i n t e r i o r  to a sphere S of  radius a. Then i f  Pi is the 

r e s i s t i v i t y  in t e r i o r  to S whi le  Po is the r e s i s t i v i t y  e x t e r io r  to S, then 

the potent ia l  functions t»; and #q def ined by

* i ( r , 8 , g O  = t ( r , 8 , ç )  + 7  ^

1

1

have the propert ies:

a) on S: § i ( a , 8 , ç )  = # o ( a ,0 ,v ) -

H) on S- - L - M L l M I -  J_- 3io.(a;.8,,cp)
Pi ôr ■ Po dr •

I f  the medium e x t e r i o r  to S is made nonconducting, i . e . ,  po the

i n t e r i o r  sphere theorem of Ludford, Marti  nek and Yeh F40] is obtained.  

However, the h is t o r i c a l  c r e d i t  fo r  th is  theorem should belong to Helm­

ho lt z  [41 ] ,  who derived the resu l t  in s l i g h t l y  d i f f e r e n t  form. In the 

event the medium e x t e r io r  to the sphere is nonconducting, the po ten t ia l  

on the surface of  the sphere is given by

| i i ( a ,0 ,c p )  = 2 $(a,Q,cD) + ^  $ ( - ^ ,  6 ,cp )d \ .  (32 )

1

This is to  be contrasted wi th  the two-dimensional theorem which states
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that the p o ten t ia l  on the c i r c l e  is exact ly  twice the free space p o t e n t i a l .  

The free space po ten t ia l  ( fo r  a d is t r i b u t io n  o f  zero net pole strength in 

three dimensions) can be w r i t te n  as

CD

* ( r , 8 , ç )  = ^  r < a,

n=l

where is a surface harmonic. The j u s t i f i c a t i o n  fo r  this form of the 

f ree space po te n t ia ls  fol lows in a s im i la r  manner as described for the

two-dimensional form [ 4 2 ] .  Then the in tegra l  in (32) is
00 00

^ # ( - ^ ,  8,cp)dx = ^ - ^ ( ^ )  Sa, O ^ r <: a .

1 n=l

Thus I $ (a,0,cp) I s 3 I § (a,9,cp) | .  (33)

Equal i ty  can hold. To see t h i s ,  consider  the resu lt  of Canf ield

[ 3 ]  for  an e l e c t r i c  dipole of strength M located at  the center  of the

sphere. I f  the d i r e c t io n  of the z -ax is  of  a Cartes ian coordinate system

coincides with the dipole  a x is ,  then

4 \ ( r , 8 )  = M Cos 0 ( - ^  + ^ ) . (34)

Taking r = a,  we see that  e q u a l i ty  does hold in (33 ) .

Theorem 6 may be applied to obtain a g e n e ra l i z a t io n  of  Frank's 

model [6J.

Let there be given an x -y -z  Cartesian coordinate system C.

Consider the point  O' ,  located a > 0 units from the o r i g i n  0 of  C on the 

z - a x i s ,  to be the o r ig i n  of  an x ' - y ' - z '  Cartesian coordinate system C ' .  

Pos it ive  d i re c t io n s  of  z and z ' co incide .  Respect ively x ' and y ' axes are  

t rans la tes  o f  the x and y axes. The r ' -0 ' -cp '  spherica l  coordinate system 

S' has O' as o r i g i n  and the r-0-cp spherical  coordinate system S has 0 as 

o r ig in .
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Let there be given an e l e c t r i c a l  double layer cap wi th  a c i r c u l a r  

rim whose axis coincides with the z -a x is  of C (and hence with the z ' - a x i s  

of C ' ) .  Let the center of the c i r c u l a r  rim be at the point  0" whose 

spherical  coordinates with respect to  S' are ( b , 0 , 0 ) .  Let the radius of  

the c i r c u l a r  rim be c. The double layer  cap is fu r th er  assumed to l i e  on 

the surface o f  a sphere centered a t  O' with radius h = . The

moment of  the double layer is a constant M. The free space p o te n t ia l  V' 

at  a point  P whose coordinates with respect to S' are ( r ' , 0 ' , c p ' )  with  

r ' > h i s known to be [ 6  ]

V' ( r ' , e )  = ^ ^  ^  ^  ( ^ )  Pn(Cos 0 ' )  P ; ( ^ ) .  (35)

n= 1

Here, y is the conduct iv i ty  of the medium. P„ is the Legendre Polynomica 1 

of degree n. P'n(^)  's the d e r iv a t iv e  of  Pn(^0 with respect to b/h.

