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ABSTRACT

The effect of scattering on radiant heat transfer is
considered. The basic model utilized is the radiant heat
transfer between two diffusely reflecting and emitting plane
walls with an isothermal separating medium which scatters,
absorbs and emits thermal energy. The Gaussian Quadrature
Formula is used for integral terms, and the integrodifferen-
tial equation of transfer is thus reduced to a system of
linear differential equations. As a result, a set of dimen-
sionless parameters which are continuous functions of opti-
cal depth and are independent of temperature, may be obtained
for isothermal media. These parameters may be used for rad-
iant heat transfer calculations.

Experimental scattering functions for aluminum, iron,
carbon, silica and glass were reduced to a discrete form
corresponding to Gaussian Quadrature coordinates of a third
order approximation. Through the comparison of dimension-
less parameters, it was concluded that the data computed
from isotropic scattering, may be utilized for radiant heat
transfer prediction for real media.

The problem of coupled radiation and convection in
boundary layer flow over a flat plate was formulated. The

iv



fluid was an emitting, absorbing and scattering medium. The
plate was assumed to be nongrey and diffusely reflecting and
emitting. The properties of the medium are assumed constant.
The approximate Pohlhausen technique was used for the bound-
ary layer computations. The solutions for both radiant flux
and conductive flux were obtained.

Solutions for a non-radiating medium and for a non-
scattering medium were also obtained. Comparisons of the
results were made for all media. The effect of wall re-
flectance on the heat transfer was studied. Results are
presented in graphic form. The computer programs for this

study are also listed.
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RADIATIVE HEAT TRANSFER IN AN EMITTING
ABSORBING AND SCATTERING BOUNDARY LAYER

CHAPTER I
INTRODUCTION

The study of radiative heat transfer has been stimu-
lated by modern technological developments such as the study
of the earth environment, high speed atmospheric flight,
space flight and the development of high temperature energy
sources. Also, the availability of high speed computers now
makes it possible to perform complicated calculations re-
quired for detailed analyses.

The present study is concerned with radiative heat
transfer in plane parallel emitting, absorbing and scatter-
ing media1 such as semi-transparent solids or mixtures of
gas and solid particles.

The radiant heat transfer within an emitting and
absorbing medium has been studied by astrophysicists for
quite a number of years. Engineering's early interest in

the subject involved furnace studies where high temperatures

1The terms emitting, absorbing and scattering will be
abbreviated collectively by EAS throughout remainder of this
work. |



2
could be reached and where the dust and ash caused the gase-
ous medium to absorb thermal radiation. A semi-transparent
medium may scatter energy due to local inhomogeneities. 1In
such a scattering medium the energy is deflected from its
original direction and its intensity may be changed. Scatter-
ing may consist of reflection, refraction and diffraction.
Scattering media may be found in liquid particles suspended
in the atmosphere, in solid fuel rocket exhausts, in fluid-
ized beds, in ablative cooling of space vehicles, etc.
Energy which is scattered, may have a different wavelength
than the incident energy. If the scattered energy has the
same ‘wavelength as the incident energy the scattering is
called coherent.

The nature of the scattering depends on conditions of
the inhomogeneous particles such as shape, size, refractive
index and the relative position of the particles. The dis-
tance between particles effects scattering. If the scatter -
ing is done by a single particle it is called single scatter-
ing. If, in a volume element] relatively few particles
exist, it may be treated as a single scattering medium with
the scattered energy being directly proportional to the
number of particles. If the number of particles is increased
in such a volume the energy scattered by each particle is
also influenced by the other particles, hence multiple
scattering must be taken into account. If the radiation is

scattered by particles much smaller than the wavelength of
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the radiation, it is called Rayleigh scattering. Van de
Hulst (1) discusses Mie scattering by small spherical par-
ticles in detail and presents a review of the research in
this field. Love (2,3,4) reviews the works involving scat-
tering in heat transfer prior to 1962,

Thermal radiation between parallel plates separated
by an absorbing-emitting non-isothermal gas was considered
by Usiskin and Sparrow (5), who utilized numerical integra-
tion to solve the.integral equation. Deissler (6) used
temperature jump boundary conditions at the surfaces and
the diffusion approximation for the radiation in the gas
to solve the same problem. A Monte Carlo solution has been
obtained for the same problem by Howell and Perlmuter (7).
They also solved the radiant transfer through a grey gas
between concentric cylinders of infinite length by the
Monte Carlo method (8),

In "Radiative Transfer'", Chandrasekhar (9) reduced an
integro-differential equation to a set of simultaneous diff-
erential equations by using a Gaussian Quadrature method.
Love (2) utilized the Gaussian Quadrature Formula to re-
duce the equation of transfer for the same problem with an
isothermal medium to a set of simultaneous, linear, non-
homogeneous first order differential equations. He solved
these simultaneous equations by solving the matrix of the
coefficients. The Gaussian Quadrature method gives good
accuracy with a small number of ordinates.  Consequently,

the size of the mdtrix is reduced. Hsia (10) solved the
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same problem in non-isothermal media. He considered both lin-
ear and parabolic temperature profiles. One of the conclu-
sions in reference (10) was that the heat transfer with a lin-
ear temperature distribution could be predicted by assuming
an isothermal medium with a temperature equal to the average
of the wall temperatures. This conclusion was utilized in
this work.,

In the above mentioned literature only the radiant
mode of energy transfer was considered. In most practical
cases the other modes of heat transfer may take place at the
same time. A number of studies have been done recently of
""coupled" or simultaneous heat transfer problems. Applica-
tions are found in gas-cooled nuclear reactors, chemical
rockets, fluidized beds and ablative cooling of space
vehicles. Cess (11) presents a good review of this field
of heat transfer.

Goulard and Goulard (12) in one of the early studies
extended the equations of one-dimensional radiative energy
transfer to include the wall effect. An application was
made to a steady low-speed high-temperature boundary layer
flow over a flat plate. The optically thin approximation
for the boundary layer was used to simplify the problem.

An iteration method was used for the solution. Viskanta
and Grosh (13) considered the problem of simultaneous con-
duction and radiation in a one-dimensional system consist-

ing of two diffuse, non-black, infinite isothermal parallel
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plates separated by a finite space filled with an absorbing
and-emitting medium. In their study the non-linear integro-
differential equation of transfer was reduced to a nonlinear
integral equation. Again an iteration method was applied to
obtain numerical results.

Lick (15) also studied the transfer of energy by si-
multaneous conduction and radiation. The exponential kernel
approximation was used. Because too many parameters were
involved, alternate numerical approximations were developed
by Lick. These were an optically thick approximation for
optical thickness larger than unity, a truncated power
series solution and a singular perturbation solution.

Many works have also been done for a participating
flowing medium in which the convective mode of transfer is
coupled with thermal radiation. In some cases all three
heat transfer modes were combined. Effects of the radiant
transfer interaction with the other modes were investigated.
External flow and boundary layer flow for absorbing media
were presented by Cess (16), Sidorov (17), Koh and Desilva
(18).

As has been mentioned, due to the radiation terms,
the energy equation becomes an integro-differential equation
and does not have a ready solution. Some of the works solve
this integro-differential energy equation exactly but intro-
duce assumptions for simplification. Others solved it by
using approximate methods along with simplifications. Op-

tically thin and optically thick approximations were used
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for radiant terms in the energy equation. The temperature
distribution between boundary surfaces was the usual object
sought. If the temperature difference between the plates
or across the boundary layer is not great, a linearized
function of temperature is usually applied. Other methods
such as radiation slip solution, exponential kernel solu-
tion ahd series solution were utilized. Cess (16) studied
the radiation effects upon boundary layer flow of an ab-
sorbing gas. He assumed that thermal conduction within
the fluid took place only in a thin thermal boundary layer
adjacent to the plate. This layer is so thin optically
that radiant energy will suffer almost no attenuation in
traversing it. An additional layer adjacent to it is op-
tically thick and is called the radiation layer. In the
radiation layer the temperature gradient is small and the
conduction effects may be neglected. If the temperature
profile could be determined in the opticalily thin layer,
then the temperature at the edge of the boundary layer,
also considered as the temperature of the radiation layer,
could be known. Cess noted that there was a direct anal-
ogy between the present radiation problem and a velocity
boundary layer, with the radiation layer corresponding to
the potential flow outside of the velocity boundary layer.
Substantially different results were obtained in
his study for the grey and non-grey medium assumptions.
Because of the tedious work required to solve the problem

for the optically thin case, only a first order inter-
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action effect between convection and radiation was considered.

Oliver and McFadden (19) studied the same problem but
achieved a third order approximation of the interaction
effects by starting with non-interacting radiation to obtain
a first approximation of temperature profile. They then
used this temperature profile for second and subsequently
third order approximations. Taitel and Hartnell (20) in-
vestigated the equilibrium temperature in a boundary layer
flow of an absorbing and emitting gas over a flat plate.

In their work the optically thin assumption was used for
areas near the leading edge of the plate and the optically
thick approximations for the downstream area. These cases
are governed by pre-determined values of the radiation-
conduction interaction parameters.

The effects of grey radiation and non-grey radiation
on boundary layers at low Eckert number were studied by
Smith and Hassan (21). It was found that non-grey convect-
ive heat flux was greater than grey convective heat flux
while the reverse was true for radiative heat flux. The
total non-grey heat flux was greater than the total grey
heat flux for low wall emittance while the reverse was
true for the higher wall emittance.

The above review covers some of the recent works of
radiative heat transfer coupled with the conductive and/
or convective modes of heat transfer. In the field of
flowing media, most investigations were made only for

absorbing'media, The scattering effect was excluded in
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most cases. Chen (42) mentioned in his finding of a slug

flow of EAS medium that the effects of radiative scattering
may be more important than that of radiant absorption and
emission.

The present work has been divided into two parts:

(1). A study of the experimental scattering
function (definition will be presented later) and the cal-
culation of dimensionless parameters.

In this study, the method of dimensionless parameters
developed by Love (2) was utilized for radiant heat transfer
computations. Scattering functions are required before the
dimensionless parameter can be computed. Wheasler (29) and
Beattie (30) measured scattering functions experimentally.
Beattie's data were used for this work. These data have to
be transformed by numerical integration to a specific form.
The dimensionless parameters M, N and Q are independent of
temperature. A comparison of data was made between the
results using isotropic scattering and using the experimen-
tally determined scattering functions. It was concluded
that the isotropic approximation may be used to predict
radiant heat transfer for most engineering purposes.

(2). The heat transfer problem of simultaneous con-
vection and radiation in the boundary layer flow of an EAS
medium over a flat plate was studied. The plate is con-
sidered diffusely reflecting and the edge of thermal bound-
ary is assumed to be a black surface. The medium is

assumed to have constant properties. This is an ideal
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approach, especially at higher temperatures. Hence the

results should only be considered as qualitative solutions.

The Pohlhausen technique was used to treat the tem-
perature and the velocity profiles in the energy equation.
For the radiant heat flux prediction, a linear temperature
distribution was assumed. The energy equation was iterated
numerically over the thickness of thermal boundary layer,
§, using a digital computer. The results are in terms of
radiative heat flux, conductive heat flux and the ratio of
the two. The thermal boundary layer thickness and the
velocity boundary layer thickness are also presented.

The following cases were studied:

i). Thermal radiation involving an EAS medium.

ii). Thermal radiation involving an absorbing and

emitting but non-scattering medium.

iii). No radiation terms involved.



CHAPTER 1I

A REVIEW OF THE ANALYSIS OF THE DIMENSIONLESS

PARAMETERS SOLUTION OF RADIANT HEAT TRANSFER

The problem is to determine the radiant heat transfer
between two infinite parallel and diffusely reflecting walls
separated by EAS media. The physical model is shown in Fig-
ure 1. The walls are isothermal but at different tempera-
tures and may have different reflectances. The medium is
stationary and is assumed to have a constant temperature, T, -
The medium contains particles which scatter thermal radiation.
If the temperature of wall 1, Tl’ is greater than the temper-
ature of wall 2, TZ’ then the net heat flux from wall 1 is
the result sought.

The intensity of a pencil of rays traversing an EAS
medium will be diminished according to the distance traversed.
This attenuation of the ray is called extinction and includes
scattering and absorption by the mass encountered.

The transfer equation has to be established for the
above conditions. Beer's law safé_that when a ray of light
or energy traverses such a medium, the rate of reduction of
the intensity along this ray is proportional to the local

intensity. In the EAS medium, the local intensity

10
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is also enforced by energy scattered into the direction of this
ray and by the energy emitted into this direction from the par-

ticles. The equation would be as follows:

dIv(s)
AL Jv,s +'Jv,e (1)
where Iv = monochromatic intensity of radiation at any point
along the ray. The subscript v denotes frequency.
BV = monochromatic mass extinction coefficient.
p = mass of the scattering matter per unit volume of

the mixture.

The terms on the right hand side of the equation are
explained as follows:

(1). —pBVIv: B> the monochromatic mass extinction
coefficient, consists of two parts: B, = K, * o, K is the
absorption coefficient and o, is the scattering coefficient.
Both are factors in the attenuation of the intensity of the
ray of energy. 8, has dimensions of ftz/lbm. The negative
sign indicates decreasing intensity in the positive direction
of s.

(2). J\)’s represents the strength of the energy added

to the direction s by scattering. According to reference (2)

p 27 L tryg 1 ! ' 1
Iy, s(s0) = 43 fo .fO L,(0")S (n's¢"5u,¢)du'de (2)
where I(u',8') is the intensity of the incident ray, u is the

cosine value of polar angle 6,u = cos 6, ¢ is the azimuthal
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angle, qf(u',¢',u,¢) is the monochromatic scattering function
which relates the scattering effect to the intensity of the
incident rays. Jv,s may be looked upon as the fraction of
energy incident on a differential element of mass from all
the directions which is scattered into the solid angle dud¢.

(3). J\)’e represents an addition of intensity along
the same ray by emission of the mass. Its mathematical

form would be

J\),e - pK\)Ib\)(T) (3)

Hence equation (1) may be rewritten as:

*
—3— = PRI i [ Ilo T,(1'50)8 (u'y0'su,0)du de!
+ I, (T) (4)

To simplify equation (4), the following definitions should be

noted:

(1). The normalized scattering function would be

*
S (u'so sug)= Sy (10 sw,0) (5)

ag
\

where dv is the monochromatic mass scattering coefficient of

the isotropic medium.

1 %
[o S,(r" 50 5u,0)du"ds! (6)
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(2). Referring to Figure 1, the optical depth or op-

tical thickness is defined as
v = [7 o8 dy (7)
0

(3). Axially symmetric in this investigation is de-
fined as independence from azimuthal angle. In other words,
around a normal direction, there is no change of radiative
properties if o, the polar angle, is the same.

With the above definitions, equation (4) becomes

27
u élééiﬁl = - Iy(r,u) + I;%: fti I,(t,u) fo S(Gij)du'd¢‘
K
+ % Ipp, o (T (8)
where eij is the angle between the incident and leaving rays,
S(@ij) is the axially symmetric scattering function of the
medium. S(eij) may be written in terms of My and uj the

cosine values of the incident and leaving angles respectively.

The final equation of transfer is written as follows:

+1
L,w) + gg [ T0,m)SCugpg)dut

dI(u, 1) _ _
L

K

% Tob,v (™) (9)

+

It should be noted here that the intensity, I(u,t), within a

medium is contributed by the radiation from both the positive
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direction and the negative direction. Hence the equation of

transfer could be written as two separate equations:

1

+
t o QI—JTLLT—)= - I (u,1) + %—5 fG [ I7(u',1)S(+u,+ut) +

I (u', S Cru,-u ) 1dut + Ty ()

- 1
- dlagu’T) = - I_(Uf) + %§ IO [ I+(u',T)S('u,+u') +
T, 08I+ F Ty () (10)

The above equations (10) are integro-differential equations.
Usually they are not easily solved. Various methods of solu-
tion were studied. Xunz (22), Scarbrough (23) and Hilde-
brand (24) among others have good discussions of this sub-
ject. Pai (25) summerized various methods of solution in his
thermal radiation field. Chandrasehkar (9) and Love (2,3,4)
used a numerical quadrature formula to take the place of the
integral in the equation of transfer. Following Love's anal-
ysis in which the Gaussian Quadrature Formula was used, equa-

tion (10) becomes

dI(r,+u;) n
+ Ui _-a_'t——l— = - I(T,"'lli) + 'CZ"'E' z ajS(+“i’+uj)I(T’+“j)
j=1
£ 20 3 alS(ruy,-w)I(,-u) + S I, (1) (11)
28 joq it Hy 27 Hy B “bb,v -
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dI(T,—ui) . n .
'ui 3 ° I(T9-¥1i) + 78 le ajS(’Ui>+uj)I(T, UJ)
+ = g a.S(- u ) I(t,-w ) + &1 (1) (11)
28 421 3 His™Hy >~ ¥y B “bb,v

The above equations (11) are 2n simultaneous equations. These

simultaneous equations in matrix form would be

*
dIv(U,T) * % K l* 12
—ar—— "M I (1) =3 Ibb,v(T(TD(E)' (12)
where n = 1,2,....n and also n = -1,-2,...-n. The develop-

ment of equation (12) could be found in reference (10). The
superscript * indicates a matrix. T(t) is the temperature

profile. Love (2,3,4) solved these simultaneous equations

for isothermal medium.

Zn YQ,T
I(T’Hli) - uil Caxl,ae * Ibb,v(Ta)
(13)
2n Yo ©
T,-U.) = . ?
I(r,-us) ail cax(l+n),ae + Ibb’&Ta)

where the y are eigenvalues of the coefficient matrix, the
X's are the eigenvectors corresponding to each eigenvalue and
the Ca's are the constants which would be determined by the

given boundary conditions. In the problem of the plane-
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parallel diffuse walls the boundary conditions would be

[ o]

+ . , -
I (O,Mi) = (l-ol)lbb,v(Tl) + 291 ajUjI (O,Uj)

j=1

(14)

o~z

L0, ug) = (QrepdTyy ,(Tp) = 20y

+
0,"1 a.u.l (-:Uj)

j=1 JJ

Substituting equation (14) into equation (13) and collecting
terms, the constant C, may be determined. It was found that
the Ca are linear combinations of Ibb,v(Tl)’ Ibb,w(TZ) and

bb “(Ta)' In this way the intensity of the medium is finally
determined.

I

With the intensity just obtained in the direction of
the specified ordinates of the quadrature formula, the net

monochromatic flux may be determined, since

+1
(= ] = 2 f uI(T,u)du (15)

Utilizing the quadrature formula again and re-arranging the

terms, one has

Fret,v(T1) = MIpp (T1) - NIy (T,) - QI | (T,) (16)

k]

where M, N and Q are dimensionless parameters and are inde-
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pendent of all the temperatures. These dimensionless parameters
are continuous functions of optical depth and vary with wall
emittances.

. . .
Ibb,v(T) is Plank's function.

2hv® (exp ()]

I ) =
20,90 " ST exp (- ()

Hence Pv(Tl) must be integrated over all wavelengths to obtain
an equation for total heat transfer. This equation is

oo

Apet = jo F dv (18)

Utilizing the Reiz quadrature the final expression for the

net heat transfer at 2 is formulated as follows:

-11 4 B 4 B 4 I
= (10 [T £ A.M. - T. £ A.N. - T' 1 A.0.]J
Gnet = ¢ ) j=1 33 2 521 1] 2 5=1 393
(19)
where
4 vh. 3
2k a. (=
A - 2 ()
j

3.2 h
R°C7( 1 - exp( - pr )

The Aj need be calculated only once for a given order of
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approximation of Reiz Quadrature. For the fifth order approx-

imation, the Aj's are:

A, = 0.347 Btu-hr l-ft 2. R4
A, = 12.460
Ag = 30.420
A, = 10.780
Ac = 0.396.



