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ABSTRACT

The project was initiated in 1962 at the University
of Oklahoma to measure compressibility factors of gases very
accurately at high pressure and low temperature. The Burnett
method was chosen for the experimental apparatus. The equip-
ment as previously assembled was operable to 700 atmospheres
and between +50° and -90°c.

Major modification of the temperature bath extended
the range of applicability to -190°C and 700 atmospheres. The
temperature control was +0.005°C across the Burnett apparatus
in the new configuration. A technique was also developed for
employing valves completely immersed in the cryostat.

An extensive study of polynomial approximations for
infinite series yielded a scheme for assigning realistic var-
iances to the polynomial coefficients as compared with the
series coefficients. This allows choice of optimal virial
coefficients from the experimental compressibility data.

Finally, an optimal search routine was developed to
reduce the Burnett data to the compressibility factors. This
was essentially a problem in non-linear curve fitting. The
results were very gratifying and seem to indicate that more
accurate information could be expected from the data in this
fashion than was possible with earlier techniques.
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COMPRESSIBILITY FACTORS AND VIRIAL COEFFICIENTS
FOR THE HELIUM-NITROGEMN SYSTEM BETWEEN

-160° aND -190°C UP TO 700 ATM
CHAPTER I
INTRODUCTION

An apparatus based upon the method described by
Burnett [4] has been used to study the volumetric behavior
of the Helium-Nitrogen system at low temperatures and high
pressures. A new procedure has been developed to reduce the
data to compressibility factors, and a least-squares.analysis
is offered which enables choice of the optimal virial coeffi-
cients from the experimental data. The isotherms studied
were -160° and -170°C for compositions of 100.00, 87.77,
75.29, 44.56, 30.13 and 0.00 percent helium balance nitrogen,
and -190°C for compositions of 100.00, 87.77 and 75.29 per-
cent helium. Compressibility factors are presented as a func-
tion of pressure under the experimental conditions, and the
virial coefficients are reported for each mixture at all ex-
perimental tempefatures.

The compositions were chosen to be those reported by

Canfield [6]. Actually the mixtures were within 0.09 mole

1



2
percent of these compositions. These mixtures were chosen
to facilitate calculation of thermodynamic properties using
both sets of data.

The Burnett method is an experimental technique for
determining the compressibility factors of gases without
measuring the volume or mass of the sample under study. The
apparatus is essentially two thermostated cells of unspeci-
fied volume connected by a valve. Initially one cell is
filled with gas to some given pressure and the other cell
is evacuated. When eguilibrium is reached the pressure and
temperature are recorded and the connecting valve is opened.
After equilibration, the pressure and temperature are again
recorded; the connecting valve is closed, and the second
cell is reevacuated. This procedure is repeated‘until the
pressure has reached a predetermined minimum, and the se-
quence of pressures constitutes a run. Usually the process
is repeated, with a different starting pressure, a sufficient
number of times to establish the isotherm adeguately. While
it is not necessary to maintain a constant temperature during
a run, it was done in this study to allow a theoretical anal-
ysis of the data.

The apparatus was constructed to conform with the
following analysis. 1Initially the equation of state is

given by

Po(V,) g = ZoRT (1)
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and becomes, after the first expansion,

= Z.n_RT (2)

PV, + V) = 250,

where Va and Vb are the volumes of the two cells, the sub-
scripts refer to the number of expansions associated with
the subscripted quantity, Z = PV/nRT is the compressibility
factor, n is the number of moles contained in the volume
under consideration, R is the gas constant and T is the tem-

perature. When the connecting valve is closed and Vi, is

evacuated, the eguation becomes

Pl(Va)l = Z,n,RT (3)

Evidently, before the jth expansion the relationship is
Pj—l(va)j-l = Zj_1n4_1RT (4)
and after the expansion becomes

Pj(Va+V).=Z.n RT (5)

b’ ji-1
Dividing Equation 5 by Equation 4 gives

P.(V. +V.). P.N. 32,
J( a b)J =_J3J -3 (6)

i1 (V) g1

where the volume ratio is denoted as Nj and is referred to

as the cell constant for the jth expansion. Substitution
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of subsequent values for j into this equation and multipli-

cation reveal that

P, (N.N_...N, Z.
5 Ny 5)

2 =4 (7

Po Zg

The Nj are related to N_, the zero pressure cell con-
stant, taking into account the Burnett cell dimensions and

properties and the behavior of the differential pressure cells

2
kl + ksz + k3Pj + ...
j ® ) (8)
m, + mZPj—l + m3Pj—l + ...

where the ki and m, are constants related to the pressure
deformation of the cells (see Appendix A). Thus if N, and
the ratio ZO/PO' the run constant, can be found, the com-
pressibility factor is given by

Z . k. +k P, + k 2

P.+...
z, =p, 2N T |+—2 3.3 (9)

J J = 2
Py i=1 my + m,P, 4+ moPy_

1 + ...

and neither the volume nor the mass of the gas need have
been measured.

Classically these constants were found by graphical
extrapolation. Examination of Equations 6 and 7 reveals
that in the limit as pressure approaches zero and the com-

pressibility factor approaches unity



P._;
N, = lim == (10)
P_’O P'
3
Py
= = lim P, (N.N_...N.) (11)
Zy pmp J 12 J

Therefore, a plot of Pj_l/Pj vs. Pj should extrapolate to
N, and a plot of Pj(NlNZ"'Nj) vs. Pj should extrapolate to
PO/ZO. This extrapolation is usually performed by curve
fitting and does produce reasonably accurate values for the
constants. For example, from carefully taken data N, can
usually be found within 1 part in 10000. If sufficiently
accurate and abundant low pressure data were available, this
method would give the proper values for the constants. Un-
‘fortunately, data meeting these requirements are very dif-
ficult to obtain.

A method is proposed in Chapter V for refining the
estimated constants, in a least-squares sense, by estab-
lishing the minimum on a multidimensional response surface.
The optimal virial coefficients are automatically recovered
in this procedure by applying the least-sqguares analysis
developed in Chapter IV. Interaction second and third virial .

coefficients are also calculated.



CHAPTER II
REVIEW OF PREVIOUS WORK

The Burnett method has been established recently as
an acceptable and desirable means for measuring the com-
pressibility factors of gases and gaseous mixtures. Concise
reviews of work on this type of apparatus through 1965 have
been presented by Mueller [23], canfield [6] and Hoover [13].
Because of these compilations and because the method is
accepted now, no specific review will be made for work on
this type of apparatus. Furthermore, Canfield has presented
a sufficiently complete review for work on helium, nitrogen
and He-N, mixtures through 1962. This review is concentrated

solely on the period 1962-present to avoid needless repetition.

P-V-T Behavior of Helium
Although the literature abounds with compressibility
data (and, to a large degree, for that reason) for héiium,
work since 1962 has been relatively scarce. In fact, the
majority of recent helium data has been taken in connection
with a study of the helium-nitrogen system and is discussed

below in that section.
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Cook [9] has edited a book which offers a compre-
hensive review of the volumetric (and other) properties of
helium. This work covers the period starting with the work
by Ohnes through 1960.

Miller et al. [22] at the U. S. Bureau of Mines used
the Burnett method to determine the compressibility factors
of He. This work ranges up to 4000 psia between -10° and
130°F.

Various authors have noted that a large gap exists
in helium data below 0°C and above 200 atm. Canfield has

filled this gap substantially down to -140°%c.

P-vV-T Behavior of Nitrogen

Most of the recent reports onvthe volumetric prop-
erties of nitrogen have appeared in tabulations of thermo-
dynamic properties by U. S. Government agencies. Little
and Neel [19] in the Department of Commerce have tabulated
the compressibility factor up to 10000 atm. between 100°
and 1500°K. Hilsenrath and Klein [12] also at the Department
of Commerce have extended this tabulation to include the
range 2000o to lSOOOoK. Sewell [26] at the National Aero-
nautics and Space Administration presents compressibility
factors and second virial coefficients between 2000° and
100,000°K over a wide density range. Finally, Strobridge
[28] at the National Bureau of Standards has tabulated thermo-
dynamic properties, including the compressibility, up to 3000

psia between 114° and 540°R.
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Meanwhile, Duclaux [10] has offered a distribution
function approach for representing the compressibility up
to 800°C and 400 atm. He then used the theory of progressive

condensation to interpret the influence of temperature.

P-V-T Behavior of Helium-Nitrogen Mixtures

The most extensive study of this system is given by
Canfield et al. [7]. Compressibility factors and virial co-
efficients are presented for helium, nitrogen and six mixtures
between 0° and -140°C up to 500 atm.

At almost the same time, Witonsky and Miller [30]
presented compressibilities and virial coefficients for he-
lium, nitrogen, and seven mixtures between 175° and 475°
up to 100 atm.

Miller et al. at the U. S. Bureau of Mines presented
compressibilities for helium, nitrogen and sixteen mixtures
at 70°F up to 4000 psia in addition to their above mentioned
helium data.

All three of the above investigations were made on
Burnett-type apparati. However, the range below -140°¢
above 100 atm. was left untouched.

Finally, Kielich [18] has calculated B by account-

12
ing for the tensorial forces acting on nondipolar molecules
having a quadrupole or octapole moment. He calculates second

virial coefficients for the helium-nitrogen system.



CHAPTER III
EXPERIMENTAL APPARATUS

The equipment used in this study as initially de-
signed and constructed was operable between 50°c and -90°c
up to 700 atm. Below -90°C excessive temperature gradients
were encountered across the Burnett cells which introduced
an intolerable uncertainty in measuring the absolute tem-
perature. A major modification of the refrigeration system
within the cryostat alleviated this condition and produced
gradients of only a few thousandths of a degree. Because
much of the apparatus has been described in detail by
Blancett [2], only brief mention will be made of'any un-
modified equipment, and the reader is referred to the above

work for additional information.

Cryostat

Figure 1 illustrates the essential features of the
cryostat. Nitrogen in surging, two-phase flow enters the
phase separator through a vacuum-insulated transfer line.

A controlled liquid level is maintained within the separator
to insure a constant refrigerating effect within the cryostat.
The liquid leaves the separator through a metering valve

9
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and flows to the vaporizer bundle within a 1/2 in. thin-
walled, stainless steel tube and delivers its sensible and
latent heat to cool the bath. The metering valve is ad-
justed to allow a slight excess of refrigerant to enter the
bundle which is offset by the control heater. A fan blows
the vapor through the equipment space which contains the
temperature-controller sensor. A combination radiation-
shield and vapor-baffle establishes the indicated flow pat-
terns.

The vaporizer bundle was designed based upon a 3%
approach to the boiling point of liquid nitrogen and re-
quired approximately 10 ft2 of surface area. 1In addition,
the dimensions were restricted to 5-1/2 in. diameter by 2
in. thick with sufficient capacity for holding a level of
liguid nitrogen. This immediately suggested a home-made,
finned surface.

The bundle was constructed about a piece of 1-5/8
in. I.D. copper water pipe fitted at one end with a 1/4 in.
thick copper plug into which a 1/2 in. I.D. piece of water
pipe had been soldered. The pieces of pipe were 2 in. long
in keeping with the imposed dimensional restrictions. Brass
spacer bars 2 in. long, 3/8 in. wide and 3/32 in. thick were
then soldered in an eight point star to the outside wall of
the outer water pipe. Two strips of 0.0125 in. thick by 2
in. wide pieces of copper strip were wrapped around the cen-

tral structure adding more spacers each revolution until the
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diameter of the bundle reachedl5—1/2 in. One of the copper
strips was corrugated to provide additional area. Prior to
assembly the materials had all been coated with a thin layer
of 50% Pb - 50% Sn solder and at this point were sweated to-
getﬁer in an oven. Troughs, sloping toward the center, were
then milled through the spacer bars into the central well.
The slope would insure radial distribution of any liquid
nitrogen build-up in the bundle. Liquid leaks were elimi-
nated by coating the entire internal surface with low-
melting indium solder. Figure 2 is an overall photograph
of the bundle and Figure 3 presents a close-up view of one
finned section. The irregular outside geometry of the final
product was an accident of construction arising from the
soldering operation. The effective surface area finally
obtained was very nearly 10 ft2 and idealized calculations
indicated that the temperature on the fins was always at
least 90% of the temperature at the wall.

The control heater was constructed by stringing 25
gage, coiled Nichrome wire within a 5 in. diameter phenolic
frame. The wiring was installed in two sections to be used
in either series or parallel connection. In series the
wattage is variable between 10 and 170 watts by means of an
external resistor. The series connection is used for con-
trol heat and is activated by a Hallikainen Model 1053A
Thermotrol with proportional-plus-reset control. The con-

troller sensor is a Rosemont Model 104N48AAC. The parallel
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FIGURE 3. CLOSE-UP VIEW OF BUNDLE SECTION
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connection is used for quick heat and generates 675 watts.
To protect the bundle, the wiring was done in such a manner
that the fan must be ON when the heater is operating.

The fan blade is 4 in. in diameter and has 10 vanes.
It is driven by a 1750 rpm motor mounted on top of the cryo-
stat and delivers approximately 120 cfm. The shaft enters
the cryostat through a Materials Research Corp. V4-100 rota-
ting vacuum seal and is held true at low temperatures by a
Barden Bar-Temp bearing.

A styrofoam plug surrounds the vaporizer, heater .and
fan. This plug serves the twofold purpose of reducing back-
mixing of the refrigerant vapor and supporting the radiation
shield-vapor baffle. The plug is essential to close control
of the gradients within the cryostat. Whereas the normal
gradient was approximately 0.005%, degeneration of the
styrofoam caused an increase to about 0.025°C.

With the Burnett equipment in place, as shown in
Figure 4, the nitrogen usage at steady state varies roughly
between 1/5 liter/hr. at 0°c and 3 liters/hr. at -190%%.

The minimum gfadient observed across the Burnett cells was
0.000°C with careful adjustment of the equipment and was
often less than 0.005°C. Several runs were made with gra-
dients of about 0.025°C because the styrofoam plug had
degenerated enough to disturb the flow patterns of the ni-
trogen vapor. This degeneration was actually melting caused

by use of the quick heater.
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Burnett Cells and Magnetic Pump

The physical characteristics of these items have been
thoroughly discussed by Blancett and by Canfield, Watson and
Blancett [8]. Minor modifications were effected, however,
and will be noted here.

The Burnett cells are jacketed to allow egual pres-
sure to be applied on both the inside and outside. The cells
and jacket are shown in rough detail in Figure 5. A ther-
mometer well was provided in the outer section of each cell
which would receive a Leeds and Northrup No. 8164 capsule
platinum-resistance thermometer. 1In earlier work only one
thermometer was available and a difference thermocouple,
one junction embedded in each cell, was used in conjunction
with the one available thermometer to indicate the approach
of temperature equilibrium. For this work, an a@ditional
thermometer was used, and because the thermocouple was thereby
rendered unnecessary, it was removed. Other than this the
cells remain unchanged from the earlier work.

A magnetic pump is located in the line connecting
the two Burnett cells. The purpose of this item is to speed
equilibration by forced mixing of the gas from each chamber.
The pump was especially useful when the more dense mixtures
were being studied.

One difficulty associated with the magnetic pump is
ascertaining whether or not it is operating properly. In

their article, Canfield, Watson and Blancett suggest sensing



18

e

THERMOMETER

/ ////
2
/
PRESSURE | PRESSURE
e - ANNULUS
7 2%
/
A
LA
/
A
|~
AN
N /§
N N
THERMOMETER—LZZZ (/] SCALE: peteert——t——{

FIGURE 5. HIGH PRESSURE BURNETT CELL



19
the movement of a check ball which is pulsed by.the surging
gas. Their solution was to run an electrical lead to the
check~ball seat which would deliver a signal whenever con-
tacted by the ball. An intermittent signal would indicate
proper operation. The lead was run into the pump through a
magnesium oxide packed tube sealed at each end with epoxy
resin. Unfortunately, when subjected to extreme temperature
changes, the epoxy apparently loosened and allowed gas to
leak out through the tube. Because this problem had been en-
countered before, it seemed advisable to seek a new procedure
for detecting the operating condition of the pump.

This turned out to be a simple task. The pump pro-
duces audibly different sounds when operating properly or
not, and they can be heard when an industrial stethoscope is
touched to certain external parts of the cryostat. This may
be checked with the pressure measuring instruments and will
be mentioned in that section.

When this alternative proved satisfactory, the packed
tube was discarded and the pump sealed. One other problem was
noticed--the pump could not be left ON for too long a time or
it would hinder rather than speed equilibration at low pres-
sures. This was caused by too much energy dissipation which
in turn caused the temperature to reach a higher equilibrium

value than was desired.

Temperature and Pressure Measurements

The temperature of a run was taken to be the average

value indicated by the two platinum resistance thermometers.
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The resistance of these elements was measured on a Leeds and
Northrup G-2 Mueller bridge. When properly calibrated and
made consistent with the bridge, the thermometers were guar-
anteed to establish the temperature within +0.01°C of the
International Temperature Scale. The bridge calibration was
checked prior to making any measurements and this calibration
was used in lieu of that supplied by the manufacturer.

The thermometers had been calibrated by the National
Bureau of Standards, one to the oxygen point the other to
12°K. Above -183°C a table of resistance versus temperature
was prepared using the Callendar-vVan Dusen equation. In order
to make this table consistent with the available equipment the
triple point was measured with each thermometer in this labo-
ratory and the ice point calculated from this value was used
in the equation rather than the ice point given by the National
Bureau of Standards. The observed triple point resistances
were 25.5522 ohms for thermometer #1617523 and 25.5341 ohms
for thermometer #1665930. Below -183 the point-by-point values
of the National Bureau of Standards were used for the cali-
brated thermometer and this temperature was taken as the sys-
tem temperature. (This table was considered to be consistent
with the bridge because the ice point observed in this labo-
ratory agreed with the one reported by the National Bureau of
Standards if no bridge correction were included and the cor-
rection at -190°C was only 0.00004 ohms.) The second ther-

mometer was used only to indicate gradient in this region.
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The system pressure was measured, primarily, by one
of two Ruska Model 2400 déad weight gages used with two Ruska
differential pressure cells and indicators. A set of accu-
rately calibrated weights was supplied with the gages and
were equivalent to Class "P" standard masses. The accuracy
claimed for the gages by the manufacturer was £0.01% of the
reading or better.

Two gages were employed to allow measurements from
700 to 2 atm. without changing pistons. Conseguently the
"low pressure gage" was used up to 165 atm. and the "high
pressure gage" beyond that. The two differential pressure
cells were used for an entirely different reason.

One assumption in the Burnett analysis is that the
gas be completely isothermal when its properties are measured.
To insure this condition one of the cells was located inside
the cryostat. Because of the extreme environment, this cell
was specially designed and constructed by Ruska Instrument
Corporation. The other cell, joined to the latter by an in-
termediate gas line, was used at room temperature. Both
indicators had to be nulled simultaneously to obtain a cor-
rect pressure reading.

One characteristic of the indicators which had to
be investigated in detail was the zero shift caused by pres-
sure. This phenomenon resulted from a difference in reading
for a "balanced" condition in the cell, that is a flat dia-

phram with equal pressures on both sides, and a "nulled"
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condition on the indicator. The manufacturer supplied infor-
mation concerning the zero shift for both indicators, but
their values were only used for the room-temperature device.