Suppose the double layer  ax is is rotated so that  the point 0" is 

now located a t  the point  ( b , 8 o ) w ith  respect to S ' .  A d i r e c t  a p p l ic a ­

t ion of  the add i t io n  theorem [ 4 ] ]  fo r  Legendre functions y ie lds  the free  

space p o ten t ia l  V  (r  ' ,  9 ' ,cp') fo r  the double layer cap with c i r c u l a r  rim 

centered a t  ( b , 8 o , % )  ^

V(r^e . ,cp ,  P-.(C0 .
I m*"U

X Pn (Cos 0 ' )  Cos [m(cp-% ) r '  >  h,

where e,  is the Neumann fa c to r ,  Gg = 1, e,  = 2 for  m ^ 0.

The f ree  space p otent ia l  V(r,8,cp) with respect to S is then

„ , , "= 1  '^=0 (36)
X ( f )  P“-k"(Cos 0b) P""''(Cos 9) Cos [(m-k)(cp-cfb)]},  r >  a + h.
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Suppose now a sphere of radius R > a  + h centered a t  the o r i g i n  of S. 

Appl icat ion of Theorem 6  y ie lds  the po ten t ia l  funct ion # ( r , 0 ,cD) fo r  the 

system such that  the normal d e r iv a t iv e  of $ ( r , 8 ,co) vanishes on the surface 

of the sphere. The result  is

“  n m

I  I ( ? ) ■ " ' V , ( 5 )
n=l m= 0  k= 0

X P ; : f ( C o s  G b ) [ ( i ) ”" \ ( i l ± i ) ( | ) ( p ) “ ]p . -MCos 8 ) C o s [ ( m - k ) ( c r % ) ] } ,

a + h < r ^ R.

Phys ic a l ly ,  the o r ig in  0 o f  the coordinate system corresponds to body center,  

O' corresponds to  heart cen te r ,  and the double layer cap is located in the 

heart  w a l l .  At the surface of the body, or on the surface of the sphere, 

the potent ia l  is

00 n m 

n=l m= 0  k= 0

b ( % )
- -  X  p;_k (|-) P;_%(Cos Go) P""’'(Cos A) Cos f (m-k) (cprcft,) ] .

Bayley and Berry [ 1 6 ]  obtained the p otent ia l  functions fo r  an 

a x i a l l y  symmetric double layer  in a nonhomogeneous sphere system. The 

geometry of  the system consisted of three concentric spheres about the 

point  O' surrounded by three concentr ic  spheres about the o r ig in  of  S. The 

sphere with the smal lest  radius R̂  about O' denotes the "heart  c a v i ty "  and 

the medium i n t e r i o r  to the sphere is o f  r e s i s t i v i t y  p^. The second sphere 

about O' has radius Rg and denotes the outer "heart  w a l l " .  The medium in 

the annular  region is of  r e s i s t i v i t y  pa. The th i rd  sphere about O' is of 

radius Rg and denotes the "p e r ic a rd ia l  environment". The r e s i s t i v i t y  of  

th is  region is pg. The smal lest  sphere about the o r ig in  0 is of  radius R4 .



33

The medium i n t e r i o r  to th is  sphere and e x t e r io r  to the concentric spheres 

about O' denotes the "lung region" and is of r e s i s t i v i t y  . Concentric  

with the "lung region" is a sphere of  radius R<̂ . This del ineates  the region 

corresponding to the "musculo-skelatal"  shel l  of the body and is of  re s is ­

t i v i t y  Pb . F i n a l l y ,  the las t  sphere is of radius Rg. The surface of th is  

sphere corresponds to the "body surface" while the region del ineated  

corresponds to  the "body fa t  pad". The medium in this region is of  r e s is ­

t i v i t y  Pc. The p o tent ia l  funct ions for  the various regions were der ived in 

a s im i la r  manner as described fo r  the two-dimensional model. The geometry 

is shown in f igure  3. y

Fig. 3 . — Geometry and Notat ion o f  Model Assumed by Bayley and Berry [1 6 ] ,

The p o te n t ia l  on the surface of  the "body" is of  p a r t i c u l a r  

in t e r e s t .  This is given in the fol lowing theorem.
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Theorem 6: The surface p o ten t ia l  for the system described above is

n m

n=l m=0 k=0

X Pi_k(%)P%:f(Cos Eb)P;-*(Cos 9) Cos [ (m-k)  (cp-%)] .

