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ABSTRACT

The project was initiated in 1962 at the University 
of Oklahoma to measure compressibility factors of gases very 
accurately at high pressure and low temperature. The Burnett 
method was chosen for the experimental apparatus. The equip
ment as previously assembled was operable to 700 atmospheres 
and between +50° and -90°C.

Major modification of the temperature bath extended 
the range of applicability to -190°C and 700 atmospheres. The 
temperature control was ±0.005°C across the Burnett apparatus 
in the new configuration. A technique was also developed for 
employing valves completely immersed in the cryostat.

An extensive study of polynomial approximations for 
infinite series yielded a scheme for assigning realistic var
iances to the polynomial coefficients as compared with the 
series coefficients. This allows choice of optimal virial 
coefficients from the experimental compressibility data.

Finally, an optimal search routine was developed to 
reduce the Burnett data to the compressibility factors. This 
was essentially a problem in non-linear curve fitting. The 
results were very gratifying and seem to indicate that more 
accurate information could be expected from the data in this 
fashion than was possible with earlier techniques.
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COMPRESSIBILITY FACTORS AND VIRIAL COEFFICIENTS 
FOR THE HELIUM-NITROGEN SYSTEM BETWEEN 

-160° AND -190°C UP TO 700 ATM

CHAPTER I 

INTRODUCTION

An apparatus based upon the method described by 
Burnett [4] has been used to study the volumetric behavior 
of the Helium-Nitrogen system at low temperatures and high 
pressures. A new procedure has been developed to reduce the 
data to compressibility factors, and a least-squares analysis 
is offered which enables choice of the optimal virial coeffi
cients from the experimental data. The isotherms studied 
were -160° and -170°C for compositions of 100.00, 87.77,
75.29, 44.56, 30.13 and 0.00 percent helium balance nitrogen, 
and -190°C for compositions of 100.00, 87.77 and 75.29 per
cent helium. Compressibility factors are presented as a func
tion of pressure under the experimental conditions, and the 
virial coefficients are reported for each mixture at all ex
perimental temperatures.

The compositions were chosen to be those reported by 
Canfield [6]. Actually the mixtures were within 0.09 mole
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percent of these compositions. These mixtures were chosen 
to facilitate calculation of thermodynamic properties using 
both sets of data.

The Burnett method is an experimental technique for 
determining the compressibility factors of gases without 
measuring the volume or mass of the sample under study. The 
apparatus is essentially two thermostated cells of unspeci
fied volume connected by a valve. Initially one cell is 
filled with gas to some given pressure and the other cell 
is evacuated. When equilibrium is reached the pressure and 
temperature are recorded and the connecting valve is opened. 
After equilibration, the pressure and temperature are again 
recorded; the connecting valve is closed, and the second 
cell is reevacuated. This procedure is repeated until the 
pressure has reached a predetermined minimum, and the se
quence of pressures constitutes a run. Usually the process 
is repeated, with a different starting pressure, a sufficient 
number of times to establish the isotherm adequately. While 
it is not necessary to maintain a constant temperature during 
a run, it was done in this study to allow a theoretical anal
ysis of the data.

The apparatus was constructed to conform with the 
following analysis. Initially the equation of state is 
given by

^0<’a>0 = (1)
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and becomes, after the first expansion.

where and Vĵ  are the volumes of the two cells, the sub
scripts refer to the number of expansions associated with 
the subscripted quantity, Z = PV/nRT is the compressibility 
factor, n is the number of moles contained in the volume 
under consideration, R is the gas constant and T is the tem
perature. When the connecting valve is closed and is 
evacuated, the equation becomes

Pl(v^)l = Z^niRT (3)

Evidently, before the expansion the relationship is

Pj-l(Va)i-l = % i - i n i - l * T  (4)

and after the expansion becomes

(Va + V^). = Z.n._^RT (5)

Dividing Equation 5 by Equation 4 gives

Pi (Va + Vb)i _ V i  _ (6)

where the volume ratio is denoted as and is referred to 
as the cell constant for the expansion. Substitution
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of subsequent values for j into this equation and multipli
cation reveal that

P. (NN . ..N.) Z._J— LJi 1 = (7)

The Nj are related to N^, the zero pressure cell con
stant, taking into account the Burnett cell dimensions and 
properties and the behavior of the differential pressure cells

2k- + k«P. + k_P. + ...
N = N„ -1 i J  --------  (8)

where the k^ and m^ are constants related to the pressure 
deformation of the cells (see Appendix A) . Thus if and 
the ratio Zq/Pq , the run constant, can be found, the com
pressibility factor is given by

Z. = P. ^  n  I (9)
^ ^ P q  i = l  +  "*2^ i - l  ^ 3 ^ i - l

and neither the volume nor the mass of the gas need have 
been measured.

Classically these constants were found by graphical 
extrapolation. Examination of Equations 6 and 7 reveals 
that in the limit as pressure approaches zero and the com
pressibility factor approaches unity



p-i 1N„ = lim (10)
P-*0 P.

Pn■^ = lim P. (N.N_...N.) (11)0 p-*o J J

Therefore, a plot of Pj_^/Pj vs. Pj should extrapolate to
Ng, and a plot of P . (N^N_.. .N.) vs. P. should extrapolate to] 1 6 ] ]
Pq/Zq . This extrapolation is usually performed by curve 
fitting and does produce reasonably accurate values for the 
constants. For example, from carefully taken data N„ can 
usually be found within 1 part in 10000. If sufficiently 
accurate and abundant low pressure data were available, this 
method would give the proper values for the constants. Un
fortunately, data meeting these requirements are very dif
ficult to obtain.

A method is proposed in Chapter V for refining the 
estimated constants, in a least-squares sense, by estab
lishing the minimum on a multidimensional response surface. 
The optimal virial coefficients are automatically recovered 
in this procedure by applying the least-squares analysis 
developed in Chapter IV. Interaction second and third virial 
coefficients are also calculated.



CHAPTER II

REVIEW OF PREVIOUS WORK

The Burnett method has been established recently as 
an acceptable and desirable means for measuring the com
pressibility factors of gases and gaseous mixtures. Concise 
reviews of work on this type of apparatus through 1965 have 
been presented by Mueller [23], Canfield [6] and Hoover [13]. 
Because of these compilations and because the method is 
accepted now, no specific review will be made for work on 
this type of apparatus. Furthermore, Canfield has presented 
a sufficiently complete review for work on helium, nitrogen 
and He-Ng mixtures through 1962. This review is concentrated 
solely on the period 1962-present to avoid needless repetition.

P-V-T Behavior of Helium 
Although the literature abounds with compressibility 

data (and, to a large degree, for that reason) for helium, 
work since 1962 has been relatively scarce. In fact, the 
majority of recent helium data has been taken in connection 
with a study of the helium-nitrogen system and is discussed 
below in that section.
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Cook [9] has edited a book which offers a compre

hensive review of the volumetric (and other) properties of 
helium. This work covers the period starting with the work 
by Ohnes through 1960.

Miller et al. [22] at the U. S. Bureau of Mines used 
the Burnett method to determine the compressibility factors 
of He. This work ranges up to 4000 psia between -10° and 
130°F.

Various authors have noted that a large gap exists 
in helium data below 0°C and above 200 atm. Canfield has 
filled this gap substantially down to -140°C.

P-V-T Behavior of Nitrogen
Most of the recent reports on the volumetric prop

erties of nitrogen have appeared in tabulations of thermo
dynamic properties by U. S. Government agencies. Little 
and Neel [19] in the Department of Commerce have tabulated 
the compressibility factor up to 10000 atm. between 100° 
and 1500°K. Hilsenrath and Klein [l2] also at the Department 
of Commerce have extended this tabulation to include the 
range 2000° to 15000°K. Sewell [26] at the National Aero
nautics and Space Administration presents compressibility 
factors and second virial coefficients between 2000° and 
100,000°K over a wide density range. Finally, Strobridge 
[28] at the National Bureau of Standards has tabulated thermo
dynamic properties, including the compressibility, up to 3000 
psia between 114° and 540°R.
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Meanwhile, Duclaux [lO] has offered a distribution 

function approach for representing the compressibility up 
to 800°C and 400 atm. He then used the theory of progressive 
condensation to interpret the influence of temperature.

P-V-T Behavior of Helium-Nitrogen Mixtures
The most extensive study of this system is given by 

Canfield et al. [?]. Compressibility factors and virial co
efficients are presented for helium, nitrogen and six mixtures 
between 0° and -140°C up to 500 atm.

At almost the same time, Witonsky and Miller [30] 
presented compressibilities and virial coefficients for he
lium, nitrogen, and seven mixtures between 175° and 475°C 
up to 100 atm.

Miller et al. at the U. S. Bureau of Mines presented 
compressibilities for helium, nitrogen and sixteen mixtures 
at 70°P up to 4000 psia in addition to their above mentioned 
helium data.

All three of the above investigations were made on 
Burnett-type apparati. However, the range below -140°C 
above 100 atm. was left untouched.

Finally, Kielich [18] has calculated B^^ by account
ing for the tensorial forces acting on nondipolar molecules 
having a quadrupole or octapole moment. He calculates second 
virial coefficients for the helium-nitrogen system.



CHAPTER III

EXPERIMENTAL APPARATUS

The equipment used in this study as initially de
signed and constructed was operable between 50°C and -90°C 
up to 700 atm. Below -90°C excessive temperature gradients 
were encountered across the Burnett cells which introduced 
an intolerable uncertainty in measuring the absolute tem
perature. A major modification of the refrigeration system 
within the cryostat alleviated this condition and produced 
gradients of only a few thousandths of a degree. Because 
much of the apparatus has been described in detail by 
Blancett [2], only brief mention will be made of any un
modified equipment, and the reader is referred to the above 
work for additional information.

Cryostat
Figure 1 illustrates the essential features of the 

cryostat. Nitrogen in surging, two-phase flow enters the 
phase separator through a vacuum-insulated transfer line.
A controlled liquid level is maintained within the separator 
to insure a constant refrigerating effect within the cryostat. 
The liquid leaves the separator through a metering valve

9
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and flows to the vaporizer bundle within a 1/2 in. thin- 
walled, stainless steel tube and delivers its sensible and 
latent heat to cool the bath. The metering valve is ad
justed to allow a slight excess of refrigerant to enter the 
bundle which is offset by the control heater. A fan blows 
the vapor through the equipment space which contains the 
temperature-controller sensor. A combination radiation- 
shield and vapor-baffle establishes the indicated flow pat
terns .

The vaporizer bundle was designed based upon a 3°C
approach to the boiling point of liquid nitrogen and re-

2quired approximately 10 ft of surface area. In addition, 
the dimensions were restricted to 5-1/2 in. diameter by 2 
in. thick with sufficient capacity for holding a level of 
liquid nitrogen. This immediately suggested a home-made, 
finned surface.

The bundle was constructed about a piece of 1-5/8 
in. I.D. copper water pipe fitted at one end with a 1/4 in. 
thick copper plug into which a 1/2 in. I.D. piece of water 
pipe had been soldered. The pieces of pipe were 2 in. long 
in keeping with the imposed dimensional restrictions. Brass 
spacer bars 2 in. long, 3/8 in. wide and 3/32 in. thick were 
then soldered in an eight point star to the outside wall of 
the outer water pipe. Two strips of 0.0125 in. thick by 2 
in. wide pieces of copper strip were wrapped around the cen
tral structure adding more spacers each revolution until the
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diameter of the bundle reached 5-1/2 in. One of the copper 
strips was corrugated to provide additional area. Prior to 
assembly the materials had all been coated with a thin layer 
of 50% Pb - 50% Sn solder and at this point were sweated to
gether in an oven. Troughs, sloping toward the center, were 
then milled through the spacer bars into the central well. 
The slope would insure radial distribution of any liquid 
nitrogen build-up in the bundle. Liquid leaks were elimi
nated by coating the entire internal surface with low- 
melting indium solder. Figure 2 is an overall photograph 
of the bundle and Figure 3 presents a close-up view of one 
finned section. The irregular outside geometry of the final 
product was an accident of construction arising from the
soldering operation. The effective surface area finally

2obtained was very nearly 10 ft and idealized calculations 
indicated that the temperature on the fins was always at 
least 90% of the temperature at the wall.

The control heater was constructed by stringing 25 
gage, coiled Nichrome wire within a 5 in. diameter phenolic 
frame. The wiring was installed in two sections to be used 
in either series or parallel connection. In series the 
wattage is variable between 10 and 170 watts by means of an 
external resistor. The series connection is used for con
trol heat and is activated by a Hallikainen Model 1053A 
Thermotrol with proportional-plus-reset control. The con
troller sensor is a Rosemont Model 104N48AAC. The parallel
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connection is used for quick heat and generates 675 watts.
To protect the bundle, the wiring was done in such a manner 
that the fan must be ON when the heater is operating.

The fan blade is 4 in. in diameter and has 10 vanes. 
It is driven by a 1750 rpm motor mounted on top of the cryo
stat and delivers approximately 120 cfm. The shaft enters 
the cryostat through a Materials Research Corp. V4-100 rota
ting vacuum seal and is held true at low temperatures by a 
Barden Bar-Temp bearing.

A styrofoam plug surrounds the vaporizer, heater and 
fan. This plug serves the twofold purpose of reducing back- 
mixing of the refrigerant vapor and supporting the radiation 
shield-vapor baffle. The plug is essential to close control 
of the gradients within the cryostat. Whereas the normal 
gradient was approximately 0.005°C, degeneration of the 
styrofoam caused an increase to about 0.025°C.

With the Burnett equipment in place, as shown in 
Figure 4, the nitrogen usage at steady state varies roughly 
between 1/5 liter/hr. at 0°C and 3 liters/hr. at -190°C.
The minimum gradient observed across the Burnett cells was 
0.000°C with careful adjustment of the equipment and was 
often less than 0.005°C. Several runs were made with gra
dients of about 0.025°C because the styrofoam plug had 
degenerated enough to disturb the flow patterns of the ni
trogen vapor. This degeneration was actually melting caused 
by use of the quick heater.
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FIGURE 4. BURNETT APPARATUS AND CRYOSTAT
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Burnett Cells and Magnetic Pump 
The physical characteristics of these items have been 

thoroughly discussed by Blancett and by Canfield, Watson and 
Blancett [s]. Minor modifications were effected, however, 
and will be noted here.

The Burnett cells are jacketed to allow equal pres
sure to be applied on both the inside and outside. The cells 
and jacket are shown in rough detail in Figure 5. A ther
mometer well was provided in the outer section of each cell 
which would receive a Leeds and Northrup No. 8164 capsule 
platinum-resistance thermometer. In earlier work only one 
thermometer was available and a difference thermocouple, 
one junction embedded in each cell, was used in conjunction 
with the one available thermometer to indicate the approach 
of temperature equilibrium. For this work, an additional 
thermometer was used, and because the thermocouple was thereby 
rendered unnecessary, it was removed. Other than this the 
cells remain unchanged from the earlier work.

A magnetic pump is located in the line connecting 
the two Burnett cells. The purpose of this item is to speed 
equilibration by forced mixing of the gas from each chamber. 
The pump was especially useful when the more dense mixtures 
were being studied.

One difficulty associated with the magnetic pump is 
ascertaining whether or not it is operating properly. In 
their article, Canfield, Watson and Blancett suggest sensing



18

■HERMOMETER

PRESSURE
JACKET

PRESSURE
ANNULUS

THERMOMETE s c a l e : .nches

FIGURE 5. HIGH PRESSURE BURNETT CELL



19
the movement of a check ball which is pulsed by the surging 
gas. Their solution was to run an electrical lead to the 
check-ball seat which would deliver a signal whenever con
tacted by the ball. An intermittent signal would indicate 
proper operation. The lead was run into the pump through a 
magnesium oxide packed tube sealed at each end with epoxy 
resin. Unfortunately, when subjected to extreme temperature 
changes, the epoxy apparently loosened and allowed gas to 
leak out through the tube. Because this problem had been en
countered before, it seemed advisable to seek a new procedure 
for detecting the operating condition of the pump.

This turned out to be a simple task. The pump pro
duces audibly different sounds when operating properly or 
not, and they can be heard when an industrial stethoscope is 
touched to certain external parts of the cryostat. This may 
be checked with the pressure measuring instruments and will 
be mentioned in that section.

When this alternative proved satisfactory, the packed 
tube was discarded and the pump sealed. One other problem was 
noticed— the pump could not be left ON for too long a time or 
it would hinder rather than speed equilibration at low pres
sures. This was caused by too much energy dissipation which 
in turn caused the temperature to reach a higher equilibrium 
value than was desired.

Temperature and Pressure Measurements 
The temperature of a run was taken to be the average 

value indicated by the two platinum resistance thermometers.
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The resistance of these elements was measured on a Leeds and 
Northrup G-2 Mueller bridge. When properly calibrated and 
made consistent with the bridge, the thermometers were guar
anteed to establish the temperature within ±0.01°C of the 
International Temperature Scale. The bridge calibration was 
checked prior to making any measurements and this calibration 
was used in lieu of that supplied by the manufacturer.

The thermometers had been calibrated by the National 
Bureau of Standards, one to the oxygen point the other to 
12°K. Above -183°C a table of resistance versus temperature 
was prepared using the Callendar-Van Dusen equation. In order 
to make this table consistent with the available equipment the 
triple point was measured with each thermometer in this labo
ratory and the ice point calculated from this value was used 
in the equation rather than the ice point given by the National 
Bureau of Standards. The observed triple point resistances 
were 25.5522 ohms for thermometer #1617523 and 25.5341 ohms 
for thermometer #1665930. Below -183 the point-by-point values 
of the National Bureau of Standards were used for the cali
brated thermometer and this temperature was taken as the sys
tem temperature. (This table was considered to be consistent 
with the bridge because the ice point observed in this labo
ratory agreed with the one reported by the National Bureau of 
Standards if no bridge correction were included and the cor
rection at -190°C was only 0.00004 ohms.) The second ther
mometer was used only to indicate gradient in this region.
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The system pressure was measured, primarily, by one 
of two Ruska Model 2400 dead weight gages used with two Ruska 
differential pressure cells and indicators. A set of accu
rately calibrated weights was supplied with the gages and 
were equivalent to Class "P" standard masses. The accuracy 
claimed for the gages by the manufacturer was ±0.01% of the 
reading or better.

Two gages were employed to allow measurements from 
700 to 2 atm. without changing pistons. Consequently the 
"low pressure gage" was used up to 165 atm. and the "high 
pressure gage" beyond that. The two differential pressure 
cells were used for an entirely different reason.

One assumption in the Burnett analysis is that the 
gas be completely isothermal when its properties are measured. 
To insure this condition one of the cells was located inside 
the cryostat. Because of the extreme environment, this cell 
was specially designed and constructed by Ruska Instrument 
Corporation. The other cell, joined to the latter by an in
termediate gas line, was used at room temperature. Both 
indicators had to be nulled simultaneously to obtain a cor
rect pressure reading.

One characteristic of the indicators which had to
be investigated in detail was the zero shift caused by pres
sure. This phenomenon resulted from a difference in reading 
for a "balanced" condition in the cell, that is a flat dia-
phram with equal pressures on both sides, and a "nulled"
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condition on the indicator. The manufacturer supplied infor
mation concerning the zero shift for both indicators, but 
their values were only used for the room-temperature device. 
The equation reported was

= 1.3 X 10"7p (12)

where is the zero shift in atmospheres and P is the
system pressure in psia. Unfortunately, the zero shift of the 
cryogenic indicator was a function of temperature as well as
pressure and had to be measured in this laboratory. Blancett
described the technique employed and a method for correcting 
the measured values. The final equation used for this quan
tity was

MZS
àV = ------------------------ (13)

1.0 - 0.0277 (3p/ôlnv)^

in which is the zero shift in atmospheres, MZS is the
measured zero shift in atmospheres and v is the molar volume 
cc/mole. Figure 6 is a plot of P at the experi
mental temperatures.

A Welsh Model 122A marine barometer indicated the at
mospheric pressure during a measurement. The resulting cor
rection is given by

Pg = 0.0333902 (R-r) (14)
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FIGURE 6. CORRECTED ZERO SHIFT CURVES FOR THE CRYOGENIC 
DIFFERENTIAL PRESSURE INDICATOR AT -160°, 
-170°, -180°, AND -190°C IN ORDER FROM 
TOP CURVE TO BOTTOM CURVE
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where Pg is the barometric pressure in atmospheres, R is the 
barometer reading in inches of mercury, and r is a temperature 
correction.

Finally head corrections had to be applied to the gage 
reading. For the high-pressure gage this was

= - 0.00021 + (MW) [(-0.116) (Pg)^ + (h)(Pg)^] (15)

and for the low-pressure gage

= - 0.00057 + (MW) [ (-0.116) (Pg)^ + (h)(Pg).] (16)

where AP^ is the head correction in atmospheres, MW is the 
molecular weight of the gas, (Pg)^ the density of the gas 
in the system outside the cryostat, (p^)^ is the density of 
the gas in the system inside the cryostat and h is a multi
plier with values of 0.0714 for the initial measurement of a 
run and 0.0747 for all successive measurements. The density 
units are moles/cc.

The gage pressure itself is, when corrected for tem
perature and pressure, for the low-pressure gage

0.521989 S(M )p = ---------------   §---------- zg—  (17)
(1.0 + 1.7 X 10 AT)(1.0 - 4.8 x 10 “p)

and for the high-pressure gage

2.610037 S(M )
p = --------------- rg-------  =g—  (18)

(1.0 + 1.7 X 10 AT)(1.0 - 3.6 X 10 “p)
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where P- is the gage pressure in atmospheres, S(M ) is theCj 9.
sum of the weights used in pounds mass, ùü is the temperature 
of the gage in °C less 25°C and P is the system pressure in 
psia. The actual pressure is then

^ ^ ^^ZSR ^^ZSC

This equation was programmed for a digital computer to speed 
the calculations and eliminate the chance of human error in 
the calculations.

Blancett has discussed the pressure measurement pro
cedure in detail in his dissertation and it should be con
sulted for derivation of the above equations except for 
Equation 13 which has been modified by the present author.

Pressure Generation and Vacuum System 
A Corblin #B2C1000 single-stage diaphram compressor 

was used to produce pressures above those in the gas cylinders. 
The diaphram insured purity of the sample which was of primary 
concern in charging.

For pressures less than those contained in the sample 
cylinders, the gas was bled directly into the system and 
measured roughly by a Maxisafe bourdon tube gage. This gage 
was calibrated prior to use to insure that the system would 
not be charged above the dew point of any sample.

The vacuum system consisted of a two-stage oil- 
lubricated vacuum pump and a thermocouple gage to indicate
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the pressure. The system was sufficiently tight that a 5 
micron vacuum could be held for about 10 to 15 minutes when 
the pump was disconnected.

Valves and Tubing 
With the exception of a short run of 1/2 in. copper 

pipe in the vacuum system, all the tubing was 3/16 in. O.D. 
stainless steel. The pressure rating was 15000 psi and a 
flare seal was used between tubing and fittings. The flared 
connections caused one problem— when tightened a large torque 
was set up in the tubing which tended to loosen some fittings. 
This was not too serious a problem, but the threat of a
lengthy delay was always present should a fitting inside the
cryostat begin to leak.

All the valves were High Pressure Inc. 30000 psi 
midget line with two-piece non-rotating stems. At room tem
perature they were provided with 0-ring seals and performed 
admirably. At low temperatures the 0-rings were unacceptable, 
however, and another packing had to be found.