CHAPTER III
THE SCATTERING FUNCTION

In the previous chapters the term scattering function,
S(6,9;6',¢6'), was mentioned. Scattering function relates the
intensity of the scattered energy at a certain direction
(6,6) to the intensities of all the incident directions on an
element of mass. The scattering function used here is a
normalized function corresponding to the case of pure scatter-
ing. In the calculation of the transfer equation, the scat-
tering function should be known before hand. Many works have
been done in the effort to find scattering properties of par-
ticles, but most are in the fields of astrophysics and op-
tics. The interest of thermal scattering has been raised
only in recent years. This is due to the lack of information
of scattering particles and due to the difficult mathematics
involved. A good review of this subject is presented by Love
(2) and by Wheasler (29). The electromagnetic wave theory of
the angular distribution of the intensity of light scattered
by single small isotropic spherical particles was carried out
by Gustav Mie. Chu, Clark and Churchill (28) extended Mie's
work by computing the angular distribution coefficients, as
for different particle size parameters and refractive indexes.

20
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Using these coefficients to expand a Lagendre polynomial,'the
scattering function can be obtained. For engineering appli-
cations of this kind, one may not expect that the particles
are in perfect spherical shape with a uniform size or are
distributed evenly. Most practical cases involve a dis-
tribution of size and shape of particles. Mathematically
speaking, even with simplification, it is very difficult to
find a solution and the results may not be accurate, for
there is no practical way to describe the size, shape and re-
fractive index etc. of the real particles, Because of these
difficulties, Love (2) suggested that the scattering func-
tion be detérmined experimentally for the real particles.
Wheasler (29) and Beattie (30) developed the apparatus and
performed the experiments. Details of the design and the
experimental methods used will not be mentioned here. The
general principles for this experiment are listed below:

(1) . Sample medium should contact the radiative
thermal energy directly in order to avoid reflective and re-
fractive effect of the particle container,

(2). Heat source was a ''glow bar' which radiated
energy.

(3). A monochromator was used to detect scattered
radiation.

(4). The extinction coefficients should be measured
directly by determining the decrease of intensity of radi-

ation as it traverses a known depth of mass.
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o'

COORDINATE SCHEME FOR SCATTERING FUNCTION

1

Figure 2. .

o'-
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(5). The ratio of scattered radiation to the incident
intensity as a function of wavelength was measured at dis-
crete angles.

Wheasler (29) performed this experiment in 1964,
Beattie (30) used a different particle generator and a diff-
erent energy source for shorter wavelengths, and measured the
scattering as a function of Oij’ the angle between the inci-
dent ray and the scattered rays. Love and Beattie (30) have
presented the measurements of clouds of aluminum, carbonyl
iron, glass, carbon and silica particles. Figure 3. presents
a typical plot of such scattering functions. Also Figure 4
represents a typical plot of % verses wavelength, A, for
the tested materials.

In the final equation of transfer, S(ui,uj) was used
for the scattering function where s and uj are the cosines
of the polar angles of the incident ray and the scattered
ray respectively. The relation between S(eij) and S(pi,u.)

J
may be written as

S(ughuy) = 3 JCALE (20)

where ¢ is azimuthal angle.

According to solid geometry

1/2 1 /2 .
cos(eij) = MiH; + (1 - ui) (l’u?) cos a¢ (21)
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Equation (21) has been evaluated in this work with an incre-
ment of 10 degrees for the azimuthal angle (¢-¢' = 100)u
Oij was then calculated by using the third order Gaussian
Quadrature. A Fortran language program (Appendix A) was
used to perform the calculation. One may notice that the
increment of the azimuthal angle ¢ is arbitrarily decided.
It is obvious that a smaller increment will give more points
of @ij which in turn will provide more points of S(eij) to
be used for the integration in equation (20). Table 1 in
Appendix A shows the value of eij corresponding to each
“i’“i“

After the values of Oij were calculated, the values of
S(Oij) were sought. Data from Beattie's experimental results
were used. Since the experimental data were taken only at
twenty-six fixed eij angles and the calculated Oij could be
any angle value between 0° and 1800, the values of S(eij)
have to be read from the S(Oij) - eij curves accordingly.
For a third order Gaussian quadrature approximation, there
are eighteen sets of S(ui,uj) needed for each wavelength.
But according to the rule of symmetry, that S(ui,uj) =
S(uj,ui), these eighteen sets of eij values will be re-
duced to twelve sets. This means for each wavelength the

S(Oij) - Gij curve was read twelve times. Each time nine-

teen points were taken. The following curves were read:
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MATERIAL WAVELENGTH (in micron)

Aluminum 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 2.1,
2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0
12.0, 13.0, 14,0, 15.0

Carbon 1.0, 3.0, 4.0, 10.0, 12.0

Glass 0.8, 1.0, 2.5, 4.0, 7.0, 8.0, 10.0, 11.0

Iron 0.6, 1.0, 3.0, 4.0, 5.0, 8.0, 10.0, 12.0
14.0

Silica 0.7, 1.0, 4.0, 6.0, 9.0, 10.0, 11.0, 13.0

It should be noted that only positive directions of My

need be considered since the Hemholtz reciprocity law 1is

valid, i.e.

S(+u,+u'")

S(+u,-u")

Then

S(‘U,'U')
S(-u,+u") (22)
$(0; )46 (23)

To evaluate the S(ui,uj) for a corresponding set of

S(@ij) equation (23) was integrated by using the trapezoidal

rule.
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10 S(o.. + 271S5(0.. + S(0.,. +

. + S(0.

PONES RIICHO N (24)

ij’n

For a ten degree increment of azimuthal angle, ¢, and third
order approximatién, nineteen eij for each S(ui,uj) are
needed, i.e. here n = 19,

One note should be made here, it was mentioned by
Wheasler (29) and Beattie (30) that the experimental data of
S(Oij) were not dependable when @ij was close to either 0° or
180°. This is due to the difficulties of the physical limi-
tation of the apparatus design and strong forward scattering

(Gij = 00), that is the steep gradient in the region of
0

= 0° to 20°. Figure 3 showed this condition. For this

0..
1]
reason the data of S(Oij) at eij = 8° were used for those at
eij less than 8°. A maximum value of S(Oij) = 50 was imposed
on for these angles. This maximum value was chosen, since
it was close to the theoretical value.
If absorption is absent, an integration of scattered

flux must equal the incident flux, that is

) ‘
1/2 [  S(u,u")dp' =1 (25)

or it may be written as
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1 1

1/2 [fo S(u,-u')du' + fo S(u,u")du'] =1 (26)

Utilizing the third order Gaussian Quadrature again for the

integration, equation (26) may be rewritten as follows:

H o
=
[ I 9N
=

1/2(

i ajS(“i’“j) *

j ajs(ui’"Uj)J =1 (27)

where aj is the weight factor of Gaussian Quadrature.

This equation gives us a means to check the S(ui,tu'j)

produced  from previous procedures. (Appendix B)



CHAPTER 1V

THE DIMENSIONLESS PARAMETERS

M, N AND Q

In this section, the reduced experimental data for
scattering functions, S(pi,uj) were utilized to calculate
the dimensionless parameters.

For the present problem, equation (11) in Chapter II
is the final form of the equation of transfer. The matrix
form of the same equation.is.shown in equation (12). M* is
the matrix of coefficients. To show how the scattering func-

%
tions were used in M , Hsia. (10) indicated in his work that

* *
« A B
M = (28)
* *
-B -A
where j
Q_ 1, 451, ) 2,51 5 2,51,n
My My ’ My S
s (L 3251,2) 23520
*= 172,1 ) 1-12 )-12 T ]—12
H2 .
alsn,l R aZSn,Z . s (-;— + ansn,n,)
My u n T
N\ S

30
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4 N
3151,-1 881,.2 351
_—“1 s “1 ’ ’ “1
- 2152,-1 ’ 4252, -2 D 8152, -n
H
Hy oy Ho
alsnz-l azsﬁ, 2 - . . . - %1 n,-n
b b
L Hn *n Hn
7
J )
where Si, corresponds to 78 S(ui,pj)

Once the S(ui,uj) were known, M* was formulated.
Solutions of eigenvalues and eigenvectors were needed.
Wilkinson (35) discussed various methods of solution for
both symmetric and unsymmetric matrices. Hsia (10) de-
veloped a digital computer program for this purpose (The
Program of the Scattering Functions and the Eigenvalues).
Since the experimental values of S(ui,uj) were known in
this work, the computation of the theoretical scattering
functions were no longer needed. A modified computer
program was utilized for this study. Additional steps
for eigenvector calculation were incorporated into this
program. This program is designated as Program I in
Appendix C.

Program II in Appendix C is for the calculation of
the dimensionless parameters M, N and Q. Utilizing the

eigenvalues and eigenvectors obtained from Program I and



32
following the procedure developed by Love (2) (outlined in
Chapter II), the values of M, N and Q may be computed. 1In
order to have a comparison of the results with the theoret-
ical data in reference (2), the same wall reflectance com-

binations were used. They are

Wall 1 Wall 2
0.1 0.1
0.1 0.5
0.1 0.9
0.5 0.1
REFLECTANCE 0.5 0.5
0.5 0.9
0.9 0.1
0.9 0.5
0.9 0.9

The calculations were carried out for optical spacing
values ranging from 0.1 to infinity.

As mentioned before S(ui,uj) were obtained by inte-
grating of S(@ij)'s for different wavelengths. The corres-
ponding values of o/8 -A graph is shown in Figure 4. The
dimensionless parameter calculation is limited to the exist-
ing experimental data listed in Chapter III (page 27). A
few sets of data were discarded because they did not con-

verge during the eigenvalue calculation.
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The dimensionless parameters were obtained for the

following materials and wavelengths:

Aluminum  Wavelength 2.0, 4.0, 6.0, 11.0, 12.0, 13.0, 14.0
a/8 .36, .37, .39, .41, .42,. .43, .46
Carbon Wavelength 1.0, 8.0, 10.0, 12.0
a/8 .43, .47, .48, .50
Glass Wavelength 11.0, 8.0, 7.0, 4.0, 2.5, .80
a/8 .48, .58, .60, .64, .68, .71
Iron Wavelength .60, 1.0, 4.0, 5.0, 8.0, 10.0, 14.0
a/8 .25, .30, .38, .45, .54, .63, .75
Silica Wavelength 4.0, 6.0, 8.0, 10.0, 11.0, 12.0, 13.0
o/8 .28, .38, .45, .50, .56, ..62, ..68

Since a large amount of data resulted from the above
calculations, only one set of them is presented here as ex-
ample for illustration.

The following points should be noted:

(1). The relationship among the dimensionless par-

ameters is

M - N=Q (29)

(2)., Figure 5 shows M, N as functions of ¢/B with the
optical spacing, t, as a parameter. Both wall reflectances
are equal to 0.1(eq=p,=0.1) for this particular graph. Fig-
ure 5 shows that the points of parameter M cluster along a
line (drawn for clearness) regardless of optical spacing

and material of the particle. The values of parameter N
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stay on one line no matter what kind of material of the par-
ticle is, but they are distinct from one optical spacing to
the other. This brings the interesting conclusion that the
material of the particles is irrelevent to the radiative
properties. Optical spacing, 7, is the important factor
that influences the values of M and N, and hence the radi-
ative heat transfer.

(3). Figure 6 shows the curves of M and N versus
optical spacing, 1, with o/8 as parameter. The wall re-
flectances are equal to 0.5 for both surfaces. Also the
curves of the parameters M and N for the zero-scattering
case (o/R = 0) were drawn. The data of the zero-scattering
curve was taken from reference (2). All the experimental
curves are similar to the o/B = 0 curve in shape. The
values of M increésed and the values of N decreased while
o/8 value increased. Although the M (or N) have differ-
ent values at a given optical spacing, the differences
are small, Thus these bundles of M and N curves could be
treated as a band with the ¢/8 = .25 curve for iron as an
upper bound and the o/8 = .63 curve for iron as a lower
bound. All the other data for various materials fall in-
side these boundaries. It appears in these curves that if
the optical spacing is greater than 3, the M and N values
are almost constants and equal to those for infinite op-
tical spacing. Hence it would be safe to say that when

t » 3 the medium can be considered optically thick. On
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the other hand when - -« 1 the medium can be considered op-
tically thin.

The smallest value of : used was 0.1 for each curve.
It was found that by extropolating the curves, they would
converge to the same point at = = 0. The value of this

point agrees with results calculated from the following

equation:
at v = 0 -‘_ﬂ(]-"pl)(l”pz)
M=N = (29)
(L - 0192)
and Q = 0.

These equations are developed in reference (2).
Hence this point at t = 0 may serve as a check point for
the present results.

One set of Carbon data falls out of the general
pattern. Some points of this set are located on the oppo-
site side of the o/8 = 0 curve, which serves as a limiting
case. Since this occurs only in one set of thirty-one
sets of data, it was believed that this set was in error.
Also, the S{eij) data of Carbon taken from reference (30)
were about one tenth smaller than most of others and quite
few sets of Carbon data did not converge during eigen-
value calculation.

(4). The experimental data of scattering functions
should be considered amnisoftropic. Love (2) used the theo-
retical scattering functions for his calculations. A com-

parison between the isotropic and anisotropic theoretical
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results was made. One of the conclusions was that the
isotropic scattering data may be used to represent aniso-
tropic cases with good accuracy for the plane parallel cloud
problems. It was desirable to make a similar comparison
between the experimental data and theoretical isotropic
data for the dimensionless parameters. Figure 7 and Fig-
ure 8 show these comparisons. The theoretical isotropic
data of M and N was superimposed over the experimental
data. It was clear that the shape of the curves are
similar and the isotropic band would cover the experimental
curves. In other words the isotropic band is wider than
the experimental band. The width of the band is relative-
ly small. Hence isotropic data may also be used to compute
heat transfer for the theoretical anisotropic case and for
a real EAS cloud.

(5). Also, a comparison was made between Q - o/8
curves for isotropic data and experimental data. Figure
9 shows that the experimental data agree well with the
isotropic curve, especially at the low o/8 values.

In conclusion, the comparison of M, N and Q curves
for the theoretical isotropic data with both the theoret-
ical anisotropic data and the experimental data suggests
that if the refractive indexes, shape, size, o/B or even
the material of the particle are unknown, the isotropic
data for M, N and Q may be used to approximate the heat

transfer from a surface with acceptable accuracy.
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As far as which values of M, N and Q within the band
would be used, a mean value at each optical spacing was
chosen. These mean values of the parameters also consti-
tute a curve.

Program I and Program II are in Fortran language.
(Appendix C). The development of these programs and cal-
culations were done on the Osage computer of the University
of Oklahoma. Programs I and II could be combined into one
larger program to save intermediate output and input pro-

cesces,
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CHAPTER V

RADIANT ENERGY TRANSFER IN AN EAS

BOUNDARY LAYER

The problem of the combined radiative and convect-
ive heat transfer was studied for the case of fluid flow
over a flat plate. The moving fluid was considered as an
EAS medium. The solution of the heat transfer problem
for a laminar fluid flow over a flat plate is well known,
but, the solution of the same problem including radiant
energy in an EAS medium is more complicated. The radia-
tive contribution of heat transfer is important and
should not be overlooked, particularly when high temper-

ature conditions are present.

The Energy Equation

The basic principle governing the temperature field
within an EAS medium is the same as that for a non-parti-
cipating medium. The equation of conservation of energy
is still the fundamental equation. The only difference is
the additional mechanism of the radiative energy of the
participating medium in the energy balance. The fluid
was considered a continuum, incompressible and in local

43
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thermodynamic equilibrium. The fluid properties, such as
density and specific heat are assumed constant. This is an
ideal gas approach, especially for high temperature condi-
tions. There was no change in the momentum equation. The

equation of energy may be written as:

-

DT . DP .
oC % - div(KgradT) + BT ot oMb - div q, (30)

where p is the density of the fluid, %) is the specific heat
of the fluid, K is the thermal conductivity, the term Kgra&T
is the quantity of thermal conduction in the medium, B 1is
the coefficient of thermal expansion, BT%% is the rate of
change of pressure which is equal to zero for flow over

flat plate, u¢ is the viscous dissipation term, it is neg-
ligible if the speed of the fluid is small. q, represents

the radiative heat transfer terms.

The reduced equation would be

. 2 2 3q . aq
5T . 3T _ 3T 3 35T 1y r

DC [_ 4+ U—— + Vee- = K + . e—— e (31)
pla3t * Usx ¥ Vay | i Byi] 5y 3%

The fluid is considered in a steady state with con-
stant properties, The radiation is assumed negligiBle in
the X direction (Figure 10) for the low speed flow. Then

the energy equation can be simplified further:
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o . 3T., 3T ® 3°T » 3%r
pCp-fo [ ugz * vay 1dy = Kfo~g—7-dy - fo—sy-—dy (32)
y

Applying the continuity equation, equation (32) can

be reduced to the following form:

§ 5 2 §, 1q
00— F -1l = x[ S ay - [ PSRy (39)

After integration .it becomes

J
oC—gf P u(T-TO1dy = K(E) - g ¢ g (38)

y=0 y=6t y=0

25

There are two factors which need to be determined:
first, the temperature and velocity distribution, and second,
the quantities of radiant heat transfer qp-

It is well known that. exact solutions of .the energy
equation without .radiation..terms are not .very simple even
for the flow over a flat plate. . These solutions are pre-
sented in most of the heat transfer books. Approximate
methods using the von Karman .and.K. Pohlhausen's technique
with acceptable accuracy are.much simpler and. are widely

used. In this work, this technique was chosen to solve
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equation (34). Utilizing a fourth order polynomial for
the velocity and the temperature profiles, and evaluating

the coefficients by satisfying the following boundary con-

ditinns:
2
at y = 0 T = Tw‘ 3—% = 0 (steady low velocity)
3y
- - T
at y ét T TS 5y 0.

—v .3 VAR (35)

where Tw and TS are the temperatures at the wall and at the
edge of the thermal boundary layer. A similar equation for

velocity profile inside the velocity boundary layer is

o I e
1]
c\)l (&)
o<
1
I N
o<

(36)

p

where ug is the free stream velocity and § is the velocity
boundary layer thickness.

Substituting equations (35) and (36) into equation

(34) gives
&
_ ) d 't o3y .1 ¥y 43 3y _1.y\3 =
eCo Ty Tensgz /, 1 - 7 &, 7 (st)'] [z 5 -7z )y =
SK(Tg-Ty)
s ¢ (qr) - (qr)

t y=0 y=6, (37)
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For a gaseous medium with the Prandtl number smaller than

unity, 5, should be greater than §. Hence equation (37)

may be rewritten as

$
oCoe (T, T L 1 - 300+ 2671 17 B - 20710y
S 3K(T -Ts)

+ 0 t 3y s Lly 3 - W 5"
R0 3 20T v g, (38)

where Aq . = (qr)y=0 - (a,)

Equation (38) is then integrated and evaluated with the

y=6t.

limits.
oC u_ (T -T )L (2(s.-8) + 2= 3 §f_] | 3K(T,-T)
pstw s’dx'8't 20 § 280 .3 5.
t Gt t
= hay (39)

Recalling the step by step method of integration

X + AX X + AX

f Fax = y| = y(x + 8x) - y(x)  (40)

X X

Equation (39) may be integrated with respect to x

pCPuS(Tw—TS)
AX

[3(6, (x+ax) - 6,(x) - 6(x+bx) + 6(x) )
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. _3_(62(x+Ax) ) 62(x)) 3 stxrax) 8 (x) .
D8 G ax) - 517 T B3 ax) 60 ()
K(T -T,) (41)
2] t(x+Ax)+6 (x)] = Ay
2
For Gt < 8 cases, equation (39) becomes
2 4
J 8 IK(T, -T )
d 3 t 3 t w s’
pcpus(Tw_Ts)af 555 - 28 gﬁ] ) 28, = bay (42)
The temperature profile
T-T
S_ - Y . Y 3 y 4
T = 2 2(5)7 + (%) (43)
Tw TS Gt Gt Gt

which is given in Schlichting (33), Page 321, is also used

for this calculation.