The c o e f f ic ie n t s  are def ined by

D. = n=l ,  2,

where

(— ) + P 2 / P l  

( 2 ^ )

B‘ = ------- — j ; i = l , 2 , 3 , 4 ;  n = l , 2 , . . . ,
a i+ (— ) ( P i + i / P i  + s )^ !

= +

=  R ? ? ; ' - c i+ i

p i a i  - (Pi , , / P i
■ - i . / n + K

(39)

c :  = I .

While the c o e f f i c i e n t  B‘ can be w r i t t e n  e x p l i c i t l y ,  the expres­

sions are qu ite  cumbersome. For a given set of rad i i  and r e s i s t i v i t i e s ,  

the c o e f f i c i e n t s  can be computed numerically very rap id ly  in this recur­

sive fashion by an e l e c t ro n ic  computer for  any value of  n.



CHAPTER I I I

MATHEMATICAL MODELS FOR ESTIMATION OF HEART 

PARAMETERS FROM BODY SURFACE POTENTIAL MEASUREMENTS

A number of  invest igators  have been in terested  in character iz in g  

an equivalent  heart  generator to account fo r  the po te n t ia ls  observed a t  

the surface of  the human body [ 1 7 ,4 4 ,4 5 ] .  As is wel l  known, there are  

any number o f  d is t r ib u t io n s  that create the same surface po ten t ia l  on a 

poor conductor imbedded in an insulat ing medium [4 6 ,4 ? ]

Current techniques of  e lectrocardiography assume that  the body 

surface p o te n t ia ls  are due to a single d ipole and that  the human body 

tissues are e l e c t r i c a l l y  homogeneous. In general ,  i t  is found that  the 

assumption of  a s ing le  dipole does not adequately account fo r  the body 

surface p o te n t ia ls  [ 4 7 , 4 8 ] .  Other invest igators  have suggested adding a 

quadrupole or mult ipoles  of  higher order t o  the dipole as an equivalent  

heart generator [44 ,  47,  49,  50] .  In these pu b l ica t io n s ,  the human body 

is assumed to be a homogeneous conductor.

Let p(xo,yo,Zo)  be a current  source densi ty  d i s t r ib u t i o n  which is 

zero outside the spherical  domain V consist ing o f  a l l  points r s a g . The 

potent ia l  cft, a t  a point  outside V is given by the fol lowing series [46 ]:

35
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00 n n"m

‘’> > ■ 1 ^ 1  I  .Tkf i n & k )  : {  n  ^ x S y o * ^ - ' ‘ <i»„dy„dy„}
n=o m=o k=o

ôx“ôV‘'ôz” “'-'"' [ r ]  } ’ r > * 0 . (40)

The series shows that  a l l  that  can be found out about the current  d i s t r i ­

but ion p in r ^ Oq by measurements of  potent ia ls  outside r = 3 q are the

propert ies represented by the magnitudes of the in tegrals in the above 

s e r i e s .

I f  r is s u f f i c i e n t l y  g reater  than a^,  the d e r iv a t iv es  of 1 / r  for

la rger  values of n become so small as to be incapable o f  measurement.

Thus, in pra c t ic e ,  a l l  tha t  can be obtained by p o ten t ia l  measurements are

the values of  the in tegra ls  in the above series for  n less than some f i n i t e

value that  decreases as the distance r increases.

Suppose poten t ia ls  Vq a re measured on the surface of a sphere S of

radius R > Bq due to the d i s t r i b u t i o n  p. Suppose the po ten t ia ls  can be

measured to e > o accuracy,  i . e . ,  | $0 " %  1 < e everywhere on S. Let N be

s u f f i c i e n t l y  large such that  everywhere on S 

“  n n-m

E l i  m l k S ' d - l - k ) !
n=N m=o k=o

X {  ^ ^ ^ p(xo,Yo,Zo) dXqdyodZoj

6 °  r n  , ^
; n - l - T  I <  e.