Four valves were located within the cryostat and sub
jected to the very low temperatures of the experimental runs. 
Because the dead volume had to be kept to a minimum and the 
gas samples isothermal, the packing could not be removed 
from the cryostat. This constituted a major problem because 
all suitable packing materials shrink excessively with tem
perature and eventually begin to allow gas to leak past. This
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condition was found to exist in the present work and had to 
be eliminated before any experimental runs were begun.

The final solution decided upon was to use some mate
rial with a very low coefficient of contraction as thrust 
washers for teflon packing, and to use the proper dimensions 
to assure that the packing could not shrink away from the 
stem or body of the valve. The dimensions were calculated by 
equating the volume change of the packing upon cooling with 
that of the packing cavity. To obtain the desired results 
Invar thrust washers were used and snugly fitted graphite 
washers were placed above and below the teflon to reduce ex
trusion. Both Invar and graphite contract very little with 
temperature. The equations used for the volume changes were

= (37T/4)(d 2 - d^) (^L/L)pLp (20)

and

AVç, = (377/4)Lp[Dp(AL/L)g - dg(AL/L)g] +

(21)

+ (n/4)(Dp-dg){[AL/L)p - (^L/L)^]L^ + [(^L/L)g- (iiL/D^jL^}

where AVp is the volume change of the packing from room tem
perature to -190°C, dg is the diameter of the valve stem, 
{ÙL/L) is the change in length per length, is the diameter 
of the cavity in the valve body and L is the length. The 
subscripts denote the following: S stem, P packing, B body.
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W Invar washer, C cavity and G graphite. When the valves 
were assembled in this manner they held dead-tight against 
700 atm and a vacuum at room temperature and between -160°C 
and -190°C. The system was thus ready to take data at the 
conditions desired. The final dimensions used were:

1/8 in. stem
1/4 in. O.D. X 1/8 in. I.D. x 5/16 in. upper 

Invar washer
1/4 in. O.D. X 1/8 in. I.D. x 1/16 in. lower 

Invar washer
1/4 in. O.D. X 1/8 in. I.D. x 1/32 in. graphite 

washers
1/4 in. O.D. X 1/8 in. I.D. x .025 in. teflon packing.



CHAPTER IV

A GENERAL LEAST-SQUARES ANALYSIS APPLICABLE TO 
OPTIMAL RECOVERY OP VIRIAL COEFFICIENTS

Because of their theoretical importance, in the study 
of intermolecular forces for example, the coefficients of the 
virial equation

k-1Z = S B, p (22)
k=l ^

are usually sought from compressibility data. This has been 
a rather perplexing problem because the equation is an in
finite series and intractable by numerical methods. A number 
of techniques are used to approximate the virial coefficients 
and a few are mentioned below for comparison with the proposed 
procedure which is presented in detail.

Previous Methods 
Possibly the first method which comes to mind is to 

apply a limiting behavior process to the equation. Rearrange
ment of Equation 22 reveals that

29
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Bi = 1

B_ = 11m (Z-l/p)
^ p 0

B. = lim (Z-l/p - B_/p) 
p - 0 ^

(23)

and so on for as many coefficients as are desired. A serious 
disadvantage is that extremely accurate low density data are 
required to insure accuracy in the extrapolated values and, 
in general, such data are unavailable.

A more commonly used routine is to fit a polynomial 
approximation to the data and obtain the coefficients by re
quiring a "best fit." This is, by and large, a highly esoteric 
concept but quite often a least-squares analysis is employed.

This leaves the question as to which polynomial should 
be used. Many investigators prefer to use a pressure expan
sion in the form

Z = B^ + BgP + B^P + .. (24)

for which the B are related to the virial coefficients by

= Bi = 1

Bg = RTBg

B3 = (RT)2(B2 + B3)

(25)
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Still others (notably workers in The Netherlands) utilize 
Amagat data in which the ratio of actual volume to normal 
(0°C and 1 atm.) volume is measured. The Amagat compressi
bility factor is given by

P(V/Vĵ ) = A^ + Ag (V̂ /V) + (vyv) ̂ + ... (26)

where V._ is the normal volume. The A. are related to the, N 1
virial coefficients by

= Vĵ ^/r T = 1

= (RT/A^) (Ag/A^)

B3 = (RT/A^) (Ag/A^)

(27)

A more direct method is simply to truncate the virial equation 
after a sufficient number of terms are judged to have been 
used.

The basic weakness in all these methods is that the 
coefficients obtained cannot be identified rigorously with 
the virial coefficients because their values will depend 
upon, among other things, the number of terms in the poly
nomial and the pressure range of the measurements. The 
polynomial coefficients could be used in theoretical work, 
however, if a good estimate were available for their var
iance from the infinite series coefficients.
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Present Method
Michels et al. [21] have made a thorough investigation 

of this problem and have offered a criterion for choosing the 
best polynomial coefficients to approximate those of an infi
nite series. However, their approach has several shortcomings 
and a newer analysis has been developed based upon their work. 
The present approach is more satisfying and rigorous and is 
generally applicable to data reduction. Criteria are devel
oped for choosing, in a least-squares sense, the best poly
nomial to approximate an infinite series and for picking the 
polynomial coefficients having a minimum variance from the 
series coefficients. To emphasize the generality of the 
method and to gain flexibility of expression, general nomen
clature will be adopted throughout the remainder of this 
chapter.

Let ŷ ,̂ ..., y^, ..., y^ be N experimental measure
ments at x^, ..., x^, ..., x^ and assume that only random 
error exists in these measurements. Furthermore, assume 
that all the error is localized in the y^, the x^ being 
exact. Admittedly, these assumptions are rather drastic 
but necessary for the ensuing analysis. They may be justi
fied if care is taken to minimize systematic errors in the 
measurements and if it is understood that assuming localized 
error in a two variable experiment will magnify the error 
band of the random variable.



33
In general nomenclature the virial equation or any 

infinite series may be written
00

y n = ^ ? i “k * k < V  <“ >

It is assumed that this is the functional form that the y^
icvs. data must fit and, therefore, that the y^ are exact, 

theoretical values. The f. (x ) notation denotes any linearly 
independent set of functions of x^; for the virial equation
it would be ascending powers of the density.

A "model function" was proposed by Michels et al. 
which would provide a measure of how closely an infinite 
series can be approximated by a polynomial derived from 
exact data. This proves to be an useful relationship and 
is given by

m
*mk ^9)

The values for y^^ would be established by placing a poly
nomial through N points on a y* vs. x^ plot.

The function which will approximate the actual data
is

m
“mn = ='mk ^k <*„> <̂ °)

The a^^ will be found by a least-squares analysis and their 
variance from the established. A brief review of the 
method of least-squares is in order then, if for no other 
reason than to introduce pertinent nomenclature.
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Least Squares 
The method of least squares places a polynomial 

approximation through a set of data points by minimizing 
the sum of the squares of the discrepancies defined by

m
Amn = ?n " "mn = ^kn

where f^^ is shorthand for f^(x^). The requirement is that
N 2S ^ = minimum (32)
n=l

The minimum is sought with respect to the a^^ and is obtained 
by differentiation

N
= 2, Amn^kn = °n=l

where k ranges from 1 to m.
The a^^ may be extracted from Equation 33 but this 

involves the solution of m simultaneous equations. However, 
if the f^^ are made orthonormal, this requisite is eliminated. 
Furthermore, employing orthonormal functions enables auto
matic recovery of the a ^  for all polynomials possessing 
fewer than some given, maximum number of parameters, M.
These advantages are sufficiently enticing to motivate use 
of orthonormal functions in this application.

Orthonormalization of the f, ____________________________kn
Orthonormal functions are vectors which are perpen

dicular and whose dot product is unity. The f^^ may be
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converted to such functions by employing the Gram-Schmidt 
algorithm. Jones and Gallet [16] and Pfenning [25] have 
laid down the guide lines for application of this algorithm 
as it will be used below.

It will be necessary frequently to use the inner 
product of two vectors hereafter. This may be defined in 
terms of the f^^ as

N (k=l, ..., M)
......

The parentheses representation will be used often to simplify 
the notation.

The set of functions é, , é are orthogonalin 2n *̂ mn
(perpendicular) if

= 0  k M i (35)

This condition will be satisfied by the set of functions 
generated from

*ln =

k-1 (36)
*kn = + S a  r*rn (% = %.....

In this manner, N values of f^^ may be transformed into or
thogonal The set of constants are given by
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^kr = - O?)

when Equation 35 is applied to Equation 36.
Equation 36 is more useful in the analysis if put 

into the form

*kn = Ji°kr*rn (38)

The are functions of the and can be calculated from

°kk = = 1 (k=l..... M)
k-1 (k=2, M) (39)

^kr = j î / j A j  ..... k_i)

This relationship arises when the calculated from Equation
36 are equated to those calculated from Equation 38 and the
coefficients of like powers of f^^ are compared.

The are normalized by

«kn = *kn/((»k'V'^' (401

where ^2n' ' '' ^nm orthonormal functions. The de
fining equation for orthonormal functions is

= 0, k / i)
((Pi,,<p4) = Ô, . (41)^ (8%. = 1, k = i)

where 6^j is the Kronecker delta. The formed by Equation
40 can easily be shown to satisfy Equation 41 by forming the
inner product of and
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Solution for Coefficients 
The orthonormal will now be used to recover the 

Upon insertion of the proper coefficients. Equations 
29 and 30 become

m m m

where the d ^  and b^^ will be referred to as the orthogonal 
and orthonormal coefficients respectively. Equation 33 then 
becomes

~ ~ ^^m'^k^ ~  ̂ (k = 1» • • ., M) (44)

This equation may be solved readily for the d^^ and b^^ be
cause the normal equations are uncoupled by the property of 
orthogonality. Using the b^^ as an example

m
“ (y-Pj) ' <%•«:> ' <y'«>j> - ' °

(45)
but by applying Equation 41 this reduces to

\  = (y'P%) (46)

and because the b^^ are not functions of m they are written 
simply as b^. Similarly, d^^ is found to be
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1/2

\  = (y,V)k)/(^k'^k) = V ^ ^ k ' V ' "  (47)

If Equation 43 is expanded and the coefficients of like powers
of f^^ compared, the a ^  are found to be

m m
mk

1/2
j=k : ik j=k j ik (48)

The a ^  may be found most conveniently by constructing
a matrix, T , , generated bypK

^Ik " ^°kk

"̂ pk ^p-l,k '^l,p+k-l®p+k-l,k

In this matrix the a , are found atmk

(k = 1, ..., M)

(p = 2, ..., M) (49)

(k = 1, ..., M-p+1)

^mk ^m-k+l,k (50)
(k = 1, ..., m)

(m — 1, « « », M)

Therefore, instead of a single set of coefficients, the T^^
matrix contains M sets of coefficients corresponding to M
polynomials. For example, if M were specified to be 4, the
T , matrix would be pk

^ P l '^P2 '^P3 ^p4

^ Ik ^11 ^22 ^33 ^44

^2k ^21 ^32 ^43

^3k ^31 ®42

^4k ^41
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It is evident that this matrix effects a substantial reduction 
of time and effort compared with the solution for the a^^ by 
inversion procedures.

Cut-off Criteria 
Two separate cut-off criteria will give an optimal 

set of parameters, a^^, for the present problem. If the best 
fit of the data is required, the condition is

N * p
S <(u - y ) ) = minimum (51)

n=l

with respect to variation in m. If, however, coefficients 
are desired which are as near as possible in value to the 
exact coefficients, the requirement is that

((a^^ - 0^)^) = minimum (52)

with respect to variation in m for a given k. The number of
parameters associated with the polynomial satisfying Equation

*51 will be denoted as m .
Both criteria are of considerable importance, and 

must be developed into useful forms. Rigorous equations 
can and will be derived, but, because of the statistical 
nature of the analysis, they cannot be evaluated. Neces
sary approximations are available and can be justified by 
examples.

Before the criteria are expanded, a few basic re
lationships must be investigated. The experimental error
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will necessarily have a role in this discussion. It is de
fined as

and because only random error is allowed in the y^

where the brackets denote expected values. The errors are 
also assumed independent and then

= ° (55 )

. . *Also because \y^/ = y^ from Equations 53 and 54

<€^> = <(Yn - (56)

2where a is the variance of the data. Combining Equations 
55 and 56

<'n's> = «ns*' (57)

where 6^^ is the Kronecker delta. Another quantity which 
proves useful is the "model" error

hmn ' ?n " (58)

For both criteria, it is helpful to know some rela
tionships between the various coefficients which have been 
introduced. One is established by taking the expected value
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of the orthonormal coefficients defined by Equation 46

<\> = < > = i(y'>><Py.) = (y*><py.) (59)

Here because the error is localized in the
values. Had the "model" function. Equation 42, been used
in a least-squares fit of N exact data points, the would 
be found (analogously to the b^) to be

%  = iy* ,<Pŷ) (60)

Like the b^, the do not depend upon the number of param
eters in the polynomial fit and the subscript m is dropped. 
Equations 59 and 60 reveal that

<\> = (61)

In the case of the orthogonal coefficients, it can be shown 
easily that

\ k  - »k = <®2)

From a development analogous to that for Equation 48, the
are found to be

m m 1/2
“mk - ^f/j°jk - (S3)

Examination of Equations 48, 61 and 63 establishes that

<^mk> ' “mk (64)
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The necessary expressions are now available to develop 

more useful forms for the cut-off criteria. The best-fit cri
terion can be expanded using Equations 31, 53 and 57

= nil*''"’''" = n l l ^ °

=  < < W > n=i

The third term in this equation reduces to

N m
-2 E ( € à )  = - 2<(y,e)> + 2< S b  (66)

n=l " k=l ^ K

Equations 46, 53 and 60 indicate that

“ ( y * (67)

which when substituted into Equation 66 gives

N m « 5
-2 E = - 2<(y,€)> + 2 S (<b‘> - % )  =

n=l k=l ^

= - 2<(y,y)> + 2(y*,y*) + 2 S (<b?> - fib (68)
k=l ^ K

But, from earlier definitions it can be shown that

<(y,y)> = <(y*+ e,y*+ e)> = (y*,y*) +

+ E <€^> = (y*,y*) + N (69)
n=l "
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and

<b^> = <(y.ek)2> = s s <y„Ï3> « k A s

= L L < (y* + £ ) (y* + c ) > „kn«^s = <’<»n=l s=l

2 2 2 (This is equivalent to ( (b^ - jŜ ) ) =  a . Because a , the
variance of the data, is a constant, this indicates that the
calculated are the best values automatically. Using these
relationships. Equation 68 becomes

N p
-2 S = -2(N-m)CT^ (71)

n=l
and the criterion is 

n—X
*for which m = m at the minimum. This expression should be 

used in lieu of Gauss' criterion (see Kendall [17]) when the 
functional form which the data should fit is an infinite 
series, such as Equation 28.

The criterion for optimal coefficients also possesses 
a more useful form. Equation 52 may be expanded as follows
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The first term in this expression is

m m
= S S <|b -p.)(b -g )> /ji=k i=k 3 3 1 1  :k IK

(74)
From the definitions for and and Equation 57

N N
<(b.-#i)(b -#,)> = <(e,p.)(e,p.)> = S S << e > fP̂ JPis ' D D 1 1 ] 1 n=l s=l Dn IS

N N 2 2

Substitution into Equation 74 gives

O 9 ^ 9
<(^m k-^=üc) > (7 6 )3—K

The second term of Equation 73 remains to be developed.
Equation 63 may be expanded using the definition of

(77)
00

where R _ = L a.f. , the truncation error. For the time 
^ i=m+l

being, let Q represent the last term in this expression.
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then because

i-1
f. = É. - L c . 0in ^in ir^rn

Equation 77 becomes
N m m p -, 1-1

m m
= Sa. S g . (^.,0.)/(0.,0.) - 
1=1 1 i=k 1 : ]

m m 1=1
■ S a  L S G C. .0 )/(0.,0.) -I- Q =1=1  ̂j=k r=l ir ] r D D

m m 1-1
= S a.G. - S a. S G , c. -t- Q (78)
l=k  ̂ l=k-Hl  ̂r=k

through use of the property of orthogonality. When Equation 
39 Is Introduced, this relationship reduces to

m m
''mk \ ! / i ‘=lk - ° = °k + ° (79)

The difference between and Is Q or

^ I/o
%k-«k = .5^‘=jk("m''“j>/«’j'*j> (80)

The Inner product term may be expressed as

m
(R_'P^) = (y ,<P̂ ) -  S a. ( f . ,<p.)J J 2.=1 1 ] (81)

a
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Therefore, the criterion for optimal coefficients is that

be a minimum with respect to m. It should be noted that this 
criterion may be satisfied at different values of m for dif
ferent values of k.

2Because a is essential to both criteria, it should 
also be put into a more convenient form. A good starting 
place is the sum of the squares of the deviations

N , N m 5

N 2 N m N m m

m M iti A in A
= (y»y) - 2 2  (y,<p. ) + 2 (y,<p, ) = (y,y) - 2  b.

k=l ^ k=l ^ k=l K

(83)
Taking the expected value of this equation produces

m 2
<(4m'Am)> = <<?'?)> " =

= (y*,y*) + N - 2 p 2  - m *2 (84)
k=l K

using Equations 79 and 80. If h is substituted for A „^ mn mn
in Equation 83, the result is
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★ ★ in *

= (y -y ) - (85)

Therefore, the last two equations combine to give the desired
2expression for a

2a

While Equations 72, 82 and 86 have been rigorously 
developed, they cannot be evaluated in their present form.
In general, h ^  and all expected values will not be known, 
and must be approximated. Fortunately, good estimates are 
available and are presented in the next section.

Criteria Estimators
2Because a is common to both criteria, it will be 

estimated first. The first term of Equation 86 is approxi
mated by dropping the expected value operation

<(Ajĵ ,Aĵ )>/N-m « (A^,6J/N-m = (87)

This is an unbiased estimate of the term (which, incidentally,
2is the maximum value a may have).

The second term is more tedious. Examination of 
Equations 29, 30 and 64 reveals that

ymn = '®®>

therefore.
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"mn ' = <^mn> <®®>

(hm'V <5<»n=i
This may be expanded into

N « N-1 N
= < Z 4 _ >  - 2 Z 2 (A A _ >  (91)n=l n=l s=n+l

and estimated by

(h^.h^) . [ - 2 ^mn^s ' O")n=l n=l s=n+l

Unfortunately, this is a biased estimate, but it is the
only available choice other than zero and will be used.

2The estimator for ct is then

= g2 - 6^ (93)

2The value calculated for a should be compared with 
an a priori estimate if possible. This will give some in
sight concerning the choice of f^^ establishing Equation 28 
as the functional form fitting the data. If improper f^^ 
have been chosen the calculated and estimated values should 
be widely different.
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2 2 The fact that S is the maximum value for ct is also

an useful concept. If the are not randomly distributed,
ê2 2might be such that a will be estimated
2 2 2 greater than S . In this case, S should be used for a .

Experience has shown that this approximation does not intro
duce significant error because normally »  S^.

The best fit criterion follows immediately

S <(u^-y%)^> « (2m-N)(s2_&2) + (94)
n—1

This is essentially unbiased because of the small magnitude 
of The criterion for optimal coefficients is a bit
more difficult to estimate. The suggested form is

0 9 A 9 m 2a'" « (s^-r) r G../(ÿ.,ÿ.) +
j=k ] ]

IQ »  *1 Itl g

This expression is statistically biased, but it possesses a 
definite advantage— it is available and computable. Re
placing /3j with bj is a very good approximation as indicated 
by Equations 61 and 70. Replacing with a ^ * i s  based 
upon experience with test cases. These examples indicated 
that the parameters associated with the m* polynomial are 
generally fairly good approximations for the a^. Of course, 
the values can be checked _a posteriori. In the test cases 
run to check the procedure, the error incurred by this
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approximation was not significant. Furthermore, the co
efficients associated with the m* polynomial satisfied 
Equation 95 in all cases.

Error Accumulation and Reorthonormalization 
The involved computational requirements of this tech

nique immediately suggest computer application. Care must 
be exercised, however, because in problems of this type, 
round-off error can easily accumulate and destroy all con
fidence in the values obtained. The most susceptible oper
ation above is the orthonormalization step, but, fortunately, 
use of orthonormal functions provides a means for estimating 
this error.

The b^ were calculated from Equation 46 under the
assumption that the were orthonormal. Actually, because
of round-off error the might not be exactly orthonormal
and Equation 45 should be used. Denoting the values ob-

*tained from Equation 45 as b^, the following expression re
sults

bj = (y,pj) = b*((pĵ ,(pj) + ... + b*((pj,(pj) + ... (96)

*The difference between b^ and b^ in this equation is an in
dication of the effect of round-off error. The relative 
error is

(b*-b.)/b* = 1 - S (b*/b*) (<p ,<p.) (97)J J J q=i 9 J 4 J
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icThe bj are not necessarily known, but they may be approximated 

by the bj

* * m(b.-b )/b. « 1 - L (b /b ) {<p,<p.) (98)
J J J q = i  9  J q  J

When this relative error exceeds some prescribed epsilon, it
is reasonable to assume that round-off error has become sig-

-6nifleant. Experience has shown that unless epsilon is 10 
or less; the results may not be accepted with confidence.
One method for controlling this error is reorthonormalization. 

Reorthonormalization of the set of functions,
Iforms a new set which are more nearly orthonormal. The 

generating equation for the new orthogonal functions is

*kn = ^,°kr*rnr=l
IThe G, are found by merely substituting primed values intoiCx IEquation 39 in which the are given by

The are normalized by
I I I I 1/0

«'kn = «^n/<*k'*k) "-01)

Following the earlier developments

\  (102)
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and

I I I I 1/0
- V * k ' * k )  (103)

T , is formed from pk

^Ik \®kk

P+k-1 ,
V  = V l . k  ^1,p+k-1 °p+k-l,j^jk (104)

and the a ^  are found in the same locations as in the 
matrix. The variance of the coefficients is obtained by 
replacing in Equation 82 by

This procedure may be repeated as often as necessary to bring
the relative round-off error within the tolerable limits. Of

' 2 'course, the expressions for T^^ and or̂  become increasingly 
more complex (see Hall and Canfield [ll]).

Example
Several test cases were run on the computer to check 

the validity of the proposed technique. The most informative 
and stringent was the specially constructed function

g(x^) = e"*n + 0.1 e^" + 0.01 x^ + (105)
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This function was chosen because it closely resembles a 
near-critical compressibility isotherm and has an infinite 
series representation for which the coefficients are known 
exactly.

The random error, was included as follows. An 
average error of about 0.0005 was desired so a standard de
viation of 0.001 was chosen and multiplied by the entries 
in a random-number sequence (0.0 < n < 1.0). This gave an 
average error of 0.00046. A second random-number sequence 
was used to determine the sign of the error which was then 
added to 30 discrete values of g(x^). The x^ were in the 
range 0.01  ̂x ^ 3.00.

One reorthonormalization was required to control
-10the relative round-off error to less than 3 x 10 using 

a 12 digit word. The coefficients for the first eight poly
nomials are given in Table 1 along with their standard de
viations. The program chose m* = 6 as the best fit which 
is correct. Also the coefficients for this polynomial have 
minimum variances. The exact coefficients are compared with
the â , in Table 2. These coefficients are nearer in value 5k
to the 0^ than any other coefficients in Table 1 as predicted. 
It should also be noted that, with few exceptions, all the 
coefficients in Table 1 are within their standard deviation 
of the exact coefficients.

These and similar results seem to substantiate the 
validity of the assumptions made when estimating the criteria.