The equation reported was

_ -7
Ap, .. = 1.3x 10 'p (12)

where APZS is the zero shift in atmospheres and P is the

R
system pressure in psia. Unfortunately, the zero shift of the
cryogenic indicator was a function of temperature as well as
pressure and had to be measured in this laboratory. Blancett
described the technique employed and a method for correcting
the measured values. The final equation used for this quan-
tity was

MZS

AP = (13)
1.0 - 0.0277 (BP/aan)T

in which APZS is the zero shift in atmospheres, MZS is the

C
measured zero shift in atmospheres and v is the molar volume

cc/mole. Figure 6 is a plot of APZS versus P at the experi-

C
mental temperatures.
A Welsh Model 122A marine barometer indicated the at-

mospheric pressure during a measurement. The resulting cor-

rection is given by

PB = 0.0333902 (R~-x) (14)
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where Py is the barometric pressure in atmospheres,.R is the
barometer reading in inches of mercury, and r is a temperature
correction.
Finally head corrections had to be applied to the gage
reading. For the high-pressure gage this was

AP, = -0.00021 + (MW)[(-O.ll6)(pg)o + (h)(pg)i] (15)

and for the low-pressure gage

AP, = - 0.00057 + (MW)[(-O.llG)(pg)o + (h)(pg)i] (16)

where AQH is the head correction in atmospheres, MW is the
molecular weight of the gas, (pg)o is the density of the gas
in the system outside the cryostat, (pg)i is the density of
the gas in the system inside the cryostat and h is a multi-
plier with values of 0.0714 for the initial measurement of a
run and 0.0747 for all successive measurements. The density
units are moles/cc.

The gage pressure itself is, when corrected for tem-
perature and pressure, for the low-pressure gage

0.521989 Z)(Ma)

P = =5 =) (17)
(1.0 + 1.7 x 107°4T) (1.0 - 4.8 x 10" °p)

and for the high-pressure gage

2.610037 Z(M.)
Ps T -5 -8 (18)
(1.0 + 1.7 x 10 °AT) (1.0 - 3.6 x 10 °P)
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where P, is the gage pressure in atmospheres, E(Ma) is the

G
sum of the weights used in pounds mass, AT is the temperature
of the gage in Oc less 25°C and P is the system pressure in
psia. The actual pressure is then
P =P, + Py + AP, + AP, o + AP, (19)

This equation was programmed for a digital computer to speed
the calculations and eliminate the chance of human error in
the calculations.

Blancett has discussed the pressure measurement pro-
cedure in detail in his dissertation and it should be con-
sulted for derivation of the above equations except for

Equation 13 which has been modified by the present author.

Pressure Generation and Vacuum System

A Corblin #B2Cl000 single-stage diaphram compressor
was used to produce pressures above those in the gas cylinders.
The diaphram insured purity of the sample which was of primary
concern in charging.

For pressures less than those contained in the sample
cylinders, the gas was bled directly into the system and
measured roughly by a Maxisafe bourdon tube gage. This gage
was calibrated prior to use to insure that the system would
not be charged above the dew point of any sample.

The vacuum system consisted of a two-stage oil-

lubricated vacuum pump and a thermocouple gage to indicate
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the pressure. The system was sufficiently tight that a 5
micron vacuum could be held for about 10 to 15 minutes when

the pump was disconnected.

Valves and Tubing

With the exception of a short run of 1/2 in. copper
pipe in the vacuum system, all the tubing was 3/16 in. 0.D.
stainless steel. The pressure rating was 15000 psi and a
flare seal was used between tubing and fittings. The flared
connections caused one problem--when tightened a large torque
was set up in the tubing which tended to loosen some fittings.
This was not too serious a problem, but the threat of a
lengthy delay was always present should a fitting inside the
cryostat begin to leak.

All the valves were High Pressure Inc. 30000 psi
midget line with two-piece non-rotating stems. At room tem-
perature they were provided with O-ring seals and performed
admirably. At low temperatures the O-rings were unacceptable,
however, and another packing had to be found.

Four valves were located within the cryostat and sub-
jected to the very low temperatures of the experimental runs.
Because the dead volume had to be kept to a minimum and the
gas samples isothermal, the packing could not be removed
from the cryostat. This constituted a major problem because
all suitable packing materials shrink excessively with tem-

perature and eventually begin to allow gas to leak past. This
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condition was found to exist in the present work and had to
be eliminated before any experimental runs were begun.

The final solution decided upon was to use some mate-
rial with a very low coefficient of contraction as thrust
washers for teflon packing, and to use the proper dimensions
to assure that the packing could not shrink away from the
stem or body of the valve. The dimensions were calculated by
equating the volume change of the packing upon cooling with
that of the packing cavity. To obtain the desired results
Invar thrust washers were used and snugly fitted graphite
washers were placed above and below the teflon to reduce ex-
trusion. Both Invar and graphite contract very little with
temperature. The equations used for the volume changes were

2 2
AVP = (3m/4) (DB - ds) (AL/L) plip (20)

and

&, = (377/4)LP[D123(AL/L)B - dé (AL/1) ] +

(21)

+ (m/4) (Dg—dg){[AL/L)B = (AL/L)y ln, + [(AL/L) g - (AL/L)G]LG}

where AVP is the volume change of the packing from room tem-

perature to _l90°C, ds is the diameter of the valve stem,

(A01.,/L) is the change in length per length, DB is the diameterx

of the cavity in the valve body and L is the length. The

subscripts denote the following: S stem, P packing, B body,



28
W Invar washer, C cavity and G graphite. When the valves
were assembled in this manner they held dead-tight against
700 atm and a vacuum at room temperature and between -160°C
and -190°C. The system was thus ready to take data at the
conditions desired. The final dimensions used were:
1/8 in. stem

1/4 in. 0.D. x 1/8 in. I.D. x 5/16 in. upper
Invar washer

1/4 in. 0.D. x 1/8 in. I.D. x 1/16 in. lower
Invar washer

1/4 in. 0.D. x 1/8 in. I.D. x 1/32 in. graphite
washers

1/4 in. 0.D. x 1/8 in. I.D. x .025 in. teflon packing.



CHAPTER IV

A GENERAL LEAST-SQUARES ANALYSIS APPLICABLE TO

OPTIMAL RECOVERY OF VIRIAL COEFFICIENTS

Because of their theoretical importance, in the study
of intermolecular forces for example, the coefficients of the

virial equation

%z = T B p° L (22)

are usually sought from compressibility data. This has been
a rather perplexing problem because the eguation is an in-
finite series and intractable by numerical methods. A number
of techniques are used to approximate the virial coefficients
and a few are mentioned below for comparison with the proposed

procedure which is presented in detail.

Previous Methods

Possibly the first method which comes to mind is to
apply a limiting behavior process to the equation. Rearrange-

ment of Equation 22 reveals that

29
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B, =1

B, = lim (2-1/p) > (23)
p 0

By = lim (z—l/'p2 - Bz/b) J

p 0
and so on for as many coefficients as are desired. A serious
disadvantage is that extremely accurate low density data are
required to insure accuracy in the extrapolated values and,

in general, such data are unavailable.

A more commonly used routine is to fit a polynomial
approximation to the data and obtain the coefficients by re-
quiring a "best fit." This is, by and large, a highly esoteric
concept but quite often a least-sguares analysis is employed.

This leaves the question as to which polynomial should
be used. Many investigators prefer to use a pressure expan-

sion in the form
% =B. + B.P + B.P® + .... (24)

for which the B are related to the virial coefficients by

\

Bp =B =1

B, = RTB, ¢’ (25)
- 2,22 =

By = (RT)" (B, + Bjy) )
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Still others (notably workers in The Netherlands) utilize
Amagat data in which the ratio of actual volume to normal
(Ooc and 1 atm.) volume is measured. The Amagat compressi-

bility factor is given by

P(V/VN) = A, + A, (VN/V) + A, (vN/v)2 + ... (26)

where VN is the normal volume. The Ai are related to the.

virial coefficients by

w
Il

VNAl/RT =1

w
n

2 = (RT/A) (y/m) (27)

w
|

3 = (RT/Al)z(A3/Al) )

A more direct method is simply to truncate the virial equation
after a sufficient number of terms are judged to have been
used.

The basic weakness in all these methods is that the
coefficients obtained cannot be identified rigorously with
the virial coefficients because their values will depend
upon, among other things, the number of terms in the poly-~
nomial and the pressure range of the measurements. The
polynomial coefficients could be used in theoretical work,
however, if a good estimate were available for their var-

iance from the infinite series coefficients.
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Fresent Method

Michels et al. [21] have made a thorough investigation
of this problem and have offered a criterion for choosing the
best polynomial coefficients to approximate those of an infi-
nite series. However, their approach has several shortcomings
and a newer analysis has been developed based upon their work.
The present approach is more satisfying and rigorous and is
generally applicable to data reduction. Criteria are devel-
oped for choosing, in a least-sqguares sense, the best poly-
nomial to approximate an infinite series and for picking the
polynomial coefficients having a minimum variance from the
series coefficients. To emphasize the generality of the
method and to gain flexibility of expression, general nomen-
clature will be adopted throughout the remainder of this
chapter.

Let Yir eves Yo -0 ¥y be N experimental measure-
ments at Xyv weer Xpoo eees Xy and assume that only random
error exists in these measurements. Furthermore, assume
that all the error is localized in the Yy the X, being
exact. Admittedly, these assumptions are rather drastic
but necessary for the ensuing analysis. They may be justi-
fied if care is taken to minimize systematic errors in the
measurements and if it is understood that assuming localized
error in a two variable experiment will magnify the error

band of the random variable.
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In general nomenclature the virial equation or any

infinite series may be written

@
v, = I o gl (28)
It is assumed that this is the functional form that the Yn
vS. X, data must fit and, therefore, that the y; are exact,
theoretical values. The fk(xn) notation denotes any linearly
independent set of functions of X, i for the virial equation
it would be ascending powers of the density.

A "model function" was proposed by Michels et al.
which would provide a measure of how closely an infinite
series can be approximated by a polynomial derived from
exact data. This proves to be an useful relationship and

is given by

M8

Y =

mn X aﬁk fk(xn) (29)

1

The values for Yon would be established by placing a poly-
nomial through N points on a y; vS. X plot.

The function which will approximate the actual data
is

Ymn
k

INVE:

L a fk(xn) (30)

The a_, will be found by a least-squares analysis and their

mk
variance from the o established. A brief review of the
method of least-squares is in order then, if for no other

reason than to introduce pertinent nomenclature.
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Least Squares

The method of least squares places a polynomial
approximation through a set of data points by minimizing
the sum of the sguares of the discrepancies defined by

m

A =y =-u =y =- X a

n k=1 mk fkn (31)

where fkn is shorthand for fk(xn)' The requirement is that

z A = minimum (32)

The minimum is sought with respect to the a e and is obtained
by differentiation

N

N
£A° | = A £ =0 (33)

3/3da
n=1 mn n=1 mn-kn

mk

where k ranges from 1 to m.

The a_, may be extracted from Equation 33 but this

mk
involves the solution of m simultaneous equations. However,
if the fkn are made orthonormal, this requisite is eliminated.
Furthermore, employing orthonormal functions enables auto-
matic recovery of the Ak for all polynomials possessing
fewer than some given, maximum number of parameters, M.
These advantages are sufficiently enticing to motivate use

of orthonormal functions in this application.

Orthonormalization of the fkn

Orthonormal functions are vectors which are perpen-

dicular and whose dot product is unity. The fkn may be
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converted to such functions by employing the Gram-Schmidt
algorithm. Jones and Gallet [16] and Pfenning [25] have
laid down the guide lines for application of this algorithm
as it will be used below.
It will be necessary frequently to use the inner
product of two vectors hereafter. This may be defined in

terms of the £ as

kn

) N (k=1, ..., M)
(£ ,£.) = 3£ (34)
L | knjn (=1, ..., M)

The parentheses representation will be used often to simplify

the notation.

The set of functions wln' wz ¢mn are orthogonal

nl

(perpendicular) if

(edy) =0 k73 (35)

This condition will be satisfied by the set of functions

generated from

Yin = f1n (k = 1)
k-1 (36)
ben = Fin * rzackr¢rn k=2, ..., M)

In this manner, N values of fkn may be transformed into or-

thogonal ¢kn' The set of constants Cy, are given by
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Cp = = Wpr 5/ (b, b)) (37)

when Equation 35 is applied to Equation 36.
Equation 36 is more useful in the analysis if put

into the form

™M~

¢kn - £ (38)

G
1 krrn

r

The Gkr are functions of the ckr and can be calculated from
Gkk = Ckk =1 (k=1, ..., M)
k-1 (k=2, ..., M) (39)
G = XG,C

kr  gop ITKI (o1, L., k-1)

This relationship arises when the wkn calculated from Equation
36 are equated to those calculated from Equation 38 and the
coefficients of like powers of fkn are compared.

The wkn are normalized by

O = b/ Wy ) L2 (40)

where O1n’ Pon’ <+ r Oy 2re orthonormal functions. The de-

fining equation for orthonormal functions is

(65 =0, k #3)
(ij = ll k = J)
where ij is the Kronecker delta. The Pyn formed by Equation

40 can easily be shown to satisfy Equation 41 by forming the

inner product of @rn and mjn'
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Solution for Coefficients

The orthonormal Prn will now be used to recover the
a ik Upon insertion of the proper coefficients, Equations

29 and 30 become

m m nm
y = Sa,f = S6.4 = TA.o (42)
mn T 2 %kt T 2 PmkPen T 2 P

m m m
“mn T Z Pk Fen =L Z Snkn = 2 PrcPien (43)

where the dmk and bmk will be referred to as the orthogonal
and orthonormal coefficients respectively. Equation 33 then

becomes
(B £) = (M) = (o) =0 (k=1 ..., M) (44)

This equation may be solved readily for the dmk and bmk

cause the normal equations are uncoupled by the property of

be-

orthogonality. Using the bmk as an example

m
1 1O = Q. = 1 Q. = 1P - b 1 Do =0
(Broy) = (vi05) = (w,05) = (Vi) 2 ik P @5)
(45)
but by applying Equation 41 this reduces to
bk = (Yl(ok) (46)

and because the bmk are not functions of m they are written

simply as b, . Similarly, 4 . is found to be

k mk
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& = (vo,)/ W) = b/ )2 (a7)

If Equation 43 is expanded and the coefficients of like powers

of fkn compared, the a are found to be

mk
m m
1/2
a = Yd.G., = X b.G. Y. 48
L s B | S T 3/ (#5795) (48)
The amk may be found most conveniently by constructing
a matrix, Tpk' generated by
le=dekk (k =1, ..., M)
(p = 2’ e o o M) (49)
Tk = Tp-1,x ¥ 71, pk-1%p+k-1,% :
) (k = l' oo o ¢ M—p'l'l)
In this matrix the a x are found at
(k = l, o0 0 m)

a (50)

mk = Tm-k+1l,k
(m=l' o s oy M)

Therefore, instead of a single set of coefficients, the Tpk
matrix contains M sets of coefficients corresponding to M

polynomials. For example, if M were specified to be 4, the

T matrix would be
pk
Toi Tp2 Tps  Tpa
Tix | 211 222 333 244
Tox | 221 332 243
Ty | 331 342
Tax | 241
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It is evident that this matrix effects a substantial reduction
of time and effort compared with the solution for the a by

inversion procedures.

Cut-off Criteria

Two separate cut-off criteria will give an optimal
set of parameters, Ak’ for the present problem. If the best
fit of the data is required, the condition is

((u *12)

A o yn) = minimum (51)

M2

n

with respect to variation in m. If, however, coefficients
are desired which are as near as possible in value to the

exact coefficients, the requirement is that
((a , - )2) = minimum (52)
mk ak

with respect to variation in m for a given k. The number of
parameters associated with the polynomial satisfying Eguation
51 will be denoted as m*.

Both criteria are of considerable importance, and
must be developed into useful forms. Rigorous eguations
can and will be derived, but, because of the statistical
nature of the analysis, they cannot be evaluated. Neces-
sary approximations are available and can be justified by
examples.

Before the criteria are expanded, a few basic re-

lationships must be investigated. The experimental error
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will necessarily have a role in this discussion. It is de-~-

fined as

AR A (53)
and because only random error is allowed in the ¥p

<en> =0 (54)

where the brackets denote expected values. The errors are

also assumed independent and then

(snes> = (en)<€s> =0 (55)

*
Also because (y ) = y_ from Equations 53 and 54
n n

2

(e2) =y, - v 2) = o (56)

where 02 is the variance of the data. Combining Equations
55 and 56

02

s (57)

(enes> =6

where ﬁns is the Kronecker delta. Another quantity which

proves useful is the "model" error
Pon = Y T Yo (58)

For both criteria, it is helpful to know some rela-
tionships between the various coefficients which have been

introduced. One is established by taking the expected value
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of the orthonormal coefficients defined by Equation 46
*

Here <¢kn> = Orn because the error is localized in the Y,
values. Had the "model" function, Equation 42, been used
in a least-squares fit of N exact data points, the Bmk would

be found (analogously to the bk) to be
*

Like the bk' the ﬁk do not depend upon the number of param-
eters in the polynomial fit and the subscript m is dropped.

Equations 59 and 60 reveal that
(b, ) = By (61)

In the case of the orthogonal coefficients, it can be shown

easily that

/2

b = O = (40 = (v 00 /W (62)

From a development analogous to that for Equation 48, the

Q are found to be

mk

_ m _ m 1/2
amk = Z G.ij = jfkﬁ-G /(lbjuil’j) (63)

j=k J J ik

Examination of Equations 48, 61 and 63 establishes that

@) = o, (64)
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The necessary expressions are now available to develop
more useful forms for the cut-off criteria. The best-fit cri-

terion can be expanded using Eguations 31, 53 and 57

N %2 N 5 N )
nfi((umn-yn) ) nEf(y -y + -y ) ) = nf ((e -A )9) =

N
2
((8,/8)) +No” -2 T b ) (65)
The third term in this equation reduces to

-2n§l<enAm Y = - 2{(y,€)) + 2<k2 b (e.wk)> (66)

Equations 46, 53 and 60 indicate that
*
(€ o) = (vio) - (v ,0) =P - B (67)

which when substituted into Equation 66 gives

N 2
_2n2i<€n 80 =- 2{(y,e)) + 2 za(<b > - B =

m
= 2y + 2 YD+ 2 3 () - B (68)

But, from earlier definitions it can be shown that
* * v *  k
(v, 7)) =Sy + e,y +€)) = (y ,y) +

N
+ El<€§) = (y*,y*) + N o2
n=

(69)
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and
2 ( 2 N N ( y
<bk> = (Y:(Ok) > - nfl SE]_ Yan mknwks =
N N * *
) z;l z;1<(Y1'l + en)(ys + es)> wkn¢ks = 02 + Bﬁ (70)
n= sS=

(This is equivalent to ((bk - Bk)2> = 02. Because 02, the
variance of the data, is a constant, this indicates that the
calculated bk are the best values automatically. Using these
relationships, Equation 68 becomes
N 2
-2n§l<enAmn> = -2 (N-m)g (71)

and the criterion is

z
1

z ((u -y*)2> = (2m-N)o? + ((A ,A)) (72)
n= mn “n m’ m
for which m = m* at the minimum. This expression should be
used in lieu of Gauss' criterion (see Kendall [17]) when the
functional form which the data should fit is an infinite
series, such as Equation 28.

The criterion for optimal coefficients also possesses

a more useful form. Equation 52 may be expanded as follows

<(amkmmk)2> = <|:(a‘mk'-mmk) + (mmk—o‘k)]2> =

I

ot ) + agma)®) + 2 ageay) (e =

(agma )2 + (o -a)? (73)
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The first term in this expression is

o N2y i /2,2y _
“amk amk) ) = <(J§k(b3 BJ) ij/(d’J"l)]) ) ) =

-3 3 ((b-B)(b-BHlek/[(!IJ TRRAI zp)l/z]

JFkl k
(74)
From the definitions for bk and Bk and Equation 57
( > =« ) = z ( )
b.=B.) (b.-B.)) = ((€,0.) (¢,0. 226 =
(b;=8,) (b -8;) (€,05) (e,0,) I 2 ns? PanPis
N N 2
= ¥ 5 0 ¢ Pis =C (75)
n=1 s=1
Substitution into Equation 74 gives
(@) >—cjzzek/(w 3) (76)

The second term of Equation 73 remains to be developed.

