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CHAPTER I

INTRODUCTION AND HISTORICAL BACKGROUND

The study in this paper was suggested by questions

raised by D. C. Murdoch 13 One question was whether a 

particular quotient ring is a local ring. Another more 

general question was concerning the possibility of construct­

ing a local ring from a general ring in a manner similar to 

that used in commutative rings.

Necessary and sufficient conditions, for a general 

ring to be a local ring, are presented in this paper, in 

partial answer to the first question. A constructive pro­

cess, similar to the commutative case but with necessary 

and sufficient restrictions, is presented as a partial an­

swer to the second question.

Historically, the study of local rings arose in 

algebraic geometry, and more specifically in the study of 

polynomial rings in one variable over a commutative field

[lo] .
If k is the ring of polynomials over the

commutative field k, and P is a prime ideal in k

then the complement of P in k

1
X is a multiplicative
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system of regular elements, M.

The quotient ring Q = ja/b a Ç" k x , b C M 

with the usual rules of fractions, is a local ring. The 

set P ' = ^p/b I p 6 P, bC is the unique maximal

ideal in Q.

In Chapter II, a generalized local ring is defined 

as a ring R with a two-sided identity element and a uni­

que maximal ideal. This definition is justified as reason­

able by the following: The property of R having a two-

sided identity element furnished sufficient structure for 

a certain ease in the proofs. The property of R having 

a unique maximal ideal is considered the distinctive pro­

perty of a ring being a local ring 1 1 ,p .7 •

The first local rings studied were Noetherian, hav­

ing the ascending chain condition for ideals. Commutative 

local rings with this property have become an object of

considerable study 15 Currently, interest is growing 

in non-commutative local rings, keeping the Noetherian 

property [?] .

However, in this paper, the Noetherian restriction 

is relinquished. Necessary and sufficient conditions are 

obtained for a ring R, with a two-sided identity element, 

to be a local ring.

In Chapter III, the definition of a right quotient

ring is used as by Utumi l6 The set of left transla­

tions of a ring R into itself, similar to the example
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constructed by Murdoch 13 is studied. However, the

quotient ring not being necessarily a maximal quotient 

ring, is not required to contain the fractional mappings 

defined on some ideal as presented in 5 • Keeping the 

definition of Utumi, necessary and sufficient conditions 

are obtained for the set of left translations of a ring 

R into R, to be a right quotient ring over a subring 

homomorphic to R.

Finally, in Chapter IV, these results are used for 

a constructive process in achieving a right quotient ring 

from a general ring for which the quotient ring is a local 

ring. The construction follows closely the standard one 

used for commutative rings and reduces to it when commuta­

tivity is assumed.

An example is presented, verifying the possibility 

of the construction.



CHAPTER II

LOCAL RINGS EXTENDED TO NON-COMMUTATIVE ALGEBRA

A ring R will be defined to be a local ring if 

R has a two-sided identity element, denoted as 1, and a 

unique maximal ideal M.

I . Commutative Case.

Local rings arose in the commutative algebra of 

algebraic geometry. A brief review of some of the results 

of commutative local rings will clarify the problems which 

arise in extending to the non-commutative case.

An element x in a ring R is a divisor of zero 

if X / o and there exists some element u in R such

that u / o and either ux = o or xu = o.

In a commutative ring R, with an identity ele­

ment , a multiplicative system S is a non-empty subset

of R, which does not contain zero and which is closed

under multiplication; that is, if x and y are elements 

of S, then xy is an element of S. Since S does not

contain zero, the further restriction can be made that S

contains no non-zero divisors of zero in R. Therefore, 

the elements of the multiplicative systems considered, in

4



5
this chapter, are regular elements in the ring R. An 

element x of ring R is a regular element if x is not 

the zero element and x is not a divisor of zero l8 ,p.8

In commutative algebra, an ideal P is a prime 

ideal in the ring R, if for elements u and v in R,

uv in the ideal P implies either u is in P or v is

in P. Therefore, R - P, the complement in the ring R

of the prime ideal P, is a multiplicative system, because

if X and y are in R - P and xy were in P, we would

contradict the fact that P is a prime ideal.

Historically, local rings arose in the study of the 

polynomials in one variable with coefficients from a commu­

tative field, such as the rational numbers.

If k is a commutative field, R = k x is the

ring of polynomials, in one variable, with coefficients from 

the field k. This is a commutative ring without divisors 

of zero and with identity. Therefore, if P is a prime 

ideal in R, then R ~ P is a multiplicative system S of 

regular elements.

The quotient ring Rg, with respect to the multi­

plicative system S is defined as R„ = (a/b | a,b are
\ ^ in R, b is in S> . The elements of Rg obey the usual

rules for fractions in the ring of rational numbers and

therefore Rg is a commutative ring l8,p.42 .

This ring Rg has the property that P ' = ^c/b 

is in P, b is in S ) is a prime ideal and also a unique
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maximal ideal. Therefore Rg is a local ring [l,p.3^_

The justification for this statement is given in 

some detail because it will be useful in comparing with 

non-commutative rings.

First, P ’ is an ideal, since if c^/b^ and c^/b^

are in P ' and a/b is any element of R g , then c^/b^ -

Cg/bg = (c^bg - b^Cg) /b^bg, which is in P', and

(a/b)(c^/b^) = ac^/bb^, which is in P '. Second, P ' is

a maximal ideal, because if a/b is an element of Rg and

is not an element of P*, then a is not in P. Then b/a 

is an element of Rg and is not an element of P ’ for b 

was not in P. Thus, every element of Rg which is not an 

element of P ' is a unit in Rg and all non-units of Rg

must be contained in P '. Since P ' is a proper ideal, no

unit can be in P ' and P ' is contained in the set of non­

units. Therefore P ' is equal to the set of non-units.

If X is any element of Rg and x is not in P ',

then X and P ' would generate the entire ring Rg, as 

P ' is a maximal ideal.

In fact P ' is the unique maximal ideal in Rg, 

since if N were any maximal ideal in Rg, it would have 

to be contained in the set of non-units, so N would be 

contained in P '. But, then N would not be maximal unless 

N were equal to P '. Therefore Rg is a commutative local 

ring.



Finally, P* is a prime ideal, since in any commu­

tative ring with identity, a maximal ideal is a prime ideal 

.7,p.54
For a commutative ring R with an identity element, 

instead of defining R as a local ring if R has a unique 

maximal ideal, sometimes R was defined as a local ring if 

the non-units form an ideal 3 • The equivalence of these 

two definitions of a local ring is proven in the following 

1 emma:
« t

Lemma II-I: If R is a commutative ring with identity

element, then R is a local ring if and only if the non­

units form an ideal.

Proof : If the non-units form an ideal N, then any proper

ideal in the ring R is contained in N. Then N is the 

unique maximal ideal in R and R is a local ring. If R 

is a local ring it contains a unique maximal ideal M. As­

sume this and also that the non-units do not form an ideal. 

If X is a non-unit, then the principal ideal (x) will
Vbe a proper ideal. Otherwise, ^  r . x s. + nx = 1 and

i
then X = 1 contradicting the assumption

X
that X is a non-unit.

The importance of the property of commutativity of 

the ring R is revealed here as it allows the element x 

to be factored out of a linear sum of left and right ring 

multiples of that element.
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Therefore, if the non-units do not generate a proper 

ideal, it is because some finite sum of non-units is a unit. 

For example, in the ring of the integers modulo 6 , 3

and 4 are non-units, but 3 + 4 = 1  (mod 6 ).