TABLE 1
COEFFICIENTS OF g(x^) FOR VARIOUS POLYNOMIAL APPROXIMATIONS

m/k. ^mk ^mk

1/1 3.8270(10"!) 1.2824 2/1 -1.4305 5.3077(lo"!)
— 1 -12 7.9285(10 ) 2.4270(10 )

3/1 -4.4191(10"!) 4,5778(10"!) 4/1 -9.6700(lO"!) 6.7314(10"^)
2 -2.8840(10"!) 8,3856(10"!) 2 7,4613(10"!) 1.9598(10"!)
3 2.6607(10"!) 4.1856(10 ) 3 -3.2836(10"!) 1.7598(10"!)

4 1.0408(10"!) 5.5800(10"2)
5/1 -8.9175(10"!) 8,2040(10"3) 6/1 -8.9970(10"!) 3.2869(10"3)

2 5.1532(10"!) 3.5282 (10"2) 2 5.5016(10"!) 1.2571(10"^)
3 -1.0081(10"!) 5.1835 (10"2) 3 -1.5238(10"!) 1.7481(10“ )̂
4 1.4357(10"2) 3.3986(10"^) 4 4.8283(10"^) 1.1159(10"^)
5 1.2284(10"^) 1,0232(10"2) 5 2.0553(10"3) 3,3204(10"^)

6 1.1534(10"^) 3.7312(10"4)
7/1 -8.9844(10"!) 5.1072(10"^) 8/1 -8.9793(10"!) 7.3364(10"^)

2 5.4271(10"!) 2.6350(10"2) 2 5,3882(lO"!) 4.8092 (10"2)
3 -1.3707(10"!) 5.0757 (10"2) 3 -1.2649(10"!) 1.2010(10"!)
4 3.3494(10"^) 4.7356 (10"2) 4 1.9553(10"^) 1.5058(10"!)
5 9.3598(10"3) 2.2971(10"^) 5 1.9315 (10"2) 1.0432 (10"!)
6 -6.3323(10"^) 5.5720 (10"3) 6 -4.5707(10"3) 4.0524(10"2)
7 1.7156(10"^) 5.3386(10"4) 7 9.8273 (lO"^) 8.2672(10"3)

-5, "4.8 -6.7905(10 ) 6.8921(10 )

en4̂
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TABLE 2
COMPARISON OF WITH 0^

k ^6k *a

1 -9.0000(10“ )̂ -8.9970(10” )̂ 3.2869(10” )̂
2 5.5000(10"^) 5.5016(10"^) 1.2571(10“ )̂
3 -1.5000(10"^) -1.5238(10"^) 1.7481(10"^)
4 4.5833(10” )̂ 4.8283(10"^) 1.1159(10"^)
5 2.5000(10"^) 2.0553(10"^) 3.3204(10"^)
6 1.5278(10“ )̂ 1.1534(10"^) 3.7312(10"4)

These criteria are the first impersonal, mathematical guides 
offered for obtaining optimal coefficients in this application 
and for obtaining best fits for infinite series. The program 
associated with this analysis was used in every phase of the 
data treatment in this project.



CHAPTER V

METHOD FOR REDUCTION OF BURNETT DATA TO COMPRESSIBILITY 
FACTORS AND VIRIAL COEFFICIENTS

The accuracy of compressibility factors obtained by 
the Burnett method depends to a large degree upon how well 
the constants N̂ , and Pq/Zq are established. Classically, 
they were found from graphical extrapolations using Equa
tions 10 and 11, but, when demands for more accuracy emerged, 
several procedures for refining the graphical values were 
developed.

Some of these techniques are reviewed briefly below 
as background material. The bulk of this chapter, however, 
is devoted to an explanation of a new method for refinement 
of the constants which eliminates many major weaknesses of 
the previous schemes and introduces some added advantages.
Use of the new method should produce results which reflect 
all the accuracy of present measuring capabilities.

Previous Methods for Refinement
While the errors in the extrapolated constants are 

not large (roughly 0.01% for N̂ , and 0.1% for Pq/Zq ) , they 
must be reduced by at least an order of magnitude if the

56
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results are truly to reflect the information available in 
the data. The major obstacle in this process lies in the 
fact that the constants appear non-linearly in the pertinent 
equations.

Some investigators, such as Pfefferle [24] and 
Silberberg et al. [27], propose linearization of the equa
tions by various means and application of some iterative 
scheme to find corrections to be applied to the constants. 
Canfield [6] suggests that the low density linearity of a 
plot of (Z-l)p vs. p  is sensitive to the value of and 
may be exploited to adjust this constant. Both methods 
suffer in that multiple runs for a given isotherm must be 
treated separately. This immediately restricts the amount 
of available information which may be extracted from the 
data.

Barieau and Dalton [l] have developed a rigorous, 
non-linear, least-squares technique which they have applied 
to Burnett data. Multiple runs may be treated with this 
method, but convergence problems would most likely appear 
when working with near critical isotherms. Hoover et al. 
[14] have proposed a "direct" method for establishing 
and Pg/Zg along with the virial coefficients. This is an 
iterative technique based upon the Burnett analysis and 
establishes the constants with negligible error. However, 
the method is restricted to temperatures above T^ > 0.75 
and to regions where the compressibility factor is given by
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Z = 1 + Bg p + (106)

All the above methods assume N„ is a true apparatus 
constant for a given temperature and use a calibration value 
in their refining steps. While this is theoretically satis
fying, data taken in this laboratory lo not actually exhibit 
this behavior. Each run seems to have its own cell "constant" 
albeit this is, most likely, because of experimental error.

Present Method for Refinement
Upon reviewing these earlier treatments, it seemed 

desirable to devise a new method which would eliminate their 
major weaknesses and thereby increase the accuracy of the 
final results. In particular, a method was sought which 
would use all of the available information contained in the 
experimental data.

The useful information is: one or more sets of pres
sures for each isocomp-isotherm considered, the fact that • 
the virial coefficients are identical for all sets of pres
sures along a given isocomp-isotherm and the Burnett analysis 
relating the pressures, N„ and Pq/Zq to the compressibility 
factors and to the virial coefficients (via Equation 22). 
Mathematically, a functional relationship exists of the 
form

P(j, Pj, T, N^, PQ/Zg, B^, B y  ...) = 0  (107)
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in which j is the expansion number and for which there may 
be multiple sets of expansion numbers, pressures and Burnett 
constants. The function is non-linear in terms of the con
stants, but they may be recovered by constructing a multi
dimensional response surface which will exhibit a minimum 
when the proper values are inserted. This minimum may be 
searched out by well established procedures. In this work 
and in most other studies involving Burnett apparati, two 
runs are used to establish an isotherm, so for the remainder 
of the discussion assume that

F(N*i, (V̂ Ô l' V̂̂ 0̂ 2' ' ° (108)
where the expansion numbers, pressures, temperature and 
virial coefficients are understood.

The searching procedure requires initial values for 
the constants and virial coefficients. The extrapolation 
method (Chapter I) was implemented by placing an optimal 
least-squares polynomial through the appropriate data co
ordinates and then Equation 9 produced initial estimates for 
the compressibility factor. The technique proposed in Chapter 
IV then gave values for the virial coefficients consistent 
with the approximate values for the Burnett constants.

The particular form to be used for F must be estab
lished at this point. The difference between Equation 9 and 
Equation 22 is chosen because this function permits the fullest 
utilization of the development presented in Chapter IV and
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because the virial coefficients are recovered automatically 
in the data treatment.

P = P3 1 p;j «3 - V 3
k-1 (109)

where j denotes an individual expansion and and Pj are 
given by the following expressions.

j k. + k«P. + k?P. + ...
4 . =  n - i   ̂  ̂  ̂ ^ (110)

RT
(111)

The summation of F over all the data points is minimized 
with respect to the Burnett constants treating both runs 
simultaneously i.e.

Jlz
j=l

m*

5)> '» ' I.

J2 ̂z
3=1

'“3«=2
0

m*
L o  - Y.

k-1 
’k^j2

k=l

= minimum (112)
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where Jl and J2 are the number of data points in the first 
and second runs respectively and m* is (as in Chapter IV) 
the optimal number of parameters required to approximate the 
virial expansion for . In this expression the same set of 

is used for each run.
Equation 112 possesses a major advantage and a major 

disadvantage in a least squares sense. Because the compres
sibility factors do not vary widely, a weighting factor is 
not absolutely necessary in the summation. On the other 
hand, the compressibility factor is a derived rather than 
observed quantity, and it must be used with care in this 
application. To be certain that the search is truly con
verging, a check is made employing the observable pressures. 
Equation 6 may be used by introducing the optimal values for 
the Burnett constants and virial coefficients to calculate

2
CHK

Jl

j=l

P.
Pj-1 N., m*

J2

j=l

p.
1

m*
l " b,1 k=l

*k-l
k *j2

"j-1 .k-1N._ m*
S B p- 
k=l ^ j-1,2

(113)

If CHK is small and within the range expected from experi
mental error, the search may be assumed to be converging.
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2The function,S F , may be calculated from the 

various initial values now and the search for the minimum 
may commence. Many searching procedures have been proposed 
in the literature, but two sources collect most of the more 
useful ones into concise reviews. These references are a 
series of articles by Boas [3] and a text by Wilde [29].
The optimal method must be chosen to reflect the conditions 
of the problem in which it will be used.

Because the initial values of the Burnett constants
can be found as accurately as they are, it seems safe to

2assume that the surface,, SF , will be unimodal and nearly 
quadratic in the region of interest. Under these conditions, 
the quadratic search outlined by Wilde should be employed 
immediately, although it is usually introduced only after 
having exhausted the usefulness of some linear search.

This particular search is performed by assuming that 
the SF surface is quadratic and unimodal in (Z^/P^)^,
Noo2' (ZQ/Pgïg “ space. A Taylor's expansion then yields 
(defining S F as S and Z^/P^ as A for simplicity)

as + as as as
âA, ^ 2  +

(ANcoif +

a^s \
3a 2

I a^s + a^s
^ 2  +
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^001^2 +

a^s
21

^ 1 ^ 2 (114)

In this application the fourteen derivatives may be taken 
analytically (analytical and numerical values were compared 
to insure that taking the derivative of a least squares 
polynomial was valid under these conditions). The last four 
interaction are conveniently zéro. Differentiation of Equa
tion 114 with respect to each constant change produces four 
simultaneous equations which, when set equal to zero and 
solved, give corrections to be applied to the Burnett con
stants. When the corrected values of the constants are 
inserted into Equation 112, the minimum in the S F surface 
should result. The fact that the surface may not be exactly 
quadratic requires that this procedure be iterated until the 
change in the constants from one iteration to the next is 
less than some prescribed epsilon. At this minimum, the 
compressibility factors, densities and virial coefficients 
will be the best (in a least squares sense) obtainable from 
the data. The virial coefficients are obtained in each 
iteration by calculating the and the Pj from the permuted 
Burnett constants and observable pressures, and then employing 
the technique of Chapter IV.
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Unfortunately, there is a complication involved. 

Choice of a polynomial to approximate the virial equation 
again becomes the issue. The methods of Chapter IV will 
indicate the proper polynomial and best virial coefficients 
only after the refined compressibility factors have been 
used to establish them. It is necessary, therefore, to 
set up several surfaces, each using a different number of 
terms in this equation, and find the optimal values of 
the Burnett constants for each surface. Then the optimal 
compressibility factors, densities and virial coefficients 
are established for each surface.

Now the surface must be chosen which has yielded 
results which are most nearly consistent with the data.
The first test which can be applied is Canfield's sugges
tion concerning the low density linearity of a plot of 
(z-l)/p vs. p. Any surfaces whose results do not satisfy 
this condition are eliminated from consideration. The 
best remaining surface may be ferreted out by examining the 
standard deviation of the virial coefficients, the value of 
the best fit criterion, the deviations between observed and 
calculated compressibility factors and the sum of the squares 
of these deviations. Of these, the first two are emphasized. 
Ultimately, one surface will reveal superior behavior under 
this scrutiny, and may be considered to possess the optimal 
values for the desired quantities.



CHAPTER VI 

DATA AND APPLICATIONS

After the pressures were corrected as outlined in 
Chapter III, they were treated by the methods described in 
Chapters IV and V to obtain compressibility factors and 
virial coefficients. The results are presented in Tables 
3-17. In addition, interaction virial coefficients have 
been calculated.

Data
Each table presents the optimal results for one 

isocomp-isotherm as extracted from the computer program 
BURNOR (Appendix D). The apparatus constants, N„ and Zq/Pq , 
are presented at the top of the table. These are the op
timal values and are consistent with the data presented.
The experimental pressures in atmospheres are listed and 
all other quantities, reading across the page, correspond 
to these values. The compressibility factor is presented 
as calculated from the Burnett analysis (Equation 9) and 
as calculated from the virial equation. These latter values, 
labeled Z(Virial) should be considered the reported compres
sibilities with Z(Burnett) being additional information.
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TABLE 3
EXPERIMENTAL AND CALCULATED RESULTS FOR

100.00% HELIUM AT -160°C

Run #1: N„ = 1.563311
Run #2: N„ = 1.563360

P(atm.) Z (Burnett) Z(Virial)

Zq/Pq = 0.002657682 
Zq/Pq = 0.003186988

B^ and

701.449 1.86423 1.86423 -0.00000
347.045 1.44182 1.44177 0.00005
191.860 1.24604 1.24606 -0.00002
112.706 1.14425 1.14423 0.00002
68.5042 1.08723 1.08724 -0.00001
42.4726 1.05377 1.05384 -0.00007
26.6481 1.03356 1.03365 -0.00009
16.8416 1.02115 1.02121 -0.00006
10.6906 1.01332 1.01344 -0.00011
6.8060 1.00851 1.00854 -0.00003
4.3407 1.00552 1.00544 0.00008
2.7715 1.00366 1.00347 0.00018

517.434 1.64906 1.64906 -0.00000
270.051 1.34542 1.34548 -0.00006
153.698 1.19707 1.19707 0.00000
91.7634 1.11728 1.11720 0.00008
56.2974 1.07158 1.07155 0.00003
35.0986 1.04441 1.04441 -0.00000
22.0962 1.02789 1.02786 0.00003
13.9931 1.01765 1.01760 0.00004
8.8948 1.01129 1.01117 0.00012
5.6664 1.00716 1.00711 0.00005
3.6151 1.00453 1.00453 0.00000
2.3082 1.00272 1.00289 -0.00017

]HK = 3.83630(10"®) S(Zg - Zv)' =

®2 = 
cr =

=3 =
cr =

ü =

11.62527
0.01288

174.9200
1.9282

814.5500
86.1629

Bg = 19134.01 
a = 1160.28

Z)|Zg - Z^l = 1.31718(10"^) (Zg

.-7,

VftVE = 1-99488(10-6)
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TABLE 4
EXPERIMENTAL AND CALCULATED RESULTS FOR

100.00% HELIUM AT -170°C

Run #1: N„ = 1.563277
Run #2: N«, = 1.563311

P(atm.) Z (Burnett) Z(Virial)

Zq/Pq = 0.002789038 
Zq/Pq = 0.003332152

B. and ct- 1

697.208 1.94454 1.94455 -0.00000
337.723 1.47232 1.47230 0.00002
184.843 1.25966 1.25964 0.00003
108.053 1.15108 1.15108 -0.00000
65.5137 1.09099 1.09103 -0.00004
40.5641 1.05597 1.05505 -0.00008
25.4326 1.03496 1.03499 -0.00003
16.0651 1.02199 1.02204 -0.00005
10.1958 1.01394 1.01396 -0.00001
6.4900 1.00895 1.00887 0.00008
4.1383 1.00572 1.00555 0.00007
2.6416 1.00359 1.00361 -0.00001

512.059 1.70526 1.70624 0.00002
262.786 1.36878 1.36887 -0.00008
148.378 1.20817 1.20814 0.00003
88.2355 1.12313 1.12306 0.00007
54.0191 1.07489 1.07487 0.00001
33.6389 1.04638 1.04639 -0.00000
21.1626 1.02909 1.02907 0.00001
13.3969 1.01842 1.01836 0.00007
8.5123 1.01161 1.01164 -0.00004
5.4222 1.00736 1.00741 -0.00005
3.4594 1.00474 1.00472 0.00001

3HK = 2.17787(10"®) 2(2^
"  Sy)' =

B., =
a =

B. =
a =

B. =
a =

B_ =
a =

11.53950
0.00745

172.9100
1.0669

1145.739
45.621

18119.77
587.88

S|z - Z I = 8.33166(10"^)B V

.-8.

'Zg - V ote = 1.27802(10-®)
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TABLE 5
EXPERIMENTAL AND CALCULATED RESULTS FOR

100.00% HELIUM AT -190°C

Run #1: No, = 1.563218
Run #2: N» = 1.563172

P(atm.) Z (Burnett) Z(Virial)

Zq/Pq = 0.003100647 
Zq/Pq = 0.003664451

^B - ^V B. and 1

7:07.020 2.19222 2.19223 -0.00001
321.708 1.55925 1.55928 -0.00003
171.039 1.29584 1.29580 0.00004
98.6461 1.16827 1.16815 0.00011
59.4160 1.09994 1.09986 0.00009
36.6613 1.06092 1.06093 -0.00001
22.9425 1.03783 1.03781 0.00002
14.4777 1.02376 1.02372 0.00001
9.1823 1.01500 1.01499 -0.00001
5.8422 1.00951 1.00951 -0.00000
3.7245 1.00605 1.00605 0.00007
2.3770 1.00370 1.00386 -0.00016

513.660 1.88228 1.88224 0.00004
250.687 1.43591 1.43593 -0.00003
138.255 1.23785 1.23792 -0.00007
81.3006 1.13782 1.13783 -0.00002
49.4945 1.08275 1.08281 -0.00006
30.7307 1.05085 1.05090 -0.00005
19.3012 1.03169 1.03174 -0.00004
12.2067 1.01992 1.01997 -0.00006
7.7528 1.01258 1.01264 -0.00006
4.9372 1.00798 1.00803 -0.00005
3.1499 1.00524 1.00512 0.00012
2.0112 1.00333 1.00326 0.00007

CHK = 3.24424(10"®) 2(2^.■ = '

B., =
a =

®3 = 
a =

B., =
a =

11.05842
0.00938

184.4493
1.2035

1315.162
46.199

Bg = 23733.74 
or = 534.63

S|Z_ - Z.J = 1.19001(10"^) (Z„ -B V B V a V E  = -5.40438(10-®)
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TABLE 6
EXPERIMENTAL AND CALCULATED RESULTS FOR

87.77% HELIUM AT -160°C

Run #1: Noo = 1.562995
Run #2: N„ = 1.562989

P(atm.) Z (Burnett) Z(Virial)

%o/Po 0.005863029
Zq/Pq = 0.006803262

B . and cr„ 1 B.

218.759 1.28259 1.28259 0.00000
125.751 1.15232 1.15227 0.00004
75.9193 1.08731 1.08732 -0.00001
46.9997 1.05206 1.05214 -0.00009
29.4951 1.03191 1.03194 -0.00004
18.6521 1.01992 1.01989 0.00004
11.8480 1.01259 0.01250 0.00009
7.5459 1.00799 1.00791 0.00007
4.8138 1.00506 1.00503 0.00003
3.0739 1.00309 1.00320 -0.00011

180.505 1.22802 1.22804 -0.00002
105.881 1.12583 1.12581 0.00002
64.5823 1.07327 1.07328 -0.00001
40.1997 1.04414 1.04419 -0.00005
25.3042 1.02724 1.02724 0.00000
16.0298 1.01708 1.01702 0.00006
10.1929 1.01083 1.01073 0.00010
6.4960 1.00687 1.00680 0.00007
4.1455 1.00429 1.00433 -0.00004
2.6480 1.00265 1.0027:6 -0.00010

CHK = 2.71052(10“®)
“  =

B., =
a =

B., =
a  =

cr =

9.62535
0.01358

229.8796
2.4505

4547.541
100.425

S|Z„ - Z,J = 9.85699(10“ )̂ (Z_ -B V B ^V>flVE = 3.24830(10-6)
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TABLE 7
EXPERIMENTAL AND CALCULATED RESULTS FOR

87.77% HELIUM AT -170°C

Run #1; N„ = 1.563050
Run #2: N„ = 1.563107

P(atm.) Z (Burnett) Z(Virial)

Zq/Pq = 0.009346075 
Zq/Pq = 0.01135285

B . and cr_1 B.

123.774 1.15680 1.15682 -0.00002
74.4737 1.08790 1.08786 0.00003
46.0593 1.05162 1.05167 -0.00005
28.9002 1.03135 1.03135 -0.00000
18.2763 1.01943 1.01940 0.00003
11.6094 1.01215 1.01215 0.00000
7.3951 1.00774 1.00767 0.00007
4.7181 1.00495 1.00486 0.00008
3.0126 1.00297 1.00309 -0.00012

98.7404 1.12099 1.12095 0.00003
60.2636 1.06938 1.06939 -0.00001
37.5458 1.04139 1.04144 -0.00005
23.6512 1.02538 1.02538 -0.00000
14.9902 1.01583 1.01580 0.00003
9.5350 1.00999 1.00993 0.00006
6.0776 1.00627 1.00628 -0.00002
3.8791 1.00391 1.00399 -0.00009
2.4784 1.00261 1.00254 0.00006

:HK = 3.98139(10"®) -  =

= 8.63729 
cr = 0.01699

B^ = 234.6565 
a = 4.4250

B^ = 5017.328 
O — 263.225

S|Z„ - Z,J = 7.65070(10“ )̂ (Z„ -B V B V aVE = 2.26539(10-6)
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TABLE 8
EXPERIMENTAL AND CALCULATED RESULTS FOR

87.77% HELIUM AT -190°C

Run #1: N„ = 1.563012 2o/?0 = 0.06014626

Run #2: N„ = 1.563063 %o/Po = 0.07192886

P(atm. ) Z (Burnett) Z(Virial) B. and a_ 1 B.

16.8878 1.01574 1.01573 0.00000 B^ = 6.17366
10.7427 1.00990 1.00991 -0.00000
6.8482 1.00624 1.00627 -0.00003 a = 0.02394
4.3718 1.00403 1.00399 0.00005
2.7929 1.00253 1.00254 -0.00001

14.0841 1.01305 1.01306 -0.00000 B^ = 115.1844
8.9679 1.00824 1.00824 -0.00000
5.7202 1.00522 1.00523 -0.00001 a = 12.3884
3.6529 1.00338 1.00333 0.00005
2.3340 1.00209 1.00212 -0.00003

CHK = 9.00548(10"®) - Zy)2 = 7.42261(10"^)

- S 1 = 2.05060(10"4) (Z - ^>AVE = 9-57850(10-7)



72

TABLE 9
EXPERIMENTAL AND CALCULATED RESULTS FOR

75. 29% HELIUM AT -160°C

Run #1 = 1.563068 %o/Po = 0.008893446

Run #2 = 1.563026 %o/Po = 0.01106194
P(atm. ) Z(Burnett) Z (Virial) ^B “ %V B. and cTc 1 B.

