This dissertation has been microfilmed exactly as received $\quad 67-16,731$
 HALL, Kenneth Richard, 1939 COMPRESSIBILITY FACTORS AND VIRIAL COEFFICIENTS FOR THE HELIUM-NITROGEN SYSTEM BETWEEN -160° AND $-190^{\circ} \mathrm{C}$ UP TO 700 ATM. The University of Oklahoma, Ph.D., 1967 Engineering, chemical

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKIAHOMA

GRADUATE COLLEGE

COMPRESSIBILITY FACTORS AND VIRIAL COEFFICIENTS FOR THE HELIUM-NITROGEN SYSTEM BETWEEN -160° AND $-190^{\circ} \mathrm{C}$ UP TO 700 ATM

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

BY
KENNETH RICHARD HALL Norman, Oklahoma

1967

COMPRESSIBILITY FACTORS AND VIRIAL COEFFICIENTS FOR THE HELIUM-NITROGEN SYSTEM BETWEEN

$$
-160^{\circ} \text { AND }-190^{\circ} \mathrm{C} \text { UP TO } 700 \text { ATM }
$$

ACKNOWLEDGEMENTS

Many individuals and organizations have contributed significantly toward the completion of this project and to them I offer my sincere gratitude. A few of these deserve special mention, however, because of the magnitude of their efforts in my behalf.

Professor F. B. Canfield has directed all phases of this research with remarkable patience and skill--both technologically and psychologically.

Professors S. D. Christian and O. K. Crosser contributed to my understanding of the theoretical developments with their constructive comments and criticisms.

Dr. A. L. Blancett must be remembered because of the excellent work he did in providing the basic experimental apparatus.

Dr. L. E. Trimble often assisted me in the theoretical developments, and was always willing to help in any situation when asked.

Dr. L. W. Brandt and his staff at the United States Bureau of Mines Helium Research Center in Amarillo, Texas deserve special thanks for providing necessary vapor-liquid equilibrium data and for donating the helium and mixtures used in the experimental work.

Messrs. M. S. Haines and R. B. Hunter frequently contributed their time in checking the operation of the equipment during periods when I was absent from the laboratory.

The staffs of the Computer Centers at the University of Oklahoma and the University of Virginia contributed generously of both personnel and machine time.

Fellowship support was given by Cities Service Oil Co., the National Aeronautics and Space Administration and the National Science Foundation. In addition, the latter organization supported the overall project through a research grant.

Finally, I wish to thank my parents for their continuous encouragement and countless sacrifices in my behalf and my wife, Janet, for her encouragement, assistance and understanding and for her patience in enduring the life of a student's spouse.

ABSTRACT

The project was initiated in 1962 at the University of Oklahoma to measure compressibility factors of gases very accurately at high pressure and low temperature. The Burnett method was chosen for the experimental apparatus. The equipment as previously assembled was operable to 700 atmospheres and between $+50^{\circ}$ and $-90^{\circ} \mathrm{C}$.

Major modification of the temperature bath extended the range of applicability to $-190^{\circ} \mathrm{C}$ and 700 atmospheres. The temperature control was $\pm 0.005^{\circ} \mathrm{C}$ across the Burnett apparatus in the new configuration. A technique was also developed for employing valves completely immersed in the cryostat.

An extensive study of polynomial approximations for infinite series yielded a scheme for assigning realistic variances to the polynomial coefficients as compared with the series coefficients. This allows choice of optimal virial coefficients from the experimental compressibility data.

Finally, an optimal search routine was developed to reduce the Burnett data to the compressibility factors. This was essentially a problem in non-linear curve fitting. The results were very gratifying and seem to indicate that more accurate information could be expected from the data in this fashion than was possible with earlier techniques.

TABLE OF CONTENTS

Page
LIST OF TABLES viii
LIST OF IL工USTRATIONS X
Chapter
I. INTRODUCTION. 1
II. REVIEW OF PREVIOUS WORK 6
P-V-T Behavior of Helium. 6
$\mathrm{P}-\mathrm{V}-\mathrm{T}$ Behavior of Nitrogen 7
P-V-T Behavior of Helium-Nitrogen Mixtures 8
III. EXPERIMENTAL APPARATUS. 9
Cryostat. 9
Burnett Cells and Magnetic Pump 17
Temperature and Pressure Measurements 19
Pressure Generation and Vacuum System 25
Valves and Tubing 26
IV. A GENERAL LEAST-SQUARES ANALYSIS APPLICABLE TO OPTIMAL RECOVERY OF VIRIAL COEFFICIENTS. 29
Previous Methods 29
Present Method. 32
Least Squares 34
Orthonormalization of the $f_{k n}$ 34
Solution for Coefficients 37
Cut-off Criteria 39
Criteria Estimators 47
Error Accumulation and Reorthonormali- zation. 50
Example 52
TABLE OF CONTENTS (CONTINUED)
Chapter Page
V. METHOD FOR REDUCTION OF BURNETT DATA TO COMPRESSIBILITY FACTORS AND VIRIAL COEFFICIENTS 56
Previous Method for Refinement. 56
Present Method of Refinement. 58
VI. DATA AND APPLICATIONS 65
Data. 65
Interaction Virial Coefficients 82
VII. RESULTS AND CONCLUSIONS 84
LIST OF REFERENCES 86
APPENDICES
A. SOME SPECIFIC INFORMATION CONCERNING THE EQUIPMENT 88
B. EXPERIMENTAL PROCEDURE AND PROBLEMS 94
C. ERRORS 102
C. COMPUTER PROGRAMS 105

LIST OF TABLES

Page
Table

1. Coefficients of $g\left(x_{n}\right)$ For Various Polynomial Approximations. 54
2. Comparison of $a_{6 k}$ with α_{k} 55
3. Experimental and Calculated Results for 100.00% Helium at $-160^{\circ} \mathrm{C}$. 66
4. Experimental and Calculated Results for 100.00% Helium at -170° C. 67
5. Experimental and Calculated Results for 100.00% Helium at $-190^{\circ} \mathrm{C}$. 68
6. Experimental and Calculated Results for 87.77% Helium at $-160^{\circ} \mathrm{C}$ 69
7. Experimental and Calculated Results for 87.77% Helium at $-170^{\circ} \mathrm{C}$ 70
8. Experimental and Calculated Results for 87.77% Helium at $-190^{\circ} \mathrm{C}$ 71
9. Experimental and Calculated Results for 75.29% Helium at $-160^{\circ} \mathrm{C}$ 72
10. Experimental and Calculated Results for $\mathbf{7 5 . 2 9 \%}$ Helium at -170 C 73
11. Experimental and Calculated Results for 75.29% Helium at $-190^{\circ} \mathrm{C}$ 74
12. Experimental and Calculated Results for 44.56% Helium at $-160^{\circ} \mathrm{C}$ 75
13. Experimental and Calculated Results for 44.56% Helium at $-170^{\circ} \mathrm{C}$ 76
14. Experimental and Calculated Results for 30.13% Helium at $-160^{\circ} \mathrm{C}$ 77

LIST OF TABLES (CONTINUED)

Table Page
15. Experimental and Calculated Results for 30.13% Helium at $-170^{\circ} \mathrm{C}$ 78
16. Experimental and Calculated Results for 100.00% Nitrogen at $-160^{\circ} \mathrm{C}$ 79
17. Experimental and Calculated Results for 100.00% Nitrogen at $-170^{\circ} \mathrm{C}$ 80
18. Helium-Nitrogen Mixture Compositions. 83
19. Helium-Nitrogen Interaction Virial Co- efficients 83
A-1. Calibration Data for Weights. 91
A-2. Constants for Pressure Effect on the Cell Constant 93
C-1. Maximum Experimental Errors in Z. 104

LIST OF ILLUSTRATIONS

Page
Figure

1. Gas Bath Cryostat 10
2. Heat Transfer Bundle. 13
3. Close-Up View of Bundle Section 14
4. Burnett Apparatus and Cryostat. 16
5. High Pressure Burnett Cell. 18
6. Corrected Zero Shift Curves for theCryogenic Differential PressureIndicator at $-160^{\circ},-170^{\circ},-180^{\circ}$,and $-190^{\circ} \mathrm{C}$ in Order from Top Curve
to Bottom Curve 23

COMPRESSIBILITY FACTORS AND VIRIAL COEFFICIENTS
 FOR THE HELIUM-NITROGEN SYSTEM BETWEEN -160° AND $-190^{\circ} \mathrm{C}$ UP TO 700 ATM

CHAPTER I

INTRODUCTION

An apparatus based upon the method described by Burnett [4] has been used to study the volumetric behavior of the Helium-Nitrogen system at low temperatures and high pressures. A new procedure has been developed to reduce the data to compressibility factors, and a least-squares analysis is offered which enables choice of the optimal virial coefficients from the experimental data. The isotherms studied were -160° and $-170^{\circ} \mathrm{C}$ for compositions of $100.00,87.77$, 75.29, 44.56, 30.13 and 0.00 percent helium balance nitrogen, and $-190^{\circ} \mathrm{C}$ for compositions of $100.00,87.77$ and 75.29 percent helium. Compressibility factors are presented as a function of pressure under the experimental conditions, and the virial coefficients are reported for each mixture at all experimental temperatures.

The compositions were chosen to be those reported by Canfield [6]. Actually the mixtures were within 0.09 mole
percent of these compositions. These mixtures were chosen to facilitate calculation of thermodynamic properties using both sets of data.

The Burnett method is an experimental technique for determining the compressibility factors of gases without measuring the volume or mass of the sample under study. The apparatus is essentially two thermostated cells of unspecified volume connected by a valve. Initially one cell is filled with gas to some given pressure and the other cell is evacuated. When equilibrium is reached the pressure and temperature are recorded and the connecting valve is opened. After equilibration, the pressure and temperature are again recorded; the connecting valve is closed, and the second cell is reevacuated. This procedure is repeated until the pressure has reached a predetermined minimum, and the sequence of pressures constitutes a run. Usually the process is repeated, with a different starting pressure, a sufficient number of times to establish the isotherm adequately. While it is not necessary to maintain a constant temperature during a run, it was done in this study to allow a theoretical analysis of the data.

The apparatus was constructed to conform with the following analysis. Initially the equation of state is given by

$$
\begin{equation*}
P_{0}\left(V_{a}\right)_{0}=z_{0} n_{0} R T \tag{1}
\end{equation*}
$$

and becomes, after the first expansion,

$$
\begin{equation*}
P_{1}\left(V_{a}+V_{b}\right)_{1}=Z_{1} n_{0} R T \tag{2}
\end{equation*}
$$

where V_{a} and V_{b} are the volumes of the two cells, the subscripts refer to the number of expansions associated with the subscripted quantity, $Z \equiv P V / n R T$ is the compressibility factor, n is the number of moles contained in the volume under consideration, R is the gas constant and T is the temperature. When the connecting valve is closed and V_{b} is evacuated, the equation becomes

$$
\begin{equation*}
P_{1}\left(V_{a}\right)_{1}=Z_{1} n_{1} R T \tag{3}
\end{equation*}
$$

Evidently, before the $j^{\text {th }}$ expansion the relationship is

$$
\begin{equation*}
P_{j-1}\left(V_{a}\right)_{j-1}=z_{j-1} n_{j-1} R T \tag{4}
\end{equation*}
$$

and after the expansion becomes

$$
\begin{equation*}
P_{j}\left(v_{a}+v_{b}\right)_{j}=z_{j} n_{j-1} R T \tag{5}
\end{equation*}
$$

Dividing Equation 5 by Equation 4 gives

$$
\begin{equation*}
\frac{P_{j}\left(V_{a}+V_{b}\right)_{j}}{P_{j-1}\left(V_{a}\right)_{j-1}} \equiv \frac{P_{j} N_{j}}{P_{j-1}}=\frac{Z_{j}}{Z_{j-1}} \tag{6}
\end{equation*}
$$

where the volume ratio is denoted as N_{j} and is referred to as the cell constant for the $j^{\text {th }}$ expansion. Substitution
of subsequent values for j into this equation and multiplication reveal that

$$
\begin{equation*}
\frac{P_{j}\left(N_{1} N_{2} \cdots N_{j}\right)}{P_{0}}=\frac{Z_{j}}{Z_{0}} \tag{7}
\end{equation*}
$$

The N_{j} are related to N_{∞}, the zero pressure cell constant, taking into account the Burnett cell dimensions and properties and the behavior of the differential pressure cells

$$
\begin{equation*}
N_{j}=N_{\infty} \frac{k_{1}+k_{2} P_{j}+k_{3} P_{j}^{2}+\ldots}{m_{1}+m_{2} P_{j-1}+m_{3} P_{j-1}^{2}+\ldots} \tag{8}
\end{equation*}
$$

where the k_{i} and m_{i} are constants related to the pressure deformation of the cells (see Appendix A). Thus if N_{∞} and the ratio $\mathrm{Z}_{0} / \mathrm{P}_{0}$, the run constant, can be found, the compressibility factor is given by

$$
\begin{equation*}
z_{j}=P_{j} \frac{z_{0}}{P_{0}} N_{\infty}^{j} \prod_{i=1}^{j}\left(\frac{k_{1}+k_{2} P_{i}+k_{3} P_{i}^{2}+\ldots}{m_{1}+m_{2} P_{i-1}+m_{3} P_{i-1}^{2}+\ldots}\right) \tag{9}
\end{equation*}
$$

and neither the volume nor the mass of the gas need have been measured.

Classically these constants were found by graphical extrapolation. Examination of Equations 6 and 7 reveals that in the limit as pressure approaches zero and the compressibility factor approaches unity

$$
\begin{gather*}
N_{\infty}=\lim _{P \rightarrow 0} \frac{P_{j-1}}{P_{j}} \tag{10}\\
\frac{P_{0}}{Z_{0}}=\lim _{P \rightarrow 0} P_{j}\left(N_{1} N_{2} \ldots N_{j}\right) \tag{ll}
\end{gather*}
$$

Therefore, a plot of P_{j-1} / P_{j} vs. P_{j} should extrapolate to N_{∞} and a plot of $P_{j}\left(N_{1} N_{2} \cdots N_{j}\right)$ vs. P_{j} should extrapolate to P_{0} / Z_{0}. This extrapolation is usually performed by curve fitting and does produce reasonably accurate values for the constants. For example, from carefully taken data \mathbb{N}_{∞} can usually be found within 1 part in 10000. If sufficiently accurate and abundant low pressure data were available, this method would give the proper values for the constants. Unfortunately, data meeting these requirements are very difficult to obtain.

A method is proposed in Chapter V for refining the estimated constants, in a least-squares sense, by establishing the minimum on a multidimensional response surface. The optimal virial coefficients are automatically recovered in this procedure by applying the least-squares analysis developed in Chapter IV. Interaction second and third virial coefficients are also calculated.

CHAPTER II

REVIEW OF PREVIOUS WORK

The Burnett method has been established recently as an acceptable and desirable means for measuring the compressibility factors of gases and gaseous mixtures. Concise reviews of work on this type of apparatus through 1965 have been presented by Mueller [23], Canfield [6] and Hoover [13]. Because of these compilations and because the method is accepted now, no specific review will be made for work on this type of apparatus. Furthermore, Canfield has presented a sufficiently complete review for work on helium, nitrogen and $\mathrm{He}-\mathrm{N}_{2}$ mixtures through 1962. This review is concentrated solely on the period 1962-present to avoid needless repetition.

P-V-T Behavior of Helium

Although the literature abounds with compressibility data (and, to a large degree, for that reason) for helium, work since 1962 has been relatively scarce. In fact, the majority of recent helium data has been taken in connection with a study of the helium-nitrogen system and is discussed below in that section.

Cook [9] has edited a book which offers a comprehensive review of the volumetric (and other) properties of helium. This work covers the period starting with the work by Ohnes through 1960.

Miller et al. [22] at the U. S. Bureau of Mines used the Burnett method to determine the compressibility factors of He. This work ranges up to 4000 psia between -10° and $130^{\circ} \mathrm{F}$.

Various authors have noted that a large gap exists in helium data below $0^{\circ} \mathrm{C}$ and above 200 atm . Canfield has filled this gap substantially down to $-140^{\circ} \mathrm{C}$.

P-V-T Behavior of Nitrogen
Most of the recent reports on the volumetric properties of nitrogen have appeared in tabulations of thermodynamic properties by U. S. Government agencies. Little and Neel [19] in the Department of Commerce have tabulated the compressibility factor up to 10000 atm . between 100° and $1500^{\circ} \mathrm{K}$. Hilsenrath and Klein [12] also at the Department of Commerce have extended this tabulation to include the range 2000° to $15000^{\circ} \mathrm{K}$. Sewell [26] at the National Aeronautics and space Administration presents compressibility factors and second virial coefficients between 2000° and $100,000^{\circ} \mathrm{K}$ over a wide density range. Finally, Strobridge [28] at the National Bureau of Standards has tabulated thermodynamic properties, including the compressibility, up to 3000 psia between 114° and 540° R.

Meanwhile, Duclaux [10] has offered a distribution function approach for representing the compressibility up to $800^{\circ} \mathrm{C}$ and 400 atm . He then used the theory of progressive condensation to interpret the influence of temperature.

P-V-T Behavior of Helium-Nitrogen Mixtures

The most extensive study of this system is given by Canfield et al. [7]. Compressibility factors and virial coefficients are presented for helium, nitrogen and six mixtures between 0° and $-140^{\circ} \mathrm{C}$ up to 500 atm .

At almost the same time, Witonsky and Miller [30] presented compressibilities and virial coefficients for helium, nitrogen, and seven mixtures between 175° and $475^{\circ} \mathrm{C}$ up to 100 atm .

Miller et al. at the U. S. Bureau of Mines presented compressibilities for helium, nitrogen and sixteen mixtures at $70^{\circ} \mathrm{F}$ up to 4000 psia in addition to their above mentioned helium data.

All three of the above investigations were made on Burnett-type apparati. However, the range below $-140^{\circ} \mathrm{C}$ above 100 atm . was left untouched.

Finally, Kielich [18] has calculated B_{12} by accounting for the tensorial forces acting on nondipolar molecules having a quadrupole or octapole moment. He calculates second virial coefficients for the helium-nitrogen system.

CHAPTER III

EXPERIMENTAL APPARATUS

The equipment used in this study as initially designed and constructed was operable between $50^{\circ} \mathrm{C}$ and $-90^{\circ} \mathrm{C}$ up to 700 atm . Below $-90^{\circ} \mathrm{C}$ excessive temperature gradients were encountered across the Burnett cells which introduced an intolerable uncertainty in measuring the absolute temperature. A major modification of the refrigeration system within the cryostat alleviated this condition and produced gradients of only a few thousandths of a degree. Because much of the apparatus has been described in detail by Blancett [2], only brief mention will be made of any unmodified equipment, and the reader is referred to the above work for additional information.

Cryostat

Figure 1 illustrates the essential features of the cryostat. Nitrogen in surging, two-phase flow enters the phase separator through a vacuum-insulated transfer line. A controlled liquid level is maintained within the separator to insure a constant refrigerating effect within the cryostat. The liquid leaves the separator through a metering valve

FIGURE 1. GAS BATH CRYOSTAT
and flows to the vaporizer bundle within a $1 / 2$ in. thinwalled, stainless steel tube and delivers its sensible and latent heat to cool the bath. The metering valve is adjusted to allow a slight excess of refrigerant to enter the bundle which is offset by the control heater. A fan blows the vapor through the equipment space which contains the temperature-controller sensor. A combination radiationshield and vapor-baffle establishes the indicated flow patterns.

The vaporizer bundle was designed based upon a $3^{\circ} \mathrm{C}$ approach to the boiling point of liquid nitrogen and required approximately $10 \mathrm{ft}^{2}$ of surface area. In addition, the dimensions were restricted to 5-1/2 in. diameter by 2 in. thick with sufficient capacity for holding a level of liquid nitrogen. This immediately suggested a home-made, finned surface.

The bundle was constructed about a piece of $1-5 / 8$ in. I.D. copper water pipe fitted at one end with a $1 / 4$ in. thick copper plug into which a $1 / 2$ in. I.D. piece of water pipe had been soldered. The pieces of pipe were 2 in. long in keeping with the imposed dimensional restrictions. Brass spacer bars 2 in. long, $3 / 8$ in. wide and $3 / 32$ in. thick were then soldered in an eight point star to the outside wall of the outer water pipe. Two strips of 0.0125 in. thick by 2 in. wide pieces of copper strip were wrapped around the central structure adding more spacers each revolution until the
diameter of the bundle reached $5-1 / 2$ in. One of the copper strips was corrugated to provide additional area. Prior to assembly the materials had all been coated with a thin layer of $50 \% \mathrm{~Pb}-50 \% \mathrm{Sn}$ solder and at this point were sweated together in an oven. Troughs, sloping toward the center, were then milled through the spacer bars into the central well. The slope would insure radial distribution of any liquid nitrogen build-up in the bundle. Liquid leaks were eliminated by coating the entire internal surface with lowmelting indium solder. Figure 2 is an overall photograph of the bundle and Figure 3 presents a close-up view of one finned section. The irregular outside geometry of the final product was an accident of construction arising from the soldering operation. The effective surface area finally obtained was very nearly $10 \mathrm{ft}^{2}$ and idealized calculations indicated that the temperature on the fins was always at least 90% of the temperature at the wall.

The control heater was constructed by stringing 25 gage, coiled Nichrome wire within a 5 in. diameter phenolic frame. The wiring was installed in two sections to be used in either series or parallel connection. In series the wattage is variable between 10 and 170 watts by means of an external resistor. The series connection is used for control heat and is activated by a Hallikainen Model 1053A Thermotrol with proportional-plus-reset control. The controller sensor is a Rosemont Model 104N48AAC. The parallel

FIGURE 2. HEAT TRANSFER BUNDLE

FIGURE 3. CLOSE-UP VIEW OF BUNDLE SECTION
connection is used for quick heat and generates 675 watts. To protect the bundle, the wiring was done in such a manner that the fan must be on when the heater is operating.

The fan blade is 4 in. in diameter and has 10 vanes. It is driven by a 1750 rpm motor mounted on top of the cryostat and delivers approximately 120 cfm . The shaft enters the cryostat through a Materials Research Corp. V4-100 rotating vacuum seal and is held true at low temperatures by a Barden Bar-Temp bearing.

A styrofoam plug surrounds the vaporizer, heater and fan. This plug serves the twofold purpose of reducing backmixing of the refrigerant vapor and supporting the radiation shield-vapor baffle. The plug is essential to close control of the gradients within the cryostat. Whereas the normal gradient was approximately $0.005^{\circ} \mathrm{C}$, degeneration of the styrofoam caused an increase to about $0.025^{\circ} \mathrm{C}$.

With the Burnett equipment in place, as shown in Figure 4, the nitrogen usage at steady state varies roughly between $1 / 5$ liter $/ \mathrm{hr}$. at $0^{\circ} \mathrm{C}$ and 3 liters $/ \mathrm{hr}$. at $-190^{\circ} \mathrm{C}$. The minimum gradient observed across the Burnett cells was $0.000^{\circ} \mathrm{C}$ with careful adjustment of the equipment and was often less than $0.005^{\circ} \mathrm{C}$. Several runs were made with gradients of about $0.025^{\circ} \mathrm{C}$ because the styrofoam plug had degenerated enough to disturb the flow patterns of the nitrogen vapor. This degeneration was actually melting caused by use of the quick heater.

FIGURE 4. BURNETT APPARATUS AND CRYOSTAT

Burnett Cells and Magnetic Pump

The physical characteristics of these items have been thoroughly discussed by Blancett and by Canfield, Watson and Blancett [8]. Minor modifications were effected, however, and will be noted here.

The Burnett cells are jacketed to allow equal pressure to be applied on both the inside and outside. The cells and jacket are shown in rough detail in Figure 5. A thermometer well was provided in the outer section of each cell which would receive a Leeds and Northrup No. 8164 capsule platinum-resistance thermometer. In earlier work only one thermometer was available and a difference thermocouple, one junction embedded in each cell, was used in conjunction with the one available thermometer to indicate the approach of temperature equilibrium. For this work, an additional thermometer was used, and because the thermocouple was thereby rendered unnecessary, it was removed. Other than this the cells remain unchanged from the earlier work.

A magnetic pump is located in the line connecting the two Burnett cells. The purpose of this item is to speed equilibration by forced mixing of the gas from each chamber. The pump was especially useful when the more dense mixtures were being studied.

One difficulty associated with the magnetic pump is ascertaining whether or not it is operating properly. In their article, Canfield, Watson and Blancett suggest sensing

FIGURE 5. HIGH PRESSURE BURNETT CELL
the movement of a check ball which is pulsed by the surging gas. Their solution was to run an electrical lead to the check-ball seat which would deliver a signal whenever contacted by the ball. An intermittent signal would indicate proper operation. The lead was run into the pump through a magnesium oxide packed tube sealed at each end with epoxy resin. Unfortunately, when subjected to extreme temperature changes, the epoxy apparently loosened and allowed gas to leak out through the tube. Because this problem had been encountered before, it seemed advisable to seek a new procedure for detecting the operating condition of the pump.

This turned out to be a simple task. The pump produces audibly different sounds when operating properly or not, and they can be heard when an industrial stethoscope is touched to certain external parts of the cryostat. This may be checked with the pressure measuring instruments and will be mentioned in that section.

When this alternative proved satisfactory, the packed tube was discarded and the pump sealed. One other problem was noticed--the pump could not be left ON for too long a time or it would hinder rather than speed equilibration at low pressures. This was caused by too much energy dissipation which in turn caused the temperature to reach a higher equilibrium value than was desired.

Temperature and Pressure Measurements

The temperature of a run was taken to be the average value indicated by the two platinum resistance thermometers.

The resistance of these elements was measured on a leeds and Northrup G-2 Mueller bridge. When properly calibrated and made consistent with the bridge, the thermometers were guaranteed to establish the temperature within $\pm 0.01^{\circ} \mathrm{C}$ of the International Temperature Scale. The bridge calibration was checked prior to making any measurements and this calibration was used in lieu of that supplied by the manufacturer.

The thermometers had been calibrated by the National Bureau of Standards, one to the oxygen point the other to $12^{\circ} \mathrm{K}$. Above $-183^{\circ} \mathrm{C}$ a table of resistance versus temperature was prepared using the Callendar-Van Dusen equation. In order to make this table consistent with the available equipment the triple point was measured with each thermometer in this laboratory and the ice point calculated from this value was used in the equation rather than the ice point given by the National Bureau of Standards. The observed triple point resistances were 25.5522 ohms for thermometer \#1617523 and 25.5341 ohms for thermometer \#1665930. Below -183 the point-by-point values of the National Bureau of Standards were used for the calibrated thermometer and this temperature was taken as the system temperature. (This table was considered to be consistent with the bridge because the ice point observed in this laboratory agreed with the one reported by the National Bureau of Standards if no bridge correction were included and the correction at $-190^{\circ} \mathrm{C}$ was only 0.00004 ohms.) The second thermometer was used only to indicate gradient in this region.

The system pressure was measured, primarily, by one of two Ruska Model 2400 dead weight gages used with two Ruska differential pressure cells and indicators. A set of accurately calibrated weights was supplied with the gages and were equivalent to Class "P" standard masses. The accuracy claimed for the gages by the manufacturer was $\pm 0.01 \%$ of the reading or better.

Two gages were employed to allow measurements from 700 to 2 atm. without changing pistons. Consequently the "low pressure gage" was used up to 165 atm. and the "high pressure gage" beyond that. The two differential pressure cells were used for an entirely different reason.

One assumption in the Burnett analysis is that the gas be completely isothermal when its properties are measured. To insure this condition one of the cells was located inside the cryostat. Because of the extreme environment, this cell was specially designed and constructed by Ruska Instrument Corporation. The other cell, joined to the latter by an intermediate gas line, was used at room temperature. Both indicators had to be nulled simultaneously to obtain a correct pressure reading.