Therefore, let us assume that for some finite set

F = Yg, ..., Y^ ^ , Y^^ , • contained in the set of

non-units, a linear combination of the ring multiples of the 

elements of F , forms the identity. Then, with relabelling 

of the subscripts if necessary, we can construct a chain of 

ideals as follows : (Y^) CT (Y^, Y^) c: ... O  (Y^, Y^, ...,

Y^_^)0(Y^, Yg, ..., Y^) = R. The ideal (Y^, Y^, ...,

Y^ l) is a proper ideal and therefore is contained in some

maximal ideal, L. The ideal (Y^J is a proper ideal and 

is contained in some maximal ideal, N. Since R is a

local ring, L = N. But L = (L,N) = R and we have a con­

tradiction. Therefore, the non-units generate an ideal.

But, such an ideal, being proper, must be contained

in the set of non-units.

"'“’ Thus, the non-units form an ideal, in fact, the 

unique maximal ideal M.

II. Non-Commutative Case.

In a non-commutative ring R with a two-sided 

identity, 1 , a non-unit element z is one for which there 

is neither an element x such that xz = 1 nor an element
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y such that zy = 1 .

For a non-commutative ring R, an ideal P is a 

prime ideal in R if for ideals A and B in R, AB = 0 

(mod P) implies either A = 0 (mod P) or B = 0 (mod P).

The following result is valid in non-commutative 

rings. Since it is used and was not found in the litera­

ture, it is presented as a theorem.

Theorem II - II: In a ring R, with a two-sided identity,

a maximal ideal M is a prime ideal.

Proof : Assume that M is a maximal ideal, A and B are

ideals in R, and that AB = 0 (mod M). If A is not 

contained in M, there exists some element x in A such

that X  is not in M.

Since M is a maximal ideal, x and M will 

generate the entire ring R, including the identity element.

i * I/.iThus, l = m .  + / r . x s .  for m . , some element of M.
’ ^ J J

But then, if y is any element of B, y = m^y +

( ) r. X s.)y, which says y is an element of M + (x)y 
J -

and is therefore an element of M + AB, and thus, an element 

of M. Then every element of B is an element of M or B 

is contained in M and M is a prime ideal.

The existence of a two-sided identity element was 

needed in the above proof. A counter-example is given to 

show the result is not true for a ring without identity
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element.

Let R be the ring of even integers. The multiples

of 4 form a maximal ideal, M, since if x is in R and

X is not a multiple of 4, then x = (2n+l)2 for n, some
integer. Every even integer is of form 2k for k an

integer. If k is even, 2k is a multiple of 4. If k
is odd, k-2n~l is even and (k-2n-l)2 is a multiple of 4.
Then the even integer 2k = (k-2n~l)2 + (2n+l)2. However,
2 —R = 0 (4) and yet R is not congruent to zero, modulo 4,

so the ideal M is not prime.

In the discussion of the commutative ring, it was 

shown that in a commutative ring, with identity, a non-unit 

cannot generate the entire ring as a two-sided principal 

ideal.

In non-commutative rings with a two-sided identity 

we can still say that a non-unit will not generate the

entire ring as a one-sided ideal. We can even say that in

a ring with one-sided identities and one-sided inverses, a 

non-unit will not generate the entire ring as a right prin­

cipal ideal or as a left principal ideal.

For example, if z is a non-unit element, ^  zr.+nz
i

is in the right principal ideal for any integer n. If

( ^  zr. + nz)x is a left or right identity, then 
i

z (^  r.x + nx) is also and this contradicts the fact that 
i

z is a non-unit. The verification is similar for left
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principal ideals.

However, in a non-commutative ring R, with a two- 

sided identity, a non-unit may generate the entire ring as 

a two-sided ideal. We can expect this for any simple ring 

of the n by n matrices over a field k 2 ,p .32

For example, if R is the ring of all by

matrices over the rational numbers, the element z =

= x; y =

0 1 
0 0

is a non-unit. But, in the
0 1 0 1 1 0

ments 0 0 1 0 0 0
0 l' 0 1 0 1 0 0

and w = 1 0 0 0 1 0 1 0

0 1 0 1 0 0
1 0 0 0 0 1

The set z,x,y,w

forms a basis for R and will therefore generate the entire 

ring.

13 is described inAn example of D, C. Murdoch 

some detail to illustrate a non-commutative local ring and 

to show that the classical result that for a commutative 

ring R, with identity, and a maximal ideal M, the residue 

class ring R/M is a field does not extend in the non-commu­

tative case.

Let I be the set of integers and a prime

integer. Let L = a/b | a ,b are in I, (b,p) = ly ;

P = ^c/b c,b are in I ; c = np for n, an integer,

(b,p) = 1^ . Then L is a commutative local ring and P 

is the unique maximal ideal in L, This example is very 

similar to the one given of a local ring in the discussion 

of the commutative case.
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Let be the sçt of all n by n matrices over

L, for a fixed positive integer n. Let Rp be the set

of n by n matrices over P , Then Rp is a unique maxi­

mal ideal in R^ and R^ is a non-commutative local ring

for n greater than one.

We verify this by steps. First, let (p^j) be an

element of Rp and (q_j) any element of R^. Then, for

any (i,j) position in the product, (q. .)(p. .), theE l J 1J
^ik^kj an element of P. Therefore,

(q. ,)(p. .) is an element of R-n. In a similar manner itij ij P
can be verified that (p. ,)(q. .) is an element of R_.ij ij P
For any two elements of R_, then (p..) - (p'-.) is anP ij ij
element of Rp. Therefore Rp is an ideal in R^.

Secondly, if (q^^) is in R^ and not in Rp,

then there is some non-zero element q.. in (q..) whichij iJ
is of the form x/y and x is in L and not in P.

Therefore (x,p) = 1 and (y,p) = 1 and since y/x is 

in L and not in P, x/y is a unit in L.

If I represents the n by n identity matrix, 

multiplication of (q^^) by the constant matrix (y/x I) 

will produce a one in the (i ,j) position occupied by x/y. 

Since the ring L has the identity element one, the ele­

mentary row or column matrices are at our disposal. Multi­

plication by these elementary row and column matrices will 

produce a resulting matrix with zeros in all the other 

positions of the column and i^^ row, except that
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occupied by the element one. Further multiplication by

the elementary row and column matrices will shift this

element one from the (i,j) position to any arbitrary

(m,n) position with zeros in the other positions of the

m^^ row and n^^ column. Multiplication by a matrix

with a one in the (m,n) position and zeros in all other

positions will produce a matrix with a one in the (m,n)

position and zeros in all other positions. Therefore,

beginning with the matrix (q^^) as an element in

and not in Rp, it is possible with ring multiplication

on the left and the right by elements of R^ to produce

a basis for the entire ring R^. Therefore, beginning

with any arbitrary element in R^ not in Rp, instead of

generating a proper principal ideal, this element actually

generates the entire ring R^. This verifies the assertion

that Rp is a maximal ideal in R^. If there were any

other maximal ideal, N, in R,, then for (x..), any
^ 1 J

element of N, every element x. . in the matrix (x. .)ij iJ
must be a non-unit in L. Therefore it must be in P.

Then, every element in N must be an element in Rp, and

N is contained in Rp. Therefore Rp is a unique maximal

ideal and R^ is a local ring.

Since there are elements in R^, not in Rp,

which are non-units and non-zero divisors of zero, the

residue class ring R^/Rp cannot be a division ring. For

example let (q..) be an element of R, for which there
1 J f
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is the element one in the (i,j) position and zeros in

all other positions. Such an element is not in Rp. Let

(x..) be an element of R. for which there is the element ij i-'
one in the (m,n) position and zeros in all other positions.