V

ax"ay«az'  ̂ „’ r=R

The existence of  such an N is guaranteed by the uniform convergence of  

the ser ies .  Then the numerical eva luat ion cpo, n the f i r s t  N terms of  

the sum on n in the series fo r  %  approximates Oq to  e accuracy.
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Let there be given a second d is t r ib u t io n  p ' (xg, Yo, Zg) d is t in c t  from 

P(xo,Yo;Zo) which a lso  vanishes outside V. The p otent ia l  at  a point ou t­

side V is given by a ser ies of the same form as that  fo r  %  with  o' replac­

ing p. Suppose the d is t r ib u t i o n  p ' (xq , , z^) is such that

j  ^ ^Xo“Yo^o "“" ~ ' ' [ p ' ( xo^Yo^Zo) - p(xo,Yo,Zo)ldXodyodZo = 0  

V

for  n = 0, 1 ; ----; N - 1. I f  ct̂ 5,s is the sum of  the f i r s t  N terms of the

series for c%) ; then \  everywhere on S. E i ther  truncated series

of course yields the same numerical approximation to Vq .

In p a r t i c u la r ,  i t  has been shown [%] that  p ' (xo ,yo ,Z o)  can be con­

sidered as a superposition of  a point source, a current  d ip o le ,  a cu'rent  

quadrupole, ----- , a 2^"^ mult ipole  located at  the o r i g i n .

In equation (40) the term corresponding to n=o can be considered

as the poten t ia l  of  a source at  the o r ig in  of strength

q = ^ J J  P(xo,Yo,Zo)dxodYodZc

whose uni t  p o ten t ia l  is 

1
f c  =

The in tegra l  def ining  q is exact ly  the to t a l  current  in V. For a volume 

conductor with insulated body surface (as is the case in the theory of  

electrocardiography)  there is no normal current  across V. Hence q = 0. 

There are three terms fo r  n = 1 in equation (40 ) .  They can correspond to 

pote nt ia ls  of  three components D,(,Dy,Dj of  a vector  represent ing a dipole  

at  the o r ig in .  The components are defined by

Du = ^ 5» ^ UoP(xo,YojZo)dXqdy^dZo, u = x , y , z .
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The p o tent ia ls  due to the un it  components of  the dipole are

I'm = " ■ 5 3  = 7 7 ;  ^  =  x , y , z -

The nine terms of  the type for  n = 2 in equation (37) can co rre ­

spond to the poten t ia ls  of  nine components Quo, |i = x , y , z  and o = x , y , z  of  

a dyadic representing a quadrupole at  the o r ig in .  The components are 

def ined by

Quo = ^ ^ ^  W o C b P (x o ,y o ,Z o )  dxodyodZo,  |u = x , y , z ,  a = x , y , z .

V

The pote n t ia ls  due to the un it  components of the quadrupole are

Here 6uo = 1 when |U = a and ôyo = 0 when ^ /  o.

For larger  values of n there are t r i a d i c s ,  t e t r a d i c s ,  — ,

polyadics represent ing 2"̂  -  poles,  2 '̂  -  p o l e s ,  , 2" poles a t  the o r ig in .

Graphical arrangements o f  dipoles and quadrupoles are given in [4 6 ] .

Thus cpô̂ N can be expressed as

% ' , N  =  4  +  Q x x ' l ' x x  +  Q y y i y y

+  Q z z V z z  +  2 Q x y * x y  +  2 Q , z * % z  +  2 Q , z ÿ y z  +  ;

where q = 0  for problems in electrocardiography and the ser ies  terminates

wi th  the inclusion of  the p o te n t ia ls  due to a l l  components o f  the 2 ^~  ̂

pole and the multi  poles o f  lower order.