124.032 1.10307 1.10306 0.00001 B„ = 2.84500
75.4285 1.04849 1.04854 -0.00004
47.1561 1.02455 1.02453 0.00001 a = 0.01260
29.8361 1,01321 1.01318 0.00003
18.9798 1.00744 1.00745 -0.00001
12.1058 1.00437 1.00437 -0.00000 B- = 394.2572
7.7315 1.00262 1.00264 -0.00002
4.9414 1.00161 1.00162 -0.00001 CT = 3.4149
3.1595 1.00103 1.00101 0.00002

96.7873 1.07066 1.07068 -0.00002 B. = 6070.033
59.8381 1.03457 1.03449 0.00008
37.6702 1.01796 1.01799 -0.00003 a = 211.771
23.9100 1.00988 1.00992 -0.00004
15.2348 1.00574 1.00572 0.00002
9.7243 1.00338 1.00341 -0.00003
6.2131 1.00203 1.00208 -0.00005
3.9725 1.00138 1.00129 0.00009
2.5400 1.00078 1.00081 -0.00002

CHK = 2.63382(10 - v ' = 2.49561(10“®)

1 = 5.33962(10“ )̂ (Zg - ^V^AVE 7.69060(10“7)
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TABLE 10
EXPERIMENTAL AND CALCULATED RESULTS FOR

75. 29% HELIUM AT -170°C

Run #1: N„ = 1.562824 %o/Po := 0.02010412

Run #2: N„ = 1.562812 :o/Po = 0.02536875

P (atm. ) Z(Burnett) Z (Virial)
...

B . and or_
.  ̂ ®i

50,7032 1.01934 1.01935 -0.00001 B^ = 1.09346
32.1076 1.00877 1.00877 -0.00000
20.4557 1.00438 1.00437 o.oooaa O’ = 0.02601
13.0628 1.00236 1.00235 0.00001
8.3500 1.00133 1.00134 -0.00001
5.3402 1.00083 1.00079 0.00004 B^ = 249.0742
3.4158 1.00046 1.00048 -0.00002 a = 14.4485

39.9181 1.01267 1.01265 0.00002 B^ = 21312.08
25.3756 1.00603 1.00603 -0.00000
16.1897 1.00307 1.00314 -0.00006 O’ = 1838.27
10.3455 1.00173 1.00174 -0.00002
6.6158 1.00111 1.00102 0.00009
4.2312 1.00062 1.00061 0.00001
2.7067 1.00035 1.00038 -0.00003

CHK = 1.42202(10“®) S(Zg - Zy)2 = 1.71704(10“®)

S|Zg - Z 1̂ = 3.34930(10“ )̂ (Zg ^V^AVE L.57774(10“®)
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TABLE 11
EXPERIMENTAL AND CALCULATED RESULTS FOR

75.29% HELIUM AT -190°C

Run #1: = 1.563541
Run #2: N„ = 1.563426

P(atm.) Z (Burnett) Z(Virial)

Zq/Pq = 0.1287187 
Zq/Pq = 0.1563508

“b .

7.7087 0.99226 0.99228 -0.00000 Bg = -6.79800
4.9443 0.99506 0.99504 0.00001 a = 0.02297
3.1680 0.99688 0.99682 0.00004
2.0283 0.99791 0.99796 -0.00007

6.3554 0.99367 0.99363 0.00004
4.0741 0.99587 0.99591 -0.00005
2.6097 0.99735 0.99738 -0.00004
1.6709 0.99835 0,99832 0.00001
CHK = 1.04443(10"®) S(Zg "  = 1.32131(10"®)

e |Zb - Zyl = 2.81047(10"^) (Zg - Z )V^AVE = -6.75678(10"®)
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TABLE 12
EXPERIMENTAL AND CALCULATED RESULTS FOR

44.56% HELIUM AT -160°C

Run 
Run 

P(atm.)

#1: N„
#2: Neo
Z (Burnett)

= 1.563421 
= 1.563331 
Z(Virial)

Zo/P
Z^/P

^B - %V

Q = 0.02118666
Q = 0.02607363
B. and a_

®i

40.9855 0.86834 0.86834 0.00000 = -32.2801
27.4286 0.90851 0.90853 -0.00001
18.1222 0.93844 0.93844 0.00000 a = 0.0231
11.8502 0.95938 0.95935 0.00003
7.6910 0.97347 0.97347 -0.00001
4.9664 0.98276 0.98282 -0.00005 B* = 1312.275
3.1966 0.98895 0.98892 0.00003 o

a = 14.884
34.0672 0.88826 0.88826 -0.00000
22.6603 0.92365 0.92366 -0.00001
14.8956 0.94917 0.94913 0.00004 B. = -11209.6
9.7034 0.96662 0.96662 0.00000 4
6.2815 0.97824 0.97830 -0.00005 a = 2192.50
4.0498 0.98597 0.98598 -0.00000
2.6037 0.99099 0.99097 0.00002

CHK = 9. 76740(10"^) Z(Z_
-  %v)' = 1.00644(10"®)

S|Zg - Z^l = 2.69523(10"^) (Z^ - z )V^AVE = -1.06449(10"®)
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TABLE 13
EXPERIMENTAL AND CALCULATED RESULTS FOR

44.56% HELIUM AT -170°C

Run 
Run 

P ( atm. )

#1: N« 
#2: N* 
Z (Burnett)

= 1.563044 
= 1.563177 
Z(Virial)

Zq/P
Zq/P

-  S

0
0

= 0.05475752
= 0.06581494
B. and 1 B^

16.7706 0.91831 0.91832 -0.00000 Bg = -40.5956
11.0577 0.94640 0.94638 0.00002
7.2143 0.96510 0.96514 -0.00004 O = 0.0374
4.6747 0.97747 0.97747 -0.00000
3.0154 0.98551 0.98549 0.00002 B^ = 1268.757

14.1492 0.93123 0.93121 0.00001 a = 21.898
9.2827 0.95500 0.95505 -0.00006
6.0376 0.97095 0.97086 0.00008
3.9030 0.98117 0.98120 -0.00003
2.5141 0.98792 0.98791 0.00001

CHK = 2. 12021(10"®) S(Zb -  = 1.42277(10"®)
EjZg - Z^l= 2.78437(10

>
- z )AVE 1.44322(10"®)
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TABLE 14
EXPERIMENTAL AND CALCULATED RESULTS FOR

30. 13% HELIUM AT -160°C

Run #1: N « = 1.563346 Zq/Pq = 0.02985032
Run #2 : N „ = 1.563378 Zq/Pq = 0.03673658

P(atm.) Z (Burnett) Z(Virial) %B - 2v B. and cr 1 B^

27.3917 0.81765 0.81763 0.00002 Bg = -56.7904
18.8174 0.87812 0.87815 -0.00002
12.6102 0.91996 0.91993 0.00003 cr = 0.0163
8.3109 0.94786 0.94791 -0.00005
5.4198 0.96634 0.96633 0.00002 B3 = 1730.987
3.5098 0.97833 0.97831 0.00001 (y = 5.752

23.0927 0.84835 0.84838 -0.00003
15.6634 0.89958 0.89959 -0.00000
10.4071 0.93443 0.93437 0.00006
6.8209 0.95744 0.95744 0.00000
4.4316 0.97253 0.97254 -0.00002
2.8633 0.98234 0.98234 -0.00000

CHK = 1. 29216(10“®) Z(ZB - = 9.92392(10“®)
riz - Z I = 2.74673(10“'̂)B V (Z.B - V rVE = 7.04968(10-’)
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TABLE 15
EXPERIMENTAL AND CALCULATED RESULTS FOR

30.13% HELIUM AT -170°C

Run #1: N„ = 1.563851 %o/Po = 0.06738365

Run #2: N„ = 1.563683 %o/Po = 0.08590859

P (atm. ) Z (Burnett) Z (Virial) ^B " %V B . and 1 B.

13.0882 0.88193 0.88197 -0.00004 Bg = - 70.7607
8.7605 0.92316 0.92313 0.00003 a = 0.0592
5.7665 0.95028 0.95028 0.00001
3.7563 0.96804 0.96797 0.00007
2.4301 0.97936 0.97943 -0.00007

10.5516 0.90647 0.90640 0.00007 B^ = 1964.419
6.9918 0.93923 0.93928 -0.00006 a = 43.120
4.5740 0.96078 0.96082 -0.00004
2.9678 0.97477 0.97480 -0.00003
1.9156 0.98387 0.98383 0.00004

CHK = 2.29415(10"®) 2(%B - = 2.34610(10"®)

S|Zb - z = 4.39718(10"^) (Zg AVE - 2.08017(10"®)
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TABLE 16
EXPERIMENTAL AND CALCULATED RESULTS FOR

100.00% NITROGEN AT -160°C

Run #1: Noo — 1.562652 Zo/Po = 0.04319787
Run #2: Noo = 1.562557 Zo/Po = 0.05351136

P (atm.) Z (Burnett) Z(Virial) Zs “ Zv B. and a„1 B^

16.3509 0.70632 0.70640 -0.00008 Bg = -121.2347
11.9727 0.80819 0.80808 0.00010
8.3061 0.87615 0.87630 -0.00015 a = 0.2865
5.5856 0.92068 0.92068 -0.00000
3.6860 0.94942 0.94923 0.00019 B^ = -822.6764

14.2036 0.76006 0.75991 0.00015 a = 368.8199
10.0974 0.84428 0.84437 -0.00009
6.8866 0.89974 0.90000 -0.00026
4.5850 0.93601 0.93594 0.00007 B^ = 889607.3
3.0072 0.95926 0.95901 0.00025 a = 108823.3

CHK = 2.45417(10“ )̂ - %v)̂  ̂= 2.46099(10“?)
Z|Zg - Zyl = 1.35995(10“ )̂ (Zg - Z )v 'ave = 1.98216(10“ )̂
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TABLE 17
EXPERIMENTAL AND CALCULATED RESULTS FOR

100.00% NITROGEN AT -170°C

Run 
Run 

P(atm,)

#1: Nco
#2: N„ 
Z(Burnett)

= 1.564732 
= 1.565250 
Z(Virial)

Zq/Pq = 0.08969387 
Zq/Pq = 0.1104292

^B " ®i *B.

8.9413 0.80198 0.80213 -0.00016 Bg = -161.8303
6.2034 0.87068 0.87002 0.00066
4.1691 0.91554 0.91549 0.00005 a = 0.6012
2.7497 0.94483 0.94540 -0.00057

B- = 8817.199
7.5775 0.83677 0.83695 -0.00018 3

5.1707 0.89375 0.89350 0.00025 a = 574.498
3.4407 0.93087 0.93101 -0.00014
2.2556 0,95519 0.95554 -0.00035
CHK = 1.06099(10“ )̂ S(Zb

-  = 1.02325(10"^)
1 = 2.35647(10"^) (Zg ^V^AVE = -5.44492(10"^)
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Another listed quantity of interest is the discrepancy be
tween Z(Burnett) and Z(Virial). It should be noted that 
the values for these discrepancies were calculated with 
more precision than reported for Z(Burnett) and Z(Virial) 
and quite often the difference in the reported compressi
bilities does not seem to equal the reported discrepancy.
This is entirely a consequence of rounding-off the compres
sibility values. The last column contains the optimal virial 
coefficients and the standard deviation for each one.

Finally four quantities are listed which should offer 
some insight into the confidence with which the results may 
be viewed. They are the optimal value of the CHK function 
defined by Equation 113, the sum of the squares of the dis
crepancies between Z(Burnett) and Z(Virial), the average 
discrepancy and the sum of the absolute values of these dis
crepancies .

Appendix C contains a discussion of the expected 
experimental errors. The random error should be reduced to 
a negligible amount for all sets of data, but the maximum 
systematic error expected ranges from 0.55% for pure nitrogen 
at -160°C to 0.04% for helium rich mixtures at low pressure. 
The actual error would be much less than these maximum values.

The "goodness of fit" may be inferred from the CHK 
value. This quantity is a fair indication of the agreement 
between observed and calculated values for and with
the exception of 100% Ng at -170°C is always less than
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5.5(10 . The large value for this isotherm is a conse
quence of the fact that there simply are not enough data 
points to treat properly.

Interaction Virial Coefficients 
Interaction second coefficients have been calculated 

from the mixture values. The equations relating mixture, in
teraction and pure component virial coefficients are

2 2
= Z E B.. x.x. (115)

2 i=i i=i 1] I ]

The coefficient can be found by applying the devel
opment of Chapter IV. The pure component coefficients may 
be inserted or calculated for comparison. The compositions 
are required and accuracy here is critical.

The U.S. Bureau of Mines supplied a mass spectrom
eter composition analysis with the samples. These values 
were checked by a molecular weight determination in this 
laboratory using a method similar to that described by 
Canfield [6]. The two sets of values are presented in 
Table 18 along with the composition of the mixtures used 
by Canfield, Finally the interaction second virial co
efficients are presented for the -170°C and -160°C iso
therms in Table 19.
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TABLE 18
HELIUM-NITROGEN MIXTURE COMPOSITIONS

Canfield [6] U.S. Bureau of Mines Molecular Weight

87.68 87.60 87.77
75.23 75.20 75.29
44.56 44.50 44.56
30.06 30.11 30.13

All entries are mole per cent helium

TABLE 19
HELIUM-NITROGEN INTERACTION VIRIAL COEFFICIENTS

•160°C 11.26

■170°C 10.94

Second virial coefficient in cc/mol



CHAPTER VII 

RESULTS AND CONCLUSIONS

A Burnett apparatus was available at the University 
of Oklahoma for very accurate determination of the compres
sibility factors of gases. As previously assembled, the 
equipment was operable to 700 atmospheres between 50°C and 
-90°C.

A major modification of the temperature bath ex
tended the range of applicability to -190°C and 700 atmos
pheres. The temperature control was ±0.005°C across the 
Burnett apparatus in the new configuration. A technique 
was also developed which allowed use of valves completely 
immersed in the cryostat.

The helium-nitrogen system was studied at -160°C, 
-170°C and -190°C at maximum pressures ranging from near 
saturation for nitrogen bearing mixtures to 700 atmospheres 
for helium. The compressibility factors derived from the 
observed data should exhibit maximum errors ranging from
0.55% for nitrogen to 0.04% for helium.

An extensive study of polynomial approximations 
for infinite series yielded a scheme for assigning real
istic variances to the polynomial coefficients as compared

84



85
with the series coefficients. This allowed choice of op
timal virial coefficients from the experimental compres
sibility data.

Finally, an optimum search routine was developed 
to reduce the Burnett data to compressibility factors.
This was essentially a problem in non-linear curve fitting. 
The results were very gratifying and seem to indicate that 
more accurate information could be extracted from the data 
in this manner than was possible with earlier techniques.
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APPENDIX A

SOME SPECIFIC INFORMATION CONCERNING THE EQUIPMENT

The following information was not considered vital 
to the main body of discussion, but it should prove useful 
to anyone working with this particular apparatus in the 
future and to anyone working with a similar piece of equip
ment. These specifics can be logically presented under the 
general headings of temperature measurement and pressure 
measurement.

Temperature Measurement 
The Callendar-Van Dusen equation was used to relate 

the resistance of the thermometers to the absolute tempera
ture above -182.97°C. The equation is

R = R + O R o f ^ ^  T - T^ + - ^  T^ - T^l (A-1)
 ̂ "LlO 10 10 10 J

where R^ is the resistance at T°C, Rq is the resistance in 
ohms at 0°C and a, /S and ô are calibration constants. The 
values of these quantities are 

Thermometer #1517523 
Date of Calibration: May 17, 1963

88



89
Range: 444.6°C to -182.97°C

a = 0.0039266^g 
/3 = 0.11035 (below 0°C)
6 = I.49I36 

Rq (May 30, 1966) = 25.5512 ü (ice point)

Thermometer #1665930 
Range: 444.6°C to -261.15°C
Date of Calibration: March 9, 1966

0! = 0.003926145 
j8 = 0.11054 (below 0°C)
6 = 1.49154 

Rq (May 30, 1966) = 25.5331 fi (ice point)
Only #1665930 was used to measure the temperature below 
-182.97°C. Because the Callendar-Van Dusen equation does 
not hold in this region, the point-by-point calibration 
supplied by the National Bureau of Standards was employed 
to relate the resistance to temperature.

The G-2 Mueller bridge was set up with equal ratio 
arms to insure that the true resistance of the thermometers 
would be the averages of normal and reverse readings. As 
an added precaution the resistance of the thermometer leads 
was equalized within a few ten-thousands of an ohm to render 
any imperfection in the adjustment of the ratio arms negli
gible .
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Pressure Measurement 
The elements involved in pressure measurement are 

the dead-weight gages, the weights and the differential 
pressure indicators. Some particulars should be mentioned 
for each item.

Ruska Instrument Corporation provides a list of in
strument constants with each dead-weight gage. These con
stants are (for the gages in this laboratory)

Effective Area at ~ 
25°C and 1 atm, in.
Coefficient of Superficial 
Thermal Expansion, (°C)“1
Fraction Change of Area 
per Unit Pressure Change, 
(psi)"l
Resolution 
Plane of Reference

High Pressure 
Gage_____

0.0260430

1.7 X 10

-3.6 X 10 
< 5 PPM

-5

-8

0.04 in. below 
line on sleeve 
weight

Low Pressure 
Gage

0.130220

1.7 X 10

-4.8 X 10 
< 5 PPM

-5

-8

0.10 in. below 
line on sleeve 
weight

The weights furnished by the manufacturer were pre
cisely machined stainless steel masses which were calibrated 
against a set of Class S standards. The results of this 
calibration are given in Table A-1. In addition, a set of 
Class C standard weights up to 500 mg were used for fine 
balancing.

The manufacturer's specifications for accuracy and 
sensitivity of the differential pressure indicators are:
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Accuracy: ±1-1/2 scale divisions at null
Sensitivity: 0.0001 psi/scale division, maximum

Blancett measured the sensitivity of the indicators in situ 
and found that the room temperature indicator exhibited 
0.00005 psi/division while at -183°C the cryogenic indicator 
exhibited 0.0004 psi/division. These values were not re
measured and his results were taken as indicative of the 
behavior under the conditions experienced in this work.

TABLE A-1 
CALIBRATION DATA FOR WEIGHTS 

Letter Designation Apparent Mass vs.
Brass, Pounds

A 26.03576
B 26.03564
C 26.03567
D 26.03569
E 26.03575
F 26.03500
G 26.03511
H 26.03504
I 26.03513
J 26.03543
K 26.03552
L 13.01812
M 5.20716
N 5.20718
0 2.60351
P 1.30167Q 0.52073
R 0.52075
S 0.26034
T 0.13018
U 0.05207
V 0.05206w 0.02603
X 0.01302
A 0.00521
A 0.00521
B 0.00260
C 0.00130
fh 0.78104
} 0.78107
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The zero shift of the indicators (described in 

Chapter III) has a bearing on the values of the constants 
and in Equations 8 and 9. These constants were de

rived taking into account the pressure deformation of the 
Burnett cells, the cryogenic valves, the magnetic pump, 
the connecting tubing and the cryogenic differential pres
sure cell. However, another factor had to be considered—  

the fact that a zero shift indicated that the position of 
the diaphram in the differential pressure cell was a func
tion of pressure at the electronic null and would therefore 
contribute to the pressure effect on the cell constant (see 
Figure 6). When all these factors are combined the follow
ing results were obtained (see Blancett for detailed an
alysis) :



TABLE A-2
CONSTANTS FOR PRESSURE EFFECT ON THE CELL CONSTANT

T°C ^1 %4 %5 %6
-160.00 1.0 1.25(10"®) -6.56(10"^) 2.03(10"^^) -2.87(10"^4) 1.48(10"^^)

-170.00 1.0 1.19(10"®) -6.10(10"^) 1.86(10"11) -2.60(10"^^) 1.34(10"17)

-180.00 1.0 1.16(10"®) -5.86(10"^) 1.78(10"^^) -2.47 (lO"^^) 1.26(10"^^)

-190.00 1.0 1.15(10"®) -5.32(lo"^) 1.57(10"11) -2.15 (10"14) -171.09(10 )

T°C mi ™2 "3 ™4 m5

-160.00 1.0 1.67(10"®) -9.81(10"^) 3.04(10"11) -14-4.29(10 ) 2.21(10"^^)

-170.00 1.0 1.60(10"®) -9.12(10"9) 2.79(10"11) -14-3.89(10 ) 2.01(10"^^)

-180.00 1.0 1.54(10"®) -8.76(10"^) 2.66(10"^^) -3.69(10"14) 1.88(10"^^)

-190.00 1.0 1.46(10"®) -7.96(10"^) 2.35 (10"11) -14-3.22(10 ) 1.63(10"^^)



APPENDIX B 

EXPERIMENTAL PROCEDURE AND PROBLEMS

The experimental procedure is designed to be as con
sistent as possible with the Burnett analysis. In particular, 
a constant temperature is sought for the period before an ex
pansion and after re-equilibration. Also the amount of gas 
in before an expansion should be equal to the amount in 

and after the expansion (i.e., no leaks). Finally, 
the amount of gas in should be the same before and after 
closing the expafnsion valve during a measurement.

Pre-charging Procedure
In the most general case, the apparatus had to be 

brought from ambient temperature and pressure containing 
air to the experimental temperature and pressure containing 
the desired mixture. This alteration proceeded in the fol
lowing manner.

The room-temperature differential pressure indicator 
was zeroed. Then the vacuum pump was turned ON and the 
liquid-nitrogen transfer line and the phase separator were 
evacuated to lO/u Hg. These were then closed off and the 
rest of the system (except for that section used exclusively
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in charging) was opened to the pump. A pressure of three to 
four psi was then applied to the liquid-nitrogen transfer 
dewar which caused the nitrogen to flow via the phase sepa
rator into the cryostat. The thermotrol was adjusted to the 
appropriate setting for the desired temperature and the con
trol heater was set to pulse at 25-30 watts with about 1/4 
ON time. The liquid-nitrogen metering valve was opened 
several turns and cool-down was under way.

The bath would reach any of the experimental tem
peratures (-160°, -170°, and -190°C) in about three hours. 
The apparatus within the cryostat equilibrated much slower, 
however, requiring from eight hours at -160°C to twelve 
hours at -190°C. During this period the system pressure 
would easily reach 5/i Hg, and the charging system, in
cluding the compressor, could be purged repeatedly (mini
mally three times at 100 atm and 3 times at 10 atm) with 
the desired mixture.

When the temperature was within a few tenths of a 
degree of the desired value, an adjustment had to be made 
on the circuitry of the cryogenic differential pressure in
dicator while the system was at low pressure. This was 
necessary because temperature had a very strong effect upon 
the operating characteristics of this instrument. The ad
justment was made on a "trim pot" inside the indicator with 
a corresponding change of the zero control until a minimum 
deflection of the indicator needle occurred about the null
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position when the sensitivity control was rotated through 
its full range. When this was done the maximum variation in 
null position was specified by the manufacturer as ±1-1/2 
scale divisions. This adjustment caused a severe upset in 
the behavior of the indicator which usually required from 
30 min. to several hours to stabilize. When the spasmodic 
lurching of the indicator needle ceased, the sensitivity 
knob was again rotated through its full range to check the 
behavior. If necessary the adjustment was repeated until 
the indicator exhibited the desired properties (usually the 
secondary adjustments caused very little upset to the cir
cuitry and it stabilized quickly). With the pressure in
dicator operating properly, the temperature controller was 
adjusted, if necessary, to bring the temperature within 
±0.004°C of the desired value.