If either i / m or j / n, then either (q. .)(x. .) or
- ■ i j  i j

(x..)(q..) is the zero matrix. Therefore, in the residue 1 J 1 J
class ring R^/Rp, the images of (x^^) and (q^j) would 

be divisors of zero. However, since Rp is a maximal 

ideal, the only ideals in the residue class ring are the 

(O) ideal and the residue class ring itself. If this were 

not so, and the residue class ring had a proper ideal, N, 

then the collection of elements in R^, mapping onto the 

elements of N, in the canonical map R^—»R^/Rp, would 

form a proper ideal in R^ properly containing Rp. There­

fore, in the example discussed above, the residue class ring 

is a simple ring and isomorphic to the n by n matrices 

over the field of the integers modulo p.

Thus, in non-commutative local rings, we must dis­

tinguish between the elements which are non-units and which 

generate proper two-sided principal ideals, and those ele­

ments which are non-units but which generate the entire 

ring.

Theorem II - III: Let R be a ring with a two-sided 

identity element. Then the set A, of non-units which 

individually generate proper principal ideals, forms an
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ideal or generates the ring R.

Proof : Let N = / x | x is in R , x is a non-unit

U = i' y I y is in R, y is not in N

A = ^ X I X is in N, (x) is a proper ideal^

B =  ^ X I X is in N, x is not in A ̂

If the ideal (A) is not contained in the set A, 

then there exists an element x of (A) such that x is 

in B or x is in U. In any case the element x would 

generate the entire ring R and (A) would be equal to

R. Therefore, either (A) is equal to R or (A) is 

contained in the set A. Since A is necessarily contained 

in (A), if (A) does not equal the ring R, then (A)

is contained in A, so (A) is equal to A and the set A

forms an ideal.

Theorem II - IV; A ring R with a two-sided identity 

element is a local ring if and only if the set A of non­

units which individually generate proper ideals, forms an 

ideal.

Proof : Let the sets N, U, A, and B be defined in Theorem 

II-III. Assume that A is an ideal in R. Then, since 

any element x in the ring R, not in the ideal A, will 

generate the entire ring R, A is a maximal ideal. But 

it is also the unique maximal ideal. This is because C 

must be disjoint from U and from B in order for C to 

to be any other ideal in the ring R and for C to
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be a proper ideal. Therefore C must be contained in A. 

Then if C is a maximal ideal, C is equal to A. There­

fore, if A is an ideal in R, then R is a local ring.

If, on the other hand, A is not an ideal then

the ideal (A) would be equal to R, by Theorem II-III.

Since the elements of A, considered individually, generate 

proper principal ideals and yet (A) is equal to R, there 

must exist some finite set F, contained in A, F =

... Y^ \ such that a linear combination of the

left and right ring multiples of the set F forms the iden­

tity element. Let us consider the following chain of ideals

(Y^) C  (Y ,Y )C2 ... C:(Y^,Y , ... Y^)CZ ...0 (F). Since

the set F is finite, and generates the entire ring R,

There must exist, after possible relabelling of subscripts,

an integer k such that (Y^,Yg, ... Y^) is equal to R,

and yet (Y^jY^, ... Y^ ^) is a proper ideal. Since it is

true that every proper ideal in R is contained in a maxi­

mal ideal, let us assume that (Y^jY^, ...,Y^ ^) and (Y^^

are in maximal ideals . Then (M^,Mg) is equal

to R and the maximal ideals and are distinct.

Then R would not have a unique maximal ideal, and there­

fore would not be a local ring.

Thus, we see that the structure of a local ring is

such that for each element x in the unique maximal ideal

M, the principal ideal (x) is a proper ideal. But for
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element y in the ring R, not in the maximal ideal M,

(y) = R. The unique maximal ideal M is then the set of 

elements in R, which individually generate proper ideals 

in R.

Theorem II - V : Let A be a local ring. Then the n by

n matrices over A form a local ring.

Proof : Since A is a local ring, it has a unique maximal

ideal M. Let B be the set of n by n matrices over

M. If X and y are matrices in B, then x - y is in

B since M is an ideal. For r, any element in A^,

and X, any element in B, rx and xr are in B , again

because M is an ideal. In the matrix multiplication for

rx and xr, the elements in the product matrix are linear

combination of left or right multiples of elements of M

and therefore in the ideal M. Therefore, B is an ideal.

If X  is i n  A a n d  x  is n o t  i n  B t h e n  xn
has some non-zero element x . . which is not in M. Thenij
Xĵ j does not generate a proper principal ideal in A, but 

generates the entire ring A. Therefore, some linear com­

bination ) r, I X s, I with r, I and s, I as constant L_. ̂  k k k k

matrices will produce a matrix with the identity element of 

the ring A in the (i,j) position. Let us denote this 

identity element of A as one. Then, since the matrices 

for the elementary row and column operations are elements 

of A^, it is possible, as in the example of D. C. Murdoch,
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to produce a matrix with one in the (i,j) position and

zeros in the other positions of the i^^ row and

column. Again, as in the example, with elementary row and

column operations this element one can be moved to any

arbitrary (m,n) position and be the only non-zero element

in its row and its column. Then multiplication by the

matrix with a one in the (m,n) position and zeros in all

other positions will produce a matrix with one in the (m,n)

position and zeros in all other positions. Therefore,

beginning with an arbitrary element x in and x not

in B, it is possible to generate by ring multiplication

by elements of A a basis for the ring A . Thus, B isn n
a maximal ideal.

If C were any other maximal ideal in A thenn
every element in C must be an element of B, or C

would not be a proper ideal. This is true because we have

shown that any arbitrary element in A^ not in B will

generate the entire ring A^. Then we have the result that

C must be contained in B, and if C is maximal, it must

be equal to B. Therefore B is the unique maximal ideal

in A , and A is a local ring, n ’ n

Theorem II - VI: A ring R, with a two-sided identity

element, is a local ring if and only if, for every proper 

ideal A in R, the set 1 - y | y is in A ^ is

contained in the set R ~ B, the complement in R of the
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set B for B = ^ x | x is in R and x generates a

proper ideal

Proof : If R is a local ring with a unique maximal ideal

M, then any proper ideal A is contained in M. The set

^ 1 - y I y is in A ̂  must be in R - M, the comple­

ment of M in R. Otherwise if 1 - y. = m. for y.,1 1 1 ’
any element of A and m^ some element of M, then 

1 = y^ + m^ would be an element of M and M would not 

be a proper ideal.

Since R is a local ring, the set B is an ideal 

in R, by Theorem II-IV. Therefore B is contained in

M. But then the complement of M is contained in the com­

plement of B or R - M is contained in R - B. Then

the set ^ 1 - y | y is in A j is contained in R - B.

If R is not a local ring, then the set B is not

an ideal, by Theorem II-IV. Then, it must be true that 

the linear sum of some finite set of elements of B is the 

irdentity element. Then, a finite set can be so ordered 

that (b^,b2 , ... b^ ^) is a proper ideal and yet b^ +

bg + ... + b^_^ + b^ = 1 . Since (b^jb^, b^_^) is a

proper ideal, b^ + b^ + ••• + b^  ̂is in B and therefore

1 - b^ is in B. Let (b^J = A , a proper ideal in R.

Then the set ^1 - y y is in A ^ cannot be contained

in R - B, for some ideal A in R.



CHAPTER III

QUOTIENT RINGS EXTENDED TO NON-COMMUTATIVE ALGEBRA

I . Commutative Case.

A commutative ring R which has no divisors of 

zero can be imbedded in a commutative field F [ I7,p-39 

as classically the ring of integers is imbedded in the 

field of rational numbers.