Equation 63 may be expanded using the definition of

Bk=
m m N
- 1/2 1/2 * _
o = 2 PGyl Wyev) P = 3 [ij/w»j,abj) Jnflyn‘pjn -
N m m N m
= % % P
IG5 E Gipebsn/ 0¥, )] ifin t 22 Gipcbsn/ W30 ¥5) Ry
(77)
where R = z «.f, , the truncation error. For the time
mn i7in

i=m+l
being, let Q represent the last term in this expression,



45

then because
i-1

in r=1 ir'rn

Equation 77 becomes

N m m i-1
% = 20 BB ij¢jn/(wj.¢j)] @ Wy = BCpby) + 0=
m m
P jEijk(¢j'¢i)/(¢j'¢j) }

m % i=1
- a- 2 o . ) . s . =
ifl i 5 r=1G3kC1r('pg )/ (Wyeds) + 0

m m i-1
} iikaiGik -iE;+1ai rELGrkcir e (78)

through use of the property of orthogonality. When Equation

39 is introduced, this relationship reduces to

m m

o =% .G, Q.

- Z G, +Q-= +Q (79)
me =2 %%k T8 Mk %

The difference between O and o is Q or
m
P 1/2
%% = B O Rye@y) / (b509) (80)
The inner product term may be expressed as

* m
(Rm'<pj) = (y r‘pj) = i:-z..;]_ai(fi"pj) (81)
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Therefore, the criterion for optimal coefficients is that

2, _ 2 _ 2 % 2 .
(la, -0 )Y =0, =0 jfkejk/(wj.wj) +
m m
+ (2 [on /05002085~ B o ey 0 707 (82)
J= 1=

be a minimum with respect to m. It should be noted that this
criterion may be satisfied at different values of m for dif-
ferent values of k.

Because 02 is essential to both criteria, it should
also be put into a more convenient form. A good starting

place is the sum of the squares of the deviations

)2

™
>
)
it

m
Z(y -~Zbheo
n=1 P k=1 K KB

N 2 N m N % g
= Ty ~-~2Zy ZThbe +Z b.o, @. =
n=1 " n=1 "k=1 k"kn n=l k=1 j=1bk j kn"Jn

n 2, 2 )
= (YDY) -22Z (thk) + Z (y"pk) = (YtY) -z bk
k=1 k=1 k=1
(83)
Taking the expected value of this equation produces
mo.2
<(AmlAm)> = <(YIY)> - k£l<bk> =
* ® 2 o2 2
=(y,y) +No¢ - I Bk -mo (84)

k=1
using Equations 79 and 80. 1If hmn is substituted for Amn

in Equation 83, the result is
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2

(hh) = (v,y) - I8 (85)

TMa
(NS

Therefore, the last two equations combine to give the desired

. 2
expression for O

2 _

o7 = E (Am.Am) ) (hm,hm)] /N-m (86)
While Equations 72, 82 and 86 have been rigorously

developed, they cannot be evaluated in their present form.

In general, hmn and all expected values will not be known,

and must be approximated. Fortunately, good estimates are

available and are presented in the next section.

Criteria Estimators

Because 02 is common to both criteria, it will be
estimated first. The first term of Equation 86 is approxi-

mated by dropping the expected value operation

- L2
(B B) /N ~ (B ,8 ) /N-m = 5 (87)
This is an unbiased estimate of the term (which, incidentally,
is the maximum value 02 may have).
The second term is more tedious. Examination of

Equations 29, 30 and 64 reveals that

Yoo = <umn> (88)

therefore,



hon =¥ = Yo = (¥ - umn) = <Amn> (89)
and
N 2
(hh ) = n£l<Amn> (90)

This may be expanded into

_ 2 2 2 _
(hm,hm) = (Aml> + <Am2> + e, + <AmN> =
(58 )2-2% T 4 A
=(Z -273 (91)
n=1 mn n=1l s=n+l mn-ms
and estimated by
(h /b ) ~ [nflAmn] -2 nEl s§n+1 A & = 5% (N-m) (92)

Unfortunately, this is a biased estimate, but it is the
only available choice other than zero and will be used.

The estimator for 02 is then
O ~S -8 (93)

The value calculated for 02 should be compared with
an a priori estimate if possible. This will give some in-
sight concerning the choice of fkn establishing Equation 28
as the functional form fitting the data. If improper fkn
have been chosen the calculated and estimated values should

be widely different.
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The fact that 82 is the maximum value for 02 is also

an useful concept. If the Amn are not randomly distributed,

2 will be estimated

greater than SZ. In this case, S2 should be used for 02.

the value of gz might be such that o

Experience has shown that this approximation does not intro-

. s A
duce significant error because normally 82 >> 52.

The best fit criterion follows immediately

(u-vi)%) ~ (2n-m) (5%-82) + (8,8 (94)

U R~

n=1

This is essentially unbiased because of the small magnitude
of §2. The criterion for optimal coefficients is a bit

more difficult to estimate. The suggested form is

42 2 A2, ® 2
~ (s2-42 j;")ijk/(zpj.abj) -

Za*(ﬂw)nz (95)

i=

"t 2 G/ Wyrdog) 2 oog-
i=

This expression is statistically biased, but it possesses a
definite advantage--it is available and computable. Re-
placing Bj with bj is a very good approximation as indicated
by Equations 61 and 70. Replacing o, with a i is based
upon experience with test cases. These examples indicated
that the parameters associated with the m* polynomial are
generally fairly good approximations for the o, . Of course,
the values can be checked a posteriori. In the test cases

run to check the procedure, the error incurred by this
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approximation was not significant. Furthermore, the co-
efficients associated with the m* polynomial satisfied

Equation 95 in all cases.

Error Accumulation and Reorthonormalization

The involved computational requirements of this tech-
nigque immediately suggest computer application. Care must
be exercised, however, because in problems of this type,
round-off error can easily accumulate and destroy all con-
fidence in the values obtained. The most susceptible oper-
ation above is the orthonormalization step, but, fortunately,
use of orthonormal functions provides a means for estimating
this error.

The bk were calculated from Equation 46 under the
assumption that the O, Were orthonormal. Actually, because
of round-off error the @ren might not be exactly orthonormal
and Equation 45 should be used. Denoting the values ob-
tained from Equation 45 as b;, the following expression re-

sults

* *
b, = (v,0.) = by (@,,0.) + ... + b (0..0.) + ... 96
5 = (v.0,) 1(01005) + by loy00,) (96)

*
The difference between bj and bj in this equation is an in-
dication of the effect of round-off error. The relative

error is

1- 3 b /o ) (97)

* *
(by=by) /by
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* .
The bj are not necessarily known, but they may be approximated

by the bj

* * m

(bj-bj)/bj ~1 - qfl(bq/bj)(¢q:¢j) (98)
When this relative error exceeds some prescribed epsilon, it
is reasonable to assume that round-off error has become sig-
nificant. Experience has shown that unless epsilon is 10-'6
or less; the results may not be accepted with confidence.
One method for controlling this error is reorthonormalization.

Reorthonormalization of the set of functions, Pren’

forms a new set ¢£n which are more nearly orthonormal. The
generating equation for the new orthogonal functions is

Gkr'prn

. k
= X

= (99)
¢kn r=1

The Gkr are found by merely substituting primed values into

Equation 39 in which the Ckr are given by

Cry = = W #)/ (b ¥.) (100)
The ¢£n are normalized by
6y = b/ (s t) 2 (101)

Following the earlier developments

b, = (v.0,) (102)
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and

/2

3 . t t l
dk = bk/\wk"pk) (103)
]
T is formed from
Pk
t ) ]
Tk = %k
' ' l p+k_l '
Tok = Tp-1,%x ¥ T1,p+k-1 jfk Cpik-1, 385k (104)
and the a. are found in the same locations as in the Tpk

matrix. The variance of the coefficients is obtained by
replacing ij in Equation 82 by
i
.2 83i%ix
This procedure may be repeated as often as necessary to bring
the relative round-off error within the tolerable limits. Of
]

1
course, the expressions for Tpk and ci become increasingly

more complex (see Hall and Canfield [11]).

Example

Several test cases were run on the computer to check
the validity of the proposed technique. The most informative

and stringent was the specially constructed function

g(x) = e 4 0.1 & 4 0.01 x°

nt €n (105)
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This function was chosen because it closely resembles a
near-critical compressibility isotherm and has an infinitg
series representation for which the coefficients are known
exactly.

The random error, €,+ was included as follows. An
average error of about 0.0005 was desired so a standard de-
viation of 0.001 was chosen and multiplied by the entries
in a random-number sequence (0.0 < n < 1.0). This gave an
average error of 0.00046. A second random—number sequence
was used to determine the sign of the error which was then
added to 30 discrete values of g(xn). The x ~were in the
range 0.01 < x < 3.00.

One reorthonormalization was required to control
the relative round-off error to less than 3 x 10-10 using
a 12 digit word. The coefficients for the first eight poly-
nomials are given in Table 1 along with their standard de-
viations. The program chose m* = 6 as the best fit which
is correct. Also the coefficients for this polynomial have
minimum variances. The exact coefficients are compared with
the ey in Table 2. These coefficients are nearer in value
to the o than any other coefficients in Table 1 as predicted.
It should also be noted that, with few exceptions, all the
coefficients in Table 1 are within their standard deviation
of the exact coefficients.

These and similar results seem to substantiate the

validity of the assumptions made when estimating the criteria.



TABLE 1

COEFFICIENTS OF g(Xn) FOR VARIOUS POLYNOMTIAL APPROXIMATIONS

—
m/k. a o, a o

1/1 3.8270 (10" 1) 1.2824 2/1 -1.4305 5.3077 (10" 1)

2 7.9285 (10™ 1) 2.4270 (10 1)

3/1  -4.4191(10°1) 4.5778(10°Y) a1 ~9.6700 (10" 1) 6.7314 (10 %)

2 -2.8840(107 1Y) 8.3856 (10 1) 2 7.4613 (10" 1) 1.9598 (10" 1)

3 2.6607 (10™ 1) 4.1856 (10 1) 3 -3.2836 (10" %) 1.7598 (10" 1)

4 1.0408 (10™ 1) 5.5800 (10™2)

5/1  -8.9175(10 1) 8.2040 (10" ) 6/1 -8.9970 (10" 1) 3.2869 (10 °)

2 5.1532 (10" 1) 3.5282 (10 %) 2 5.5016 (10" 1) 1.2571(1072)

3 -1.0081(10" %) 5.1835 (10" 2) 3 ~1.5238(10" %) 1.7481(10 %)

a 1.4357 (107 %) 3.3986 (10~ 2) 4 4.8283(107%) 1.1159 (10 %)

5 1.2284(107%) 1.0232(10"%) 5 2.0553 (10" ) 3.3204 (10" 2)

6 1.1534 (10" %) 3.7312 (10" %)

7/1  -8.9844 (10" 1) 5.1072(1073)  8/1 ~8.9793(10™ 1) 7.3364(10°)

2 5.4271 (107 1) 2.6350 (10~ 2) 2 5.3882 (10" 1) 4.8092 (10~ 2)

3 -1.3707(107 Y 5.0757 (107 2) 3 -1.2649(10" %) 1.2010(10"Y)

4 3.3494(10°2) 4.7356 (10 2) 4 1.9553 (10" %) 1.5058(10 l)

5 9.3598 (10~ 3) 2.2971 (10 %) 5 1.9315(107%) 1.0432 (10" )

6 -6.3323(10’4) 5.5720(10‘3) 6 -4.5707 (10 3) 4.0524 (10 )

7 1.7156 (10~ %) 5.3386 (10~ %) 7 9.8273 (10" %) 8.2672 (10 °)

8 -6.7905 (10™°) 6.8921 (10" %)

¥S
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TABLE 2
COMPARISON OF a6k WITH ak
k % 26k s
1 ~9.0000(10™1) ~8.9970 (107 1) 3.2869(10'3)
2 5.5000 (107 1) 5.5016 (10" 1) 1.2571(107%)
3 ~1.5000(10" %) ~1.5238(10° 1) 1.7481(107%)
4 4.5833(10 %) 4.8283(1072) 1.1159 (10" %)
5 2.5000 (10 3) 2.0553 (10" °) 3.3204 (107°)
6 1.5278(10"%) 1.1534 (1073) 3.7312(107%)

These criteria are the first impersonal, mathematical guides
offered for obtaining optimal coefficients in this application
and for obtaining best fits for infinite series. The program
associated with this analysis was used in every phase of the

data treatment in this project.



CHAPTER V

METHOD FOR REDUCTION OF BURNETT DATA TO COMPRESSIBILITY

FACTORS AND VIRIAL COEFFICIENTS

The accuracy of compressibility factors obtained by
the Burnett method depends to a large degree upon how well
the constants N and PO/Z0 are established. Classically,
they were found from graphical extrapolations using Equa-
tions 10 ard 11, but, when demands for more accuracy emerged,
several procedures for refining the graphical values were
developed.

Some of these techniques are reviewed briefly below
as background material. The bulk of this chapter, however,
is devoted to an explanation of a new method for refinement
of the constants which eliminates many major weaknesses of
the previous schemes and introduces some added advantages.
Use of the new method should produce results which reflect

all the accuracy of present measuring capabilities.

Previous Methods for Refinement

While the errors in the extrapolated constants are

not large (roughly 0.01% for N_ and 0.1% for PO/Z they

O)’
must be reduced by at least an order of magnitude if the

56



57
results are truly to reflect the information available in
the data. The major obstacle in this process lies in the
fact that the constants appear non-linearly in the pertinent
eguations.

Some investigators, such as Pfefferle [24] and
Silberberg et al. [27], propose linearization of the equa-
tions by various means and application of some iterative
scheme to find corrections to be applied to the constants.
canfield [6] suggests that the low density linearity of a
plot of (2-1)p vs. p is sensitive to the value of N, and
may be exploited to adjust this constant. Both methods
suffer in that multiple runs for a given isotherm must be
treated separately. This immediately restricts the amount
of available information which may be extracted from the
data.

Barieau and Dalton [1] have developed a rigorous,
non-linear, least-squares technique which they have applied
to Burnett data. Multiple runs may be treated with this
method, but convergence problems would most likely appear
when working with near critical isotherms. Hoover et al.
[14] have proposed a "direct" method for establishing N_
and PO/Z0 along with the virial coefficients. This is an
iterative technique based upon the Burnett analysis and
establishes the constants with negligible error. However,
the method is restricted to temperatures above Tr > 0.75

and to regions where the compressibility factor is given by
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2

Z=l+32p+B3p (106)

All the above methods assume N, is a true apparatus
constant for a given temperature and use a calibration value
in their refining steps. While this is theoretically satis-
fying, data taken in this laboratory o not actually exhibit

this behavior. Each run seems to have its own cell "constant"

albeit this is, most likely, because of experimental error.

Present Method for Refinement

Upon reviewing these earlier treatments, it seemed
desirable to devise a new method which would eliminate their
major weaknesses and thereby increase the accuracy of the
final results. 1In particular, a method was sought which
would use all of the available information contained in the
experimental data.

The useful information is: one or more sets of pres-
sures for each isocomp-isotherm considered, the fact that
the virial coefficients are identical for all sets of pres-
sures along a given isocomp-isotherm and the Burnett analysis
relating the pressures, N, and PO/Z0 to the compressibility
factors and to the virial coefficients (via Equation 22).
Mathematically, a functional relationship exists of the

form

27 B ..) =0 (107)

F(3, Pyr T N, Py/Zy B 30 -



59

in which j is the expansion number and for which there may
be multiple sets of expansion numbers, pressures and Burnett
constants. The function is non-linear in terms of the con-
stants, but they may be recovered by constructing a multi-
dimensional response surface which will exhibit a minimum
when the proper values are inserted. This minimum may be
searched out by well established procedures. In this work
and in most other studies involving Burnett apparati, two
runs are used to establish an isotherm, so for the remainder

of the discussion assume that

F(Ngq - (PO/ZO)l, APy (PO/ZO)Z' ...) =0 (108)

where the expansion numbers, pressures, temperature and
virial coefficients are understood.

The searching procedure requires initial values for
the constants and virial coefficients. The extrapolation
method (Chapter I) was implemented by placing an optimal
least-squares polynomial through the appropriate data co-
ordinates and then Equation 9 produced initial estimates for
the compressibility factor. The technigue proposed in Chapter
IV then gave values for the virial coefficients consistent
with the approximate values for the Burnett constants.

The particular form to be used for F must be estab-
lished at this point. The difference between Equation 9 and
Equation 22 is chosen because this function permits the fullest

utilization of the development presented in Chapter IV and
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because the virial coefficients are recovered automatically

in the data treatment.

-]

Zq

_ j k-1
F=P. |==|N, & - T Bop. (109)
J (Po) 37 xop K3

where j denotes an individual expansion and §j and pj are
given by the following expressions.
k., + k,P. + k P2 +
1 27 i 37i toc

3
gj = 1T —= 3 (110)
i=1 m; + MPy 4t MPE g o+ ...

1

Py = (111)

J Z0 .
Y J
RT(PO) N €j

The summation of F2 over all the data points is minimized
with respect to the Burnett constants treating both runs

simultaneously i.e.

¥

Jl 2 m* 2
NE R

Z PiNo1 (p )1 €51 BePy1 *

j=1

0 k=1

= minimum (112)
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where J1 and J2 are the number of data points in the first
and second runs respectively and m* is (as in Chapter IV)
the optimal number of parameters required to approximate the
virial expansion for Zj' In this expression the same set of
B, is used for each run.

Equation 112 possesses a major advantage and a major
disadvantage in a least squares sense. Because the compres-
sibility factors do not vary widely, a weighting factor is
not absolutely necessary in the summation. On the other
hand, the compressibility factor is a derived rather than
observed quantity, and it must be used with care in this
application. To be certain that the search is truly con-
verging, a check is made employing the observable pressures.
Equation 6 may be used by introducing the optimal values for

the Burnett constants and virial coefficients to calculate

m¥*
k-1 2
It e, E___ By Py1
CHK = Z S —— L +
Pj—l le m* k=1
J=l -‘E=1Bk pj-lol
m - 2
J2 D s B pk 1
. 1 k T J2
3 1 k=1 113
+ E: P, T N.. m* k-1 ( )
j=iL 37t 323 B o

If CHK is small and within the range expected from experi-

mental error, the search may be assumed to be converging.
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The function,® F2, may be calculated from the
various initial values now and the search for the minimum
may commence. Many searching procedures have been proposed
in the literature, but two sources collect most of the more
useful ones into concise reviews. These references are a
series of articles by Boas [3] and a text by Wilde [29].

The optimal method must be chosen to reflect the conditions
of the problem in which it will be used.

Because the initial values of the Burnett constants
can be found as accurately as they are, it seems safe to
assume that the surface"ZFz, will be unimodal and nearly
quadratic in the region of interest. Under these conditions,
the quadratic search outlined by Wilde should be employed
immediately, although it is usually introduced only after
having exhausted the usefulness of some linear search.

This particular search is performed by assuming that

the ZF? surface is quadratic and unimodal in N (ZO/P

1’ O)l'
Noeoy # (ZO/PO)2 - space. A Taylor's expansion then yields

(defining T F2 as S and ZO/P0 as A for simplicity)

As ~ (gg——)ANwl + o8 )ANC,Q2 +
ON
@l

3N,

iS—)AAl +
aAl

2 2 2
+-§ 25V + (25 (4a,)? + 9 S.) ()2 +
N, 7 3] 3N

2 2 2
+ 12 S )(AAz)z + (é—g————)ANwlAAl + (9—§———-— ov,, Ma, +
5 3N,,1 38, 3N, 3R,
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2 2
+ (__§_§___) AN, AN, + k- E. ANwlAAz +
3N, N, ON,,; 92,

2 2
+ .......é._.s.._.. ANmZAAn + ____a__§_ An An (114)
3N, 38, 1 a2, 12

In this application the fourteen derivatives may be taken
analytically (analytical and numerical values were compared
to insure that taking the derivative of a least squares
polynomial was valid under these conditions). The last four
interaction are conveniently zero. Differen}iation of Equa-
tion 114 with respect to each constant change produces four
simultaneous equations which, when set equal to zero and
solved, give corrections to be applied to the Burnett con-
stants. When the corrected values of the constants are
inserted into Equation 112, the minimum in the Z F2 surface
should result. The fact that the surface may not be exactly
quadratic requires that this procedure be iterated until the
change in the constants from one iteration to the next is
less than some prescribed epsilon. At this minimum, the
compressibility factors, densities and virial coefficients
will be the best (in a least squares sense) obtainable from
the data. The virial coefficients are obtained in each
iteration by calculating the Zj and the pj from the permuted
Burnett constants and observable pressures, and then employing

the technique of Chapter IV.
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Unfortunately, there is a complication involved.
Choice of a polynomial to approximate the virial equation
again becomes the issue. The methods of Chapter IV will
indicate the proper polynomial and best virial coefficients
only after the refined compressibility factors have been
used to establish them. It is necessary, therefore, to
set up several surfaces, each using a different number of
terms in this equation, and find the optimal values of
the Burnett constants for each surface. Then the optimal
compressibility factors, densities and virial coefficients
are established for each surface.