One characteristic of the indicators which had to be investigated in detail was the zero shift caused by pressure. This phenomenon resulted from a difference in reading for a "balanced" condition in the cell, that is a flat diaphram with equal pressures on both sides, and a "nulled"
condition on the indicator. The manufacturer supplied information concerning the zero shift for both indicators, but their values were only used for the room-temperature device. The equation reported was

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{ZSR}}=1.3 \times 10^{-7} \mathrm{P} \tag{12}
\end{equation*}
$$

where $\Delta P_{Z S R}$ is the zero shift in atmospheres and P is the system pressure in psia. Unfortunately, the zero shift of the cryogenic indicator was a function of temperature as well as pressure and had to be measured in this laboratory. Blancett described the technique employed and a method for correcting the measured values. The final equation used for this quantity was

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{ZSC}}=\frac{\mathrm{MZS}}{1.0-0.0277(\partial \mathrm{P} / \partial \operatorname{lnv})_{T}} \tag{13}
\end{equation*}
$$

in which $\Delta \mathrm{P}_{\text {ZSC }}$ is the zero shift in atmospheres, MZS is the measured zero shift in atmospheres and v is the molar volume $c c /$ mole. Figure 6 is a plot of $\Delta P_{\text {ZSC }}$ versus P at the experimental temperatures.

A Welsh Model 122A marine barometer indicated the atmospheric pressure during a measurement. The resulting correction is given by

$$
\begin{equation*}
P_{B}=0.0333902(R-r) \tag{14}
\end{equation*}
$$

FIGURE 6. CORRECTED ZERO SHIFT CURVES FOR THE CRYOGENIC DIFFERENTIAL PRESSURE INDICATOR AT -160°, $-170^{\circ},-180^{\circ}$. AND $-190^{\circ} \mathrm{C}$ IN ORDER FROM TOP CURVE TO BOTTOM CURVE
where P_{B} is the barometric pressure in atmospheres, R is the barometer reading in inches of mercury, and r is a temperature correction.

Finally head corrections had to be applied to the gage reading. For the high-pressure gage this was

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{H}}=-0.00021+(\mathrm{MW})\left[(-0.116)\left(\rho_{g}\right)_{\mathrm{o}}+(\mathrm{h})\left(\rho_{\mathrm{g}}\right)_{\mathrm{i}}\right] \tag{15}
\end{equation*}
$$

and for the low-pressure gage

$$
\begin{equation*}
\Delta P_{\mathrm{H}}=-0.00057+(\mathrm{MW})\left[(-0.116)\left(\rho_{\mathrm{g}}\right)_{\mathrm{o}}+(\mathrm{h})\left(\rho_{\mathrm{g}}\right)_{\mathrm{i}}\right] \tag{16}
\end{equation*}
$$

where ΔP_{H} is the head correction in atmospheres, $M W$ is the molecular weight of the gas, $\left(\rho_{g}\right)_{o}$ is the density of the gas in the system outside the cryostat, $\left(\rho_{g}\right)_{i}$ is the density of the gas in the system inside the cryostat and h is a multiplier with values of 0.0714 for the initial measurement of a run and 0.0747 for all successive measurements. The density units are moles/cc.

The gage pressure itself is, when corrected for temperature and pressure, for the low-pressure gage

$$
\begin{equation*}
P_{G}=\frac{0.521989 \Sigma\left(M_{\mathrm{a}}\right)}{\left(1.0+1.7 \times 10^{-5} \Delta \mathrm{~T}\right)\left(1.0-4.8 \times 10^{-8} \mathrm{P}\right)} \tag{17}
\end{equation*}
$$

and for the high-pressure gage

$$
\begin{equation*}
P_{G}=\frac{2.610037 \Sigma\left(M_{a}\right)}{\left(1.0+1.7 \times 10^{-5} \Delta T\right)\left(1.0-3.6 \times 10^{-8} P\right)} \tag{18}
\end{equation*}
$$

where P_{G} is the gage pressure in atmospheres, $\Sigma\left(M_{a}\right)$ is the sum of the weights used in pounds mass, ΔT is the temperature of the gage in ${ }^{\circ} \mathrm{C}$ less $25^{\circ} \mathrm{C}$ and P is the system pressure in psia. The actual pressure is then

$$
\begin{equation*}
P=P_{G}+P_{B}+\Delta P_{H}+\Delta P_{Z S R}+\Delta P_{Z S C} \tag{19}
\end{equation*}
$$

This equation was programmed for a digital computer to speed the calculations and eliminate the chance of human error in the calculations.

Blancett has discussed the pressure measurement procedure in detail in his dissertation and it should be consulted for derivation of the above equations except for Equation 13 which has been modified by the present author.

Pressure Generation and Vacuum System

A Corblin \#B2C1000 single-stage diaphram compressor was used to produce pressures above those in the gas cylinders. The diaphram insured purity of the sample which was of primary concern in charging.

For pressures less than those contained in the sample cylinders, the gas was bled directly into the system and measured roughly by a Maxisafe bourdon tube gage. This gage was calibrated prior to use to insure that the system would not be charged above the dew point of any sample.

The vacuum system consisted of a two-stage oillubricated vacuum pump and a thermocouple gage to indicate
the pressure. The system was sufficiently tight that a 5 micron vacuum could be held for about 10 to 15 minutes when the pump was disconnected.

Valves and Tubing

With the exception of a short run of $1 / 2$ in. copper pipe in the vacuum system, all the tubing was $3 / 16$ in. O.D. stainless steel. The pressure rating was 15000 psi and a flare seal was used between tubing and fittings. The flared connections caused one problem--when tightened a large torque was set up in the tubing which tended to loosen some fittings. This was not too serious a problem, but the threat of a lengthy delay was always present should a fitting inside the cryostat begin to leak.

All the valves were High Pressure Inc. 30000 psi midget line with two-piece non-rotating stems. At room temperature they were provided with O-ring seals and performed admirably. At low temperatures the 0 -rings were unacceptable, however, and another packing had to be found.

Four valves were located within the cryostat and subjected to the very low temperatures of the experimental runs. Because the dead volume had to be kept to a minimum and the gas samples isothermal, the packing could not be removed from the cryostat. This constituted a major problem because all suitable packing materials shrink excessively with temperature and eventually begin to allow gas to leak past. This
condition was found to exist in the present work and had to be eliminated before any experimental runs were begun.

The final solution decided upon was to use some material with a very low coefficient of contraction as thrust washers for teflon packing, and to use the proper dimensions to assure that the packing could not shrink away from the stem or body of the valve. The dimensions were calculated by equating the volume change of the packing upon cooling with that of the packing cavity. To obtain the desired results Invar thrust washers were used and snugly fitted graphite washers were placed above and below the teflon to reduce extrusion. Both Invar and graphite contract very little with temperature. The equations used for the volume changes were

$$
\begin{equation*}
\Delta V_{P}=(3 \pi / 4)\left(D_{B}^{2}-d_{S}^{2}\right)(\Delta L / L)_{P} L_{P} \tag{20}
\end{equation*}
$$

and
$\Delta \mathrm{V}_{\mathrm{C}}=(3 \pi / 4) \mathrm{I}_{\mathrm{P}}\left[D_{\mathrm{B}}^{2}\left(\Delta \mathrm{I} / \mathrm{L}_{\mathrm{B}}\right)_{\mathrm{S}}-\mathrm{d}_{\mathrm{S}}^{2}(\Delta \mathrm{I} / \mathrm{L})_{\mathrm{S}}\right]+$
$+(\pi / 4)\left(D_{B}^{2}-\mathrm{d}_{\mathrm{S}}^{2}\right)\left\{\left[\Delta \mathrm{L}_{\mathrm{L}} / \mathrm{L}_{\mathrm{B}}-(\Delta \mathrm{L} / \mathrm{L})_{\mathrm{W}}\right] \mathrm{I}_{\mathrm{W}}+\left[(\Delta \mathrm{L} / \mathrm{L})_{\mathrm{B}}-(\Delta \mathrm{L} / \mathrm{L})_{G}\right] \mathrm{I}_{\mathrm{G}}\right\}$
where ΔV_{P} is the volume change of the packing from room temperature to $-190^{\circ} \mathrm{C}, \mathrm{d}_{\mathrm{S}}$ is the diameter of the valve stem, $(\Delta \mathrm{L} / \mathrm{L})$ is the change in length per length, D_{B} is the diameter of the cavity in the valve body and L is the length. The subscripts denote the following: S stem, P packing, B body,

W Invar washer, C cavity and G graphite. When the valves were assembled in this manner they held dead-tight against 700 atm and a vacuum at room temperature and between $-160^{\circ} \mathrm{C}$ and $-190^{\circ} \mathrm{C}$. The system was thus ready to take data at the conditions desired. The final dimensions used were:

1/8 in. stem
1/4 in. O.D. $x 1 / 8$ in. I.D. x 5/16 in. upper Invar washer

1/4 in. O.D. $x 1 / 8$ in. I.D. $x / 16$ in. lower Invar washer

1/4 in. O.D. $x 1 / 8$ in. I.D. x I/32 in. graphite washers

I/4 in. O.D. $x 1 / 8$ in. I.D. $x .025$ in. teflon packing.

A GENERAL LEAST-SQUARES ANALYSIS APPLICABIE TO

 OPTIMAL RECOVERY OF VIRIAI COEFFICIENTSBecause of their theoretical importance, in the study of intermolecular forces for example, the coefficients of the virial equation

$$
\begin{equation*}
Z=\sum_{k=1}^{\infty} B_{k} \rho^{k-1} \tag{22}
\end{equation*}
$$

are usually sought from compressibility data. This has been a rather perplexing problem because the equation is an infinite series and intractable by numerical methods. A number of techniques are used to approximate the virial coefficients and a few are mentioned below for comparison with the proposed procedure which is presented in detail.

Previous Methods

Possibly the first method which comes to mind is to apply a limiting behavior process to the equation. Rearrangement of Equation 22 reveals that

$$
\left.\begin{array}{l}
\mathrm{B}_{1}=1 \\
\mathrm{~B}_{2}=\lim _{\rho \rightarrow 0}(\mathrm{Z}-1 / \rho) \tag{23}\\
\mathrm{B}_{3}=\lim _{\rho \rightarrow 0}\left(\mathrm{Z}-1 / \rho^{2}-\mathrm{B}_{2} / \rho\right)
\end{array}\right\}
$$

and so on for as many coefficients as are desired. A serious disadvantage is that extremely accurate low density data are required to insure accuracy in the extrapolated values and, in general, such data are unavailable.

A more commonly used routine is to fit a polynomial approximation to the data and obtain the coefficients by requiring a "best fit." This is, by and large, a highly esoteric concept but quite often a least-squares analysis is employed. This leaves the question as to which polynomial should be used. Many investigators prefer to use a pressure expansion in the form

$$
\begin{equation*}
Z=\bar{B}_{1}+\bar{B}_{2} P+B_{3} P^{2}+\ldots \tag{24}
\end{equation*}
$$

for which the \bar{B} are related to the virial coefficients by

$$
\left.\begin{array}{l}
\mathrm{B}_{1}=\overline{\mathrm{B}}_{1}=1 \tag{25}\\
\mathrm{~B}_{2}=\mathrm{RTB}_{2} \\
\mathrm{~B}_{3}=(\mathrm{RT})^{2}\left(\overline{\mathrm{~B}}_{2}^{2}+\overline{\mathrm{B}}_{3}\right)
\end{array}\right\}
$$

Still others (notably workers in The Netherlands) utilize Amagat data in which the ratio of actual volume to normal ($0^{\circ} \mathrm{C}$ and 1 atm .) volume is measured. The Amagat compressibility factor is given by

$$
\begin{equation*}
P\left(V / V_{N}\right)=A_{1}+A_{2}\left(V_{N} / V\right)+A_{3}\left(V_{N} / V\right)^{2}+\ldots \tag{26}
\end{equation*}
$$

where V_{N} is the normal volume. The A_{i} are related to the virial coefficients by

$$
\left.\begin{array}{l}
\mathrm{B}_{1}=\mathrm{V}_{\mathrm{N}} \mathrm{~A}_{1} / \mathrm{RT}=1 \tag{27}\\
\mathrm{~B}_{2}=\left(\mathrm{RT} / \mathrm{A}_{1}\right)\left(\mathrm{A}_{2} / \mathrm{A}_{1}\right) \\
\mathrm{B}_{3}=\left(\mathrm{RT} / \mathrm{A}_{1}\right)^{2}\left(\mathrm{~A}_{3} / \mathrm{A}_{1}\right)
\end{array}\right\}
$$

A more direct method is simply to truncate the virial equation after a sufficient number of terms are judged to have been used.

The basic weakness in all these methods is that the coefficients obtained cannot be identified rigorously with the virial coefficients because their values will depend upon, among other things, the number of terms in the polynomial and the pressure range of the measurements. The polynomial coefficients could be used in theoretical work, however, if a good estimate were available for their variance from the infinite series coefficients.

Fresent Method

Michels et al. [21] have made a thorough investigation of this problem and have offered a criterion for choosing the best polynomial coefficients to approximate those of an infinite series. However, their approach has several shortcomings and a newer analysis has been developed based upon their work. The present approach is more satisfying and rigorous and is generally applicable to data reduction. Criteria are developed for choosing, in a least-squares sense, the best polynomial to approximate an infinite series and for picking the polynomial coefficients having a minimum variance from the series coefficients. To emphasize the generality of the method and to gain flexibility of expression, general nomenclature will be adopted throughout the remainder of this chapter.

Let $y_{1}, \ldots, y_{n}, \ldots, y_{N}$ be N experimental measurements at $x_{1}, \ldots, x_{n}, \ldots, x_{N}$ and assume that only random error exists in these measurements. Furthermore, assume that all the error is localized in the y_{n}, the x_{n} being exact. Admittedly, these assumptions are rather drastic but necessary for the ensuing analysis. They may be justified if care is taken to minimize systematic errors in the measurements and if it is understood that assuming localized error in a two variable experiment will magnify the error band of the random variable.

In general nomenclature the virial equation or any infinite series may be written

$$
\begin{equation*}
y_{n}^{*}=\sum_{k=1}^{\infty} \alpha_{k} f_{k}\left(x_{n}\right) \tag{28}
\end{equation*}
$$

It is assumed that this is the functional form that the Y_{n} vs. x_{n} data must fit and, therefore, that the y_{n}^{*} are exact, theoretical values. The $f_{k}\left(x_{n}\right)$ notation denotes any linearly independent set of functions of x_{n}; for the virial equation it would be ascending powers of the density.

A "model function" was proposed by Michels et al. which would provide a measure of how closely an infinite series can be approximated by a polynomial derived from exact data. This proves to be an useful relationship and is given by

$$
\begin{equation*}
y_{m n}=\sum_{k=1}^{m} \alpha_{m k} f_{k}\left(x_{n}\right) \tag{29}
\end{equation*}
$$

The values for $y_{m n}$ would be established by placing a polynomial through N points on $a y_{n}^{*}$ vs. x_{n} plot.

The function which will approximate the actual data is

$$
\begin{equation*}
u_{m n}=\sum_{k=1}^{m} a_{m k} f_{k}\left(x_{n}\right) \tag{30}
\end{equation*}
$$

The $a_{m k}$ will be found by a least-squares analysis and their variance from the α_{k} established. A brief review of the method of least-squares is in order then, if for no other reason than to introduce pertinent nomenclature.

Least Squares

The method of least squares places a polynomial approximation through a set of data points by minimizing the sum of the squares of the discrepancies defined by

$$
\begin{equation*}
\Delta_{m n}=y_{n}-u_{m n}=y_{n}-\sum_{k=1}^{m} a_{m k} f_{k n} \tag{3I}
\end{equation*}
$$

where $f_{k n}$ is shorthand for $f_{k}\left(x_{n}\right)$. The requirement is that

$$
\begin{equation*}
\sum_{n=1}^{N} \Delta_{m n}^{2}=\text { minimum } \tag{32}
\end{equation*}
$$

The minimum is sought with respect to the $a_{m k}$ and is obtained by differentiation

$$
\begin{equation*}
\partial / \partial a_{m k}\left[\sum_{n=1}^{N} \Delta_{m n}^{2}\right]=\sum_{n=1}^{N} \Delta_{m n} f_{k n}=0 \tag{33}
\end{equation*}
$$

where k ranges from 1 to m.
The $a_{m k}$ may be extracted from Equation 33 but this involves the solution of m simultaneous equations. However, if the $f_{k n}$ are made orthonormal, this requisite is eliminated. Furthermore, employing orthonormal functions enables automatic recovery of the $a_{m k}$ for all polynomials possessing fewer than some given, maximum number of parameters, m. These advantages are sufficiently enticing to motivate use of orthonormal functions in this application.

Orthonormalization of the $f_{k n}$
Orthonormal functions are vectors which are perpendicular and whose dot product is unity. The $f_{k n}$ may be
converted to such functions by employing the Gram-Schmidt algorithm. Jones and Gallet [16] and Pfenning [25] have laid down the guide lines for application of this algorithm as it will be used below.

It will be necessary frequently to use the inner product of two vectors hereafter. This may be defined in terms of the $f_{k n}$ as

$$
\left(f_{k}, f_{j}\right) \equiv \sum_{n=1}^{N} f_{k n} f_{j n} \quad \begin{align*}
& (k=1, \ldots, M) \tag{34}\\
& (j=1, \ldots, M)
\end{align*}
$$

The parentheses representation will be used often to simplify the notation.

The set of functions $\psi_{1 n}, \psi_{2 n}, \ldots \psi_{m n}$ are orthogonal (perpendicular) if

$$
\begin{equation*}
\left(\psi_{k}, \psi_{j}\right)=0 \quad k \neq j \tag{35}
\end{equation*}
$$

This condition will be satisfied by the set of functions generated from

$$
\begin{gather*}
\psi_{l n}=f_{l n} \quad(k=1) \\
\psi_{\mathrm{kn}}=f_{\mathrm{kn}}+\sum_{\mathrm{r}=1}^{\mathrm{k}-1} \mathrm{C}_{\mathrm{kr}} \psi_{\mathrm{rn}} \quad(\mathrm{k}=2, \ldots, \mathrm{M}) \tag{36}
\end{gather*}
$$

In this manner, N values of $f_{k n}$ may be transformed into orthogonal ψ_{kn}. The set of constants C_{kr} are given by

$$
\begin{equation*}
c_{k r}=-\left(\psi_{r}, f_{k}\right) /\left(\psi_{r}, \psi_{r}\right) \tag{37}
\end{equation*}
$$

when Equation 35 is applied to Equation 36.
Equation 36 is more useful in the analysis if put
into the form

$$
\begin{equation*}
\psi_{\mathrm{kn}}=\sum_{\mathrm{r}=1}^{\mathrm{k}} \mathrm{G}_{\mathrm{kr}} f_{\mathrm{rn}} \tag{38}
\end{equation*}
$$

The $G_{k r}$ are functions of the $C_{k r}$ and can be calculated from

$$
\begin{array}{ll}
G_{k k}=C_{k k}=1 & (k=1, \ldots, M) \\
G_{k r}=\sum_{j=r}^{k-1} G_{j r} C_{k j} & (k=2 ; \ldots, M) \tag{39}\\
(r=1, \ldots, k-1)
\end{array}
$$

This relationship arises when the $\psi_{k n}$ calculated from Equation 36 are equated to those calculated from Equation 38 and the coefficients of like powers of $f_{k n}$ are compared.

The $\psi_{k n}$ are normalized by

$$
\begin{equation*}
\varphi_{\mathrm{kn}}=\psi_{\mathrm{kn}} /\left(\psi_{\mathrm{k}}, \psi_{\mathrm{k}}\right)^{1 / 2} \tag{40}
\end{equation*}
$$

where $\varphi_{1 n}, \varphi_{2 n}, \ldots, \varphi_{m n}$ are orthonormal functions. The defining equation for orthonormal functions is

$$
\left(\varphi_{k}, \varphi_{j}\right)=\delta_{k j} \quad \begin{align*}
& \left(\delta_{k j}=0, k \neq j\right) \tag{41}\\
& \left(\delta_{k j}=1, k=j\right)
\end{align*}
$$

where $\delta_{k j}$ is the Kronecker delta. The $\varphi_{k n}$ formed by Equation 40 can easily be shown to satisfy Equation 41 by forming the inner product of φ_{kn} and $\varphi_{j n}$.

Solution for Coefficients

The orthonormal φ_{kn} will now be used to recover the $a_{m k}$. Upon insertion of the proper coefficients, Equations 29 and 30 become

$$
\begin{align*}
& \mathbf{y}_{\mathrm{mn}}=\sum_{k=1}^{m} \alpha_{m k} f_{k n}=\sum_{k=1}^{m} \delta_{m k} \psi_{k n}=\sum_{k=1}^{m} \beta_{m k} \varphi_{k n} \tag{42}\\
& u_{m n}=\sum_{k=1}^{m} a_{m k} f_{k n}=\sum_{k=1}^{m} d_{m k} \psi_{k n}=\sum_{k=1}^{m} b_{m k} \varphi_{k n} \tag{43}
\end{align*}
$$

where the $d_{m k}$ and $b_{m k}$ will be referred to as the orthogonal and orthonormal coefficients respectively. Equation 33 then becomes

$$
\begin{equation*}
\left(\Delta_{m}, f_{k}\right)=\left(\Delta_{m}, \psi_{k}\right)=\left(\Delta_{m}, \varphi_{k}\right)=0 \quad(k=1, \ldots, M) \tag{44}
\end{equation*}
$$

This equation may be solved readily for the $d_{m k}$ and $b_{m k}$ because the normal equations are uncoupled by the property of orthogonality. Using the b_{mk} as an example

$$
\begin{equation*}
\left(\Delta_{m}, \varphi_{j}\right)=\left(y, \varphi_{j}\right)=\left(u_{m}, \varphi_{j}\right)=\left(y, \varphi_{j}\right)-\sum_{k=1}^{m} b_{m k}\left(\varphi_{k}, \varphi_{j}\right)=0 \tag{45}
\end{equation*}
$$

but by applying Equation 41 this reduces to

$$
\begin{equation*}
b_{k}=\left(y, \varphi_{k}\right) \tag{46}
\end{equation*}
$$

and because the $b_{m k}$ are not functions of m they are written simply as b_{k}. similarly, $d_{m k}$ is found to be

$$
\begin{equation*}
d_{k}=\left(y, \psi_{k}\right) /\left(\psi_{k}, \psi_{k}\right)=b_{k} /\left(\psi_{k}, \psi_{k}\right)^{1 / 2} \tag{47}
\end{equation*}
$$

If Equation 43 is expanded and the coefficients of like powers of $f_{k n}$ compared, the $a_{m k}$ are found to be

$$
\begin{equation*}
a_{m k}=\sum_{j=k}^{m} a_{j} G_{j k}=\sum_{j=k}^{m} b_{j} G_{j k} /\left(\psi_{j} \cdot \psi_{j}\right)^{1 / 2} \tag{48}
\end{equation*}
$$

The $a_{m k}$ may be found most conveniently by constructing a matrix, T_{pk}, generated by

$$
\begin{array}{ll}
T_{1 k}=d_{k} G_{k k} & (k=1, \ldots, M) \\
T_{p k}=T_{p-1, k}+T_{1, p+k-1} G_{p+k-1, k} & (p=2, \ldots, M) \\
& (k=1, \ldots, M-p+1) \tag{49}
\end{array}
$$

In this matrix the $a_{m k}$ are found at

$$
\begin{array}{ll}
a_{m k}=T_{m-k+1, k} & (k=1, \ldots, m) \\
& (m=1, \ldots, M) \tag{50}
\end{array}
$$

Therefore, instead of a single set of coefficients, the $T_{p k}$ matrix contains M sets of coefficients corresponding to M polynomials. For example, if M were specified to be 4 , the T_{pk} matrix would be
$T_{1 k}$
$T_{2 k}$
$T_{3 k}$
$T_{3 k}$
$T_{4 k}$ $\begin{array}{llll}a_{11} & T_{22} & T_{p 3} & T_{p 4} \\ a_{21} & a_{33} & a_{44} & a_{43} \\ a_{31} & a_{42} & \\ a_{41} & & \end{array}$

It is evident that this matrix effects a substantial reduction of time and effort compared with the solution for the $a_{m k}$ by inversion procedures.

Cut-off Criteria

Two separate cut-off criteria will give an optimal set of parameters, $a_{m k}$, for the present problem. If the best fit of the data is required, the condition is

$$
\begin{equation*}
\sum_{n=1}^{N}\left\langle\left(u_{m n}-y_{n}^{*}\right)^{2}\right\rangle=\text { minimum } \tag{51}
\end{equation*}
$$

with respect to variation in m. If, however, coefficients are desired which are as near as possible in value to the exact coefficients, the requirement is that

$$
\begin{equation*}
\left\langle\left(a_{m k}-\alpha_{k}\right)^{2}\right\rangle=\text { minimum } \tag{52}
\end{equation*}
$$

with respect to variation in m for a given k. The number of parameters associated with the polynomial satisfying Equation 51 will be denoted as m^{*}.

Both criteria are of considerable importance, and must be developed into useful forms. Rigorous equations can and will be derived, but, because of the statistical nature of the analysis, they cannot be evaluated. Necessary approximations are available and can be justified by examples.