As defined in Chapter II, if R is a commutative 

ring and S is a multiplicative system of regular elements 

in R, then the quotient ring of R with respect to the

multiplicative system S, denoted by R„, is / a/s | a
1 ® Iis in R, s is in S ) . The quotients a/s obey the 

usual rules as the fractions in the field of rational num­

bers i8,p .4 0 ] .

If S is a multiplicative system of the ring R 

and not every element of S is a regular element of R, 

then there are elements of S which are divisors of zero 

in R. Let N be the set of all elements x of R such 

that, for some element y of S, xy = 0. Since S is a 

multiplicative system in R and does not contain 0, Sfi N 
(|). The set N is an ideal in R. This is true because

20
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if X and z are in N, there are elements u and v

in S such that xu = 0 and zv = 0, and uv is an 

element of S. Then (x i z) uv = xuv - (zv) u = 0 and 

X - z is in N. Also, if w is any element of R,

(xw) u = (xu) w = 0 and (wx) u = w(xu) = 0 , so xw and

wx are in N. Therefore xw is in N and N is an 

ideal in R. Let T: R—»R/N be the natural mapping of R 

into the residue class ring R/N. Then the image, T(S), 

of S, under T, is a multiplicative system in R/N,

since if u and v are in S, uv is in S, and T(u) 

T(v) = T(uv) is an element of T(S). The elements of 

T(S) are regular elements in R/N. If for u in S and

w in R, T(u) T(w) = 0, then uw is an element of N,

and therefore not an element of S. The element w cannot 

be an element of S, but there is some element v in S 

such that v(uw) = 0 = (vu)w. Since vu is an element of 

S, w is an element of N and T(w) = 0. Then the quo­

tient ring of R/N with respect to the multiplicative sys­

tem T(S) of regular elements can be defined . l8,p.22l].

However, in non-commutative rings there arises the 

ambiguity of the quotient of two elements. In fact it is 

not always possible to imbed a non-commutative ring, even 

without divisors of zero, into a division ring .I2 ].

II. Non-Commutative Case.

We will adopt the following definition for extending
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quotient rings to non-commutative algebra .lô].

Let R be a non-empty subring of a ring S. Then

S is a right quotient ring of R if, for any pair of 

elements x and y in S, x / 0, there exist elements 

r̂  ̂ and r^ in R such that xr^ / 0 and yr^ = r^.

Let us define a left translation T of a ring R 

as a mapping T; R->R such that for x and y in R,

T (x + y) = T(x) + T(y)

T ( xy ) = [ T ( X  )] y

Let Q be the set of all left translations of a
ring R. Since the identity mapping of R into R is a

left translation, Q is non-empty.

Defining the operations of addition and multiplica­

tion in Q as, for S and T in Q and x in R,

(S + T)(x) = S(x) + T( x ) and (ST)(x)=S.T(x)] , Q is

ring [ 8 , p . 2] .
For X, u and v in R, let x*(u) = xu. Then, 

x*(u + v) = x(u + v) = xu + XV = x*(u) + x*(v). Also
x*(uv) = x(uv) = (xu)v = x*(u) V. Therefore x* is an

element of Q, We define a mapping * : R—>Q for *(x) =

X* .

Since, for x, y and u in R, (x+y)*(u) = (x+y)u =

xu + yu = x*(u) + y*(u) and (xy)*(u) = (xy)u = x(yu) = 

x(y*(u)) = x*(y*(u)) = (x*y*)(u), the mapping * is a 

homomorphism of R into Q and the image R* is a subring 

of Q.
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The following is an example that it is not always 

possible to have Q satisfy the definition as a right quo­

tient ring of R*.

Let R be the subring represented by ^ 0, 2, 4, 6 ^ 

in the ring Jg, of the integers modulo 8 . Then, for 2*

as an element of R*, and therefore of Q, 2* / 0*, but

for every x, ah element of R, 2*x* =0*.

This example illustrates the problem that a non­

zero mapping T in Q may produce an image T(R) in R

of left annihilators of R. If T(x) is a left annihilator 

of R, then [ T(x) * = Tx* = 0*. So, if T(x) is a left 

annihilator of R for every x in R then Q would not 

satisfy the definition as a right quotient ring of R*.

This is because there would be no x* in R* such that 

Tx* / 0*.

If, given an arbitrary ring R, the set of left 

annihilators of R is denoted by A, then for x and y 

in A, since (x i y)r = xr - yr = 0 for every r in R,

X  - y  is in A. Also, for x  in A and r in R, since

(xr)R = x(rR)CZxR, (xr)R = and xr is in A, In

addition, since (rx)R = r(xR) = ^0^, rx is in A. There­

fore A is an ideal in R.

Theorem III - I ; Let Q be the ring of left translations 

of the ring R. Let R* be the homomorphic image of R 

under the mapping *. Then Q is a right quotient ring of 

R* if and only if for every T in Q, the image set T(R)
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contains some element u which is not a left annihilator 

of R.

Proof : Assume for every T in Q, the image T(R) con­

tains some element u of R which is not a left annihila­

tor of R. If X and y are any pair of elements of Q 

such that X / 0*5 then x(R), the image of R under x, 

contains some element v of R and v is not a left 

annihilator of R. Since v is not a left annihilator of 

R, there is some element w of R such that vw / 0.

Because v is in the image set x(R), v = x(u)

for some u in R. Then, (xu*)w = x 

x(u)

u* (w)] = X (uw) =

w = vw / 0, and xu * / 0*.

The element u* of R* then satisfies the defini­

tion for xu* / 0*. For the element u of R, let y(u) =

u (r ) .z. Then for any element r of R, (yu*)(r) = y 

y(ur) = Ly(u)J r = zr = z*(r). So yu* = z* in R*. Then 

Q is a right quotient ring of R*.

On the other hand, if Q is a right quotient ring

of R* and T is any element of Q, T / 0*, there is an

element u* of R* such that Tu* / 0*. Since Tu* is

not the zero mapping, there is some element w in R such

that (Tu*)(w) / 0. Then (Tu*)(w) = T u*(w) = T(uw) =

T(u) ]w / 0. The element T(u) in the image set T(R)

is not a left annihilator of R. _

Theorem III-I states the necessary and sufficient 

conditions for Q to be a right quotient ring of R*.
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Theorem III - II: The mapping *: R—>-R* is an isomorphism 

if and only if rR = ^ 0^ implies r = 0.

Proof : If rR = ^0^ implies r = 0 and for x and y

in R, X* = y*, then x* - y* =0*. But then (x* - y*)(R):

^0^ = (x - y)R and x = y. Therefore the mapping * is

an isomorphism.

If the mapping * is an isomorphism then for any 

X  in R, X X 0 , X* / 0*. So there must be an element u 

in R such that x*(u) / 0. Then x*(u) = xu ^ 0 and xR = 

0^ implies x = 0.

Theorem III - III : If R has a left identity element u,

then R* = Q.

Proof : Let T be any element of Q, then for r, any

element of R, T(r) = T(ur) = [T(u)]r. The element T(u)

is some element of R, say T(u) = x. Then T(r) = xr = 

x*(r). So T is an element of R*. This says Q is con­

tained in R*. Since R* is contained in Q, we have R* = 

Q.
We now have the result that for a ring R without 

non-zero left annihilators of R and with a left identity 

element, the right quotient ring Q is isomorphic to R.