Now the surface must be chosen which has yielded
results which are most nearly consistent with the data.
The first test which can be applied is Canfield's sugges-
tion concerning the low density linearity of a plot of
(z-1)/p vs. p. Any surfaces whose results do not satisfy
this condition are eliminated from consideration. The
best remaining surface may be ferreted out by examining the
standard deviation of the virial coefficients, the value of
the best fit criterion, the deviations between observed and
calculated compressibility factors and the sum of the squares
of these deviations. Of these, the first two are emphasized.
Ultimately, one surface will reveal superior behavior under
this scrutiny, and may be considered to possess the optimal

values for the desired quantities.



CHAPTER VI

DATA AND APPLICATIONS

After the pressures were corrected as outlined in
Chapter III, they were treated by the methods described in
Chapters IV and V to obtain compressibility factors and
virial coefficients. The results are presented in Tables
3-17. 1In addition, interaction virial coefficients have

been calculated.

Data

Each table presents the optimal results for one
isocomp-isotherm as extracted from the computer program
BURNOR (Appendix D). The apparatus constants, N, and ZO/PO,
are presented at the top of the table. These are the op-
timal values and are consistent with the data presented.

The experimental pressures in atmospheres are listed and
all other quantities, reading across the page, correspond
to these values. The compressibility factor is presented
as calculated from the Burnett analysis (Equation 9) and
as calculated from the virial equation. These latter values,
labeled Z(Virial) should be considered the reported compres-

sibilities with Z (Burnett) being additional information.
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TABLE 3

EXPERIMENTAL AND CALCULATED RESULTS FOR
100.00% HELIUM AT -1l60°C

Run #1: Ne = 1.563311 ZO/PO = 0,002657682
Run #2: N, = 1.563360 zo/P0 = 0.003186988
P(atm.) Z (Burnett) Z(Virial) ZB - Zv i and UBi
701,449 1.86423 1.86423 -0.00000 = 11.62527
347,045 1.44182 1.44177 0.00005 0.01288
191,860 1,24604 1.24606 -0.00002 .
112,706 1.14425 1.14423 0.00002
68,5042 1.08723 1,08724 -0.00001 174.9200
42,4726 1.05377 1.05384 -0.00007 .
26,6481 1.03356 1.03365 ~0.00009 1.9282
16,8416 1.02115 1.02121 -0.00006
10.6906 1.01332 1.01344 -0.00011
6.8060 1.00851 1.00854 -0.00003 = 814,5500
4.3407 1.00552 1.00544 0.00008 86 . 1629
2.7715 1.00366 1.00347 0.00018 ’
517.434 1.64906 1.64906 ~0.00000 19134.01
270,051 1.34542 1.34548 -0.00006 y
153,698 1.19707 1.19707 0.00000 1160.28
91,7634 1.11728 1.11720 0.00008
56,2974 1.07158 1.07155 0.00003
35,0986 1.04441 1.04441 ~0.00000
22.0962 1.02789 1.02786 0.00003
13,9931 1.01765 1.01760 0.00004
8.8948 1.01129 1.01117 0.00012
5,6664 1.00716 1.00711 0.00005
3.6151 1.00453 1.00453 0.00000
2.3082 1.00272 1.00289 -0.00017

CHK = 3.83630(1078)

Zlzg - 2l

2(z

1.31718(1073)

- zv)2 = 1.33668(10"

- ZV)AVE

= 1.99488(10

7y

6
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TABLE 4

EXPERIMENTAL AND CALCULATED RESULTS

100.00% HELIUM AT -170°C

Run #1: = 1.563277 Z4/Po = 0.002789038
Run #2: = 1.563311 Zy/P, = 0.003332152
P(atm.) Z (Burnett) Z(vVirial) ZB - ZV and Op
1
697.208 1.94454 1.94455 -0.00000 = 11.53950
337,723 1.47232 1.47230 0.00002 o0 on7as
184,843 1.25966 1.25964 0.00003 = Y.
108,053 1.15108 1.15108 -0.00000
65.5137 1.09099 1.09103 -0.00004 = 172.9100
40,5641 1.05597 1.05605 -0.00008 y
25,4326 1.03496 1.03499 -0.00003 = 1,0669
16.0651 1.02199 1.02204 -0.00005
10,1958 1.01394 1.01396 -0.00001
6.4900 1,00895 1.00887 0.00008 = 1145,739
4,1383 1.00572 1.00565 0.00007 = 45,621
2,6416 1.00359 1.00361 -0.00001 .
512,059 1.70626 1.70624 0.00002 _
262.786 1.36878  1.36887  -0.00008 = 18119,77
148,378 1.20817 1.20814 0.00003 = 587.88
88,2355 1.12313 1.12306 0.00007
54,0191 1.07489 1.07487 0.00001
33.6389 1.04638 1.04639 -0.00000
21.1626 1.02909 1.02907 0.00001
13,3969 1.01842 1.01836 0.00007
8.5123 1.01161 1.01164 -0.00004
5.4222 1.00736 1.00741 -0.00005
3.4594 1.00474 1.00472 0.00001
-8 2 -8
CHK = 2.17787(10°°) T(zy - Z,)° = 4.64238(107")
-4 -6
|z, - Z,| = 8.33166(107") (Zg = Zy) pyg = 1.27802(1077)




68

TABLE 5
EXPERIMENTAL AND CALCULATED RESULTS FOR
100.00% HELIUM AT -190°C
Run #1: N, = 1.563218 Zq/Pg = 0.003100647
Run #2: N, = 1.563172 Z,/P, = 0.003664451
P(atm.,) Z (Burnett) Z(virial) ZB - Zv B. and Oy
i
707.020 2.19222 2.19223 -0.00001 11.05842
321,708 1.55925 1.55928 -0,00003 0.00938
171,039 1.29584 1.29580 0.00004 .
98,6461 1.16827 1.16815 0.00011
59.4160 1.09994 1.09986 0.00009 184.. 4493
36.6613 1.06092 1.06093 -0.00001 .
22,9425 1.03783 1.03781 0.00002 1.2035
14,4777 1.02376 1.02372 0.00001
9.1823 1.01500 1.01499 -0.00001
5.8422 1.00951 1.00951 -0.00000 1315.162
3.7245 1.00605 1.00605 0.00007 46.199
2.3770 1.00370 1.00386 ~0.00016 .
513,660 1.88228 1.88224 0.00004 23733 .74
250,687 1.43591 1.43593 -0.00003 .
138, 255 1.23785 1.23792 -0.00007 534.63
81.3006 1.13782 1.13783 ~-0.00002
49,4945 1.08275 1.08281 -0.00006
30.7307 1.05085 1.05090 -0.00005
19,3012 1.03169 1.03174 -0.00004
12,2067 1.01992 1.01997 -0.00006
7.7528 1.01258 1.01264 -0.00006
4,9372 1.00798 1.00803 -0.00005
3.1499 1.00524 1.00512 0.00012
2.0112 1.00333 1.00326 0.00007
CHK = 3.24424(107%) T2 - zv)2 = 9.67731(1078)
B -3 _ _ -6
o|zg - 2z, = 1.19001(1077) (Zg = Zy) pyg = =5.40438(107°)
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TABLE 6

EXPERIMENTAL AND CALCULATED RESULTS FOR
87.77% HELIUM AT -160°C

Run #1: N, = 1.562995 Z,/B, = 0.005863029
Run #2: N, = 1.562989 Z4/Py = 0.006803262
P(atm.) Z (Burnett) Z(Virial) ZB - ZV Bi and O'Bi
218.759 1.28259  1.28259 0.00000 B, = 9.62535
125,751 1.15232  1.15227 0.00004 o2 = 0 01358
75.9193  1.08731  1.08732  -0.00001 = 0.
46.9997  1.05206  1.05214  -0.00009
29.495]1  1.03191  1.03194  -0.00004 _
18.6521  1.01992  1.01989 0.00004 By = 229.8796
11.8480  1.01259  0.01250 0.00009 o = 2.4505
7.5459  1.00799  1.00791 0.00007
4.8138  1.00506  1.00503 0.00003
3.0739  1.00309  1.00320  -0.00011 B, = 4547.541
180.505 1.22802  1.22804  -0.00002 o = 100.425
105.881 1.12583  1.12581 0.00002
64.5823  1.07327  1.07328  =0.00001
40.1997  1.04414  1.04419  -0.00005
25.3042  1.02724  1.02724 0.00000
16.0298  1.01708  1.01702 0.00006
10,1929  1.01083  1.01073 0.00010
6.4960  1.00687  1.00680 0.00007
4.1455  1.00429  1.00433  -0.00004
2.6480  1.00265  1.00276  -0.00010
: -8 2 -8
CHK = 2,71052(108) B(zg - Z,)2 = 7.26473(107%)

-4 _ -6
Tz ~ 2] = 9.85699(107") (Zg = Zy) pyg = 3-24830(107°)
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TABLE

7

87.77% HELIUM AT -170°C

EXPERIMENTAL AND CALCULATED RESULTS FOR

Run #1: 1.563050 Z,/P, = 0.009346075

Run #2: N, = 1.563107 Z,/P, = 0.01135285
P(atm.) Z (Burnett) Z(virial) ZB - Zv Bi and o-Bi
123.774 1.15680  1.15682  -0.00002 B, = 8.63729

74.4737  1.08790  1.08786 0.00003 _ 0. 01699

46.0593  1.05162  1.05167  -0.00005 o =0.

28.9002  1.03135  1.03135  -0.00000

18.2763  1.01943  1.01940 0.00003 _

11.6094  1.01215  1.01215 0.00000 By = 234.6565
7.3951  1.00774  1.00767 0.00007 o = 4.4250
4.7181  1.00495  1.00486 0.00008
3.0126  1.00297  1.00309  -0.00012

98.7404  1.12099  1.12095 0.00003 B, = 5017.328

60.2636  1.06938  1.06939  -0.00001 0 = 263,225

37.5458  1.04139  1.04144  -0.00005

23.6512  1.02538  1.02538  -0.00000

14.9902  1.01583  1.01580 0.00003
9.5350  1.00999  1.00993 0.00006
6.0776  1.00627  1.00628  -0.00002
3.8791  1.00391  1.00399  -0.00009
2.4784  1.00261  1.00254 0.00006
3 -8 2 -8

CHK = 3.,98139(10 ) E(zB - zV) = 5,16134(10 °)
-4 _ -6
ElzB - zvl = 7.65070(10" ") (Zg = Zy)pyg = 2-26539(107")
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TABLE 8

EXPERIMENTAL AND CALCULATED RESULTS FOR
87.77% HELIUM AT -190°C

Run #1: N_ = 1.563012 Z/Py = 0.06014626
Run #2: N, = 1.563063 Z,/P, = 0.07192886
P(atm.) 7 (Burnett) Z(virial) ZB - Zv B, and oBi
16.8878 1.01574 1.01573 0.00000 B, = 6.17366
10.7427 1.00990 1.00991 ~-0.00000
6.8482 1.00624 1.00627 =-0.00003 o = 0.02394
4.3718 1.00403 1.00399 0.00005
2.7929 1.00253 1.00254 ~0.00001
14.0841 1.01305 1.01306 -0.00000 B, = 115.1844
8.9679 1.00824 1.00824 -0.00000
5.7202 1.00522 1.00523 -0.00001 o = 12.3884
3.6529 1.00338 1.00333 0.00005
2.3340 1.00209 1.00212 -0.00003
-9 2 -9
CHK = 9.00548(10 °) Z(zg - Z,)° = 7.42261(10 ")
_ -4 _ _ -7
ElzB zvl = 2.05060 (10" ") (25 - Z),on = 9.57850(10° )
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TABLE 9

EXPERIMENTAL AND CALCULATED RESULTS FOR
75.29% HELIUM AT -160°C

Run #1: N_ = 1.563068 Zo/Py = 0.008893446
Run #2: N_ = 1.563026 Zo/Pp = 0.01106194
P(atm.) Z (Burnett) Z(Virial) ZB - ZV Bi and oBi
124.032 1.10307 1.10306 0.00001 B, = 2.84500
75.4285 1.04849 1.04854 -0.00004
47.1561 1.02455 1.02453 0.00001 o = 0.01260
29.8361 1.01321 1.01318 0.00003
18.9798 1.00744 1.00745 -0.00001
12.1058 1.00437 1.00437 -0.00000 By = 394.2572
7.7315 1.00262 1.00264 -0.00002
4.9414 1.00161 1.00162 -0.00001 ¢ = 3.4149
3.1595 1.00103 1.00101 0.00002
96.7873 1.07066 1.07068 ~0.00002 B, = 6070.033
59.8381 1.03457 1.03449 0.00008
37.6702 1.01796 1.01799 ~0.00003 ¢ = 211.771
23.9100 1.00988 1.00992 -0.00004
15.2348 1.00574 1.00572 0.00002
9.7243 1.00338 1.00341 -0.00003
6.2131 1.00203 1.00208 -0.00005
3.9725 1.00138 1.00129 0.00009
2.5400 1.00078 1.00081 -0.00002
o -8 2 -8
CHK = 2.63382(10 °) L(zg = Z,)° = 2.49561(10 ")
_ -4 _ _ -7
zlzB zvl = 5.33962(10 ") (g - Z,) g = - 7-69060(107")
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TABLE 10
EXPERIMENTAL AND CALCULATED RESULTS FOR
75.29% HELIUM AT -170°C
Run #1: N_ = 1.562824 zo/p0 = 0.02010412
Run #2: ~ N_ = 1.562812 zo/p0 = 0.02536875

P(atm.) Z (Burnett) z(vVirial) ZB - Z_v, Bi and O'Bi
50.7032 1.01934 1.01935 -0.00001 B, = 1.09346
32.1076 1.00877 1.00877 -0.00000

20.4557 1.00438 1.00437 0.000N0,1L o = 0.02601
13.0628 1.00236 1.00235 0.00001

8. 3500 1.00133 1.00134 -0.00001

5.3402 1.00083 1.00079 0.00004 By = 249.0742

3.4158 1.00046 1.00048 -0.00002 o = 14.4485
39.9181 1.01267 1.01265 0.00002 B, = 21312.08
25,3756 1.00603 1.00603 -0.00000

16.1897 1.00307 1.00314 -0.00006 o = 1838.27
10. 3455 1.00173 1.00174 -0.00002

6.6158 1.00111 1.00102 0.00009

4.2312 1.00062 1.00061 0.00001

2.7067 1.00035 1.00038 -0.00003

-8 2 -8

CHK = 1.42202(10 ) T(zg - 2Z,)° = 1.71704(10 )

Tz - z,| = 3.34930(10°%) (2, - z.),.. = 1.57774(10"°)

B v : B vV’ AVE :
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TABLE 11
EXPERIMENTAL AND CALCULATED RESULTS FOR
75.29% HELIUM AT -190°C
Run #1: = 1.563541 ZO/PO = 0.1287187
Run #2: = 1.563426 zO/P0 = 0.1563508
P(atm.) Z(Burnett) Z(virial) ZB - ZV Bi and GBi
7.7087 0.99226 0.99228 -0.00000 B, = -6.79800
4,9443 0.99506 0.99504 0.00001 o = 0.02297
3.1680 0.99688 0.99682 0.00004
2.0283 0.99791 0.99796 -0.00007
6.3554 0.99367 0.99363 0.00004
4,0741 0.99587 0.99591 -0.00005
2,6097 0.99735 0.99738 ~0.,00004
1.6709 0.99835 0.99832 0.00001
; -8 2 -8
CHK = 1,04443(10° ") T(zg - Zy)° = 1.32131(10 °)
_ -4 _ _ -6
x|z, - zvl = 2,81047(10° %) (z Zy) qyg = ~6.75678(107")
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TABLE 12

EXPERIMENTAL AND CALCULATED RESULTS FOR

44 ,56% HELIUM AT -160°C
Run #1: = 1.563421 Z,/Py = 0.02118666
Run #2: N, = 1,563331 Zy/Py = 0.02607363
P(atm.) Z (Burnett) Z(virial) ZB - ZV and Op
i

40,9855 0.86834 0.86834 0.00000 = -32,2801
27,4286 0.90851 0.90853 ~0.00001

18,1222 0.93844 0.93844 0.00000 = 0.0231
11.8502 0.95938 0.95935 0.00003

7.6910 0.97347 0.97347 -0,00001

4,9664 0.98276 0.98282 -0.00005 = 1312.275

3.1966 0.98895 0.98892 0.00003

= 14,884

34,0672 0.88826 0.88826 ~-0.00000

22,6603 0.92365 0.92366 -0.00001

14,8956 0.94917 0.94913 0.00004 = -11209.61

9,7034 0.96662 0.96662 0.00000

6.2815 0.97824 0.97830 -0.00005 = 2192.50

4,0498 0.98597 0.98598 -0,00000

2,6037 0.99099 0.99097 0.00002
CHK = 9.76740(107%) T(Z, - 2,2 = 1.00644(1078)

-4

zlzB - 2.69523(107 ) - Zy) pvg = _1.06449 (10~)
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TABLE 13

EXPERIMENTAIL AND CALCULATED RESULTS FOR
44 ,56% HELIUM AT -170°C

Run #1: N, = 1.563044 Z,/Py = 0.05475752
Run #2: N, = 1.563177 2,/P, = 0.06581494
P(atm.) Z(Burnett) Z(virial) ZB - ZV Bi and cBi
16.7706 0.91831  0.91832  -0.00000 B, = -40.5956
11.0577 0.94640  0.94638 0.00002
o = 0.0374
7.2143 0.96510  0.96514  -0.00004
4.6747 0.97747  0.97747  -0.00000
3.0154 0.98551  0.98549 0.00002 B, = 1268.757
14,1492 0.93123  0.93121 0.00001 o = 21.898
9.2827 0.95500  0.95505  -0.00006
6.0376 0.97095  0.97086 0.00008
3,9030 0.98117  0.98120  -0.00003
2.5141 0.98792  0.98791 0.00001
CHK = 2.12021(1078) (zg - zv)2 = 1.42277(10°%)
_ -4 _ -6
zlzB - 2z,|= 2.78437(1077) (Zg = Zy) pyp = 1.44322(107°)
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TABLE 14

EXPERIMENTAL AND CALCULATED RESULTS FOR
30.13% HELIUM AT ~160°C

Run #1: N, = 1.563346 zO/P0 = 0.02985032
Run #2: N, = 1.563378 Zo/P, = 0.03673658
P(atm.) Z (Burnett) Z(virial) Z]3 - Zv Bi and oBi
27.3917 0.81765  0.81763 0.00002 B, = -56.7904
18.8174 0.87812  0.87815  -0.00002
12.6102 0.91996  0.91993 0.00003 ¢ = 0.0163
8.3109 0.94786  0.94791  -0.00005
5.4198 0.96634  0.96633 0.00002 B, = 1730.987
3.5098 0.97833  0.97831 0.00001 . = 5.752
23,0927 0.84835  0.84838  -0.00003
15.6634 0.89958  0.89959  —0.00000
10.4071 0.93443  0.93437 0.00006
6.8209 0.95744  0.95744 0.00000
4.4316 0.97253  0.97254  -0.00002
2.8633 0.98234  0.98234  =0.00000
CHK = 1.29216(10”%) (2 - zv)2 = 9.92392(107?)
Dlzg - z,| = 2.74673(107%) - Z,) g = 7.04968(1077)
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TABLE 15