Before the criteria are expanded, a few basic relationships must be investigated. The experimental error
will necessarily have a role in this discussion. It is defined as

$$
\begin{equation*}
\epsilon_{\mathrm{n}} \equiv \mathrm{y}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}^{*} \tag{53}
\end{equation*}
$$

and because only random error is allowed in the y_{n}

$$
\begin{equation*}
\left\langle\epsilon_{\mathrm{n}}\right\rangle=0 \tag{54}
\end{equation*}
$$

where the brackets denote expected values. The errors are also assumed independent and then

$$
\begin{equation*}
\left\langle\epsilon_{\mathrm{n}} \epsilon_{\mathrm{s}}\right\rangle=\left\langle\epsilon_{\mathrm{n}}\right\rangle\left\langle\epsilon_{\mathrm{s}}\right\rangle=0 \tag{55}
\end{equation*}
$$

Also because $\left\langle y_{n}\right\rangle=y_{n}^{*}$ from Equations 53 and 54

$$
\begin{equation*}
\left\langle\epsilon_{n}^{2}\right\rangle=\left\langle\left(y_{n}-y_{n}^{*}\right)^{2}\right\rangle=\sigma^{2} \tag{56}
\end{equation*}
$$

where σ^{2} is the variance of the data. Combining Equations 55 and 56

$$
\begin{equation*}
\left\langle\epsilon_{n} \epsilon_{s}\right\rangle=\delta_{n s} \sigma^{2} \tag{57}
\end{equation*}
$$

where $\delta_{n s}$ is the Kronecker delta. Another quantity which proves useful is the "model" error

$$
\begin{equation*}
\mathrm{h}_{\mathrm{mn}} \equiv \mathrm{y}_{\mathrm{n}}^{*}-\mathrm{y}_{\mathrm{mn}} \tag{58}
\end{equation*}
$$

For both criteria, it is helpful to know some relationships between the various coefficients which have been introduced. One is established by taking the expected value
of the orthonormal coefficients defined by Equation 46

$$
\begin{equation*}
\left\langle b_{k}\right\rangle=\left\langle\left(y, \varphi_{k}\right)\right\rangle=\left(\langle y\rangle, \varphi_{k}\right)=\left(y^{*}, \varphi_{k}\right) \tag{59}
\end{equation*}
$$

Here $\left\langle\varphi_{k n}\right\rangle=\varphi_{k n}$ because the error is localized in the y_{n} values. Had the "model" function, Equation 42 , been used in a least-squares fit of N exact data points, the $\beta_{m k}$ would be found (analogously to the b_{k}) to be

$$
\begin{equation*}
\beta_{\mathrm{k}}=\left(\mathrm{y}^{*}, \varphi_{\mathrm{k}}\right) \tag{60}
\end{equation*}
$$

Like the b_{k}, the β_{k} do not depend upon the number of parameters in the polynomial fit and the subscript m is dropped. Equations 59 and 60 reveal that

$$
\begin{equation*}
\left\langle b_{k}\right\rangle=\beta_{k} \tag{61}
\end{equation*}
$$

In the case of the orthogonal coefficients, it can be shown easily that

$$
\begin{equation*}
\delta_{m k} \rightarrow \delta_{k}=\left\langle\alpha_{k}\right\rangle=\left(y^{*}, \varphi_{k}\right) /\left(\psi_{k}, \psi_{k}\right)^{1 / 2} \tag{62}
\end{equation*}
$$

From a development analogous to that for Equation 48, the $\alpha_{m k}$ are found to be

$$
\begin{equation*}
\alpha_{m k}=\sum_{j=k}^{m} \delta_{j} G_{j k}=\sum_{j=k}^{m} \beta_{j} G_{j k} /\left(\psi_{j}, \psi_{j}\right)^{1 / 2} \tag{63}
\end{equation*}
$$

Examination of Equations 48,61 and 63 establishes that

$$
\begin{equation*}
\left\langle a_{\mathrm{mk}}\right\rangle=\alpha_{\mathrm{mk}} \tag{64}
\end{equation*}
$$

The necessary expressions are now available to develop more useful forms for the cut-off criteria. The best-fit criterion can be expanded using Equations 31, 53 and 57
$\sum_{n=1}^{N}\left\langle\left(u_{m n}-y_{n}^{*}\right)^{2}\right\rangle=\sum_{n=1}^{N}\left\langle\left(y_{n}-y_{n}^{*}+u_{m n}-y_{n}\right)^{2}\right\rangle=\sum_{n=1}^{N}\left\langle\left(\epsilon_{n}-\Delta_{m n}\right)^{2}\right\rangle=$

$$
\begin{equation*}
=\left\langle\left(\Delta_{m}, \Delta_{m}\right)\right\rangle+N \sigma^{2}-2 \sum_{n=1}^{N}\left\langle\epsilon_{n} \Delta_{m n}\right\rangle \tag{65}
\end{equation*}
$$

The third term in this equation reduces to

$$
\begin{equation*}
-2 \sum_{n=1}^{N}\left\langle\epsilon_{n} \Delta_{m n}\right\rangle=-2\langle(y, \epsilon)\rangle+2\left\langle\sum_{k=1}^{m} b_{k}\left(\epsilon, \varphi_{k}\right)\right\rangle \tag{66}
\end{equation*}
$$

Equations 46, 53 and 60 indicate that

$$
\begin{equation*}
\left(\epsilon, \varphi_{k}\right)=\left(y, \varphi_{k}\right)-\left(y^{*}, \varphi_{k}\right)=b_{k}-\beta_{k} \tag{67}
\end{equation*}
$$

which when substituted into Equation 66 gives

$$
\begin{align*}
& -2 \sum_{n=1}^{N}\left\langle\epsilon_{n} \Delta_{m n}\right\rangle=-2\langle(y, \epsilon)\rangle+2 \sum_{k=1}^{m}\left(\left\langle b_{k}^{2}\right\rangle-\beta_{k}^{2}\right)= \\
& =-2\langle(y, y)\rangle+2\left(y^{*}, y^{*}\right)+2 \sum_{k=1}^{m}\left(\left\langle b_{k}^{2}\right\rangle-\beta_{k}^{2}\right) \tag{68}
\end{align*}
$$

But, from earlier definitions it can be shown that

$$
\begin{align*}
\langle(y, y)\rangle & =\left\langle\left(y^{*}+\epsilon, y^{*}+\epsilon\right)\right\rangle=\left(y^{*}, y^{*}\right)+ \\
& +\sum_{n=1}^{N}\left\langle\epsilon_{n}^{2}\right\rangle=\left(y^{*}, y^{*}\right)+N \sigma^{2} \tag{69}
\end{align*}
$$

and

$$
\begin{align*}
\left\langle b_{k}^{2}\right\rangle & =\left\langle\left(y, \varphi_{k}\right)^{2}\right\rangle=\sum_{n=1}^{N} \sum_{s=1}^{N}\left\langle y_{n} y_{s}\right\rangle \varphi_{k n} \varphi_{k s}= \\
& =\sum_{n=1}^{N} \sum_{s=1}^{N}\left\langle\left(y_{n}^{*}+\epsilon_{n}\right)\left(y_{s}^{*}+\epsilon_{s}\right)\right\rangle \varphi_{k n} \varphi_{k s}=\sigma^{2}+\beta_{k}^{2} \tag{70}
\end{align*}
$$

(This is equivalent to $\left\langle\left(b_{k}-\beta_{k}\right)^{2}\right\rangle=\sigma^{2}$. Because σ^{2}, the variance of the data, is a constant, this indicates that the calculated b_{k} are the best values automatically. Using these relationships, Equation 68 becomes

$$
\begin{equation*}
-2 \sum_{n=1}^{N}\left\langle\epsilon_{n} \Delta_{m n}\right\rangle=-2(N-m) \sigma^{2} \tag{71}
\end{equation*}
$$

and the criterion is

$$
\begin{equation*}
\sum_{n=1}^{N}\left\langle\left(u_{m n}-y_{n}^{*}\right)^{2}\right\rangle=(2 m-N) \sigma^{2}+\left\langle\left(\Delta_{m}, \Delta_{m}\right)\right\rangle \tag{72}
\end{equation*}
$$

for which $m=m^{*}$ at the minimum. This expression should be used in lieu of Gauss' criterion (see Kendall [17]) when the functional form which the data should fit is an infinite series, such as Equation 28.

The criterion for optimal coefficients also possesses a more useful form. Equation 52 may be expanded as follows

$$
\begin{align*}
& \left\langle\left(a_{m k}-\alpha_{k}\right)^{2}\right\rangle=\left\langle\left[\left(a_{m k}-\alpha_{m k}\right)+\left(\alpha_{m k}-\alpha_{k}\right)\right]^{2}\right\rangle= \\
& \quad=\left\langle\left(a_{m k}-\alpha_{m k}\right)^{2}\right\rangle+\left\langle\left(\alpha_{m k}-\alpha_{k}\right)^{2}\right\rangle+2\left\langle\left(a_{m k}-\alpha_{m k}\right)\left(\alpha_{m k}-\alpha_{k}\right)\right\rangle= \\
& \quad=\left\langle\left(a_{m k}-\alpha_{m k}\right)^{2}\right\rangle+\left(\alpha_{m k}-\alpha_{k}\right)^{2} \tag{73}
\end{align*}
$$

The first term in this expression is

$$
\begin{align*}
& \left\langle\left(a_{m k}-\alpha_{m k}\right)^{2}\right\rangle=\left\langle\left(\sum_{j=k}^{m}\left(b_{j}-\beta_{j}\right) G_{j k} /\left(\psi_{j}, \psi_{j}\right)^{1 / 2}\right)^{2}\right\rangle= \\
& =\sum_{j F k}^{m} \sum_{i=k}^{m}\left\langle\left(b_{j}-\beta_{j}\right)\left(b_{i}-\beta_{i}\right)\right\rangle G_{j k} G_{i k} /\left[\left(\psi_{j}, \psi_{j}\right)^{1 / 2}\left(\psi_{i}, \psi_{i}\right)^{1 / 2}\right] \tag{74}
\end{align*}
$$

From the definitions for b_{k} and β_{k} and Equation 57

$$
\begin{align*}
\left\langle\left(b_{j}-\beta_{j}\right)\left(b_{i}-\beta_{i}\right)\right\rangle & =\left\langle\left(\epsilon, \varphi_{j}\right)\left(\epsilon, \varphi_{i}\right)\right\rangle=\sum_{n=1}^{N} \sum_{s=1}^{N}\left\langle\epsilon_{n} \epsilon_{s}\right\rangle \varphi_{j n} \varphi_{i s}= \\
& =\sum_{n=1}^{N} \sum_{s=1}^{N} \delta_{n s} \sigma^{2} \varphi_{j n} \varphi_{i s}=\sigma^{2} \tag{75}
\end{align*}
$$

Substitution into Equation 74 gives

$$
\begin{equation*}
\left\langle\left(a_{m k}-\alpha_{m k}\right)^{2}\right\rangle=\sigma^{2} \sum_{j=k}^{m} G_{j k}^{2} /\left(\psi_{j}, \psi_{j}\right) \tag{76}
\end{equation*}
$$

The second term of Equation 73 remains to be developed. Equation 63 may be expanded using the definition of $\beta_{\mathrm{k}}:$

$$
\begin{align*}
& \alpha_{m k}=\sum_{j=k}^{m} \beta_{j} G_{j k} /\left(\psi_{j}, \psi_{j}\right)^{1 / 2}=\sum_{j=k}^{m}\left[G_{j k} /\left(\psi_{j}, \psi_{j}\right)^{1 / 2}\right] \sum_{n=1}^{N} Y_{n}^{*} \varphi_{j n}= \\
& =\sum_{n=1}^{N} \sum_{i=1}^{m} \sum_{j=k}^{m}\left[G_{j k} \psi_{j n} /\left(\psi_{j}, \psi_{j}\right)\right] \alpha_{i} f_{i n}+\sum_{n=1}^{N} \sum_{j=k}^{m} G_{j k} \psi_{j n} /\left(\psi_{j}, \psi_{j}\right) R_{m n} \tag{77}
\end{align*}
$$

where $R_{m n}=\sum_{i=m+l} \alpha_{i} f_{i n}$, the truncation error. For the time being, let Q represent the last term in this expression,
then because

$$
f_{i n}=\psi_{i n}-\sum_{r=1}^{i-1} c_{i r} \psi_{r n}
$$

Equation 77 becomes

$$
\begin{align*}
\alpha_{m k} & =\sum_{n=1}^{N} \sum_{i=1}^{m} \sum_{j=k}^{m}\left[G_{j k} \psi_{j n} /\left(\psi_{j}, \psi_{j}\right)\right] \alpha_{i}\left(\psi_{i n}-\sum_{r=1}^{i-1} c_{i r} \psi_{r n}\right)+Q= \\
& =\sum_{i=1}^{m} \alpha_{i} \sum_{j=k}^{m} G_{j k}\left(\psi_{j}, \psi_{i}\right) /\left(\psi_{j}, \psi_{j}\right)- \\
& -\sum_{i=1}^{m} \alpha_{i} \sum_{j=k}^{m} \sum_{r=1}^{i=1} G_{j k} c_{i r}\left(\psi_{j}, \psi_{r}\right) /\left(\psi_{j}, \psi_{j}\right)+Q= \\
& =\sum_{i=k}^{m} \alpha_{i} G_{i k}-\sum_{i=k+1}^{m} \alpha_{i} \sum_{r=k}^{i-1} G_{r k} C_{i r}+Q \tag{78}
\end{align*}
$$

through use of the property of orthogonality. When Equation 39 is introduced, this relationship reduces to

$$
\begin{equation*}
\alpha_{m k}=\sum_{i=k}^{m} \alpha_{i} G_{i k}-\sum_{i=k+1}^{m} \alpha_{i} G_{i k}+Q=\alpha_{k}+Q \tag{79}
\end{equation*}
$$

The difference between α_{mk} and α_{k} is Q or

$$
\begin{equation*}
\alpha_{m k}-\alpha_{k}=\sum_{j=k}^{m} G_{j k}\left(R_{m}, \varphi_{j}\right) /\left(\psi_{j}, \psi_{j}\right)^{1 / 2} \tag{80}
\end{equation*}
$$

The inner product term may be expressed as

$$
\begin{equation*}
\left(R_{m}, \varphi_{j}\right)=\left(y^{*}, \varphi_{j}\right)-\sum_{i=1}^{m} \alpha_{i}\left(f_{i}, \varphi_{j}\right) \tag{81}
\end{equation*}
$$

Therefore, the criterion for optimal coefficients is that

$$
\begin{align*}
& \left\langle\left(a_{m k}-\alpha_{k}\right)^{2}\right\rangle \equiv \sigma_{a}^{2}=\sigma^{2} \sum_{j=k}^{m} G_{j k}^{2} /\left(\psi_{j}, \dot{\psi}_{j}\right)+ \\
& +\left\{\sum_{j=k}^{m}\left[G_{j k} /\left(\psi_{j} \prime \psi_{j}\right)^{1 / 2}\right]\left[\beta_{j}-\sum_{i=1}^{m} \alpha_{i}\left(f_{i}, \varphi_{j}\right)\right]\right\}^{2} \tag{82}
\end{align*}
$$

be a minimum with respect to m. It should be noted that this criterion may be satisfied at different values of m for different values of k.

Because σ^{2} is essential to both criteria, it should also be put into a more convenient form. A good starting place is the sum of the squares of the deviations

$$
\begin{align*}
\sum_{n=1}^{N} \Delta_{m n}^{2} & =\sum_{n=1}^{N}\left(y_{n}-\sum_{k=1}^{m} b_{k} \varphi_{k n}\right)^{2}= \\
& =\sum_{n=1}^{N} y_{n}^{2}-2 \sum_{n=1}^{N} y_{n_{k=1}}^{m} b_{k} \varphi_{k n}+\sum_{n=1}^{N} \sum_{k=1}^{m} \sum_{j=1}^{m} b_{k} b_{j} \varphi_{k n} \varphi_{j n}= \\
& =(y, y)-2 \sum_{k=1}^{m}\left(y, \varphi_{k}\right)^{2}+\sum_{k=1}^{m}\left(y, \varphi_{k}\right)^{2}=(y, y)-\sum_{k=1}^{m} b_{k}^{2} \tag{83}
\end{align*}
$$

Taking the expected value of this equation produces

$$
\begin{align*}
& \left\langle\left(\Delta_{m}, \Delta_{m}\right)\right\rangle=\langle(y, y)\rangle-\sum_{k=1}^{m}\left\langle b_{k}^{2}\right\rangle= \\
& =\left(y^{*}, y^{*}\right)+N \sigma^{2}-\sum_{k=1}^{m} \beta_{k}^{2}-m \sigma^{2} \tag{84}
\end{align*}
$$

using Equations 79 and 80. If $h_{m n}$ is substituted for $\Delta_{m n}$ in Equation 83, the result is

$$
\begin{equation*}
\left(h_{m}, h_{m}\right)=\left(y^{*}, y^{*}\right)-\sum_{k=1}^{m} \beta_{k}^{2} \tag{85}
\end{equation*}
$$

Therefore, the last two equations combine to give the desired expression for σ^{2}

$$
\begin{equation*}
\sigma^{2}=\left[\left\langle\left(\Delta_{m}, \Delta_{m}\right)\right\rangle-\left(h_{m}, h_{m}\right)\right] / N-m \tag{86}
\end{equation*}
$$

While Equations 72,82 and 86 have been rigorously developed, they cannot be evaluated in their present form. In general, $h_{m n}$ and all expected values will not be known, and must be approximated. Fortunately, good estimates are available and are presented in the next section.

Criteria Estimators

Because σ^{2} is common to both criteria, it will be estimated first. The first term of Equation 86 is approximated by dropping the expected value operation

$$
\begin{equation*}
\left\langle\left(\Delta_{m}, \Delta_{m}\right)\right\rangle / N-m \approx\left(\Delta_{m}, \Delta_{m}\right) / N-m \equiv s^{2} \tag{87}
\end{equation*}
$$

This is an unbiased estimate of the term (which, incidentally, is the maximum value σ^{2} may have).

The second term is more tedious. Examination of Equations 29, 30 and 64 reveals that

$$
\begin{equation*}
y_{m n}=\left\langle u_{m n}\right\rangle \tag{88}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
h_{m n}=y_{n}^{*}-y_{m n}=\left\langle y_{n}-u_{m n}\right\rangle=\left\langle\Delta_{m n}\right\rangle \tag{89}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(h_{m}, h_{m}\right)=\sum_{n=1}^{N}\left\langle\Delta_{m n}\right\rangle^{2} \tag{90}
\end{equation*}
$$

This may be expanded into

$$
\begin{align*}
\left(h_{m}, h_{m}\right) & =\left\langle\Delta_{m 1}\right\rangle^{2}+\left\langle\Delta_{m 2}^{2}\right\rangle+\ldots+\left\langle\Delta_{m N}\right\rangle^{2}= \\
& =\left\langle\sum_{n=1}^{N} \Delta_{m n}\right\rangle^{2}-2 \sum_{n=1}^{N-1} \sum_{s=n+1}^{N}\left\langle\Delta_{m n} \Delta_{m s}\right\rangle \tag{91}
\end{align*}
$$

and estimated by

$$
\begin{equation*}
\left(h_{m}, h_{m}\right) \approx\left[\sum_{n=1}^{N} \Delta_{m n}\right]^{2}-2 \sum_{n=1}^{N-1} \sum_{s=n+1}^{N} \Delta_{m n} \Delta_{m s} \equiv \hat{S}^{2}(N-m) \tag{92}
\end{equation*}
$$

Unfortunately, this is a biased estimate, but it is the only available choice other than zero and will be used. The estimator for σ^{2} is then

$$
\begin{equation*}
\sigma^{2} \approx S^{2}-\hat{S}^{2} \tag{93}
\end{equation*}
$$

The value calculated for σ^{2} should be compared with an a priori estimate if possible. This will give some insight concerning the choice of $f_{k n}$ establishing Equation 28 as the functional form fitting the data. If improper $f_{k n}$ have been chosen the calculated and estimated values should be widely different.

The fact that s^{2} is the maximum value for σ^{2} is also an useful concept. If the $\Delta_{m n}$ are not randomly distributed, the value of \hat{S}^{2} might be such that σ^{2} will be estimated greater than S^{2}. In this case, s^{2} should be used for σ^{2}. Experience has shown that this approximation does not introduce significant error because normally $S^{2} \gg \hat{S}^{2}$.

The best fit criterion follows immediately

$$
\begin{equation*}
\sum_{n=1}^{N}\left\langle\left(u_{m n}-Y_{n}^{*}\right)^{2}\right\rangle \approx(2 m-N)\left(S^{2}-\hat{S}^{2}\right)+\left(\Delta_{m}, \Delta_{m}\right) \tag{94}
\end{equation*}
$$

This is essentially unbiased because of the small magnitude of \hat{S}^{2}. The criterion for optimal coefficients is a bit more difficult to estimate. The suggested form is

$$
\begin{align*}
& \sigma^{2} \approx\left(S^{2}-\hat{S}^{2}\right) \sum_{j=k}^{m} G_{j k}^{2} /\left(\psi_{j}, \psi_{j}\right)+ \\
& +\left\{\sum_{j=k}^{m}\left[G_{j k} /\left(\psi_{j}, \psi_{j}\right)^{1 / 2}\right]\left[b_{j}-\sum_{i=1}^{m} a_{m} *_{i}\left(f_{i}, \varphi_{j}\right)\right]\right\}^{2} \tag{95}
\end{align*}
$$

This expression is statistically biased, but it possesses a definite advantage--it is available and computable. Replacing β_{j} with b_{j} is a very good approximation as indicated by Equations 61 and 70. Replacing α_{i} with $a_{m}{ }_{i}$ is based upon experience with test cases. These examples indicated that the parameters associated with the m^{*} polynomial are generally fairly good approximations for the α_{i}. of course, the values can be checked a posteriori. In the test cases run to check the procedure, the error incurred by this
approximation was not significant. Furthermore, the coefficients associated with the m^{*} polynomial satisfied Equation 95 in all cases.

Error Accumulation and Reorthonormalization

The involved computational requirements of this technique immediately suggest computer application. Care must be exercised, however, because in problems of this type, round-off error can easily accumulate and destroy all confidence in the values obtained. The most susceptible operation above is the orthonormalization step, but, fortunately, use of orthonormal functions provides a means for estimating this error.

The b_{k} were calculated from Equation 46 under the assumption that the φ_{kn} were orthonormal. Actually, because of round-off error the $\varphi_{\text {kn }}$ might not be exactly orthonormal and Equation 45 should be used. Denoting the values obtained from Equation 45 as b_{k}^{*}, the following expression results

$$
\begin{equation*}
b_{j}=\left(y, \varphi_{j}\right)=b_{1}^{*}\left(\varphi_{1}, \varphi_{j}\right)+\ldots+b_{j}^{*}\left(\varphi_{j}, \varphi_{j}\right)+\ldots \tag{96}
\end{equation*}
$$

The difference between b_{j} and b_{j}^{*} in this equation is an indication of the effect of round-off error. The relative error is

$$
\begin{equation*}
\left(b_{j}^{*}-b_{j}\right) / b_{j}^{*}=1-\sum_{q=1}^{m}\left(b_{q}^{*} / b_{j}^{*}\right)\left(\varphi_{q}, \varphi_{j}\right) \tag{97}
\end{equation*}
$$

The b_{j}^{*} are not necessarily known, but they may be approximated by the b_{j}

$$
\begin{equation*}
\left(b_{j}^{*}-b_{j}\right) / b_{j}^{*} \approx 1-\sum_{q=1}^{m}\left(b_{q} / b_{j}\right)\left(\varphi_{q}, \varphi_{j}\right) \tag{98}
\end{equation*}
$$

When this relative error exceeds some prescribed epsilon, it is reasonable to assume that round-off error has become significant. Experience has shown that unless epsilon is 10^{-6} or less; the results may not be accepted with confidence. One method for controlling this error is reorthonormalization. Reorthonormalization of the set of functions, φ_{kn}, forms a new set $\varphi_{\mathrm{kn}}^{\prime}$ which are more nearly orthonormal. The generating equation for the new orthogonal functions is

$$
\begin{equation*}
\psi_{\mathrm{kn}}^{\prime}=\sum_{\mathrm{r}=1}^{\mathrm{k}} \mathrm{G}_{\mathrm{kr}}^{\prime} \psi_{\mathrm{rn}} \tag{99}
\end{equation*}
$$

The $G_{k r}^{\prime}$ are found by merely substituting primed values into Equation 39 in which the $C_{k r}^{\prime}$ are given by

$$
\begin{equation*}
c_{k r}^{\prime}=-\left(\psi_{r}^{\prime}, \psi_{k}\right) /\left(\psi_{r}^{\prime}, \psi_{r}^{\prime}\right) \tag{100}
\end{equation*}
$$

The $\psi_{k n}^{\prime}$ are normalized by

$$
\begin{equation*}
\varphi_{\mathrm{kn}}^{\prime}=\psi_{\mathrm{kn}}^{\prime} /\left(\psi_{\mathrm{k}}^{\prime}, \psi_{\mathrm{k}}^{\prime}\right)^{1 / 2} \tag{101}
\end{equation*}
$$

Following the earlier developments

$$
\begin{equation*}
b_{k}^{\prime}=\left(y, \varphi_{k}^{\prime}\right) \tag{102}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{k}^{\prime}=b_{k}^{\prime} /\left(\psi_{k}^{\prime}, \psi_{k}^{\prime}\right)^{1 / 2} \tag{103}
\end{equation*}
$$

$T_{p k}^{\prime}$ is formed from

$$
\begin{gather*}
T_{1 k}^{\prime}=d_{k}^{\prime} G_{k k}^{\prime} \\
T_{p k}^{\prime}=T_{p-1, k}^{\prime}+T_{1, p+k-1}^{\prime} \sum_{j=k}^{p+k-1} G_{p+k-1, j}^{\prime}{ }_{j k}^{\prime} \tag{104}
\end{gather*}
$$

and the $a_{m k}^{\prime}$ are found in the same locations as in the $T_{p k}$ matrix. The variance of the coefficients is obtained by replacing $G_{j k}$ in Equation 82 by

$$
\sum_{i=k}^{j} G_{j i}^{\prime} G_{i k}
$$

This procedure may be repeated as often as necessary to bring the relative round-off error within the tolerable limits. Of course, the expressions for $\mathrm{T}_{\mathrm{pk}}^{\prime}$ and $\sigma_{a}^{2 '}$ become increasingly more complex (see Hall and Canfield [11]).

Example

Several test cases were run on the computer to check the validity of the proposed technique. The most informative and stringent was the specially constructed function

$$
\begin{equation*}
g\left(x_{n}\right)=e^{-x_{n}}+0.1 e^{x_{n}}+0.01 x_{n}^{5}+\epsilon_{n} \tag{105}
\end{equation*}
$$

This function was chosen because it closely resembles a near-critical compressibility isotherm and has an infinite series representation for which the coefficients are known exactly.

The random error, ϵ_{n}, was included as follows. An average error of about 0.0005 was desired so a standard deviation of 0.001 was chosen and multiplied by the entries in a random-number sequence ($0.0<\mathrm{n}<1.0$). This gave an average error of 0.00046 . A second random-number sequence was used to determine the sign of the error which was then added to 30 discrete values of $g\left(x_{n}\right)$. The x_{n} were in the range $0.01 \leq \mathrm{x} \leq 3.00$.

One reorthonormalization was required to control the relative round-off error to less than 3×10^{-10} using a 12 digit word. The coefficients for the first eight polynomials are given in Table l along with their standard deviations. The program chose $\mathrm{m}^{*}=6$ as the best fit which is correct. Also the coefficients for this polynomial have minimum variances. The exact coefficients are compared with the $a_{6 k}$ in Table 2. These coefficients are nearer in value to the α_{k} than any other coefficients in Table 1 as predicted. It should also be noted that, with few exceptions, all the coefficients in Table 1 are within their standard deviation of the exact coefficients.

These and similar results seem to substantiate the validity of the assumptions made when estimating the criteria.

TABLE 1
COEFFICIENTS OF $g\left(x_{n}\right)$ FOR VARIOUS POLYNOMIAL APPROXIMATIONS

m / k.	a_{mk}	σ_{a}		a_{mk}	σ_{a}
1/1	$3.8270\left(10^{-1}\right)$	1.2824	2/1	-1.4305	$5.3077\left(10^{-1}\right)$
			2	7.9285 (10 ${ }^{-1}$)	$2.4270\left(10^{-1}\right)$
3/1	-4.4191(10^{-1})	$4.5778\left(10^{-1}\right)$	4/1	-9.6700 (10^{-1})	$6.7314\left(10^{-2}\right)$
2	-2.8840 (10^{-1})	$8.3856\left(10^{-1}\right)$	2	7.4613 (10 ${ }^{-1}$)	$1.9598\left(10^{-1}\right)$
3	$2.6607\left(10^{-1}\right)$	4.1856 (10^{-1})	3	$-3.2836\left(10^{-1}\right)$	$1.7598\left(10^{-1}\right)$
			4	$1.0408\left(10^{-1}\right)$	$5.5800\left(10^{-2}\right)$
5/1	-8.9175 (10^{-1})	8.2040 (10 ${ }^{-3}$)	6/1	-8.9970 (10 ${ }^{-1}$)	$3.2869\left(10^{-3}\right)$
2	$5.1532\left(10^{-1}\right)$	$3.5282\left(10^{-2}\right)$	2	$5.5016\left(10^{-1}\right)$	$1.2571\left(10^{-2}\right)$
3	-1.0081 (10^{-1})	$5.1835\left(10^{-2}\right)$	3	$-1.5238\left(10^{-1}\right)$	$1.7481\left(10^{-2}\right)$
4	$1.4357\left(10^{-2}\right)$	$3.3986\left(10^{-2}\right)$	4	$4.8283\left(10^{-2}\right)$	$1.1159\left(10^{-2}\right)$
5	$1.2284\left(10^{-2}\right)$	$1.0232\left(10^{-2}\right)$	5	$2.0553\left(10^{-3}\right)$	$3.3204\left(10^{-3}\right)$
			6	$1.1534\left(10^{-3}\right)$	$3.7312\left(10^{-4}\right)$
7/1	-8.9844 (10 ${ }^{-1}$)	$5.1072\left(10^{-3}\right)$	8/1	-8.9793(10 ${ }^{-1}$)	$7.3364\left(10^{-3}\right)$
2	$5.4271\left(10^{-1}\right)$	$2.6350\left(10^{-2}\right)$	2	$5.3882\left(10^{-1}\right)$	$4.8092\left(10^{-2}\right)$
3	-1.3707 (10^{-1})	$5.0757\left(10^{-2}\right)$	3	-1.2649 (10^{-1})	$1.2010\left(10^{-1}\right)$
4	$3.3494\left(10^{-2}\right)$	4.7356 (10 ${ }^{-2}$)	4	$1.9553\left(10^{-2}\right)$	$1.5058\left(10^{-1}\right)$
5	$9.3598\left(10^{-3}\right)$	2.2971 (10 ${ }^{-2}$)	5	$1.9315\left(10^{-2}\right)$	$1.0432\left(10^{-1}\right)$
6	-6.3323(10 ${ }^{-4}$)	$5.5720\left(10^{-3}\right)$	6	-4.5707(10 ${ }^{-3}$)	$4.0524\left(10^{-2}\right)$
7	$1.7156\left(10^{-4}\right)$	$5.3386\left(10^{-4}\right)$	7	$9.8273\left(10^{-4}\right)$	$8.2672\left(10^{-3}\right)$
			8	$-6.7905\left(10^{-5}\right)$	$6.8921\left(10^{-4}\right)$

TABLE 2

COMPARISON OF $a_{6 k}$ WITH α_{k}

k	α_{k}	$a_{6 k}$	σ_{a}
1	$-9.0000\left(10^{-1}\right)$	$-8.9970\left(10^{-1}\right)$	$3.2869\left(10^{-3}\right)$
2	$5.5000\left(10^{-1}\right)$	$5.5016\left(10^{-1}\right)$	$1.2571\left(10^{-2}\right)$
3	$-1.5000\left(10^{-1}\right)$	$-1.5238\left(10^{-1}\right)$	$1.7481\left(10^{-2}\right)$
4	$4.5833\left(10^{-2}\right)$	$4.8283\left(10^{-2}\right)$	$1.1159\left(10^{-2}\right)$
5	$2.5000\left(10^{-3}\right)$	$2.0553\left(10^{-3}\right)$	$3.3204\left(10^{-3}\right)$
6	$1.5278\left(10^{-3}\right)$	$1.1534\left(10^{-3}\right)$	$3.7312\left(10^{-4}\right)$

These criteria are the first impersonal, mathematical guides offered for obtaining optimal coefficients in this application and for obtaining best fits for infinite series. The program associated with this analysis was used in every phase of the data treatment in this project.