Therefore, if R is a local ring without non-zero 

left annihilators of R, R has a two-sided identity, so 

the right quotient ring Q is isomorphic to R. Then Q 

is a local ring.
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However, the following is an example of a ring R 

without non-zero left annihilators of R . for which the 

right quotient ring Q is not a local ring. Let R be 

the ring of even integers. For T, any element of Q,

let us consider the image T(2). If T(2) = 0, then T

is the zero mapping or T(R) = So assume T(2) =

X  / 0. Since x is an even integer, x = - (2 + ... + 2),

for k terms, for some positive integer k, and T(2) =

- k2. Then for y, any even integer, y = -(2 + ... + 2),

for m terms, so T(y) = - mT(2) = (-m)(-k2) = - ky.

Therefore the mapping T is expressible as left multipli­

cation by some integer -k.

So Q is contained in the ring of integers. But 

then, left multiplication by any integer of the ring R, 

satisfies the properties of Q. Then Q is equal to the

ring of integers. This is not a local ring since the 

multiples of any prime integer p will form a maximal 

ideal and there is no unique maximal ideal.

Theorem III - IV: If R has no left identity, then for 

X, any element of R, x* has no left inverse in Q. 

Proof : The identity mapping is in Q. Let us denote it 

by 1. Let x be any element of R. Assume there exists 

an element T in Q such that Tx* = 1. Then, for y 

any element of R, (Tx*)(y) = y . This says (Tx*)(y) =

[x*(y)j = T ( x y )  = [t (x ) The element T(x) is some
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element of R, say T(x) = u. Then uy = y for any ele­

ment y of R, contradicting the assumption that R has 

no l"eft identity element.

Theorem III - V : If R is a commutative ring without

divisors of zero, and T is in Q, T / 0*, then the

kernel of T is .

Proof : Let T be in Q, T / 0*, and assume for x in 

R, X / 0, that T( x ) = 0.

Then, for y , any element of R for which T(y)/0,

T(xy) = T(yx), since xy = yx, because of commutativity. 

T(x)=0 so T(xy) = [ T(x)] y = 0. But T(yx') = T(y)]x / 0,

since T(y) / 0 and x / 0 and R has no divisors of zero,

Therefore, if T(x) = 0, then x = 0, and the 

kernel of T is

In fact, under the assumption that R is a commuta­

tive ring without divisors of zero, Q is a ring without

divisors of zero.

Assume S and T are any two mappings in Q, that

neither is the zero mapping, and x is any non-zero ele­

ment of R. Then (ST)(x) = S [T(x )]. By Theorem III-V, 

the image T(x) is some non-zero element of R, say T(x)

y X 0. Then (ST)(x) = S(y). But, since y / 0, S(y) is

some non-zero element, say w, of R. Then (ST)(x) = w^O.

Then ST cannot be 0*, or the zero mapping in Q.

Theorem III - VI: If R is a ring such that Q is a
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right quotient ring of R*, then R* is a left ideal in 

Q.
Proof : R* is a subring of Q, so R* is a commutative

ring under addition.

If T is an element of Q, x* an element of R* 

and z any element of R, then (Tx*)(z) = T [x*(z) =

T(xz) = [t (x ) z = yz for y = T(x). But yz = y*(z),

so Tx* = y*, an element of R*. Therefore R* is a left 

ideal in Q.

The following result is a variation of a result by

Utumi 16

Theorem III - VII: If R is a ring such that Q is a

right quotient ring of R*, then the set of n by n

matrices over Q is a right quotient ring of R*^, the 

set of n by n matrices over R*.

Proof : Let X and Y be any elements of for X / 0,

Then there is some non-zero element in the matrix X, say

X. . in the (i,j) position. Since x. . is an element of ij ij
Q and x^^ / 0, there is some element z* in R* such 

that x^jZ* / 0*. If z* is the element in the (j,k) 

position of a matrix Z in R*^, and the only non-zero 

element in the column, then XZ is not the zero

matrix.

For the product XZ, the (i,j) element is

x.,z, . which is an element of R* by Theorem III-VT.IK Kj
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Similarly, the (i ,j) element in the product YZ is

Zy ., z, . which is an element of R* . k kj
Therefore XZ is in R*^, XZ / 0, YZ = W, some

element of R*^. Then is a right quotient ring of

R* . n

Theorem III - VIII: If R is a ring such that Q is a

right quotient ring of R*, then for T, any element of

Q, the image of T, T(R), and the kernel of T are right 

ideals in R.

Proof : Let T be any mapping in Q, T(x) and T(y) ele­

ments of R in the image of T. Then T(x) - T(y) = T(x-y) 

is in the image of T. If r is any element of R,

T(x)J r = T(xr) is an element in the image of T. There­

fore the image of T, T(R), is a right ideal in R.

If X and y are in the kernel of T, then T(x)=

0 and T(y) = 0, so T(x - y) = T(x) - T(y) = 0. Therefore

X i y is in the kernel of T. If r is any element of R ,

then LT(x). r = T(xr) = 0 and xr is in the kernel of T.

Therefore, the kernel of T is a right ideal of R.

Theorem III - IX: Let R be a ring without left non-zero

annihilators of the ring R and T any mapping of Q. Let 

J be a right ideal in R. Then T(R) = J, if and only if 

TR* = J* in R*.

Proof ; Assume that T(R) = J, a right ideal in R. If x* 

is any element of R* and T(x) = u in R, then Tx* =
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[ T(x)] * = u* , an element of J*, so TR* is contained 

in J*. If y* is any element of J*, then y is an 

element of J, so y = T(x) for x some element of R.

Since y* = [t (x )J * = Tx*, y * is an element of TR* . 

Therefore TR* = J* .

On the other hand, if TR* = J*, and x is any 

element of R, then T(x) is some element of R, say 

T(x) = u, in the image set T(R). Also Tx* = u* is an 

element of J*. Therefore, u is an element of J so 

T(R) is contained in J. If y is any element of J, y * 

is an element of J*, so y * = Tz*, for some z* in R*,

and y * _ .T(z)J*. Then y = T(z), since the mapping * 

is an isomorphism under assumption that R has no non-zero 

left annihilators. Therefore y is in the image of T , 

and J is contained in T(R). Then T(R) = J, and J is 

a right ideal by Theorem III-VIII.

The ring R is a principal ideal ring if R is 

commutative, with an identity element, no divisors of zero, 

and every ideal in R is a principal ideal.

Theorem III - X : If R is a principal ideal ring, then Q

is isomorphic to R and thus, a principal ideal ring.

Proof : If R is a principal ideal ring, then R has a

two-sided identity element, so R* = Q, Since R has no 

divisors of zero, R has no non-zero left annihilators, and 

R is isomorphic to R*. Then since R is isomorphic to Q,
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Q is a principal ideal ring.

Let G be a commutative group under addition. 

Then G is a bounded group if there is a fixed positive

integer n such that nx = 0 for all x in G L 9J
Theorem III - XI: If the ring R is a bounded group

under addition, then Q contains the ring, J^, of the 

integers modulo some integer m, and does not contain Z, 

the ring of integers. If the ring R is an unbounded 

group under addition, then Q contains Z the ring of 

integers.

Proof : If the ring R is a bounded group under addition,

there is a fixed positive integer n, such that nx = 0

for all X in R 9j . Since the set (]l, 2, ..., n ̂

is a finite set, we can further assume that n is the least

integer for which nx = 0 for all x in R.

Then, since the identity element I is in the ring

of mappings Q, a set of mappings isomorphic to the integers 

modulo n, is contained in Q. For the mapping i(l + I +

... + I) for k terms, k = l ,  2, ...,n, is in Q and

-(I + I + ... + l)(x) = i kx for every x in R. Further­

more, let m be any integer, then m = r + sn, and mx =

rx + snx = rx = (I + I + ... + l)x for r terms in

(l+ 1 +  ... + I). Therefore - (I + I + ... + I) for Im I 

terms is a mapping equivalent to r, the representative of 

the residue of m modulo n. Therefore Q does not contain
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z, the ring of integers.