The Treatment of the Radiation Terms

The radiation terms, (qr)y=0 and (qr)y=6t have to

be determined. The fluid was considered as an EAS medium.

(qr)y=0 represents the net radiative heat flux from the

wall, (qr)y=6 represents the net radiative heat flux
t

from the edge of the boundary layer. Figure 10 shows the

physical model under study. The fluid was assumed to flow
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parallel to the plates. This will be looked upon as if the
medium were flowing between two isothermal, diffuse par-
allel walls with one wall having a temperature Ty and a re-
flectance p , and the other having the free stream tempera-
ture Ts and a reflectance equal to zero. Because the fluid
beyond thermal boundary layer was assumed to be of infinite
depth, the edge of the thermal boundary layer is considered
as a black wall, _

Hsia (10) in his study concluded that, if the temper-
ature profile of the medium across the space between two
plates is linear, then the medium may be treated as an iso-
thermal medium with a temperature equal to the average of
wall temperatures. Since the profile of equation (35) and
the linear distribution shown in Figure 11 are very close
the straight line linear distribution was used for the rad-
iative heat transfer calculations. The use of the para-
bolic profile would complicate the computations with little
gain in accuracy.

Recall (equation (19)) that radiant heat transfer in

an isothermal medium from a wall may be calculated by

1 AN.- T

4 D
1 JJ) a

£ A.Q.]

et = (1071
1 ( j=1 1)

4 4
1 AM. - T2

(1) B AN,

[ g e
nos

j
with the present conditions, two sets of dimensionless

parameters were required. The reason for this is illus-
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trated by Figure 12.

Wall 2, Wall 1

P2

— .}

T Wall 1 Wall 2,

’pl
(a) (b)

Figure 12. VIEws oF WALL REFLECTANCE ARRANGEMENT.

Equation (19) was developed for radiation in the di-
rection of the positive normal, Radiation in the negative
normal direction (like that from the boundary layer) 1is
equivalent to the condition shown in Figure 12b. The diff-
erence is the arrangement of wall reflectances. The net

flux from wall 2 may be expressed as

4 n
- Ty T ANI-T
j=1 71 J

qnet2 = (10)-11[T

[ NS

4T A1 (4
aj:ljj

The prime superscripts indicate that these are different
parameters.
In Chapter III, it has been illustrated that the di-

mensionless parameters are obtained at discrete points of

the optical spacing. In general the variation is relatively

large only between v = 0 and t = 1.5. They are almost a

constant when t > 3, This has been shown in Figure 6.

’pl

P2
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To find the corresponding parameters, numerical polyno-
mial curve fitting was used to establish equations for M
and N curves as functions of . Then the equations were
used to calculate M's and N's for any optical spacing.val-
ue .

This raised a question of how to find optical spac-
ing across the thermal boundary layer at each every point
of x on the plate. By definition,

L

T =Jf pedy (45)
0

If p and B are constants then
T = pBRL (46)

where p is the density of the medium and 8 is the extinc-
tion coefficient. 8 may be found by computing the follow-

ing equation

where D is the diameter of the particle, P is the density
of the material of the particles and kK® is the extinction

. e . . N .
cross section. K7 is a function of particle size parameter

a = ;E . These terms, B8, Ke, o and their relationship
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have been discussed by Love (2) and will not be repeated
here. 1In reference (29) and (30) K® = 2 was used for all
particles. kK® - o curve of the particle with refractive in-
dex, m equal to 1.25 was used for this study and was repre-
sented by the equation of a polynomial between o = 0 and
e

o = 6. When o > 6, information of K® is lacking. K~ 1is

assumed equal to 2.44 for o > 6,

The Numerical Iteration Solution for Equation (41)

It is very easy to see that equation (41) is not
easily solved directly. Hence, a numerical iteration method
was selected for use with the high speed digital computer.
The numerical iteration method chosen for this calculation
was the half interval method. The details of this method
are discussed in most texts on numerical analysis. A
simple example is given for purposes of illustration.

Consider the equation of §in I5X - ¢™* = 0. The

2

e
. . . s WX -X
solution of x is desired. Let y; = sin

7 > Yy T °

Figure 13 shows these two curves. They intersect each

other at point P. On the left side of point P, Yy > ¥y

on the other side Yy < ¥y The value of the x coordinate
at point P is the solution. By using the half interval
method to adjust values of x and iterate the calculation
until y, - Yy, = €, a solution is found. ¢ is an acceptable

error.
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Figure 13 Half-Interval Search for the Root of

SIN [ =e™
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An Example Calculation and the Computer Program

It is desirable to have an example calculation
carried out in order to have a qualitative knowledge of the
effects on heat transfer in an EAS boundary layer.

A uniform fluid (air with iron particles) flows at
a speed of 500 ft/sec over a flat plate. For hot wall cases,

0

the free stream temperature is 500 "R. The flat plate is

assumed to be isothermal and the temperatures of the wall

o 0 0

are 1000 °R, 2000 °R, 3000 °R, 4000 °R, and 5000 °R which
with free stream temperatures constitute five different
temperature combinations. Cold wall cases are constructed
by keeping the wall. temperature 500 °R and changing the

free stream temperature from 1000 °R to 5000 °R which makes
another five cases. The reflectance at the edge of the
thermal boundary layer is zero. The different reflectances
and the different apparent densities of the particles in the
fluid make the following four combihations, these are

Apparent density of particle = 0.1 lb/ft3

Wall reflectance 0.1, 0.5 and
2
Apparent density of the particle = 0.01 lb/ft3

Wall reflectance 0.1, 0.5.

Also the fluid is assumed to be (i) an EAS medium, {ii)

a non-scattering but emitting and absorbing medium. To-
taling the different combinations, forty cases are formed.

The energy equation without radiation terms, equation (48)

2 . . . )
“"Results for this density are not presented in this work.
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is also iterated for the same wall and free stream temper-

ature combinations.

T op 436 . 3 8% 3 8 g w st
pCous Oy P Iaxlg(8e8) * 205 - 780 5 | 73
t
(48)

Prior to the major iterative program, the following
data had to be prepared in special form.
(i) The values of density, p, and specific heat,

CP’ of the medium were determined.

P was taken at temperature T, which is the average of the

air
plate and free stream temperatures.

P 0.
C = -3 _ xo air

p_ p piron” o * “p(air at T )

(ii) kK® - o curve was numerically fitted.

(iii) Dimensionless parameters M, N and Q were compu-
ted for every combination of reflectance. In the present
cases isotropic scattering functions were used. Figure 14
to Figure 17 show these results. As before, the results of
dimensionless parameters were represented by a band of
curves, Takﬁng mean values of those M and N parameters at
each optical spacing t, a mean value curve was obtained.
Then the numerical curve fitting method was used to form

polynomials for M - = and N - 1t curves. The following
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wall reflectance arrangements were treated: 0.1, 0.5, 0.9.
The numerical curve fitting was done using the Osage compu-

ter. The curves were fitted by polynomials

Both five terms and ten terms were examined. It was found
that the use of five terms for fitting the data was suffi-
ciently accurate. The "ORNOR" curve fitting subrouting
program of the computer laboratory at the University of
Oklahoma was utilized. This program was written in both
the Fortran and the Algol languages.

With the above functional expressions, the entire
calculation was written in Fortran language and the iter-
ation was done by £he computer. The calculation was made
at every 0.1 foot interval of x up to 1.5 feet on the
plate. The iteration was over the thermal boundary layer
thickness Gt of equation (41).

The main program has the following procedures:

(i). Compute §, the velocity boundary layer

thickness by

5x

8 = TRe (49)

(ii). Calculate the particle size parameters
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@.. = C.T.D (50)

where Ci are constants given in reference (2).
(iii). Compute x® for each o obtained above.

(K® - o curve was represented by fitted equa-

tion here)

(iv). Compute optical .spacing, t for three values of

8¢s DY

Ty T PB(étlij (51)

The initial three values of §, were estimated.
(v). Compute M, N and Q and M', N' and Q' by their
individual curve fitting equation.
(vi). Calculate the:net radiative heat flux from both
walls and compute their differences. These are equation

(19) and equation (44) and
by = Apet 1 ¥ et 2 (52)

Substituting equations (19) and (44) into equation

(53) we have

-11,..4 B n 4, D n
Aq, = 10 “7[T] ( = AMy- Aij]+ T,( 2 AMI- 2 Aij}
j=1 j=1 j=1 j=1
- T LAQ - I A.Q!)] (53)
j=1 3] j=17"J
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q, is always positive no matter whether a cold wall
case or a hot wall case exists. This implies that in the
energy balance of a control volume in the boundary layer,
the net radiative heat always gives heat to the control vol-
ume. This is contrary to the conductive and convective
transfer terms which may have different directions (in or
out of the volume) depending on hot wall case or cold wall
case.

(vii). Calculate the left hand side of equation (41)

(viii). Compare results of step (vi) and (vii). If
the difference was within pre-determined accuracy, a solu-
tion was obtained. The calculation was then moved down
stream to the next point. If the difference was greater
than the pre-determined accuracy, the method of half in-
terval was employed to obtain a narrower range of dt's.
Then the same process was repeated until a satisfactory
answer was obtained.

(ix). The outputs of the program were:

CH the heat transfer by radiation at the wall.

qe» the heat transfer by conduction at the wall.

qr/qc’ their ratio.

8§, the velocity boundary layer thickness.

84s the thermal boundary layer thickness.
and 9, * des the total heat flux.
The numerical results are presented in Figure 18 through

Figure 29, for hot wall cases and in Figures 30 through
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Figure 41 for cold wall cases. The programs and results
are listed in Appendix (D), (E), (F) and (G).

Figures 26 to 29 show the thermal boundary layer
thickness for the hot wall cases. Figures 38 to 41 show
the thickness for the cold wall cases.

Results of equation (46) for the non-radiation case
are shown in Figure 42.

From the study of the above results, it was conclud-
ed as follows:

The addition of radiant heat transfer terms in the
energy equation has a strong influence on the thickness of
boundary layer and the heat transfer. This addition 1is
necessary especially when the temperature of the wall is
relatively high. For hot wall cases, it is found that when
the wall temperature is 2000 °R or under, the radiative heat
transfer is rather small. It may only be a fraction of what
is conducted and may be negligible. But when the wall tem-
perature 1is above 2000.°R thé radiative heat transfer be-
gins to show its importance. When the wall temperature is
higher than 3000 OR, the radiative heat transfer is domin-
ant. Hence the radiative heat transfer should be taken
into account. The above are also true for cold wall cases.

Quantitatively, under the same boundary conditions,
the radiative heat transfer in the EAS medium is slightly
less than that in the non-scattering medium. This may be

explained by noting that the characteristics of the EAS
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medium are the factors attenuating the energy traversing
the medium. A non-scattering medium means that one of the
obstacles is removed, hence more heat may pass with less
chance of changing direction or reducing intensity. Also,
as would be expected, a wall with a small reflectance
transfers more heat than a wall with a.large reflectance.

The total heat transfer of the wall does not differ
very much whether it is a hot wall case or a cold wall
case. The direction of heat transfer at the wall is diff-
erent for these two cases. Also, it should be mentioned
here that the temperature profile of equation (43) was
used for these calculations. The results show little diff-
erence from those computed by using the temperature pro-
file of equation (35).

For hot wall cases, the thickness of the thermal
boundary layer is increased, and as would be anticipated
is greater than the thickness of the velocity boundary
layer. For cold.wall cases, when the free stream temper-
ature is relatively.small (under 2000 0R) the thermal
boundary layer has about the same thickness as correspond-
ing hot. wall.cases, but.when the free stream has a higher
temperature, the thermal boundary layer becomes smaller
than the velocity boundary layer. This is due to the
heat gain in the boundary layer by radiation. Since the
thermal boundary is thin, the conductive heat transfer at

the wall is also increased.
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The thermal boundary layer thickness is greater for
a radiating fluid than for non-radiation fluids except for
cold wall cases of high free stream temperature. The
thermal boundary layer is thicker in the non-scattering
medium than in an EAS medium, although the difference is
not very great. At wall temperatures of 2000 °R or under
the thickness is only increased slightly and the boundary
layer maintains the usual familiar shape. When the wall
temperature is higher than 2000 °R, the thickness begins
to increase rapidly, the usual shape of boundary layer
also begins to change. The thickness of the boundary
layer in both the EAS medium and the non-scattering medi-
um certainly are much greater than that in the non-scatter-
ing medium but, the numerical value of the boundary layer
thickness is still small comparing to the distance from
the leading edge. At x = 1.5 feet, the largest thickness
ever obtained was 0.024.feet. This shows that the plane
parallel approximation for the radiative heat transfer

should be valid.,
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CHAPTER VI
SUMMARY AND CONCLUSION

The experimental data of scattering functions
S(eij) for five.different materials were reduced to the
form of s(ui,uj). -These scattering functions were util-
ized to obtain the dimensionless parameters M, N and Q
for the calculation of radiant heat transfer through
plane parallel clouds of scattering particles. Examples
of these parameters were given:in graphic form. Compar-
ison of the dimensionless parameters were made between
theoretical isotropic data and the experimental data.
Examples of this comparison.are. also presented in graphic
form.

Radiant heat transfer in an emitting,absorbing and
scattering boundary layer is studied by using a laminar
flow over a flat plate. The edge of the boundary layer
is considered:black. Theoretical isotropic dimension-
less parameters for a range of scattering.to extinction
ratios were calculated for the following combinations of
reflectances.

(a) In.an EAS medium;

Wall reflectance = 0.1, 0.5

93
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(b). In a non-scattering but emitting and absorb-

ing medium

Wall reflectance = 0.1, 0.5.

Mean values of these parameters were taken for
heat transfer calculation. The Pohlhausen technique was
used for temperature and velocity profiles. The energy
equation was solved by an iteration method over the thick-
ness of the thermal boundary layer. Digital computer pro-
grams have been written for all of the calculations of

this study.
| The conclusions which may be drawn from this study
may be listed as follows:

(1). The effect of real particle scattering seems
to be relatively independent of size, shape, and even of
the material of the particles.

(2). The dimensionless parameters from theoreti-
cal isotropic data may be used to compute heat transfer

in anisotropic real particle clouds for most engineering

applications.

(3). Thermal radiation.in ‘an EAS boundary layer
effects the thickness of the thermal boundary layer. It
seems to thicken the boundary layer for all the hot wall
cases. For cold wall cases, the thermal boundary layer
becomes thin at high temperature.

(4). The heat transfer in an EAS boundary layer

is smaller than that in a zero-scattering boundary layer.
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(5). At higher temperature, radiation dominates
the heat transfer from the wall.
(6). The reflectance of the wall would effect the
heat transfer from the wall in such a way that the smaller

the reflectance, the larger the heat transfer from the wall.



(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

BIBLIOGRAPHY

Van De Hulst, H. C., Light Scattering by Small Parti-
cles J. Wiley and Somns, 1957

Love, Tom J., Jr. An Investigation of Radiant Heat
Transfer .in Absorbing, Emitting and Scattering Media,
Norman, Oklahoma: University of Oklahoma Research
Institute, 1963 (Contract AF 33(657)-8859) (ARL63-3)

Love, Tom J., Jr. Radiative Heat Transfer (Text to be
published in 1967 by Charles E. Merrill Books, Inc.,
Columbus, Ohio.)

Love, Tom J., Jr. and Grosh, R. J. '"Radiative Heat
Transfer in Absorbing, Emitting and Scattering Media"
ASME Journal of Heat Transfer, Vol. 87, Series C,
May, 1964

Usiskin, C. M., and Sparrow, E. M., "Thermal Radia-
tion Between Parallel Plates Separated by an Absorb-
ing-Emitting Nonisothermal Gas'" International Journal
of Heat and Mass Transfer, Vol. 1, No. 1, June, 1960

Deissler, R. G., "Diffusion Approximation for Thermal
Radiation in Gases with Jump Boundary Condition",
ASME Journal of Heat Transfer, Vol. 86, Series C,
May, 1964

Howell, J. R. and Perlmutter, M., "Monte Carlo Solu-
tion of Thermal Transfer Through Radiant Media Between
Grey Walls', ASME Journal of Heat Transfer, Vol. 86,
February 1964.

Perlmutter, M. and Howell, J. R., '"Radiant Transfer
Through a Grey Gas Between Concentric Cylinders Using
Monte Carlo'" ASME Journal of Heat Transfer Vol. 86
May, 1964

Chandrasekhar, S. Radiative Transfer, Dover: 1961

96



(10)

(11)

(12z)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

97

Hsia,H. M., "Radiative leat Transfer Between Par-
allel Plates Separated by a Nonisothermal Medium
with Anisotropic Scattering'" ASME Journal of Heat
Transfer Paper No. 66-WA/HT-28. Also PhD Thesis,
University of Oklahoma 1965

Cess, R. D, "The Interaction of Thermal Radiation
with Conduction and Convection Heat Transfer"
Advances in Heat Transfer, Vol 1, Academic Press,
N. Y. 1964

Goulard, R. and Goulard, M. '"One Dimensional
Energy Transfer in Radiant Media', International
Journal of Heat and Mass Transfer, Vol. 1, 1960

Viskanta, R. and Grosh, R. J., "Heat Transfer by
Simultaneous Conduction and Radiation in an Absorb-
ing Medium" ASME Journal of Heat Transfer February,
1962

Viskanta, R., '"Heat Transfer by Conduction and Rad-
iation in Absorbing and Scattering Materials" ASME

~Journal of Heat.Transfer Vol. 84, September, 1964

Lick, W., "Energy Transfer by Radiation and Conduc-
tion'". Proceedings of the 1963 Heat Transfer and
Fluid Mechanics Institute, Stanford University
Press, Palo Alto, Calif., 1963.

Cess, R. D., "Radiation Effects upon Boundary Layer
Flow of an Absorbing Gas' ASME Journal of Heat
Transfer November, 1964.