Suppose now that  the human body geometry is represented as a

sphere of  radius R. Suppose th a t  %  is the f ree  space p o t e n t ia l  due to

the e l e c t r i c a l  a c t i v i t y  of  the human hear t .  Taking q as zero and assuming

the human body is immersed in a i r ,  the po ten t ia l  $(R,0,cp) on the body

surface is determined by su b s t i tu t in g  cft] n in equation [ 3 2 ]:
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CO

1

CO

+ Dyr2i)iy (R , 8,cp) + ^  $y (XR2,8 ,cp)dX]

1
(41)

CO

+ D y [2 * : (R ,8 ,g )  + ^ $z(XR2,8,%)dX]

1

CO

Q , j 2 t „ ( R , e , c p )  + l  4i»(XR^8,cp)dX]+     - -  ,

1

+ — .

when the transformation x = R sin 0 cos cp, y = R s i n 0 s i n c p ; Z  = R cos 0 

has been made to spherical coordinates.

The equivalent  heart  generator is determined when the constants 

D*, Dy, Dj,  are determined. Suppose there are m of  these

constants to be determined. Then po tent ia l  measurements a t  m + 1 points 

on the spherical  surface represent ing the body can be made a t  points P^,

P j ,  ------  Pp+i- This generates from (41) a l inear  system of  the form

i fP s )  -  i ( P i )  = a i i D ,  + a^sDy + a^gO, + ............

$ ( P g )  -  $ ( P i )  =  +  ^ s g D y  +  +

$ ( P . + i ) - * ( P i )  =  a , i D ;  +  a . g D y  +  a . g D ,  +  ............

The r ig h t  hand sides o f  the above equations consist  of  m terms. The 

points P^, Pp, —  P,+ i  must be chosen such that  the determinant of the 

c o e f f ic ie n t s  does not vanish.

The above process of  determining an equivalent  heart  generator  is 

due to Mart inek, Yeh, and DeBeaumont [4 9 ] .  S l ig h t  var ian ts  of the above
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process have been presented by Plonsey [50 ]  and Geselowitz [ 4 4 ] ,  The 

approach, however, is c l i n i c a l l y  impotent because nothing can be inferred  

about the actual heart  generator which is located in the heart  muscle which 

is not a t  the center  of the body. Also, the e f fec ts  of  the d i f f e r i n g  

r e s i s t i v i t i e s  o f  body t issue are not considered. The above type of approach 

was considered by Wilson et  al pt8 ] in 1946 and rejected as being c l i n i ­

c a l l y  usefu 1 .

A b e t te r  approach is due to Gabor and Nelson [ 1 7 ] .  Here, the 

equivalent  heart  generator  is assumed to be a dipo le .  But the location of  

the dipole is to  be determined along with i ts  o r ie n ta t io n  and strength.  

Again, the pr in c ip a l  object ions to th e i r  approach are that  the actual  heart  

generator is not a dipole nor are the d i f f e r i n g  r e s i s t i v i t i e s  of body 

t issues taken into  account. However, i t  w i l l  be shown here that the Gabor- 

Nelson equations can be used to character ize what is bel ieved to be the 

actual  heart  generator.  Moreover, the d i f f e r i n g  r e s i s t i v i t i e s  of the body 

t issues can be taken into account.

Consider f i r s t  the two-dimensional problem of determining the 

equiva lent  dipole by the Gabor-Ne1 son equations when the actual  generator  

is a double layer  arc .  The boundary of  the conducting medium is c i r c u l a r  

and the medium is homogeneous. Further ,  the conducting lamina is imbedded 

in an insu la tor .  The Gabor-NeIson equations then are [ 1 8 ]

2 t t  2 t t

M* = kR^ V cos 0d9, My = kR^ V sin 0d0,

°  °  (42)

2 tt 2 tt

X Mx -  y My = kR2^ V cos 20d0, x My + yM, = kRz\ V sin 20d0.



4 )

R is the radius of  the c i r c u l a r  lamina, k is the conduct iv i ty  of the 

lamina, and V = V(R,0)  is the potent ia l  on the boundary of the lamina, 

and are respect ive ly  the x and y components of the moment of  the 

equivalent  d ipo le ,  and x and y respect ive ly are the x and y coordinates 

of the equivalent  d ipole .

The boundary potent ia l  V for  a uniform arc of  double layer in the 

homogeneous c i r c u l a r  lamina is [15]

CO

V = R~°[cos n6 ( r “sin nQ̂  -  rg sin nGg)

n=l
(43)

+ sin nGfrgCOs n8g -  r j  cos n 0 i ) j .