If, on the other hand, R is not a bounded group 

under addition, then for any integer n , the mapping 

-(I + I + . . . + I )  for InI terms, will map some element 

X  into a non-zero element of R. Then, there is a set of 

mappings, in Q, isomorphic to the set of integers.

Since we have the result that for R, a ring such 

that Q is a right quotient ring of R*, the image and 

the kernel of every mapping T in Q is a right ideal in 

R, we can ask for the opposite. That is, for what right 

ideals, J, in R, are there mappings T in Q such

that J is the image of T or J is the kernel of T.

For R, a principal ideal ring, R is isomorphic 

to Q, and therefore for every right ideal J in R,

there exists an element u in R such that (u) = J.

Since R has an identity element, (u) = uR. But R is

isomorphic to Q, so uR is isomorphic to u*R* = J* and

u *(R) = J. For such a ring, every right ideal is the image

of a mapping u* of Q.

A little more generally, we can say: Let Q be a

right quotient ring of R* and J a minimal right ideal 

in R. Then, for x any element in J, x R O  J . Since J

is minimal right ideal, xR = J and xR = x*(R), so J 

is the image of a mapping x* in R*.

Regarding the question of when is an arbitrary 

right ideal J of R, the kernel of a mapping T of Q,
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we can say: If J is a two-sided ideal in R , then the

residue class ring R/J is defined. Then, there exists a 

mapping T in Q such that the kernel of T is J. For

elements u and v in R, let u be an element of the

residue class x + J and v an element of the residue

class y + J. Then T(u + v) = T(x + + y + j ̂ ) =

T(x + y + j^) = T(x) + T(y) = T(u) + T(v), Also, T(uv) =

T [(x + j^)(y + jg). = T(xy + j^y + xjg + jĵ jg) = T(xy+j^) =

T(xy) = [t (x )] y. Since T(uv) = [t (u )] v = [ t (x ).Since T( 

T(x)(y + jg) = [t (x )] y + T(x)jg

V =

[t (x )] y + T(xjg)

[T(x) y + T(j ) = [t (x ) j

Since a mapping T with J as the kernel will 

satisfy the properties of an element of Q, such a mapping 

exists in Q.



CHAPTER IV

LOCAL QUOTIENT RINGS EXTENDED TO NON-COMMUTATIVE ALGEBRA

In this chapter the definition of a local ring'is 

as in Chapter II and of a right quotient ring as in Chap­

ter III.

If R* and Q are defined for ring R as in 

Chapter III and if R is a local ring without non-zero 

left annihilators, then R = R* and R* = Q, so R ^ Q 

and Q is a local ring as observed in Chapter III.

An example for which Q is not a local ring was 

presented in Chapter III, namely for R, the ring of even 

integers for which Q is the ring of integers, which is 

not a local ring.

If the ring R is assumed to have no non-zero left 

annihilators, then R R* and R* is a left ideal in Q. 

We may consider maximal left ideals in Q. This is similar 

to reducing to the commutative case.

The ring Q has a two-sided identity and if x 

is an element of Q which has no left inverse, then x 

will generate a proper left ideal.

Then Q will have a unique maximal left ideal if 

the set of elements, L^, which have no left inverses,
34
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forms an ideal.

Another approach is to return as closely as possible 

to the classical construction of quotient rings from commuta­

tive rings, resulting in local rings. This is the approach 

which will be followed.

Theorem IV - I : Let R be a ring with identity element.

Let P be a prime ideal in R and M, the complement of

P in R. Let M be a subset of M which satisfies thec
following :

(1) is a multiplicative system

(2 ) if m is in , then m is a regular element

in R

(3 ) if m is in , then m commutes with every

element of R, i.e., is contained in the

center of R.

Then, the ordered pairs (r,m) for which r is in 

R and m is in , form a ring (R,M^).

Proof : We define the operations on the ordered pairs (r,m)

of (R,M^) as follows:

(1 ) equivalence: (r^,m^) = (r^jm^) if and only if

^1*2 = ^2*1'

(2 ) addition: (r^,m^) + (r^jm^) = (r^m^ + r^m^, m^m^)

(3 ) multiplication: (r^ ,m^ ) (r^ = (r^r^, m^m^ ) •

The additive identity element of (R,M^) is (0,m^)
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for any element of , since (0,m^) + (r^jm^) =

(r^m^, m^m^), and (r^m^, m^m^) = (r^m^, ^

Addition is commutative since (r^,m^) + (r^jm^) =

(r^mg + r^m^, m^m^) = + r^m^, m^m^) = ( , m ^ )+(r ^ ,m ^ ).

And we have (r^,m^) - (r^,m^) = (r^m^ - r^m^, m^m^) =

(0,m^m^) = iO,m^) for m^ some element of .

The multiplicative identity element is represented 

by (m^,m^) for m^ any element of . To verify this,

observe that (m^ ,m̂  ̂) (r^, m^ ) = (m̂ r̂̂ , m^m^) = (r^m^, m^m^) =

(r^jm^) and (r^jm^)(m^,m^) = (r^m^tm^m^) =

Multiplication in (R,M ) is associative becausec
of the associativity of multiplication in R.

To verify the distributive property, we compute

(r^,m^) [(r^jm^) + (r^,m^)] = (r^,m^) [r^m^ + r^m^jm^m 3̂
(ri [r^m^ + rym^) , m^m^m^) = (r^r^r^ + r^r^m^, m^m^m^ ) =/\J

2
V 2 ‘"3‘“l  ‘ "l"3‘"2"'l’ '“1 '̂“2 “‘3 '  ~ '^1^2‘“l‘“3 ' ^1‘3“‘1“‘2(r,r„m^m, + r^r^m^m,, m m m_) = (r r m m + r r m m  ,

*"l'"2*"l'"3 ̂ = (r^r^jm^m^) + (r^r^gm^m^) = (r̂  ̂,m^ ) (r^ jm^ ) + 

(r^,m^)(r^,m^), and assert that right distributivity of

multiplication over addition is verified in a similar way.

Therefore the ordered pairs (R,M^) form a ring.

Theorem IV - II : In the ring Q of ordered pairs (R,M^),

as defined in Theorem IV-I, the set of equivalence classes
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represented by (R,l) is isomorphic to the ring R.

Proof : Let us map the ring R into the ring Q = (R,M^) 

as f : R—>-Q, and f(r) = (r,l).

Then, for r^ and r^ in R, f(r^ + r^) =

(r^ + rg,l) = (r^,l) + (r^,!) = f(r^) + ffr^). Also

f(r^rg) = (r^r^,!) = (r^glïfrg,!) = ffr^jffr^). Therefore

the mapping f is a homomorphism of R into Q.

If f(r) = (0,1), then (0,1) = (0,m^) for m^

any element of , so f(r) = (0,m^). We have (0,m^) =

(r^m^jm^) if r^m^m^ = 0. But m^m^ is an element of

and being regular r^m^m^ = 0  if and only if r^ = 0.

Therefore the mapping f is an isomorphism. If we denote
, . A Af(R) as R in Q, then R is a subring in Q isomorphic

to R.

Theorem IV - III: The ring Q = (R,M ) is a right quo-
/% ^ 

tient ring of the subring R = (Rm^,m^) in Q.

Proof : Let (r^,m^) and (r^^m^) be any elements of Q,

(r^,m^) / (0,m^). Then, for the element (m^m^,m^) in R,

(r^,m^)(m^m^,m^) = (r^m^m^,m^m^) / (0,mu). Also (r^jm^).
^ A(m2m^,m^) = (r^m^m^,m^m^) = (r^jl) is an element of R.