Sidorov, E. A., "Radiant-Convective Heat Exchange
in an Absorbing Medium" U. S. Atomic Energy Comm-
ission Translation AEC-tr-4511

Koh, J. C. Y. and De Silva, C. N., "Interaction
Between Radiation and Convection in.Hypersonic
Boundary Layer on a Flat Plate" ARS Journal Vol.
32, 1962

Oliver, C. C. and Mc Fadden, P. W. "The Interaction
of Radiation and Convection in the Laminar Boundary
Layer' ASME paper 65-HT-54, August,1965

Taitel, Y. and Hartnett, J. P. "Equilibrium Temper-
atures in a Boundary Layer Flow Over a Flat Plate
of Absorbing-Emitting Gas'". ASME Paper No. 66-WA/
HT-48



98

(21) Smith, A. M. and Hassan, H. A., '"Nongrey Radiation
Effects on the Boundary Layer at Low Eckert Numbers"
ASME Paper 66-WA/HT-35

(22) Kunz, K. S., Numerical Analysis, N. Y.: McGraw Hill
Book Company, 1957

(23) Scarbrough, J. B., Numerical Mathematical Analysis,
Baltimore: The Johns Hopkins Press, 5th edition, 1962

(24) Hildebrand, F. B., Advanced Calculus for Applications,
Prentice Hall, 1962

(25) Pai, S. I., Radiation Gas Dynamics, New York:
Springer-Verning New York, Inc., 1966

(26) Pennington, R. H., Introductory Computer Methods and
Numerical Analysis, New York: The MacMillan Company,
New York, 1965

(27) Kuo, S. S., Numerical Methods and Computers, Addison-
Wesley Publishing Company, Inc. 1965

(28) Chu, C. M., Clark, C. C. and Churchill S. W. "Tables
of Angular Distribution Coefficients for Light Scat-
tering By Sphere'" University Press, Engineering Re-
search Institute, University of Michigan, 1957

(29) Wheasler, R. A. and Love, T. J. Jr. "An Experimental
Study of Infra-red Scattering Clouds of Particles"
ARL-64-109 Aerospace Research Laboratories Report,
Office of Aerospace Research U.S.A.F., Also PhD
Thesis, University of Oklahoma, June, 1964

(30) Beattie, J. F. and Love T. J. Jr., "Angular Distri-
bution.of Scattered Intensity From Various Aerosols'
ARL-65-110 Aerospace Research Laboratories Report,
Office of Aerospace Research, U.S.A.F. also PhD
Thesis University of Oklahoma, June 1965

(31) Eckert, E. R. G. and Drake, R. M., Jr. Heat and Mass
Transfer, McGraw-Hill Book Company, Inc., N.Y. 1959

(32) Sparrow, E. M. and Cess, R. D., Radiation Heat Trans-
fer Brooks/Cole Publishing Company, Belmont, Cali-
fornia: 1966

(33) Schlichting, H., Boundary Layer Theory, Translated
by J. Kestin, McGraw-Hill Book Company 4th Edition,
1960




(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

99

Modern. Computing.Method, Philosophical Library, N.Y.
1958

Wilkinson J. H., "The Calculation of the Latent Roots
and Vectors of Matrices on The Pilot Model of A.C.E."
Proceedings of. the Cambridge Philosophical Society
Vol. 50, London: 1964

Faddeeva, V. N., Computational Methods of Linear Al-
gebra, Translated by Benster, C. D. Dover: 1959

Kourganoff, V., Basic.Methods in Transfer Problem,
Clarendon Press, Oxtord, 1952.

Jakob, M., Heat Transfer, Vol. I § II, New York:
John Wiley and:Somns Inc., 1957

Chromy, F. C. "Evaluation of Mie:Eqﬁations for
Colored Spheres' Journal of the Optical Society of
America, Vol. 50, No. 7, (1960)

Sinclair A. R., "Radiation Heat Transfer in Boundary
Layer Flow'" M..S. Thesis, The University of Oklahoma

Goulard, R. and Goulard, M., "Energy Transfer in the
Couette Flow of a Radiant and Chemically Reacting
Gas'", Proceedings of the 1959 Heat Transfer and
Fluid Mechanics .Institute, Stanford University Press,
Stanford, .California, 1959.

Chen, .J. C.."Simultaneous Radiative and Convective
Heat Transfer in.an Absorbing Medium:in.Slug Flow
Between Parallel Plates'" A.I.CH.E. Journal 10,
253, (1964).




NOMENCLATURE

Adjusted quadrature weight factor (Btu)(hr)-l(ft)_z(R)'4
Quadrature weight factor none
Matrices none
Specific heat (Btu) (1b) " (F) ~*
Velocity of light (£t) (hr) "t
Integration constants none
Diameter of spherical particle . ft
Monochromatic heat flux from a .surface (B‘cu)(ft)-2
Planck's constant (B‘cu)(hr)'1
Monochromatic intensity of -2 4 1
radiation (Btu) (ft) = (stearad)
Monochromatic intensity of scattered

or emitted radiant energy

Boltzman constant (Btu)(OR)'l
Thermal. conductivity (B‘cu)(f’c)-l(hr)—l(oF)—1
Extinction cross section none
Dimensionless parameter none
Dimensionless parameter none
Dimensionless parameter

Net heat flux for walls (Btu) (hr) "L(£t) 2
Distance along a ray (See Fig. 1) ft

Scattering function

100
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Scattering. function

Time hr. sec.
Temperature °r
Temperature of medium °r
Distance from. leading edge of plate ft
Eigenvectors none
A polynomial none
Normal coordinate ft
Particle size parameter none
Monochromatic mass. extinction coefficient.(ft)z(lbm)—1
Eigenvalue of a matrix none
Boundary layer . thickness ft
Thermal.boundary. layer. thickness ft
Surface.emittance none
Angle between incident and leaving ray ‘radiant
Polar angle (Fig. 1) radians
Monochromatic mass absorption (ft)z(lb )-l
coefficient : n
Radiation wave length ft
Cosine 0 none
Frequency of radiation (hr)“1
Mass density ‘ (1bm)(f1‘.—)f§
Mass density of the particles (lbm)(ft)-3
Apparent mass density (lbm)(f’c)-3
Surface reflectance none

3.1416 none
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Monochromatic mass scattering (1bm)[ft)_

coefficient

Optical depth none

Azimuthal angle radian
SUBSCRIPTS

Monochromatic

Black body

Iteration.indices
Refer to wall 1

Refer to wall 2, or refer to the edge of boundary
layer

Radiation
Conduction
Free streanm

Wall

SUPERSCRIPTS

A distinction of M, N, Q
A indication of incident ray
A matrix

Sometime refers to a positive (or negative) direc-
tion of a ray defined in Fig. 1

3



APPENDIX A

COMPUTER PROGRAM FOR @ij (THIRD ORDER APPROXIMATION).
TABLE 1

eij (BASED ON ¢ = 100) FOR DISCRETE POSITION OF
INCIDENT RAY AND WAVE LENGTH
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11

PROGRAM FOR THETA 1J.

Ul IS THE GAUSSIAN QUADRATURE COORDINATES.
THETA 1S THE ANGLE THETA({I,J)

PROGRAM FOR THETA lJ.

DIMENSION U1(3),U2(6),A(19),C1(3,6,19),S1(3,6,19),
1TN(346419), THETA(3,6419)

READ 1' (Ul(l), I=1'3)

FORMAT{3E16.8)

DO 3 I=1,3

u2{1)=ul(l)

DO 4 I=1,3

U2(1+3)=-U1(1)

A(1)=0.0

DO 7 I=2,19

SUM=1

A(I)=3.1416#10./180.%(SUM-1.)

DO 8 I=1,3

DO 8 J=1,6

DO 8 K=1,19
ClileJeK)=ULTITI)®U2{J)+SQRTF{1.-Ul({]I)#%2)=
1SQRTF(1.-U2(J)»»2)2xCOSF{A(K))
S1{IsJ9K)=SQRTF{1.-Cl(I,4,K)*C1l{I,J4,K})
TN(IJ9K)=S1(I,J5K}/7CL{14J4K)
IF(TN(I4J,K))11,511,12

THETA(I yJyK)=180%({1.+ATANF{TNI({I1,4J4K})/3.1416)
GO 70 8

THETA(I yJsK)=ATANF{TN(IJ9yK))®180./3.1416
CONTINUE

DO 9 1I=1,3

PUNCH 10, {{THETAlI yJ,K)4J=1,6},K=1,19)
PRINT 10, {{THETA(I,JyK)yJ=1,46),K=1,19)
FORMAT{1H1//7/7/16F10.2))

STGP

END

70T



1,1

«10
9.93
19.87
29.80
39.73
49.65
59.57
69.48
79.38
89.27
99.13
108.96
118.74
128.45
138.04
147.38
156.21
163.65
167.05

°1,2

23.52
25.33
30.12
36.71
44,31
52.44
60.88
69.47
78.12
86.76
95.34%
103.76
111.95
119.78
127.07
133.54%
138.78
142.28
143.52
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TABLE I
Oij Degree
1,3 91,-1
56.06 12.94
56.54 16.34
57.95 23.78
60.20 32.61
63.18 41.96
66.76 51.54
70.78 61.25
75.12 71.03
79.65 80.86
84.26 30.72
88.82 100.61
93,25 110.51
97.41 12C0.42
101.21 130.34
104.53 140.26
107.26 150. 19
109.30 160.12
110.56 170.06
110.99 179.89

1,-2

36.471
37.71
41.21
46045
52.92
60,21
68.04
16.23
B4.65
93,23
101.87
110.52
119.11
127.55
135.68
143.28
149.87
154.66
156.47

1,-3

69.00
69.43
70.69
72.73
75.46
78.78
82.58
86.74
91.17
895.73
100.34
104.87
109.21
113.23
116.81
119.79
122.04
123.45
123.83
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TABLE 1 - continued

eij Degree
%21 2.2 ©253 92,-1 ©2,-2 ®2,-3
23.52 .06 32,53 36.47 59.99 92.53
25.33 8.65 33.17 37.71 60.75 92.88
30.12 17.29 35.01 41.21 62.94 93.91
36.71 25.90 37.85 46.45 66.45 95.61
44,31 34.45 41.44 52.92 71.06 97.91
52.44 42.93 45.54 60.21 76.57  100.77
60.88 51.31 49.95 68. 04 82.81  104.11
69.47 59.56 54.53 76.23 89.62 107.88
78.12 67.65 59.13 84. 65 96.87  111.98
86.76 75.52 63.66 93.23  104.47  116.33
95.34 83.12 68.01  101.87  112.34  120.86
103.76 90.37 72.11  110.52  120.43  125.46
111.95 97.18 75.88  119.11  128.68  130.04
119.78  103.42 79.22  127.55  137.06  134.45
127.07  108.93 82.08  135.68  145.54  138.55
133.54  113.54 84539  143.28  154.09  142.14
138.78  117.05 86.08  149.87  162.70  144.98
142.28 119.24 87.11 154.66 171.34 146.82

143.52 120.00 87.46 156.47 173.93 147.46
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TABLE I.- continued

Oij - Degree
931 93,2 3.3 ©31,-1 °3,-2 %3, .3
56.06 32.53 .07 69.00 92.53  125.07
56.54 33.17 4.60 69.43 32.88  125.29
57.95 35.01 9.18 70.69 93.91  125.97
60.20 37.85 13.71 72.73 95.61  127.09
63.18 41.44 18.15 75.46 97.91  128.63
66.76 45.54 22.47 78.78  100.77  130.5F
70.78 49.95 26.66 82.58  104.11  132.91
75.12 54.53 30.67 86.74  107.88  135.50
79.65 59.13 34.48 91.17  111.96  138.62
84.26 63.66 38.06 95.73  116.33  141.93
88.82 68.01 41.37  100.3%4  120.86  145.51
93.25 72.11 44.39  104.87  125.46  149.32
97.41 75.88 47.08  109.21 130,04 153,33
101.21 79.22 49.41  113.23  134.45  157.52
104.53 82.08 51.36  116.81  138.55  161.84
107.26 84.39 52.90  119.79  142.14  166.28
109.30 86.08 4,02  122.04  144.98  170.81
110.56 87.11 54.70  123.45  146.82  175.39

110.99 87.46 54.92 123.93 147.46 179.92
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APPENDIX B

TABLE 11

INTEGRATED AXIALLY-SYMMETRIC SCATTERING FUNCTTONS
FOR DISCRETE POSITIONS AND. WAVE LENGTHS (. BASED
ON EXPERIMENTAL DATA

TABLE TII
2
172 [ ¢ ajS(ui,fuj)] FOR DISCRETE PQSITIONS OF
n=1
INCIDENT RAY AND WAVE LENGTHS () — - - BASED CN

EXPERTMENTAL DATA
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TABLE II

ALUMINUM

INTEGRATED AXIALLY-SYMMETRIC SCATTERING FUNCTIONS

FOR DISCRETE POSITIONS AND WAVE LENGTHS ‘i)
BASED ON EXPERIMENTAL DATA

.Waxe

Length Integrated Functions

) S(ul,ui)s(hl,ué) S(U1,U%) S(Uly'Ui) S(.u]h)'.!**é) S(.U].’“"

0.6 1.4436 0.5892 0,4706 0.8400 0.5647 0
0.7 1.0897 0.5758 0.4606 0.8333 0.5367 0
0.8 3.1078 0.5017 0.3447 1.0517 0.447% 0
0.9 2,9675 0,3706 0.2072 0.7750 0.2986 0
1.0 3.1489 0.3481 0.2222 0.8842 0.2969 n
1.2 2.3548 0.3236 0.1768 0.5596 0.2569 0
1.4 1.3303 0.2025 0.0948 0 4842 0.1550 0
2.0 1.2356 0.4786 0.2922 0.7728 0.4675 0
2.5 1,5484 0.6411 0.3886 0.9764 0.5550 0
3.0 1.9675 0.4508 0.2147 0.9933 0.3372 0
4.0 1.3567 0.5847 0.3750 0.9842 0.5128 0
5.0 2.0981 0.6672 0.2666 1.2139 0.4598 0
6.0 1.3745% 0.9900 0.7267 1.1564 0.8647 0
7.0 1.1847 0.7975 0.5817 1.0145 0.7228 0
8.0 0.8200 0.6061 0.4451 0.7258 0.5464 a
9.0 1.0181 0.8382 0.6%81 0.9989 0.8214 0
10.0 1.0578 0.9439 0.7911 1.0317 0.8858 0
11.0 1.0295% 0.9295 0.8156 1.0133 0.9000 0
12.0 0.9667 0.8820 0.7780 0.9650 0.8883 0
13.0 0.9697 0.8445 0.6928 1.8756 0.8583 0
14.0 0.7872 0.678% 0.5472 0.8025 0.6917 0
15.0 1,1358 0.9808 0.8158 1.1589 1.0058 0

4211

-3169
.3572
21272
2271
1791
0976
L3161
.41472
. 2197
3922
. 2587
72772
. 5489
(4214
6556
.h889
7717
.8028
L7228
.3622

125
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TABLE II - Continued
ALUMINUM

Kzﬁgth Integrated Functions
to SQugaug) Slugaup) SCup,ug) S(uy,-ug) Slug,-wy) Sivye
0.6 0.5892 1.4478 0.5236 0.5647 0.5883 0.5%9°
0.7 0.5758 1.8234 0.5261 0.5367 0.5497 0.9973%
0.8 0.5017 2.2989 0.4017 0.4478 0.4778 0 47614
0.9 0.3706 3.6181 0.2958 0.2986 0.3000 0.7R137
1.0 0.3481 3.2146 0.2700 0.2969 0.3129 0.2°39
1.2 0.3236 2.60959 0.2400 0.2570 0.2831 0.2726%
1.4 0.2024 1.6229 0.1483 0.1550 0.1456 C.130%
2.0 0.4786 1.2514 0.3433 0.4675 0.5247 0.167%
2.5 0.6411 1.6978 0.4783 0.5550 0.5633 0.539°
3,0 0.4508 2.2761 0.3456 0.3372 0.3067 0.280%
4.0 0.5847 1.3881 0.4522 0.5128 0.5092 0.4878
5.0 0.6672 2.2771 0.4973 0.4598 0.3867 0.3203
6.0 0.9900 1.4142 0.8461 0.8647 0.8625 0.8075
7.0 0.7975 1.4997 0.7750 0.7228 0.693% 0.5817
8.0 0.6061 0.8172 0.5797 0.5464 0.5150 0.454°
9.0 0.8392 0.9233 0.7747 0.8214 0.8506 0.7431
10,0 0.9439 1.0456 1.0056 0.8858 0.8111 0.6733
11.0 0.9295 1.0086 0.9561 0.9000 0.8767 0.7770
12.0 0.7781 0.9030 0.8033 0.8028 1.2933 0.8942
12.0 0.8445 0.8481 0.7350 0.8583 0.9181 0.8536
14.0 0.6783 0.6800 0.5975 0.6917 0.7445 0.6656
15.0 0.9808 1.0090 0.9155 1.0058 1.0644 0.9200
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ALUMINUM

TABLE 1I - Continued

Wave
Length

A S(ugruq) S(eg,us)

Integrated Functions

(Su33g) S(ugy~uy) Slug,-u3) Stz ~u

.
i

3

)

©

o

©

—

O W 0 NP NN N =D O O O
> ° o < 3 ° ° o ° < . e ©
O O O O O O O WO NN O W oo O

o

©

—
=
(]

12.0
13.0
14,0
15.0

O O O O O O O o o o ©

[}

o O

o o O O O

0

4706
4606
. 3447
. 2072
02222
1768
0048
. 2922
.3886
2147
»3750
. 2667
7267
«5817
<4451
6581
L7311
.8156
7781
.6938
0.

0.8158

5472

0.5236
0.5261
0.4017
0.2958
0.2700
0.2400
0.1483
0.3433
D.4783
0.3456
0.4522
0.4973
0.8461
0.7750
0.5797
0.7747
1.0056
0.9561
0.8033
0.7350
0.5975
0.9155

NN

R O O = R N e N PR RN Nt

4220
,1184
<9912
.2209
.9605
.0075
9040
.0778
.0756
1278
.5014
. 2264
.0481
7628
2400
<2242
.5075
.2920
.0050
.9714
.8058
+2553

o OO 0 O 0D 0O 0 D DO 000 OO0 00 0 0 0o O

.4811
.3169
. 3573
2122
.2271
1791
.0976
.3161
4142
.2197
. 3922
<2587
1272
.5489
4245
6556
.6889
L7717
.8028
7225
5022
.8124

0.5397
0.9978
0.4264
0.2642
0.2739
0.2263
0.1308
0.457Z
0.5397
0.2806
0.4878
0.3403
0.8075
0.5817
0.4547
0.7431
D.6733
0.7770
0.8942
0.8536
0.6656
0.9200

0.7292
0.6561
C.6336
0.4019
0.4180
0.4029
0.2090
0.8050
0.8008
0.4247
0.6778
0.5480
1.0295
0.8136
0.5925
1.0645
0.8461
0.9389
1.0933
1.1822
0.9708
1.3278
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CARBON

INTEGRATED AXIALLY-SYMMETRIC SCATTERING FUNCTIONS
FOR DISCRETE POSITIONS AND WAVE LENGTHS (A)
BASED ON EXPERIMENTAL DATA

Wave .
Length Integrated Functions
A S(ul,ul') SCul,ué) S(ul’u},) S(ugs-ug) Slups-uy) Sluy,-uz)
.0 3.3482 0.1491 0.0768 0.8868 0.1229 0.0670
.0 1.1809 0.2093 0.0280 0.5092 0.0642 0.0153
10.0 1.6086. 0.6639 0.3764 0.9275 0.4692 0.3063
12.0 1.1490 0.2181 0.1029 0.5074 0.1967 0.4432
A S(uysug) SGig,uy) S(uy,uz) S(uz’-ui) S(ugs-uy) Sluys-uz)
.0 0.1491 3.7305 0.1793 0.1229 0.0873 0.0719
.0 0.2093 1.3807 0.1473 0.6422 0.0217 0.0109
10.0 0.6639 1.8620 0.6888 0.4629 0.3031 0.2397
12.0 0.8686 2.3345 0.8664 0.6131 0.4428 0.3735
A S(uzsmg) SCugsuy) S(ugouz) S(ug,-uy) S(ugs-uj) S(gs-uz)
.0 0.0768 0.1793 7.3232 0.0670 0.0719 0.0991
0 0.0280 0.1473 2.6032 0.0153 0.0109 0.0433
10.0 0.3764 0.6888 3.5989 0.3063 0.2397 0.2051
12.0 0.5221 0.8664 4.,1483 0.4432 0.3735 0.3326
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TABLE II - Continued
GLASS BEADS

INTEGRATED AXIALLY-SYMMETRIC SCATTERING FUNCTIONS
FOR DISCRETE POSITIONS AND WAVE LENGTHS (A}

BASED ON EXPERIMENTAL DATA

Wave
Length

Integrated Functions

Ao S(uysug) S(rysuy)

S(uyskz) S(ugs-ug)  S(uys-uy) Sry,-ug)

0.8 1.1381 0.9114
1.0 1.5383 0.9725
4.0 1.1490 0.2181

0.7200 1.1000 0.9222 0.7264
0.6042 1.3161 0.9158 0.6572
0.1029 0.5074 0.1967 0.1040

S(Uz:”é) S(uz,"Ui) S(uzs’Ué) S(Uzy”pé)

A S(Uz:“i) S(“z:”é)

0.8 0.9114 1.0206
1.0 0.9725 1.4200
4.0 0.2181 1.3047

0.8150 0.9222 0.9733 0.8650
0.7364 0.9158 0.9561 0.8872
0.1659 0.1967 0.2216 0.1558

Ao S(ugsug) S(eg,u))

S(us,ué) S(US:'Ui) S(“z:'“é) S(US,'Pé)

0.8 0.7200 0.8150
1.0 0.6042 0.7364
4.0 0.1029 0.1660

1.3183 0.7264 0.8650 1.2806
2.1370 0.6572 0.8872 1.3992
2.4150 0.1040 0.1558 0.4168
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TABLE II - Continued

IRON

INTEGRATED AXIALLY-SYMMETRIC SCATTERING FUNCTIONS
FOR DISCRETE POSITIONS AND WAVE LENGTHS ()
BASED ON EXPERIMENTAL DATA

Wave

Length Integrated Functions

A S(uysug) SCuy,uy) Slupsug) SCug,-wui)  S(wy,-wy) SCup,-wz)

0.6 1.9202 0.7536 0.4950 1.2877 0.6711 0.5233
1.0 3.2074 0.7928 0.3344 1.6305 0.4867 0.2747
4.0 0.7578 0.6195 0.4150 0.7506 0.6353 0.4552
10.0 1.1370 0.9342 0.6167 1.1378 0.9762 0.6600
14.0 1.1406 0.9561 0.7331 1.1550 0.9622 0.7392

A S(Uz:“i) S(Uz,Ué) S(uZ’Ué) S(UZ’“Ui) S(uzs“Ué) s(“z;’“é)

.6 0.7536 2.0049 0.5689 0.6711 0.7105 0.6605
.0 0.7928 3.6230 0.6333 0.4867 0.3533 0.2961
.0 0.6195 0.4615 0.7492 0.6353 0.6347 1.0147
10.0 0.9342 0.8686 0.7311 0.9792 1.0378 0.9353
14.0 0.9561 0.9853 0.8542 0.9622 1.0331 0.8881

A s(us,ui) SCHS’Ué) S(us’Ué) S(“33'Hi)< S(Usy'ué) S(“s:'“é?