CHAPTER V

METHOD FOR REDUCTION OF BURNETT DATA TO COMPRESSIBILITY FACTORS AND VIRIAL COEFFICIENTS

The accuracy of compressibility factors obtained by the Burnett method depends to a large degree upon how well the constants N_{∞} and P_{0} / Z_{0} are established. Classically, they were found from graphical extrapolations using Equations 10 ard ll, but, when demands for more accuracy emerged, several procedures for refining the graphical values were developed.

Some of these techniques are reviewed briefly below as background material. The bulk of this chapter, however, is devoted to an explanation of a new method for refinement of the constants which eliminates many major weaknesses of the previous schemes and introduces some added advantages. Use of the new method should produce results which reflect all the accuracy of present measuring capabilities.

Previous Methods for Refinement

While the errors in the extrapolated constants are not large (roughly 0.01% for N_{∞} and 0.1% for P_{0} / Z_{0}), they must be reduced by at least an order of magnitude if the
results are truly to reflect the information available in the data. The major obstacle in this process lies in the fact that the constants appear non-linearly in the pertinent equations.

Some investigators, such as Pfefferle [24] and Silberberg et al. [27], propose linearization of the equations by various means and application of some iterative scheme to find corrections to be applied to the constants. Canfield [6] suggests that the low density linearity of a plot of ($Z-1$) ρ vs. ρ is sensitive to the value of N_{∞} and may be exploited to adjust this constant. Both methods suffer in that multiple runs for a given isotherm must be treated separately. This immediately restricts the amount of available information which may be extracted from the data.

Barieau and Dalton [1] have developed a rigorous, non-linear, least-squares technique which they have applied to Burnett data. Multiple runs may be treated with this method, but convergence problems would most likely appear when working with near critical isotherms. Hoover et al. [14] have proposed a "direct" method for establishing N_{∞} and P_{0} / Z_{0} along with the virial coefficients. This is an iterative technique based upon the Burnett analysis and establishes the constants with negligible error. However, the method is restricted to temperatures above $T_{r}>0.75$ and to regions where the compressibility factor is given by

$$
\begin{equation*}
z=1+B_{2} \rho+B_{3} \rho^{2} \tag{106}
\end{equation*}
$$

All the above methods assume N_{∞} is a true apparatus constant for a given temperature and use a calibration value in their refining steps. While this is theoretically satisfying, data taken in this laboratory .3 not actually exhibit this behavior. Each run seems to have its own cell "constant" albeit this is, most likely, because of experimental error.

Present Method for Refinement

Upon reviewing these earlier treatments, it seemed desirable to devise a new method which would eliminate their major weaknesses and thereby increase the accuracy of the final results. In particular, a method was sought which would use all of the available information contained in the experimental data.

The useful information is: one or more sets of pressures for each isocomp-isotherm considered, the fact that. the virial coefficients are identical for all sets of pressures along a given isocomp-isotherm and the Burnett analysis relating the pressures, N_{∞} and P_{0} / Z_{0} to the compressibility factors and to the virial coefficients (via Equation 22). Mathematically, a functional relationship exists of the form

$$
\begin{equation*}
F\left(j, P_{j}, T, N_{\infty}, P_{0} / Z_{0}, B_{2}, B_{3}, \ldots\right)=0 \tag{107}
\end{equation*}
$$

in which j is the expansion number and for which there may be multiple sets of expansion numbers, pressures and Burnett constants. The function is non-linear in terms of the constants, but they may be recovered by constructing a multidimensional response surface which will exhibit a minimum when the proper values are inserted. This minimum may be searched out by well established procedures. In this work and in most other studies involving Burnett apparati, two runs are used to establish an isotherm, so for the remainder of the discussion assume that

$$
\begin{equation*}
F\left(N_{\infty 1}, \quad\left(P_{0} / Z_{0}\right)_{1}, N_{\infty 2}, \quad\left(P_{0} / Z_{0}\right)_{2}, \ldots\right)=0 \tag{108}
\end{equation*}
$$

where the expansion numbers, pressures, temperature and virial coefficients are understood.

The searching procedure requires initial values for the constants and virial coefficients. The extrapolation method (Chapter I) was implemented by placing an optimal least-squares polynomial through the appropriate data coordinates and then Equation 9 produced initial estimates for the compressibility factor. The technique proposed in Chapter IV then gave values for the virial coefficients consistent with the approximate values for the Burnett constants.

The particular form to be used for F must be established at this point. The difference between Equation 9 and Equation 22 is chosen because this function permits the fullest utilization of the development presented in Chapter IV and
because the virial coefficients are recovered automatically in the data treatment.

$$
\begin{equation*}
F=P_{j}\left(\frac{Z_{0}}{P_{0}}\right) N_{\infty}^{j} \xi_{j}-\sum_{k=1}^{\infty} B_{k} \rho_{j}^{k-1} \tag{109}
\end{equation*}
$$

where j denotes an individual expansion and $\boldsymbol{\xi}_{j}$ and ρ_{j} are given by the following expressions.

$$
\begin{equation*}
\xi_{j}=\prod_{i=1}^{j} \frac{k_{1}+k_{2} P_{i}+k_{3} P_{i}^{2}+\ldots}{m_{1}+m_{2} P_{i-1}+m_{3} P_{i-1}^{2}+\ldots} \tag{110}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{j}=\frac{1}{\operatorname{RT}\left(\frac{Z_{0}}{P_{0}}\right) N_{\infty}^{j} \xi_{j}} \tag{111}
\end{equation*}
$$

The summation of F^{2} over all the data points is minimized with respect to the Burnett constants treating both runs simultaneously i.e.

$$
\begin{aligned}
\sum^{2} & \equiv \sum_{j=1}^{J 1}\left[P_{j} N_{\infty 1}^{j}\left(\frac{Z_{0}}{P_{0}}\right)_{1} \xi_{j 1}-\sum_{k=1}^{m *} B_{k} \rho_{j 1}^{k-1}\right]^{2}+ \\
& +\sum_{j=1}^{J 2}\left[P_{j} N_{\infty 2}^{j}\left(\frac{Z_{0}}{P_{0}}\right)_{2} \xi_{j 2}-\sum_{k=1}^{m *} B_{k} \rho_{j 2}^{k-1}\right]^{2}=
\end{aligned}
$$

$$
\begin{equation*}
=\text { minimum } \tag{II2}
\end{equation*}
$$

where JI and J2 are the number of data points in the first and second runs respectively and m^{*} is (as in Chapter IV) the optimal number of parameters required to approximate the virial expansion for Z_{j}. In this expression the same set of B_{k} is used for each run.

Equation 112 possesses a major advantage and a major disadvantage in a least squares sense. Because the compressibility factors do not vary widely, a weighting factor is not absolutely necessary in the summation. On the other hand, the compressibility factor is a derived rather than observed quantity, and it must be used with care in this application. To be certain that the search is truly converging, a check is made employing the observable pressures. Equation 6 may be used by introducing the optimal values for the Burnett constants and virial coefficients to calculate

$$
\begin{align*}
\mathrm{CHK} & \equiv \sum_{j=1}^{J 1}\left[\frac{p_{j}}{P_{j-1}}-\frac{1}{N_{j 1}} \frac{\sum_{k=1}^{m_{k}^{*}} B_{k} \rho_{j 1}^{k-1}}{\sum_{k=1}^{*} B_{k} \rho_{j-1,1}^{k-1}}\right]^{2}+ \\
& +\sum_{j=1}^{J 2}\left[\frac{P_{j}}{P_{j-1}}-\frac{1}{N_{j 2}} \frac{\sum_{k=1}^{m_{k}^{*}} B_{k} \rho_{j 2}^{k-1}}{\sum_{k=1}^{*} B_{k} \rho_{j-1,2}^{k-1}}\right]^{2} \tag{113}
\end{align*}
$$

If CHK is small and within the range expected from experimental error, the search may be assumed to be converging.

The function, ΣF^{2}, may be calculated from the various initial values now and the search for the minimum may commence. Many searching procedures have been proposed in the literature, but two sources collect most of the more useful ones into concise reviews. These references are a series of articles by Boas [3] and a text by Wilde [29]. The optimal method must be chosen to reflect the conditions of the problem in which it will be used.

Because the initial values of the Burnett constants can be found as accurately as they are, it seems safe to assume that the surface, $\Sigma \mathrm{F}^{2}$, will be unimodal and nearly quadratic in the region of interest. Under these conditions, the quadratic search outlined by Wilde should be employed immediately, although it is usually introduced only after having exhausted the usefulness of some linear search.

This particular search is performed by assuming that the $\Sigma_{F^{2}}$ surface is quadratic and unimodal in $N_{\infty} 1^{\prime}\left(Z_{0} / P_{0}\right)_{1^{\prime}}$ $N_{\infty}{ }^{\prime}\left(Z_{0} / P_{0}\right)_{2}$ - space. A Taylor's expansion then yields (defining ΣF^{2} as S and Z_{0} / P_{0} as A for simplicity)

$$
\begin{aligned}
\Delta S & \approx\left(\frac{\partial S}{\partial N_{\infty}}\right) \Delta N_{\infty_{1}}+\left(\frac{\partial S}{\partial A_{1}}\right) \Delta A_{1}+\left(\frac{\partial S}{\partial N_{\infty_{2}}}\right) \Delta N_{\infty_{2}}+\left(\frac{\partial S}{\partial A_{2}}\right) \Delta A_{2}+ \\
& +\frac{1}{2}\left\{\left(\frac{\partial^{2} S}{\partial N_{\infty}^{2}}\right)\left(\Delta N_{\infty_{1}}\right)^{2}+\left(\frac{\partial^{2} S}{\partial A_{1}^{2}}\right)\left(\Delta A_{1}\right)^{2}+\left(\frac{\partial^{2} S}{\partial N_{\infty_{2}}^{2}}\right)\left(\Delta N_{\infty_{2}}\right)^{2}+\right. \\
& \left.+\left(\frac{\partial^{2} S}{\partial A_{2}^{2}}\right)\left(\Delta A_{2}\right)^{2}\right\}+\left(\frac{\partial^{2} S}{\partial N_{\infty_{1}} \partial A_{1}}\right) \Delta N_{\infty_{1}} \Delta A_{1}+\left(\frac{\partial^{2} S_{1}}{\partial N_{\infty_{2}} \partial A_{2}}\right) \Delta N_{\infty_{2}} \Delta A_{2}+
\end{aligned}
$$

$$
\begin{align*}
& +\left(\frac{\partial^{2} S}{\partial N_{\infty 1} \partial N_{\infty_{2}}}\right) \Delta N_{\infty 1} \Delta N_{\infty_{2}}+\left(\frac{\partial^{2} S}{\partial N_{\infty 1} \partial A_{2}}\right) \Delta N_{\infty_{1}} \Delta A_{2}+ \\
& +\left(\frac{\partial^{2} S}{\partial N_{\infty 2} \partial A_{1}}\right) \Delta N_{\infty 2} \Delta A_{A_{1}}+\left(\frac{\partial^{2} S}{\partial A_{1} \partial A_{2}}\right) \Delta A_{1} \Delta A_{2} \tag{114}
\end{align*}
$$

In this application the fourteen derivatives may be taken analytically (analytical and numerical values were compared to insure that taking the derivative of a least squares polynomial was valid under these conditions). The last four interaction are conveniently zero. Differentiation of Equation 114 with respect to each constant change produces four simultaneous equations which, when set equal to zero and solved, give corrections to be applied to the Burnett constants. When the corrected values of the constants are inserted into Equation 112 , the minimum in the ΣF^{2} surface should result. The fact that the surface may not be exactly quadratic requires that this procedure be iterated until the change in the constants from one iteration to the next is less than some prescribed epsilon. At this minimum, the compressibility factors, densities and virial coefficients will be the best (in a least squares sense) obtainable from the data. The virial coefficients are obtained in each iteration by calculating the Z_{j} and the ρ_{j} from the permuted Burnett constants and observable pressures, and then employing the technique of Chapter IV.

Unfortunately, there is a complication involved. Choice of a polynomial to approximate the virial equation again becomes the issue. The methods of Chapter IV will indicate the proper polynomial and best virial coefficients only after the refined compressibility factors have been used to establish them. It is necessary, therefore, to set up several surfaces, each using a different number of terms in this equation, and find the optimal values of the Burnett constants for each surface. Then the optimal compressibility factors, densities and virial coefficients are established for each surface.

Now the surface must be chosen which has yielded results which are most nearly consistent with the data. The first test which can be applied is Canfield's suggestion concerning the low density linearity of a plot of (z-1)/p vs. p. Any surfaces whose results do not satisfy this condition are eliminated from consideration. The best remaining surface may be ferreted out by examining the standard deviation of the virial coefficients, the value of the best fit criterion, the deviations between observed and calculated compressibility factors and the sum of the squares of these deviations. Of these, the first two are emphasized. Ultimately, one surface will reveal superior behavior under this scrutiny, and may be considered to possess the optimal values for the desired quantities.

CHAPTER VI

DATA AND APPLICATIONS

After the pressures were corrected as outlined in Chapter III, they were treated by the methods described in Chapters IV and V to obtain compressibility factors and virial coefficients. The results are presented in Tables 3-17. In addition, interaction virial coefficients have been calculated.

Data

Each table presents the optimal results for one isocomp-isotherm as extracted from the computer program BURNOR (Appendix D). The apparatus constants, N_{∞} and Z_{0} / P_{0}, are presented at the top of the table. These are the optimal values and are consistent with the data presented. The experimental pressures in atmospheres are listed and all other quantities, reading across the page, correspond to these values. The compressibility factor is presented as calculated from the Burnett analysis (Equation 9) and as calculated from the virial equation. These latter values, labeled Z (Virial) should be considered the reported compressibilities with Z (Burnett) being additional information.

TABLE 3
EXPERIMENTAL AND CALCULATED RESULTS FOR 100.00% HELIUM AT $-160^{\circ} \mathrm{C}$

Run \#1:		$N_{\infty}=1.563311$		$=0.002657682$
Run \#2:		$\mathrm{N}_{\infty}=1.563360$		0.003186988
P(atm.)	z (Burnett)	z(Virial)	$z_{B}-z_{V}$	B_{i} and $\sigma_{B_{i}}$
701.449	1.86423	1.86423	-0.00000	$B_{2}=11.62527$
347.045	1.44182	1.44177	0.00005	
191.860	1.24604	1.24606	-0.00002	0.01288
112.706	1.14425	1.14423	0.00002	
68.5042	1.08723	1.08724	-0.00001	
42.4726	1.05377	1.05384	-0.00007	$\mathrm{B}_{3}=174.9200$
26.6481	1.03356	1.03365	-0.00009	$\sigma=1.9282$
16.8416	1.02115	1.02121	-0.00006	
10.6906	1.01332	1.01344	-0.00011	
6.8060	1.00851	1.00854	-0.00003	$B_{4}=814.5500$
4.3407	1.00552	1.00544	0.00008	
2.7715	1.00366	1.00347	0.00018	$\sigma=86.1629$
517.434	1.64906	1.64906	-0.00000	
270.051	1.34542	1.34548	-0.00006	$\mathrm{B}_{5}=19134.01$
153.698	1.19707	1.19707	0.00000	$\sigma=1160.28$
91.7634	1.11728	1.11720	0.00008	
56.2974	1.07158	1.07155	0.00003	
35.0986	1.04441	1.04441	-0.00000	
22.0962	1.02789	1.02786	0.00003	
13.9931	1.01765	1.01760	0.00004	
8.8948	1.01129	1.01117	0.00012	
5.6664	1.00716	1.00711	0.00005	
3.6151	1.00453	1.00453	0.00000	
2. 3082	1.00272	1.00289	-0.00017	

$$
\begin{array}{ll}
\text { CHK }=3.83630\left(10^{-8}\right) & \Sigma\left(z_{B}-z_{V}\right)^{2}=1.33668\left(10^{-7}\right) \\
\Sigma\left|z_{B}-z_{V}\right|=1.31718\left(10^{-3}\right) & \left(z_{B}-z_{V}\right)_{A V E}=1.99488\left(10^{-6}\right)
\end{array}
$$

TABLE 4
EXPERIMENTAL AND CALCULATED RESULTS FOR 100.00% HELIUM $A T-170^{\circ} \mathrm{C}$

TABLE 5

EXPERIMENTAL AND CALCULATED RESULTS FOR

 100.00% HELIUM AT $-190^{\circ} \mathrm{C}$| Run \#l: | | $\mathrm{N}_{\infty}=1.563218$ | | $=0.003100647$ |
| :---: | :---: | :---: | :---: | :---: |
| Run \#2: | | $\mathrm{N}_{\infty}=1.563172$ | | $=0.003664451$ |
| P (atm.) | Z (Burnett) | Z(Virial) | $Z_{B}-Z_{V}$ | B_{i} and $\sigma_{B_{i}}$ |
| 7:07.020 | 2.19222 | 2.19223 | -0.00001 | $\mathrm{B}_{2}=11.05842$ |
| 321.708 | 1.55925 | 1.55928 | -0.00003 | $\sigma^{2}=0.00938$ |
| 171.039 | 1.29584 | 1. 29580 | 0.00004 | 0.00938 |
| 98.6461 | 1.16827 | 1.16815 | 0.00011 | |
| 59.4160 | 1.09994 | 1.09986 | 0.00009 | |
| 36.6613 | 1.06092 | 1.06093 | -0.00001 | $B_{3}=184.4493$ |
| 22.9425 | 1.03783 | 1.03781 | 0.00002 | $\sigma=1.2035$ |
| 14.4777 | 1.02376 | 1.02372 | 0.00001 | |
| 9.1823 | 1.01500 | 1.01499 | -0.00001 | |
| 5.8422 | 1.00951 | 1.00951 | -0.00000 | $B_{4}=1315.162$ |
| 3.7245 | 1.00605 | 1.00605 | 0.00007 | |
| 2.3770 | 1.00370 | 1.00386 | -0.00016 | $=46.19$ |
| 513.660 | 1.88228 | 1.88224 | 0.00004 | |
| 250.687 | 1.43591 | 1.43593 | -0.00003 | $B_{5}=23733.74$ |
| 138.255 | 1.23785 | 1.23792 | -0.00007 | $\sigma=534.63$ |
| 81.3006 | 1.13782 | 1.13783 | -0.00002 | |
| 49.4945 | 1.08275 | 1.08281 | -0.00006 | |
| 30.7307 | 1.05085 | 1.05090 | -0.00005 | |
| 19.3012 | 1.03169 | 1.03174 | -0.00004 | |
| 12.2067 | 1.01992 | 1.01997 | -0.00006 | |
| 7.7528 | 1.01258 | 1.01264 | -0.00006 | |
| 4.9372 | 1.00798 | 1.00803 | -0.00005 | |
| 3.1499 | 1.00524 | 1.00512 | 0.00012 | |
| 2.0112 | 1.00333 | 1.00326 | 0.00007 | |
| $\mathrm{CHK}=3.24424\left(10^{-8}\right)$ | | $\Sigma\left(z_{B}-z_{V}\right)^{2}=9.67731\left(10^{-8}\right)$ | | |
| $\Sigma\left\|\mathrm{z}_{\mathrm{B}}-\mathrm{z}_{\mathrm{v}}\right\|=1.19001\left(10^{-3}\right)$ | | | $\left(z_{B}-z_{V}\right)_{A V E}=-5.40438\left(10^{-6}\right)$ | |

TABLE 6

EXPERIMENTAL AND CALCULATED RESULTS FOR

 87.77% HELIUM AT $-160^{\circ} \mathrm{C}$

TABLE 7
EXPERIMENTAL AND CALCULATED RESULTS FOR 87.77% HELIUM AT $-170^{\circ} \mathrm{C}$

Run \#1:		$\mathrm{N}_{\infty}=1.563050 \quad \mathrm{Z}_{0}$		$z_{0} / P_{0}=0.009346075$
Run \#2:		$\mathrm{N}_{\infty}=1.563107$		$=0.01135285$
P(atm.)	Z (Burnett)	Z(Virial)	$z_{B}-Z_{V}$	B_{i} and $\sigma_{B_{i}}$
123.774	1.15680	1.15682	-0.00002	$B_{2}=8.63729$
74.4737	1.08790	1.08786	0.00003	
46.0593	1.65162	1.05167	-0.00005	=
28.9002	1.03135	1.03135	-0.00000	
18.2763	1.01943	1.01940	0.00003	
11.6094	1.01215	1.01215	0.00000	$B_{3}=234.6565$
7.3951	1.00774	1.00767	0.00007	$\sigma=4.4250$
4.7181	1.00495	1.00486	0.00008	
3.0126	1.00297	1.00309	-0.00012	
98.7404	1.12099	1.12095	0.00003	$B_{4}=5017.328$
60.2636	1.06938	1.06939	-0.00001	$\sigma=263.225$
37.5458	1.04139	1.04144	-0.00005	
23.6512	1.02538	1.02538	-0.00000	
14.9902	1.01583	1.01580	0.00003	
9.5350	1.00999	1.00993	0.00006	
6.0776	1.00627	1.00628	-0.00002	
3.8791	1.00391	1.00399	-0.00009	
2.4784	1.00261	1.00254	0.00006	
$\begin{aligned} & \mathrm{CHK}=3.9 \\ & \Sigma \mid \mathrm{Z}_{\mathrm{B}}-\mathrm{Z}_{\mathrm{V}} \end{aligned}$	$\begin{array}{r} 3139\left(10^{-8}\right) \\ =7.6507 \end{array}$		$\begin{aligned} & \left.-z_{V}\right)^{2}= \\ & \left.-z_{V}\right\}_{\text {AVE }} \end{aligned}$	$\begin{aligned} & 16134\left(10^{-8}\right) \\ & 2.26539\left(10^{-6}\right) \end{aligned}$

EXPERIMENTAL AND CALCULATED RESULTS FOR

 87.77% HELIUM AT $-190^{\circ} \mathrm{C}$| Run \#l: | | $\mathrm{N}_{\infty}=1.563012 \mathrm{Z}$ | | $Z_{0} / P_{0}=0.06014626$ |
| :---: | :---: | :---: | :---: | :---: |
| Run \#2 | \#2: | $=1.56306$ | | $=0.07192886$ |
| P(atm.) 2 | Z (Burnett) | Z(Virial) | $Z_{B}-Z_{V}$ | B_{i} and $\sigma_{B_{i}}$ |
| 16.8878 | 1.01574 | 1.01573 | 0.00000 | $B_{2}=6.17366$ |
| 10.7427 | 1.00990 | 1.00991 | -0.00000 | |
| 6.8482 | 1.00624 | 1.00627 | -0.00003 | $\sigma=0.02394$ |
| 4.3718 | 1.00403 | 1.00399 | 0.00005 | |
| 2.7929 | 1.00253 | 1.00254 | -0.00001 | |
| 14.0841 | 1.01305 | 1.01306 | -0.00000 | $B_{3}=115.1844$ |
| 8.9679 | 1.00824 | 1.00824 | -0.00000 | |
| 5.7202 | 1.00522 | 1.00523 | -0.00001 | $\sigma=12.3884$ |
| 3.6529 | 1.00338 | 1.00333 | 0.00005 | |
| 2.3340 | 1.00209 | 1.00212 | -0.00003 | |
| CHK $=9.00548\left(10^{-9}\right)$ | | | $\Sigma\left(Z_{B}-Z_{V}\right)^{2}=7.42261\left(10^{-9}\right)$ | |
| $\Sigma\left\|z_{B}-z_{V}\right\|=2.05060\left(10^{-4}\right)$ | | | $\left(z_{B}-z_{V}\right)_{A V E}=9.57850\left(10^{-7}\right)$ | |

TABLE 9
EXPERIMENTAL AND CALCULATED RESULTS FOR 75.29% HELIUM AT $-160^{\circ} \mathrm{C}$

TABLE 10
EXPERIMENTAL AND CALCULATED RESULTS FOR 75.29% HELIUM ATI $-170^{\circ} \mathrm{C}$

TABLE 11
EXPERIMENTAL AND CALCULATED RESULTS FOR 75.29% HELIUM AT $-190^{\circ} \mathrm{C}$

TABLE 12

EXPERIMENTAL AND CALCULATED RESULTS FOR 44.56% HELIUM AT $-160^{\circ} \mathrm{C}$

TABLE 13
EXPERIMENTAL AND CALCULATED RESULTS FOR 44.56% HELIUM AT $-170^{\circ} \mathrm{C}$

TABLE 14
EXPERIMENTAL AND CALCULATED RESULTS FOR 30.13% HELIUM AT $-160^{\circ} \mathrm{C}$

TABLE 15
EXPERIMENTAL AND CALCULATED RESULTS FOR 30.13% HELIUM AT $-170^{\circ} \mathrm{C}$

TABLE 16

EXPERIMENTAL AND CALCULATED RESULTS FOR 100.00% NITROGEN AT $-160^{\circ} \mathrm{C}$

TABLE 17
EXPERIMENTAL AND CALCULATED RESULTS FOR 100.00% NITROGEN AT $-170^{\circ} \mathrm{C}$

Run \#l:		$N_{\infty}=1.564732$		$=0.08969387$
Run \#2:		$\mathrm{N}_{\infty}=1.565250$		= 0.1104292
P(atm.)	z (Burnett)	Z(Virial)	$z_{B}-z_{V}$	B_{i} and $\sigma_{B_{i}}$
8.9413	0.80198	0.80213	-0.00016	$\mathrm{B}_{2}=-161.8303$
6.2034	0.87068	0.87002	0.00066	
4.1691	0.91554	0.91549	0.00005	$\sigma=0.6012$
2.7497	0.94483	0.94540	-0.00057	
7.5775	0.83677	0.83695	-0.00018	$B_{3}=8817.199$
5.1707	0.89375	0.89350	0.00025	$\sigma=574.498$
3.4407	0.93087	0.93101	-0.00014	
2.2556	0.95519	0.95554	-0.00035	
$\begin{aligned} & \mathrm{CHK}=1 \\ & \Sigma \mid \mathrm{Z}_{\mathrm{B}}- \end{aligned}$	$\begin{aligned} & 6099\left(10^{-6}\right) \\ & \\ & l \end{aligned}=2.35647 \text {. }$	$-3,$	$\begin{aligned} & \left.-z_{v}\right)^{2}= \\ & -\left(z_{V}\right)_{A V E} \end{aligned}$	$\begin{aligned} & .02325\left(10^{-6}\right) \\ & -5.44492\left(10^{-5}\right) \end{aligned}$

Another listed quantity of interest is the discrepancy between Z (Burnett) and Z (Virial). It should be noted that the values for these discrepancies were calculated with more precision than reported for Z (Burnett) and Z (Virial) and quite often the difference in the reported compressibilities does not seem to equal the reported discrepancy. This is entirely a consequence of rounding-off the compressibility values. The last column contains the optimal virial coefficients and the standard deviation for each one.

Finally four quantities are listed which should offer some insight into the confidence with which the results may be viewed. They are the optimal value of the CHK function defined by Equation 113, the sum of the squares of the discrepancies between Z (Burnett) and Z (Virial), the average discrepancy and the sum of the absolute values of these discrepancies.

Appendix C contains a discussion of the expected experimental errors. The random error should be reduced to a negligible amount for all sets of data, but the maximum systematic error expected ranges from 0.55% for pure nitrogen at $-160^{\circ} \mathrm{C}$ to 0.04% for helium rich mixtures at low pressure. The actual error would be much less than these maximum values.