Purging and Charging the System 
The entire system was purged three times using the 

following procedure. First the cold trap (consisting of 
pure alcohol) was frozen by passing liquid nitrogen through 
the cooling coil. Then about 10 atm of the desired gas was 
bled into the system. This was done very slowly while simul
taneously adjusting the piston gage hand pumps to avoid over
pressuring the differential pressure indicators. This gas 
was then vented at various points and the entire system was 
evacuated to 10/Li Hg. The cryogenic differential pressure 
indicator was zeroed at the desired temperature and 10/i Hg, 
and the system was ready to charge.
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A sufficient number of weights was loaded upon the 
proper piston gage and the pressure was slowly brought up to 
the desired initial value. Again the hand pumps were adjusted 
to avoid overpressuring the pressure indicators. If cylinder 
pressure was not enough, the compressor was used to attain 
the required pressure. However, in the event the compressor 
was turned on, the charge and feed valves were only slightly 
opened and acted as snubbers for the pressure surges. The 
gas was then allowed to soak until it equilibrated at the 
desired temperature.

Measurements and Expansions
When the temperature remained constant at the desired 

value, the cells were isolated and a 5^ Hg vacuum was pulled 
on the rest of the system. The pressure was then monitored 
and equilibrium was assumed when it remained constant for 
10-15 min. The facts that the pressure remained constant 
and the vacuum held at 5/i Hg were taken to indicate that the 
system was leak tight. At this point one of the expansion 
valves connecting the two cells was closed and the other 
necked down until it was only 1/8 turn open. (For the ini
tial measurement both valves were closed because only the 
upper cell. Va, contained any gas.) The pressure was very 
carefully measured at this point by nulling both differential 
pressure indicators simultaneously while the weights were 
floating at the proper level on the piston gage.
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As soon as the nulling operation was complete, the 

cracked expansion valve was closed tight while the weights 
and indicator needles were balanced. This was done to pro
portion the gas properly between the two cells. Next the 
barometric pressure was recorded followed by the system tem
perature. Finally, the weights on the gage were recorded 
and double checked and the temperatures at the gage and in 
the room were noted.

Up to this point, the operation was usually trouble- 
free, barring freak accidents and operator bungling. How
ever, when an expansion was made several undesirable things 
could (and often did) happen.

An expansion was effected by venting the lower cell, 
(as slowly as practical to avoid undue upset of the equi

librium temperature) . Then a 5/i Hg vacuum was pulled on 
this cell— this required 20-30 min. depending upon composi
tion and pressure. This waiting period did serve to allow 
the temperature to return to the equilibrium value after the 
venting. When the evacuation was complete, the cell was iso
lated and one of the expansion valves was cracked to allow 
the gas to fill the lower cell. This was done as slowly as 
possible to avoid large temperature upsets and possible con
densation of some of the mixtures. While the expansion was 
in progress, the differential pressure indicators were main
tained in an approximately nulled position to avoid large 
overpressures. This was a rather touchy manipulation
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requiring simultaneous adjustment of the hand pump in the oil 
system, venting of the intermediate gas system and several 
adjustments of the expansion valve to maintain a reasonably 
constant decrease in pressure. A pitfall in this operation 
was operating too quickly. If the expansion were rapid, 
there was a good chance that the intermediate gas would be 
vented fast enough to cause an overpressure from the bottom 
in the differential pressure cells— precisely the effect 
which was to be avoided.

At this point the system was again allowed to soak, 
and presumably would return to the set temperature. This 
was seldom the case. Usually, 2-4 hours were required for 
the temperature to equilibrate and, usually, the value was 
on the order of ±0.02°C different from the set temperature. 
This required an adjustment of the thermotrol after each 
expansion and necessitated an additional 30-45 min. wait 
for the desired equilibrium temperature.

A run was finished when the system pressure dropped 
below 2.0 atm. When this occurred the remaining pressure 
was vented and the zeroes on the differential pressure in
dicators checked. If necessary, they were re-zeroed before 
starting another run.

Some mechanical difficulties were noticed (possibly 
the understatement of this whole report) regarding the fan 
assembly and the cryogenic valves. Although the low tem
perature bearing was specified usable down to the boiling
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point of nitrogen, it seemed to deteriorate quite rapidly at 
-190°C. While this could have been because of improper 
mounting (the bearings will only support a small axial load
ing, for example) it seemed to behave quite well at -160°C 
and slightly less well at -170°C. Extreme care should be 
used when mounting this bearing in future work to remove this 
variable in its operation.

The cryogenic valves also had to be mounted carefully. 
If they were not very nearly vertical and aligned very well 
with the stem extension, there was a good chance the stem 
would break in use. Furthermore, when shipped the threads 
and two-piece stem assembly were lubricated with MoSg grease. 
This had to be completely removed and replaced with dry MoSg 
to avoid freezing. The threads could be cleaned by washing 
directly with benzene and acetone, but it was more satis
factory to heat the two-piece stem assembly over a low flame 
prior to washing with the solvents. This caused the grease 
to flow out of a quite restricted volume and allowed its 
complete removal.

It was also noticed that these valve stem threads 
tended to gall after extended use. This could be minimized 
by carefully rounding the leading edge of the threads on the 
stem followed by working them in with MoSg powder. A very 
good bond of MoSg could be obtained with about 30 min. work 
and might save several hours by prolonging the valve life.
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When the valves were first assembled, it was felt 

that the tip should be highly polished and worked in with 
MoSg before a satisfactory seal could be effected. In ret
rospect this does not seem to have made any real difference.



APPENDIX C

ERRORS

The errors inherent in a Burnett-type experiment are 
those associated with the measurement of temperature and pres
sure and those arising from inconsistencies between the ex
perimental procedure and the analysis.

The measurement errors are those intrinsic to the 
instruments used and human error in their implementation.
The inconsistencies are caused by incomplete evacuation of 
the lower cell before an expansion, temperature variation 
during a run and incorrect proportioning of the gas between 
the two cells.

Mueller [23], Canfield [6] and Blancett [2] have 
thoroughly discussed these factors and their developments 
will not be repeated here. However, the final equations used 
should be noted for the sake of consistency.

The above authors have shown that incomplete evacua
tion of the lower cell introduces negligible error and that 
the error due to incorrect proportioning can be included in 
the values for the Burnett constants. The effect of tem
perature and pressure uncertainties are reflected in the error 
defined by
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N^AP. + jP.N^”^ M  - Z.A(P /Z )
Az. % ----3-----2----------3----— —  + (ÔZ/ÔT) A t (c-1)

V ^ o

where it has been assumed that = Ng = ... = and that 
differentials may be replaced by A quantities defined as 
"true less calculated" values. It should be noted that this 
equation is simpler than that used by the previous authors 
although it is based upon their reasoning. The simplifica
tion was made possible because good estimates for An and 
A(Pq/Zq) are readily available from the searching procedure 
of the computer program presently used in the data treatment. 
The A quantities may be taken as the difference in two suc
cessive values of the constants as the minimum is approached. 
The maximum error caused by a temperature variation of ±0.005 
during the experimental runs was 0.012% at -190°C, 0.010% at
-170°C and 0.009% at -160°C. The quantity P is given by

APj = (Pj X 10"4 + 3 X 10"^)atm (C-2)

The value of AT is always 0.01 while AN = A(Pq/Zq) = 5 x 10 
The partial derivative of Z with T was estimated from the ex
perimental data for each isocomp-isotherm. Thus the maximum 
error is the sum of the value given by Equation C-2 and the 
temperature variation uncertainty.

Table C-1 is a list of the maximum errors for each
isocomp-isotherm. The error is entered as a percentage. The
actual error in the compressibility factors should be much 
less than these maximum values.
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TABLE C-1
MAXIMUM EXPERIMENTAL ERRORS IN Z

Comp. Temp.(°C) P (atm. ) Az (%) P (atm. ) àT, (%)

100% He -160 700 0.04 2 0.04
100% He -170 700 0.04 3 0.04
100% He -190 700 0.05 2 0.04
88% He -160 220 0.17 3 0.04
88% He -170 125 0.11 3 0.04
88% He -190 9 0.04
75% He -160 125 0.22 3 0.04
75% He -170 50 0.11 3 0.03
75% He -190 4 0.03
45% He -160 40 0.17 3 0.06
45% He -170 9 0.05
30% He -160 16 0.53
30% He -170 7 0.27
0% He -160 8 0.55
0% He -170 5 0.39



APPENDIX D

COMPUTER PROGRAMS

The following computer programs were used in the 
data treatment. The first program, PCALC, is written in 
Fortran II [15] and calculates the corrected pressures 
from the observables. The second program, BURNOR is 
written in extended ALGOL [5] and is the main data treat
ment routine which reduces the corrected pressures to com
pressibility factors, densities and virial coefficients.
The final program is a general calling program for the 
ORNOR procedure of the data treatment program. This rou
tine is written in ALGOL and produces a least-squares fit 
of data based upon the methods of Chapter IV and was useful 
in calculating interaction virial coefficients.
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COMMENT PCALC PROGRAM
40KF0KTKANKUN DIMENSION PAL (30) .PMAL(30) |PAH(30) tFHAHOO). J( 30)KEAO 301,(FHAL(I),PAL(I),FNAH(I),PAH(l)fl=l,29)301 F0RMAT(4F12.6)101 PRINT. 777   . . . .......777 FGRMAT(1H1,20HPRESSURE CALCULATION)READ .100,_MU_,m,FM,RHQGO,RH0GI ,HCHB READ 200, DP2SC, DELTA, KHL 100 FORMAT (F11.6,5F12.6)200 F0RMAT(2Fii.6,I3)PRINT 701______________701 FORMAT!IX,y////2BH INPUT VALUES ARE AS FOLLOWS)PRINT 702, DELT702 FORMAT!IX,13H0ELTA TEMP = F12.6)PRINT 703, RR, FMW703 FORMAT ! IX,6HR-R ="F12.6/1X,19HMÜL ECUL AR WEIGHT = F12.6)PRINT 704,RHOGü,RHOGI______704 FORMAT! IX,16HDENSITY SUD 0 = Fl2'.6/ÏXa6HDÉNSITY SÜB î = FÏ2.6) PRINT 705,HCHB705 FORMAT ! IX,8HHC-HB'= F 12.6)PRINT 706,DPZSC,DELTA706 FORMAT!ixiBHDPZSC = F12.6/ÏX,8H0ELTA = F12.6)READ 105,N,U1L),L=1,N) ____105 FURMÀT!I10,10X,30I2) ' ~ 'SUMA =0.0SUPA =' 14.1""  ......IF!KHL)51,55,61 C SUM OF Low PRESSURES AND WEIGHTS51 DO 6 L = 1, N I = JlL)SUMA = SUMA S FMALII)6 SUPA = SUPA & PAL!I)GO TO 53C SUM OF HIGH PRESSURES AND WEIGHTS61 00 7 L = l, N_______________  _I = JlL)......................... ....  - -  -
SUMA = SUMA L FMAH!I)7 SUPA .= SUPA & PAH!I)GO TO 63C PRINTING LOW PRESSURES AND WEIGHTS USED53 00 52 L = 1, N______________ _ __I = J!L)52 PRINT 800, PAH I),FMAL!I)PRINT 801, SUPA , SUMA GO TO 76C PRINTING HIGH PRESSURES AND WEIGHTS USED63 DO 62 L =_li_N_______I = J ! L )■■ ■ ' “■ .62 PRINT 800, PAH!I), FMAHII)PRINT 801, SUPA , SUMA800 F0RMAT!16X,F11.5,28X,F11.5)801 F0RMAT!1X,15HSUM OF PRESS = F11.5,12X.17HSUM OF WEIGHTS = F11.5)76 PB = 0.0333902#RROPZSR = 07130E-06#SUPA.......IF!KHL)50,55,60 55 PRINT 500 500 FORMAT!IX,22HKHL VALUE IS INCORRECT)GO TU 101C CALCULATION OF PG. OPH FOR HIGH PRESSURE60 PG=!2.61004#!SUMA6DELTA))/!!1.0&!1.7E-05)*DELT)»(1.0-(3.6E-08)$SÛP' lA))DPH =1-0.00021 )&FMW*!!-0.116)*RH0G0&HCHB*RH0GI)GO TO 75C CALCULATIUN OF PG, OPH FOR LUW PRESSURE
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50 PG=l0.52i909*(SUMA&UELTA)j/(I1.0&(1.7E-05>«OELT)«(1.0-(4.UE-0e)*SU IPAnOPH =(-0.00057 I&EMW*((-0.116)*RHOGO&HCHB*RHOG(#75 PCÜR = PGLPü&OPH&OPZSR&OPZSC a02 PRINT 707707 FURMAT(1X,32HCALCULAT£D VALUES ARE AS FOLLOWS)PRINT 708, PB708 FORMAT(IX,22HBARQMETRIC PRESSURE = Fll.5)PRINT 709, OPZSR709 FORMAT(IXfSHOPZSR = Fll.5)PRINT 710, PG, DPH710 FURMATIIX.16HGAGE PRESSURE = Fll.5/IX,IIHOELTA PH = Fll.5)PRINT 400, POOR400 FORMAT)IX,//22H CORRECTED PRESSURE = Fll.5)GO TO 101 END
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COMMENT BURNOR PROGRAM

AM JULY oa, 196700135 BEGINCOMMENT THE PLOTTEH PACKAGE IS NOT LISTED BUT GOES HERE* PROCEDURE OPOW(X,XL,Y#YL,K);VALUE X*XLfK;
REAL X»XL»Y»YL;INTEGER K>BEGIN LABEL DW;INTEGER liY*-l.OI YL*0.0;IF K<1 THEN GO TO DW ELSEFOR 1*1 STEP 1 UNTIL K DODOUBLE(X.XL»Y»YL»x,«.,Y*YL)i DW: END OF OPOWl PROCEDURE DSQRTCX1»XL»Y1h»Y1L) f VALUE XI,XL tREAL X1,XL,Y1H,Y1L JBEGIN INTEGER T »REAL X,Y ;REAL ARRAY CONCOtTI fLABEL LI,RETURN ;IF XI = 0 THEN GO TO LI )

DICK HALL CSC

0.0000026973966 f 0.000001603663 t 0.0000076294 i 2.137099923 1 0.000004536465 I 1.270727923 I 7.555766922 t 4.462697922 )
1 .0 I

CONCO]CONCnC0NI2]C0NC4]C0NC3]CONtS]C0N[6]C0NC7]X «■ XI T «■ 0 >1 * X.tei2] I T,145:11 * X.[2:ll ;Y * X >Y.[3:61 * Y.[2:6] )Y * Y X C0N[T1 iY * CX/Y ♦ Y) X 0.5 iY * (X/Y +Y) X 0.5 1Y * (X/Y ♦ Y) X 0.5 1Y * (X/Y + Y) X 0.5 iD0UflLE(Xl,XL,Y,0,/,Y,0,«,,0.5,x,Y,Û,+,*,YlH,YlL) 1 GO TO RETURN I LI: YIH ♦ YIL * 0 >
return: ENOlREAL TOM.TOML, HAM.HAMLl LABEL L601 REAL lowddxi.dbdum;INTEGER IXttl BOOLEAN ARRAY SL0N[0:100]I COMMENT PROGRAM 200)DEFINE FORNQsFUR NO *1,NQ+1 WHILE NOS*,FORR=FOR R*1,R+1 WHILE RS», FORI»FOR 1*1,1*1 WHILE IS «, FORK=FOR K*1,K*1 WHILE KS «)DEFINE FORIXO = FOR 1X0*1 STEP I UNTIL *)
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INTEGER AMT#INU) REAL R,EPSILON!BEGININTEGER I,J!INTEGER ARRAY INOlCESCOt100]!FOR I«-0 STEP 1 UNTIL 100 DO SLON[ I ]«-FALSE!REAOCCR>/> FOR 1*0,1 STEP 1 WHILE INDICES!I-I]20 DO INDICESCI])!FOR 1*0 STEP 1 WHILE CJ*INDICES!I]>20 00 SLONCO]*TROE!END! REAOCCR, /, AMT,EPSILON,R)! INO * 1!L60S begin INTEGER N,M!REA0(CR,/,N,M)!SL0N[S3*TRUE!BEGINREAL temp, COMP! INTEGER NQ,K,NN,NOMRUN,HIN!COMMENT IND =1. NU = LOWER CASE N!ARRAY F!0IM,0IN], Y,X[0:N], A[0lH,0iH], BFFCOtM]!
array FLC0:M,0<N],ALC0iM,0lM],BFFLC0lM],XLC0iN]! ARRAY TEMPXA,TEMPYA,TEMPX,TEMPY COIN+IJ!ARRAY TEMPX8,TEMPXC,TEMPYB,TEMPYCC0:N*1]!format FM15 ( /"FINAL FIT OF I VS RHO")!FORMAT FMlO! /"Y(N)"/ }, FM12! /"X(N)"/ )!PROCEDURE 0RAWIT(X,Y,N1,N2)! VALUE N1,N2! INTEGER N1,N2!ARRAY X,YIO]!BEGINARRAY XNAME,YNAMEtO:53!INTEGER I,N!REAL YMIN,DY,XMIN,OX!XNAMEC03* "DENSIT": XNAMEC13* "Y "! YNAMEC03* "(Z-l)V"!N*N1+N2!PLOTCO,.5,-53!XCN+13*0.0!IF ABS(Ytl3-Y!N] 3 < R-A THEN BEGIN YMIN* ENTIER!Y ! 133-5!ÜY*1! SCALES(Y,N, YMIN,DY,13 END ELSE SCALE(Y,N,8,YMIN,0Y,13!SCALE(X,N*1,6,XMIN,DX,13!AXIS(0,0,XNAME,-7,B,0,XMIN,DX3!AXISCO,0,YNAME,6,e,90,YMIN,DY3!FOR 1*1 STEP 1 UNTIL N1 DO SYMBOL!X ! 13,Y ! I 3,.OB,XNAME,0,-53!FOR I*N STEP -1 WHILE I>N1 00 SYM80L!XC13,Y113,.OS,XNAME,0,-93! PLOT!ll,-.5,-33!END OF DRAWIT!

comment PROCEDURES ORNOR,INVERT PERMUTE AND CALFY,OR THEIR EQUIVALENTS INSERTED HERE!PROCEDURE INVERSE!N,A,EPS,SINGULAR!!VALUE N,EPS!INTEGER N!PEAL EPS!REAL ARRAY AC0,03!LABEL SINGULAR!BEGIN INTEGER I,J,K,11,N1,K2,L!REAL BIG,TEMP ,0IAG,O!INTEGER ARRAY F!0:N3!LABEL 12,13,14,15,16,SK3!12:FOR I*1STEP lUN TIL N DO BEGIN II*I-1!FUR J*I STEP lUNTIL N DO BEGIN 0*D!FDR K*1STEP ION TIL II DO Q*A!J,K3xAtK,I3*Q!A!J,I3*A[J,I3-Q EN0!BIG*0!K2*I!I3tF0R K*I ST EP lUNTIL N 00 begin IF ABS!AIK,133>BIG THEN BEGIN BIG*ABS!ACK,133!K2*K END EN0!IF BIGSEPS THEN GO TO SINGULAR!FC13*K2!IF K2AI THEN I4IF0R K*1ST EP lUNTIL N 00 BEGIN TEMP*ACI,K3 ! AC I,K3*ACK2,K3 !ACK2,K]*TEMP END!DIAG*AC I,I3!F0R J*I*1STEP lUNTIL N DO BEGIN 0*0!FOR K*1STEP lONTIL II DO Q*ACI, K3xACK,J3*U!ACI,J3*!ACI,J3-03/DIAG END END3I5IFOR I*1STEP lUNTIL N DO BE GIN II*I-1!DIAG*ACI,I31F0R J*1STEP lUNTIL I 00 BEGIN IF I=J THEN ACI,J3*
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1/OIAG ELSE: BEGIN Q4-0IF0R K*J STEP lUNTIL II DO Q«-A[ I»KIxACK, JI+Q) At I>JI «-8/DIAG END END ENOJNl^N-UFQR I»N1 STtP-IUNTIL IDO BEGIN II*I + UFOR J* N STtP-lUNTIL II on begin Q*0;L*J-1;F0R K*II step lUNTIL L 00 0*AII*KJXA tK>JHa;ACI»UI«-A[I«J}-0 END ENDIFOR I»1STEP lUNTiL N1 00 FOR JflSTEP lU NTIL N DO BEGIN Q«-OHF I2J THEN BEGIN FUR K*I*1STEP lUNTIL N DO 0*A[I,KI xA[K«J]-fQ;AII*J]«-AII,J]̂ Q END ELSE BEGIN FOR K«-J STEP lUNTiL N DO Q*AII, K]xA[K,J] + UlA[I,J]*a END ENUM6IF0R J*N STEP-IUNTIL 100 BEGIN K2»FtJ]MF FCJIsJ THEN GO TO SK31F0R K4-1STEP lUNTiL N DO BEGIN TEMP*A[K,K21)A[K,K2 ]«-A[K»JllACKfJK-TEMP END)SK3iEND ENDI DEFINE INVERT=InVERSE#1
COMMENT PROGRAM 2011 PROCEDUHE aRNOR(N*M»EPSlLON»Y»F*FL,A,AL»BFF,BFFL,MIN)lREAL EPSILONI INTEGER N»M,MIN1 ARRAY Y»BFF[0]»F»At0»011 ARRAY BFFLC03»AL»FL[0»0I;BEGINREAL SUM*SSQMIN,ARG,BF*YPHUO;INTEGER NU,K,R,I,J,Q,NOORTHO,MINA,MINB.MNlARRAY G1,G2,G3,G4,G5C0IM,0:M1, KTPSI,8,0,SSD,SSQ,KELERRC0iH], PSI,PHI,FSUBI0tM,OtNi;ARRAY BF2C0:M]1REAL suml,ssuminl,argl,bfl,yprodl;ARRAY G1L,G2L,G3L,G4L,G5LIUSM,UiM],RTPSIL,HL,OL,SSDL,SSUL,RELERRLCO tM],PSIL,PHIL,FSUBLCOiM,0>NIl ARRAY BF2LC0iM]>FORMAT FMK /"B(K)"/ ), FM2(5(E17.10,X5) ),FM3( /"SUM OF SQUARES OF DEVIATIONS"/ ),FM4C /"S SQUARED"/ ),FM5C /"MINIMUM S SQUARED FIT="I3),FM6( /"RELATIVE ROUND-OFF ERROR"/ ),FM8( /"0(K)"/ ),FM7C /"DAMN-IT, ROUND-OFF ERROR IS STILL GREATER ""THAN EPSILON"), FMlbC /"EST. BEST FII="I3),FM13C /"REORTHONORMALIZATION" ),FM14( /"BEST FIT CRITERION"/ ))LABEL ORTHO)LABEL FINALPT)LABEL L63,L33,L34)N00RTH04-1) ARG4-ARGL4-0.D)FOR NQ*1,NU+1 WHILE NQ£N DO DOUBLE!ARG,ARGL,YCNQI,Ü,YCNO1,0,x , A  HG,ARGL)) DOUBLE(ARG,ARGL,*,YPROD,YPRODD)ORTHO:BEGINLABEL L1,L2,L3,L4,L5, FIN0RT,L6,L7)REAL SUMQ,IPPSI,IPPSIF)ARRAY C,G(0:M,0:MI)REAL SUMQL,IPPSIL,IPPSIFL) ARRAY CL,GLCO:M,OlM))SWITCH GCALC*L1,L2,L3,L4,LS)FORMAT F2(5(E17.10,X5) ),F3( /"PSI(K,N)"/ ), F4( /"G(K,R)"/ ),F5( /"PHI(K,N)"/ ), F6( /"ROOT INNER PRUOUCT PSI"/ ))FORNQ N DO DOUBLECFC1,NQ],FL11,N0),«',PSI11,NQ],PSILI1,N01))IF SLONtlS) THEN BEGIN WKITE(LP,F3))WRITE(LP,F2,F0R IXQ*1STEP 1 UNTIL N DO PSIC1,IXQl))END)IF M=1 THEN GO TO FINORT)FOR K*2,K+I WHILE K£M DO