.6 0.4950 0.5689 3.3719 0.5233 0.6605 0.9972
0 0.3344 0.6333 6.7923 0.2747 0.2961 0.4019
.0 0.4150 0.6075 0.4615 0.4552 0.6664 0.6347
10.0 0.6167 0.7311 1.1145 0.6600 0.9353 1.5684
14.0 0.7331 0.8542 1.2539 0.7392 0.8881 1.3522
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TABLE II - Continued
SILICA-

INTEGRATED AXIALLY-SYMMETRIC SCATTERING FUNCTIONS
FOR DISCRETE POSITIONS AND- WAVE LENGTHS (1)
BASED ON EXPERIMENTAL DATA

Wave

Length Integrated Functions

A S(rpoug) SCuyewy) S(upsuz) S(uy,-ug) SCuys-uz) S(uys-wz)

7 2.3755 0.7597 0.2958 1.3533 0.4786 0.2505
.0 2.2857 0.6848 0.1785 1.3225 0.3507 0.1361
4.0 1.6645 0.9347 0.4574 1.2395 0.6881 0.3483
10.0 1.0620 0.8981 0.5653 1.1242 0.8401 0.5683
13.0 1.1364 0.9567 0.7306 1.0700 0.8314 0.6411

A S(uz,ul) S(pzﬂ-‘é) S(UZ’Ué) S(uz,'Ui) S(Uz:'“é] S(UZ,“U%)

0.7 0.7597 2.5877 0.6439 0.4786 0.3606 0.2603
1.0 0.6848 2.6950 0.5870 0.3507 0.1823 0.1188
4,0 0.9347 1.7692 0.9556 0.6881 0.4839 0.3217
10.0 0.8981 1.1406 0.7711 0.8401 0.8245 0.7265
13.0 0.9567 1.2408 1.0336 ~ 0.8314 0.6953 0.5914

A S(ug,ni) S(uzsuy) S(ugz,ng) Slug,-ui) SCug,-uy)  S(uz,-uj)

7 0.2958 0.6439 4.7780 0.2505 0.2603 0.4261

.0 0.1785 0.5870 4.9828 0.1361 0.1188 0.1601
4.0 0.4574 0.9556 3.2709 0.3483 0.3217 0.4908
10.0 0.5653 0.7711 1.7295 0.5683 0.7263 1.1506
13.0 0.7306 1.0336 1.9070 0.6411 0.5914 0.7728
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TABLE TII

™~

1/2 Sy, tu,
/2] 3 (ug uJ)]

n=1

MATERIAL: ALUMINUM

FOR DISCRETE POSITIONS OF INCIDENT RAY AND WAVE
LENGTHS (A) BASED ON EXPERIMENTAL DATA

WAVE '
LENGTH DIRECTION. OF INCIDENT RAY
A My Ha M3
0.6 0.706 0.762 0.806
0.7 0.622 0.892 0.971
0.8 0.886 0.845 1.202
0.9 0.727 0.975 0.964
1.0 0.766 0.949 1.069
1.2 0.583 0.807 0.905
1.4 0.358 0.481 0.521
2.0 0.574 0.637 0.663
2.5 0.728 0.810 0.876
3.0 0.647 0.770 0.832
4.0 0.676 0.705 0.674
5.0 0.783 0.822 0.922
6.0 0.966 0.993 0.997
7.0 1.385 0.887 0.816
8.0 0.592 0.600 0.605
9.0 0.831 0,836 0.838
10.0 0.894 0,900 0.897
11.0 0.911 0.914 0.915
12.0 0.881 0.944 0.888
13.0 0.970 0,850 0.848
14.0 0.679 0.682 0.682
15.0 0.986 0.992 0.993




117
TABLE III - Continued

1/2]

n

™MW
[

ajs(ui,iui)]

FOR DISCRETE POSITIONS OF INCIDENT RAY AND WAVE
LENGTHS (A) BASED ON EXPERIMENTAL DATA

MATERIAL: CARBON
WAVE ‘
LENGTH DIRECTION OF INCIDENT RAY
A
1-11 112 US
1.0 0.669 0.921 1.107
4.0 0.240 0.372 0.409
10.0 0.698 0.767 0.830
12.0 0.920 0.995 1.032
MATERIAL: GLASS BEADS
0. 0.919 0.931 0.935
1 0.991 1.016 1.027
0.351 0.441 0.499
MATERIAL: IRON
0.6 0.904 0.972 1.021
0.9 1.041 1.190 1,291
4.0 0.609 0.610 0.610
10.0 0.918 0.921 0.920
14.0 0.950 0

.957 0.954




1

TABLE

3
1/2[ £ a
n=1

18

ITI - Continued

js(“i’i“j)]

MATERIAL: SILICA
0.7 .869 0.951 000
1,0 .775 0.881 915
4.0 .876 0.903 918
10.0 .847 0.886 .890
13,0 .894 0.904 .924
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APPENDIX C

PROGRAM FOR EIGENVALUES AND EIGENVECTORS CALCULATION
PROGRAM FOR DIMENSIONLESS PARAMETERS M, N, AND Q
CALCULATION



Program Symbol
W
U
X
Lamda
Albedo
MM

ABDI
ABD2

X3

120

PROGRAM I

Meaning
Gaussian Quadrature Weight Factor
Gaussian Quadrature coordinates

Initial iteration value

Wavelength
o/B
A test: MM > 1 is for isotropic cases

MM < 1 is for anisotropic
cases
/8, for isotropic cases
/B, for anisotropic cases
Eigenvalue
Eigenvector

The matrix



OO0

1
99
101

102

55
38
66
44

445
39

THIS PROGRAM WAS RUN ON OSAGE COMPUTER.
EIGENVALUES AND EIGENVECTORS OF A 6X6 MATRIX
S ARE THE MATRIX. EI ARE THE EIGENVALUES.

X3 ARE THE EIGENVECTORS. MM GREATER THAN 1 IS FOR ISOTROPIC CASE.
X ARE THE ITERATION FACTOR WITH A STARTING VALUE OF 1.

THIS IS A MODIFIED PROGRAM FROM THE WORK BY HSIA.

DIMENSION S(656)3X(6)sY(6)oXNO(6)sT(6),EI(6),SMO(6461),
1SCL646) 4EL16)32E5:5)3X1U5)4X2{6)4X3(6496)4S1{6),U(6),H(E)

READ 11(“(J)7J=196’1 (U(J)1J=1g6)'(X(J)'J=116)
FORMAT(6E12.6)

READ 101,LAMDA

FORMAT{7HLAMDA =, I3/)

READ 102 ALBEDG

FORMAT (BHALBEDO =, F5.3/)

READ 2, MM,ADBl, ADB2, SUM

FORMAT(I2, 3El12.6)

READ 1y {((S{IsJ)sd=146),1I=143)

PRINT 1y (W(J)oJd=136)s (U(J)9J=146)y (X(J)d=1,6)
PRINT 101, LAMDA

PRINT 102, ALBEDO

PRINT 2, MM, ADBl, ADB2, SUM

PRINT 1, {(S(I,J)y J=1,61, I=1,3)

THE SCATTERING FUNCTIONS AND THE MATRIX
IF{MM—1)55,55,66

DO 38 M=1,3

DO 38 J=1,6
S{MoJ)=0.5%#ADBL1=#W(J)/U(M)})=S{M,Jd)

GO TO 445

D0 44 M=lv3

DO 44 J=1,6

S{MeJ)}=0.5»ADB2#W{J)/U{M)

DO 39 M=1,3

S(MsM)=S{M,M)-1./7U(M}

DO 440 M=4,6

DO 440 J=1,3

TZT



440

441

442

10

12

13

S{MyJ)==S(M=3,J+3)
DO 441 M=4,6
DO 441 J=496
S(MgJ)=~S{M-3, J-3])

PRINT 442, ((S{MsJ)s J=146)y M=1,6)

FORMAT(///{6E12.6))

p0 3 1I=1,6

DO 3 J=1,6

SC{I¢J}=0.0

D8 3 K=1,46
SC(I4J}=SCLIJ)+S{IK)%S5(KyJ)
KK=0

KK=KK+1

DO 4 N=KKy6

Y{N)=0,0

DO 4 J=KK,6
Y{N}=Y(N)+SC(N,J)=X{J)

DO 5 J=KKs6

XNO(J)I=Y(J)/Y{KK)

DO 6 J=KK,6
T(J)=ABSF{XNO{J)-X(J )
IF(T(J)-SUM)6,6,7

DO 8 M=KK;6

X{MI¥=XNO(M)

GO 10 9

CONTINUE

EI(KK)=0.0

DO 10 J=KK,6
EITKK)=EI(KK}+SC{KK,J)}#XNO(J)
DO 12 J=KKy6

DO 12 M=KKyb6
SMO(JeM)=SCLJIyM2I-SCIKKsM)=XNO(J)
DO 13 J=KK,6

DO 13 M=KKopb

SC{JoyM)=SMOEJM)

71



14

16
i7

18
19
45
25
41
40

42
20

21

22

23

30

27

DO 14 J=KK.6
X{J)i=1,
IF(KK-5)15,15,16
DO 17 I=1,+6
EI(I)=SORTF(EI(I))
DO 18 I=1,3
E(I)=—EI(2#I-1)

DO 19 I=1,3
E(I+3)=EI(2#1I-1)
FORMAT{1X;29HEIGENVALUES OF THE MATRIX ARE;//6E12.6)
NN=0

NN=NN+1
IF{NN-1)41,41,42
DO 40 I=1,6
SI(I)=S(I,1I)

DO 20 I=146
S{Is1)=S1UI)—E(NN)
DO 21 I=1,5

‘DO 21 J=1,5

Z(I,J)=S(1,5J+1)

CALL INVERT{Z,5)

DO 22 I=1,5

X1{1)=0.0

DO 22 J=145
X1EI=X1{I)=-Z(1,J)*S5(Js1)
X2(1)=1.

DG 23 I=1:5

X2{I1+1)=X1(1}

JJ=0

JJ=JJ+1

DO 27 I=146
X3{I4NNI=X2(T1}/X2(JJ)

DO 28 1=1,6
IF{ABSF(X3¢1,NN}}-1.128,28,30

A



28

200

727

707

26

CONTINUE

IFENN-5125,25,200

PRINT 727

FORMAT{1X,22HTHE EIGENVECTOR MATRIX}
PRINT 1,((X3(I NN?sNN=1;6},1=1,6}
PRINT 707

FORMAT{(//]

GO T0 99

SYQP

END

vet



Program Symbol
GMA
X
W
9]
TE
FL1
FL2
Lamda
Albedo
XM, XXM

XN, XXN

Q, XQ

125

PROGRAM II
Meaning
Eigenvalue
Eigenvector

Gaussian Quadrature weight factor
Gaussian Quadrature coordinate
Optical Spacing

Reflectance of Wall 1

Reflectance of Wall 2

A , Wavelength

o/8

Dimensionless Parameter M
Dimensionless Parameter N

Dimensionless Parameter Q



aleNe N EaReNe e

71

THIS PRCGRAM WAS RiUN ON OSAGE COMPUTER.

THIS CALCULATION IS FOR THE PARAMETERS M:No,Q OF HEAT FLUX
IN ISOTHERMAL SCATTERING MEDIUM,

GMA ARE THE EXGENVALUES. X ARE THE EIGENVECTORS.

W ARE THE
TE IS THE OPTICAL DEPTH.

FL1;FL2 ARE YHE REFLECTIVITIES OF SURFACE 1,2 RESPECTIVELY.

WEIGHT FACTORS. U ARE GAUSSIAN COORDINATES.

PROGRAM M N Q
DIMENSION

LFL1(9ioFL2{9SUMLACG) ;SUMLBI6}, SUMDG( 6} o SUMEH{6} ; SUMIDFE6) o
2SUMLI3}7oSUMZ(3:9SUM3{3)}SUMGI3 oY 13,31 ¢XMI10:XNELO}QE10}

GMA(AY  Xi6. b7 sAl6061:BI6sO6 e WIBFoUL3)TECXO},

READ Lo l{Widicd=1e3is{UCSId=143)
FORMAY{3E12,.6!

REAC 77, (TE(KKIyKK=1,10!

FORMAT(SF4.1%

REAC 2, (FLIELLYyLE=1¢9) s (FL2{LLILL=199)
FORMAT(9F5.11}

REALC

3¢ LA

FORMATEI3;

READC

4o AL

MDA

B8EDO

FORMAT{F5.3}
READ 66 {GMA(G5 5371l o LiXETgdiod=keblel=1,081

SUMLEJGY=SUMLId +W L =UCTEoX{34T, 0!

FORMAT{6EL2.6"
L1.=0
bi=tbel

OC 6 Jd=1,6
SUMILLE=0.
BC 6 I=}.3
DC 71 Jd=l,
DO TI I=l,
AiYodi=X{1I
KK=0
KK=KK+1

O 8 J=1i¢6

g/



11

12

100

101

SUM2t33=0o.
DO 8 I=143
UM2 € =SUM2EJ+WETI#UCT j#X (T o JI#EXPFEGAMIEF=TE(KKE }
DO 73 J=1+6
DO 73 I=1:3
Af34T o i=XE3¢ o J=EXPF{GMAfII#TE(KK} }-2.#FL2ELL [ #SUM2(J])
DC 9 I=1:6
DO 9 J=1,6
BlIgdI=A(Yydi
CALL INVERT(B¢b6}
DC 11 I=156
SUMLAEI =0,
£C 11 K=1:3
SUMLAEY 1=SUMLA{TI}+B{I,K}
DG 12 I=146
SUMLBEI =0,
DG 12 K=446
SUMLBEI }=SUMLB{I}}+B{I,K}
DG 100 I=1l:6
SUMBGiL}1=0a.
DO 100 K=1,6
SUMDG(T s=SUMDGII»+SUMLAIK}=#X(1,K}
DO 101 I=1l,6
SUMEH{13=0,
DO 101 K=1l:6
SUMEHET }=SUMEH{ T ) +SUMLBIK!«X{I 4K}
SUMM=0.
B0 67 J=1,:3
SUMM=SUMM+W (S #Ut s {1.-FLL{ELT I #(SUMDG(J}=SUMDG{J+3}}
AMIKK}=6.2832%SUMM
SUMN==0,
DO 23 J=143
SUMN=SUMN+W(JI#UfJI)r® {1~ FL2(LL )} ®#(SUMEH{J}=SUMEH{J+3)}
XN(KKF==6.2832#SUMN
QIKK =XMIKK) ~XN{KK}

Al



33 IF{KK=1017931:31

31 PRINT 555

555 FORMAT{19X.:44HRADIANT HEAT TRANSFER BETWEEN PARALLEL WALLS//////}
PRINT 37; LAMDA

37 FORMAT(6X¢27HALUMINUM —=-— WAVE LENGTH =:F5.1,7H MICRON//}
PRINY 38, ALBEDO
38 FORMAT{6X27THTHE ALBEDO =~ SIGMA/BETA =4F5.3//)

PRINTY 25, FLYIELL}
25 FORMAT(6X24HREFLECTIVITY OF WALL 1 =¢F3.1//}
PRINT 96, FL2{LL}
96 FORMAT(6X,24HREFLECTIVIYY OF WALL 2 =,F3.1//47/7)
PRINT 27
27 FORMAT(6Xy, THOPYICAL /76X THSPACING:14Xs1HM; 18Xy 1HN,;19Xy1HQF/}
34 DO 28 KK=1,10
28 PRINT 29 ,TELKK]? g AM{IKK} ¢ XNEKK} 9 Q{KK)
29 FORMATE6X,F4.1,3F20.4/1
THIS IS THE M N Q PRORAM FOR INFINITIVE OPTICAL SPACING.
DO 404 J=1,3
SUM3€J=0,
DO 403 I=1,.3
403 SUM3(JI=SUMB(JI+WIIs=U{TeX{3+1oJ}
DO 404 1=1,3
404 Y{IoJi=XETsdt-2.sFL1{LLY=SUMBLY)
CALL INVERT(Y:3?
DO 407 I=1,3
SUM4(1}=0.
DO 407 J=1.3
407 SUM&{I=SUM&ELET+Y(Tod1}
DG 408 I=1:6
SUMIDFETI}=0.
DO 408 J=1:3
408 SUMIDF(I}=SUMIDF{L:+SUM4(J}aX{T,3}
SUMIFM=0,
DO 412 I=1,3
412 SUMIFM=SUMIFM+W/I}sUlT} ®{lo-FLLELL ) ®#{SUMIDF(I=SUMIDF{I+3)}



413

32
30

XXM=6.2832«SUMIFM
XXN=0.
XQ=XXM

PRINT 413, XXMpXXNyXQ

FORMAT(6Xs4HIFNT,
IFi{LL-9)5,32,32
GO TO 99

STOP

END

3F20.4/1

6¢t



APPENDIX D

PRCGRAM FOR EQUATION (41)
EAS MEDIA
WALL REFLECTIVITY = 0.5

RESULTS
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Program Symbol Meaning
C Constant
AJ Aj (page 19)
SPCG Optical Spacing
- T Temperature
RHOA Density of the Medium
RHO Density of the Particle
DIA ' Diameter of particle in Micron
EPS ¢, Pre-determined Accuracy
VEL Free Stream Velocity
DSTY Density
CP Cp’ Specific Heat
XK Conductivity
REF Reflectance, of the Wall
XNU Viscosity
XD, XXD Distance from leading edge of Plate
ALPHA Particle Parameter
TKE Ke, Mass Distinction Coefficient
XM, XXM Dimensionless Parameter M
XN, XXN Dimensionless Parameter N
XQ, XXQ Dimensionless Parameter Q
QNETR Radiative Heat Flux
XQNETR, RAD Radiative Heat Flux of Wall 1
XXQNTR  Radiative Heat Flux of Wall 2

QNETCD, CON Conductive Heat Flux at the Wall



OO0

THIS IS THE BOUNDARY LAYER THICKNESS ITERATION CALCULATION
MoN,Q VALUES ARE COMPUTED FROM THE EQUATION FITTED BY
ORNOR CURVE FITTING PROGRAM.