The "goodness of fit" may be inferred from the CHK
value. This quantity is a fair indication of the agreement between observed and calculated values for P_{j} / P_{j-1} and with the exception of $100 \% \mathrm{~N}_{2}$ at $-170^{\circ} \mathrm{C}$ is always less than
5.5(10 0^{-8}). The large value for this isotherm is a consequence of the fact that there simply are not enough data points to treat properly.

Interaction Virial Coefficients

Interaction second coefficients have been calculated from the mixture values. The equations relating mixture, interaction and pure component virial coefficients are

$$
\begin{equation*}
B_{2}=\sum_{i=1}^{2} \sum_{j=1}^{2} B_{i j} x_{i} x_{j} \tag{115}
\end{equation*}
$$

The coefficient $\mathrm{B}_{\mathrm{He}-\mathrm{N}_{2}}$ can be found by applying the development of Chapter IV. The pure component coefficients may be inserted or calculated for comparison. The compositions are required and accuracy here is critical.

The U.S. Bureau of Mines supplied a mass spectrometer composition analysis with the samples. These values were checked by a molecular weight determination in this laboratory using a method similar to that described by Canfield [6]. The two sets of values are presented in Table 18 along with the composition of the mixtures used by Canfield, Finally the interaction second virial coefficients are presented for the $-170^{\circ} \mathrm{C}$ and $-160^{\circ} \mathrm{C}$ isotherms in Table 19.

TABLE 18

HELIUM-NITROGEN MIXTURE COMPOSITIONS

Canfield[6]	U.S. Bureau of Mines	Molecular Weight
87.68	87.60	87.77
75.23	75.20	75.29
44.56	44.50	44.56
30.06	30.11	30.13
All entries are mole per cent helium		

TABLE 19
HELIUM-NITROGEN INTERACTION VIRIAL COEFFICIENTS

$$
\begin{array}{cc}
\mathrm{T} & \mathrm{~B}_{\mathrm{He}-\mathrm{N}_{2}} \\
-160^{\circ} \mathrm{C} & 11.26 \\
-170^{\circ} \mathrm{C} & 10.94
\end{array}
$$

Second virial coefficient in cc/mol

CHAPTER VII

RESULTS AND CONCLUSIONS

A Burnett apparatus was available at the University of Oklahoma for very accurate determination of the compressibility factors of gases. As previously assembled, the equipment was operable to 700 atmospheres between $50^{\circ} \mathrm{C}$ and $-90^{\circ} \mathrm{C}$.

A major modification of the temperature bath extended the range of applicability to $-190^{\circ} \mathrm{C}$ and 700 atmospheres. The temperature control was $\pm 0.005^{\circ} \mathrm{C}$ across the Burnett apparatus in the new configuration. A technique was also developed which allowed use of valves completely immersed in the cryostat.

The helium-nitrogen system was studied at $-160^{\circ} \mathrm{C}$, $-170^{\circ} \mathrm{C}$ and $-190^{\circ} \mathrm{C}$ at maximum pressures ranging from near saturation for nitrogen bearing mixtures to 700 atmospheres for helium. The compressibility factors derived from the observed data should exhibit maximum errors ranging from 0.55% for nitrogen to 0.04% for helium.

An extensive study of polynomial approximations for infinite series yielded a scheme for assigning realistic variances to the polynomial coefficients as compared
with the series coefficients. This allowed choice of optimal virial coefficients from the experimental compressibility data.

Finally, an optimum search routine was developed to reduce the Burnett data to compressibility factors. This was essentially a problem in non-linear curve fitting. The results were very gratifying and seem to indicate that more accurate information could be extracted from the data in this manner than was possible with earlier techniques.

IITERATURE CITED

1. Barieau, R. E. and B. J. Dalton, personal communication with R. E. Barieau.
2. Blancett, A. L., Ph.D. Thesis, University of Oklahoma, Norman, Oklahoma (1966).
3. Boas, A. H., Chemical Engineering, March 4 (1963), 97.
4. Burnett, E. S., J. Applied Mech., Trans. A.S.M.E., 58, Al36 (1936).
5. Burroughs B5500 Extended Algol Reference Manual.
6. Canfield, F. B., Ph.D. Thesis, Rice University, Houston, Texas (1962).
7. Canfield, F. B. et al., J. Chem. Engr. Data, 10, 92 (1965).
8. Canfield, F. B. et al., Rev. Sci. Inst., 34, 1431 (1963).
9. Cook, G. A., (ed.), Argon, Helium and the Rare Gases, Vol. I, Interscience Publishers, New York (1961).
10. Duclaux, J., J. Chem. Phys., 59, 987 (1962).
11. Hall, K. R. and F. B. Canfield, Physica, in press.
12. Hilsenrath, J. and M. Klein, U.S. Dept. Comm. Tech. Serv., 432, 210 (1964).
13. Hoover, A. E., Ph.D. Thesis, Rice University, Houston, Texas (1965).
14. Hoover, A. E. et al., J. Chem. Engr. Data, 9, 568 (1964).
15. I.B.M. General Information Manual, FORTRAN.
16. Jones, W. B. and R. M. Gallet, The Telecommunications Journal, No. 5, 3 (May 1962).
17. Kendall, M. G., The Advanced Theory of Statistics, Vol. II, Hafner Publ. Co., New York (1951).
18. Kielich, S., Physica, 28, 511 (1962).
19. Little, W. J. and C. A. Neel, U. S. Dept. Comm. Off. Tech. Serv., 283, 441 (1962).
20. Mann, D. B., Nat. Bur. Stds. Tech. Note, No. 154 (1962).
21. Michels, A. et al., Physica, 26, 381 (1960).
22. Miller, J. E. et al., U. S. Bu. M. Rept. Invest., No. 5845 (1961).
23. Mueller, W. H., Ph.D. Thesis, Rice University, Houston, Texas (1959).
24. Pfefferle, W. C., Ph.D. Thesis, University of Pennsylvania, Philadelphia, Pennsylvania (1954).
25. Pfenning, D. B., M. S. Thesis, University of Oklahoma, Norman, Oklahoma (1963).
26. Sewell, K. G. NASA Doc., N63-15069 (1962).
27. Silberberg, W. G., et al., J. Chem. Engr. Data, 4, No. 4, 314 (October 1959).
28. Strobridge, T. R., Nat. Bu. Stds. Tech. Notes, No. 129A (1963).
29. Wilde, D. J., Optimum Seeking Methods, Prentice-Hall Englewood Cliffs, N. J. (1964).
30. Witonsky, R. J. and J. G. Miller, J. Am. Chem. Soc., 85, 282 (1963).

APPENDIX A

SOME SPECIFIC INFORMATION CONCERNING THE EQUIPMENT

The following information was not considered vital to the main body of discussion, but it should prove useful to anyone working with this particular apparatus in the future and to anyone working with a similar piece of equipment. These specifics can be logically presented under the general headings of temperature measurement and pressure measurement.

Temperature Measurement

The Callendar-Van Dusen equation was used to relate the resistance of the thermometers to the absolute temperature above $-182.97^{\circ} \mathrm{C}$. The equation is

$$
R_{T}=R_{0}+\alpha R_{0}\left[\frac{(1+\delta)}{10^{2}} T-\frac{\delta}{10^{4}} T^{2}+\frac{\beta}{10^{6}} T^{3}-\frac{\beta}{10^{8}} T^{4}\right] \quad(A-1)
$$

where R_{T} is the resistance at $T^{\circ} C, R_{0}$ is the resistance in ohms at $0^{\circ} \mathrm{C}$ and α, β and δ are calibration constants. The values of these quantities are

Thermometer \#l617523
Date of Calibration: May 17, 1963

Range: $444.6^{\circ} \mathrm{C}$ to $-182.97^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \alpha=0.0039266_{19} \\
& \beta\left.=0.110_{35} \text { (below } 0^{\circ} \mathrm{C}\right) \\
& \delta=1.491_{36} \\
& \mathrm{R}_{0} \quad(\text { May } 30,1966)=25.5512 \Omega \quad \text { (ice point) }
\end{aligned}
$$

Thermometer \#1665930
Range: $444.6^{\circ} \mathrm{C}$ to $-261.15^{\circ} \mathrm{C}$
Date of Calibration: March 9, 1966

$$
\alpha=0.003926145
$$

$$
\beta=0.11054 \text { (below } 0^{\circ} \mathrm{C} \text {) }
$$

$$
\delta=1.49154
$$

R_{0} (May 30,1966) $=25.5331 \Omega$ (ice point)
Only \#l665930 was used to measure the temperature below $-182.97^{\circ} \mathrm{C}$. Because the Callendar-Van Dusen equation does not hold in this region, the point-by-point calibration supplied by the National Bureau of Standards was employed to relate the resistance to temperature.

The G-2 Mueller bridge was set up with equal ratio arms to insure that the true resistance of the thermometers would be the averages of normal and reverse readings. As an added precaution the resistance of the thermometer leads was equalized within a few ten-thousands of an ohm to render any imperfection in the adjustment of the ratio arms negligible.

Pressure Measurement

The elements involved in pressure measurement are the dead-weight gages, the weights and the differential pressure indicators. Some particulars should be mentioned for each item.

Ruska Instrument Corporation provides a list of instrument constants with each dead-weight gage. These constants are (for the gages in this laboratory)

	High Pressure Gage		Low Pressure Gage
Effective Area at $25^{\circ} \mathrm{C}$ and 1 atm, in. 2	0.0260430		

The weights furnished by the manufacturer were precisely machined stainless steel masses which were calibrated against a set of Class S standards. The results of this calibration are given in Table A-l. In addition, a set of Class C standard weights up to 500 mg were used for fine balancing.

The manufacturer's specifications for accuracy and sensitivity of the differential pressure indicators are:

Accuracy: $\pm 1-1 / 2$ scale divisions at null
Sensitivity: 0.0001 psi/scale division, maximum
Blancett measured the sensitivity of the indicators in situ and found that the room temperature indicator exhibited 0.00005 psi/division while at $-183^{\circ} \mathrm{C}$ the cryogenic indicator exhibited $0.0004 \mathrm{psi} /$ division. These values were not remeasured and his results were taken as indicative of the behavior under the conditions experienced in this work.

TABLE A-1

CALIBRATION DATA FOR WEIGHTS

Letter Designation	Apparent Mass vs.
	Brass, Pounds

A	26.03576
B	26.03564
D	26.03567
E	26.03569
F	26.03575
G	26.03500
I	26.03511
J	26.03504
K	26.03513
L	26.03543
N	26.03552
N	13.01812
P	5.20716
Q	5.20718
R	2.60351
S	1.30167
T	0.52073
U	0.52075
W	0.26034
X	0.13018
X	0.05207
A	0.05206
A	0.02603
B	0.01302
C	0.00521
Tare High	0.00521
Tow	0.00260

The zero shift of the indicators (described in Chapter J.II) has a bearing on the values of the constants k_{i} and m_{i} in Equations 8 and 9. These constants were derived taking into account the pressure deformation of the Burnett cells, the cryogenic valves, the magnetic pump, the connecting tubing and the cryogenic differential pressure cell. However, another factor had to be considered-the fact that a zero shift indicated that the position of the diaphram in the differential pressure cell was a function of pressure at the electronic null and would therefore contribute to the pressure effect on the cell constant (see Figure 6). When all these factors are combined the following results were obtained (see Blancett for detailed analysis):

TABLE A-2
CONSTANTS FOR PRESSURE EFFECT ON THE CELL CONSTANT

$\mathrm{T}^{\mathrm{O} C}$	k_{1}	k_{2}	k_{3}	k_{4}	k_{5}	k_{6}
-160.00	1.0	$1.25\left(10^{-6}\right)$	$-6.56\left(10^{-9}\right)$	$2.03\left(10^{-11}\right)$	$-2.87\left(10^{-14}\right)$	$1.48\left(10^{-17}\right)$
-170.00	1.0	$1.19\left(10^{-6}\right)$	$-6.10\left(10^{-9}\right)$	$1.86\left(10^{-11}\right)$	$-2.60\left(10^{-14}\right)$	$1.34\left(10^{-17}\right)$
-180.00	1.0	$1.16\left(10^{-6}\right)$	$-5.86\left(10^{-9}\right)$	$1.78\left(10^{-11}\right)$	$-2.47\left(10^{-14}\right)$	$1.26\left(10^{-17}\right)$
-190.00	1.0	$1.15\left(10^{-6}\right)$	$-5.32\left(10^{-9}\right)$	$1.57\left(10^{-11}\right)$	$-2.15\left(10^{-14}\right)$	$1.09\left(10^{-17}\right)$
$\mathrm{T}^{\circ} \mathrm{C}$	m_{1}	$\mathrm{~m}_{2}$	$\mathrm{~m}_{3}$	$\mathrm{~m}_{4}$	$\mathrm{~m}_{5}$	$\mathrm{~m}_{6}$
-160.00	1.0	$1.67\left(10^{-6}\right)$	$-9.81\left(10^{-9}\right)$	$3.04\left(10^{-11}\right)$	$-4.29\left(10^{-14}\right)$	$2.21\left(10^{-17}\right)$
-170.00	1.0	$1.60\left(10^{-6}\right)$	$-9.12\left(10^{-9}\right)$	$2.79\left(10^{-11}\right)$	$-3.89\left(10^{-14}\right)$	$2.01\left(10^{-17}\right)$
-180.00	1.0	$1.54\left(10^{-6}\right)$	$-8.76\left(10^{-9}\right)$	$2.66\left(10^{-11}\right)$	$-3.69\left(10^{-14}\right)$	$1.88\left(10^{-17}\right)$
-190.00	1.0	$1.46\left(10^{-6}\right)$	$-7.96\left(10^{-9}\right)$	$2.35\left(10^{-11}\right)$	$-3.22\left(10^{-14}\right)$	$1.63\left(10^{-17}\right)$

APPENDIX B

EXPERIMENTAL PROCEDURE AND PROBLEMS

The experimental procedure is designed to be as consistent as possible with the Burnett analysis. In particular, a constant temperature is sought for the period before an expansion and after re-equilibration. Also the amount of gas in V_{a} before an expansion should be equal to the amount in V_{a} and V_{b} after the expansion (i.e., no leaks). Finally, the amount of gas in V_{a} should be the same before and after closing the expansion valve during a measurement.

Pre-charging Procedure

In the most general case, the apparatus had to be brought from ambient temperature and pressure containing air to the experimental temperature and pressure containing the desired mixture. This alteration proceeded in the following manner.

The room-temperature differential pressure indicator was zeroed. Then the vacuiun pump was turned $O N$ and the liquid-nitrogen transfer line and the phase separator were evacuated to $10 \mu \mathrm{Hg}$. These were then closed off and the rest of the system (except for that section used exclusively
in charging) was opened to the pump. A pressure of three to four psi was then applied to the liquid-nitrogen transfer dewar which caused the nitrogen to flow via the phase separator into the cryostat. The thermotrol was adjusted to the appropriate setting for the desired temperature and the control heater was set to pulse at 25-30 watts with about $1 / 4$ ON time. The liquid-nitrogen metering valve was opened several turns and cool-down was under way.

The bath would reach any of the experimental temperatures $\left(-160^{\circ},-170^{\circ}\right.$, and $\left.-190^{\circ} \mathrm{C}\right)$ in about three hours. Tite apparatus within the cryostat equilibrated much slower, however, requiring from eight hours at $-160^{\circ} \mathrm{C}$ to twelve hours at $-190^{\circ} \mathrm{C}$. During this period the system pressure would easily reach $5 \mu \mathrm{Hg}$, and the charging system, including the compressor, could be purged repeatedly (minimally three times at 100 atm and 3 times at 10 atm) with the desired mixture.

When the temperature was within a few tenths of a degree of the desired value, an adjustment had to be made on the circuitry of the cryogenic differential pressure indicator while the system was at low pressure. This was necessary because temperature had a very strong effect upon the operating characteristics of this instrument. The adjustment was made on a "trim pot" inside the indicator with a corresponding change of the zero control until a minimum deflection of the indicator needle occurred about the null
position when the sensitivity control was rotated through its full range. When this was done the maximum variation in null position was specified by the manufacturer as $\pm 1-1 / 2$ scale divisions. This adjustment caused a severe upset in the behavior of the indicator which usually required from 30 min. to several hours to stabilize. When the spasmodic lurching of the indicator needle ceased, the sensitivity knob was again rotated through its full range to check the behavior. If necessary the adjustment was repeated until the indicator exhibited the desired properties (usually the secondary adjustments caused very little upset to the circuitry and it stabilized quickly). With the pressure indicator operating properly, the temperature controller was adjusted, if necessary, to bring the temperature within $\pm 0.004^{\circ} \mathrm{C}$ of the desired value.

Purging and Charging the System

The entire system was purged three times using the following procedure. First the cold trap (consisting of pure alcohol) was frozen by passing liquid nitrogen through the cooling coil. Then about 10 atm of the desired gas was bled into the system. This was done very slowly while simultaneously adjusting the piston gage hand pumps to avoid overpressuring the differential pressure indicators. This gas was then vented at various points and the entire system was evacuated to $10 \mu \mathrm{Hg}$. The cryogenic differential pressure indicator was zeroed at the desired temperature and $10 \mu \mathrm{Hg}$, and the system was ready to charge.

A sufficient number of weights was loaded upon the proper piston gage and the pressure was slowly brought up to the desired initial value. Again the hand pumps were adjusted to avoid overpressuring the pressure indicators. If cylinder pressure was not enough, the compressor was used to attain the required pressure. However, in the event the compressor was turned on, the charge and feed valves were only slightly opened and acted as snubbers for the pressure surges. The gas was then allowed to soak until it equilibrated at the desired temperature.

Measurements and Expansions

When the temperature remained constant at the desired value, the cells were isolated and a $5 \mu \mathrm{Hg}$ vacuum was pulled on the rest of the system. The pressure was then monitored and equilibrium was assumed when it remained constant for 10-15 min. The facts that the pressure remained constant and the vacuum held at $5 \mu \mathrm{Hg}$ were taken to indicate that the system was leak tight. At this point one of the expansion valves connecting the two cells was closed and the other necked down until it was only $1 / 8$ turn open. (For the initial measurement both valves were closed because only the upper cell, Va, contained any gas.) The pressure was very carefully measured at this point by nulling both differential pressure indicators simultaneously while the weights were floating at the proper level on the piston gage.

As soon as the nulling operation was complete, the cracked expansion valve was closed tight while the weights and indicator needles were balanced. This was done to proportion the gas properly between the two cells. Next the barometric pressure was recorded followed by the system temperature. Finally, the weights on the gage were recorded and double checked and the temperatures at the gage and in the room were noted.

Up to this point, the operation was usually troublefree, barring freak accidents and operator bungling. However, when an expansion was made several undesirable things could (and often did) happen.

An expansion was effected by venting the lower cell, V_{b} (as slowly as practical to avoid undue upset of the equilibrium temperature). Then a $5 \mu \mathrm{Hg}$ vacuum was pulled on this cell--this required 20-30 min. depending upon composition and pressure. This waiting period did serve to allow the temperature to return to the equilibrium value after the venting. When the evacuation was complete, the cell was isolated and one of the expansion valves was cracked to allow the gas to fill the lower cell. This was done as slowly as possible to avoid large temperature upsets and possible condensation of some of the mixtures. While the expansion was in progress, the differential pressure indicators were maintained in an approximately nulled position to avoid large overpressures. This was a rather touchy manipulation
requiring simultaneous adjustment of the hand pump in the oil system, venting of the intermediate gas system and several adjustments of the expansion valve to maintain a reasonably constant decrease in pressure. A pitfall in this operation was operating too quickly. If the expansion were rapid, there was a good chance that the intermediate gas would be vented fast enough to cause an overpressure from the bottom in the differential pressure cells--precisely the effect which was to be avoided.

At this point the system was again allowed to soak, and presumably would return to the set temperature. This was seldom the case. Usually, 2-4 hours were required for the temperature to equilibrate and, usually, the value was on the order of $\pm 0.02^{\circ} \mathrm{C}$ different from the set temperature. This required an adjustment of the thermotrol after each expansion and necessitated an additional 30-45 min. wait for the desired equilibrium temperature.

A run was finished when the system pressure dropped below 2.0 atm . When this occurred the remaining pressure was vented and the zeroes on the differential pressure indicators checked. If necessary, they were re-zeroed before starting another run.

Some mechanical difficulties were noticed (possibly the understatement of this whole report) regarding the fan assembly and the cryogenic valves. Although the low temperature bearing was specified usable down to the boiling
point of nitrogen, it seemed to deteriorate quite rapidly at $-190^{\circ} \mathrm{C}$. While this could have been because of improper mounting (the bearings will only support a small axial loading, for example) it seemed to behave quite well at $-160^{\circ} \mathrm{C}$ and slightly less well at $-170^{\circ} \mathrm{C}$. Extreme care should be used when mounting this bearing in future work to remove this variable in its operation.

The cryogenic valves also had to be mounted carefully. If they were not very nearly vertical and aligned very well with the stem extension, there was a good chance the stem would break in use. Furthermore, when shipped the threads and two-piece stem assembly were lubricated with MOS_{2} grease. This had to be completely removed and replaced with dry MoS_{2} to avoid freezing. The threads could be cleaned by washing directly with benzene and acetone, but it was more satisfactory to heat the two-piece stem assembly over a low flame prior to washing with the solvents. This caused the grease to flow out of a quite restricted volume and allowed its complete removal.

It was also noticed that these valve stem threads tended to gall after extended use. This could be minimized by carefully rounding the leading edge of the threads on the stem followed by working them in with MoS $_{2}$ powder. A very good bond of MOS_{2} could be obtained with about 30 min . work and might save several hours by prolonging the valve life.

When the valves were first assembled, it was felt that the tip should be highly polished and worked in with MOS_{2} before a satisfactory seal could be effected. In retrospect this does not seem to have made any real difference.

APPENDIX C

ERRORS

The errors inherent in a Burnett-type experiment are those associated with the measurement of temperature and pressure and those arising from inconsistencies between the experimental procedure and the analysis.

The measurement errors are those intrinsic to the instruments used and human error in their implementation. The inconsistencies are caused by incomplete evacuation of the lower cell before an expansion, temperature variation during a run and incorrect proportioning of the gas between the two cells.

Mueller [23], Canfield [6] and Blancett [2] have thoroughly discussed these factors and their developments will not be repeated here. However, the final equations used should be noted for the sake of consistency.

The above authors have shown that incomplete evacuation of the lower cell introduces negligible error and that the error due to incorrect proportioning can be included in the values for the Burnett constants. The effect of temperature and pressure uncertainties are reflected in the error defined by

$$
\begin{equation*}
\Delta Z_{j} \approx \frac{N^{j} \Delta P_{j}+j P_{j} N^{j-1} \Delta N-Z_{j} \Delta\left(P_{0} / Z_{0}\right)}{P_{0} / Z_{0}}+(\partial Z / \partial T)_{P} \Delta T \tag{C-1}
\end{equation*}
$$

where it has been assumed that $N_{1}=N_{2}=\ldots=N_{j}$ and that differentials may be replaced by Δ quantities defined as "true less calculated" values. It should be noted that this equation is simpler than that used by the previous authors although it is based upon their reasoning. The simplification was made possible because good estimates for ΔN and $\Delta\left(P_{0} / Z_{0}\right)$ are readily available from the searching procedure of the computer program presently used in the data treatment. The Δ quantities may be taken as the difference in two successive values of the constants as the minimum is approached. The maximum error caused by a temperature variation of ± 0.005 during the experimental runs was 0.012% at $-190^{\circ} \mathrm{C}, 0.010 \%$ at $-170^{\circ} \mathrm{C}$ and 0.009% at $-160^{\circ} \mathrm{C}$. The quantity P is given by

$$
\begin{equation*}
\Delta P_{j}=\left(P_{j} \times 10^{-4}+3 \times 10^{-4}\right) \mathrm{atm} \tag{c-2}
\end{equation*}
$$

The value of ΔT is always 0.01 while $\Delta N=\Delta\left(P_{0} / Z_{0}\right)=5 \times 10^{-6}$. The partial derivative of Z with T was estimated from the experimental data for each isocomp-isotherm. Thus the maximum error is the sum of the value given by Equation $\mathrm{C}-2$ and the temperature variation uncertainty.

Table C-1 is a list of the maximum errors for each isocomp-isotherm. The error is entered as a percentage. The actual error in the compressibility factors should be much less than these maximum values.