Ill

BEGIN FORNQ N 00BEGIN SUMQ*SUMOL*-Of FOR R«-1«R + 1 WHILE R<K DO BEGIN IPPSI*-IPPSIL«-IPPSIF«-IPPSIFL*0; FORI N 00BEGIN OOUBLECIPPSlfIPPSlL,PSI[R,I],PSIL[R,I],PSHR,I],PSIL[R,II,x,*,♦•»IPPSI»IPPSIL)JOOUBLE(IPPSIF,lPPSIFL,F[K,II,FL[K,II,PSI[R,I],PSIL[R,II,x,+,*,IPPSIF»IPPSIFL)iEND) D0UBLEt-IPPSIF,-IPPSIFL#IPPSI»IPPSIL»/,«-»CtK»Hl»CLtK»R3)>
00U8LE(C[K,R],CL[K#RI,PSI[R,NQ],PSIL[R,NQ],x,SUMQ,SUMQL,+,*,SUMQ,SUMOD)

end; OOUBLE(FfK,NQ]*FLCK«NO]fSUMQ*SUMOL»+*«-*PSICK»N01»PSILCKfNO])l
end; if sloniibithenHRITE(LP«F2«F0R IXQ*l STEP 1 UNTIL N 00 PSICK#IXQ])TI END) IF SL0NC15] THEN WRITL(LP*F4))FINORTI FORK M DOBEGIN IF K»1 THEN GO TO L6)FOR R*-1,R+1 WHILE R<K 00BEGIN ARG4’ARGL4-0,0) FOR J«-R,J+1 WHILE J<K DO OOUBLETGCJ*RifGLCJ*RI«CIKfJlfCLCKfJlfXfARGfARGLf+f*fARGfARGD)OOUBUECARGf ARGLf 4-fGCKfRlfGLCKfR]})END)L6i D0U6LE(>1.0f«-fGCKfK]fGL(KfK])) IF SLCNIIB] THEN WRITECLPfF2fFÜRIXQ K DO GCKflXOD)END) FORK M DO FORK K DOBEGIN GO TO GCALC(NOORTHOl)LI: OOUBLE(GCKfR]fGLCKfR]f«-fGlCKfN]fGlL[KfR])) GO TO LT)L2: 00UBLE(G[KfR]fGLCKfR}f»f62(KfRlfG2LCKfR]}) GO TO L7)L3t OOUBLE(G[K>R}fGL[KfR]ff-fG3(KfR]fG3L[KfR]}) GO TO L7)
la: 00UBLE(UtKfR]fGLtKfH]f4-fG4[KfR]fGALCKfRl); GO TO L7)
lb: OOUBLECGCKfRlfGLCKfRlf̂ -fGBtBfRlfGSLIKfR])) GO TO L7)L7:END) IF SLUNtlBl THEN WRITECLPf FBI)FORK M 00 BEGIN FORNQ N 00BEGIN ARG4-ARGL4-0.0)FORI N DO DOUBLECPSIIKfIlfPSILCKfIlfPSICKfIlfPSILCKfIlfXfARGfARGLf* f«-f ARGf ARGLl)OSQRTCARGfARGLfTOMfTOMD) RTPSICK]*TOM) RTPSIL[K1*T0ML)00UBLE(PSI[KfNQ]fPSILCKfNQ]fRTPSICK]fRTPSILIX]f/f4-fPHICKfNQ]fPHILCKfNQD)END) IF SLONCIBI THEN WRITECLPfF2fF0RIXQ N DO PHICKflXO]))END) IF SLUNtlBl THEN BEGIN WRITECLPfF6))WRITECLPfF2fF0RIXQ M 00 RTPSltlXQl 1 END )END) FORK M DO BEGIN ARG*ARGL4-0.0)FORI N 00 OOUBLECYCIlfOfPHICKfIlfPHILtKfIlfXfARGfARGLf+f*fARGfAHGL)
) OOUBLECARGf ARGLf4-fBCK]fBLCKll)OOUBLECBCKlfBLCKlfRTPSICKlfRTPSlLCKlf/fffOCKlfOLCKl))END) IF SL0NC14] THEN BEGIN NRITECLPfFMll) WRITECLPfFM2> FORIXQ H DO BCIXQ 11)
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WRITE(LP»FM8); WRIT£(LP»FM2,FURIX8 M 00 Dllxrjn;END; DOURLE{YPKÜD»YPRDOL.aCU»BLCl 1»HC1 J»BLC 13»*»-*♦»SS0[1],SSÜL[ id; OOUBLECSSDI 13>SSDLl 13 cN>DU«/»«->SSOC n*SSOLC 13 );IF M=1 THEN GO TO L631 FOR K«-2»K + 1 while KSM DO BEGIN DOUBLt(S.SO[K-13»SSDLCK-13»B[K3»tlLt<3.BCK3»dL[w3»>'*-*«-.SSDtK3#S SDLCKD; D0UBLF(SS0[)<3>SS0LCK3>N>K«0»/>«->SSU[i<3>SBQLCR3};END;L63X IF SLÜNCB3 THEN BEGINWRITE(LP»FM3)I WRITE(LP»FM2,FORIXQ M 00 SSOCIXUD;WRITE(LP»FM4); WRITECLP»FM2, FORIXQ M DO SSQCIXQD; END;FORK M DOBEGIN IF K = M THEN BEGIN MInA<-m; GO TO L33 END;IF ABSCSSQIKD < ABSt SSOlK + 13) THEN BEGIN MINA«-k;k*M ENO;L33>
end; if SLÜNI53 THEN WRITE CLP»FM5»MINADFORK M 00 D0URLE(SSD[K3,SS0L[K3,SS@[MlNA3,SSQL[MlNA],2xK-N,0,%,+,«-, BFF[K3,8FFLCKD;FORK M 00BEGIN IF K=M THEN BEGIN MIN«-m; GO TO L34 END/IF ABSCBFFtK3)<ABS(8FFIK+13) THEN BEGIN MINfKl K«-M END;L34>
end; IF SLÜNI53 THEN BEGINWRITE(LP*FM14); WRITE(LP,FM2,FORIXQ M 00 BFFCIXQ3); WRITE(LPfFM15,MIN); ENO;MN» IF MINA<MIN THEN MIN ELSE MINAI MlNB* IF MN+2SM THEN MN+2 ELSE MNI FORK MN DO
begin SUM*SUML«-0,o; FOR 0*1,0 + 1 while QSMN 00BEGINARG+ARGL+O.O; fori N do DUU8LE(ARG,ARGL,PHIIK,I3,PHIL[K,I3,PHI[W,I 3,PHILCQ,I3,x#+#+,ARG,ARGL);OnU8LE(SUM,SUML,ARG,ARGL,B[Qj,BL[Q3,x,+,*.,SUM,SUML3;ENO; DOUBLE!,1.0,SUM,SUML,B[K3,8L[Kl,/,-,+,RELERR[K3,RELERRL[K3);
end; IF MN<M Then for K+MN+1,K+1 WHILE KSMINB 00 BEGIN SUM+SUML+U.O; FOR Q+1,U+1 WHILE USK DOBEGIN ARG + ARGL + O.O; FORI N 00 DOUBLE!ARG,ARGL,PHIIK.13,PHILCK,I 3,PHICQ,I3,PHILCQ, I 3,x, + , + ,ARG,ARGD;D0UBLE!SUM,SUML,ANG,ARGL,B[Ql,HL!Q3,x,+,*,SUM,SUML); 
end; DOUBLE!,1,ù,SUM,SUML,BIK3,dLCK3,/,-,+,RELERRCK3,RELERRLCK3 31
end; IF SLUNÜ3 THEN BEGINWRITE!lP,FM6)S wRlTE!LP,FM2,FORIXQ MInB DO RELERR11XQ3)I END,FORK MN DO BEGIN IF EPSlL0iM<ABS!HELEKRtK3) THENBEGIN IF nOURTMUsS IHEN BEGINIF SLÜNCS3 then WRITE!LP,FM7); GO TO FlNALPT EnDI FORI M 00 FÜRNQ N DO
begin if NU0RTHU=1 then D0DHLE!E t I,NQJ,FLn,NQ3, + ,FsUBtI,NQ3,F.SDBLf i,NQ3); DOUBLE ! PS IC I,NO 3,PSIL!I,NO 3,♦,FtI,NO 3,FLI I,NU3 31
end; NOORIHO + NUORTHO+I; if SL0nCIj3 then WRITE!LP,Fm133I ÜÜ TO DRTHij; 
end; 
end;
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FINALPT »
begin HEAL TFAC*S0?»FACl*FAC2»FflC3»FACA»SUMüE\/»hUMAbSD»SüM0S«»

ycalc>ueltave«so22»sigsq; Integer p>l;REAL TFACL»SD2L*FAC1L»FAC2L*FAC3L»FACAL*SUMüEVL#SUMABSDL.SUM0S'ÎL»YCALCL» nELTAVEL*SD22L»SIGSQL.FACL;INTEGER ST) ARRAY S0>S20C1<M]«TC1SM,1iMJ«DELTA[1tN];ARRAY SDL«S2DLCliM]»TL[lSM«ltM}«0ELTALCl>N];REAL FACJFORMAT FSK /"H = "I4/), FS2(5(El7.10»X5) ),FS3( /"COEFFICIENTS"/ ),FS5C /"STANDARD DEVIATION OF COEFFICIENTS FIRST SET ""BASED UPON SIGMA SQUARED NEXT SET UPON S SQUARED."/"IF THE above deltas ARE RANDOM» THEN THE FIRST ""SET SHOULD BE USED OTHEHWISE THE SECOND SET"//)»FS7( X10,tl7.10»Xb»E17.10»X5»E17.10 ) »FS6( /X15 "Y(0BS)"X7"-"X7"Y(CALC)"X6"="X7"0ELTA"/ )»FS8C /"SUM OF DELTAS="E17.10»X5"SUH OF ABS(DELTA)="E17.10//"AVERAGE DELTA="E17,10»X5»"SUM OF DELTA SQUARED:" E17.10)» FS9C /"SIGMA SQUARE0:"E17.10)»FS10( /"BEST FIT BASED UPON SIGMA SQUARED"/ )»FSllC /"BEST FIT:" 13))LABEL L10»L11»L12»L13»L14»L20»L%1»L22»L23»L24,L15»L16»L30»L35»L25)LABEL L26)SWITCH TCALC «■ L10»L11»L12»L13»L14)SWITCH SDCALC «- L20»L21»L22»L23»L24)FORR M DO FORK (M-R+1) DOBEGIN IF R = 1 then begin DOUBLE(U[K ] » DLCK]»<■»TC 1 »K I » TLC 1 »K ] ) ) GO TO LI6 END)GO TO TCALCCNODRTHO])LIOJ D0UBLE(G1CR+K-1»K)»G1L[R+K-1»K)»«-»TFAC»TFACL)) GO TO LIS)L11» TFAC«-TFACL*0.0) FOR J«-K»J + 1 WHILE JSCR+K-1) DO00U8LE(TFAC»TFACL»G1[J,K)»G1lCJ»K)»G2tR+K-l»J3»G2LlR+K-l»J]»x,+,«-,T 
FAC.TFACD) GO TO LIS)
Ll2: TFAC«-TFACL*0.0) FOR J<-K»J+1 WHILE JS(R+K“1) 00BEGIN FAC24-FAC2L4-0.0)FOR I*K»I + 1 while ISO DU OUUBLbCFAC2»FAC2L»G111 »KI » GIL II »KI »G2[J»I) »G2LIJ»Il»x»+,+»FAC2»FAC2L))D0U8LE(TFAC»TFACL*FAC2»FAC2L»G3CR+K-l»Jl»G3LtR+K-l»J)»*»+»«-»TFAC»TT
ACL))ENO) GO TO LIS)L13» TFAC*TFACL*0.0) FOR J«-K»J+1 WHILE JS(R+K-1) DOBEGIN FAC2«-FAC?L«-0.0) FDR I«-K»I + 1 WHILE I<J DOBEGIN FAC3«-FAC3L«-0.0) FUR P*K»P + 1 WHILE PSI DOOOUBLE(FAC3»FAC3L»GlCP»K)»GlLtP»K]»G2tI»P3»G2LtI»PJ»x»+»*-»FAC3»FAC3D) n0U8LÊ(FAC2»F4C2L»G3[J»n»ü3L[D»n»FAC3»FAC3L.x, + ,«-,FAC2»FAC2L)) End; DOUBLE!TFAC»TFACL,FAC2»FAC2L,G4(R+K-1»J],G4L[R+K-1»JI»%,+»*-»TFAC»TF ACL))END) GO ID LIS)L148 tf4c«-tfacl«-o.o; FOR j«-K»j+i while JSCH+K-1) DOBEGIN FAC2<-FAC2l«-0.0; FuR I*K»I + 1 WHILE ISJ DOBEGIN FAC3«-FAC3L«-U.D; FOR P*K,P + 1 WHILE PSI DOBEGIN f AC4«-FAC4L«-0.UJ FOR Q«-K»Q + 1 WHILE QSP DODDUBLbCFACA.E ACAL»G)IH»K),G1LI G »K]»G2CP»UJ>G2LI P,G]»%, + ,*-,FACA,FAC
4L)) nnU4L£(FAC3»FAC3L*FAC4.FAC4L.Ga[l,P]»G3LCI»PJ»x,+,«-,FAC3»FAC3L))
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ENO) D0U8LE(FAC2»FAC2L»FAC3.FAC3L»ü«CJ»IJ.G4LCJ»I],x,+,*.,FAC2,FAC2L)) END) D0URLE(TFAC»TFACL»FAC2.FAC2L»G5tR+K-l»JJ,G5LC«+K“ljJ3»*»+»<•»TFaC»TF ACL))ENO)L15« D0UaLE(T[R-î>K],TLCR-Î.K3#TCl.N+K-n,TL[l.R+K-ll,TFAC»TFACL»x, + ,«-,T 
t R,KJ»TL[K»K]))L16IEND) IF SUUNtSI THEN HRITE(LP#FS3)) FORR M 00BEGIN IF SL0NC5) THEN WRITE(LP»FS1»R)) FORK R 00 DDU8LE(TIR-K + 1»K I »TLtR- K + l»K]*«-.A[R»K],ALtH»KI))IF SLONISI then WRITECLP» FS2. FORIXQ R 00 ACR»IXQJ))END) IF SLONtSI THEN WRITECLP,F36))ST» IF MINA<MN-2 THEN MINA-2 ELSE IF MIN<MN-2 THEN MIN-2 ELSE MN-2) IF ST<1 THEN ST*1)FOR H«-ST,R + 1 WHILE RSMINB 00 BEGIN SUMOEV4-SUMDEVL4-SUMABS04-SUMABSOL«-SUMDS04-SUMOSOL«-U.O)IF SLÜNI5I THEN WRITECLP, FSl, R))FORNQ N DOBEGIN YCALC«-YCALCL«-0,0) IF NOORTHU = l THEN
begin fori R 00 DOUBLECYCALC,YCALCL,AtR,I},AL[R,n,F[I,N0],FLCI,NQ],

x,+,«-,YCALC,YCALCD) go to L30)
ENO) fori R do OOURLECYCALC,YCALCL,A[R,n,ALCR,n,FSUBI I,NQ),FSUBL[I,NQ] ,x,+,«-,YCALC, YCALCD)L30I n0UBLECYCNQ],0,YCALC,YCALCL,-,<-,0ELTA[N0],0ELTALCNUl))IF SLUNI5] THEN WRITEC LP,FS7,Y[NÛI,YCALC,DELTACNQI )) nOUBLECSUMDEV,SUMOEVL,UELTA[NQ],OELTAL[NQ],+,*-,SUMUEV,SUMOEVL)) nOUBLECABSCOELTA[NQ]),ABSCOELTAL[NQI),SUMABSO,SUMABSOL,+,*,SUMABSO, SUMABSOD)DOUBLECSUMDSQ,SUMOSQL,OELTACNQ},DELTALCNO],DELTA[NU],OELTALCNQI,x,i

,«-,SUMDSO,SUMOSOL))ENO) OOUBLECSUMOEV,SUMD£VL,N,0,/,>,DELTAVE,DELTAVEL))IF SLONCS] THEN WRITECLP,FS8,SUMDEV,SUHABSO,DELTAVE,SUMDSO)) IF R=MINA THEN BEGIN FACUFAC1L4-0.0) FUR P«-1,P + 1 WHILE P<N 00BEGIN FAC24-FAC2L»0.0) FOR Q«-1,0 + I WHILE QSN 00 UOUULECOELTACQ],DELTAL[Q3,FAC?,FAC2L, + ,<-,FAC2,FAC2L))DOUBLECFAC1,FAC1L,FAC2,FAC2L,OELTACP3,OELTAL[P3,x,+,+,FAC1,FAC1L3) END) 00UBLECSUM0EV,SUMDEVL,SUM0EV,SUM0EVL,x,FAC1,FAC1L,,2.0,x,-,N-MInA,U ,/,«■,FAC,FACD)DaUBLECSSOCMINA3,SSQLCMlNA3,FAC,FACL,-,4-,SlGSQ,SIGSQL))ENOEND) IF SLUNC53 THEN WRITECLP,FS9,SIGSQ)>FORK M 00 OQUBLECSSO[K3,SSOLCK3,SIGSQ,SIGSUL,2xK-N,0,x,+,«-,BF2[K3,U F2LCK3)) FORK M 00 BEGIN IF K=M THEN BEGIN MIN*M) GO TO L35ENO) IF ABSC8F2CK3XABSC8F2CK+13) THEN BEGIN MlN*K) K*M ENO)L35JENO) IF SLÜNC53 THEN BEGINWRITECLP,FSIO)) WRITECLP,FS2, FORIXQ M 00 BF2CIXQ3))WRITECLP,FSU,MIN)) WRITECLP,FS5)) END)FORR M DO BEGIN FORK R 00
begin SD2*-S02L«-S022«-SO?2L*-0.0)FOR J«-K,J+1 while JSR 00
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BEGIN GO TO SOCALCCNOONTHOi;L20: DOUBLE!G1[J,K],G1L[J,K],*,FAC1,FACIDI GO TO L25J L21* FACl«-FAClL«-0.0; FOR I<-K»I + 1 WHILE I5J DOD0UBLE(FAC1,FAC1L,G1CI,K],U1L[I,K],G2[J,I],G2L[J,II,X,*, *,FACi,FAC 
i d ; GO TO L25;L22« FAC1»FAC1L*0.0; FOR P«-K»P+1 WHILE PSJ 00BEGIN FAC2«-FAC2L*0.u; FOR I*K,I+1 WHILE I£P 00D0UBLE(FAC2,FAC2L*Gl[I,K],GIL[I,K],G2[P,II,G2L[P,I],x,+,*,FAC2,FAC2
d ; D0UBLE{FACl»FAClL»FAC2»FAC2L»G3[J,P].G3LtJ»PI»x»+»«-.FACl»FAClL);
end; go to L25;L23t FACl«-FAClL«-0.0; FOK Q<-K«U+1 WHILE WgJ 00BEGIN FAC2*FAC2L*0.0; FOR P*K,P+1 WHILE PSO 00BEGIN FAC3«-FAC3L*0.0; FOR I*K,I + 1 WHILE ISP 00D0UHLE(FAC3,FAC3L,G1[I,K],U1LCI,K],G2IP,I],G2L[P,II,%,+,*,FAC3,FAC3D; DOUBLE (FAC2>FAC2L«G3[Q*P]>G3L 10»P]> FAC 3>FAC3L>x, + ,«-,FAC2«FAC2D; ENO; DOUBLE(FAC 1,FACIL,G4CJ,01,G4L(J,QI,FAC2,FAC2L,FACl,FAC ID; 
end; GO TO L25;L24: FAC1«-FAC1L*0.0; FDR L»K,L + 1 WHILE LSJ 00BEGIN FAC2«-FAC2L*0,0; FOR Q*K,Q+I WHILE QSL 00BEGIN FAC3«-FAC3L*0,0; FOR P*K,P + 1 WHILE PSO 00BEGIN FAC4«-FACAL*0.0; FOR I»K,I+1 WHILE ISP 00OOUBLE(FAC4,FAC4L,Gl[I,Kl,GlL[I,K],G2CP,Il,G2L[P,Il,x,+,*,FAC4,FAC4
d ;00UBLE(FAC3,FAC3L,FAC4,FAC4L,G3[W,P],G3L[Q,Pl,x,+,*,FAC3,FAC3D;END; DOU8LE(FAC2»FAC2L,FAC3,FAC3L»G4[L»OJ»G4LCL,OJ#x,+,«-,FAC2,FAC2D; 
end; OOUBLE{FACl,FAClL»FAC2,FAC2L.G5CJ,L],G5LtJ»Ll»x» + »*-,FACi,FAClD; 
end;L25I DOUBLE(S02,S02L,FAC1,FAC1L»FAC1,FAC1L,X,RTPSICJ]»RTPSILCJ],RTPSHJ] ,RTPSILCJ]»x,/, + ,«-»SD2,S02D;FAC<-FACL*-0.0; FORI R DO BEGIN ARG*AHGL*0.0; IF N00RTH0=1 THENBEGIN FORNO N DU OOUBLECAKG#AR6L,PHlIJ,NQ1,PHILCJ,NU],F (I,NO],F[ I,N01,x, + ,«., ARG, ARGL); GO TO L26I
end; FORNO N 00 DOUBLE(ARQ.ARGL,PHI(J,NQ1,PHILlJ#NQ1,FSUBCI,NQ1,FSUBLCI, NQl»x, + ,«-, AK6,ARGD;L26I DOUBLECFAC,FACL,ARG,ARGL»AtMIN,n,ALCMIN,Il»x, + ,*,FAC,FACD; end; n0UBLE(SD22,S022L»BtJ]*BLtJ]»FAC,FACL»-,FACl,FAClL,x,RTPSIIJ],RTPSI L [JJ./» + ,<-»S022,S022D;end; DOUBLE(SIGSO.SIGSOL,502,S02L,x,S022,S022L,5022,S022L,x,+,*,ARG,ARGL i;DOUBLECSSQIHINA],S50LIMINA],502,S02L,x,SD22,5022L,b022,SD22L,x,+,«-, SS0MIN,550MIND;DSQRTC5SaMIN,SS0MlNL,T0M,TUMD; S2D[K]«-T0M; 52ÜLCK ]*T0ML;

dsurt(arg,argl,tom,t o m d; sockk-tom; sulcki*toml;ENo; IF 5LÜNC51 THEN BEGINWRITL(LP,FS1,R);wRITE(LP,F52,F0RIXQ R 00 50 IIXUJ); WRITE(LP,F51,R); WRITt(LP,FS2,F0RIXU R 00 52011X01); ENO;ENOENDEND OF PROCEDURE U»N0R;
COMMENT PROGRAM 202;PROCEDURE CALFYCN,M,n1,N2,NUMRUN,FIT,K1,K1L»«2,K2l,AK1,AK1L,AK2,Ak2L,P,P
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P»XI,XIL»XXI,XXIL#X»XL»Y,F.KL)>INTEGLR N/H»N1»N2»MUMRUN»FIT;REAL K1,K2»AK1#AK?;REAL K1L*K2L*AK1L»AK2L;ARRAY P,PP»XI. XXI,X,Y tOJ, F[0*OI)ARRAY XIL,XXIL,XLt03,FLC0»Ü3;BEGINLABEL NX 10,NX 11,NX 13,NX12,NX 14,NX là;LABEL NX20;INTEGER 1,k; COMMENT I CORRESPONDS TU ORIGINAL "LITTLE N": Ytl3«-PC13xAKi;IF NUMRUN̂ l THEM GO TO NXIU;FOR 1*2,I + l while ISNl 00 Y113*PCI IxAKlxK1*( I-lIxxl11-13 ;GO TO NXli;NXIOI YCNl+13* PPClJxAK2;FOR 1*2,I + l while ISNl 00 YCI3 * PII 3xAKIXR1*(I-l)xx111-l3 »FOR 1*2,I+l while ISN2 00 YtNl+I3*PPtI3xAK2xK2*(1-1)xXXItI-l31NXllI IF FITAl THEN GO TO NX121 IF NUMRUN̂ l THEN GO TO NX13;
FORI N1 DO DOOBLtt»1.0,*,Fll,I3,FL[l,I33; IF M=1 THEN GO TO NX20;FOR K*2,K+1 WHILE <<M 00 FORI N1 00 BEGIN T0M*XCI3; TOML*XLCn;0P0WCT0M,T0ML,HAM,HAML,K-1>;

fck,13*ham; flik,13*haml; end;GO TO NX20;NX13J FORI N 00 DOUBLE(,1.0,*,F11,IJ,FL[1,I 3 ); IF M=1 THEN GO TO NX
2o; FOR K*2,K+1 while KSM DO FORI N1 00 BEGIN HAM*Xt2xI-l3;HAML*XLt2x1-13; DPOW(HAM,HAML,TOM,TOML,K-1);F[k,i3*tom; flck,I3*toml; end;FOR K*2,K+1 while KSM DO FORI N2 00 BEGIN HAM*Xl2xI3; HAmL*XLI2x1 