THIS PROGRAM IS FOR WALL REFLECTIVITY = 0.5.

DIMENSION ALPHA(3,5),C(5)TKE(3;5),BETA(5),TE(6,10),FX{6),XM(3,5),
L1XN{3,5) :XQ(395) ¢ XXM(355) 3 XXN(3,5)3XXQ(3+5),AJ(5)3SPCG(3),
2XQNETR(3) o XXQNTR(3),QNETC{3) ;QNETR(3),T(5) 4D(15) oDELT(15),
3XXD(15),RATIO(15),RAD(15),COND(15},QNETCD(3) ,ADD{15),ADDA(15)

READ(1,98)(Ct(Jd), J=1,5)

98 FORMAT(5E12.6)

97 FORMAT{5F12.5)
READ(1,97)(AJ(J)9J=1,5)
READ(1,97)(SPCG(I)s1=1,3)

99 READ(1,97)(T(L)sL=1,3)

READ(1,97)RHOA,RHO,0IAEPS,VEL

READ(1,97)DSTY,CP ¢ XK,REF

READ{1,981XNU

FCL=7.0

I=0

XD=0,

888 XD=XD%+.1
RE=SQRT(VEL#XD=#DSTY/XNU)
DEL=5.#XD/RE
I=1I+1
XXD{I}l=XD
D(I)=DEL
666 IF(I-1)124;124,125
124 SPCG{l1)=DEI)

GO TO 126
125 SPCGEL)=DELTI(I-1)
126 SPCGE2Y=FCL=D{I)

SPCGE3)=({SPCGL{1)+SPCG(2)) /2.

887 DO 605 M=1,3
L=0

999 L=L+1
DO 1000 J=1:5

A}



1000

110

140
150

160

7

200

201

170

31
32

600

ALPHA{L J)=C{J)#DIA*T(L)

DO 150 J=1,5

IF(ALPHA{L,J)}-5.999}110,110,140

TKE(L 9J)==.05245204507+4.917661615#ALPHA(L ;J)
1-2.909426676#ALPHA(Ly J ) #ALPHA(LyJ)+.7760694133#ALPHA(L,J}
25 ALPHA(L,J) #*ALPHA(L»J)~-.09776202625%*ALPHA(L,J)*ALPHA{L,J)
E*ALPHA(L.J)*ALPHA(L,J)+°004731505485*ALPHA(L:J)*ALPHA(LyJ)
*ALPHA(L,;J) #*ALPHA(L,J)*ALPHA(L ,J)

GO 70 150

TKE(L,J)=2.44

CONTINUE

DO 160 J=1,5
TE(LyJ)=RHOA=#SPCG{M)#(457200./DIA/RHO) #TKE (Lo J)

KK=0

KK=KK+1

IFITEfLyKK)}=2,1200,200,201
XM({LyKK}=1.564164332-.137654#TE(L,KK)+.0828503893

1#TE(L yKK)#TE(LyKK)—o02014180485#TE(L KK)*TE(LyKKI&#TE(L4KK)
2+.001692504166#TE(LKK)#TE(L KK} #TE(LyKK)}#TE (L 4KK]
XXM(LyKK)=1.663934828+2.086270658#TE{L yKK)}—-1.263094039%
ITE(L s KK)#TE(LsKK)+.3079682682#TE(L KK} ®*TE(LsKK)*TE(L,KK)
2-.0259186626#TE(LyKK)#TE(L KK)#TE{LJKK)#TE{L,KK)

60 70 170

XM{LyKKI=1,4865

XAM{L KK¥=2.8262

XN{LsKKY=EXP£,353326-1.097372#TE(L,KK) )

XQUL o KKI=XMILy;KK)I=XNIL,KK}

XXNLL ;KK)=XNIL,4KK)

XXQILyKKI=XXM{L s KK)=XXN{L yKK)

IF(KK-5)17531,31

IF{L~-3)999,32,32

SUMAM=0.

DO 600 J=1,5

SUMAM=SUMAM+AJ(J)=#XM(1,J}

SUMAN=0,

DO 601 J=1,5

¢l



601 SUMAN=SUMAN+AJ({J)=XN(2,J)
SUMAQ=0.
DO 602 J=1+5
602 SUMAQ=SUMAQ+AJ(J)=XQ(3,J)
XQNETR{M)=10E-11*({T(1)=T{1)»T(L)*T(1)=SUMAM)-(T(2)*T(2)=*
1IT{(2)=T{2)#SUMAN)-{T(3)}=T(3)=T(3)=T(3)=SUMAQ))
XSUMAM=0.,
DO 700 -J=1,5
700 XSUMAM=XSUMAM+AJ(J)#XXM(2,J)
XSUMAN=0.
DO 701 J=1,+5
701 XSUMAN=XSUMAN+AJ(J)#XXN{1l,J)
XSUMAQ=0.
DO 702 J=1,5
702 XSUMAQ=XSUMAQ+AJ(J)#XXQ(3,J)
XXQNTR(M)=1.0E-11=({T(2)=T(2)=2T(2)*T{2)#XSUMAM)-(T(1)*T(1)=
1T(L)=T(1)=XSUMAN)-(T(3)*T(3)xT(3)=T{3)=XSUMAQ)})
QNETR(M)=XQNETR (M) +XXQNTR (M)
: IF(I-1)779,779,778
779 QNETCD{M)=1.5=#(T(1)-T(2})*XK/SPCG(M)
QNETC(M)=36000.*DSTY#CP*VEL#{T(1)-T(2))#(.375=#(SPCG(M)-DEL)+
1.15#DEL#DEL/SPCG(M)—-3./280.#DEL*DEL#DEL#DEL/ (SPCG(M)#SPCG(M)=
2SPCG(M) )
GO 70 776
778 QNETCD(M)=3.#XK#(T(1)=T(2))/(SPCG(M)I+DELTI(I-1))
QNETCIM)=36000.#DSTY*CP#VEL=(T(1)-T(2))+#{.375#(SPCG(M)-D(I)
1-DELT(I-1)+4D(I-12)+.15#{D{I)*D(I}/SPCG(M)~-D(I-1)#D{I-1)}/DELT(I-1))
2-3./280.%(D(I)#D(1)=D(I)=D(I)/(SPCGI{M)=SPCG{M)=SPCGI(M) )~
3D(I-1)=D{I-1)=D{I-1)#D(I-1)/(DELT(I-1)#DELT(I-1)#DELT(I-1})))
776 FX{M)=QNETC(M)—QNETR{M)—-QNETCD (M)
605 CONTINUE
IF(FX{L)#FX(2))6114111,111
111 FCL=FCL-.1
SPCGIM)=D(1I]}
SPCGE2)=FCL*D{I}
SPCGI3)=(SPCG(1}¥+SPCG(2}11)/2.0

et



GO 1O 887

611 IF(FX{3))606,30,607
606 IF(FX{3}+EPS}608,30,30
607 IF(FX(3)-EPS130,30,608
608 IF{FX{3)#FX(1))609,30:+610
609 SPLGL2)=SPCG(3)
FX(2)=FX{3)
SPCG(3)=(SPCG(1}+SPCG(2)}/2.0
GO TO 887
610 SPLG(L)}=SPCGI(3)
FX{1}=FX(3)
SPCG(3)=(SPCG(1)+SPCG{2}}/2.0
GO TO 887
30 RATIOII)I=XQNETR{3)/QNETCD{3)
RADIIJ}=XQNETR(3)
COND(I)=QNETCDI{3)
DELTII)}=SPCG(3)
ADDI(I)=RAD(I)+CONDI(I)
ADBDA{I)=ADD(I1)/3600,
IF{XD~1.4999)889,997,997
889 SPCG(1)=SPCG(3)
SPCGL2)=7.=DI(1I)
SPCG(3)=(SPCG{11+SPCG{21}/2.0
GO TO 888
997 WRITEL3,613)T{1i,T(2),RHOA
WRITE{2,& 3)1T{1},7T(2),RHOA
613 FORMATULH1,////7/712Xs18HWALL TEMPERATURE =,F10.1,1Xs1HRs//
112X 425HFREE STREAM TEMPERATURE =,F7.191Xs1HR,//12X»
231HREFLECTIVITY OF THE WALL = 0.5//12X,
334HAPPARENT DENSITY OF THE PARTICLE =4yF5.2//7//7/13Xs1HX 46X
48BHRADHEAT ; 5X; 8HCON.HEAT ;5X s BHRAD/CON. 34X 4HVBLT 95X 4HTBLT/
524Xy 13HBTU/SQoFToHR. 922Xy 3HFT.6X:3HFT.//)
DO 614 I=1,15
WRITEL2,6153XXDITI},RADET} CONDIT Y RATIO(I}yDULI)DELTHI)
614 WRITE(3,6151XXDET)yRADIIYsCONDIIYRATIC(I} D¢{I),DELTL{I?

S¢T



615 FORMAT(11X,F4.1,2F13.2,F12.3,2F9.4/)
WRITE(3,9999)
9999 FORMAT(1H1,/////712X31HX,29Xy15HTOTAL HEAT FLUX///
130X 13HBTU/SQ.FT.HR.»11Xs14HBTU/SQ.FT.SEC.//)
DO 616 I=1,15
616 WRITE(3,617)XXD(I1},ADD(I),ADDA(I)
617 FORMAT(10X9F4e1lsF25.19F25.3/)
GO TO 99
998 STOP
END

9¢T



WALL TEMPERATURE

FREE

REFLECTIVITY OF THE WALL = 0.5

STREAM TEMPERATURE =

137

1000.0 R

500.0 R

APPARENT DENSITY OF THE PARTICLE = 0.10

o (e ] o
¢ .. .
o (L} »

[ )
-~

1.3
l.4

1.5

RAD.HEAT CONGHEAT
BTU/SQ.FTeHRe.
159.94 21035.05
749.65 16188.84
T42.48 11576.58
136.74 9490.60
731.91 8235.05
727.66 7373.54
123.89 6735.37
720.45 6238.31
717.30" 5836.14
714.38 5502.59
711.66 5220.02
709.11 4976 .84
706.68 4763.54
704.39 4574.72
702.25 4408.13

RAD/CON.

0.036
0.046
0.064
0.078
0.089
0.099
0.107
C.115
0.123
0.130
0.136
0.142
0.148
"0.154

0.159

VBLT
FT.
0.0007
0.0010
0.0012
0.0014
0.0016
0.0018
0.0019
0.0020
0.0022
0.0023
0.0024
0.0025
0.0026
0.0027

0.0028

TBLT
FT.
0.0007
0.0011
0.0015
0.0017
0.0019
0.0021
0.0023
0.0025
0.0027
0.0028
0.0029
0.0031
0.0032
0.0033

0.0035



WALL TEMPERATURE
FREE STREAM TEMPERATURE =
REELECTIVITY OF THE WALL = 0.5

APPARENT DENSITY OF THE PARTICLE

1.3

l.4

1.5

138

2000.0 R

RAD.HEAT CONJ.HEAT
BTU/SQ.FT.HR.
13050.82 70109.94
12872.46 53821.97
12750.95 38368.67
12655.15 31372.13
12574.98 27137.91
12505.62 24223.04
12444.22 22058.97
12389.26 20373.05
12339.14 19010.43
12293.24 17878.26
12250.77 16918.86
12211.19 16090.41
12174.29 15366 .50
12139.56 14726.79
12106.93 14156.04

500.0 R

6.10

RAD/CON.

0.186
0.239
0.332
0.403
0463
0.516
0.564
0.608
0.649%9
0.688
0.724
0.759
0.792
0.824

0.855

VBLT
FT.
0.0009
0.0013
0.0016
0.0018
0.0021
0.0023
0.0024
0.0026
0.0028
0.0029
0.0031
0.0032
0.0033
0.0035

0.0036

TBLT
FT.
0.0010
0.0016
0.0020
0.0023
0.06027
0.0029
0.0032
0.0035
0.0037
0.0039
0.0041
0.0043
0.0045
0.0047

0.0049
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WALL TEMPERATURE = 4000.0 R
FREE STREAM TEMPERATURE = 500.0 R
REFLECTIVITY OF THE WALL = 0.5

APPARERT DENSITY OF THE PARTICLE = 0.10

X RAD.HEAT CON.HEAT  RAD/CON.  VBLT TBLT

BTU/SQ.ET.HR. FT. FTe
0.1  209934.69  176923.81 1.187  0.0012  0.0013
0.2  206698.69  133732.88 1.546  0.0016  0.,0022
0.3 204427.81 93068.88 2,197 0.0020 6.0029
0.4  202605.25 74262.19 2.728  0.0023  0.0035
045 201063.50 62763 .44 3.204 0.0026  0.0041
C.6 155721.88 54793.64 3.645 0.0028 0.0046
0.7  198533.25  48847.27 4.064 0.0031  0.0051
0.8  197469.00 44190.25  4.469  0.0033  0.0056
0.9 196509.88 40417.78 4.862 0.0035 C.0061
1.0 195641.69  37284.41 5.247  0.0037  0.0066
1.l 194853.50  34630.10 5.627  0.003%  0.0071
1.2 194136.94 32346.24 6.002 0.0040 0. 0076
1.3 1934864.50 3035570 6.374 0.0042  0.0081
1.4  192891.19 28602.75 6.744  0.0044  0.0086

1.5 192351.56 27045 .44 7.112 0.0045 0.0090



WALL TEMPERATURE

FREE STREAM TEMPERATURE =

REFLECTIVITY OF THE WALL = 0.5

140

3000.0 R

500.0 R

APPARENT DENSITY OF THE PARTICLE = 0,10

1.2
1.2

l.4

RAD.HEAT CONHEAT
BTU/SQ.FT.HR.
66401.56 123848.38
65452.77 94563.69
64803.02 66853.13
64289.73 54209.15
63859.55 46524,32
63486.83 41213.16
63156.46 37254.23
62860.20 34155.75
62590.90 31644.57
62344.71 29554 .78
62117.42 27779.01
61907.23 26245 .46
61711.85 24904.70
61529.83 23719.21
61359.66 22661.62

RAD/CON.

1 0.536
0.692
0.969
1.186
1.373
1.540
1.695
1.840

1.978

2.478
2.594

2.708

VBLT

FT.

0.0011

0.0015

0.0018

0.0021

0.0024

0.0026

0.0028

0.0030

0.0032

0.0033

0.0035

0.0037

0.0038

0.0040

0.0041

TBLT

FT.

0.0012

0.0019

0.0024

0.0029

0.0G033

0.0037

0.0040

0.0044

C. 0047

0.0050

0.0053

0.0056

0.0059

0.0062

0.0065



WALL TEMPERATURE

FREE STREAM
REFLECTIVITY OF THE WaLL = Q.

APPARENT DENSITY OF THE PARTICLE

TEMPERATURE =

141

5000.0 R

RAD.HEAT CONJHEAT
BYTU/SO.FT.HR,
511828.94 224505.19
502964.31 166890.31
496509.63 113210.81
491246.38 88043 .44
486784.75 72636.19
482940.38 61994.77
479610.31 54111.32
476724431 47995,55
474233413 43094.09
472093.94 3%068.86
470272-.63 35700.69
468734.88 32839.37
467450.63 30378.38
466390.13 28240.16
465524.31 26365.66

500.0 R

0.10

RAD/CON,

2.280
3.014
4.386
5.580
6.702
7.790
8.863
9.933
11.005
12.084
13.173
l4.274
15.388
16.515

17,056

VBLT
FTo
0.0012
£.0018
0.0022
0.0025
0.0028
0.0031
0.0033
0.0035
0.0037
0.0039
0.0041
0.00435
0.0045
0.0047

0.00648

TBLY
FTa
0.0016
G.002¢6
0. 0035
00044
0.0052

0.0060

G.0077
G.0085
£.5093
0.0102
0.,0110
0.0119

0.0128



WALL TEMPERATURE

FREE STREAM TEMPERATURE = 1000.0 R

REFLECTIVITY OF THE WALL = 0.5

142

500.0 R

APPARENT DENSITY OF THE PARTICLE = Q.10

1.3
l.4

1.5

RAD.HEAT CONGHEAT
BTU/SQ.FT.HR.
-699.81 -21125.41
-674.36 -16258.18
-656.89 -11645.22
-643.04 ~-9574.07
~-631.28 -8321.60
-621.11 ~-7461.34
-612.01 -6825.36
~-603.75 -6327.91
~596.22 -5926.29
-589.26 -5593.92
-582.80 -5312.90
-576.71 -5071.53
~571.06 -4860.15
-565.69 ~4673.34%
~560453 -4506.36

RAD/CON.

0.033
0.041
0.056
0.067
0.076
0.083
0.090
0.095
0.101
0.105
0.110
0.114
0.117
C.121

0.124

VBLT
FTo
0.0007
0.0010
0.0012
0.0014
0.0016
0.0018
0.001¢9
0.002C
0.0022
0.0023
0.0024
0.0025
0.0026
0.0027

0.,0028

TBLT
FT.
0.0007
0.0011
0.0014
0,0017
0.0019
0.0021
0.0023
0.0025
0.002¢6
0.5028
0.0029
0.0030
0.0031
0.0033

0.0034



WALL TEMPERATURE

FREE STREAM TEMPERATURE = 2000.0 R

REFLECTIVITY QF THE WALL = 0.5

143

500.0 R

APPARENT DENSITY OF THE PARTICLE = 0.10

RADJHEAT CONJHEAT
BTU/SR.FT.HR.
~11220.47 ~72201.31
~10533.77 -55877.93
-10084.13 -40368.31
~9742.23 ~33488.62
~9464.48 ~-29385.66
~9229.62 -26587 .45
~9028.20 -24533.58
-8850.98 -22950.03
-8693.36 ~21680.17
-8552.64 ~20638.57
-8425.19 =-19766.45
~8309,.52 ~19023.18
-8203.74 -18381.95
~8106.62 ~17822.12
~8016.75 ~17328.00

RAD/{GN.

0.291
0.322
0.347
0.368
3.386
0.401
D.414
a426
C.437
0,446
De455

0.463

veLT
FT.
C.0009
G.0013
0.0016
0.0018

00,0021

0.0029
0.0031
00,0032
0.0033
0.0035

0.00326

TELT
FT.
0.0009
0.0015
G. 0019
0. 0022
C.0024
0.0027

s

)

O

<

9

t

0.0031

C.G036

C.0038

0.0039

0.0040



WALL TEMPERATURE

FREE STREAM TEMPERATURE = 3000.0 R
REFLECTIVITY OF THE WALL = 0.5

APPARENT DENSITY OF THE PARTICLE

1.3

l.4

144

500.0 R

RAD.HEAT CONJHEAT
BTU/SQ.FT.HR.
-55871.16 -136457.63
-52194.84 -107185.94
~-50003.34 -79340.31
~48472.23 -67540.00
~47333.20 -60793.62
~46458.32 -56415.70
-45770.52 -53364.20
-45229.01 -51147.63
~44796.91 ~49495 .16
-44455,.16 -48241.69
~-44184.38 ~47284.85
=43973.51 -46553.39
-43815.38 -46004.89
~43697.26 -45600.84
-43611.75 ~45306.54

0.10

RAD/CON.