TABLE C-1
MAXIMUM EXPERIMENTAL ERRORS IN Z

Comp.	Temp. (${ }^{\circ} \mathrm{C}$)	P (atm.)	$\Delta \mathrm{Z}$ (\%)	P (atm.)	$\Delta \mathrm{Z}$ (\%)
100\% He	-160	700	0.04	2	0.04
100\% He	-170	700	0.04	3	0.04
100\% He	-190	700	0.05	2	0.04
88\% He	-160	220	0.17	3	0.04
88\% He	-170	125	0.11	3	0.04
88\% He	-190	9	0.04		
75\% He	-160	125	0.22	3	0.04
75\% He	-170	50	0.11	3	0.03
75\% He	-190	4	0.03		
45\% He	-160	40	0.17	3	0.06
45\% He	-170	9	0.05		
30\% He	-160	16	0.53		
30\% He	-170	7	0.27		
0\% He	-160	8	0.55		
0\% He	-170	5	0.39		

APPENDIX D

COMPUTER PROGRAMS

The following computer programs were used in the data treatment. The first program, PCALC, is written in Fortran II [15] and calculates the corrected pressures from the observables. The second program, BURNOR is written in extended ALGOL [5] and is the main data treatment routine which reduces the corrected pressures to compressibility factors, densities and virial coefficients. The final program is a general calling program for the ORNOR procedure of the data treatment program. This routine is written in ALGOL and produces a least-squares fit of data based upon the methods of Chapter IV and was useful in calculating interaction virial coefficients.

```
            COMMENT PCALC PROGRAM
            40KFORTRANRUN
            DIMENSION PAL(30),FMAL(30), PAH(30),FMAH(30),J(30)
            REAO 301,(FMAL(I),PAL(1),FMAH(1),PAH(1),1=1,29)
01 FORMAT(4F12.6)
    101 PRINT }77
    777 FORMAT(IHI,2OHPRESSURE CALCULATIONI
        READ 100, DELT,RR,FMW,RHOGO,RHOGI,HCHB
        READ 200, UPZSC, DELTA, KHL
    100 FORMAT (F11.6,5F12.6)
FOORMAT(2F12.6,13)
    PRINT 701
    701 FORMAT(1X,/////28H INPUT VALUES are AS" FOLIOWS)
        PRINT 702, DELT
        FORMAT(1X,13HDELTA TEMP = F12.6)
        PRINT 703, RR, FMW
703 FORMAT(IX,6HR-R =FI2.6/IX, I'9HMULECULAR WEIGHT = F12.6)
    PRINT 704,RHOGO,RHOGI
70̈4 FURMAT(IX,1GHDENSITY SUB 0 = F12.6/IX,16HDENSITY SÜBI= F12.6)
    PRINT 705,HCHB
    FORMAT(IX,BHHC-HB= F12.6)
    PRINT 706,DPZSC,DELTA
    706 FURMAT(IX,BHDPZSC = F12.6/1X,8HDELTA = F12.6)
    READ 105,No(JIL),L=1,N)
105 FURMAT\110.10x,3012)
    SUMA = 0.0
    SUPA = 14.T
    IF(KHL)51,55,61
G SUM OF LOW PRESSURESS ANDO WEIGHTS
51 DO 6 L =1.N
    I = j(L)
    SUMA = SUMA & FMAL(I)
6 SUPA = SUPA & PAL(I)
    GO TO 53
C SUM OF HIGH PRESSURES AND WEIGHTS
61 OO 7L=1,N
    I = j(L)
    SUMA = SUMA & FMAH(I)
TSUPA = SUPA & PAHOIII
    GO TO }6
C printing luw pressüges äno weights used
53 UO 52L=1,N
    I}=J(L
52 PRINT 800, PALILI,FMAL(I)
    PRINT 801, SUPA", SUMA
    GO TO }7
C PRINTING HIGH PreSSURES AND WEIGHTS USED
63. DO 62L = L,N
    l}=j(L
62 PRINT 800, PAH(1), FMAHII)
    PKINT 801, SUPA , SUMA
800 FORMAT(16X,F11.5,28X,F11.5)
801 FURMATIIX,15HSUM OF PRESS = F11.5,12X,17HSUM OF WEIGHTS = F11.51
76 PB = 0.0333902*RR
    DPZSR = 0.130E-06*SUPA
    IF(KHL)50,55,60
    55 PKINT 500
    500 FORMAT(IX,22HKHL VALUE IS INCORRECT)
    GO TU 101
C CALCULATION OF PG, OPH fOR HIGH PRESSURE
    60 PG=(2.61004*(SUMAEOLELTAJ)/(11.0&(1.7E-05)*DELT)*(1.0-(3.6E-08)*SÜP
        1A1)
            DPH =(-0.00021 )&FMW*((-0.116)*RHOGO&HCHB*RHOG1)
            GO TU }7
C CALCuLATIUN OF PG, OPH FOR LUW PRESSURE
```

```
    50 PG=(0.521989*(SUMAEDELTA))/((1.0&(1.7E-05)*DELT)*(1.0-(4.8E-08)*SU
        1PAD)
        DPH =(-0.00057 )&FMW*((-0.116)*RHOGO&HCH8*RHOGI)
    75 PCOK = PGEPBEDPHEOPISREDP LSC
802 PRINT 707
707 FURMATIIX,32HCALCULATED VALUES ARE AS FOLLOWS\
        PRINT 708. PB
708 FORMAT(IX,22HBARUMETRIC PKESSURE = FIL.51
        PRINT 709, DPZSR
709 FORMAT (1X,8HUPZSR = F11.5)
        PRINT 7LO, PG, DPH
        FURMAT(IX,16HGAGE PRESSURE = F11.5/IX,11HDELTA PH = Fll.b)
        PRINT 400, PCOR
        400 FORMAT(2X,//22H CURKECTED PRESSURE = Fll.5)
        go TO 101
        END
```


COMMENT BURNOR PROGRAM

```
    00:35 AM JULY 08, 1967 ******************* UICK HALL CSC
BEGIN
COMMENT THE PLOTTEH PACKAGE IS NOT LISTED BUT GDES HEREB
PROCEDURE UPOW(X,XL,Y,YL,K)S
        VALUE X,XL,K;
        REAL X,XL,Y,YLS
        INTEGER K;
        BEGIN
        LABEL DW;
            INTEGER I;
                Y+1.0; YL*0.0;
            IF K<1 THEN GO TO OW ELSE
                                    FOR I+1 STEP 1 UNTIL K DO
                                    DOUBLE(X,XL,Y,YL,X,&,Y,YL);
            DW: END UF DPOW;
PROCEDURE USQRT(XI,XL,Y1H,YIL);
VALUE X1,XL ;
REAL XIOXL,Y1H,Y1L ;
    BEGIN
INTEGER T;
REAL X,Y;
REAL ARRAY CON[0:7] ;
LABEL LI,RETURN ;
    IF XI = O THEN GO TO LI;
    CON[0] + 0.0000026973988;
    CON[1] + 0.0000001603883;
    CON[2] + 0.0000076294;
    CON[4] + 2.137099923 ;
    CON[3] + 0.000004536465 
    CON[5] + 1.270727023 ;
    CON[6] + 7.555786@22,
    CON[7] + 4.482697P22;
            x+ X1 < 1.0 3
            T+ 0;
            T+X.[8:2] ;
            T,[45:1] + X.{2:1];
            Y+x;
            Y.[386] + Y.[286] 
            Y*Y x CON[T] 
                Y + (X/Y + Y) X 0.5 ;
                    Y + (X/Y +Y) x 0.5;
                    Y + (X/Y + Y) X 0.5 ;
                    Y & (X/Y + Y) X 0.05;
                    DOUALE(X1,XL,Y,O,1,Y,0,\ldots,0,0,5,X,Y,0,+,+,YY1H,YIL);
                    GO TO RETURN S
L1: Y1H + Y1L + O%
RETURN& END:
REAL TJM,TOML, HAM,HAML;
        LABEL L60;
        REAL LOWDDXI,DBDUM;
        INTEGER IXQ: BODLEAN ARRAY SLUN[0:100]:
        COMMENT PROGRAM 200%
        DEFINE FORNQ=FUR NQ +1,NQ+1 WHILE NQS*,
    FORR=FOK K+1,R+1 WHILE KS#, FORI=FOR I+1,I+1 WHILE IS *,
    FORK=FOR K+1,K+1 WHILE KS *;
DEFINE FORIXO = FDR IXO+I STEP 1 UNTIL *;
```

INTEGER AMT，IND：REAL R，EPSILON：
BEGIN
INTEGER I，J3
INTEGER AKFAY INDICES［0：100］：
FOR I +0 STEP 1 UNTIL 100 DO SLON［I］＋FALSE；
 FOR I +0 STEP 1 WHILE（J I INDICES［I］）≥ 0 DO SLON［J］TRUE；
END：
READ（CR， 1 ，AMT，EPSILON，R）S IND＊1；
L60：BEGIN
INTEGER N，MB
READ（CR，／sN，M）：
SLON\｛ち〕\＆TRUE；
BEGIN
REAL TEMP，COMP；INTEGER NO，K，NN，NUMRUN，MIN；
COMMENT IND＝I．NU＝LOWER CASE N：
ARRAY F［O：M，O：N］，Y，X［O：N］，$A[0: M, O 8 M]$ ，BFF［O：M］； ARRAY FL［0：M，O：N］，AL［O\＆M，O：M］，BFFL［O\＆M］，XL［O\＆N］；
ARRAY TEMPXA，TEMPYA，TEMPX，TEMPY［OZN＋1］；
ARFAY TEMPXB，TEMPXC，TEMPYB，TEMPYC［O：N＋1］；
FORMAT FMI5（／NFINAL FIT OF Z VS RHON）
FDRMATFMIO（／NY（N）＂／），FMIZ（／＂X（N）N／））
ROCEDURE DRAWIT（X，Y，N1，N2）：VALUE N1，N2；INTEGER N1，N2；
ARRAY $X, Y[0]$ ；
BEGIN
ARRAY XNAME，YNAME［0：5］；
INTEGER I，N；
REAL YMIN，OY，XMIN，DX；

N＋N1＋N2：
PLUT（0，．5，－5）
$X(N+1]+0.0$ ；

SCALE $(Y, N, B, Y M I N, O Y, 1) ;$
SCALE $(X, N+1,8, X M I N, D X, 1) ;$
AXIS $(0,0, X N A M E,-7,8,0, X M I N, D X)\}$
AXIS $(0,0$, YNAME $6,8,90, Y M I N, O Y) ;$
FOR I＋1 STEP 1 UNTIL NI DO SYMBOL（X［I］，Y［I］，．O8，XNAME，0， 05$)$ ：
FOR I $+N$ STEP－ 1 WHILE I $>$ NI 00 SYMBOL（X［I］，Y［I］，．08，XNAME，0，－9）：
PLOT（11，＂．5，－3）；
END OF DRAWIT：
COMMENT PROCEDURES URNOR，INVERT PERMUTE AND CALFY， OR THEIR EQUIVALENTS INSERTEO HERE；
PROCEDURE INVERSE（NOAPEPSOSINGULAH）：VALUE NOEPS：INTEGER N；REAL EPS；REAL ARRAY A［0，0］；LABEL SINGULAR；BEGIN INTEGER I，J，K，II，NI，K2，L；REAL BIG，TEMP －OIAG，Q；INTEGER ARRAY F［O：NJILABEL I2，I3．I4，I5．I6，SK3：IC8FOK IT1STEP IUN TIL N DO BEGIN $1 I+I-1$ FFUR J＋I STEP IUNTIL N DO BEGIN OHOBFOR K $-1 S T E P$ IUN TIL II UO $W+A[J, K] \times A[K, I]+Q ; A[J, I]+A[J, I j-Q$ END；BIG\＆OBK2世I；I3iFORK＋I ST EP IUNTIL N OD BEGIN IF ABS（A［K，II）＞BIG THEN BEGIN BIG\＆ABS（A［K，IJ）3K2\＆K ENO END：IF BIGSEPS THEN GO TU SINGULAKSF［IJHK2IIF K2\＃I THEN I4：FOR K IST EP IUNTIL N DD BEGIN TEMP＋A［I，K］；A［I，K］＋A［K2，K］：A［K2，K］＋TEMP ENDBDIAG＋AL I，IJ；FOR J\＆I＋ISTEP IUNTIL N DO BEGIN Q\＆OBFOR K\＆ISTEP IUNTIL II UO Q\＆ALI， $K] \times A[K, J]+G ; A[I, J]+(A[I, J]-Q) / O I A G$ END END：I5：FORI＋ISTEP IUNTIL N DG BE GIN II＋I－I；DIAG＋AIIOIJBFOR J\＆ISTEP IUNTIL I DO BEGIN IFI＝J THEN A［IOJ］＋

```
1/OIAG ELSE BEGIN A+OBFOR K+J STEP IUNTIL II DO Q+A[I,KIXA[K,J]+Q;AII,J]
&-O/DIAG END END ENDINI&N-IBFOR I&NI STEP=IUNTIL IDO BEGIN II+I+I;FOR J*
N STEF-IUNIIL II DO BEGIN Q+OBL+J=IJFOR K&II STEP IUNTIL L DO O&A[IOKJXA
[K,J]+QSA[I,J]+-A[I,J]=0 END END;FOR I&ISTEP IUNTIL NI DO FOR J+ISTEP IU
NTIL N DO BEGIN Q+OIIF IZJ THEN BEGIN FOR K+I+ISTEP IUNTIL N DO OHA[I,KI
XA[K,J]+Q;A[I,J]+A[I,J]+Q END ELSE BEGIN FOR K+J STEP IUNTIL N DD Q&A[I,
K]XA[K,J]+Q{A[I,J]+Q END ENDSI6:FOR J+N STEPwIUNTIL 1DO BEGIN K2&FIJ]:IF
    F[J]=J THEN GO TO SK3{FOR K+ISTEP IUNTIL N DO BEGIN TEMP&A[K,K2];A[KOK2
J&A[K,J];A[K,J]&TEMP END;SK3&END ENO:
    OEFINE INVERT=INVERSE:?
    COMMENT PROGRAM 201;
PROCEDURE ORNOR(N,M,EPSILON,Y,F,FL,A,AL,BFF,BFFL,MIN)S
    REAL EPSILIN% INTEGER N,M,MIN% ARRAY YOBFF[O],F,A[0,O];
    ARRAY BFFL[0],AL,FL[0,O];
BEGIN
    REAL SUM,SSQMIN,ARG,BF,YPROUS
    INTEGER NQ,K,R,I,J,Q,NOORTHO,MINA,MINB,MN:
    ARRAY G1,G2,G3,G4,G5[0:M,O:M], RTPSI,B,D,SSD,SSQ,KELERR[0:M],
            PSI,PHI,FSUB[0:M,O&N];
    ARRAY BF2[O:M];
    REAL SUML,SSQMINL,ARGL,BFL,YPRODL;
    ARRAY G1L,G2L,G3L,G4L,G5L[0:M,O&M],RTPSIL,HL,DL,SSDL,SSUL,RELERRL{O
{M],PSIL,PHIL,FSUEL[O&M,O:N]}
    ARHAY BFRL[0&M]:
    FORMAT FM1( /WB(K)N/ ), FM2(5(E17.10,X5)),
        FM3( /"SUM DF SQUARES OF DEVIATIDNSM/ ),
        FM4( /"S SQUARED"/),
        FM5( /MMINIMUM S SQUAHED FITE*I3).
        FM6( /"RELATIVE ROUNU-OFF ERROR"/ ).
        FM8( /"D(K)M/).
        FM7C /"DAMN-IT, RUUND=UFF ERROR IS STILL GREATER *
            "THAN EPSILON*), FM&S( /"EST. BEST FII="I3),
            FM13(/HREORTHONDRMALILATION* )*
            FMI4( /WBEST FIT CKITERION*/ )&
LABEL ORTHO:
LABEL FINALPT;
    LABEL L63,L33,L34;
    NDORTHO+13 ARG&ARGL+0.OB
    FOR NQ+1,NG+1 WHILE NQSN DO DOUBLE(ARG,ARGL,Y[NO], O,Y[NO],O,X,+,&,A
HG,ARGL): DOUBLE(ARG,ARGL,t,YPROD,YPRODL);
ORTHD:
BEGIN
    LABEL L1,L2,L3,La,L5, FINORT,L6,L7!
    REAL SUMQ,IPPSI,IPPSIF:
    ARRAY C,G[O&M,O:M];
    REAL SUMQL,IPPSIL,IPPSIFL; ARRAY CL,GL[O&M:O&MJ;
    SWITCH GCALC+L1,L2,L3,L4,L5%
    FORMAT F2(5(E17.10,X5)).
        F3( /"PSI(K,N)N/ ), F4( /NG(K,R)N/ ).
        F5( /"PHI(K,N)"/ ), F6( /WROOT INNER PRUDUCT PSI*/ )&
    FORNQ N DO DOUBLE(F[1,NQ],FL[{,NQ],t,PSI[I,NQ],PSIL[{,NQ]):
    IF SLON[15] THLN BEGIN WKITE(L.P,F3):
    WRITE(LP,F2,FOR IXQ+ISTEP I UNTIL N DO PSILI,IXQJ)BEND:
    IF M=1 THEN GO TO FINORT:
    FOR K+2,K+1 WHILE KSM DO
```



```
BEGIN IPPSI&IPPSIL+IPPSIF+IPPSIFL+O% FORIN OD
BEGIN DOUBLECIPPSI,IPPSIL,PSI[R,I],PSIL[R,I],PSI[R,I],PSIL[R,I], X,t,
                        HIPPSI,IPPSIL)&
    DOUBLE(IPPSIF,IPPSIFL,F[K,I],FL[K,I],PSI[R,I],PSIL[R,I],x,*,*,IPPSI
F.IPPSIFL):
END; DOUBLE(=IPPSIF,=IPPSIFL,IPPSI,IPPSIL,/, &,C[K,R],CL[K,R]);
    DOUBLE[C[K,R],CL[K,R],PSI[R,NQ],PSIL[R,NQ],x,SUMQ,SUMQL,*,t,SUMQ,SU
MQL):
END; DOUBLE(F{K,NO],FL[K,NO],SUMQ,SUMQL,+,+,PSI[K,NG],PS[L[K,NQ])&
END; IF SLON[15]THEN
    WRITE(LP,F2,FOR IXO+1 STEP I UNTIL N DO PSI{K,IXOI);:
END3 IF SLDN[15] THEN WRITE(LP,F4);
FINORT: FORK M DO
BEGIN IF K=1 THEN GD TO L6%
    FOR R+1,R+1 WHILE R<K OD
    ARG&ARGL&0.0} FOR J+R,J+1 WHILE J<K DO DOUBLE[G[J,R],GL[J,R],
    C[K,J],CL[K,J],X,ARG,ARGL, to }+,ARG,ARGL)
    DOUBLEE(ARG,ARGL,&,G[K,R],GL[K,R]);
ENO:
L6: DOUBLE(,1.0,4,G[K,K],GL[K,K]): IF SLON[15] THEN WRITE(LP,F2,F
URIXO K DO
    G[K,IXO]);
END: FORK M OO FORR K DO
BEGIN
    GO TO GCALC[NOORTHO}:
L1: DOUBLE(G[K,R],GL[K,R],4,G&[K,R],G&L[K,R]); GO TO LT;
L2: DOUBLE(G[K,R],GL[K,R],&,G2[K,R],G2L[K,R]); GB TO L7;
L3: DOUBLE(G[K,R],GL[K,R],H,G3[K,R],G3L[K,R]); G0 TO L73
L4: DOUBLE(G[K,R],GL[K,R],&,G4[K:R],G4L[K,R])s GO TO L.7;
L5: DOUBLE(G[K,R],GL[K,R],世,G5[5,R],G5L[K,R])S GO TO L7;
L7:
END:
    IF SLUN[15] THEN WRITE(LP, F5):
    FORK M DO
BEGIN FORNQ N DO
BEGIN ARG&ARGL*0.OS
    FORI N DO DOUBLECPSI[K,I],PSIL[K,I],PSI[K,I],PSIL[K,I],X,ARG,ARGL,t
                                    ,*ARG,ARGL);
    DSORT(ARG,ARGL,TOM&TOML): RTPSI[K]+TOM; RTPSIL[K]+TOML;
    DQUBLE(PSI[K,NQ}OPSIL[K,NQ],RTPSI[K],RTPSIL[K],/,G,PHI[K,NQ],PHIL[K
    ,NOJ):
ENO:
END& IF SLUN{I5] THEN BEGIN WRITE(LP,F6)&
                                    WRITE(LP,F2,FORIXQ M DO RTPSI[IXU] ) END ;
END:
    FORK M DD
BEGIN ARG+ARGL*0.03
    FORI N DO DOUBLE(Y[I],O,PHI[K,I],PHIL[K,I],x,ARG;ARGL,t,&,ARG,ARGL)
;
    DOUBLE(ARG,ARGL,*,B[K],BL{K])}
    DOUBLE(B[K],BL[K],RTPSI[K],RTPSIL[K],f,*&O[K],OL[K])&
END:
    IF SLON[14] THEN
BEGIN WRITE(LP,FMI)S WRITE(LP,FM2, FORIXO M DO B[IXO J)S
```

```
    WRITE(LP,FM8): WRITE(LP,FM2,FURIXQ M UO D(IXQJ);
END;
    \capOUBLE(YPKUD,YPROOL,B[1],BL[1],A[1],BL[1],X,-,+,SSU[1],SSI)L[1]);
    ODUBLE(SSU[1],SS[IL!1]&N=1,U,1,*,SSQ[1],SSOL[1]);
    IF M=1 THEN Gח TD L63;
    FOK K+2,K+1 WHILE KSM DO
BEGIN DOUBLE[SSU[K-1],SSOL[K-1],H[K],BL[K],0[K],BL[K],x,0,*,SSU[K],S
SDL[K]): DOUBLF(SSD[K],SSUL[K],N=K,O,/,&,SSG[K],SSQL[K]):
END;
L63: IF SLUN(5) THEN BEGIN
    WRITE(LP,FM3): WRITE(LP,FMZ,FOKIXQ M OD SSU[IXUJ);
    WRITE(LP,FN4); WHITE(LP,FML, FQRIXQ M DO SSQ[IXUJ); END;
    FORK M DO
BEGIN IF K=M THEN BEGIN MINA&M; GO TÜ L3J ENU:
    IF ABS(SSO[KJ) < ABS( SSQ(K+1]) THEN BEGIN MINA&K;K&M ENO;
L33:
END; IF SLUN[S] THEN WRITE(LP,FM5,MINA);
    FORK M DO DOURLE[SSU[K],SSDL[K],SSG[MINA],SSQL[MINA], ZXK=N,O,X,+,*,*
    BFF[K],BFFL[K]):
    FORK M DO
BEGIN IF K=M THEN 日EGIN MIN&M; GO TO L34 ERO;
    IF ABS(BFF(K])<ABS(BFF[K+IJ) THEN BEGIN MIN&K; K&M ENU;
L34:
END:
    IF SLUN[5] THEN BEGIN
    WRITE(LP,FMI4); WRITE(LP,FM2,FORIXQ M DO UFF[IXQJ):
    WRITE(LP,FMIS,MIN): END;
    MN+ IF MINA<MIN THEN MIN ELSE MINA:
    MINB& IF MN+2SM THEN MN+2 ELSE MN&
    FORK MN UO
BEGIN SUM&SUML&0.OF FOR O+1,0+1 WHILE USMN DO
GEGIN
    ARG+AHGL+0.0; FORI N DO DUUBLE[ARG,ARGL,PHI{K,I],PHIL[K,[I,PHI[G,I
    ],PHIL[O,I],X,+,+,ARG,ARGL);
    DחUBLE(SUM,SUML,ARG,ARGL,B{0],BL[Q], }x,+,&,SUM,SUML)
END; DDUBLE(,1.0.SUM,SUML,B[K],BL[K],/,*,*,RELEHR[K],RELEKHL[K]);
ENO;
    IF MN<M THEN FUR K&MN+1,K+1 WHILE KSMINB DO
BEGIN SUM&SUML+U.O: FON 0+1,0+1 WHILE USK DO
BEGIN ARG&AKGL*O.OB FOHI N DU DOUBLE(AKG,AKGL,PHI[K,I],PHIL[K,I],
    PHI[Q,I],PHIL[G,I], x,*,*,ARG,AKGL);
    DOUBLE(SUM,SUML, ARG,ARGL,G[Q],BL[0], }x,+,+,SUM,SUML)
ENO; DDURLEE,1.(l,SUN,SUML,B[K],OL[K],/,*,t,RELERR[K],RELEKHL[K]);
ENO;
    IF SLUN[S] THEN BEGIN
    WRITE(LP,FM6): WRITE(LP,FM2,FORIXQ MINB DO RELERR[IXQJ); END;
    FORK MN UU
BEGIN IF EPSILGNSABS(HELERR[K]) THEN
GEGIN IF NOURTHU=S THEN BEGIN
    IF SLUN[5] THFN WRITE(LP,FM7); GU TO FINALPT ENU;
    FORI M OO FJHNQ N UO
HEGIN IF NUORTHU=I THEN DOUGLEC(F[I,NQ],FL[I,NG},F,FSU甘[I,NN],FSUSL[1
,NQ]): UOUALE(PSI[I,NQ],PSIL[I,NQ],t,F[I,NG],FLII,NG]);
END; NOUKIHO+NUOKTHIT1; IF SLON[ל] THEN WRITE(LPP,FNI3); GU TO UHTHU;
EN!);
END;
```

FINALPT：
BEGIN REAL TFAC，SO2，FAC1，FAC2，FAC3，FAC4，SUMUEV，SUMAGSD，SUMDSG， YCALC，DELTAVE，SDC2，SIGSQ；INTEGER P，L；
REAL TFACL，SD2L，FACIL，FAC2L，FACSL，FAC4L，SUMUEVL，SUMABSDL，SUMDSAL，YCALCL， DELTAVEL，SD22L，SIGSQL，FACL；
INTEGERST；ARRAY SD，S2D［1：M］，T［1：M，1：MJOUELTALI：N］；
ARRAY SDL：S2DL［1：M］，TL［1：M，1：M］，DELTAL［1：N］：
REAL FAC：

FS3（＂COEFFICIENTS＂／），
FS5（＂SSTANDARD DEVIATION UF CUEFFICIENTS FIRST SET＂
mbased upon sigma squareu next set upun s suuared．＂／
＂If the ahove deltas afe random．then the first＂
＂SET SHOULD BE USED OTHENWISE THE SECOND SET＂／／）．
FS7（ X10：ヒ17．10，XS，E17．10，XS．E17．10），
FS6（ \quad X15＂Y（OBS）＂X7＂－＊X7＂Y（CALC）＂X6＂＝＂X7＂DELTA＂／），
FS8C／＂SUM OF DELTAS＝＂E17．10．$\times 5$＂SUM UF ABS（DELTA）＝＂
E17．10／／＂AVERAGE DELTA＝＂E17．10，X5，＂SUM OF UELTA SQUAKED＝＂
E17．10）．FSO（＂SIGMA SQUARED＝＂t17．10）．
FSIO／／＂BEST FIT BASED UPON SIGMA SQUAREU＂／），
FSII（／mBEST FIT＝＂13）：
LABEL L10，L11，L12，L13，L14，L20，L21，L22，L23，L24，L15，L160LJO，LS5，L25；
LABEL．L26；
SWITCH TCALC＋L10，L11，L12．L13．L143
SWITCH SDCALC＋L20，L21，L22－L23．L24；
FORR M DO FORK（M－R＋1）DO
日EGIN IF R＝1 THEN BEGIN DOUBLE（U［K］，DL（K］，＋，T［1，K］，TL［lok］）；gO TO Li 6 END：
go to tcalc［ngurthü］；
L10：DDUBLE（G1\｛R＋K－1，K］，G1L［K＋K－1，K］，4，TFAC，TFACL）：GU TO L15；
L11：TFAC＋TFACL＋0．0；FDK J＋K，J＋1 WHILE JS（R＋K－1）DO
DOUBLE（TFAC，TFACL，G1［J，K］，G1L［J，K］，G2［K＋K－1，J］，G2L［R＋K－1，J］，X，＋，t，T
FACBTFACLS $\quad 60$ TU L15；
L12：TFAC＋TFACL＋0．0；FOR J＋K．J＋1 WHILE JS（R＋K－1）OD
BEGIN FAC2＋FAC2L＋0．0；
FOR I＋K，I＋1 WHILE ISJ DU OUUBLE（FACR，FAC2L，G1［I，K］，GILII，K］，G2（J，I） ，G2L［J，I］，x，＋，t，FAC2，FAC2L）$\}$
DOU日LECTFAC，IFACL，FAC2，FAC2L，G3\｛K＋K－1，J\},G3L\{R+K-1,J], $x,+,+, T F A C, T H$
ACL）：
ENO；GO TO L15；
L13：TFAC＋TFACL＋0．0；FOK J＋K，J＋1 WHILE JS（R＋K－1）DO
HEGIN FAC2＋FACPL＋0．0；FUR $1+K, 1+1$ WHILE $1 \leq J$ DO
GEGIN FAC3＋FACBL＋0．0；FUR $P+K, P+1$ WHILE PSI UO
DOUBLE（FAC 3，FAC3L，G1［P，K］，G1L［P，K］，G2［1，P］，G2L［I，P］，X，＋，G，FAC3，FAC3
L）
DOUBLE（FAC2，FAC2L，（i3［J，I］，G3L［J，I］，FAC3，FAC3L，X，＋，＋t，FAC2，FAC2L）：
END：DOUBLE（TFAC，TFACL，FAC2，FACCL，G4［R＋K－1，J］，G4L［R＋K－1，J］，$x,+, G, T F A C, T F$
ACL）：
ENU：$\dot{\text { e } 0 ~ T O L I 5 ; ~}$
L14：TFAC＋TFACL＋0．0；FOK J＋K．J＋I WHILE JS（R＋K－1）OO
HEGIN FACZ＋FAC？L＋0．0；FUR I＋K，I＋1 WHILE ISJ DO
EEGIN FAC $3+F A C 3 L+U .0$ ；FOK $P+K$ PR＋1 WHILE PSI UO
BEGIN FACY＋FACAL＜O．US FOH Q＋K，Q＋1 WHILE QSP UU