EXPERIMENTAL AND CALCULATED RESULTS FOR
30.13% HELIUM AT -170°c

Run #1: N_ = 1.563851 Zo/Py, = 0.06738365
Run #2: N, = 1.563683 zO/P0 = 0.08590859
P(atm.) Z (Burnett) Z(Virial) ZB - ZV Bi and oBi
13.0882 0.88193 0.88197 -0.00004 B, = - 70.7607
8.7605 0.92316 0.92313 0.00003 o = 0.0592
5.7665 0.95028 0.95028 0.00001
3.7563 0.96804 0.96797 0.00007
2.4301 0.97936 0.97943 -0.00007
10.5516 0.90647 0.90640 0.00007 B, = 1964.419
6.9918 0.93923 0.93928 -0.00006 ¢ = 43.120
4.5740 0.96078 0.96082 ~-0.00004
2.9678 0.97477 0.97480 ~0.00003
1.9156 0.98387 0.98383 0.00004
-8 2 -8
CHK = 2.29415(10 ) T(Zp - Z,)° = 2.34610(10 )
Zlz, - 2., = 4 39718(10"4) (2, - Z) =-2 08017(10_6)
B v . B v’/ AVE ‘-
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TABLE 16

EXPERIMENTAL AND CALCULATED RESULTS FOR
100.00% NITROGEN AT -160°C

Run #1: N, = 1.562652 Z,/Py = 0.04319787
Run #2: N, = 1.562557 Z,/Py, = 0.05351136
P(atm.) Z (Burnett) Z(virial) ZB - Zv Bi and aBi
16.3509 0.70632 0.70640 -0.00008 B, = -121,2347
11.9727 0.80819 0.80808 0.00010
o = 0.2865
8.3061 0.87615 0.87630 -0.00015
5.5856 0.92068 0.92068 -0.00000
3.6860 0.94942 0.94923 0.00019 B, = -822.6764
14,2036 0.76006 0.75991 0.00015 o = 368.8199
10.0974 0.84428 0.84437 -0.00009
6.8866 0.89974 0.90000 -0.00026
4,5850 0.93601 0.93594 0.00007 B, = 889607.3
3.0072 0.95926 0.95901 0.00025 ¢ = 108823.3
CHK = 2.45417(10") Bz - Zv)2 = 2.46099(10)
_ -3 _ -5
|z, - z,| = 1.35995(1077) (Zg = Zy) pyg = 1.98216(107°)
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TABLE 17

EXPERIMENTAL AND CALCULATED RESULTS FOR
100.00% NITROGEN AT -170°C

Run #1: 1.564732 Z,/Po = 0.08969387
Run #2: N, = 1.565250 Z,/Po = 0.1104292
P(atm.) Z (Burnett) Z(virial) ZB - Zv Bi and cBi
8.9413 0.80198 0.80213 -0.00016 B, = -161.8303
6.2034 '0.87068 0.87002 0.00066
: o = 0.6012
4.1691 0.91554 0.91549 0.00005
2.7497 0.94483 0.94540 -0.00057
B, = 8817.199
7.5775 0.83677 0.83695 ~0.00018
5,1707 0.89375 0.89350 0.00025 ¢ = 574.498
3,4407 0.93087 0.93101 -0.00014
2,2556 0.95519 0.95554 -0.00035
CHK = 1.06099(10™°) - zv)2 = 1.02325(10°9)
_ -3 _ -5
T|zg - z,| = 2.35647(1077) ~ Zy) pyp = ~5.44492(107°)
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Another listed quantity of interest is the discrepancy be-
tween Z (Burnett) and z(Virial). It should be noted that
the values for these discrepancies were calculated with
more precision than reported for Z(Burnett) and Z(Virial)
and quite often the difference in the reported compressi-
bilities does not seem to equal the reported discrepancy.
This is entirely 'a consequence of rounding-off the compres-
sibility values. The last column contains the optimal virial
coefficients and the standard deviation for each one.

Finally four quantities are listed which should offer
some insight into the confidence with which the results may
be viewed. They are the optimal value of the CHK function
defined by Equation 113, the sum of the squares of the dis-
crepancies between Z(Burnett) and Z(Virial), the average
discrepancy and the sum of the absolute values of these dis-
crepancies.

Appendix C contains a discussion of the expected
experimental errors. The random error should be reduced to
a negligible amount for all sets of data, but the maximum
systematic error expected ranges from 0.55% for pure nitrogen
at -160°C to 0.04% for helium rich mixtures at low pressure.
The actual error would be much less than these maximum values.

The "goodness of fit" may be inferred from the CHK
value. This quantity is a fair indication of the agreement
between observed and calculated values for Pj/Pj—l and with

the exception of 100% N, at -170% is always less than
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5.5(10'8

). The large value for this isotherm is a conse-
quence of the fact that there simply are not enough data

points to treat properly.

Interaction Virial Coefficients
Interaction second coefficients have been calculated
from the mixture values. The equations relating mixture, in-

teraction and pure component virial coefficients are

to
I
™MN
M

Bij Xixj (115)
1

i=1 j

The coefficient BHe_N2 can be found by applying the devel-
opment of Chapter IV. The pure component coefficients may
be inserted or calculated for comparison. The compositions
are required and accuracy here is critical.

The U.S. Bureau of Mines supplied a mass spectrom-
eter composition analysis with the samples. These values
were checked by a molecular weight determination in this
laboratory using a method similar to that described by
Canfield [6]. The two sets of values are presented in
Table 18 along with the composition of the mixtures used
by Canfield, Finally the interaction second virial co-

efficients are presented for the -170°C and -160°C iso-

therms in Table 19.
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TABLE 18

HELIUM-NITROGEN MIXTURE COMPOSITIONS

—— ]

canfield [6] U.S. Bureau of Mines Molecular Weight
87.68 87.60 87.77
75.23 75.20 75.29
44 .56 44 .50 44.56
30.06 30.11 30.13

All entries are mole per cent helium

TABLE 19

HELIUM-NITROGEN INTERACTION VIRIAL COEFFICIENTS

T PHe-N,
-160°¢c 11.26
-170°C 10.94

Second virial coefficient in cc/mol



CHAPTER VII
RESULTS AND CONCLUSIONS

A Burnett apparatus was available at the University
of Oklahoma for very accurate determination of the compres-
sibility factors of gases. As previously assembled, the
equipment was operable to 700 atmospheres between 50°C and
-90°¢.

A major modification of the temperature bath ex-
tended the range of applicability to -190°C and 700 atmos-
pheres. The temperature control was +0.005°C across the
Burnett apparatus in the new configuration. A technigue
was also developed which allowed use of valves completely
immersed in the cryostat.

The helium-nitrogen system was studied at -160°¢,
-170°c and -190°C at maximum pressures ranging from near
saturation for nitrogen bearing mixtures to 700 atmospheres
for helium. The compressibility factors derived from the
observed data should exhibit maximum errors ranging from
0.55% for nitrogen to 0.04% for helium.

An extensive study of polynomial approximations
for infinite series vielded a scheme for assigning real-

istic variances to the polynomial coefficients as compared

84
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with the series coefficients. This allowed choice of op-
timal virial coefficients from the experimental compres-
sibility data.

Finally, an optimum search routine was developed
to reduce the Burnett data to compressibility factors.
This was essentially a problem in non-linear curve fitting.
The results were very gratifying and seem to indicate that
more accurate information could be extracted from the data

in this manner than was possible with earlier techniques.



LITERATURE CITED
l. Barieau, R. E. and B. J. Dalton, personal communication
with R. E. Barieau.

2. Blancett, A. L., Ph.D. Thesis, University of Oklahoma,
Norman, Oklahoma (1966).

3. Boas, A. H., Chemical Engineering, March 4 (1963), 97.

4. Burnett, E. S., J. Applied Mech., Trans. A.S.M.E., 58,
Al36 (1936).

5. Burroughs B5500 Extended Algol Reference Manual.

6. Canfield, F. B., Ph.D. Thesis, Rice University, Houston,
Texas (1962).

7. Canfield, F. B. et al., J. Chem. Engr. Data, 10, 92
(1965) .

8. Canfield, F. B. et al., Rev. Sci. Inst., 34, 143l
(1963).

9. Cook, G. A., (ed.), Argon, Helium and the Rare Gases,
Vol. I, Interscience Publishers, New York (1961).

10. Duclaux, J., J. Chem. Phys., 59, 987 (1962).

11. Hall, K. R. and F. B. Canfield, Physica, in press.

12. Hilsenrath, J. and M. Klein, U.S. Dept. Comm. Tech.
Serv., 432, 210 (1964).

13. Hoover, A. E., Ph.D. Thesis, Rice University, Houston,
Texas (1965).

14. Hoover, A. E. et al., J. Chem. Engr. Data, 9, 568 (1964).

15. I.B.M. General Information Manual, FORTRAN.

16. Jones, W. B. and R. M. Gallet, The Telecommunications
Journal, No. 5, 3 (May 1962).

86



17.

18.

19.

20.
21.

22.

23.

24.

25,

26.
27.

28.

29.

30.

87

Kendall, M. G., The Advanced Theorv of Statistics,
Vol. II, Hafner Publ. Co., New York (1951).

Kielich, S., Physica, 28, 511 (1962).

Little, W. J. and C. A. Neel, U. S. Dept. Comm. Of€f.
Tech. Serv., 283, 441 (1962).

Mann, D. B., Nat. Bur. Stds. Tech. Note, No. 154 (1962).

Michels, A. et al., Physica, 26, 381 (1960).

Miller, J. E. et al., U. S. Bu. M. Rept. Invest., No.
5845 (1961).

Mueller, W. H., Ph.D. Thesis, Rice University, Houston,
Texas (1959).

Pfefferle, W. C., Ph.D. Thesis, University of Pennsyl-
vania, Philadelphia, Pennsylvania (1954).

Pfenning, D. B., M. S. Thesis, University of Oklahoma,
Norman, Oklahoma (1963).

Sewell, K. G. NASA Doc., N63-15069 (1962).

Silberberg, W. G., et _al., J. Chem. Engr. Data, 4,
No. 4, 314 (October 1959).

Strobridge, T. R., Nat. Bu. Stds. Tech. Notes, No.
129A (1963).

Wilde, D. J., Optimum Seeking Methods, Prentice-Hall
Englewood Cliffs, N. J. (1964).

Witonsky, R. J. and J. G. Miller, J. Am. Chem. Soc.,
85, 282 (1963).




APPENDIX A

SOME SPECIFIC INFORMATION CONCERNING THE EQUIPMENT

The following information was not considered vital
to the main body of discussion, but it should prove useful
to anyone working with this particular apparatus in the
future and to anyone working with a similar piece of equip-
ment. These specifics can be logically presented under the
general headings of temperature measurement and pressure

measurement.

Temperature Measurement

The Callendar-Van Dusen equation was used to relate
the resistance of the thermometers to the absolute tempera-

ture above -182.97°C. The equation is

T 0 2 8

R, = R +O£R0[(l+al‘1'- 64 72 +—i6'r3 -—*B——T4] (A-1)
10 10 10 10

where RT is the resistance at TOC, R0 is the resistance in
ohms at 0°C and o, B and 6 are calibration constants. The
values of these quantities are

Thermometer #1617523

Date of Calibration: May 17, 1963
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Range: 444.6°C to -182.97°%

@ = 0.0039266
B = 0.110,, (below 0°¢)
6 = 1.491,,

R, (May 30, 1966) = 25.5512 Q (ice point)

Thermometer #1665930
Range: 444.6°C to -261.15°¢C

Date of Calibration: March 9, 1966

@ = 0.003926145
B = 0.11054 (below 0°C)
6§ = 1.49154

RO (May 30, 1966) = 25.5331 Q (ice point)

Only #1665930 was used to measure the temperature below
-182.97°C. Because the Callendar-Van Dusen equation does
not hold in this region, the point-by-point calibration
supplied by the National Bureau of Standards was employed
to relate the resistance to temperat;re.

The G—-2 Mueller bridge was set up with equal ratio
arms to insure that the true resistance of the thermometers
would be the averages of normal and reverse readings. As
an added precaution the resistance of the thermometer leads
was equalized within a few ten-thousands of an ohm to render

any imperfection in the adjustment of the ratio arms negli-

gible.
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Pressure Measurement

The elements involved in pressure measurement are
the dead-weight gages, the weights and the differential
pressure indicators. Some particulars should be mentioned
for each item.

Ruska Instrument Corporation provides a list of in-
strument constants with each dead-weight gage. These con-

stants are (for the gages in this laboratory)

High Pressure Low Pressure
Gage Gage
Effective Area at 5
25°c and 1 atm, in. 0.0260430 0.130220
Coefficient of Superficial -5 -5
Thermal Expansion, (°c)”1 1.7 x 10 1.7 x 10
Fraction Change of Area
per Unit Pressure Change, -8 -8
(psi)~1 -3.6 x 10 -4.8 x 10
Resolution < 5 PPM < 5 PPM
Plane of Reference 0.04 in. below 0.10 in. below
line on sleeve line on sleeve
weight weilght

The weights furnished by the manufacturer were pre-
cisely machined stainless steel masses which were calibrated
against a set of Class S standards. The results of this
calibration are given in Table A-1l. In addition, a set of
Class C standard weights up to 500 mg were used for fine
balancing.

The manufacturer's specifications for accuracy and

sensitivity of the differential pressure indicators are:
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Accuracy: *1-1/2 scale divisions at null

Sensitivity: 0.0001 psi/scale division, maximum
Blancett measured the sensitivity of the indicators in situ
and found that the room temperature indicator exhibited
0.00005 psi/division while at ~183°C the cryogenic indicator
exhibited 0.0004 psi/division. These values were not re-
measured and his results were taken as indicative of the

behavior under the conditions experienced in this work.

TABLE A-1
CALIBRATION DATA FOR WEIGHTS

Letter Designation Apparent Mass vs.
Brass, Pounds

26.03576
26.03564
26.03567
26.03569
26.03575
26.03500
26.03511
26.03504
26.03513
26.03543
26.03552
13.01812
5.20716
5.20718
2.60351
1.30167
0.52073
0.52075
0.26034
0.13018
0.05207
0.05206
0.02603
0.01302
0.00521
0.00521
0.00260
0.00130
Tare 0.78104
Tare Low 0.78107

a3
[_l.
gOWWWMS<GHmWOMOZSbNQHmmmmuow>
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The zero shift of the indicators (described in
Chapter JII) has a bearing on the values of the constants
ki and m, in Equations 8 and 9. These constants were de-
rived taking into account the pressure deformation of the
Burnett cells, the cryogenic valves, the magnetic pump,
the connecting tubing and the cryogenic differential pres-
sure cell. However, another factor had to be considered--
the fact that a zero shift indicated that the position of
the diaphram in the differential pressure cell was a func-
tion of pressure at the electronic null and would therefore
contribute to the pressure effect on the cell constant (see
Figure 6). When all these factors are combined the follow-
ing results were obtained (see Blancett for detailed an-

alysis):



TABLE A-2

CONSTANTS FOR PRESSURE EFFECT ON THE CELL CONSTANT

°C Ky k, K, K, kg ke
-160.00 1.0 1.25(10°%) -6.56(10"%) =2.03(10 Yy -2.87(10”*)  1.48(07Y")
-170.00 1.0 1.19(10"% -6.10(107%) 1.s6(10™') -2.60(107'%) 1.32(107%7)
-180.00 1.0 1.16(10°°%) -5.86(10"%) 1.78(10" 1) -2.a7(10™)  1.26(107%7)
-190.00 1.0 1.15(10°% -5.32(107%) 1.57(107y -2.15(107%% 1.09(10'17)

TOC ml m2 m3 m‘1~ m5 m6
-160.00 1.0 1.67(10'6) ~9.81(107 %) 3.04 (10”11 —a.20000° %) 2.2100071)
-170.00 1.0 1.60(10"% -9.12(107%) 2.79@0"!l) -3.80(1071%) 2.01(107Y7)
-180.00 1.0 1.54(10°%) -8.76(10°°) 2.66(10" ') -3.e9(10°%) 1.88(107%7)
-190.00 1.0 1.46(10°% -7.96(107%) 2.35(1071h —3.22(10'14) 1.63(10‘17)

€6



APPENDIX B
EXPERIMENTAL PROCEDURE AND PROBLEMS

The experimental procedure is designed to be as con-
sistent as possikle with the Burnett analysis. 1In particular,
a constant temperature is sought for the period before an ex-
pansion and after re-equilibration. Also the amount of gas
in vy before an expansion should be equal to the amount in
v, and vy, after the expansion (i.e., no leaks). Finally,
the amount of gas in Va should be the same before and after

closing the expansion valve during a measurement.

Pre-charging Procedure

In the most general case, the apparatus had to be
brought from ambient temperature and pressure containing
air to the experimental temperature and pressure containing
the desired mixture. This alteration proceeded in the fol-
lowing manner.

The room-temperature differential pressure indicator
was zeroed. Then the vacuum pump was turned ON and the
liguid-nitrogen transfer line and the phase separator were
evacuated to 10y Hg. These were then closed off and the
rest of the system (except for that section used exclusively

94
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in charging) was opened to tﬁe pump. A pressure of three to
four psi was then applied to the liquid-nitrogen transfer
dewar which caused the nitrogen to flow via the phase sepa-
rator into the cryostat. The thermotrol was adjusted to the
appropriate setting for the desired temperature and the con-
trol heater was set to pulse at 25-30 watts with about 1/4
ON time. The liquid-nitrogen metering valve was opened
several turns and cool-down was under way.

The bath would reach any of the experimental tem-
peratures (—1600, —l70°, and —190°C) in about three hours.
Thie apparatus within the cryostat equilibrated much slower,
however, requiring from eight hours at -160°C to twelve
hours at -190°c. During this period the system pressure
would easily reach 54 Hg, and the charging system, in-
cluding the compressor, could be purged repeatedly (mini-
mally three times at lOd‘atm and 3 times at 10 atm) with
the desired mixture.

When the temperature was within a few tenths of a
degree of the desired value, an adjustment had to be made
on the circuitry of the cryogenic differential pressure in-
dicator while the system was at low pressure. This was
necessary because temperature had a very strong effect upon
the operating characteristics of this instrument. The ad-
justment was made on a "trim pot" inside the indicator with
a corresponding change of the zero control until a minimum

deflection of the indicator needle occurred about the null
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position when the sensitivity control was rotated through
its full range. When this was done the maximum variation in
null position was specified by the manufacturer as *1-1/2
scale divisions. This adjustment caused a severe upset in
the behavior of the indicator which usually required from
30 min. to several hours to stabilize. When the spasmodic
lurching of the indicator needle ceased, the sensitivity
knob was again rotated through its full range to check the
behavior. If necessary the adjustment was repeated until
the indicator exhibited the desired properties (usually the
secondary adjustments caused very little upset to the cir-
cuitry and it stabilized quickly). With the pressure in-
dicator operating properly, the temperature controller was
adjusted, if necessary, to bring the temperature within

+0.004°C of the desired value.

Purging and Charging the System

The entire system was purged three times using the
following procedure. First the cold trap (consisting of
pure alcohol) was frozen by passing liquid nitrogen through
the cooling coil. Then about 10 atm of the desired gas was
bled into the system. This was done very slowly while simul-
taneously adjusting the piston gage hand pumps to avoid over-
pressuring the differential pressure indicators. This gas
was then vented at various points and the entire system was
evacuated to 1lOg Hg. The cryogenic differential pressure
indicator was zeroed at the desired temperature and 1Oy Hg,

and the system was ready to charge.



97

A sufficient number of weights was loaded upon the
proper piston gage and the pressure was slowly brought up to
the desired initial value. Again the hand pumps were adjusted
to avoid overpressuring the pressure indicators. If cylinder
pressure was not enough, the compressor was used to attain
the required pressure. However, in the event the compressor
was turned on, the charge and feed valves were only slightly
opened and acted as snubbers for the pressure surges. The
gas was then allowed to soak until it equilibrated at the

desired temperature.