M is the moment per u n i t  length of the double layer  a r c .  The endpoints of  

the doubie layer arc are a t  (xj^,y^) and (x2 , y n ) ,  where = r^ cos 0 ^, 

y  ̂ = r^sin , i = 1 ,2 .  Subst i tut ing (43) in to  equations (42) and c a r ry ­

ing out the in tegrat ions yie lds the fol lowing theorem:

Theorem 7 : The equivalen t  dipole locat ion fo r  a uniform double layer arc

in a homogeneous c i r c u l a r  conducting lamina imbedded in an i n f i n i t e  insu­

la t in g  medium is a t  the midpoint of  the s t ra ig h t  l in e  segment jo in ing  the 

ends of  the double layer  a rc .  The o r ie n ta t io n  of  the equivalent dipole is 

perpendicular  to th is  l in e  segment. The strength o f  the equivalent  dipole  

is proport ional  to  the product o f  the moment per un it  length of  the arc  

and the length of  the l in e  segment Joining i t s  endpoints.

In terms of  the nota t ion as defined above,

X = (1/2) ( x i  + Xg) ,  y = (1 /2 )  (y^ + y ^ ) ,  (44)

= 2 |rkM(y^ -  y  ̂) ,  My = 2TrkM(Xg -  x ^ ) .

The dipole is or iented a t  the angle tan"^ (My/M*) w it h  respect to  the x -ax is

of  the coordinate system.
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The boundary po te n t ia l  V fo r  a uniform double layer  arc in the

nonhomogeneous c i r c u l a r  laminar of  Bayley and Berry [ 1 5 ]  is obtained by

s e t t in g  r = = R In equation (27 ) .  The r e s i s t i v i t y  Pe is made i n f i n i t e .

Thus K4 = 1, 1 he equation fo r  the boundary po tent ia l  is

V = M ^  ^  DnR“ "[cos n@(r% sin ng^ -  r °  sin nGg)

(45)
+ sin ng(r2 cos ng  ̂ -  r ” cos n0 i ) ] ,

The c o e f f i c i e n t  is obtained from equations (30) ,  (31 ) ,  and (3 2 ) .  As 

before ,  the endpoints of  the double layer  arc are at  ( X j , y ^ ) ,  where 

Xj = Tj COS0J, y 1 = r j  sing^, i = 1 ,2.  Subst i tu t ing (43) into  (42) and 

carry ing out the in tegra t io n  y ie ld  the fo l lowing theorem;

Theorem 8 : The Gabor-NeIson equations when appl ied to the nonhomogeneous

conducting lamina of  Bayley and Berry [ 1 5 ]  y ie lds the fol lowing locat ion  

( x ,y )  fo r  the equiva lent  dipole:

X = ( - | ) ( -5^)(xi  + Xg) ,  Y = (■̂ ) ( |^ )  (Yi + 7 2 ) -  (46)

The strength o f  the equivalen t  dipo le  is

= 2nkD^M(yi -  y^ ) ,  My = 2 nkD^M(Xg -  x^ ) .

The dipo le is or ien ted at  the angle tan~^ (My/M%) with respect to  the x-axis  

o f  the coordinate system.

Therefore,  to  correc t  fo r  nonhomogeneity, the x and y coordinates  

above must be m u l t ip l i e d  by Di/Dg to  obtain  the true locat ion (x^,y^)  

the midpoint o f  the l in e  segment jo in in g  the endpoints o f  the double layer  

arc .  Note that  the o r ie n t a t io n  o f  the equiva lent  d ip o le ,  however, is 

unaffected by the nonhomogeneity of  the conduqting lamina.

For a spherica l  medium, the Gabor-Nelsori equations are [ 1 7 ]
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2 n  n

M* = kR~ ^ ^  V Pa (cos 0) sin 0 cos cp dp dcp.

0 0 

2n TT

My = kR2 ^ ^  V Pg (cos 0) sin 0 sin cp d 0  dcp,

0 0

2 tt TT

M, = kR  ̂ ^ ^ V P°(cos 0) sin 0 d0 dcp, 

0 0

2 tT TT

xMy + yM% = ■jR  ̂ ^ ^  V P| (cos 0 ) sin 0 sin 2 c p d 0  dcp, 

0 0

( 4 7 )

2 n  TT

y M j + zM y  =  j k R ^  J  j  Ps (cos 0) sin A sin cp dQ  dcp,

0 0 

2 t t  t t

xMj + zMjj = jkR^ ^ ^ V Pp(cos fl) sin 0 cos cp dA dcp.