4L）；


```
ENO3 DDUBLE(FAC2,FAC2L,FAC3,FAC3L,G4[J,I],G4L[J,I],*,t,F,FAC2,FAC2L);
ENO; DOURLE(TFAC,TFACL,FAC2,FAC2L,GS[R+K=1,J},GSL[R+K=1,J],X,+,t,IFAC,TF
ACL);
END:
L15: DDUBLE(T[R-{,K],TL[R-1,K],T[1,K+K-1],TL[1,K+K-1],TFAC,TFACL,x,*,*,T
[ R,K],TL[K,K]);
L16:
END; IF SLUN{5} THEN WRITE(LP,FS3)} FOHR M OO
BEGIN IF SLON[S] THEN WRITE(LP,FSI,R)S FORK R DO OOUBLE(T[ROK+1,K],TL[R-
    K+1,K],t,A[R,K],AL[H,K]);
    IF SLON[5] THEN WRITE(LP, FS2, FORIXO R DO A[R,IXQ]);
ENDS IF SLON{5] THEN WRITE(LP,FS6);
    ST* IF MINA<MN-2 THEN MINA=2 ELSE IF MIN<MN-2 THEN MIN-2
                                    ELSE MN-2; IF ST<1 THEN ST+1;
    FOR H+ST,R+1 WHILE RSMINB UO
BEGIN SUMDEV&SUMDEVL&SUMAESU&SUMABSUL+SUMDSO&SUMOSQL+U.0;
    IF SLON[5] THEN WRITE(LP, FSI, R);
    FORNO N DO
BEGIN YCALC+YCALCL+0.0; IF NOURTHU=& THEN
BEGIN FORI R DO DOUBLECYCALC,YCALCL,A[R,I],AL[R,I],F[I,NQ],FL[I,NQ],
    x,+,f,YCALC,YCALCL); GO TO L3OS
ENO! FORI R DO DOURLE[YCALC,YCALCL,A[R,I],AL[R,I],FSUB[I,NO],FSUBL[I,NO]
    , X,*,*,YCALC,YCALCL):
L30: DDUBLE(Y[NQ],O,YCALC,YCALCL,*,*,DELTA[NQ],DELTAL[NU]);
    IF SLUN[S] THEN WFITE( LP,FST,Y[NO],YCALC,DELTA[NQ]):
    DDUBLE(SUMDEV,SUMDEVL,DELTA[NQ],DELTAL[NQ], +o+,SUMUEV,SUMDEVL);
    DOUBLE(ABS(DELTA[NQ]), ABS(UELTAL[NQ]), SUMABSD,SUMAHSDL, +, +,SUMABSD,
    SUMABSDL)&
    DOUBLE (SUMDSQ,SUMDSQL,DELTA[NG],DELTAL[NQ],DELTA[NU],UELTAL[NQ],X:+
    ,4,SUMOSQ,SUMDSQL);
ENO; DOUBLE(SUMDEV,SUMDEVL,N,O,/,*,DELTAVE,DELTAVEL):
    If SLON[5] THEN WRITE(LP,FS8,SUMDEV,SUMABSU,DELTAVE,
                                    SUMDSQ): IF R=MINA THEN
BEGIN FACI&FACIL*0.0S FUR P+I,P+1 WHILE P<N OO
AEGIN FACZ+FAC2L+0.0; FOR Q+1,0+1 WHILE QSN JO UOUBLECDELTA[GJ.
    DELTAL[Q],FAC?,FAC2L,+,+,FAC2,FAC2L);
    DOUBLE(FAC1,FACIL,FAC2,FAC2L,DELTA[P],DELTAL[P],x,t,*,FACI,FAC1L):
END; DOURLE(SUMDEV,SUMDEVL,SUMDEV,SUMDEVL,X,FACI,FAC1L,,2,O,X,O,N=MINA,U
    ,1,+,FAC.FACL))
    DOUBLE(SSO[MINA],SSQL[MINA],FAC,FACL,*,+,SIGSQ,SIGSQL);
END
ENO: IF SLON[5] THEN WRITE(LP,FS9,SIGSO):
    FORK M OU DOUBLECSSO[K],SSUL[K],SIGSQ,SIGSUL, 2XK=N,0, X, +, +,BF2[K],B
F2L[K]); FORK M DO
BEGIN IF K=M THEN
BEGIN MIN4M; GU TO L35
END; IF ABS(BF2[K])<ABS(BF2[K+1]) THEN BEGIN MIN+K; K&M END:
L35:
END;
    IF SLUN[5] THEN BEGIN
    WRITE(LP,FS10): WRITE(LP,F゙SZ, FORIXQ M DO BF2[IXOJ):
    WRITE(LP,FSII,MIN); WRITE(LP,FS5); ENU;
    FOHK Y DU
BEGIN FORK R IO
BEGIN SD2+SU2L+SD22+SDP2L+0.0%
    FOR J&KOJ+I WHLLE JSR DU
```

```
BEGIN GO TO SDCALC[NOORTHOJ;
L20: DOUBLE(G1[J,K],G1L[J,K],4,FAC1,FAC1L); GO TO L25;
L21: FAC1+FAC1L*0.0; FOR I&K,I+1 WHILE ISJ DO
    DOUBLE(FACI,FAC1L,G1[I,K],GIL[I,K],G2[J,I],G2L[J,I],x,t, +,FACI,FAC
1L); GO TO L25;
L22: FAC1+FAC1L+0.0; FOR P&K,P+1 HHILE PSJ UO
BEGIN FAC2+FAC2L+0.0; FOR I+K,I+1 WHILE ISP DO
    DOUPLE[FAC2,FAC2L,GI[I,K],GIL[I,K],G2[P,I],G2L[P,I],x,t,t,FAC2,FAC2
L!;
    DOUBLE(FAC1,FAC1L,FAC2,FAC2L,G3[J,P],G3L[J,P]&x,+,t,FAC1,FAC1L);
END: GO TO L25;
L23: FACI+FACIL+0.0; FOK Q+K,Q+1 WHILE QSJ DO
BEGIN FAC2+FAC2L+0.0; FUR P&K,P+I WHILE PSQ DO
BEGIN FAC3+FAC3L+0.0; FUR I+K,I+I WHILE ISP DO
    DOUBLE[FAC 3,FAC3L,GI[I,K],GIL[I,K],G2[PP,I],G2L[P,I], X,t,4,FAC 3,FAC3
L):
    DOUBLE(FAC2,FAC2L,G3[Q,P],G3L[Q,P],FAC 3,FAC 3L, X,*,*,FAC2,FAC2L);
ENU3 DOUBLE(FAC1,FACIL,G4[J,Q],G4L[J,Q],FAC2,FAC2L,x,+,t,FAC1,FAC1L)}
ENO; GOTO L25;
L24: FACI+FACIL+0.0: FOR L+K,L+I WHILELSJ DU
BEGIN FAC2&FAC2L+0.0; FOK O+K,Q+1 WHILE QSL DO
BEGIN FAC3+FAC3L+0.0; FOR P&K,P+I WHILE PSQ DO
BEGIN FAC4&FAC4L+0.0; FOR I+K,I+I WHILE ISP UO
    DOUBLE(FAC4,FAC4L,GI[I,K],GIL[I,K],GC[P,I],G2L[P,I], X, +, 4,FAC4,FAC4
L);
    DOURLE(FAC 3,FAC3L,FAC4,FAC4L,G3[G,P],G3L[Q,P],X,+,*,FAC3,FAC 3L)&
END{ DOUBLE(FAC2,FAC2L,FAC3,FAC 3L,G4[L,GI,G4L[L,Q],x,+,4,FAC2,FAC2L);
END; DOUBLE(FAC1,FACIL,FAC2,FAC2L,GS[J,L],G5L[J,L],x,*,*&FAC1,FAC1L)!
END:
L25: DOUBLE(S02,S[?L,FAC1,FACIL,FAC1,FACIL,X,RTPSI[J],RTPS[L[J],RTPSI[J]
    ,RTPSIL{J],x,1,+,*,SD2,SD2L):
    FAC↔FACL+0.0; FORI R DO
GEGIN ARG+AHGL+0.0% IF NOORTHO=1 THEN
BEGIN FORNQ N DUC DOUBLE(AKG,ARGL,PHI[J,NQ],PHIL[J,NG],F [I,NO],F
    [I,NQ],x,+,t,ARG,ARGL); GU TO L26;
ENO; FORNO N UO DOUBLE(ARG.ARGL,PHIIJ,NQ],PHIL[J,NQ],FSUB[I,NQ],FSUBL[I,
                                    NQ], }x,+,f,AKG,ARGL)
L26: DOUHLE(FAC,FACL,ARG,ARGL,A[MIN,I],AL[MIN,I], X, +, +,FAC,FACL)}
END; nOUBLE(SD22,SD)22L,B[J],BL[J],FAC,FACL,=,FAC1,FAC1L,x,RTPSI[J],RTPSI
L [J],/,+,4,S022,SD22L);
ENO: NOUBLECSIGSQ,SIGSQL,SO2,SD2L,X,SD22,SD22L,SD22,SD22L, 
    );
    DOUBLE(SSQ[MINA],SSQL[MINA],SD2,SD2L,x,SU22,SD22L,SD22,SU22L,x,+,*,
    SSOMIN,SSOMINL);
    DSQRT(SSGMIN,SSAMINL,TUM,TUML); SZ̈[K]+TOM; S2UL[K]+TOML;
    OSGRT(ARG;ARGL,TOM,TOML): SO[K]+TOM; SUL[K]&TUML;
ENDS
    IF SLON[5] THEN BEGIN
    NRITE(LP,FSI,R);WRITE(LP,FS2,FORIXQ R DU SU [LXUJ);
    WRITE(LP,FSI,R); WRITE(LP,FS2,FORIXQ R 0O S2D[IXUJ)S ENOS
ENU
END
ENO DF PROCEDURF URNDR:
    COMMENT PROGRAM 202;
FROCEDUKE CALFY(N,M,N1,N2,NUMRUN,FIT,K1,KIL,K2,K2L,AK1,AKIL,AK2,AK2L,P,P
```

```
P,XI,XIL,XXI,XXIL,X,XL,Y,F,FLS;
    INTEGER N,M,N1,N2,NUMRUN,FIT;
    REAL K1,K2,AK1,AK?!
    REAL K1LPK2L,AKIL;AK2L;
    ARRAY P,PP,XI, XXI,X,Y [0], F[0,0];
    ARRAY XIL,XXIL,XL[0],FL[0,0];
BEGIN
    LABEL NX10,NX11,NX13,NX12,NX14,NX15;
    LABEL NX20;
    INTEGER I,K; COMmENT I COKRESPONDS TU GRIGINAL "LITTLE N";
    Y[1]+P[1]\timesAK1:
    IF NUMRUN#1 THEN gO TO NXIO;
    FOR I+2,I+1 WHILE ISNI UO Y[IJ+P[I]NAK1NKI*(I-1)*XXI[I-1];
    GO TO NX11;
NX10: Y[N1+1]+ PP[1]\timesAK2;
    FOR I+2,I+1 WHILE ISNI DO Y[I] + P[I]XAKIXKI*(I-1)XXI[I-1]!
    FOR I+2,I+1 WHILE ISN2 UO Y{N1+I]+PP[I]\timesAK2\timesK2*(I-1)XXXICI-1];
NX1:% IF FIT#1 THEN GO TU NX12; IF NUMRUN#1 THEN GO TO NX13;
    FORI N1 DO DOUGLEC,1,0,t,FII,I],FL[1,IJ); IF M=1 THEN GO TO NX20;
FOR }K+2,K+1 WHILE KSM DO FORI NI UO HEGIN
                    TOM+X[I]; TOML&XL[I];
                    UPOW(TOM,TOML,HAM,HAML,K-1);
                    F[K,1]+HAM; FL[K,1]+HAML; END;
    G0 TU NX20;
NX13: FORI N US DOUBLE(,1.O,toFLI,IJ.FL[1,IJ); IF M=1 THEN gO TO NX
20;
    FOR K+2,K+1 WHILE KSM DO FURI N1 OU BEGIN HAM+X[2\timesI-1J;
        HAML&XL[2XI=1]; DPOW(HAM,HAML,TOM,TOML,K-1);
        F[K,1]+TIM; FL[K,I]+TOML; END;
    FOK K+2,K+1 WHILE KSM DO FURI N2 OU BEGIN HAM&X[2XI]; HAML+XL{2`Xl
    ]; OPOW(HAM,HAML,TOM,TOML,K-1); F[K,N1+I]+TUM; FL[K,N1+1]&TOM
L; END;
    gח TO NX2O;
NX12: FOKI N1 OO Y[1]+Y[I]- 1.0; IF NUMRUN=1 IHEN GU TO NX14;
    FORI N2 UU Y[N1+I]+Y [N1+I]=1.0;
NX14: IF NUMRUNF1 THEN GOTU NXI5;
    FDRK M DO FORI NI DU EEGIN HAM&X[I]; HAML+XLL[I];
        DPOW(HAM,HAML,TOM,TOML,K); F[K,I]+TOMS FL[K,I]&TUML; ENU:
    gD TD NX2O;
NX15: FORKM DO FORI N1 DO UEGIN HAM&X[2\timesI-1]; HAML+XL[2XI-1];
                DPUN(HAM,HAML,TDM,TOML,K): F[K,I]+TOM; FL[K,I]+TOML; END;
    FORK :M OO FORI N2 DO SEGIN HAM+X[2\timesI]; HAML+XL[2\times1];
        UP\capN(HAM.HAML,TOM,TOML,K); F(K,N1+I]+TUMPFL[K,N1+I]+TOML;
                                    ENO:
NX20:
ENU OF CALFY ;
label humnett;
                    READ(CR,/,TEMP,GUMP,NUMRUN);
    RURNETT: BEGIN
                                    INTEGER NN,MMM,N1,NZ,FIT,WH,WHI,I,DN;
        HEAL TOL,SS1,SS2,SS3.SS4,SS5,SSK1,SSK2,SSK3,SSK4,SSK5,SSK6;
    REAL SS1L,SS2L,SS4L,SS3L,SS5L,SSK1L,SSK2L,SSK3L,SSK4L,SSK5L,SSK6L;
                REAL A1,A2,A3,A4,A5,A6, 11,H2,83,B4,05,86;
                HEAD(CH,/,NN,MMM,N1,N2,TUL);
                    REAOCCR,/,FIT,WH,WH1,A1,A2,A3,A4,A5,A6,B1,H2,B3,
```

B4, B5, 86)

```
WRITE(LP[PAGE])}
WRITE(LP,<9("******") " INPUT DATA " 9("******")>);
WRITE(LP,<"*" X118 n*">);
WRITECLP,<"*" X3 "EPSILON
3
WHITECLP,<"*" X3 "GAS CONSTANT
WRITECLP,<"** X3 "NO. OF DATA PUINTS
WRITECLP,<"*" x3 "NO. DF PARAMETERS
WRITECLP,<"*" X3 "TEMPERATURE
WRITECLP;<"*" X3 "CUMPOSITION
WRITECLP,<"#" X3 "NU. OF RUNS IN DATA SET
WRITECLP,<"*" X3 "NO. OF POINTS EXTRAPOLATED
WRITECLP,<"*" X3 "NO. OF PARAMS. IN EXTRAP.
WRITECLP,<"#" X3 "POINTS IN FIRST FUN
WRITECLP,<"*" X3 "POINTS IN SECONO RUN
WRITECLP,<"#" X3 "TOLERANCE
WRITE'ใLP,<"*" X3 "TYPE OF FIT
WRITECLP,<"#" X3 "INPUT CONTROL
WRITECLP,<"*" X3 "INITIAL SURFACE PARAMETER
WRITECLP&<"*" 人3 MA1 - A6
A2,A3,A4,A5,A6)&
WRITE(LP,<"*" X3 "R1 = B6 =" 6(E10.3,X2),X15,n*">>81,
82,83,84,85,86)3
    IF N2=0 THEN N2+2;
BEGIN
    REAL XIQS
    REAL XIQL;
    REAL K1,K2, AK1,AK2,AN1,AN2,KK,AK, RT,SUM,ZETAQ,ZETA1,ZETA2,
                ZETA3,ZETA4,ZETA5,ZETA6,ZETAT,ZETAB,ZETA9,ZETA1O,ZETA11,
                ZETA12,ZETA13,ZETA14,UK1,UA1,D2K1,02A1,D2K1A1,OK2,DAZ,02K2,
                D2A2,D2K1K2,D2K1A2,D2A1K2,D2A1A2, D2K2A2%
    REAL K1L,K2L,AK1L,AK2L,AN1L,AN2L,KKL,AKL,RTL,SUML;
    REAL DK2L,DA2L,U2K2L,D2A2L,U2K1K2L,O2K1A2L,D2A1K2L,D2A1A2L,D2K2A2L;
        REAL LETAOL,2ETA1L,ZETA2L,ZETA3L,ZETA4L,ZETASL,ZETAGL,ZETATL,
            ZETABL, 2ETAGL,ZETA1OL,ZETA1IL,ZETA12L,ZETA13L,ZETA14L;
    REAL DK1L,DA1L,D2K1L,O2A1L,O2K1A1L;
    REAL K10,A10,K20,A20,STO;
    REAL K1OL,A1OL,K2OL,A2OL,STOL;
    INTEGER NNN,MM,KNT,J;
    ARRAY P[OSN1],PP[O:N2],PRAT,X1,ZTI[0:N1-1],PPRAT,XXI,2T2[OIN2-1],
        ZV,PN,OUM1,TEST,PI,DUM[D:N], CHG,OVEC[0:4],DMIX{0:4,0:4]:
    ARRAY PRATL,XIL[0:N1-1],PPRATL,XXIL[0:N2-1],
        ZVL,PNL,DUM1L,TESTL,P1L,DUML[0:N],CHGL,DVECL[0:4],DMTXL[0:4,08
43;
    ARKAY ZTIL[OINI-1], ZT2L[OIN2-1]%
    ARRAY KK1,AAK1,KK2,AAK2[0:M], TBF[0:20,0:M]s
    ARRAY KK1L,AAKIL,KK2L,AAK2L[0:M],TBFL[0:20,0:M];
    COMMENT REAL PROCEDURE DDXI GOES HERE;
REAL PROCEOURE ODXI(N1F,N2F,MF,FF,AF,AFL,PF,PPF,XF,XFL)S
    VALUE N1F,N2F,MF,FF! INTEGER N1F,N2F,MF,FF;
    ARRAY AF,AFL[0,0],PF,PPF,XF,XFL[0];
BEGIN
    LABEL NX503
    REAL SUMH,SUML,SUM1H,SUM1L,SUM2H,SUM2L;
```

```
    INTEGER NOK;
    REAL TAH,TBH,TCH,TOH,TAL,TBL,TCL,TDL;
    SUMLSSSUML+O.0;
    FOR N+2 STEP 1 UNTIL NIF DU
BEGIN
    IF FF=1 THEN
BEGIN
    SUM1H+SUM1L+SUM2H+SUM2L+0.0;
    TAH + IF NUMRUN=1 THEN XF[N] ELSE XF[2XN-1]; [BH+1.0;
TAL+IF NUMRUN=1 THEN XFL[N] ELSE XFL[2\timesN-1];
    TCH + IF NUMRUN=1 THEN XF[N-1] ELSE XF[2\timesN`3]; TOH+1.0;
    TCL+IF NUMRUN=1 THEN XFL[N-1] ELSE XFL[2\timesN-3]%
    TBL+TOL + 0.0;
    FOR K+1 STEP 1 UNTIL MF DO
BEgIN
    DOUBLE(AF[MF,K],AFL[MF,K],TOH,TGL,O,SUMIH,SUMIL,+,+,SUM1H,SUM1L);
    DOUBLE(TAH,TAL,TBH,TBL,X,A,TBH,TBL);
    DOUBLE(AF[MF,K],AFL[MF,K],TDH,TDL,&,SUM2H,SUM2L,+,t,SUM2H,SUMZL);
    DOUBLE(TCH,TCL,TDH,TOL,X,H,TUH,TDL):
Eno
END ELSE
BEGIN
    SUMIH + SUMCH+1.03 SUMIL+SUM2L+0.0;
    TAH & IF NUMRUN=1 THEN XF[N] ELSE XF[2XN-I]; TBH&TAH;
    TAL&IF NUMRUN=1 THEN XFL[N] ELSE XFL[2\timesN-1];
    TCH + IF NUMRUN=1 THEN XF[N-1] ELSE XF[2XN-3]; TDH+TCH;
    TCL&IF NUMRUN=1 THEN XFL[N-1) ELSE XFL{2XN-3];
    TGL+TAL; TDL+TCLB
    FOR K+1 STEP 1 UNTIL MF DO
BEGIN
    DOUBLE(AF[MF,K],AFL[MF,K1,TBH,TBL, X,SUM1H,SUM1L,*,t,SUM1H,SUM1L);
    DOURLE(TAH,TAL,TBH,TBL,X,+,TBH,TBL);
    DOUBLEE(AF[MF,K],AFL[MF,K],TDH,TDL,X,SUM2H,SUM2L,+,t,SUM2H,SUM2L);
    DOUBLE(TCH,TCL,TDH,TOL,X,H:TOH,TOL);
ENO
END:
DOUBLE[PF[N],0,PF[N-1],0,1,SUMIH,SUM1L,AG,O,PF[N],0,X,AS,0,+,PF[N],0,
        X,A4,O,+,PF[N],O,X,A3,O,+,PF[N],0,X,A2,O,+,PF[N],O,X,A1,O,+,
        B6,0,PF[N-1],0,x,85,0,+,PF[N-1],0,x,84,0,+,PF[N-1],0,x,83,0,+,
        PF[N-1],0,X, &2,O,+,PF[N-1],0,X,B1,0,+,1,SUM2H,SLM2L,X,K1,O,X,1,
        -,+,TAH,TAL);
    DOUBLE(TAH,TAL,TAH,TAL,X,SUMH,SUML,+,t,SUMH,SUML);
ENO;
    If NUMRUN=1 THEN GO TO NX50;
    FOR N+2 STEP { UNTIL N2F DO
BEGIN
    IF FF=1 THEN
BEGIN
    SUM1H+SUM1L+SUM2H+SUM2L+0.03
    DOUBLE(XF[2\timesN],XFL[2XN],+,TAH,TAL): TBH+1.03
    DOUBLE(XF[2\timesN-2],XFL[2\timesN-2],t,TCH,TCL); TDH+1.U;
    TBL+1DL*0.0;
    FOR K+1 STEP 1 UNTIL MF DO
bugin
COUHLE(AF[YF,K],AFL[MF,K],TBH,THL,X,SUM1H,SUM1L,+,t,SUM1H,SUM1L);
    DOURLE(AF[MF,K],AFL[MF,K],TDH,TDL,X,SUM2H,SUM2L,+,4,SUM2H,SUM?L);
```

```
    DOUBLE(TAH,TAL,TBH,TBL,X,+,TBH,TBL);
    DOURLE(TCH,TCL,TDH,TDL, X,*,TUH,TDL);
END
END ELSE
BEGIN
    SUM1H+SUM2H+1.03 SUM1L &SUM2L +0.0;
    TAH&THH&XF[2XN]; TCH+TOH&XF[2XN-2];
    TAL+TBL+XFL[2XN]; TCL+TDL+XFL[2XN-2];
    FOR K+1 STEP I UNTIL MF DO
BEGIN
    DOUBLE(AF[MF,K],AFL[MF,K],TBH,TBL,X,SUM1H,SUM1L,+,t,SUM1H,SUM1L);
    DOUALE(AF[MF,K],AFL[MF,K],TDH,TDL,X,SUM2H,SUM2L, +,**SUM2H,SUM2L);
    DOUBLE(TAH,TAL,TBH,TBL, X,&,TBH,TBL):
    DOUALE(TCH,TCL,TOH,TOL,X,+&TDH,TDL);
END
END:
DOUBLE (PPFF[N],0,PPF{N=1],0,1,SUM1H,SUM1L,AG,0,PPF[N],0,X,A5,0,+,PPF[[N],
    0, X,A4,O,t,PPF[N],0,X,A , O, +, PPF[N],0,X,A2,0,+,PPF[N],0,X,A1,0,
        +,B6,0,PPF[ [N-1],0,X,B5,0,+,PPF[ [N-1], 0, x, 84,0,+,PPF[ [N-1],0,X,B3,
        0,+,PPF[N-1],0,X,B2,O,t,PPF[N=1],0,X,B1,0,t,/,SUM2H,SUM2L,X,K2,
        0,x,/,0,*,TAH,TAL);
    DOUBLE( TAH,TAL,TAH,TAL,X,SUMH,SUML,+,+,SUMH,SUML);
END;
NX50: DOXI+SUMH;
            LOWOUXI&SUML;
ENO OF DDXI;
PROCEDURE CALCXCN1F,N2F,RTF,NTFL,KIF,KIFL,K2F,K2FL,A1F,A1FL,A2F,A2FL,XIF
    ,XIFL,XXF,XXFL,XFF,XFFL);
    REAL RTF,K1F,K2F,A1F,A2F; INTEGER NIF,N2F; ARKAY XIF,XXF,XFF(OJ;
    REAL RTFL,KIFL,K2FL,A1FL,AZFL;ARRAY XIFL,XXFL,XFFL{O];
BEGIN
    REAL ANN% INTEGER I;
    REAL ANNL ;
    DOUBLE(,1,U,RTF,RTFL,A1F,A1FL,X,/,*,XFF[1],XFFL[1])}
    DOURLE(,1,U,RTF,RTFL,A2F,A2FL,X,/,t,XFF(2],XFFL[2]);
    FOR 1+2,I+1 WHILE ISNIF DO
BEGIN
    OPOW(K1F,K1FL,TOM,TOML,I=1); DOUBLE(XIF[I=1],XIFL[I=1],TUM,TOML,A1F,A
1FL, }x,x,4,ANN,ANNL)
    DOUBLE(,1,0,KTF,RTFL,ANN,ANNL,X,1,4,XFF[2XI=1],XFFL[2XI=1]);
END:
    FOR I & 2, I+I WHILE ISN2F DO
BEGIN
    DPUW(K2F,K2FL,TOM,TOML,I=1);
    DDUBLE(XXF[1-1],XXFL[I-1],TUM,TUML,A2F,A2FL,X,X,H,ANN,ANNL):
    DOUBLE(,1,O,KTF,RTFL,ANN,ANNL,X,1,t,XFF{2XI],XFFL[2XI]);
END
END;
    FORMAT FHIC /"APPKOX. CELL CONST. IST RUN=" E17.1U).
        FR2(b(E17.10.x5) ).
        FBIO( /OEXTRAPOLATION FOH CELL CDNSTANT*).
        FR3(/HAPPHOX. CELL CONST. 2NO RUN=NE17.10),
            FB4(/"APPROX. KUN CONST. IST RUN="E17.1U),
                FB5( "#APPKOX. RUN CUNST. 2NO KUN="E17.10),
```

```
    FR13( /WRELATIVE DIFFERENCE IN Z*/,)*
    FB6( /'Z(APPROX) VS RHU(APPROX)"/ ),
    FEI2( 'MNEXT TO LAST FIT IS UPTIMAL FOR L VS RHUN),
FA&( /XO"P(N)"X17"Z(N)"X16"KHO(N)"X16*(L-1)V"X14*P(NO....)*
        / ),
    FB16( /WSUM OF (P HATIO- Z*RHO RATIO)=" E17.10)%
    FB17 ( /WDERIVATIVL MATRIXN/ ), FBIB(4(E17.10,X5)/),
    FR2O( "DERIVATIVE VECTOR"/ ).
    FE2I( /"CHANGE VECTOH*/ ).
    FH22( /#MATRIX IS SINGULAR"),
    FBII( /"EXTRAPOLATION FUR KUN CONSTANT");
LABEL L97,NX1,L71,NXP,L37,L31,L45,L96,L47,L43,NX33,NX3U,L89,
OWT,L40,L41,NX3,SINGUL,UN,NX4,L42,L44,L94,L95,PLY;
LABEL L77,L8B,L46:
IF NUMRUN=1 THEN REAO(CR,I, FUK IXQ+I STEP I UNTIL NI OD P[IXGI)
    ELSE READ(CR,/,FOR IXGHISTEP I UNTIL NI DU P[IXUJ.
    FOR 1XQ4 1 STEP 1 UNTIL NZ DO PP[IXQ]J:
WRITE(LP[ND],<X4 MPHESSURES FON FIRST RUN =">);
WRITE(LP,<"** X31, 6(F10.5,X2), X15 **">, FUR IXO+1 STEP I UNTIL NI DU
    P[IX@]):
IF NUMRUN=2 THEN REGIN
WRITE(LP[NO], <X4 "PKFSSURES FOR SECUND RUN =*>);
WHITECLP,<"*" X31, 6(F10.5,X2), X15 n*n>, FUR IXO+1 STEP I UNTIL N2 DU
    PP[IX.3]); ENU:
WRITE(LP,<"*** X11& "**>)&
WRITE(LP[PAGE],<20("*******)>);
    COMMENT EXTRAPULATION FOK FIHST CELL CUNSTANT;
    NNN&N: MM & M; N & NN; M & MMM;
    IF WH#1 THEN GO TO NXI;
    REAO(CR,/,K1O,A10); IF NUMRUN=1 THEN GD TU L97;
    READ (CR,/OK2O, A2O);
L97: GO TO L31:
NX1: IF WHF2 THEN GU TO NX2;
    READ(CR,/,K1O); IF NUMHUN = 1 THEN GO TO L77;
    READ(CR,/,K20); L77: GU TU L373
NX2: FOR NU&2,NQ+1 WHILE NQSN1 UO UOUBLE(P[NQ], O,P[NQ=1],O,/,&,PRAT[NW=1
    ],PRATL[N(G-1]);
    FOR NQ+1,NQ+1WHILE NASN DO
    REGIN DOUBLE(:1,0,&,F[1,NG],FL[1,NU]):Y[NU]+PKAT[N1-NN+N(N-1];
    FND;
    FOR K + 2,K+1 WHILE KSM DO FOR NQ+1,NQ+1 WHILE NQSN UO
    REGIN HAM&P[NI=NN+NG]; LPOW(HAM,O,TUM,TUMLOK=1);
        F[K,NQ]+TUM; FL{K,NU]+TOML; END;
    WRITE(LP,FG10):
    \RNOK(N,M,EPSILON,Y,F,FL,A,AL,BFF,GFFL,MIN);
    DOUBLE(,1.O,A[M[N,I],AL[MIN,I],/,世,KI,KIL); WHITE(L.P,FBI,K1): IF
                        NUMRUN=1 THEN GO TO L37;
DOUBLE(KI,KIL,世,K10,K1OL):
    COMMENT EXTRAPULATION FUK 2NU CELL CONSTANT;
    FOR NU&2,NQ+1 WHILE NQSN2 UO DOUBLE(PP[NQ],O,PP[NQ-1],0,1,0+,PPRAT[N
0-1],PPRATL[NQ-1]);
    FOK NG & 1,NQ+1 WHILE NNSN OU
    BEGIN F[1,NQ]+1.0; Y[NQ]+ PPHAT[N2-NN+NQ-1] ;
        FL[1,NQ]+0.0;
    ENO:
    FOR K+2,K+1 WHILE KSM JO FUR NG+1,NQ+1 WHILE NWSN UO
```

```
    BEGIN HAM&PP[N2-NN+NQ]: UPOW(HAM,O,TUM,TUML,K-1);
    F[K,NQ]&TUM; FL[K,NU]&TOML; END;
    WRITE(LP,FB10);
    DRNOR(N,M,EPSILON,Y,F,FL,A,AL,BFF,BFFL,MIN):
    DOUBLE(,1.0,A(MIN,1],AL[MIN,1],1,t,K2,K2L); WRITE(LP,Fg3,K2):
    K20+K2; K20L+K2L;
    DOU8LE(K1,K1L,K2,K2L,*,*2.0,1;+,K2,K2L); K104K2U+K1+K2;
        K10L+K20L+K1L+K2L;
L37: IF WH=2 THEN DOUBLE(KIO,KIOL,&,KI,KIL): IF NUMRUN=2 THEN
                            DOUBLE(K20,K20L,*,K2,K2L);
    COMMENT EXTRAPOLATIDN FOR FIRST RUN CONSTANT ;
BEGIN UEFINE SEGMENTBUMP =0&;
    XIQ+1.0;
    XIQL+0.0; XI[0]+ZT1[0]+1.0;
    XIL[0]+2T1L[0]+0.0;
    FOR NQ+2,NQ+1 WHILE NQSNI UO
BEGIN
    UOUBLE[P[NQ],0,A6,0,X,A5,0,+,P[NQ],O,X,A4,0,+,P[NO],U,X,A 3,O,+,P[NQ],
                0,X,A2,0,+,P[NQ],0,X,A1,O,+,P[NQ-1],0,B6,0,X,B5,0,+,P[NQ=1],
                0,X,B4,0,+,P[NQ-1],0,X,H3,0,+,P[NQ-1],0,X,B2,0,t,P[NQ-1],0,X,
                B1,U,+,/,+, ZT1[NQ-1],ZT1L[NQ-1]);
    DOUBLE(XIQ,XINL,ZTI[NQ=1],ZTIL{NQ-1],X,+,XIQ,XIQL);
    DOUBLE(XIQ,XIQL,+,XI[NO-1],XIL{NO-1])}
F.NO:
    FOR NG+I,NQ+1WHILF. NQ \leq N DO
HEGIN Y[NQ] + P[NI-NN+NQ]\timesKI*(NI-NN+NQ-1) x XI[NI=NN+NG-1];
    F[1,N()+1.0;
    FL[1,NO]+0.0;
ENO;
    FOR NG+?,NQ+1 WHILE NQSNI UO BEGIN DPOW(K1;KIL,TOM,TOML,NQ=1):
        OOUBLE(P[NQ],O,TOM,TOML,XI[NQ-1],XIL[NQ-1],X,X,*,PN[NG],PNL[NU
        1): END;
    PN[1]+P[1];
    PNL[1]+0.0;
    FOR K+2,K+1 WHILE KSM DO FOR NQ+1,NQ+1 WHILE NQSN DO
    BEGIN HAM&P[NI-NN+NQ]; DPOW(HAM,O,TOM,TOML,K-1);
        F[K,NQ]+TOM; FL[K,NQ]+TUML; END;
    WRITE(LP,FB11):
    ORNOR(N,M,EPSILON,Y,F,FL,A,AL,BFF,BFFL,MIN);
    DOURLE(,1,0,A[MIN,1],AL[MIN,1],/,+,AK1,AKIL);
    WRITE(LP, FB4,AKI);
    DDUBLE(AK1,AK1L,*,A10,A1OL);
ENO:
    IF NUMRUN=1 THEN GO TO L31;
    COMMENT EXTRAPULATION FOR ZNU RUN CONSTANT:
BEGIN DEFINE SEGMENTBUMP =O*;
    XI0+1.0;
    XIQL+0.0; XXI[0]+ZT2[0]+1.0;
    XXIL[0]+ZT2L[0]+0.0;
    FOR NG+2,NG+1 WHILE NQSN2 UO BEGIN
```



```
        PP[NQ], ח, x,A2, 0,+,PP[NQ],0,x,A1,0,+,PP[NQ-1],0,B0,0,X,By,U,+,
```



```
        PP[NA=1],0,X,H1,O,+,1,+,ZT2[NO=1],ZT2L[NQ-1]);
    NOUBLE(XIQ,XIQL,ZT2[NQ-1],\angleT2L[NQ-1],X,*,XIQ,XIUL);
    DOUHLE(XIQ,XIQL,+,XXI[NA=1]:XXIL[NQ-1]);
```

```
END;
    FOR NG&1,NQ+1 WHILE NASN DO
BEGIN Y[NQ]4 PP[N2-NN+NQ]\timesK2*(N2-NN+NQ-1)\times XXI[N2-NN+NQ-1];
    F[1,NQ]+1.0; FL[1,NQ]+0.0;
END:
    FOR NQ + 2,NQ+1 WHILE NQ \leqN2 UO
    BEGIN DPOW(K2,K2L,TOM,TOML,N(-1);
        DOURLE(P[NQ],0,TUM,TUML, XXI[NQ-1],XXIL[NU-1],X,X,&,PN[N1+
        NQ],PNL[N1+N(U); END;
        PN[N1+1]+PP[1]; PNL[N1+1]+0.0;
    FOR K+2,K+1 WHILE KSM OD FUR NQ+1,NQ+1 WHILE NGSN UO
        UEGIN HAM+PP[N2-NN+NQ]; DPOW(HAM,O,TOM,IOML,K-1);
        F[K,NQ]+TOM; FL[K,NQ]+TOML; END;
    WRITi(LP,FBII);
    ORNOR(N,M,EPSILIN,Y,F,FL,A,AL,HFF,BFFL,MIN);
    OUUALE(,1,0,A[MIN,1],AL[MIN,1],%,t,AK2,AK2L);WKITE(LP,F85,AK2);
    DOUBLE(AK2,AK?L,+,A2O,A2OL);
END;
L31: N&NNN; M&MM;TEMP+TEMP+273.15;DOUBLE(TEMP,0,R,0,X,t,RT,RTL);
    COMMENT CALCULATION OF Z(APPKUX) AND RHO(APPKOX):
    NNN+WH1; MM&M;
L45: FOR JWWH1 STEP & UNTIL MM UO
BEGIN
    K1L+K10L; AKIL+A10L;
    K1+K10; AK1+A10; IF NUMKUN=1 1HEN GO TU L47; K2+K20; AK2+A20;
    K2L+K2OL; AK2L+A2OL;
L47: NN+0;
L43: NN+NN+1;
    WRITE(LP,FB1,K1); WRITE(LP,FB4, AK1);
    IF NUMRUN=1 THEN GU TO NX33; WRITE(LP,FB3,KZ2); WRITE(LP,FB5,AK2);
NX33: CALCXCN1,N2,RT,RTL,K1,K1L,K2,K2L,AK1,AK1L,AK2,AK2L,XI,XIL,XXI,
                        XXIL,X,XL);
    CALFYCN,J,N1,N2,NUMRUN,FIT,K1,K1L,K2,K2L,AK1,AK1L,AK2,AK2L,P,PP,XI,
    XIL,XXI,XXIL,X,XL,Y,F,FL);
    IF FIT=2 THEN FOR NQ+1,NQ+1 wHILE NQSN DO Y[NQ] & Y[NQ] + 1.0;
    IF NUMRUN=1 THEN GO TO NX30;
    FOR NQ+1,NQ+1 WHILE NQSN DU UQUHLE(X[NG],O,G,DUMI[NQ],DUMIL[NQ]):
    FOR NG+1,NG+2 WHILE NQSN DU X[(NQ+1)UIV 2]+DUMI[NQ];
    FOK NQ+2,NQ+2 WHILE NQSN DU X[N1 + NQ UIV 2 ] + UUM1[NQ];
NX30: COMMENT CALCULATIUN OF (Z-I)V AND Z(APPHOX) VS YHU(APPROX);
BEGIN DEFINE SEGMENTBUMP =O#;
    WRITE(LP,FB8);
    FOK NG+1,NQ+1 WHILE NOSN DU UUUBLECYYNQ],0,,1,0,-,X[NG1,0,1,4,ZV[NQ
]
    ,ZVL(NQ]);
    FOR NG+I,NQ+1 WHILE NQSN1 UO WKITE(LP,FB2,P[NQ],Y[NQ],X[NQ],
                    ZV[N(], PN[NQ]);
    FOK NG & 1,NQ+1 WHILE NQSNC UO
        WRITE(LP,FR2, PP[NQ], Y[N1+NQ],X[N1+NG1,ZV[N1+NQ],PN[N1+NQ]);
COmment first save for plotting;
    FOH NQ + 1 STEP 1 UNTIL N DO
    REGIN
        TEMPXA[NQ]+ X[NQ];
        TEMPYA[NA]* CV[NQ];
    ENO;
    IF FIT=2 THEN FOK NQ+1,NQ+1 WHILE NQSN DO Y[NQ]+Y[NQ]-1,0;
    ORNOR(N,J,EPSILON,Y,F,FL,A,AL,BFF,BFFL,MIN);UOUBLE(AFF[J],BFFL[J],&
```

```
    ,TBF[NN,J],TBFL[NN,J]):
END;
    COMMENT PERTUHBATIGN DF A AND N;
    IF FIT=1 THEN
BEGIN FOR NO&I,NQ+1 WHILE NHSNL DO
BEGIN SUM&SUML&0.0; FOK K&1,K+1 WHILE KSJ OO
    DOUBLE (X[NQ]* (K-1), O,A(J,K],AL[J,K],X,SUM,SUML,+,&,SUM,SUML);
    Y[NQ]+SUM; DOUBLE(SUM,SUML;,1.0,-*X[NQ],0:/,t,ZV[NQ],ZVL[NQ]);
ENO:
    IF NUMRUN=1 THEN GU TO L89;
    FOR NG+1,NO+I WHILE NQSN2 UO
BEGIN SUM+0.0;
    SUML 40.0;
FOR K+1,K+1 WHILE K\J DO DOUBLE(X[N1+NQ]*(K-1),O,A[J,K],AL{J,K],X,SUM,SU
ML&+,&,SUM,SUML);
    Y[N1+NA]+SUM; DOU&LE[SUN,SUML,,1,U,=,X[N1+NQ],0,1,&,ZV[NI+NQ],LVL[
                                    NI+NQJ);
END; L&98
END ELSE
BEGIN FOR NQ+1,NQ+1 WHILE NUSNI DO
BEGIN SUM + 1.0;
    SUML+0.0S
    FOR K+1,K+1 WHILE K\leqJ DO DUUBLE (X[NQ]*K,O,A[J,KJ,AL[J,K],X,SUM,SUML
                                    ,+,q,SUM,SUML):
    Y[NQ]4SUM; DOUBLE[SUM,SUML,,1,U,*,X[NO],XLLNQ],/,4,ZV[NQ],ZVL[N
QJ
N
                                j;
END;
    IF NUMRUN=1 THEN GO TO L8B;
    FOR NQ+1,NQ+1 WHLLE NQSN? UO
BEGIN SUM&1,0;SUML+U,0;FOR K+1,K+1 WHILE KSJ DO DOUBLECSUM,SUML,A[J,K],
                                    AL[J,K],X[N1+NQ]*K,U,X,+,4,SUM,SUML;;
    Y[N1+NQ]+SUM; DOUËLE(SUM,SUML,,1,U,#,X[N1+NG],0,1,&,ZV[N1+NQ],ZVL[
                                    N1+N(1]);
END;L88:
END; WRITE(LP,FB&);
    FOR NU+I,NQ+1 HHILE NASNI UO WKITE(LP,FB2,P[NO],Y[NQ],X[NQ],
                        ZV(NQ],PN[NU]): FOR NQ+1,NU+1 WHILL NUSN2 DO
        WRITE (LP,FB2,PP[NQ],Y [N1+NQ],X[N1+NQ],LV[N1+NQ],PN[N1+NQ]]
;
BEGIN DEFINE SEGMENTGUMP =O*:
COMMENT FIRST SAVF FOR PLOTTING SECOND GHAPH;
    FOR NU+1 STEP 1 UNTIL N DO
    BEGIN
            TEMPXB[NQ]+X[NQ]; TEMPYE[NQ]+ ZV[NO];
    END ;
    IF NUMRUN=2 THEN
BEGIN FOR NQ+1,NQ+I WHILE NUSNI DU
BEGIN DUMI[NQ] & P[NQ]:P1[2\timesNQ=1] & OUMI[NQ] ;
    UUMIL[NQ]+O.0;P1L[2\timesNU-1 j+0.0;
END: FOR NQ+1,NA+1 WHILE NUSN2 OD
BEGIN DUMI{NQ]+PP[NG]S P{[2\timesNG]&DUMI[NO]}
    DUM1L[NO]+0.0; P{L{2\timesNQ]+0.0;
END
                    END;
    CALCX(N1,N2,RT,RTL,K1,K1L,K2,K2L,AK1,AK1L,AK2,AK2L,XI,XIL,XXI,XXIL,
        X,XL);
    ZETAO&DDXI(N1,N2,J,FIT,A,AL,P,PP,X,XL); WRITE(LP,F口1O,ZETAO);
```