Measurements and Expansions

When the temperature remained constant at the desired
value, the cells were isolated and a 54 Hg vacuum was pulled
on the rest of the system. The pressure was then monitored
and equilibrium was assumed when it remained constant for
10~-15 min. The facts that the pressure remained constant
and the vacuum held at 5y Hg were taken to indicate that the
system was leak tight. At this point one of the expansion
valves connecting the two cells was closed and the other
necked down until it was only 1/8 turn open. (For the ini-
tial measurement both valves were closed because only the
upper cell, Va, contained any gas.) The pressure was very
carefully measured at this point by nulling both differential
pressure indicators simultaneously while the weights were

floating at the proper level on the piston gage.
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| As soon as the nulling operation was complete, the
cracked expansion valve was closed tight while the weights
and indicator needles were balanced. This was done to pro-
portion the gas properly between the two cells. Next the
barometric pressure was recorded followed by the system tem-
perature. Finally, the weights on the gage were recorded
and double checked and the temperatures at the gage and in
the room were noted.

Up to this point, the operation was usually trouble-
free, barring freak accidents and operator bungling. How-
ever, when an expansion was made several undesirable things
could (and often did) happen.

An expansion was effected by venting the lower cell,
Vi, (as slowly as practical to avoid undue upset of the equi-
librium temperature). Then a 54 Hg vacuum was pulled on
this cell--this required 20-30 min. depending upon composi-
tion and pressure. This waiting period did serve to allow
the temperature to return to the equilibrium value after the
venting. When the evacuation was complete, the cell was iso-
lated and one of the expansion valves was cracked to allow
the gas to fill the lower cell. This was done as slowly as
possible to avoid large temperature upsets and possible con-
densation of some of the mixtures. While the expansion was
in progress, the differential pressure indicators were main-
tained in an approximately nulled position to avoid large

overpressures. This was a rather touchy manipulation
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requiring simultaneous adjustment of the hand pump in the oil
system, venting of the intermediate gas system and several
adjustments of the expansion valve to maintain a reasonably
constant decrease in pressure. A pitfall in this operation
was operating too quickly. If the expansion were rapid,
there was a good chance that the intermediate gas would be
vented fast enough to cause an overpressure from the bottom
in the differential pressure cells--precisely the effect
which was to be avoided.

At this point the system was again allowed to csoak,
and presumably would return to the set temperature. This
was seldom the case. Usually, 2-4 hours were required for
the temperature to equilibrate and, usually, the value was
on the order of #0.02°C different from the set temperature.
This required an adjustment of the thermotrol after each
expansion and necessitated an additional 30-45 min. wait
for the desired equilibrium temperature.

A run was finished when the system pressure dropped
below 2.0 atm. When this occurred the remaining pressure
was vented and the zeroes on the differential pressure in-
dicators checked. 1If necessary, they were re-zeroed before
starting another run.

Some mechanical difficulties were noticed (possibly
the understatement of this whole report) regarding the fan
assembly and the cryogenic valves. Although the low tem-

perature bearing was specified usable down to the boiling
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point of nitrogen, it seemed to deteriorate quite rapidly at
-190°c. While this could have been because of improper
mounting (the bearings will only support a small axial load-
ing, for example) it seemed to behave quite well at -160°¢
and slightly less well at -i?OOC. Extreme care should be
used when mounting this bearing in future work to remove this
variable in its operation.

The cryogenic valves also had to be mounted carefully.
If they were not very nearly vertical and aligned very well
with the stem extension, there was a good chance the stem
would break in use. -Furthermore, when shipped the threads
and two-piece stem assembly were lubricated with MoS2 grease.
This had to be completely removed and replaced with dry M082
to avoid freezing. The threads could be cleaned by washing
directly with benzene and acetone, but it was more satis-
factory to heat the two-piece stem assembly over a low flame
prior to washing with the solvents. This caused the grease
to flow out of a quite restricted volume and allowed its
complete removal.

It was also noticed that these valve stem threads
tended to gall after extended use. This could be minimized
by carefully rounding the leading edge of the threads on the
stem followed by working them in with Mos , powder. A very
good bond of MoS., could be obtained with about 30 min. work

2
and might save several hours by prolonging the valve life.
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When the valves were first assembled, it was felt
that the tip should be highly polished and worked in with
MoS2 before a satisfactory seal could be effected. 1In ret-

rospect this does not seem to have made any real difference.



APPENDIX C
ERRORS

The errors inherent in a Burnett-type experiment are
those associated with the measurement of temperature and pres-
sure and those arising from inconsistencies between the ex-
perimental procedure and the analysis.

The measurement errors are those intrinsic to the
instruments used and human error in their implementation.

The inconsistencies are caused by incomplete evacuation of
the lower cell before an expansion, temperature variation
during a run and incorrect proportioning of the gas between
the two cells.

Mueller [23], canfield [6] and Blancett [2] have
thoroughly discussed these factors and their developments
will not be repeated here. However, the final equations used
should be noted for the sake of consistency.

The above aufhors have shown that incomplete evacua-
tion of the lower cell introduces negligible error and that
the error due to incorrect proportioning can be included in
the values for the Burnett constants. The effect of tem-
perature and pressure uncertainties are reflected in the error

defined by
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NIAP. + jP.NJ_lAN - z.A(Po/zo)
824 w~ 3 J J + (3z/3T), 8T (c-1)
Po/z0
where it has been assumed that Nl = N2 = ,.,. = Nj and that

differentials may be replaced by & quantities defined as
"true less calculated" values. It should be noted that this
equation is simpler than that used by the previous authors
although it is based upon their reasoning. The simplifica-
tion was made possible because good estimates for AN and
A(PO/ZO) are readily available from the searching procedure
of the computer program presently used in the data treatment.
The A quantities may be taken as the difference in two suc-
cessive values of the constants as the minimum is approached.
The maximum error caused by a temperature variation of £0.005
during the experimental runs was 0.012% at -190°C, 0.010% at

-170°C and 0.009% at -160°C. The quantity P is given by

4

APj = (Pj x 10 "+ 3 x 10—4)atm (c-2)

The value of AT is always 0.0l while AN = A(PO/Z =5x 10_6.

o)
The partial derivative of Z with T was estimated from the ex-
perimental data for each isocomp-isotherm. Thus the maximum
error is the sum of the value given by Equaticn C-2 and the
temperature variztion uncertainty.

Table C-1 is a list of the maximum errors for each
isocomp-isotherm. The error is entered as a percentage. The

actual error in the compressibility factors should be much

less than these maximum values.
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TABLE C-1

MAXIMUM EXPERIMENTAL ERRORS IN Z

Comp. Temp. (OC) P(atm.) AZ (%) P(atm.) AZ (%)
100% He -160 700 0.04 2 0.04
100% He -170 700 _. 0.04 3 0.04
100% He -190 700 0.05 2 0.04

88% He =160 220 0.17 3 0.04
88% He =170 125 0.11 3 0.04
88% He =190 9 0.04

75% He -160 125 0.22 3 0.04
75% He -170 50 0.11 3 0.03
75% He -190 4 0.03
45% He =160 40 0.17 3 0.06
45% He -170 9 0.05

30% He -160 16 0.53

30% He -170 7 0.27

0% He -160 8 0.55

0% He -170 5 0.39




APPENDIX D
COMPUTER PROGRAMS

The following computer programs were used in the
data treatment. The first program, PCALC, is written in
Fortran II [15] and calculates the corrected pressures
from the opservables. The second program, BURNOR is
written in extended ALGOL [5] and is the main data treat-
ment routine which reduces the corrected pressures to com-
pressibilit& factors, densities and virial coefficients.
The final program is a general calling program for the
ORNOR procedure of the data treatment program. This rou-
tine is written in ALGOL and produces a least-squares fit
of data based upon the methods of Chapter IV and was useful

in calculating interaction virial coefficients.
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COMMENT PCAILC PROGRAM

40KFORTRANRUN
DIMENSION PAL (30) yFMAL(30) 4 PAH(30) yFMAH{30),J(30)
READ 301, (FMAL(T)sPAL(L) FMAHUT) 4PAHIT)1=1,29)
301 FORMAT(4F12.6)
101 PRINT 777 L
777 FORMAT (1H1,20HPRESSURE CALCULATION)
READ 100, DELT4RRyFMNoRHUGO ) RHOGI g HCHB
READ 200, OPZSC» DELTA, KHL
100 FORMAT (Fll.645F12.6)
200 FURMAT(2FIle6,13)
PRINT_ 701
701 FORMAT(1X,/77/726H INPUT VALUES ARE AS FOLLOWS)
PRINT 702, DELT _
702  FORMAT(LX,13HDELTA TEMP = F12.6)
PRINT 703, RRy FMW
703 FORMAT(1Xy6HR=R = F12.6/1X¢ I9HMULECULAR MWEIGHT = F12.6)
PRINT__7044RHOGO + RHOGI

704 FURMAT(1X916HDENSITY SUB 0 = F1l2.6/7/1X316HDENSITY SUB I = F12.6)
PRINT TO5,HCHB
705 FORMAT(1X¢BHHC~HB = F1l2.6)
PRINT 706,0PZSCoDELTA
706 FURMAT{1X,8HDPZSC = F12.6/1X,8HDELTA = Fl2.6)
_ READ 1054 NefJIL)sL=14N)
105 FURMATII10410X,3012)

SUMA = 0.0 .
SUPA = l4.1
IFIKHL)51455,61

C SUM OF LOW PRESSURES AND WEIGHTS
51 DO6L =14 N
1 = J(0)
SUMA = SUMA & FMAL(I)
6 SUPA = SUPA & PAL{I}
60TO53
C SUM OF HIGH PRESSURES AND WEIGHTS
6l DO T L=1, N
1= 30
SUMA = SUMA & FMAH(I)
7 SUPA = SUPA & PAHIT)
GOTO 63 .
C PRINTING LUW PRESSURES AND WEIGHTS USED
53 DO 52 L = 1y N
1= (0
52 PRINT 800y PALULI) FMAL(I)
PRINT 801y SUPA s SUMA
GO Tn 76¢ .. . ot e
C PRINTING HIGH PRESSURES AND WEIGHTS USED
63, DD 62 L = iy N
1= J)
62  PRINT 800, PAH(L)}y FMAH{IL)
PRINT 80ly 'SUPA 4 SUMA
800  FORMAT(16XeF1le5928XsFLlle5)
801  FURMAT(1Xy15HSUM OF PRESS = F11.5,12X¢17HSUM OF WEIGHTS = Fll.5)
76  PB = 0.0333902%RR
DPZSR = 0.130E-06¥SUPA™
IF (KHL 150,554 60
55 PRINT 500 .
500 FORMAT(1X¢22HKHL VALUE 1S INCORRECT)
60 Tu 101
C CALCULATION OF PGy DPH FOR HIGH PRESSURE
60 PG=(2.61004% (SUMAGOELTAJ )/ ({1s06{14TE-05)*DELT)#(1.0-(3.6E-08)¥SUP™

1A))
DPH =(~0.00021 )&FMW*((~0+116)*RHOGOEHCHB*RHOGI )
60 TU 75

C CALCULATIUN QF PGy DPH FOR LUW PRESSURE
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75
802
707
708
709
710

400
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PG=00.521989% (SUMAGDELTA) )/l 1e0&11e7E-05)I#DELTI*(10—( 4o BE~08) *SU
1PA})

DPH =(-0.00057 )&FMW*{{-04116)*RHUGOGHCHB*RHOGI)

PCOR = PGLPBEDPHEDPISREDPLSC

PRINT 707

FURMAT{1X932HCALCULATED VALUES ARE AS FOLLOWS)

PRINT 708, PB

FORMAT(LXy22HBARUMETRIC PRESSURE = Fll.5)

PRINT 709, DPISR

FORMAT (1XyBHRDPZSR = Fll.5)

PRINT 710y PGy DPH

FURMAT(LX¢L6HGAGE PRESSURE = F11e5/1Xs11HDELTA PH = Fllu.b)
PRINT 400, PCOR

FORMAT(1Xy//22H CURRECTED PRESSURE = Fll.5)

GO Tu 101

END
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COMMENT BURNOR PROGRAM

00335 AM JUuLy 08, 1967 (Y2322 2222122212 DICK HALL
BEGIN
COMMENT THE PLOTTER PACKAGE IS NOT LISTED BUT GOES HERES
PROCEDURE DPOW(XsXLsoYsYLsK)3
VALUE XsXL»Kj
REAL XaXLoY»YL3
INTEGER K3
BEGIN
LABEL DHW3
INTEGER 13
Ye1,03 YL€0.05
If K<1 THEN GO TO OW ELSE
FOR el STEP 1 UNTIL K DO
DOUBLEC(X» XLoYsYLoXsesYoYL)}
DWs END OF DPOW3
PROCEDURE DSQRT(X1sXLsY1HsYLIL) 3

VALUE X1,XL 3

REAL XisXLsY1HsYIL 3
BEGIN

INTEGER T3

REAL XsY 3

REAL ARRAY CONCOs7) 3

LABEL L1>RETURN 3

IF X1 = O THEN GO TO Lt 3

CONCO) ¢ 0,0000026973988 3
CONE1) € 0,000001603883 3
CONL2) ¢ 0,0000076294 3
CONC4) ¢ 2,137099823 3
CON[3) ¢ 0,000004536465 3
CONL5) ¢ 1,270727023 3
CON[6) ¢ 7,555786822 3
CONL7) ¢ a.,482697822 3

X ¢ X X 1.0 3

Te03

T ¢ X,0812) 3
Toela531) ¢ Xol(281] 3
Y ¢ X 3
£316) ¢ Y, (236] 3
Y x CONLT) 3
(X/Y ¢ Y) x 04,5 3
(X/Y +Y) x 045 3
(X/Y ¢+ Y) x 0,5
Y € (X/Y ¢+ ¥Y) x 045 3
DOURLECX1sXL2Y500/5Y205%05045s%0Y50045¢,Y1HsYIL) 3
GO TO RETURN 3
L1 YiH ¢ YIL ¢ 0 3
RETURN? END3
REAL TaOMsTOML» HAM,HAML?
LABEL L603
REAL LOWDDXI»DBDUM;
INTEGER IXQ3 BOOLEAN ARRAY SLUN[03100)3
COMMENT PROGRAM 2003
DEFINEL FORNQ=FUR NQ ¢1,NQ+1 WHILE NQSZ2,
FORR=FOR RelsRe) WHILE RS#», FORIaFOR lelr]+l WHILE IS 2,
FORK=FOR KelroK+1 WHILE KS t 3
DEFINE FORIXQ = FOR [XQe¢ty STEP 1 UNTIL #3

Ye
Y
Y
Y
Y

* T
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INTEGER AMT»INU3 REAL RsEPSILONS
BEGIN
INTEGER 1,43
INTEGER ARRAY INDICESC0310013
FOR 1¢0 STEP 1§ UNTIL 100 DO SLON[IJeFALSES}
READCCR»/>» FOR 1¢0,1 STEP 1 WHILE INDICESCI=1)20 DO INDICESCI3)3
FOR 1¢0 STEP 1 WHILE (J€INDICESCI))20 DO SLON(JIe€TRUES
END;
READCCR» /» AMT,EPSILONsR)3 IND ¢ 13
L60s BEGIN
INTEGER NoM3
READCCR»/ZsNoM)}
SLONCS)¢TRUES
BEGIN
REAL TEMP, COMP3 INTEGER NQ,KsNNsNUMRUNSMINS
COMMENT IND =1+ NQ = LOWER CASE N3
ARRAY FLOSMsO8N)» Yo X[OSNIs ALOSM,08M1» BFFLOSIM)S3
ARRAY FLCOSMsOSNI,ALLOSM»O3M)»BFFLLOSMISXLLOIN]S
ARRAY TEMPXA»TEMPYA,TEMPX,TEMPY (OSN+1)}
ARRAY TEMPXB»TEMPXC» TEMPYB»TEMPYCLOIN+1])3
FORMAT FM1I5 ( /UFINAL FIT OF Z vS RHO"™)S
FORMAT FM310( /RYINIT/ ) FM12¢ JOXCNIT/ )3
PROCEDURE DRAWIT(X,Y,N1,N2)3 VALUE N1,N23 INTEGER N1,N2}
ARRAY X»Y[O01)
BEGIN
ARRAY XNAME,YNAMELO0:5)3
INTEGER IsN3
REAL YMIN,DY,XMIN»DX3
XNAME[O)e¢ "DENSIT"™3 XNAME[1le ™Y "3  YNAMELO)e "(2=1)V";
NeN1+N23
PLOTC(Os455=5)3
X{N+1J)¢0,03
IF ABS(YC1)=YIN] ) < 8=4 THEN BEGIN YMIN® ENTIERCY(1))=53
DYets SCALESCYsN» YMINsDY,»1) END ELSE
SCALECYsNsB,YMINSDY»1)3
SCALECXsN+1,8,XMIN»DX»1)3
AXISC0»0s XNAME»=75850s XMINsDX)3
AXISC0,0,YNAME» 628590, YMINSDY)S
FOR I¢1 STEP 1 UNTIL N1 DO SYMBOL(XCI)sYC(IJ)seO8sXNAMESO,s=5)3
FOR I¢N STEP =1 WHILE I>N1 00 SYMBOLCXCLIJI»Y[I)seO08sXNAME»O,=9)3
PLOTC(319%e55=3)3
END OF DRAWITS

COMMENT PROCEDURES URNOR,INVERT PERMUTE AND CALFY,
OR THEIR EQUIVALENTS INSERTED HERE;
PROCEDURE INVERSE(NsASEPS»SINGULAR)ZVALUE NsEPS3INTEGER NJREAL EPSIREAL
ARRAY A[0,0)7LABEL SINGULARIBEGIN INTEGER I,JsKsIIsN1»K2,L3REAL BIG,»TEMP
»DIAG, Q5 INTEGER ARRAY FUOINIJLABEL 12,13514,15,16s5K33123F0R I¢1STEP 1UN
TIL N DO BEGIN 1leI=13FUR JeI STEP 1UNTIL N DO BEGIN QeU3FOR K¢1STEP 1UN
TIL I1 00 QeALJr»KIxXALK»11+Q3ALU»1)€ALU»1)=Q ENDIBIGCOSK2¢ISI33FOR Ke] ST
EP 1UNTIL N OO BEGIN IF ABSCALK»11)>BIG THEN BEGIN BIGeABS(ALKsI))SK2¢K
END END3IF BIGSEPS THEN GO TO SINGULARZFLI)e¢K23IF K2#I THEN T43FOR KeiST
EP 1UNTIL N DO BEGIN TEMP¢ALI,KISALI,KJ€ALK2,K13ALK2,)KI€¢TEMP ENDSDIAGEAL
1,113FOR JeI+1STEP {UNTIL N DO BEGIN Q¢O3FOR Ke¢1STEP 1UNTIL II 0O Qe¢All,
KIXACK»JI+UW3ALI»J]e(ALI»JI=Q)/DIAG END ENDSISIFOR I¢1STEP 1UNTIL N DO BE
GIN I1¢I=15DIAGCALI»I)IFOR J€ISTEP 1UNTIL I DO BEGIN IF I=J THEN A(I»Jle
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1/01AG ELSE BEGIN Q¢03FOR KeJ STEP IUNTIL II DO QFALI»KIxA[K»JI+Q3AL1,J]
¢=Q/D1AG END END ENDIN1¢N=13FOR ITeN1 STEP=1UNTIL 100 BEGIN 1I1¢I+13FOR J¢
N STEP-IUNTIL 1I 00 BEGIN Qe¢0JL¢J=13FOR KeIl STEP 1UNTIL L D0 QeA[I,K]xA
[K»JI+Q3ALI,J)¢=A01,0)"Q END ENOSFOR 1¢I1STEP tUNTIL N1 DO FOR Je1STEP 1V
NTIL N DO BEGIN Q€03 IF I2J THEN BEGIN FOR KeI+1STEP fUNTIL N DO Qe¢A[I,K)
XALK»JI+Q3ALI»J)€ALI,J1+4Q END ELSE BEGIN FOR Ke¢J STEP 1UNTIL N DO Qe¢atll,
KIXALKsJI+Q3ALI»JI¢Q END ENOJI6SFOR JeN STEP={UNTIL 1D0 BEGIN K2¢F({J1JIF
FLJI=J THEN GO TO SK3JFOR Ke¢1STEP 1UNTIL N DO BEGIN TEMP¢ALK,K213ALK,K2
JeATK, JISALKsJI€TEMP END3ISKISEND ENDS
DEFINE INVERT=INVERSE#}