A
Therefore Q is a right quotient ring of R.

If R is a subring of the ring S and A is an

ideal in R, then the extension of the ideal A in S,
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denoted A®, is the smallest ideal in S generated by A.

Theorem IV - IV: If P is a prime ideal in R, and M =

R - P is a multiplicative system, then the extension of P , 
A e(P) , is a prime ideal in Q,

Proof : Since R ^ R and P is a prime ideal in T, then
A A A
P is a prime ideal in R , The elements of P are of the

form (p.m.,m.) for p. an element of P and m. an 1 J J 1 3
element of M . Let A and B be ideals in Q and assume 

A
AH = 0 ((P) ). If B is not contained in (P) , there is

A A
some element x in B which is not in (P) . Since P is

A e Acontained in (P) , x is not in P. If also, any element
A

y in A is not in (P) , then y is not in P. Then x

is some element of the form (n^,m^) and y is of the form

(n^jm^) for n^ and n^ elements of M and m^ and m^

elements of M . Therefore yx = (n„n^,m m ) could not be
A g A g

in (P) since all elements of (P) are of the form

(p.,m.) and n n^ is in the complement of P in R.I X 2 1
In a similar manner, if A is not contained in 

A A
(P) then B is and (P) is a prime ideal in- Q.

A ^
Theorem IV - V “. If P is a maximal ideal in R then (P)

is a maximal ideal in Q.

Proof : Let (n^,mj) be an element in Q, not in (P)®.

Then n^ is an element of M, the complement of P in R. 

If (r,m) is any element of Q, then r is in R and is

of the form p. + ^  r, n.s, since P is a maximal ideal. 
 ̂ k ' ’ '
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Therefore (p.,m) + / (r.n.s, ,m) (p.,m) +J K 1 K J

( / . r, n.s. ,m) ^ (p. + 7_,r. n.s, ,m) = (r,m). Therefore — k i k ’ ^ J ^ k x k ’

(r,m) = (p.,m) + ) (r, m .m) (n . ,m . ) (s, m,m) . Thus an arbi-J k J 1 J k

trary element (r,m) of Q is equal to the sum of an
A eelement of (P) with a linear sum of ring multiples of

A 2
(n.,m.), any element in Q not in (P) . ̂ J ^

Therefore (P)® is a maximal ideal in Q.

Next, we consider the problem of imposing the

necessary and sufficient conditions to ensure that Q is

a local ring.

For any element in Q of the form (m^,m2 ) with

m^ and m^ in , the element (m^gm^) is also in Q

and all such elements have inverses in Q.
A g

Elements of (P) in Q will not have inverses 

and will also form an ideal, for P an ideal in R.

But the necessary and sufficient condition for Q

to be a local ring is that the set of elements, which in­

dividually generate proper ideals, must form an ideal by 

Theorem II-IV.

Theorem IV - VI: Let R be a ring with a two-sided

identity element. Let be a multiplicately closed

subset of regular elements of R, containing the identity 

and contained in the center of R. Let Q = (R,M^) be 

the ring as defined in Theorem IV-I. Then Q is a local 

ring if and only if there exists an ideal P in R - M



ko

such that, for any x in R - P ,  ( x ) 0

Proof : Assume there exists a proper ideal P in R -

such that for every element x in R - P, (x) M / (j).
A ^

In Q, (P)^ = (P,M^) is a proper ideal.

Then for q, any element in Q but not in (P,M^),

q = (r,m) for r in R - P. Then there is some element

m̂  ̂ in (r) and in . Therefore (m^,m) is in (q) and

since (m^,m) is invertible, (1,1) is in (q) and (q) =

Q.

But, for every element u in (P,M^), u is of the

form (pu,mu) and (u) is a proper ideal in Q. Therefore
A ethe ideal (P,M^) = (P) is the set of elements of Q 

which individually generate proper ideals in Q. Then Q

is a local ring by Theorem III-IV.

Assume Q is a local ring. Then there is a unique 

proper maximal ideal A in Q. The ideal A contains

every element u of Q such that (u) is a proper ideal.

For every element x in Q - A ,  ( x ) = Q .

Let (A)^ = A n R. Then (A)^ is an ideal in R

isomorphic to an ideal P in R. Let (a^,l) and (a^^l)
c ^ +be in (A) and (r,l) any element of R. Then (a^,l) -

(a^jl) = ( -  ag,l) is in (A)^. And (r,l)(a^,l) =

(ra^jl) is in (A)^ as well as (a^,l)(r,l) = (a^r,l).
c A AThus (A) is an ideal in R. Since R is isomorphic to

R, (A)^ is isomorphic to an ideal in R. Denote this 

ideal as P.
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If (r,m) is any element of Q - A ,  the principal 

ideal generated by (r,m) in Q will be the entire ring 

Q, since Q is a local ring. Therefore, some linear sum 

(r%,m^)(r,m)(s.,m.) will be an element of the form
 ̂3 j

(m^,mg) for m^ and m^ in . But this says that some

linear sum . / r, rs, is equal to m, for r, and s,k k ^ 1 k k

in R. Then the linear sum (rj^,m2 )(r,l)(sj^,l) = (m^gm^).

Therefore the element (r,l) cannot be in A,

since A is a proper ideal. Then the element (r,l) cannot

be in (A)^ = A D R . This says the element r in R cannot

be in P. So r is in R - P.

If (a,m) is an element of A, (a,l) is an element
Aof A. But, since (a ,1) is also an element of R, we have

(a ; 1) as an element of (A )^ . This says the element a in

R is in the ideal P in R, isomorphic to (A)^.

Therefore, for any element p^ in P, (pu,l) must

be in A. Then p, must not be in M since A is aX c
proper ideal- So P must be contained in R - .

Finally, if x is any element in R - P, (x,l) 

must be in Q - A .  As we have shown, some linear sum

rĵ xSĵ  is equal to an element of . Such a linear sum

is an element of (x).

Then there exists an ideal in R, namely P, such

that P is in R - and for x in R - P, (x) 0 M /(j).
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Example of Construction of a Local Quotient Ring.

Let R be the ring of n by n matrices over 

the integers Z for n some fixed positive integer 

greater than one. Let the prime ideal P be the set of 

n by n matrices over the multiples of three.

To verify that P is a prime ideal in R, let A

and B be ideals in R and AB = 0(P). Assume B ^ 0(P). 

Then there is some element x in B that is not in P. 

Therefore, there is some entry x. . in x that is not a

multiple of three. If any element y of A is not in P,

then there is an element y^^, in y, which is not a 

multiple of three. Since Z has an identity element, the 

elementary row and column operations are available as ele­

ments in R. Every column in y except the m^^ column 

can be multiplied by three and the result is an element of 

the ideal A. The m^^ column can be interchanged with the 

i^^ column and the result, call it z, is still an element 

of the ideal A. Then, in the product zx, the (k,j) 

element is not a multiple of three, so zx is not an ele­

ment of P. In a similar manner, if A % 0(P) then B = 

0(P) and P is a prime ideal.

In the complement of P, a set of regular

elements which forms a multiplicative system and commutes

with every element of R is the set of constant matrices

with the constant element relatively prime to three.
ALet Q = (R,Mç). Then R = R = (R,l). The ring
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Q is isomorphic to the example of a local ring in Chapter 

II, that is the ring of n by n matrices whose elements 

are fractions with the numerators any integer and the 

denominators relatively prime to three, denoted as .



CHAPTER V —  -

CONCLUSIONS AND CONJECTURES

In generalizing to the definition of a non-commu­

tative local ring, only the properties of a two-sided 

identity and a unique maximal ideal were assumed. It was 

then found that a ring with identity is a local ring if

and only if the set of elements, each generating proper

ideals form an ideal in the ring.