ヵてT

$$
\begin{aligned}
& \begin{array}{l}
\text { ZETAOL LLOWDDXI; } \\
\text { COMMENT 2NO SAVE FOR PLOTTING; } \\
\text { FOR NQ \& STEP I UNTIL N DO }
\end{array}
\end{aligned}
$$

DOUBLE（SS2，SS2L，，2．0．x．4，DA1，DA1L）：
DOUBLE（SS3，SS3L，，2．0．0．，t，D2K1，D2K1L）3
DOUBLE（SS4，SS4L，，2．0，x，t，D2A1，D2A1L）
DDUBLE（SS5，SS5L，，2．0，x，＋，D2K1A1，D2K1A1L）：
SS1＋SS2＋SS3＋SS4＋SS5＋SSK6＋0．0；
SS1L＋SS2L＋SS3L＋SSAL＋SSSL＋SSK6L＋0．03
FDR NG＋1 STEP 1 UNTIL N2 DO GEGIN
SSK $1+$ SSK2＋SSK $3+$ SSK4＋SSK5＋0．03
SSK1L＋SSK2L＋SSK3L＋SSK4L＋SSK5L＋0．03
HAM＋X［2XNQ］；HAML＋XL［2XNQ］；
FOR K＋1 STEP 1 UNTIL J DO BEGIN
DPOW（HAM，HAML，TOM，TOML，K）S
DOUBLE（TUM，TOML，A［J，K］，AL［J，K］，X，t，ZETA1，ZETA1L）
DOUBLE（ZETA1，ZETA1L，SSK1，SSK1L，＋っ＋，SSK1，SSK1L）；
DOUBLE（ZETA1，ZETAIL，K，0，x，SSK2，SSK2L，＋，＋，SSK2，SSK2L）：
 SSK 3L）：
DOUBLE（1＋K，0，K，0，X，ZETA1，ZETA1L，X，SSK4，SSK4L，＋，t，SSK4，SSK4L）；
DOURLE（K，0，K，O，x，ZETA1，ZETA1L，$x, S S K 5, S S K 5 L,+,+, S S K b, S S K 5 L)$
END OF SUM OVER K LUOP；
DPOW（K2，K2L，ZETAZ，ZETALL，NU－1）：
DPOW（K2，K2L．，LETA3，ZETA3L，N（L－2）；
DPOW（K2，K2L，ZETA4，ZETA4L，N（H－3）3
DOUBLE（PP［NQ］，O，AK2，AK2L，X，ZETA2，ZETA2L，X，XXI［NQ－1］，XXIL［NQ－1］，X，

 XXIL［NG－1］，X，NQ－1，0，SSK2，SSK2L，X，K2，K2L，／otoSSK6，SSK6L，X，SS1， SS1L，＋，＋，SS1，SSIL）；
ПQU日LE（PP［NQ），O，ZETA2，ZETAZL，X，XXI［NQ－1］，XXIL［NQ－1］，X，SSK2，SSK2L， AK2，AK2L，／，＋，SSK6，SSK6L，x，SS2，SS2L，＋ot，SS2，SS2L）：

SS $3+5 S 3+(S S K 6 \times(C N-1) \times(N Q-2) \times P P[N Q] \times A K 2 \times K 2 *(N Q-3) \times X X 1(N Q-1)-(N Q-1) \times$ SSK 3／（K2＊P））＋（（NQ－1）×PP［NQ］×AK2×K2＊（NQ－2）×XXI［NQ－1］＋（NQ－1）×SSK2 （स2）＊2）；
SS4＋SS4＋（SSK6x（－SSK4／（AK2＊2））＋（PP［NQ］×K2＊（NQ＊1）×XXI（NQ－1］＋SSK2／AK2） ＊2）：
SS5＋SS5＋（SSK6x（CNR－1）×PP［NQ］×K2＊（NQ－1）×XXI［NQ－1］＋（NQ－1）×SSK5／（AK2X $K 2))+((N Q-1) \times P P[N Q] \times A K 2 \times K 2 *(N Q-2) \times X X I(N Q-1]+(N Q-1) \times S S K 2 / K 2) \times$ （PP［NQ］×KP＊（NA－1）$\times X \times 1[N Q-1]+S S K 2 / A K 2)$ ）

End of sum over na lnop：
DOUBLE（SS1，SS1L，，2．0，x，t，OK2，UK2L）：
DOUBLE（SS2．SS？L，．2．0．0．t＋DA2，DA2L）；
DOURLE（SS3，SS3L，，2．0，x，t，D2K2，U2K2L）；
DOUBLE（SS4，SS4L，，2．0，$x, 4, D 2 A 2,02 A 2 L)$ ）
DOUBLE（SS5，SS5L，，2．0，X，4，D2K2A2，02K2A2L））
DクK1K2＋D2K1A2＋U2A1K？＋D2A1A2＋0．0；
D2K1K2L＋U2K1A2L＋D2A1K2L＋D2A1A2L +0.0 ：
END OF SEGMENTGUMP；
comment solution for delta a and delta ns
L41：IF NUMRUN＝1 THEN
BEGIN
DOUBLE（02K1A1，D2K1A1L，UA1，UA1L，X，D2A1，D2A1L，UK1，OK1L，X，．， D？K1，02K1L，D2A1，D2A1L，X，D2K1A1，D2K1A1L，D2K1A1，D2K1A1L，X，$=, /$ ， ,+ CHG［1］，OBDUM）；
DOUBLE（O2K1A1，U2K1A1L，UK1，UK1L，X，D2K1，O2K1L，DA1，DA1L，x, \cdots,

```
            D2K1,D2K1L,D2AI,D2A1L,**,D2K1A1,D2K1A1L,D2KIA1,D2K1A1L, x,0,%/=
            *CHG[2],UBDUM):
    GO TO L42;
END %
DMTX[1;1]\&D2K1; DMTX[1;2]\&D2K1A1; DMTX[1;3]+D2K1K2;DMTX[1;4]4
U2K1A2: DMTX(2,1]+02KIA1: DMTX[2,2]+D2A1;
DMTX[2,3]+D2A1K2; DMTX(2,4]+02ALA2; DMTX[3,1]+D2KIK2;
DMTX[3,2]+D2A1K2; DMTX[3,3]+D2K2; DMTX[3,4]+D2K2A2; DMTX[a,1]4
D2K1A2; DMTX\{4,2]+D2A1A2; UMTX\{4;3\}4D2K2A2; DMTX\{4;4]+D2A2\}
DMTXL[1,1]4D2K1L; DMTXL[1,2]+D2K1A1L;DMTXL[1,3]+02K1K2L;DMTXL[1,4]\&D 2K1A2L!OMTXL[2,1]+D2K1A1L;DMTXL[2,2]+D2A1L;DMTXL[2,3]\&D2A1K2L;DMTXL[2,4] +D2A1A2L;DMTXL[3;1]+D2K1K2L;DMTXL[3,2]+n2A1K2L;OMTXL[3,3]+D2K2L;DMTXL[3, \(4]+\) D2K2A2L;OMTXL[4;1] 4 D2K1A1L;DMTXL\{4,2]+D2A1A2L;OMTXL[4;3]+D2K2A2L;DMTX L(4,4) 4 O2ACL:
SLUN[12]+TRUE;
IF NOT SLON[12] THEN GO TO NX3:
WRITE(LP,FB17); WRITE(LP,FB18, FOR 141,I+1 WHILE IS4 DO FOR \(K+1 ; K+1\) WHILE \(K \leq 4\) DD DMTX[I;K]);
NX3: INVERT(4,DMTX, P-6,SINGUL): GO TO UN:
SINGUL: WRITE(LP,FB22) ;
ON: DVEC[1]+-DK1; UVEC[2]+~DA1; DVEC[3]+-DK2; DVEC[4] \(4 \infty\) DA2;
DVECL[1]+-DK1L;DVECL \(\{2\}+=D A 1 L ; D V E C L\{3\} 4-D K 2 L ; D V E C L\{4\}+\infty D A 2 L ;\)
IF NOT SLON[12] THEN GO TO NX43
WRITE(LP,FB17):
WRITECLP,FBI8,FOR I HISTEP 1 UNTIL 4 DO FOR K KISTEP 1 UNTIL 4 DO DMTX[I,K]):
WRITE(LP,FB20)3 WRITE(LP,FB18,FOR I•I STEP 1 UNTIL 4 DO OVEC[IJ)
NX4: FOR It1 STEP 1 UNTIL 4 DO
BEGIN \(K K \nleftarrow 0.03 K K L \nleftarrow 0.03\) FOR K \(\leftarrow 1\) STEP 1 UNTIL 4 DO
DOUBLE (DMTX[I,K], OMTXL[I,K],DVEC[K],DVECL[K], \(x, K K, K K L,+,+, K K, K\)
KL) 3
CHG[I]\& KK
CHGL[I]\&KKL;
END: IF NUT SLON[12] THEN GO TO L423
WRITE(LP, FR2I); WRITE(LPaFBI8,FOR I+I STEP I UNTIL 4 OD CHG[IJ):
L42:
DOUBLE (CHG[1],CHGL[1],K1,K1L, \(+, 4, K 1, K 16)!\)
DOUBLE(CHG[2],CHGL[2],AK1,AK1L, \(+,+s A K 1, A K I L)\}\)
IF NUMRUN\#1 THEN
BEGIN
DOUBLE (CHG[3], CHGL[3],K2,K2L, \(+, 6, K 2, K 2 L)]\)
DOUBLE(CHG[4],CHGL[4],AK2,AK2L,t,t,AK2,AK2L);
END:
IF \(N N=1\) THEN GO TO L43;
GO TO IF NN=3 THEN PLT ELSE L43;
OWT: WRITE(LP,FB12);
PLT: IF NOT SLON\{25] THEN DRAWIT(TEMPX,TEMPY,N1,N2):
IF NOT SLDN[25] THEN DRAWIT(TEMPXC,TEMPYC,N1,N2);
L94: END:
L95: END END END ENU:
IF IND \(\angle A M T\) THEN BEGIN
ARRAY LAIRD[0:5]s
FILL LAIRD[*] WITH "OOEND OFOO DATA OOSET *;
SYMBOL(0.4.5:.21,LAIRD, -90.15):
PLOT ( \(3,0,-5\) )
\(I N D+I N D+1 ;\)
```

```
                GO YO L60;
            END;
        IF NOT SLON[25] THEN
    BEGIN
        ARRAY LAST[0:5]:
        FILL LAST[*] WITH "OOPLOTTIOONG FINOOISHED M;
        SYMBOL ( 1,8.5,049,LAST,-90,17);
        PLOT(4,0,-3)3
    END;
    WRITE(LP[PAGE]):
    WRITE ( LP, <"I/O TIME =' F7.2 " SEC."// "PROC. TIME=" F7.2 " SEC.">
    , TIME(3)/60 , TIME(2)/60 )3
    END OF PRUGRAM.
    ARCTAN IS SEGMENT NUMBER 0079,PHT ADORESS IS 0117
    COS IS SEGMENT NUMBER 0080,PRT ADDRESS IS 0075
    EXP IS SEGMENT NUMBER 0081,PRT ADURESS IS 0072
    LN IS SEGMENT NUMBER OOB2,PRT ADDRESS IS 0071
    SIN IS SEGMENT NUMBER 0083,PRT ADURESS IS 0076
    OUTPUT(W) IS SEGMENT NUMBER OOB4,PRT AUDRESS IS OU4S
    BLOCK CONTROL IS SEGMENT NUMBER OO85,PRT ADDRESS IS OOO5
    INPUT(W) IS SEGMENT NUMBER 0086,PFTT ADORESS IS 0144
    X TO THE I IS SEGMENT NUMBER 0087,PRT ADDHESS IS 0073
    GU TO SOLVER IS SEGMENT NUMBER OOBG,PRT ADDRESS IS 0065
    ALGOL WRITE IS SEGMENT NUMBER 0089,PRT ADDRESS IS 0014
    ALGOL READ IS SEGMENT NUMBER 0090,PRT ADDRESS IS 0015
    ALGOL SELECT IS SEGMENT NUMRER OO91,PRT ADDRESS IS 0016
COMPILATION TIME = 208 SECONDS.
NUMBER OF ERRORS DETECTED = OOO. LAST EHROR ON CARD *
NUMBER OF SEQUENCE ERRORS COUNTED = 0.
NUMBER OF SLOW WARNINGS = 0.
PRT SIZE= 470; TOTAL SEGMENT SIZE= 6389 WORDS.
DISK STORAGE REQ.= 360 SEGS.; NO. SEGS. = 92.
ESTIMATED CORE STORAGE REQUIREMENT = 29335 WORDS.
```

Program 200; Comment ORNOR CALL;
Begin Integer AMT, I: READPT(AMT); I l;
L60:Begin Integer N, M; READPT (N, M);
Begin Real A0,AT, epsilon,Temp; Integer n, k, comp,NN,MIN;
Array $F \operatorname{l:M}, 1: N, Y, X 1: N, ~ a ~ l: M, 1: M, ~ B F F ~ 1: M ;$
Format FM10 (5 (J1), 'Y(N)', $2(\mathrm{Jl})$),FM12 (5(Jl), 'X(N)', $2(\mathrm{Jl}))$, FM11(J7, 'TEMPERATURE=',F5.2,S5,'PER CENT HELIUM=', F5.2,S5,'NO. OF DATA POINTS=', I3,S5,'M=',I3), FM9 (5 (R10, S5) , Jl) ;

Mc Procedure ORNOR (201,1,10);
READPT (Temp, comp, epsilon) ;
READPT(Y l, ..., Y N, X l, ..., X N);
PRINT (FM11,Temp, comp,N,M) ; PRINT (FM10) ; PRINT (FM9,Y 1,, Y N); PRINT (FM12) ; PRINT (FM9,X 1, ...,X N);

For $n-1, n+1$ While $n \leq N$ Do $F[1, n]-1.0$;
For $k \leftarrow 2, k+1$ While $k \leqslant M$ Do For $n \leftarrow 1$ While $n \leqslant N$ Do $F[k, n]-x[n]$
$\uparrow k-1 _$; (or any function of X n desired)
ORNOR (N,M, epsilon, Y,F,a,BFF,MIN);
End End;
If $I<A M T$ Then Begin $I-I+1$;
Goto L60 End End;