. COMMENT PRUGRAM 2013
PROCEDURE URNDR(NnM:EPSILDN;Y;F:FL:A;AL:BFF;BFFL.MIN)S
REAL EPSILON} INTEGER NsMsMIN} ARRAY Y»BFFL0)»FsAL050)3
ARRAY BFFLIOI,AL,FL[0,0]33
BEGIN
REAL SUM»SSQMIN,ARG,BF»YPRUD3}
INTEGER NU»sKsRs1»JsQsNOORTHOLMINA,MINB, M}
ARRAY G1,G2,G3,G4»GS5L08M»0IM], RTPSI»B,D»SSD»SSA,RELERRIOIM]S
PSI»PHI»FSUBLOSM,08N];
ARRAY BF2[0tM)3
REAL SUML,SSUMINLsARGL»BFL,YPRODLS
ARRAY G1L»G2L,G3LsGU4L,GSLEOSM,08MIsRTPSIL»BLIOL,SSDLASSUL,RELERRLEO
tM)»PSIL,PHILSFSUBLLOSM»OIN]}
ARRAY BF2LLOIM]s
FORMAT FM1( /"B(KI"/ )y FM2(S5(E174105X5) Jo»
FM3( /7SUM OF SQUARES OF DEVIATIONS®/ ),
FMa( /"S SQUARED"/ )»
FMS(C /"MINIMUM S SQUARED FIT="13)»
FM6(C /"RELATIVE ROUNUD=UFF ERROR"/ ),
FMB( /7DCKIN/ ),
FM7C /"DAMN=IT, ROUND=UFF ERROR IS STILL GREATER "
"THAN EPSILON™), FM15¢C /"ESTe BEST FII="13),
FM13¢ /"REORTHONORMALIZATION" )
FM14¢ /"BEST FIT CRITERION"/ )3 i
LABEL ORTHO}
LABEL FINALPTS
LABEL L63,L33,L343
NOORTHO«1} ARGFARGL«0,03
FOR NQe1»NU+l WHILE NQSN DU DOUBLECARG,ARGL,YINQI»0»YINQI»OsxstsesA
RG»ARGL)} DOUBLE(ARG»ARGL,» ¢, YPROD,YPRODL)S
ORTHO
BEGIN
LABEL L1sL2sL3»L4,L5, FINORT,L6,L73
REAL SUM@,IPPSI,IPPSIF}
ARRAY C»GLOIM,031M]3 :
REAL SUMQL,IPPSIL,IPPSIFL3} ARRAY CL,GLLOtM»OtM]3
SWITCH GCALCe¢L1,L2sL3,5L45L53
FORMAT F2(5(E17410,X5) )»
F3¢ /"PSI(K,NI®/ )» F4( /"G(K»RIN/ )
-1 /UPHICK,NI®/ )y F6C /7R0OOT INNER PRUDUCT PSI®/ )3
FORNQ N DO DOUBLECFL1sNQI»FLI1,NQ1»¢»PSILI»NQ),PSILLILSNQ])S
IF SLON(15) THEN BEGIN WRITE(LP,F3)3
WRITE(LP»F2,FOR IXQ¢ISTEP 1 UNTIL N DO PSIC1,IXQ))ZEND}
IF M=1 THEN GO 7O FINORT3
FOR Ke¢2,K+1 WHILE K<SM DO
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BEGIN FORNQ N DO
BEGIN SUMQeSUMQL«03 FOR Re1,R+1 WHILE R<K DO
BEGIN IPPSI«IPPSIL¢IPPSIF¢IPPSIFL¢«0} FORI N 00
BEGIN DOUBLECIPPSI»IPPSILAPSILRsI1sPSILERSI1,PSICIR)IsPSILIRSTI1sXs%,
€» IPPSI»IPPSIL)}

DOUBLECIPPSIF» IPPSIFL,FIKs I)sFLIK, I3sPSILRATIDsPSILIRsI1sXs4,¢,1PPSI]
Fs IPPSIFL)}
END3 DOUBLE(=IPPSIF,=IPPSIFL,IPPSI»IPPSILs/,¢sCIKsRI»CLLKIR]I}
DOUBLE(CIKsRIsCLIKsRI,PSICR,NQI,PSILERSNQIs X5 SUMQ, SUMQL 45 ¢» SUMQ»SU
HaL) 3

END3 DOUBLECFIK,NQ)»FLIKsNQ]»SUMQ, SUMQL»+»¢,PSICK,NGI»PSILIK,NG])}
END} IF SLON[1S3ITHEN
WRITECLP,F2,FOR IXQ¢y STEP 1 UNTIL N Do PSILK,»IXQ1)33
END3 IF SLONL15) THEN WRITE(LP»FA)3
FINORT? FORK M DO
BEGIN If K=1 THEN GO TO L6}
FOR Re¢i,R+1 WHILE R<K DO
BEGIN ARG¢ARGL¢0,03 FOR Je¢R,J#1 WHILE J<K DO DOUBLECGLJ»RI»GLLJSRI»

CLK»JI»CLEK»JIsXs ARG ARGL +» ¢, ARG, ARGL) S
DOUBLECARG»ARGL,¢»GEKs»RI»GLLKsR])S

END3
L62 DOUBLE(C»140s¢»GIK»K)»GLIKAKI)3 IF SLONI[15) THEN WRITE(LPsF2,F
ORIXQ K DO
GLK»IXQ1)}
END3 FORK M DO FORR K DO
BEGIN
GO TO GCALCINQORTHO)

L1t DOUBLE(CGEK,R]sGLIK»RI»¢»GLIK,RI»GILEKPRIIS GO TO L73
Les DOUBLECGLKsRI»GLIKsR)s¢,G2(K,RI»G2LEK,R))S GO TO L73
L3 DOUBLECGEK,RI»GLIKSR)»¢»G3[K,R1I,G3LIK»R)IS GO TO L7J
L4s DOUBLECGIK,R)»GLIKSRI»€2GU4{KsRI»G4LLKIRIIS GO TO LT3
LS DOUBLECGIK,RIS»GLIKAR)»€»G5L5,RISG5LIKsRIIS GO TO L73
L7s
END3

IF SLUNC15) THEN WRITEC(LP» FS)3

FORK ¥ DO ‘
BEGIN FORNQ N DO
BEGIN ARG¢ARGL«0,03

FORI N DO DOUBLECPSILKsI11sPSILIK»T)sPSICKs11sPSILLIK,I1)sX»ARGSARGL+

»¢2ARG,ARGL)}
NSQARTCARG»ARGL»TOM» TOML) S RTPSI(KIeTOM} RTPSILLKI€TOML}
DOUBLECPSILKsNQIsPSILLKsNQI,RTPSILKIS,RTPSILIX1»/s¢sPHILKsNQI,PHILIK
»NQ1)3
END? IF SLON[15) THEN WRITE(LP,F2,FORIXQ N DO PHIIK,IXQ))}
END3S IF SLUNCL$5) THEN BEGIN WRITE(LP,F6)3
WRITECLP»F2,FORIXQ M DO RTPSICIXQ) ) END 3
END}3
FORK M DD
BEGIN ARGCARGL€0,03
FORI N DO DOUBLECYCI1»0,PHILK»1)sPHILLK»I)soxsARGPARGL S +»¢»ARGSARGL)
H
DOUBLE(ARG,ARGL,¢»B[K)»BL(K])S
DOUBLE(BEK)»BLIKI»RTPSILKILRTPSILLK)»/»¢,00lKISOLIK))S
END3
IF SLONC14) THEN
BEGIN NRITECLP»FM1)3 WRITECLP»FM2, FORIXQ M DO BLIXQ 1)}
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WRITE(LP,FM8): WRITE(LP,FM2,FURIXQ M U0 DLIXQ))S
END3
NOUBLECYPRUD» YPRODL»BE1)sBLI1)2801)s8L 1)sXs=0esSSUL1),S8SOLI12)5
DOUBLECSSUL1)sSS0LLLIIcN"1500/0¢»55001),550LC1))3
IF M=1 THEN GN 70 L633
FOR Ke2,K+1 WHILE KSM DO

BEGIN DOUBLECSSDLK=1]»SSOLIK=11»BEK)sBLIK)»B(K)s8LIK]sXs=s e, SSDIK]»S
SDLIK])3 DOUBLECSSDIKI»SSULLKIsN=K20s/5¢»S5SulK)pSSQLINY )}
END3

L632 IF SLUNC5) THEN BEGIN
WRITECLP»FM3)3 WRITECLP,FMZ2,FORIXA M 00 SSUCIXuI)s
WRITECLP,FME)3 WRITECLP,FMZ2, FORIXQ M DD S$5QLIXa@l)s END3
FORK M DO
BEGIN iF K=M THEN BEGIN MINA€M3 GO TO L33 END3
IF ABS(SSQIKI) < ABS( SSOLK+1]) THEN BEGIN MINAeK;KeM ENDS
L33:

END3 IF SLUNLS] THEN WRITECLPs»FMS,MINA)};
FORK M DO DOURLECSSDIK)»SSDLIKI»SSUIMINAYSOSSQULIMINALSZ2XK=N,0pXs+s¢)
BFFIK1,BFFLEK])}
FORK M 0O
BEGIN IF K=M THEN BEGIN MINeM} GO TD L3g En0}
IF ABSC(BFF(KJ)<ABS(BFFLK+1)) THEN BEGIN MINeK3 KéM ENUS
L34
END3

IFf SLONCS) THEN BEGIN
WRITECLPsFM14); WRITECLPSFM2,FORIXQ M DO BFFLIXQ))}
WRITECLP»FM1S5,MIN)S END3
MNe¢ IF MINASMIN THEN MIN ELSE MINAS
MINBe IF MN+2SM THEN MN+2 ELSE MN3
FORK MN LO
BEGIN SUMeSUML«0,03 FOR 0*1100; WHILE Q$MN DO
BEGIN .
ARG¢ARGL¢0405 FORL N DO DUUBLECARG»ARGL,PHILKsIJsPHILEKS[),PHICWS]
JsPHILEOsI)sXs+ses ARG ARGL) S
DOUBLECSUM» SUML ARG, ARGL»BEQI»BLIQIsXs+,¢sSUMISUML) 3

END3 DOUBLEC»14092SUMsSUMLIBIKIsBLEK]» /5= ¢sRELERRIKISRELERRL(K 1))
ENG3
IF MN<M THEN FOR KéMN+1,K+1 WHILE KSMINB 0O
BEGIN SUMeSUML«0,03 FOR Qel,Q+3 WHILE wsk DO
BEGIN ARG¢AKGL¢0,05 FNRI N DU OOUBLECARG,ARGLSPHILKsI1»PHIL[Ks»I)»

PHICQsI)sPHILTQ,I)oXs4p¢s ARG ARGL)S
DOURBLECSUM, SUML , ARG, ARGL»BLQ)»BLIQ)sX s+ €p SUMs»SUMLI 3
ENDS DOURLEC»1e0s SUM»SUML»BIKI»BLIK]» /s =0 ¢ RELERRIK)ISRELERRLIK])}
END;
IF SLUNCS) THEN BEGIN
WRITECLPsFM6)? WRITE(LP»FM2,FORIX® MINB DO RELERRLIXQ))3 END;’
FORK MN DU :
BEGIW IF EPSILONSARSCRELERRIK]) THEN
BEGIN IF NOURTHU=% THEN BEGIN
IF SLUN[5) THFEN WRITE(CLP,FM7)7 GO TO FINALPT Ewus
FORI 4 DO FORNQG N UO

BEGIN IF NUORTHU=Y THEN DOUSBLECFLI,NQ)»FLEIXNGY»€,FOUBLLI,NQD»FSUBLLI
PNQD) 3 GOURLE(PSICIsNGI»PSILIIsNQ@IsesFILoNUJoFLLIANN))S

END;  NOUKTHOENUORTHN#13 IF SLONLS] THEN WRITECLP,FM13)5 GU TO URTHUS
END S

ENDS
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FINALPT ¢
BEGIN REAL TFAC»SD2sFAC1»FAC2,FAC3»FACH, SUMUEVSSUMASSD» SUMDSA
YCALC,DELTAVE»SD22,516GSQ3 INTEGER Psi s
REAL TFACLsSD2LsFACIL,FAC2LFACSLsFACAL» SUMDEVLsSUMABSDL» SUMDSAL»YCALCL
NDELTAVEL,»SD22L,SIGSALsFACLS

INTEGER ST} ARRAY 50,52DC1¢tM)-TL18M,13M]»0ELTALYIINDS
ARRAY SDL»S2DLC18MI,TLL1SM,13MI»DELTALLLENDS
REAL FACS

FORMAT FS1C /"R="14/), FS2(5(E17.105X5) )»
FS3¢( /UCOEFFICIENTS"/ ),
Fss¢ /PSTANDARD DEVIATION OF COEFFICIENTS FIRST SET =
"BASED UPON SIGMA SQUARED NEXT SET UPUN > SWQUARED,"/
"IF THE ABQVE DELTAS ARE RANDOM» THEN THe FIRST @
PSET SHOULD BE USED OTHERWISE THE SECOND SET%//),
FSTC X10:£174105X5,E170105X5,E17410 )
FS6( /X15 "Y(OBS)UX7"==XT"Y(CALCI"X6"="X7"DELTA™/ )»
FS8( /"SUM OF DELTAS="L17.,10,X5"SUM UF ABS(DELTA)="
E17.10//"AVERAGE DELTAS"E174,10,X5,"SUM OF DELTA SQUARED="
E17.10)» FS9C /"SIGMA SQUARED="L17,10),
Fs10¢ /"BEST FIT BASED UPON SIGMA SQUARED"/ )»
FS11¢( /"BEST FIT=" [3)3
LABEL L10,L11,L12,0L13,L14,0L205L21,L22,1.235L24,5L15,L165L30sL35,1.253
LABEL L263
SWITCH TCALC ¢ L10,L11,L125L13,L143
SWITCH SDCALC € L20sL215L225L235L243
FORR M DO FORK (M=R+¢1) DO
BEGIN IF R=1 THEN BEGIN DOUBLECUCKI,DLIK),»«»TE1,K]1,»TLLI1,»X1)3G60 TO L1
6 ENDJ
GO TO TCALCINOURTHUI}
L103 DOUBLECGILRK=1,K)»GILIR+K=1,K]»¢,TFAC,TFACL)} GU TO L1S3
Li13 TFACETFACL€0,0; FOR JeXrJ+1 WHILE JSCR+K=1) DO
DOUBLECTFAC,TFACLsGILJU»KI»GILLJU)KI»G2IR*K=1,J]»G2LIR*K=15J)sxo+s¢,sT
FACsTFACL)S 60 TOU L1153
L1238 TFACE€TFACL¢0,0; FOR JeKsJ+1 WHILE JS(R+K=1) 0O
BEGIN FAC2¢FAC2L«0.03
FOR I¢Ksi¢1l WHILE ISJ DU DUUBLECFAC2,FACZLsG10IoKI»GILL1»KI»G2(JsrI]
2G2LLJUsTYsXs+s¢,FAC2,FAC2L)}
DOUBLECTFAC, TFACLIFAC2sFAC2LAGILR¢K=10JY»G3LLR*K"1oJ)oxns4s¢,TFACHTH

ACL)S

END; G0 TO L153

L1338 TFACEeTFACL®€0.,0; FOR Jek,Jd+l WHILE JS(R+Kk=1) DO
HEGIN FAC2¢FAC?L«0.03 FUR 1¢K,1+1 WHILE 1<J 00
BEGIN FACIeFAC3L«0.0; FUR PeK,P+1 WHILE PSI 00

DOURBLECFAC3sFAC3LsGILPsKI»GILLP)KY»G2LEsPI»G2LIISPIsXs+s¢sFACIHFACS
L)
NOUBLE(FAC2,FAC2LsG3[JrIlrul3LlJsIlsFAC3sFAC3LIXs+s¢»FAC2,FAC2L)S
ENDS DOUBLECTFAC,TFACLIFAC2,FACEL,GUIR+K=15J)»GULIR*K=15J)sXp+s¢, TFAC,TF
ACL)3
ENDS u0 10 L1Ss
L14: TFACETFACL€0,0; FOR JekpJd+l WHILE JS(R+k=1) DO
BEGIN FAC2€FAC2L€0,0; FUR Tek,[+1 WHILE I1sJ 00
BEGIN FAC3¢FAC3L€U.US FOR Pek,P+]1 wHILE P<I VO
BEGIN FACUFACUL«O,U3 FOR Q¢x,Q+1 WHILE Q<P OU
DOUBLE(FACU»FACBL,G1(0sK)»LILLWsKI,G2IP,0)sGELL PyrulsXsdresFACU,FAC
aLd;
NNURLECFAC3,FACILIFACU,FACULSGIL1sP)sG3LITIPloxn+tr&sFAC3,FAC3L)S
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ENDS DOUHBLE(CFAC2sFAC2LsFAC3»FACIL»GALUsT3IsGULLIr s Xp+s€,FAC2sFAC2L)S
END3 DOURLECTFAC,TFACLSFAC2,FAC2L,GOLR4K=1,J],GoLIR¥K=1:U1sXo45€, TFAC,TF
ACL)3
END3
L15t DOUBLECTIR=1,K], TLIR=1,sKI» TU1oReK=11oTLL1oR4K=11sTFACSTFACLoXs4s¢sT
{ RsKJ»TLIR»K]1)3
L163
END3> IF SLUNLSI THEN WRITE(LP,FS3)3 FORR M DD
BEGIN IF SLONLS] THEN WRITE(LP»FS1»R)3 FORK R DO UDOUBLE(TIR=K+1,K3»TLIR=
KelsKlpesAIRIKI,ALIRSK])S
IF SLONES] THEN WRITECLPs FS2» FORIXQ R 00 ALR,IXQ1)S
ENDS IF SLONES] THEN WRITECLP»FS6)3
ST¢ IF MINA<MN=2 THEN MINA=2 LLSE IF MINCMN=2 THEN MIN=2
ELSE MN=23 IF ST<i THEN STeil3
FOR ReSTsR¢1 WHILE RSMINB DO
BEGIN SUMDEV€SUMDEVL ¢ SUMABSU€SUMABSDOL ¢SUMDSQeSUMDSQL €06 03
IF SLONCS] THEN WRITECLP» FS1, R)3
FORNQ N DO
BEGIN YCALCeYCALCL€0,03 IF NOORTHU=1 THEN
BEGIN FORI R DO DOUBLECYCALCoYCALCLsALR,IIsALIRSI)sFLI»NQ)sFLLISNG)»
Xp+s¢sYCALCH»YCALCL)S GO TU L303
ENDS FORI R DO DOUBLECYCALC»YCALCL,ALR,I)JsALER,»IJ»FSUBLISNQ),FSUBLLI,NQ)
pXo+p ¢ YCALCHYCALCL)S
L3083 DOUBLECYILNQ)»0»YCALCHYCALCL»=»€»DELTALNQ)PDELTALINWI)S
IF SLONLS) THEN WRITEC LPsFS7»YINQI»YCALCHDELTAINQ))S
NOUBLE (SUMUDEV » SUMDEVL,DELTALNQ),DELTALINQY»+»¢» SUMDEV SUMDEVL)S
NOURLECABS(DELTACNQ))»ABSCUELTALINQ]Y)» SUMABSD» SUMABSDL » #5¢» SUMABSD
SUMABSDL)3
DOUBLE(SUMDSG» SUMDSAL)DELTAING]»DELTALINQI»DELTAINQISDELTALINQ)s X0+
»¢»SUMDSQ, SUMDSQL) 3
END3 DOUBLECSUMDEV» SUMDEVLN»O»/»¢» DELTAVE»DELTAVEL)S
IF SLONCS5] THEN WRITECLP»FS8»SUMDEV,SUMABSU,DELTAVL,
SUMDSQ)3 IF R=MINA THEN
BEGIN FAC1¢FACIL&«0403 FUR Pe¢1,P+1 WHILE P<N DO
BEGIN FAC2¢FAC2L«0.03 FOR Q¢1,0+1 WHILE QSN DD UOUBLECDELTALQ],
DELTALCQ)»FAC?2,FAC2Ls+s€¢sFAC2,FAC2L)}
DOUBLECFACI»FACILPFAC2,FAC2LSDELTALPISDELTALIPI X 4,¢»FACL,FACIL)S
END} DOUBLECSUMDEV,SUMDEVL,SUMDEV,»SUMDEVL »XsFACL,FACIL»»22e0sXs=sN=MINASUV
»/72¢sFAC,FACL)}
DOUBLECSSOIMINAY,)SSQLIMINAL,FAC,FACL»=»¢,SIGSQ,SIGSQL)S
END
END3 IF SLONTS)Y THEN WRITECLP,FS59,51G650)3
FORK M DU DOUBLECSSDIKI»SSULEKI»SIGSQsSIGSHLS2XK=N»0sXs4s¢»BF2(K]»sb
F2LIK3)> FORK M DO
BEGIN IF K=M THEN
BEGIN MINeM3 GO TO L35
END3  IF ABS(BF2LK1)<ABS(BF2[K+1]) THEN BEGIN MIN¢K; KeM END3
L35:
END;
IF SLUNIS) THEN BEGIN
WRITE(LP,FS10)3 WRITECLP,FS2, FORIXQ M DO BF2(IXQJ)3
WRITEC(LPsFS11,MIN)3 WRITE(LP,FS5)5 ENDS
FORR v DO
BEGIN FORK R DN
BEGIN SD2€¢SD2Le5N22¢SDP2L 0,03
FOR JeKpJ+l WHILE JSR DO
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BEGIN GO TO SDCALCEINDORTHO3
1203 DOUBLE(GILJ»K1,G1LLJsKI»¢,FACL,FACIL)S GO TO L253
L21¢t FAC1¢FACIL€0,05 FOR leK,1+1 WHILE ISJ DO