0.409
0.487
0.630
G.718
0.779
0.823
0.858
0.884
0.905
0.922
0.934
0.945
0.952
0.958

0.963

VBLT
FT.
0.0011
0.0015
0.0018
0.0021
0.0024
0.0026
0.0028
0.0030
0.0032
0.0033
0.0035
0.0037
0.0038
0.0040

0.0041

TBLT

FT.

0.0011

0.0016

0.0020

0.0023

0.0025

6.0026

0.0028

0.0029

0.0029

0.0030

0.C031

0.0031

0.0031

0.0032

£.0032
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WALL TEMPERATURE = 500.0 R
FREE STREAM TEMPERATURE = 4000.0 R
REFLECTIVITY OF THE WALL = 0.5

APPAREMT DENSITY OF THE PARTICLE = 0,10

X RADLHEAT CONHEAT RAD/CON. VBLY TBLT

BTU/SQ.FT.HR, FT. T

0.1 ~176094.13 -220884 .69 0.727 0.0012 G.0011
G.2 ~165561.06 ~177639.50 0.932 00016 0.0016
0.3 -160695.81 -137589.,13 1.168 0.0020 C.0019
Cet -158105.81 ~123490.13 1.280 0.0023 G.302C
0e5 ~-156743.50 -116992.00 1.340 0.0026 0.6C21
C.6 -156094.25 ~113905.:D 1.370 g.0028 0.0021
0.7 -155888.12 -112634.25 1.284 ¢.0031 C.0021
0.8 -155928.69 -112391.06 1.387 0.00332 D.0021
0.9 -156099.13 ~112701.5G 1.385 0.0035 0.0021
1.0 -156325.88 ~113289.69 l1.380 0.0037 0.0021
l.1 =156559.31 -113977.69 1.374 0.0C39 0.0021
1.2 -156783.81 ~11466%9 .44 1,267 0.0040 ¢.0021
1.3 -156978.38 ~115309.19 1.3¢61 G.0042 0.0021
le4 =157136.44 _ -115852.25 1.356 0.0044 G.0020

1.5 =157277.36 ~-116316.06 1.352 £.0065  0.0020



WALL TEMPERATURE

FREE STREAM TEMPERATURE = 5000.0 R
REFLECTIVITY OF TYHE WALL = 0.5

APPARENT DENSITY OF THE PARTICLE =

X

146

560.0 R

RAD.HEAT CONGHEAT
BTU/SQ.FT.HR.

~432330.19 =340313.31
~412976.69 -286068.69
~-408074.38 ~238169.63
-407363.25 -229051.38
-407913.81 -228799.31
-408659.19 -230849.38
=409237 .44 ~232978.38
-409648.25 -234592.75
-409917.75 ~-235714.6861
=410137.44 -236527.50
~410267.13 -237111.00
~4103G6.44 -237545.25
~410483.388 ~-2379039.,88
-410531.6% -238137.69
-410610.94 -238352.19

0,10

RAD/CON.,

1.783

1.77C

1.757

VBLT
FTe
0.0012
0.0018
.0022
0.0025
0.0028
0.0031
C.0023
0.0035
0.0037
0.0039
0.0041
0.0042
0.0045
0.0047

0.00648

THBLY

F}'Q

0.0010

$.3014

G.0015%

0.0015

0.0015

0.0C15

20,0015

6.0015

0.0015

0.0015

0.00R15

C.0015

0.601%

0.0015

0. 0015
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APPENDIX E

PROGRAM FOR EQUATION (41)
NON- SCATTERING MEDIA

WALL REFLECTIVITY = 0.5



OO0

NON~-SCATTERING PROGRAM

THIS IS THE BODUNDARY LAYER THICKNESS ITERATION CALCULATICGN

MeN,Q VALUES ARE COMPUTED FROM THE EQUATION FITTED BY

ORNOR CURVE FITTING PROGRAM.

THIS PROGRAM IS FOR WALL REFLECTIVITY = 0.5,

DIMENSION ALPHA(395)C{5)yTKE(3;5),BETA(5),TE(6;10),FX{6}:XM(3,5),
IXN{355) 9 XQU355) ¢ XXM(395) s XXN(3,5}XXQ(3,5),AJ(5),SPCG(3),
ZXQNETR{3}:XXQNTR{3),QNETC(3),QNETR(3),T(5})yD(15),DELT(15),
3XXD(15) yRATIO(15) RAD(15),COND(15),QNETCD(3),ADD(15),ADDA{15)

READ(1,98){CtJ), J=1,5)

98 FORMAT(5E12.6)

97 FORMAT({5F12.5)
READ(1,97)(AJ(J)sd=145)
READ(1,97){SPCG(1),1I=1,3)

99 READ(1,973(T(L},L=1,3}

READ(1,97)RHOA,RHO,DIA,EPS,VEL

READ{(1,97)DSTY,CPy XK,REF

READ(1,98XNu

FCL=7.0

I=0

XD=0C.

888 XD=XD+.1
RE=SQRT{VEL#XD#DSTY/XNU}
DEL=5,%XD/RE
I=1+1
XXD(I1=XD
DE{I)=DEL
887 DO 605 M=1,3

L=0
999 L=L+]

DO 1000 J=145
1000 ALPHA(LJ)=CiJI=DIA=TIL) -

DO 150 J=155

IF{ALPHA(L,J)-5,999}110,110,140
110 TKE{LoJ)=-.05245204507+4.917661615%ALPHA{L J)

1~2.909426676#ALPHAIL  JY*ALPHALL J 1+ 7760694133 #ALPHA{L,J}

811



140
150

160

7
200

201

170

171

31

32

600

601

602

2=ALPHA(LyJ) #*ALPHA(L,J)—0S7762C2625%ALPHA{L,J)#ALPHA(L 4d)
3#ALPHA{LsJ) *ALPHA{L,J)+.004731505485=ALPHA{L,J)=ALPHA(L,J)
4#AL PHALL,J)}#ALPHAILL yJ) =ALPHAL(L 4J)

GO 70 150

TKElLsJ)=2.44

CONTINUE

DO 160 J=1,5
TE(LyJ)=RHOA#SPCGIM)*{457200./DIA/RHO) #*TKE(L4J)

KK=0

KK=KK+1

XM{L,KK)=1.5708

IF{TE{LsKK)}-5,)201,201,170
XN{LyKKI=EXP(.4396745786-1.718898383#TE(LKK)+.2706378292
1#TE(L KK)=TE(LyKK)—~.06571344943#TE{L,KK)®*TE(LKK)#TE(L,KK)
2+.00595999853#TE(L ,KK)*TE(L,KK)=#=TEIL,KK)*TE(L,KK))
XXM{LKK)=1.759999704+1.848052789*«TE(L 4KK)-1.015429689
1#TE{L KK)#TE(L KK)+22434419505%TE(LyKK)=TE(LKK)=2TE(L,KK)
2=:.02066605507T*TE{L yKKI®TE(LJKK)}#*TE(L,KK}*TE(L4KK)

GO 10 171

XN(L,KK)=0.

XXM(LKK)=3.1416

XQULsKK)=XMIL KKI=XN(L 4KK]

XXN(LyKK)=XNI{LsKK)

XXQIL o KKY=XXM(L s KK)=XXN{L KK)

IF(KK=5)7,31,31

IF{L-3)999,32,32

SUMAM=0.,

DO 600 J=1,5 :

SUMAM=SUMAM+AJ(J)=XM(1,J)

SUMAN=0.,

DG 601 J=1,5

SUMAN=SUMAN+AJLJ}#XN{24,J)

SUMAQ=0,

DO 602 J=1,5

SUMAQ=SUMAQ+AJ1J:%XQ(3,J])
XQANETR(M)=1.0E-11#0{T(1)»T(L)=T(1)=C(L)=SUMAM)-(T(2}=T(2)=

671
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01940€°609{LTiXd={€iIXd)dT 809
80940€°0€(Sd3~{€iXd1d41 109
0€*0€e%809({Sd3+icixd41dI 909
£0940€¢909{{€ixd1dI 119
88 01 09
0°2/1{2192dS+(1193dS)=(€192dS
{1)0#7923d={(2)193dS
(130={W)D3dS
1°=124=134 111
TTITCTTT TT19{{2IX3=(TiIXd)d1I
INNILINDOD <09
(WIQDLIND-({W)IHLIND—-(W)DLIND={WIXd 9LL
(T3 130 (T-1)1730={T~-1)17130)/{1-1) Q0= ({1-1)A={T-1)0*x{1-1)0¢
—((W)ODdS={W)DDdS={W)ODdS)/(1)Q0={1)0={1)0=(1)0}=#°082/°¢c~-¢
f{TI-1)1730/7¢1-1)0=(T-110—-(W)9I24S/(1)1A# (1) Q) =xGT "+ {(T-1)Q+(T-T34130-1
(110-(W19DdSI*GLE°)=((Z2)L-=(T) L) *1FAxdI=ALSA%°0009c={W}ILIND
((T-I)1L130+{W)DDdSH/({ZVL-(TI 1) #AX%"€={W)QDLIAND 8LL
9L 01 09
{{ (W)}932dS¢
#{W)92eS=(W)}93dS1/130=130#130%130%°082/°€—-(W)93dS/130=130=G6T1° 1
+({130-(W192dS)%#GLE )= ((2)L=(T) L} =T3A=dI#ALSA="0009€={W}ILINDO
{W)ODAS/AX*#{(Z2)1-(T)1)=Gc*T=(W)AD13ND 611
8LLt6LL'62L(T1-1)d]
(W)YLINOXX+ (W) HLINDX={W)YLIND
((OVANSX= () la(g)ix(C)i®(€)L)—(NVWNSX=(T)i=(TI1I
#{T)L=(T)L)—{WVYWNSX=(Z)1={Z)E#{(211%(2)1))=TT~30° T=(W)YINDOXX
(FEEIOXX=(FIPVHOVHNSX=0VWNSX Z0L
S*I=r 201 0OQ
°*0=DVWNSX
(CETINXX={F)ITVHNVWNSX=NVWNSX T0L
S*1=C 10L 04
*O=NVWNAOSX
(CE2IWXX=(T)TVHHVHNSX=WVYWNSX 00L
S¢1=r 00L 04
“O=HVWNSX
((OVWNS#(g) tx(€) L {€ile(CILT-{(NVWNS=#{Z)1l*(2}11



609 SPCG(2)=SPCGI(3)
FXL2)=FX(3)
SPCGI3)={(SPCG(1}+SPCG(2}))/2.0
GO TO 887
610 SPCG(1)=SPCG{3)
FX{1)=FX(3)
SPCGI3)={SPCGI1)+SPCGI2))/2.0 1
GO TO 887
30 RATIO(I}=XQNETR{3)/QNETCD{3?
RAD(I}=XQNETR(3)
CONDLI)=QNETCD(3)
DELTEI)=SPCG(3)
ADDUI)=RAD(I}+CONDI(I)
ADDA(I}=ADD(I)/3600.
IF{XD-1.4999)889,997,997
889 SPCG({1)=SPCG{(3)
SPCGE2)=7.#D(1)
SPCGI3)={SPCG{1)+5PCG{2}))/2.0
G0 1O 888
997 WRITE(3,613)T{(1),T(2}sRHOA
WRITEE2,613)T{1),T(2),RHOA
613 FORMAT{(1H1,/////712X,14HNON-SCATTERING//
112X 18HWALL TEMPERATURE =9F10.151X1HR,//
212X425HFREE STREAM TEMPERATURE =4F7.1,1X,1HRy//12X,
331HREFLECTIVITY OF THE WALL = 0.5//712Xs
434HAPPARENT DENSITY OF THE PARTICLE =,3F5.2//7/7/7//713X51HX,6X,
58HRAD<HEAT; 5X3; 8HCON.HEAT 35X, 8HRAD/CON. 34X 4HVBLT s5X4HTBLT/
624X 3 13HBTU/ SQoFToHR. 322X 9 3HFT . 6X33HFT . //)
D0 614 I=1515
WRITE(2:615)XXDfI),RAD(I)sCONDI{I)},RATIO(I) D(I),DELTI(I)
614 WRITE(3:615)XXD{1}+RADII),CONDEI)RATIC(I) ¢D(I)SDELT{I)
615 FORMAT(11XyF4e192F13.2¢F12.3,2F%.4/)
WRITE(37,9999)
9999 FORMAT(LH1/////7/12X31HX929Xs15HTOTAL HEAT FLUX///
130Xy13HBTU/SQoFT.HR. 311Xy 14HBTU/SQ.FT.SEC.//)
DO 616 I=1:15

ISt



616
617

998

WRITE(3,617)XXD(I),ADD(I)ADDA(I)
FORMAT(10XyF4.1,F25.15F25.3/)

G0 70 99

STOP

END

ten
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APPENDIX F

PROGRAM FOR EQUATION (41)
EAS MEDIA

WALL REFLECTIVITY = 0.1



OO0

98
97

99

888

887

999

1000

110

THIS IS THE BOUNDARY LAYER THICKNESS ITERATION CALCULATION
MyN,Q VALUES ARE COMPUTED FROM THE EQUATION FITTED BY
ORNOR CURVE FITTING PROGRAM.

THIS PROGRAM IS FOR WALL REFLECTIVITY = 0.1l.

DIMENSION ALPHA(3,5),C(5);TKE(3,5),BETA(5),TE(6,10)+FX{6])+XM(3,5),
IXNI345) s XQU395) o XXM{395) 9 XXN(3,5),XXQ(3,5),AJ(5}),5PCG(3),
2XQNETR(3) s XXQNTR(3) ,ANETC(3) yQNETRI(3)},T(5),D(15) 4DELT(15),
3XXD(15) sRATIO(15) ,RAD(15),COND(15),QNETCDI(3) ,ADD(15),ADDA{15)

READ(1,98)(C(J)y J=1,5)

READ(1,97)(SPCG(I)s1=1,3)

FORMAT{5E12.6)

FORMAT(5F12.5}

READ(1+97)(AJ(J)sJ=1,5)

READ(1,971(SPCG(I)41=1,3)

READ{1,97¥(T{(L)sL=1,3}

READ(1,97}RHOA,RHO,DIA,EPS,VEL

READ(1,97)DSTYCP s XK,REF

READI1,98)XNU

FCL=7,0

I=0

XB=0,

XD=XD+.1

RE=SQRT(VEL=XD*DSTY/XNU)

DEL=5.=XD/RE

I=1+1

XXD{I¥=XD

D(I}=DEL

DO 605 M=1,3

L=0

t=L+1

DG 1000 J=1,5

ALPHALL ,J)=C(J}=DIA=T(L)

DO 150 J=14+5

IF{ALPHA(L,J}~-5,999)110,110,140

TKE(LoJ)==.05245204507+4.917661615=ALPHA(L ,J}
1-2.9094266T6#ALPHA(L ; J)*ALPHA(LJ)+.TT7T60694133=ALPHATL, I}

ST



140
150

160
7

200

201
170

31
32

600

601

2*ALPHA{L J) *ALPHA(L yJ}-0.09776202625*ALPHA(L,J) =ALPHA(L,J)
3%xALPHA(L,J) =ALPHA(LJ)+.004731505485#ALPHA(LJ)=ALPHA{L,J)
4= ALPHA(L,J) #ALPHA(L,J) #ALPHA(L +J)

GO 10 150

TKE(L,J)=2.44

CONTINUE

DO 160 J=1,5
TE(LyJ)=RHOA#SPCG(M)={457200./DIA/RHO) #TKE(L,J)

KK=0

KK=KK+1

IF{TEI(L,KK)}—-2.12005200,201
XMUL,KK)=2,82716292-.8336357822*TE(L,KK)+1.661862051+=
ITE(LyKK)=TE(LsKK)=2.316992595#TE(L KK)#TE(LsKK)#TE(L,KK)
242.143686456#TEIL JKK)=TE(LKK)=TE(L,KK)#TE(L KK}
3-1.271848788#TE{L+KKI®TE{LJKK)®TEIL,KK)=2TE(L,KK)#TE{L,KK)
4+.47302055028 TE(LyKK)#TE(LKK)#TE(LKKI#TE{LKK)=TE(L,KK)
S#TE(L KK)—e1058776539#TE(LKK)=TE(L,KK)#TE(L,KK)=TE{L,KK)
6*TE(LsKK)#TE(L;KK}=TE(L,KK)}+.01296319017*TE{LsKK}=TE(L,KK)
T#TE(LyKK)*TE(L KK)2TE(L KK)*TE(L,KK)#TE{(L,KK)*TE(L,KK)
8-.0006637004158#TE(L+KK)*TE{LsKK)*TE(L KK)=TE(L,KK}#TE(L,KK)
9= TE(LKK)*TE{LyKK)I®#TE(L KK} *#TE(L,KK)

GO 70 170

XM{Ly,KK)=2.5687

XN(LyKK)=EXP192069-1.10612#TE(L;KK))
XQILsKK)=XM{L9sKK)}=XN(LyKK]

XXMILsKK)}=2,8274

XXN{LyKK)=XN(L,KK)

XXQULsKK)I=2,.8274—-XXNIL KK}

IF{KK-5}7:31,31

IF(L-3)999,32,32

SUMAM=0.

DO 600 J=145

SUMAM=SUMAM+AJ{J)*xXM{1,J)

SUMAN=C .