0 0

M%, My, and Mj are respect iv e ly  the x,  y, and z components o f  the strength  

of the equiva lent  d ip o le .  The locat ion o f  the equ ivalen t  dipole is a t  the 

point ( x , y , z ) .  The Pj (cos p) occurring in the integrands are the 

Legendre's associated funct ions of degree j  and index i [51 ]. V is the 

potent ia l  on the surface of  the sphere.

The surface p o te n t ia l  of a uniform double layer cap in a homo- 

geneous-sphere surrounded by an insulat ing medium is given by equation ( 3 7 ) .  

Subst i tu t ing  ( 3 7 ) in to  equations ( 4 7 ) and ca rry ing  out the in tegrat ions  

yields the fo l lowin g theorem:

Theorem 9 : The equiva lent  dipole locat ion fo r  a uniform spherical  double

layer cap in a homogeneous conducting sphere is a t  the midpoint of  i ts  

c i r c u l a r  rim. The o r i e n t a t io n  of  the equivalen t  d ipo le  is normal to  the
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rim. The strength of the equivalent  dipole is proport ional  to the product 

of  the moment per un i t  area of the double layer cap and the area of i ts  

rim.

In terms o f  the notat ion fo r  equation (37 ) ,

X = b sin 00 cos y = b sin 0o sin z = a + b cos % ,  (48)

M* = 4ifMc^k cos c(b sin Fy, My = 4rfMc^k sin %  sin

M J = 4 i f  Mc^k cos Qq .

The surface p o t e n t ia l  for  a uniform double layer cap in the non­

homogeneous spherical conductor of Bayley and Berry is given by equation

(39) .  Subst i tu t in g  (39) in to  equation (47) and ca rry in g  out the in tegra ­

t io n  y ie ld  the fo l lowing  theorem;

Theorem 10: The Gabor-NeIson equations when appl ied  to  the nonhomogeneous

spherical  conductor o f  Bayley and Berry [ l 6 J -  y ie ld s  the fol lowing locat ion

(x, y, z) fo r  the center  o f  the rim of the double layer  cap: 

X = b (■^) sin 0b cos cft)> y = b ( ^ )  sin Go sin

Z » (■^) (a + b cos Go).
(49)

The moment components are

M% = 4n*Mc^Dikcosc(b, sin0Q, My = 4ifMc^D^ksinqb sin

M̂  = 4nfMc^DJ< cos .

Therefore,  to correct  fo r  nonhomogeneity, the x,  y, and z coordi ­

nates above must be m u l t ip l i e d  by Dg/D^ to obtain the t rue  locat ion (x t ,  

y t ,  ^^) of  the center  o f  the rim of  the double layer  cap.

The a p p l ic a t io n  of  the Gabor-NeIson equations in respect ive ly

e i t h e r  two or three dimensions y ie lds the locat ion o f  the midpoint o f  the

double layer arc or the center  o f  the rim of the double layer  cap when the

ca lcu la ted  locations (x,  y) or (x,  y, z) are m u l t i p l i e d  by the fac tor
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(D.,/Dj ) .  The o r ie n ta t io n  of the l ine segment jo in in g  the endpoints of the 

double layer arc or the rim of the double layer cap are also  obtained from 

the Gabor-Nelson equations without  any correct ion for  nonhomogeneity. The 

endpoints of  the double layer arc or the radius of  the rim of  the double 

layer cap are s t i l l  unspecif ied.  However, physiological  considerat ions  

d ic ta te  that  the heart  generator must l i e  in or on the heart  w a l l ,  roughly

0.5 cms th ick .



CHAPTER IV

SUMMARY

Ten theorems and four c o r o l la r ie s  have been presented. With the 

exception of  Theorem 5,  a l l  are the work of t h i s  author.  These theorems, 

a l l  concerned with p o te n t ia l  theory,  were motivated by appl icat ions to  

the medical science of e lectrocardiography.