For the generalized right quotient ring, the fol­

lowing definition was used. Let R be a non-empty subring 

of a ring S. Then S is a right quotient ring of R if 

for any two elements x and y in S, x / 0, there 

exist elements u and v in R such that xu / 0 and 

yu = V. Let Q be the set of left translations of a ring

R. Let R* be the subring of Q consisting of the left

translations by left multiplication by elements of R.

Then the necessary and sufficient condition for Q to be 

a right quotient ring of R* was found to be: for every

T in Q, there must exist an element u in T(R) which 

is not a left annihilator of R.

Finally, given a ring R with a two-sided identity,

44
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a constructive method was presented for forming a right 

quotient ring of the ring R.

In order to construct a right quotient ring, suf­

ficient conditions were found to be the existence in R 

of a set of a multiplicatively closed system of regu­

lar elements containing the identity element. Then Q = 

(R,M^) is a right quotient ring of the subring (R,l).

The necessary and sufficient condition for Q to be a 

local ring is that there must exist an ideal P in R-M^ 

such that for every element x in R - P, (x) Q

The restriction of as a multiplicatively

closed set of regular elements is similar to that used by 

V. P. Elizarov 

contained in the center was not assumed.

Commutativity and closure under multiplication are 

assumed in a construction of a quotient ring by N. Funayama

[6] but the rules of operation are defined differently.

In neither of the above papers is the original ring 

assumed to have an identity element. However, in this 

paper, R is assumed to have a two-sided identity to insure 

that the set is not vacuous.

Some questions arose in this study for which it is 

hoped that some progress will be made in the future.

One such question was raised by Murdoch [1 3] • If 

P is a prime ideal in R, and R is a subring of Q, is 

the extension of P in Q, or p®, a prime ideal in Q.

although the property that be
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Even for commutative rings, this is not generally 

true. For example, let R be the ring ^0,5,10,15,20,2$^' 

as a subring of the ring Q of the integers modulo 30.

Let P = ^0,10,20^. This is a prime ideal in R, but

p® = P is not a prime ideal in Q.

Historically, the concept of a local ring arose in 

the study of the ring of polynomials k [x] over a commu­

tative field k. If P is a prime ideal in k [x] , the 

quotient ring Q, of all fractions r/m for r in k [x]

and m in the complement of P in k [x] , turns out to

be a local ring. If the substitution mapping T: x—^m for 

m a zero for every polynomial in P, then T: Q—>-F, and 

F is a field. The set of all such m which are zeros for

every polynomial of P is called an algebraic set in alge­

braic geometry. It has been hoped that something fruitful 

could come from a study of matric polynomials with eigen­

values of a matrix playing the role of algebraic sets. 

Further study may reveal if the possibility lies there or 

not.



CHAPTER VI

ADDENDUM

The following is a variation of a result on page 
51 of "Lectures on Rings and Modules" by J. Lambek, Blais- 
dell Publishing Company, I966 : A ring R is left-simple
if for the set L^ of left ideals of R, = ^ 0 ^ , R ^ .

Theorem VI - 1 : If a ring R is left-simple and R^ /

^0^ then R is a division ring.

Proof : Let N = ^ x | Rx =

M = ^ X I Rx = R ̂

If X and y are in N and r is an arbitrary

element of R, then r(x - y) = rx - ry = 0 and R(rx) =

(Rr)x C Rx = {̂ 0̂ . Therefore N is a left ideal of R,

and N = ^0 ̂  or N = R. If N = R, since = ^0 ^ ,

R^ = ^0^ and this case is eliminated by the hypothesis.

Therefore N = ^0^.

The set Rx, for x any element of R, is a 

left ideal since if u and v are in Rx and r is any

arbitrary element of R, u = u^x and v = v^x and u-v :

u^x i v^x = (u^ - v^)x is in Rx and ru is in Rx.

Then Rx = 0 or Rx = R for every x in R. If Rx =

47
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^0^ , X is in N so x = 0. Since / ^0^, R / ^0^,

so there are non-zero elements in R. Thus, we have that 

for every non-zero element x of R, Rx = R and x is

in M. For the zero element, R(0) = "̂ 0̂  / R , so zero

is not an element of M. Thus M is the set of non-zero 

elements of R and R = ^0^ UM and M / ({).

For X in M, Rx = R = ̂0^ (J M = ^0^ U Mx.

Therefore Mx = M for every x in M.

If X and y are in M, then M(xy) = (Mx)y =

My = M, and xy is in M. So M is a multiplicative

system.

For X in M define L(x) = ^ r | rx = 0^. If y

were in M and y were in L(x) then M(yx) = ^ 0 ̂  and

M(yx) = (My)x = Mx = M. This is a contradiction so m D l (x ) = 

(|) for every x in M.

If r^ and r^ are in L(x) for x in M and

r is any arbitrary element of R, then (r^ - r^ïx =

r^x - r^x = 0 and (rr^)x = r(r^x) = 0. Therefore L(x)

is a left ideal in R for every x in M. Since L(x)

is disjoint from the non-empty set M,L(x) / R. Therefore

L(x) = ^0^ for every x in M.
A

For X in M, define a mapping x : R-^R for

x(r) = rx for r in R. If x(r^) = xCr^) then r^x =

rgX and (r^ - rg)x = 0. But then (r^ - r^) is in L(x)

so r^ - r^ = 0 or r^ = r^. Since also Rx = R, the 
Amapping x is a 1-1 onto mapping of R into R. Because
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Mx = M, X is a 1-1 onto mapping of M into M. There­

fore M = ̂ X I x C  M ̂  is a subset of the symmetric group

on M.

Since, for x in M, Mx = M, there exists an

element m of M such that mx = x. Then m(mx) = mx
2 2 and (m - m)x = 0. Therefore m - m is in L(x) so

2 2 m - m = 0 and m = m. So m is idempotent. For such

an element m of M, Mm = M. There exists some element

y of M such that ym = x. Then xm = (ym)m = ym. Then 

(x-y)m = 0 and x-y is in L(m) so x-y = 0 and x = y.

Therefore xm = x for every x in R .

For every x in M, Mx = M, so there exists an

element z in M such that zx = m. Therefore every

element x in M has a left-inverse relative to a right 

identity element m of M.

We now have the result that M is a semi-group 

with at least one right identity element m and each ele­

ment X of M has a left-inverse relative to m.

To show that there can be only one right identity 

element for the ring R, assume m^ f m^ and ym^ = y = 

ym^ for every y in R. Then yfm^-m^) = 0 for every

y in R or R(m^-mg) = ^ 0^. Therefore (m^-m^) iIS in
N SO (m^-m^) = 0 and m^ = m^.

In other words, if U(x) = ̂  u | xu = x ̂  for all
X in M then U(x) = ̂ m ^  for m a unique element of
M.
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For each x in M, let V(x) = ^v | vx = x^ .

It was previously shown that v would be a right identity 

element on M, so V(x) = ^m^. Therefore mx = x for

every x in M.

Since every element x of M has a left-inverse 

relative to m, then there exists an element z of M 

such that zx = m. But then x(zx) = xm = mx. Then 

(xz-m)x = 0 and (xz-m) is in L(x) so (xz-m) = 0 and 

xz = m. Therefore z is a right inverse of x. Since if 

z^x = ZgX = m then (z^^z^jx = 0, and z^ = z^, the 

left inverse of x is unique and x has a unique inverse.

Therefore the set M of non-zero elements of R 

is a group under multiplication and R is a division ring.
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