DG 601 J=1,5

SUMAN=SUMAN+AJ(J)#XN(2,J)

GST



SUMAQ=0.
DO 602 J=1,5
602 SUMAQ=SUMAQ+AJ(J)*XQ(3,J)
XQNETR{M)=1.0E-11#((T(1)#T{1)*#T(1)*T(1)=#SUMAM)—(TI(2)*T(2)=
1T(2)=T(2)*SUMAN)-(T{3)=T(3)=#T(3)=T(3)*SUMAQ))
XSUMAM=0.
DO 700 J=1,5
700 XSUMAM=XSUMAM+AJ(J)=2XXM(2,J)
XSUMAN=0,
DO 701 J=1,:5
701 XSUMAN=XSUMAN+AJ(J)=XXN(1,J)
XSUMAQ=0.
DO 702 J=1,5
702 XSUMAQ=XSUMAQ+AJ{(J)#XXQ(3,J)
XXQNTRIM)=1 0E-11=((T{2)=T{2)#T{2)*#T{(2)#XSUMAM)}—-{T(1)=T(1)=
IT(L) =T (1) #XSUMAN)—(T(3)*T{3)*T{(3)%T(3)=XSUMAQ))
QNETR(M)=XQNETR{M)+XXQNTR (M)
IF(1I-1)779,779,778
779 QNETCD(M)=1.5=(T(1)-T(2))=XK/SPCG(M)
QNETC(M)=36000.#DSTY#CP#VEL*#({T(1)-T(2})#(.375%=(SPCG(M)-DEL)+
1.15%DEL=DEL/SPCG{M)-3,/280.#DEL=#DEL®*DEL®#DEL/(SPCG(M)=SPCG(M)=*
2SPCGIM) )}
GO T0 776
778 QNETCD(M) =3, %xXK#(T(1)-T(2})/(SPCG(M)+DELT(I-1))
QNETC(M)=36000,#DSTY*CP2VEL#(T(1)=-T{2))#(.375*(SPCG(M)-DI(I)
1-DELT(I~1)+D(I-1))+.15=#(D(I1)*D(I1}/SPCG(M)}-DII-1)=D(I-1)/DELT(I-1))
2-3./280.5{D(I)=D(I)=D(I)*D{I)/(SPCGIM)*SPCGI(M)=SPCGIM))-
3DUI-1)#D(I-1)*D(I-1)*D{I-1)/(DELT(I-1)=DELT{I-1)#DELT(1I~-1))))
776 FX{MI=QNETC{M)-QNETR{M)-QNETCD (M)
605 CONTINUE
IFIFX(1)#FX(2))611,111,111
111 FCL=FCL~.1
SPCGIM)=D(I}
SPCG(2)=FCL#D(1I)
SPCGE3)={SPCG(1}+SPCGE2))7/2.0
G0 TO 887

9ST



611
606
607
608
609

610

30

889

997

613 FORMAT{1lHl,//////712X,18HWALL TEMPERATURE

615 FORMAT{11X,F4.1432F13.25F12.3,2F9.4/)

IF(FX(3))606,30,607
IF(FX(3)+EPS)608,30,30
IF{FX{3)-EPS)30,30,608
IF{IFX(3)#FX{1))609,30,610
SPCGI12)=5SPCGI(3)

FX(2)=FX(3)
SPCG(3)=(SPCG(1)+SPCG(2))/2.0
GO0 TO 887

SPCG(1)=SPCG(3)

FX{1)=FX(3)
SPCGI3)=(SPCG(1)+SPCG(2))/2.0
GO TO 887
RATIO(I)}=XQNETR{3)/QNETCD(3)
RAD(I)=XQNETR({3}
COND(I)=QNETCDI(3)
DELT(I)=SPCG(3)
ADD(I)=RAD(I)+COND(I)
ADDA(I)=ADD(I)/3600.
IF(XD-1.4999)889,997,997
SPCG(1)=SPCG(3)
SPCG(2)=7.%#D(1I)
SPCG{3)=(SPCG(1D+SPCGU2)D/2C0O
GO0 TO 888
WRITE(3,613)T{1),T(2),RHOA
WRITE(2:,613)T(1),T(2),RHOA

=1F10-171X71HR,//

112X925HFREE STREAM TEMPERATURE =4yF7.131X,1HR;//12X,

231HREFLECTIVITY OF THE WALL =

0.1//712X,

334HAPPARENT DENSITY OF THE PARTICLE =4F5.2////7/713X31HX,6X,
48HRAD.HEATy 5Xy 8HCON.HEAT ;55X BHRAD/CON. 54X 4HVBLT ;5X,4HTBLT/

524X 313HBTU/SQoFToHR. 922Xy 3HFTo6Xy3HFT//)

DO 614 I=1,15

WRITE{2,615)XXD(1)sRAD(I},COND{I}sRATIOI(I)},D(I),DELTII)
614 WRITE(3,615)}XXD(I),RAD{I),COND(I),RATIO(I),D(I),DELTI(I)

WRITEL3,9999)

LST



9999 FORMAT{1H1,///7/7/7/12Xy1HX329Xs 15HTOTAL HEAT FLUX///
130X313HBTU/SQ.FT.HR.y11Xy14HBTU/SQ.FT.SEC.//)
DO 616 I=1,15
616 WRITE(3,617)}XXD(1),ADD{(I),ADDA(I)
617 FORMAT(10X,F4.1,F25.1,F25.3/)
GO TO 99
998 ST0P
END

89T
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APPENDIX G

PROGRAM FOR EQUATION (41).
NON- SCATTERING MEDIA

WALL REFLECTIVITY = 0.1



OO0

NON-SCATTERING PROGRAM
THIS IS THE BOUNDARY LAYER THICKNESS ITERATION CALCULATION
MsN,Q VALUES ARE COMPUTED FROM THE EQUATION FITTED BY
ORNOR CURVE FITTING PROGRAM.

THIS PROGRAM IS FOR WALL REFLECTIVITY = 0.1l.

DIMENSION ALPHA(3,5)3C(5),TKE(3,5),BETA(5),TE(6,10),FX{6):XM(3,5),
1XN(355) 9XQ1395) s XXMI3,5) s XXN{3,5)4XXQ(3,5),AJ(5),SPCG(3),
2XQNETR(3)yXXQNTR(3),QNETC(3) ,QNETR(3),T(5),D(15),DELT{15),
3XXD(15) yRATIOD(15),RAD(15),COND(15) yQNETCD{3),ADD(15),ADDA(15)

READ(1,98)(C(J), J=1,5)

98 FORMAT({5E12.6)

97 FORMAT(5F12.5)
READ(15971(AJ(J)9J=1,5)
READ(1,97)(SPCG{I1),I=1,3)

99 READI{1,97)(TI(L),L=1,3)

READ{1,97)RHOA,RHO,DIA,EPS,VEL

READ(1,97)DSTY,CP,XK,REF

READ(1,98)XNU

FCL=7.0

I1=0

XD=0.

888 XD=XD+.1

RE=SQRT(VEL#XD*DSTY/XNU)

DEL=5.%XD/RE

I=1+1

XXD(I)=XD

D{I)=DEL

887 DO 605 M=1,3
L=0

999 L=L+1
DO 1000 J=1,5

1000 ALPHA(LsJ)}=ClJ)=#DIA=T(L)
DO 150 J=1,5
IF(ALPHA(L,J)~-5.999)110,110,140

110 TKE(L¢J)1==.05245204507+4.917661615%ALPHA(L:J)
1-2.909426676%ALPHA(L s J) *ALPHA{L,J)+.7760694133%ALPHA(L,J)

091



2% ALPHA(L yJ ) #*ALPHA(L yJ)—.09776202625#ALPHA{L,J)*ALPHA(L,J)
3#ALPHA(L,J) #ALPHA{L,J)+,004731505485*ALPHA(LyJ)®#ALPHA(L,J)
4xALPHAILyJ)#ALPHA(LJ)*ALPHA(L 4 J)
GO TO0 150
140 TKE(LsJ)=2.44
150 CONTINUE
DO 160 J=1,5
160 TE(L3;J)=RHOA#SPCG(M)=(457200./DIA/RHO)#TKE(L,J)
KK=0
7 KK=KK+1
200 XM{L,KK)=2.8274
IF{TE(L,KK)-5.1)201,201,170
201 XNI{L,KK)=EXP{1,024575454-1,66591357+TE{LKK)+.1915077488
I#TE(L KK)#TE(L KK)—203431782127*TE(L KK} *TE(LyKK)=TE(L yKK)
2+.00241589551#TE(L yKK)*TE(LKK)*#TE(LKK)#TE(L,KK)})
XXM(LoKK)=2.849825486+.708873456=#TE(L yKK}—4a5793956635=*TE{L,KK}*
ITE(L KK} +.178309771%TE(LKK)#TE{L,KK}*#TE(L,KK)=-.0176050074=
2TELL KK} #TELL gKKY*TE(LKK)=TE(L,KK)
GO T0 171
170 XN(L;KK}=0.
XXM{LyKK)}=3,1416
171 XQULKK)}=XM{LsKK)-=XN({L KK}
XXN{LsKK)=XN{L,KK)
XXQ(LsKK)I=XXM{L KK}=XXN{L KK}
- IF{KK=5)7531,31
31 IF(L=-3)999,32,32
32 SUMAM=0.
DO 600 J=1,5
600 SUMAM=SUMAM+AJ{J}=#XM{1,J}
SUMAN=0.
DO 601 J=1,+5
601 SUMAN=SUMAN+AJ{J)*XN{2,J)
SUMAQ=0.,
DO 602 J=1,5
602 SUMAQ=SUMAQ+AJ(Ji1=XQ(3,J)
XQNETR(M)=1.0E-11#((T(1)*T(1)#T{1j#T(1)*SUMAMK)-{T(2)%T(2)*

191



019°¢0c*609({T)Xd={ciXd)dT 809
809°0€¢0€{Sd3I-{eIX3IdI 109
0€E°0€°809(Sd3+{€IXd}d1 909
L0940€%909{(€iXdidl 119
.88 0iL 09
0°2/{(2192dS+{T1133dSi={(€193dS
{1)3=134=(21932dS
{130=(W)33dS
T°~-T124=124 111
TITTTTCTTIQ((ZIXd={T)IXd)d]
IONILINOD G609
(W)ADL3IND-(W)IBLINO~- (W) DLINO={WIXd FLL
CCOOT-T)1130={T-1) 1130 (T-11113Q) Z(T-1) QA= (T1-1)10=(T-1}0=(T1-1)0¢
~{{(W13DdS=(W)IIdS=(W)IDdS) /(1) A= (1)10=(T110=(1)QAi*°082/°¢€~<
((T-I11713a/(T-11Q0#(T-I1103-{W392dS/{1)Q=(1)Q1*GT "+ {{T-T)A+{T-13i1130-1
(I13-(W)9D2dS)*GLle°)={(2)1—-(T)1)*13A=dI=A1SA*°0009€={W}IDLIND
((T-I)130+(W)I9DdSH/ L2V L=(T) L)X €=(W)QDL3ND 8LL
9.2 01 09
{{{W)9O2dS<
#=(W}9IdS=(W}93dS)/130=T130#130=T130=°082/°€—(HW)93dS/130A=130=sT° 1
+{133-(W)90dS)#52e°)=({2)1—{T) L) =TIA=dI=ALSA=#°0009c=(W}DLIND
(W)O2dS/AX=((2)1-(T)L)»s°T=(WIA3L3ND 611
8ll%6L2%6L22(T1-1)4d1
(W)YLINDXX+ (W) HLIINOX=(W)IYLIND
((OVWNSX=(€llel{e)l=(E)lx(ETL)—{NVWASX#{TIL={T]11
#(T1E= (T} L) —{WYRNSX={Z11#{2)L=(2)1=({2)1))»TT-30°T=({W)IUINDXX
(Free)BXX= (L )IPV+OVWNSX=BVWNSX 2Z0L
s¢1=r 20L 0@
c0=0VWNSX
(CETINXX=(FICVENVHWASX=NVYWNSX 10L
s*1=r 10L OQG
*0=NYWNSX
(PEZINXX* (L)L VHHVHNSX=WYWNSX OO0L
s‘1I=r 00L 0OC
*O=HVYWASX
((OVWNS*(c)i*x(€ll=(€)i={CIL)~{NVWNS=(Z)1=(2Z)1T

162



609 SPCG(2)=SPLG(3)
FX(2)=FX(3)
SPCG(3)={SPCG(1)+SPCGI2)})/2.0
GO TO 887
610 SPCG{1)=SPCGI(3)
FX{1)=FX{3)
SPCG(3)=(SPCG(1)+SPCG(2)1/2.0
GO TO 887
30 RATIO(TI)=XQNETR(3)/QNETCD(3)
RAD(I¥=XQNETR(3)
COND{I1)=QNETCD(3)
CELT(I)=SPCG(3)
ADD(I}=RAD{I}+CONDI(I)
ADDA(I)}=ADD{I1)/3600.
IF{XD-1.499918894997,997
889 SPCGI{1})=SPCG(3)
SPCG(2)=T7.%D(1I)
SPCG(3)={SPCG(L)+SPCG{2))/2.0
G0 TO 888
997 WRITE{3,6131T(1),T(2),RHOA
WRITE(2,613)T{1},T(2),4RHOA
613 FORMATI(1HL,///777/12X514HNON-SCATTERING//
112X, 18HWALL TEMPERATURE =3F10.151X,1HR//
212X 25HFREE STREAM TEMPERATURE =,F7.141X,1HR;//12X,
331HREFLECTIVITY OF THE WALL = 0.1//12X,
434HAPPARENT DENSITY OF THE PARTICLE =,F5.2//////13X,1HX,6Xy
S58HRAD-HEAT 35Xy BHCONHEAT 35Xy BHRAD/CONG 94X 9 4HVBLT 95X 4HTBLT/
624X 313HBTU/SQFTHR. 922Xy 3HFT . 6Xy3HFT.//)
DO 614 I=1,15
WRITEE2,615)XXD{1),RAD(I),COND{(I),RATIO(I},D(I),DELT(I)
614 WRITE(3,615¥XXD(I1},RAD(I1),COND(I),RATIC{I},D{I)},DELT(I}
615 FORMAT(11X,F4:152F13.2,F12.3,2F9.4/}
WRITE£3,9999])
9999 FORMAT{YH1+//7///712X31HX29X,15HTOTAL HEAT FLUX///
130X313HBTU/SQ.FT-HR.311Xs14HBTYU/SQ.FT.SEC.//)
DO 616 I=1,15

¢oT



616
617

998

WRITE(3:617)XXD1I),ADD(I}),ADDA(T)
FORMAT{10XsF4.15F25.14F25.3/)

GO TO 99

STOP

END

v9T1
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APPENDIX H

PROGRAM FOR THE EQUATION (46)



99
98
97

1011

1000

888

887

T79

THIS IS THE THERMAL BOUNDARY LAYER THICKNESS
ITERATION CALCULATION
DIMENSION T{5),SPCGI3),QNETC{3},QNETCD(3}¢XXD{15},

1DE1S) «DELT(15} FX(3),COND{15)},RATIO(1S5}

READ{1,98}{T(LisL=1,2)
READ{1998){SPCGEI)yI=193)oEPSyVELDSTYCP XK
FORMATE3F20.4)

READ{1,97})XNU

FORMATI(E12,6}

WRITE{3,1011:}

FORMATILLIH1//Z7/7/77F)

FCL=T7,0

PR=3600,%#XNU=CP /XK
WRITE(3,1000iPR;DSTYCP o XKyXNU
FORMAT(6X o 16HPRANDTL NUMBER =9F10:37/6X,9HDENSITY =,F15.4//

16X¢10HSP. HEAT =¢F15.4//6X914HCONDUCTIVITY =4F15.4//
26X911HVISCOSITY =,E15.6}

I=0

XD=0,

XD=XD+.1

REY=VEL#XD#DSTY/XNU

RE=SQRT(REY}

DEL=5.#XD/RE

I=1+¢1

XXDE{I}=XD

DEI}=DEL

DO 605 M=1,3

IF(I-1}7799779:778
QONETCDE{MI=1o58(TELI-TL2) i*XK/SPCG(M}
QNETC{MI=36000.#DSTY#LP=VEL=2{T(1}-T(2}}#{.375%(SPCGI{MI-DEL})+

1.15#DEL*DEL/SPCG(Mi~=3./280.#DEL=DEL*DEL*DEL/ (SPCGE{M}=*SPCG{MI=
2SPCGiMY L

GO TO 776

778 QNETCD(MI=3.#XK#{T{L1}-T(2})}/{SPCGEMIEDELTLI~1}1}

QNETCIM}=36000.#DSTY*CP*VEL#{T{1}-T(2)}*#(.375«(SPCG{Mi=D{I}

991



1-DELTII-1)+D(I-1))+.15#{D{(I)#D{(I)/SPCGI(M)-D(I-1)»D{I-1)/DELT{I-1))
2-3./7280#(D{I)=D(1)=D{I)=#D(I)/(SPCG(M)=SPCG(M)*SPCG(M))~
3D(I-1)*D{I-1)=D{I-1)#D{I-1)/7(DELT{I-1)*DELT(I-1)=DELT(I-13)))
776 FX(M)=QNETC(M)-QNETCD(M)
605 CONTINUE
IF{FX{1)=FX(2))611,111,111
111 FCL=FCL~,1
SPCG(1)=DELT(I-1)
SPCG{2)=FCL=D(1I)
SPCG{3)=(SPCG(1)+SPCGI(2)}/2.0
G0 TO 887
611 IF{FX(3)})6069y305,607
606 IF{FX(3)+EPS5)608,30530
607 IF{(FX(3)-EPS)30,30,608
608 IF(FX(3)=#FX{(1)16095,30,610
609 SPCG(2)=SPCG(3)
FX{2)=FX(3)
SPCG(3)=(SPCG{1}+SPCG(2)1/2.0
GO TO 887
610 SPCG(1)=SPCG(3)
FX{1)=FX(3)
SPCG(3)=(SPCG(1)+SPCG(2))/2.0
GO 70 887
30 DELTI{I)=SPCG(3)
COND(I)=QNETCD{3)
RATIO(I)=DELT(I)/D{I}
IF{XD-1.4999)889,997,997
889 SPLGI1)=SPCGI(3)
SPCG(2)1=7.»D(1)
SPCG(3)=(SPCG{1)+SPCG{2))/2.0
G0 7O 888
997 WRITE(3:613)PRsT(1),T(2)
WRITE(2:,613)PR;T(1),T(2)
613 FORMAT(1H1,:///7//76Xs 16HPRANDTL NUMBER =,F10.3//
16X, 18HWALL TEMPERATURE =,F10.191Xs1HR// '

L91



26X925HFREE STREAM TEMPERATURE =9,F10.1,1X91lHR//
3///710X1HX511X o 8HHT . TRANS, 10X 4HVBLT ;4 X 4HTBLT 43X,
45HRATIO/ /21X 13HBTU/SQoFToHRo s 10X93HFT o 95X93HFT.///)
DO 614 I=1515
WRITE€2,615XXDE{I¥,COND{I) D{I}oDELT(I} RATICLI)

614 WRITE(3,615)XXD{I}COND(I} D{I}:DELTI(I},RATIO(I)

615 FORMAT({7X F4.196XsF13.2,6X,3F8.4/1}
GO0 710 99

998 STOP
END

891
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APPENDIX I

PROGRAM FCOR PARAMETERS M, N, AND Q FOR NON SCATTERING MEDIUM



THE My, N AND Q CALCULATION FDOR ZERO SCATTERING CASE.
THIS PROGRAM WAS RUN ON OSAGE COMPUTER.
DIMENSION W({3)sUL3)sTE{LL) XM(11)sXN(11)sXQ(11),
IXXMO1L1) o XXN(LLY o XXQU11) XL {LY),DEN(LL)
READ 15 (W(J)s J=1,3)
READ l, (U(J)v J=193)
READ 1, {TE(KK}, KK=1,10)
1 FORMAT(5F12.6}
99 READ 2, FL1l1, FLZ2
2 FORMAT(2F5.2}
DO 97 KK=1,10
XL{KK)=0.0
DO 98 J=1,3
98 XL{IKKI=XLI{KKI+W{J)#ULJ)#EXPF{-TE(KK}/U({J))
XLIKKI=2.#XLIKK)
DEN(KK)=1o—FL1I#FL2#XL (KK}#XL (KK)
XMEKK 3 =3.1416%{1o~FLL1)#{1,~FL2#XL{KK}=XL{KK})/DEN{KK)
AN(KK1I=3:1416#XLIKK)#(1l.—-FL2)#{1.~FL1)/DEN({KK}
XQUIKK )I=XMEKK}=-XN{KK)
XXMIKK}=3.1416%€1.—FL2)#(1.—FL1#XL{KKi#XL{KK)}1/DEN(KK)
AXNEKKY=XN{KK]
97 XXQIKKI=XAMIKK)I-XXNIKK)
AM{11}=3,1416%{1.~FL1)
AN{11i=0.
XQ{11;=XMill)
XXM{11)=3.1416+#(1.-FL2)
XXN{1l1}=0o,
XXQ{1L)Y=XXM(1ll)
PRINT 965 FL1y FLZ2
96 FORMAT(1H1,//////6X5915HIERD SCATTERINT//6X,
124HREFLECTANCE OF WALL 1 =,F4.1//6X,
224HREFLECTANCE OF WALL 2 =43F4.1///7)
PRINT 95
95 FORMAT(6X,THOPTICAL/6X s THSPACING 314Xy 1HM; 18X 1HN19X31HQ/ /)
DA 94 KK=1,11 '
94 PRINT 93, TE{KK) XMIKK} s XN{KK) s XQ{KK)

01



93 FORMAT(6XsF4.1+3F20.4/)
PRINT 98, FLZ2, FL1
PRINT 95
D0 91 KK=1,11
91 PRINT 93, TE{KKJ)} XXMIKK}y, XXN(KK}XXQ{KK]}
GO 10 99
STOP
END