3; OPOW(HAM,HAML,TOM,TOML,K-1); FCK,N1 +1 3*TOM; FL[K,N1 + I3*T0M
l; end;on TO Nx2o;NX12: FORI N1 00 YC13*YCI3- 1,0; IF NuMRONsl THEN GO TO NX14;FORI N2 00 YCN1+I3*Y [Nl+IJ-l.O;NX14I IF NOMRUNf1 THEN GO TO NX15;FORK M DO FORI N1 00 BEGIN HAM*XtIi; HAML*XLII3;OPOWCHAM,HAML,TOM,TOML,K); FCK,I3*T0M; FLCK, I 3*T0ML; ENOJGO TO NX2U;NX15: FORK M 00 FORI N1 DO BEGIN HAM*XC2x I-13 ; HAML*XLC2xI-l3;DPOwCHAM,HAML,TOM,TOML,K); F[K,I3*I0m; FLtK,I3*T0ML; END;FORK M DO FORI N2 00 BEGIN HAM*XI2xn; HAML*XL 12x 13 ;OPOWCHAM.HAML,TOM,toml,k); fck,ni+i3*tom;flck»ni*i3*toml;END;NX20:ENO OF CALFY ;
LABEL BURNETT;

reao(ch*/,temp,cump,nomrun);BURNETT: BEGININTEGER NN,MMM,N1,N2,FIT,WH,WH1, I,0n;REAL T0L,SSl,SS2,SS3,Sb4,SS5,SSKl,SSK2,SSK3,SSK4,SSK3,SSK6;REAL SS1L,SS2L,SS4L,SS3L,SS5L,SSK1L,SSk2L»SSK3L,SSK4L,SSK5L,SSK6L; REAL Al,A2,A3,A4,A3,A6,B1,B2,B3,B4,B5,B6; REAO(CR,/,NN,MMH,N1,N2,TOL); REA0CCR,/,F1T,WH,WH1,A1,A2,A3,A4,A5,A6,B1,B2,B3,
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B4*85«B6))
WRITE(LPtPAGE])i
WRITE{LP»<9("******") " INPUT DATA ’ 
WRITECLP*<"*" Xlia

9(' ’)>)/
HRITE(LP»<"*")
HRITE(LP»<"*"

X3 "EPSILUN s** E10.3 »X77 EPSILUN)
X3 "GAS CONSTANT =" F10.4 *X77 "*">»R)J

WRITE(LP»<"*" X3 "NO. OF DATA PUINTS s" 110 »X77 "*">»N)1
WRITE(LP»<"*" X3 "NO. OF parameters =" 110 ,X77 "*">»M)1
HRITE(LP*<"*" X3 "TEMPERATURE =" F10.4 »X77 "*">»TEMPn
WRITE(LP»<"*" X3 "COMPOSITION s" F10.4 »X77 "<*">,COMP))
WRITE(LP»<"*" X3 "NO. OF RUNS IN DATA SET s** 110 »X77 "*">»NUMRUN))
WRITE(LP.<"*" X3 "NO. OF POINTS EXTRAPOLATED z* n o »X77 "*">»NN)1
WRITE(LP»<"*" X3 "NO. OF PARAMS. IN EXTRAP. 3** 110 »X77 "*">»MMM))
MRITECLP»<"*" X3 "POINTS IN FIRST RUN = * 110 ,X77 "*">»Nl)i
WRITE(LP*<"*" X3 "POINTS IN SECOND RUN s" 110 »X77 "*">*N2)1
HRITE(LP.<"*" X3 "TOLERANCE 3" E10.3 »X77 "*">*T0L)1
WRITEILP»<"*" X3 "TYPE OF FIT 3" 110 »X77 "*">»FIT))
WRITE(LP*<"*" X3 "INPUT CONTROL S* n o »X77 "*">»WH)>
HRITE{LP»<"*" X3 "INITIAL SURFACE PARAMETER s'* n o *X77 "*">.w h d ;
HRITE(LP»<"*" X3 
A2,A3,A4,A5,A6)I

"A1 - A6 3** 6(E10. 3*X2) »X15*"*">»A1»
WRITE(LP»<"*" X3 
B2*B3,B4«B3»B6)I

"B1 - B6 3** 6(E1U. 3*X2) »X15»"*">»B1»

BEGIN
IF N2=0 THEN N2*2I

REAL
REAL
REAL

xio;
XIQLI
K1*K2> AK1*AK2>AN1#AN2>KK,AK> RT»SUM*ZETA0>ZETA1«ZETA2* 
ZETA3»ZETA4,ZETA5.ZETA6»ZtTA7*ZETAa»ZETA9,ZETA10»ZETAll, 
ZETA12,ZETA13,ZETA1A,UKI,UA1,.02K1,D2A1,D2K1A1,DK2,0A2,D2K2, 
02A2,D2K1K2,D2X1A2,D2AIK2,02A1A2, D2K2A2I 

REAL K1L>K2L«AK1L*AK2L*AN1L,AN2L*KKL*AKL/RTL>SUML;REAL DK2L,0A2L,U2K2L,02A2L,U2K1K2L,02K1A2L*D2A1K2L,D2A1A2L,02K2A2LI 
REAL ZETA0L»ZETA1L,ZETA2L,ZETA3L,ZETA4L,ZETA5L,ZETA6L,ZETA7L, 

ZETA8L»ZETA9LfZETA10L»ZETAllL»ZETA12L*ZLTA13L*ZETA14LI 
REAL OK1L»DA1L*D2K1L>02A1L*D2K1A1LI REAL K10*A10*K20>A20>STO;
REAL KlOLfA10L,K2OL,A2OL,ST0L;INTEGER NNN»HM,KNT*j ;
ARRAY PtO«N13.PPtO«N2]»PRAT,Xl>ZTI[0«Nl-lI»PPRAT»XXI,ZT2[0«N2-l]» ZV>PN«DUMl,TEST>Pl>OUMCOtNl, CHG>0VECC0>4]»DHIX(0t4*0<4]}
ARRAY PRATL»XIL[OiNl-13*PPRATL»XXlLtOIN2-lI»

ZVL,PNL,nUMlL,TESTL,PlL,0UML[0lNI,CHGL,0VECL[0:4],DMTXL[0:4,0l
ARRAY ZT1LC0:n 1 - 1 Z T 2 L t 0 l N 2 - l ] I
a r r a y  KKl>AAKl»KK2«AAK2I0tM]f TBF[0120>OiM];
ARRAY KKlL*AAKlL*KK2L*AAK2Ll0IM]#TSFLC0t20»0IM];
COMMENT REAL PROCEDURE DDXl GOES HERE!

REAL p r o c e d u r e  ODXI(N1F>N2F»MF,FF»AF»AFL»PF>PPF»XF»XFL)I 
VALUE N1F»N2F.MF»FFI INTEGER N1F.N2F»MF,FFJ 
ARRAY AF»AFLt0»0]»PF.PPF»XF»XFLC0i;

BEGIN
LABEL NX50I
REAL SUMH»SUML«SUM1H>SUM1L>SUM2H«SUM2L;

4i;
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INTEGER N»K;REAL tah.tbh.tch»toh.tal»tbl»tcl»tol;S(JMH>5UML4-0.0IFOR N*2 STEP 1 UNTIL NIF DUBEGINIF FF=1 THENBEGINSUM1H«-SUM1L*SUM2H<-SUM2L*-0.0TTAH * IF NUMRIJNrl THEN XFtN] ELSE XFI2KN-13Î T8H4-I.0;TAL*IF NUMRUN=1 THEN XFLIN] ELSE xFL[2kN-1J;TCH «■ IF NUMRUNsl THEN XFIN-II ELSE XFC2>«N'’3i; TOH«-1.0;TCL*IF NUMRUNsl THEN XFLCN-1) ELSE XFLt2xN-33JTBL*TOL *• 0,01FOR K*1 STEP 1 UNTIL HF DOBEGIND0UBLE(AF[MF,KI,AFL[MF,K3,TdH,TBL,x,SUHlH,SUMlL,+,*,SUMlH,SUMlL); DOUBLE ( T AH, TAL,TBH,TBL»Xf«-,TBH,TBL 33D0UBLE(AFIMF,K3,AFL[MF,K3,TDH,TDL,x,SUM2H,SUM2L,+,«-,SUM2H,SUM2L)3DOUBLE(TCH,TCL,TDH,TOL»x»«-,TDH»TDL)>ENDEND ELSE BEGINSUMiH *■ SUM2H«-1.0; SUMlL*SUM2L«-0,0;TAH * IF NUMRUNsl THEN XFIN3 ELSE XFI2xN-13> T8H*TAH3 TAL*IF NUMHUNsl THEN XFLIN3 ELSE XFLI2xN-13;TCH * IF NUMRUNsl THEN XFtN-13 ELSE XFC2xN-33i TDH*TCH;TCL4-IF NUMRUN=1 THEN XFLIN-13 ELSE XFLC2xN-33>T8L*TAL3 TDL«-TCL»FOR K*1 STEP 1 UNTIL MF DOBEGIND0UBLE(AF[MF,K3,AFL[MF,K3,TBH,TBL,x,sUMlH,SUMlL,+,*-,SUMlH,SUMlL)3 DOUBLET TAH, TAL»TBH»TBL»x,«-#T8ri,TBL) 3D0U8LE(AFCMF,X3,AFL[MF,K3,TDH,TDL,x,SUM2H,SUM2L,*,«-,SUM2H,SUM2L)3D0UBLE(TCH,TCL,TDH,TDL,x,«-,TDH,TDL)3ENDEN03D0UBLE(PFtN],0,PF[N-l3,0,/,SUMIH,SUM1L,A6,0,PFtNJ,0,x,Ab,0,+,PFCN3,0, x,A4,0,+,PF[N],0,x,A3,0,+,PFtN],0,x,A2,0,+,PF[N3,0,x,Al,0,+, B6,0,PFCN-n,0,x,B5,0,+,PFCN-13,0,x,84,0, + ,PFCN-n,0,x,83,0. + , PFCN-13,0,x,B2,0,+,PFIN-13,0,x,b1,0,4.,/,SUM2H,SUM2L,x,K1,0,x,/, 
-,«-,TAH,TAL)3 D0UBLE(TAH,TAL,TAH,TAL,x,SUMH,SUML,+,*-,SUMH,SUML)3EN03 IF NUMRUN=1 THEN GO TO NX503 FOR N*2 STEP I UNTIL N2F DOBEGINIF FF=1 THENBEGINSUMIH*-SUM1L*SUM2H«-SUM2L*0.U;DOUBLE(XFt2xN],XFLt2xN3,<-,TAH,TAL>3 TBH*1.03 D0U8LE(XF[2xN-2],XFLt2xN-2J,*,TCH,TCL)3 TDHH.UJ TBL*I0L*0.O3FOR K4-l STEP 1 UNTIL MF DOBEGIND0UBLE(AFMF,K3,AFLtMF,K] ,TBH,TBL,x,SUMIH,SUMlL,+,«-,SUMlH,SUMlL)3DOUBLET AF[MF,K3,AFL[MF,K3,TDH,TDL,x,SUM2H»SUM2L, + ,«-,bUM2H,SUM2L)3
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DOUBLE(TAH,TAL,TBH,T8L,%,*fT8H,TBL);DOUBLE C TCH, TCL,TDH,TOL»x»*-* TUN, TÜL))ENDEND ELSE BEGINSUM1H4-SUM2H4-1.0) SUM1L4-SUM2L4-0.0;TAH«-TBH«-XFC2xN]) TCH«-TDH«-XEC2xN-2] )TAL<-TBL«-XFLt2xN]; TCL«-TDL*XFL 12xN-2 J ;FOR K«-l STEP t UNTIL MF DOBEGINDOUBLE(AFC MF,K],AFLI MF,K],TBH,TBL,x,SUMIH,SUM1L, + ,«-,SUM1H,SUM1l}; DOUBLE (AF IMF, K I, AFL IMF, Kl,TDH,TDL,x,SUM2H,SUM2L,'f,<-,SUM2H,SUM2L}; DOUBLE(TAH,TAL,TBH,TBL,x,*,TBH,TBL)J DOUBLE ( TCH, TCL,TDH,TDL,x,«-,TUH, TDD IENDENO)00UBLE(PPF[N3»0»PPF[N-1],0,/»SUM1H,SUM1L,A6,0,PPFINJ,D,x,A5,0,+,PPF(N], 0,x,A4,0,*,PPFCN],0,x,A3,0,+,PPFCNJ,0,x,A2,0,+,PPFCNl,0,x,Al,0, +,B6,0,PPF[N-l],0,x,B5,0,+,PPFtN-ll,0,x,B4,0,+,PPFCN-l],ü,x,B3, 0,+,PPFtN-n,0*x,82,0,+,PPFCN-n,0,x,81,0, + ,/,SUM2H,SUM2L,x,K2, 0,x,/,“,4-,TAH,TAL))D0U8LE( TAH,TAL,TAH,TAL,x,SUMH,SUML,+,«-,SUMH,SUML))END;NX50: ddxk-sumh;
lowddxi«’Suml;END OF DDXl;

PROCEDURE CALCX(N1F,N2F,RTF,KTFL,K1F,K1FL,K2F,K2FL,AIF,A1FL,A2F,A2FL,XIF
,xifl,xxf,xxfl,xff,x f f d;REAL RTF,K1F,K2F,A1F,A2F; INTEGER N1F,N2F) ARRAY XIF,XXF,XFFI01 ) REAL RTFL,K1FL,K2FL,A1FL,A2FL;ARRAY XIFL,XXFL,XFFLt01)BEGINREAL Ann; integer i;REAL ANNL ;D0UBLE(,l.U,RTF,RTFL,AlF,AlFL,x,/,«-,xFF[n,XFFLC13);DOUBLE(,1.Ü,RTF,RTFL,A2F,A2FL,x,/,<-,XFFC23»XFFlC23);FOR U2,I+1 while ISNIF DOBEGINDPOW(K1F,K1FL,TOM,TOML,I-n; DOUBLE(XIFCI-l3,XIFLC1-13,TUM,TOML,A1F,A lFL,x,x,*,ANN,ANNL);D0UBLE(,1.0,RTF,RTFL,ANN,ANNL,x,/,«-,XFFt2x1-13,XFFLC2xI-13);

end; FOR I * 2, l+l WHILE ISN2F 00BEGINDPOW(K2F,K2FL,TOM,TOML,I-l); DDU8LE(XXFC1-13,XXFL[I-13,TUM,TUML,A2F,A2FL,x,x,«.,ann,ANND;DOUBLE(,1.0,HTF,RTFL,ANN,ANNL,x,/,*,xFFC2xI3,XFFLC2xl3);END
end;

FORMAT FBK /"APPROX. CELL CONST. 1ST RUN=" £17,10), FR2(S(E17.10,X5) ),FB10( /"EXTRAPOLATION FOR CELL CONSTANT"),FR3( /"APPROX. CELL CONST. 2ND RUN="L1/.10),FB4( /"APPROX. RUN CONST. 1ST RUN="t17,10),FB5( /"APPROX. RUN CUNST. 2ND RUN="E 1 7.10),
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FB13C /"RELATIVE DIFFERENCE IN Z"/ )»FB6C /"Z(APPROX) VS RHÛCAPPROX)"/ )»Ft)12( / "NEXT TO LAST FIT IS OPTIMAL FOR L VS RHÜ") »FRtiC /X&"PCN)"X17"Z(N)"X16"HH0(N)"X16"(Z-1 )V"X1A"P(N0...)"
/ ).FBI6C /"SUM OF CP RATIO - Z*RriO RATIO)=" E17.10)»FB17 ( /"DERIVATIVE MATRIX"/ ), FBIflC4(E17.10»X5)/).FB2ÜC /"DERIVATIVE VECTOR"/ )»F82IC /"CHANGE VECTOR"/ ).FB22C /"MATRIX IS SINGULAR")»FBllC /"EXTRAPOLATION FUR RUN CONSTANT")»LABEL L97»NXl»L71»NX?»L37»L31»L45»L96»L47»L43»NX33.NXJU»La9» 0WT»L40»L41»NX3»SINGUL»0N»NX4»L42»L44»L94»L9S»PLT)LABEL L77»L86.L46»IF NUMRUN=I THEN REAOCCR»/» FUR 1X0+1 STEP I UNTIL Nl DO PCIXOJ) ELSE READ(CR»/«FOR IXO+ISTEP 1 UNTIL Nl 00 PCIXU)»FOR IXQ+ 1 STEP 1 UNTIL N2 DO PPtlXOD)WRITECLP[N0]»<X4 "PRESSURES FOR FIRST RUN =">)»WRITE(LP»<"*" X31» 6{F10.5»X2)» X15 "*">, FUR IXQ+l STEP 1 UNTIL Nl DO PtIXQ]))IF NUMRUN=2 THEN BEGINWRITECLP[N0]»<X4 "PRESSURES FOR SECOND RUN =">)»WRITECLP*<"*" X3I» 6CF10.5.X2)» X15 "*">» FuR IXq+1 STEP I UNTIL N2 DU PPCIXJ))» ENU;WRITECLP»<"*" X118 "*">)»WRITECLPCPAGEI»<20C"+*****")>)»

comment extrapolation FOR FIRST CELL CONSTANT)NNN+N» MM + W) N + NN> M + MMM)IF WH71 THEN GO TO NXl)READ(CR»/»K1U,A10)) IF NUMRUN=1 THEN GO TO L97)READ CCR»/»X20» A20))L97) GO TO L31)NXl: IF Wri/2 then go to NX2)REA0CCR»/»K10); IF NUMRUN = 1 THEN GO TO L77)REAO(CR»/»K20)) L77: GO TO L37)Nx2t FOR NV+2»NU+1 WHILE NQSNl DO DOUBLE(PlNQI»D,P[NÜ-1I»0»/»+»PRATCNU-1 )»PRATLCNU-1J))FOR NO+l.NO+lWHILE NOSN DOBEGIN D0UBLE(.I,0.+»FI1»N0J»FLC1»NU))) YtNU) + PRATtNI-NN+NO-13)END)FOR K + 2»K+I WHILE K<M DO FOR N0+1»NQ+1 WHILE NOSN UO BEGIN HAM+PtNl-NN+NOl) UPOWCHAM»0.TUM»TUML»K-1))FtK»NQ]+TOM) FLIK.NUI+TOML) END)WRITE(LP»F810))DRNOR(N»M»EPSILON»Y»F.FL»A»AL»BFF»BFFL»MIN))DOUBLEC» 1.0»A[MIN» n»AL[MIN»n»/»+»Kl»KlL)) WRI TE C LP» FBI * rt 1 ) ) IF 
NUMRUN=1 THEN GO TO L37)D0UBLE(K1»K1L»+»K10.K10L))COMMENT extrapolation FUR 2ND CELL CONSTANT)

for NU+?»NQ + 1 while N0SN2 UÜ DOUBLECPPCNO I » 0»PPCNO-13 »Ü./»+ .PPRATtN 
Q-I3»PPRATL[NO-13))

for no + 1»N0+1 while NOSN OUBEGIN Ftl»N03 + 1.0) YINQ3+ PPRATCN2-NN+NQ-13 )FLtl»N03+0,0)ENU)FOR K+2.K+1 while KSM 00 FUR NQ+1»NQ+1 WHILE NuSN UO
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BEGIN HAM«-PPCN2-NN+NQ]I ÜPOW(HAM,0,TUM*TUML»K-1);FCK»Nai<-TUM; FLtK*NU]«-TOHL; END* 
write(lp>f810);0RN0R(N*M*EPSILnN.Y»F*FL»A.AL»BFF*8FFL»MIN)l00U8LEC*1.0»AtMIN*n*ALtMIN*ll»/,«.*K2*K2L); WRITE(LP»F 33.K2) » K20«-K2; K20L4-K2LIOOU8LECK1*K1L»K2,K2L*+»*2.0*/»«-*K2*K2L)J M0«-K2U«-M*-K2JK10L«-K20L«-K1L<-K2LJ L37: IF WH=2 THEN 0UU8LE(K10.K1ÜL*<•*K1,KIL)I IF NUMHUN=2 THEN DOU8LE(K20,K20L.«-,K2.K2L)I COMMENT EXTRAPOLATION FOR FIRST RUN CONSTANT i BEGIN DEFINE SEGMENT8UMP =0#;XIQ<-1.0I
xiOL+o.o; xi[c]<.zTuo]«-i.o;XILtO)<-ZTlLtO]«-O.OIFOR NU«-2*NQ>1 while NQSNl DOBEGIN

DOUBLE!P[NU]* 0*A6,0,x*AS,0*+ ,PCNQ1,0,x,AA,0*+*P[NQl,U,x,A3*0, + ,P[NQ]. 0,x,A2,0,+,PLNQ],0,x,Al,U,+,P[NQ-l],0,B6,0,x,8!),D,+,PINQ-l], 0,x,B4,0,+,PCNQ-13,0,x,B3,0,+,PCNQ-n,0,x,B2,0,+,P[NQ-l],0,x, 
Bl,0, + ,/,*,ZTlCNQ-n,ZTlLCNQ-l]); 

D0UBLE(XIQ,XIQL,ZTlCN9-n,2TlLCNQ-n,x,4-,Xl0,XIQL)I 
DOUBLE (X IQ, XIQL,«-,XHNO-n,XILlNQ-n))

end; FOR NOH.NQ + IWHILE NQ S N DO BEGIN YCNOl *■ P[N 1-NN+NQJxK1*(Nl-NN + NQ-1) x XIiNl-NN+NU-li; FC1,NQ]«-1.0;FLCI.NOJVO.O;ENO; FOR NQ«-2,N0+1 WHILE NQSNl DO BEGIN DPOW(K1,KIL,TOM,T0ML,NQ-1}1OOUBLE(PtNQl,0,TQM,TQML,XltNQ-n,XILCNQ-ll,x,x,*,PNCNai,PNLCNQ 
d ; end;