Theorem 1 provides an elegant  so lu t ion  to the problem of d e te r ­

mining the p otent ia l  everywhere in a plane due to a d is t r i b u t io n  located 

i n t e r i o r  to  a c i r c l e  whose s p e c i f i c  r e s i s t i v i t y  d i f f e r s  from that  of  the 

surrounding media. The theorem is elegant  in th a t  the po tent ia l  a t  a point  

P is simply given as a l in e a r  combination of the f ree  space po tent ia l  a t  P 

of the d i s t r i b u t i o n  and the f ree  space p o te n t ia l  of  the d is t r i b u t io n  at  

the inverse point  of  P with  respect to the c i r c l e .  The method of  proof  

of Theorem 2 was o r i g i n a l l y  used by th is  author to prove Theorem 1. The 

boundary condit ions across media of  d i f f e r i n g  r e s i s t i v i t y  as assumed in 

Theorems 1 thru 6 are der ived ,  fo r  example, in I52 J .  As the proofs of  

Theorems 1 and 4 are so simple, i t  is somewhat surp ris in g  that  these 

theorems apparent ly  have not been published prev io us ly .

Theorem 2 deals with  two concentr ic c i r c u l a r  media of d i f f e r i n g  

r e s i s t i v i t i e s  with the rest  of  the plane of  s t i l l  another r e s i s t i v i t y .

Here the p o ten t ia l  everywhere due to a d i s t r i b u t i o n  located i n t e r i o r  to

4 6
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the innermost c i r c l e  is given in terms of i n f i n i t e  ser ies involving the 

f ree space po te n t ia l  of the d i s t r i b u t io n .

Theorem 3 is an a lgor i thm su itab le  fo r  machine computation of the 

potent ia l  anywhere when N concentr ic  c i r c u l a r  media o f  d i f f e r i n g  r e s i s t i v ­

i t i e s  are involved. For ap p l ica t io n s  to e lect rocardiography,  N would 

never be greater  than s ix .

Theorems 2 and 3 a re concerned with p o te n t ia ls  in concentric  

c i r c u la r  media. A more p h ys ic a l ly  r e a l i s t i c  model o f  a t ransverse cross 

sect ion of the human chest is obtained when the geometry consists of  two 

systems of concentr ic c i r c u l a r  media, with one system eccentr ic  to the 

other.  Such a two-dimensional nonhomogeneous model was presented by 

Bayley and Berry [ 1 5 ] .  In th is  case, the d is t r i b u t i o n  was a double layer  

ci rcular  arc .

Bayley and Berry f 16j  published the solu t ions fo r  the p otent ia l  

everywhere in a three-dimensional analog of  t h e i r  two-dimensional nonhomo­

geneous model [ 1 5 ] .  The d i s t r i b u t i o n  was a double layer  cap. However, 

the double layer  cap was required to  be concentr ic  about the l ine jo in in g  

"heart"  center  and "body" center .  Theorem 6 removes th is  r e s t r i c t i o n  and 

allows the double layer  cap to be located anywhere in the "heart w a l l . "

By p a r t i c u l a r i z i n g  the r e s i s t i v i t i e s ,  the r a d i i ,  and the double layer  cap 

locat ion and strength in equat ion (39 ) ,  the e f f e c t s  of  abnormal r e s i s t i v ­

i t i e s  on the po te n t ia ls  a t  the surface of the "body" can be studied with  

the use of  a computer. Perhaps such studies w i l l  re su l t  in s ig n i f i c a n t  

c l i n i c a l  i n t e r p r e t a t io n s .

Theorems 7 and 9 show that  the Gabor-Nelson equations [ 1 7 ]  can be 

appl ied to the determinat ion of the o r ien ta t io n  and strength of an equiv­

alent  double layer arc or  double layer cap resp ec t ive ly  in two-dimensional
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or three-dimensional homogeneous conductors. This is s i g n i f i c a n t  in that  

the c l i n i c i a n  bel ieves that  the heart generator is a double layer cap 

rather  than a dipole as used by Gabor and Nelson.

Theorems 8 and 10 show fu r th e r  that  the Gabor-Nelson equations can 

be appl ied to the determinat ion of  the o r ie n t a t io n  and strength of an 

equivalent  double layer  arc or double layer cap respect ive ly  in two- 

dimensional or three-dimensional  nonhomogeneous conductors. Theorem 10 

could be appl ied to obtain an approximation fo r  the strength and o r ien ta t io n  

of the heart generator in a human subject .
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