PNcn«-pcn;PNLClIfO.o;FOR K«-?,K+1 while KSM DO FOR NQ*1,NQ+1 WHILE NOSN DO BEGIN HAM«-P[N1-NN+N0]; 0P0W(HAM,0,TOM,TOML,K-1))
fck,nq]*tom; flck.nqjvtoml; end;

WRITECLP.FBin;ORnOR(N,M,EPSILON,Y,F,FL,A,AL,BFF,BFFL,MIN);DOUBLE!,1.0,A[MIN,1],AL[MIN,1I,/,*,AK1,AK1L);WRITE!LP, FBA.AkD;D0UBLE!AK1,AK1L,4-,A10,A10L3;
end; IF NUMRUNsl THEN GO TO L3UCOMMENT EXTRAPOLATION FOR 2ND RUN CONSTANT;BEGIN DEFINE SEGMENTBUMP =0#;

xiq«-i ,o;XlQL«-0,o; XXIt0l«-ZT2t01«-l.o;XXILCD]«-ZT2LCnj*0.0;FOR NU-2,N0+1 while NQSN2 DO BEGIND0UaLE!PP!NQ],D,A6,0,x,A5,U,+,PP[NQ],0,x,A4,U,4,PP!NW],0,x,A3:D,+, PP[NQ],n,%,A2,0,+,PP!NQ],0,x,Al,0,+,Pp[NW-l],0,B(,,0,x,BS,D,+, PPINQ-n,n,x,B4,0,+,PP[NQ-n,0,x,83,0,+,PPtN'i-l l,0,x,B2,0,+, PPCNO-n,0,x,Bl,0,+,/,«-,ZT2(NQ-l 3,ZT2LlNa-l I); 
DDUBL£!XlQ,XI«L,ZT2tNO-13,ZT2L[NQ-13,x,fr,XlQ,XIQL)J nOOHLE!XIQ,XlQL,«-,XXI[NO-13,XXlLCNQ-l3 );
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END; FOR NÜ4l,NQ+l while N0<N DO BEGIN YCNQ]*- PP IN2-NN + NÜ ]xK2* ( N2-NN + NQ-1 )x XxHN2-NN + NQ-1 ] i F[1*NQ]«-1.0; FLf 1»NQ]<-0.0;
end; FOR ND * 2,NQ+1 WHILE NO < N2 DO BEGIN DPOWCk2»K2L»TOM,TOML»NO-1);

DOUBLE(PCNQ]»0»TUM»TUML.XXICNQ-n,XXILtNU-n»x»x,«-,PN[Nl + NQ],PNLCN1+N0I)» e n d ;PN[Ni + n«-pp[n; pnlcni+i]«-o.o;FOR K«-2»K + 1 while KSM DO FUR NQ*1,N0 + 1 WHILE NOSN UOBEGIN HAM«-PPCN2-NN+NQi; DPOW C HAM, 0» TOM, IOML, K-1 ) ;
f[k,no]+tom; flck,nq]*toml; end;WRITE(LP,FBin;0RN0R(N,M,epsilon,Y,F,FL,A,AL,BFF,BFFL,MIN);

D0UHLE(,1.0,A[MIN,l],ALIMlN,n,/,,-,AK2,AK2L);HHITECLP,FB5,AK2); 
DOUBLE! AK 2, AK?L,«-,A20,A20L ;;

end;L3U N*NNN; M*MM;tEMP«-TEMP + 273, lb; DOUBLE (TEMP, 0,R,0,x,<-, RT,RTD;COMMENT CALCULATION OF Z(APPKOX) AND RHO(APPROX);NNN*WHi; mm<-m;LA5« FOR J«-WH1 STEP 1 UNTIL MM UO BEGIN
kil«-kidl; akil*aiol;Kl<-K10; AK1«-A]ü; if NUMHUN=1 then go TU LA7; K2*K2U; AK2*A20; K2L«-K20L; AK2L«-A20L;L47: NN*0;L43: NN*NN+i;WRITE(LP,FBl,Kn; WRITECLP,FB4, AKl);
IF NUMRUN=1 Then GU to NX33; WHITE(LP,FB3,K2); WH1TE(LP,FB5,AK2); NX33J CALCXCN1,N2,RT,RTL,K1,K1L,K2,K2L,AK1,Ak1L,AK2,AK2L,XI,XIL,XXI,

xxil,x,x d ;CALFYCN,J,N1,N2,NUMRUN,FIT,K1,K1L,K2,K2L,AK1,AK1L,AK2,AK2L,P,PP,XI,XIL,XXI,XXIL,X,XL,Y,F,FL);IF FIT = 2 THEN FOR NQ<-1,NQ + 1 WHILE NOSN 00 Y[NQ] *■ YCnO] + 1,0»IF NUMRUNsl THEN GO TO NX30;FOR NO«-1,NO+1 WHILE NQ<N DU DOUBLE ( X C NO }, 0, DUMl [ NO I , DUMILC NO 1 ) ;FOR N0el,N0 + 2 WHILE NOSN DO XCCNO+DuIV 21 «-DUM1 [NO J ;FOR N0*?,N0+2 WHILE NOSN DO XINl + NO ÜIV 2 ] «• UUMlCNOi;NX30S COMMENT CACCULATIUN OF (Z-l)V AND Z(APPHOX) VS RHU(APPRQX);BEGIN DEFINE SEGMENTBUMP =0»;WRITE(LP,FB8)>FOR N0H,NW+1 WHILE NOSN DU DUUBLE( YCNU1, 0, , 1.Ü,-, xCNO 1,0,/,«■, ZVCNU ] ,ZVLINQ1);FOR NUH,NQ+1 while NQSNl UO WR I TÉ ( LP,FB2, P t NO ] , Y C NO 3 , X [ NO 3 ,ZVCNO], PNCN03);FOR NO «• 1,NQ+1 WHILE NQSN2 00WRIIE(LP,FP2, PPCN03, YIN1 + NQ3,XiN1 + NÜ1,ZVCN1 + NÜ3,PNCN1+N03)J COMMENT FIRST SAVE FOR PLOTTING;FOR NO f 1 STEP 1 UNTIL N DO BEGINTEMPXACNQ3* XCNQi;TEMPYACN0 3 4- ZVCNQi;
end;IF F1T = 2 THEN FOR NQ*1,N0 + 1 WHILE NOSN DO Y [NO 3«-Y[NO 3-1,0;ORNORCN,J,EPSILON,Y,F,FL,A,AL,BFF,BFFL,MIN); DOUBLE(BFFCJ3,BFFL[J3,«-
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,TBF[NN.J3»TBFLtNN»J])i
end; COMMENT PERTURBATION OF A ANU NI IF FIT=1 THEN BEGIN FOR NQ*1,N0+1 WHILE NWSNl 00 BEGIN SUM«-SUML4-0.ÜJ FOK K*1,K + 1 WHILE KgJ DODOUBLE(XlNQ]*(k-l),0,AIJ,KI,ALIJ,KI,%,SUM,bUML,+,*-,SUM,SUML); YfNQ]«-SUM; DOUBLE!SUM,SUML,,1.0,-»X[NO]#0#/,*,ZV[NQ],ZVL[NQ]);
end; IF NUMRUN=1 THEN GO TO LB9;FOR NU«-1,N0 + 1 WHILE N0SN2 UO BEGIN SUM«-0.0;SUML<-0.0;FOR K*1,K + 1 WHILE K£J DO DOUBLE(XCNl ̂'NQI *CK-1},Ü,ACJ,K],AL(J,K1,x,SUM,SU
ml,+,<-,sum,s u m d;YCNI+NOX-SUM; D0UBLE(SUM,SUML,,l.O,-,XtNl+NQ],0,/,«-,ZVtNl+N0J,ZVLC N1+N8]);
end; L39I END ELSEBEGIN FOR NW*1,NQ+1 WHILE NWSNl DOBEGIN SUM «■ l.O;SUML«-0.0;FOR K*1,K + 1 while K<J 00 DUUBLECX[NO I*K,0,A[J,KJ,AL[J,K],x,SUM,SUML, + ,«•,SUM,SUML);Y[NO I «'SUM; OOUBLE(SUM,SUML,,1,U,-,X[NQ],XLINQ}>/,«,ZVCN01,ZVL[NQ] i;
end; IF NUMRUNsl THEN GU TO L8fl;FOR N0«'1,NQ'«1 while NOSN? DO 
begin SUM4'1.o;sUML«'U.o;FOR K«-l,k + l while KSJ do D0UBLE(SUM,SUML,ACJ,K], ALI J,K],X(NUNO 1*K,U,X,«,«■,SUM, SUML};YCNl-fNQ]«'SUM; oaUBLE(SUM.SUML,,1.0,>,X[Nl«’NU],0,/,4',ZY(Nl'«NO],ZVL[ NUNU] );END;L86>
end; write(LP,f88);FOR NU«-l,NO«'l while NQSNl UO WhI TE(LP,FB2, P[ NO ] , YC NO J , X( NO 1,ZVCNQI,PNINU] i; for NO«'l,NU'fl WHILE N0SN2 DO WRITE ( LP,FB2,PPCN0I,Y C Nl-«NO ], XCN 1-«NO I , Z VC N 1'«NO 1 ,PNC NUNQ 11;BEGIN DEFINE SEGMENTBUMP sQ»;COMMENT FIRST SAVE FOR PLOTTING SECOND GRAPH;FOR NÜ4-1 STEP 1 UNTIL N 00 BEGINTEMPXBCNOUXCNQi; TEMPYBINOU ZVCNOi;ENU ;IF NUMRUNsg THEN BEGIN FOR NOfl.NO-t-l WHILE NU<N1 DOBEGIN UUM1CNQ3 «• PCNQi; PlCZxNO-lI «• DUMICNQ] ;UUM1LCNQ3«'0.O;p1LI2xN0-13«'O.o; 
end; FOR N0«'1,N0'U WHILE NUSN2 00BEGIN DUMlCNQUPPCNOi; P1 [ 2xN0 UOUMl [NO IIOUMILCNOUO.U; P1LC2XN03«-0.0;END end;CALCX(N1,N2,RT,RTL,K1,K1L,K2,K2L,AK1,AK1L,AK2,AK2L,X1,XIL,XXI,XXIL,

x,x d ;ZETA0«-0DXICN1,N2,J,FIT,A,AL,P,PP,X,XL); WRlTE(LP,Fdl6,ZETA0);
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DOU8LE(SS2,SS2L,,2.0,x,*,DAl,DAlL);DOUBLE(SS3.SS3L,,2.0,x,*,D2Kl,02KlL))
DOUBLE (SS4> SS4L, * 2.0«x,<-«D2Al»02AlL);
D0UBLE(SS5,SS5L,,2.0,x,*,D2KlAl,D2KlAlL);SSl»SS2»SS3*SS4*SS5*SSK6«-0.0;SSlL*SS2L«-SS3L*SS4L«-SS5L«-SSK6L<-0.0;FOR NQ«-1 STEP 1 UNTIL N2 DO BEGIN SSKl<-SSK2«-SSK3«-SSK4«-SSK5«-0.0;SSK1L*SSK2L*SSK3L*SSK4L*-SSK5L*0.0)
HAM*X[2xNQIf HAML«-XLC 2xNQ];FOR K«-l STEP 1 until J DO BEGIN DPOW(HAM,HAML,TOM,TOML»K)IDOUBLE(TOM,TOML,AtJ,K],ALCJ,K],x,4.,ZETA1,ZETA1L)I nOUBLE(ZETAl,ZETAlL,SSKl,SSKlL,+,«-,SSKl,SSKlL);DOUBLE(ZETAl,ZETAIL,K,0,x,SSK2,SSK2L,+, 4-,SSk2,SSK2L>; DOUBLE(NQ-l,0,K,0,x,, i,'f,K,0,X,ZETA 1,ZETAlL,x,SSK3,SSK3L,4̂,4-,SSK3, SSK3L);DOUBLE(14K,O,K,0,x,ZETAl,ZLTAlL,x,SSK4,SSK4L,4',<-,SSK4,SSK4L);
DOU8LE(K,0,K,0,x,ZETAl,ZETAlL,x,SSK5,SSK5L,*,4-,SSKb,SSK5L)

ENO OF SUM OVER K LUOPfDP0WCK2,K2L,ZETA2,ZETA2L,NÜ-d ;
DP0WCi<2,K2L,ZETA3,2ETA3L,NU-2);DPQrt(K2,K2L,2ETA4,ZETA4L,NU-3);
D0UBLE(PPCNQI,U,AK2,AK2L,x,ZETA2,ZETA2L,x,XXlCNG*l],XXiLCNQ-l],x,,

1.0,SSKl,SSKlL,+,-,4-,SSK6,SSK6D)n0UBLE(N0-l,0,PPCNQ],0,x,AK2,AK2L,x,ZETA3,ZETA3L,x,XXltNQ-l],
XXIL[NU-1],x,n0-1,0,SSK2,SSK2L,x,K2,K2L,/,4,SSK6,SSK6L,x,SS1, 
ssil,4,4-,ssi,ssil); 

noU8LE(PPCNQ],0,ZETA2,ZETA2L,x,XXICNQ-n,XXILlNa-n,x,SSK2,SSK2L, 
AK2, AK2L,/,4',SSK6,SSX6L,x,SS2,SS2L,4,4-,SS2,SS2L);

SS34-SS3 + CSSK6x((N0-l)xCNQ-2)xPP[NQ]xAK2xK2*(N0-3)xXXHN0-n-(N0-l)x 
SSK3/(K2*?))+((N0-l)xPPtN0IXAK2xK2*(Na-2)xxXUNQ-l]+CNQ-l)xSSK2 /«2)*2);

SS44-SS44-(SSK6x(-SSK4/CAK24r2)) + CPPtN0]XK2*(NQ-l)xXXI(Na-n + SSK2/AK2) 
*2)J

SS54-SS54-(SSK6x({Na-l)xPPtNa]xK2*(Na-l)xXXItNU-n + CN0-l)xSSK5/CAK2x 
K2)) + ((N0-l)xPP[Na]xAK2xK2*(N0-2)xxXHNa-I]4.(NW-l)xsSK2/K2)x 
CPP[NQ]xK?*(NQ-nxXXICNa-n + SSK2/AK2))

END OF SUM OVER Na LOOP!
n0UBLE(SSl,SSlL,,2.0,x,4-,0K2,UK2L)I
D0UBLECSS2,SS?L,,2.0,x ,4-,DA2,DA2L);
D0UHLE{SS3,SS3L,,2.0,x ,4.,D2K2,U2K2L);
DOU8LE(SS4,SS4L,,2.O,x,^,D2A2,02A2L);
D0UBLECSS5,SS5L,,2.0,x ,4-,D2K2A2,D2K2A2L);D2K1K24-D2K1A24-Ü2A1K24-02A1A24-O.0J
D2KIK2L4-U2K1A2L4-D2A1K2L4-D2A1A2L4-0.U;

END OF SEGMENTBUMP;COMMENT SOLUTION FOR DELTA A AND DELTA NT L4U IF NUMRUNsJ THEN BEGIND0UBLECD2K1A1,D2K1A1L,UA1,UA1L,x,D2A1,D2A1L,UK1,0K1L,x,-,U2K1,D2K1L,D2A1,D2A1L,x,D2K1A1,02K1AIL,D2K1A1,02K1A1L,x,-,/,
4-,CHGC13.DBDUM);

n0UBLE(U2KlAl,U2KlAlL,UKl,UKlL,x,D2Kl,02KlL,DAl,DAlL,x,«,
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02KU02K1L,D2A1,02A1L,X,02K1A1,D2K1A1L,02K1A1,02K1A1L,X,-,/,«■*CHGC2]>[)BDUM);GO TO L42;ENDT 0MTX[l*ll4-02Ki; 0HTXC1*2}4-02K1A1; 0MTXCl#31«-02KlK2;0MTXti«4]«'02K1A2) DHTX(2/1]4-02K1AU 0HTX[2«2]«-02AUDMTX[2»3]«-02AlK2j DMTX(2«4]«-D2A1A2; DHTXC3» 1 ]<-D2KlK2;DMTX[3,2]*02A1K2; DMTXC3*3]<-02K2; DHTXC3»4]4-D2K2A2; UHTXC4,1]«-02K1A2; 0MTX[4f2]«-D2AlA2; UMTX[4,3]*02K2A2; DHTXC4#41«-D2A2; 0MTXL[1,1]*02K1L;0MTXL[1,2]*D2K1A1L)0MTXL[1,3]«-D2K1K2L;0MTXL[1,4]«-D 2KlA2LiUMTXLt2M]*D2KlAlL;DMTXLC2*2]4-D2AlL)0HTXL[2*3]4-02AlK2LTDHTXLC2«4] «■D2AlA2L)DHTXLC3M]«-02KlK2Li0MTXL[3>2]«-n2AlK2LT0MTXLC3«3]«-02K2LIDHTXLC3» 4]*02K2A2L;DMTXL[4,1]*D2K1A1L;DMTXL[4,2]«-D2A1A2L)0MTXL[4,3]*02K2A2L;0MTX L[4>4]«-02A2L«SL0Ntl2]*TRUE;IF NOT SL0NI12I THEN GO TO NX3IWRlTE(LP*FB17}j WRITE(LP>FB16* FOR 1̂ 1,I+1 WHILE 1̂ 4 DO FOR K»1,K+1 WHILE K£4 DO DMTX[I,K])I NX3: INVERT(4,DMTX, P-6>SINGUL)I GO TO ONISINGULI WRITE(LP,FB22) ION: DVEC[1]*-DKII UVEC[2]«-DAi; DVEC[3I*-DK2I DVECC4] *-DA2)0VECL[1]4-DK1L;dVECLC2]4-DA1L;UVECL[3}4-DK2LIDVECLU]«-DA2L1IF NOT SL0NI12J THEN GO TO NX4I
WRITE(LP»FB17);
HRITE(LP»FB18,F0R IH ST EP 1 UNTIL 4 DO FOR K«-1STEP 1 UNTIL 4 

00 OMTXCIfKI);HRITE(LP*FB20)I WRITE(LP»FB18#F0R 1*1 STEP 1 UNTIL 4 DO OVECIIJJI NX4: FOR 1*1 STEP 1 UNTIL 4 DOBEGIN KK*0.OIKKL«O.O) FOR K*1 STEP 1 UNTIL 4 DODOUBLE(DMTX[I»K],DMTXL[I,K],DVECIK],OVECL[K],x,KK,KKL,*,*,KK,XKDI CHGCI14- KKI
chglci]*kkl;

end; if not SL0NC12I THEN GO TO L42IWRITECLPf FB21); WRITE(LP«FB18«F0R 1*1 STEP 1 UNTIL 4 DO CHGCII); L42I D0UBLE(CHGC1]>CHGLC1]>K1>K1L**>*>K1»K1L);
DOUBLE!CHG[21tCHGL[21*AK1*AK1L**«*>AK1«AK1L);IF NUMRUNsl THENBEGIND0UBLE(CHG[31«CHGLC3]*K2*K2L«****K2*K2L);D0UBLE(CHGC4]*CHGLC41*AK2*AK2L*****AK2«AK2L};

end; IF NN=1 THEN GO TO L43I GO TO IF NN=3 THEN PLT ELSE L43I OWTI WRITE(LP*FB12);PLT: IF NOT SL0NC25] THEN DRAHITCTEMPX»TEMPY»N1»N2);IF NOT SL0NI251 THEN DRAWIT(TEMPXC»TEMPYC*N1»N2);L94: end;L95: END END END ENUIIF IND<AHT THEN BEGINARRAY LAIRDtO:5i;FILL LAIRDC*] WITH "OOEND OFOG DATA OOSET "I SYMB0L(0*4.S*.21*LAIR0*-90*15);PL0T(3*0»-S);lNO*IND*i;
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GO TO L60)END)IF NOT SL0NC25] THENBEGINARRAY LASTI0S5IJFILL LAST!*] WITH "OOPLOTTlOONG FINOOISHEO ">SYMBOL ( 1»B.5».49,LAST,-90#17);PL0TC4»0»-3);
e n d ;HRITECLPCPAGEJ);WRITE ( LP» <"I/0 time =" FT,2 " SEC."// "PHOC. TIME*" FT.2 " SEC."> » TIME(3)/60 » TIME(2)/60 );END OF PROGRAM,ARCTAN IS segment NUMBER 00T9»PRT ADDRESS IS OUT COS IS segment number OOBO.PRT ADDRESS IS 0075EXP IS SEGMENT NUMBER 0081,PRT ADDRESS IS 0072LN IS SEGMENT NUMBER 0082,PRT ADDRESS IS 0071 SIN IS SEGMENT NUMBER 0083,PRT ADDRESS IS 0076 OUTPUTCW) IS SEGMENT NUMBER 0080,PRT ADDRESS IS 0005 BLOCK CONTROL IS SEGMENT NUMBER 0085,PRT ADDRESS IS 0005 INPUT(W) IS SEGMENT NUMBER 0086,PRT ADDRESS IS 0100 X TO THE I IS SEGMENT NUMBER 0087,PRT ADDRESS IS 0073 GU TO SOLVER IS SEGMENT NUMBER 0080,PRT ADDRESS IS 0065ALGOL WRITE IS SEGMENT NUMBER 0089,PRT ADDRESS IS 0014ALGOL READ IS SEGMENT NUMBER 0090,PRT ADDRESS IS 0015ALGOL SELECT IS SEGMENT NUMBER 0091,PRT ADDRESS IS 0016COMPILATION TIME = 208 SECONDS.NUMBER OF ERRORS DETECTED = 000. LAST ERROR ON CARD «NUMBER OF SEQUENCE ERRORS COUNTED = 0.NUMBER OF SLOW WARNINGS = 0.PRT SIZE= 070; TOTAL SEGMENT SIZE= 6389 WORDS.DISK STORAGE REQ.= 360 SEGS.l NO. SEGS.= 92. 

estimated core STORAGE REQUIREMENT = 29335 WORDS.
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Program 200; Comment ORNOR CALL;
Begin Integer AMT, I: READPT(AMT); I 1;
L60;Begin Integer N,M; READPT(N,M);
Begin Real AO,AT,epsilon,Temp; Integer n,k,comp,NN,MIN;
Array F 1:M,1:N,Y,X 1;N, a 1:M,1:M, BFF 1:M;
Format FMIO (5 (Jl) , 'Y(N) ’ , 2 ( Jl) ) ,FM12 (5 (Jl) , 'X(N) ' ,2 (Jl)) ,

FMll(J7, 'TEMPERATURE=',F5.2,S5,'PER CENT HELIUM=',
F5.2,S5,'NO. OF DATA POINTS=', I3,85,'M=',13),
FM9(5 (RIO,85) , Jl) ;

Me Procedure ORNOR(201,1,10);
READPT(Temp,comp,epsilon);
READPT(Y 1, ..., Y N, X 1, ..., X N);
PRINT(FMll,Temp,comp,N,M) ; PRINT(FMlO); PRINT(FM9,Y 1, .. . ,YN);

PRINT(FMI2); PRINT(FM9,X 1, ...,X N);
For n‘-l,n+l While n ^ N Do F[l,n]-1.0;
For k*-2,k+l While k ^ M Do For n-1 While n^N Do F[k,n]*-X[n]

îk-1 i; (or any function of X n desired)
ORNOR (N,M, epsilon,Y,F,a,BFF,MIN);
End End;
If I < AMT Then Begin I*"I+1;
Goto L60 End End;