DOUBLECFACI,FACIL,GICI»K)»GILLILK1»G20Js1d0G2LLUs10sxs+, ¢,FACI,FAC
1L)3 GO TO L253
L22% FAC1¢FAC1L¢0,0; FOR PeKsP+1 WHILE PSJ UD
BEGIN FAC2¢FAC2L€0,0} FOR IeK,I+1 WHILE ISP DO
DOURLECFAC2sFAC2LsGIEI»KIsGILLISKI2G2LP»13sG2LIPsIloXs¢+,€»FAC2,FAC2
Lis
DOUBLECFAC1»FACILPFAC2,FAC2LG3[JsPYsG3LLJUsPlsxs+s¢sFACISFACIL)S
END3 GO TO L253

L2388 FAC1€FACLL€0,03 FOR QeK,Q+1 WHILE Q<y 0O
BEGIN FAC2¢FAC2L¢0403 FOR PeK,P+1 WHILE PsQ DO
BEGIN FAC3¢FAC3Le0,03 FUR TeK,I+1 WHILE ISP DO

DOUBLECFAC3,FAC3LsGICE»KI»GILLI,KI»G2{P»I)sG2LIPs»IlsXs+,¢,FAC3,FAC3
L3

DOUBLE(FAC2,FAC2L»G3(RA»PI,G3LIQ,PI»FAC3,FAC3LsXs+s¢,FAC2,FAC2L)}
ENDS DOUBLECFACL1sFACIL»G4CJ»Q]»G4LLUSQTsFAC2,FAC2LsXs+s¢sFACI,FACIL)S

END3 GO TO L25;

L243 FAC1¢FAC1L«0,03 FOR LeK,L+1 WHILE L<J DO
BEGIN FAC2¢FAC2L€0,03 FOR QeK,Q+1 WHILE QSL DO
BEGIN FAC3¢FAC3L«0,03 FOR Pek,P+1 WHILE PSQ DO
BEGIN FAC4€FACUL€0,03 FOR [eK,I+1 WHILE ISP DO

DOUBLECFACA»FACAL,GL{TI»KI»GILCI»KI»G2(P»I12G2LEPSL1)sXs¥,¢sFACU,FACH
L)
DOUBLECFAC3,FAC3LsFACU»FACELIGILQsP],G3LIQsP)sX,+s€,FACI,FAC3L)S
ENDJ DOUBLE(FAC2,FAC2LsFAC3,FAC3LsG4CLSUI»GULIL2QlsXs+2¢sFAC2,FAC2L)3
END3 DOUBLE(FACI»FACILoFAC2sFAC2LaGSOLU»LI»G5LLEJsLIsxs+9€¢,FACISFACIL)S
END3
L25% DOUBLEC(SDZ2,SD2L,FAC1,FACILsFACI,FACILsX,RTPSILUI,RTPSILIJILRIPSILI]
sRTIPSILEJI»X»/54,¢»5D2,502L)3
FACE€FACL¢0,0; F¢ORI R DO

BEGIN ARG¢ARGL¢0,03 IF NOORTHO=1 THEN
BEGIN FORNG M DU DOUBLECARG,ARGL,PHILJSNQISPHILLJSNQ]I,F CI,NQ),F
[I,NQ)sXr+p¢s ARGHARGL) S GU TO L2675

END’ FORNQ N DO DOUBLECARGsARGLSPHILU,NQI,PHILLJ,NQ),FSUBLISNQIsFSUBLII,
NQlsXs+s¢» ARG,ARGL)3

L263 DOURLECFAC,FACL,ARG,ARGLIAIMINSII,ALIMINSI)sXs+,¢,FAC,FACL)S

END3? NOUBLE(SD22,5022L»BLJ)»BLIUISFAC,FACLs=»FACL1,FACILSXsRTPSILTJUILRTPSI

L [JIs/s+9¢55022,5D22L)3

END3 NOUBLECSIGSQs»SIGSAL»SD2,SD2Lsx»SD22,5022L»5022,5022Ls%s+»¢»ARGHARGL
)3
DOUBLEC(SSOIMINAYLSSQLIMINAT,SD2,SD2L»%x,SD22,5D22L»5D2255D220Ls%Xs+5¢»
SSAMIN,SSUMINL )3
DSQRTCSSEUMIN, SSQMINL» TUM» TUML) 3 SZD(KI¢TOMS S2VULLKI€TOMLS
NSYRTCARGs ARGL, TOM» TOML) 3 SO(K1eTOMS SULIK)eTUML

END3
IF SLUN[S] THEN BEGIN

ARITECLPsFS1oRISWRITECLP,FS2,FORIXQ R DU S [iXQ))3

WRITECLPs»FS1sR)3 WRITE(LPSFS2,FORIXQ R DO S20{1Xd1)3 ENDJ

ENV

END

END DF PROCEDURE URNORS3

COMMENT PRUGRAM 2023
PROCEDURE CALFY(N»MsN1sN2,NUMRUNSFIToK1oKILsK2sK2L o AKLsAKIL»AK2,AK2L PP
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PoXIoXILaXXIpXXILoXsXLoYsF,FL)S
INTEGER NsMsN1sN2»NUMRUNSFITS
REAL K1,K2sAK1,AK2]
REAL <1LsK2LsAKiL»AK2LS
ARRAY P,PPsXI» XXI»X,Y (0)s F(0»013
ARRAY XILsoXXILsXLLO)»FLLO50};
BEGIN
LABEL NX10sNX11,NX13,NX12»oNX14sNX153
LABEL NX203
INTEGER I»K3 COMMENT I CORRESPONDS TU URIGINAL "LITTLE N"3
YL1)eP[1)xAKL}
IF NUMRUN#1 THEM 60 TO NX3103
FOR 1€2,1+1 WHILE ISN1 U0 YLIJ€PLIJxXAKIxK1#C([=1)xXI{[=1]}
GO TO NX113
NX103 YIN1+1)e PPI1)xAKZS
FOR 1¢2,I+1 WHILE I<N1 DO Y[[) € PLIIXAKIXKI*(I=1)xXI{I=1)}
FOR J1€2,1+1 WHILE [SN2 DO YIN1+IJePP[IIXAKZxK2%(I=1)XXXI(I~1]3
NX113 IF FIT#1 THEN GO TU NX123 IF NUMRUN#1 THEN GO TO NX133
FORI Ni DO DOUBLEC»1e0s¢5FL1,11,FLLL,0))3 IF M=1 THEN GD TO NX203
FOR Xe2,K+1 WHILE <M DO FORI N1 00O BEGIN
TOMex{Id; TOMLeXLL[IJ?
DPOWCTOM» TOMLS HAM, HAML pK=1) 3

FEKs 1 3eHAMS FLEKs 11€HAMLS ENDS
GO TU NX205
NX13: FORI N DD DOUBLE(»140s¢sFL1,1JoFLI1»13)3 IF M=1 THEN GO TO NX

205
FOR Ke2,K+1 WHILE K<M DO FURI N1 OU BEGIN HAMex([2xI=1]};
HAMLeXLI2x1=1]; DPOWCHAMs HAML» TOM» TOML»K=1) 3
FEK» 1)€TNM; FLIK»I)eTOMLS END3
FOR Ke2,K+1 WHILE XKSM DO FURI N2 DU BEGIN HAMeX[2xI])3 HAMLexLIZx}
13 DPOW(HAMs HAML» TOM» TOML,K=1) FIKsN1+])eTOM} FLIKsNi+I1eTOM
L3 ELND’
GO TO NX203

NX123 FORI N1 DO YClyeY(I)= 1,03 IF NUMRUN=1 THEN GU TD NX14;
FORI N2 00 YINi+IdeY [N1+]Jel,05

NXxtas IF NUMRUNE{ THEN GO Tu NX153
FORK M DO FORI Ny DO BEGIN HAMeXCIY3 HAMLEXLIL)S

DPOWCHAM, HAML» TOM» TOML,K) 3 FIKs,1)eTOM3 FLIK»IJeTUMLS ENDS
GO TO NX20;3
NX153 FORK M DN FOR{ N1 DO BEGIN HAMeX[2Xx[=1)3 HAMLEXL[2xI=1);
DPUNCHAM, HAML, TOM» TOML» KD 3 FIK,1)eTOM3 FLLK,I)eTOML? END3
FORK M D0 FORI N2 00 BEGIN HAMeX[2x11; HAMLeXL({2x1)3
UPNWCHAMaHAML» TOM» TOML,K) 3 FIKoNL+#L1€TUMIFLIKoNLETTeTOMLS
END3
NX20:
ENU OF CALFY ;

LABEL HURNETTS
READ(CRs/» TEMP»CUMP s NUMRUN) 3

RURNETT: BEGIN

INTEGER NNsMMMsN1,N2sFIT,HHsWHL» 150N}
REAL TOL»SS1558255835554»555,55K1s55K2sS5SK3»55K4»S5K5s5SK63

REAL S551L»SS2L,S54L,SS3LsSS5L»5SK1L »SSK2L»SSK3Ls»SSKUL S SSKSL»SSKELS
REAL A1,A25,A35A4,055A6581,82,83,84,85,86}
HEADCCR,» /s NNsMMMaNL o N2, TUL )}
READ(CR»/sFITs»WHsWH15A1,A25A35A4,A5,A6581,82,83,



WRITE(LPIPAGE]))
WRITE(LPs<9("axuswxu®) ™ [NPUT DATA " 9("huwwax")>)}
HRITECLP»<™%™ X118 "x">)}

WRITE(LP,<"e"
3

WRITECLPy<™u®
WRITECLP,<"%"
WRITECLP,<"#"
WRITECLPs<"4"
WRITECLPs<"a"
WRITECLP,<"a"
WRITECLPs<ma®
WRITECLPs <" %"
WRITE(LP,<"an
WRITECLPy<"a®
KRITECLP,<"w®
WRITELPy<ma®
WRITECLPs<"an
WRITECLP,<"#"
WRITE(LPs<"w"

X3

X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3
X3

A2,A3,A45A5,A6)}

WRITE(LPs<"w"

X3

B2,83,84,85,86)3

BEGIN

REAL XIQ3

REAL XxI1aL3
REAL K1,K2,

433
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B4s8BS,B6)3

"EPSILON

"GAS CONSTANT

"NO, OF DATA PUINTS

"NO, OF PARAMETERS
"TEMPERATURE

"CUMPOSITION

"NU, OF RUNS IN DATA SET
"NO, OF POINTS EXTRAPOLATED
"NO, OF PARAMS. IN EXTRAP,
"POINTS IN FIRST RUN
"POINTS IN SECOND RUN
"TOLERANCE

"TYPE OF FIT

*INPUT CONTROL

"INITIAL SURFACE PARAMETER
"Al = A6

"B1 = B6

IF N2=0 THEN N2e¢2;

E10.3 »X77 "#">,EPSILUN)

F10e8 »X77 "w%">,R)3

110 P XTT "i">,N)3

110 sXTT "x">,M)3
F1044 sX77 "«">,TEMNP)}
F10ed4 »X77 "2">,C0OMP)3
110 2 X77 "#">,NUMRUN)}
110 2XT7 "#">,NN)3

110 aXT7 "a">,MMM)3
110 2 XTT "a">,N1)}

110 2 XTT "a%>,N2)3
E1043 »X77 "">,T0OL)}
110 2 XT7 "#">,FIT)3
110 2 XTT7 "#">,HH)}

110 P XT7 "a">,WHL)3
6(EL10435X2)9X15,"4">,A1,

6(E10632X2)9X15,"4">, 81,

AK19AK25ANL,AN2, KK, AK)» RT»SUM»ZETAO»ZETAL1,Z2ETA2,
ZETA3,ZETAO, ZETASS ZETAG, ZETATH»ZETAB,ZETA9,ZETALO0» ZETALL,
ZETA12,ZETAL13,2ETALU,UK1»VUAL,02K1,02A41,02K1A15DK2,DA2,02K2,
D2A2,D2K1K2,02K1A2,02A1K2,D2A1A2,

REAL K1LsK2Ls»AKILsAK2L»ANIL)ANZ2L,KKL»AKL»RTL»SUMLS
REAL DXK2L»DA2L,U2K2L,D2A2L,02K1K2L,02K1A2L»D2A1K2L,02A1A2L»D2K2A2L 3
REAL ZETAOLsZETALL»ZETA2L,»ZETA3L»ZETAGLSZETASLSZETAGLPZETATL,
ZETABL»ZETAOL,ZETALOL,2ZETA11L»ZETAL12L»2ETALIL,ZETALSGLS
REAL DK1LsDA1L,D2KiIL»D2AILsD2K1ALLS
REAL K105A10,K20,A20,ST03
REAL K10L»A10L»K20L,A20L»STOLS
INTEGER NNNsMMyKNT»J3
ARRAY PCOSN11,PPLOSN2)sPRAT)X15ZT1[OIN1I=1)sPPRATSXXI»ZT2[03N2=1)>»
IVrPNIDUML, TEST,PL,0UMIOSN], CHG,OVECLO14),DMIX{024,034)3
ARRAY PRATLsXILLOIN1=1),PPRATL,XXILLOSN2=1])
ZVLsPNL>DUMILSTESTLPIL,DUMLLOSN],CHGL,DVECLLOS84)»DMTXLEOS4,01

ARRAY ZT1L(O:N1=1]» ZT2LCLOIN2=1]}
ARRAY KK1,AAK1,KK2sAAK2{OSM), TBF[0320,08M1}

ARRAY KKiL»AAKIL»KK2L,AAK2LLOIM],TBFLLO0320,08M)3
COMMENT REAL PROCEDURE DDXI GOES HERE}

D2K2A2}

REAL PROCEDURE ODXIC(NIFsN2FsMFsFFoAFsAFLsPFsPPFsXFoXFL)}

VALUE N1FsN2FsMF,»FF)

ARRAY AFSAFLEOSO)sPFsPPFsXFsXFLLOIS

BEGIN

LABEL NX503
REAL SUMH»SUML»SUM1H»SUMIL»SUM2H, SUM2L 3

INTEGER N1FsN2F»MF,FF3
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INTEGER N»K3
REAL TAHs»TBHs TCHo TOH» TAL»TBLSTCL,TODLS
SUMH$SUML€0,03
FOR Ne2 STEP 1 UNTIL NiF DU
BEGIN
IF FF=1 THEN
BEGIN
SUMIH¢SUMILESUM2H¢SUM2L«0,03
TAH ¢ IF NUMRUN=1 THEN XFIN] ELSE XF(2xN=1); TdHe¢1,03
TAL€IF NUMRUN=1 THEN XFLIN) ELSE xFLL[2xN=1}}
TCH ¢ I1F NUMRUN=1 THEN XFIN=1] ELSE XFC2xN*3]} TOHe1,03
TCLeIF NUMRUN=1 THEN XFLIN=1) ELSE XFLC2xN=3)3
TBLeTOL ¢ 0,03
FOR K¢y STEP 1§ UNTIL MWF DO
BEGIN )
DOUBLECAFIMFsK)»AFLIMF,K)»TOHs TOL»Xs SUMIH, SUMIL»¢+5 €5, SUMIH, SUMIL) 3
DOUBLE(CTAHS TAL»TBHoTBLIX»¢» TBH»TBL )}
DOUBLECAFIMF K] AFLIMFsKIs TOHs TDLpXp SUM2H» SUM2L s+ ¢ SUM2H,» SUM2L )5
NOUBLECTCHsTCLoTDH»TOL s Xs¢» TOH»TOL )3
END
END ELSE
BEGIN
SUMIH ¢ SUM2He1,03 SUMIL€SUM2L€0,0;
TAH ¢ IF NUMRUN=1 THEN XFINJ ELSE XF[2xN=1)3 TBHeTAH3
TAL¢IF NUMRUN=1 THEN XFLIN) ELSE XFLL[2xN~=1)}
TCH ¢ IF NUMRUN=z1 THEN XFINe=}) ELSE XFL{2xN=3)3 TDHeTCHS
TCL¢IF NUMRUN=1 THEN XFLIN=1) ELSE XFLI{2xN=3)3
TBL€TAL}3 TDLeTCLS
FOR Ke¢1 STEP 1 UNTIL MF DO
BEGIN
DOUBLECAFIMFsK),AFLIMF K25 TBHo TBL,»Xs SUMIH» SUMIL s+, €, SUMLIH, SUMIL) 3
DOUBLECTAHs TAL» TBHITBLXs¢» TBHTBL) 3
DOUBLECAFCMF oK), AFLIMFsK)s TDHo TOL »X» SUM2H» SUM2L s+ ¢, SUM2H» SUM2L) 3
NOUBLECTCHsTCLoTDH»TOL»Xs€s TDH»TDL) 3
END
END3
DOUBLECPFIN)»O»PFIN=1)50,/,SUMIH,SUMIL,A6,0,PFIN)»0,%s45,05+,PFIN]»O,
XpAUp0s+sPFIN)I»0s%9A350,+sPFINY0,%sA2,004sPFINI»0sXsA1,0,4)»
B6s0sPFIN=1)505%s8590s+sPFIN“1),0,%588,054sPFIN=1],0,%583,0s¢,
PFIN=1150s%s82500+sPFIN=1150sXs8150045/sSUM2H)SUM2L»XpK190s%s/>»
=s¢sTAH)TAL);
DOUBLECTAHs TAL» TAHSs TAL» X»SUMH» SUML s +» €, SUMH, SUML) 3
END3
IF NUMRUN=1 THEN GO TQ NX503
FOR Ne2 STEP t UNTIL N2F DO
BEGIN
IF FF=1 THEN
BEGIN
SUMIHEeSUMLILESUMRHESUM2L«0,03
DOUBLECXFI2xNI,XFLI2xN)»¢» TAH, TAL)S TBH¢1,0}
DOUBLECXFL2xN=2)1,XFLLE2XN=21,¢5TCH,TCL)} TDHe¢1,U}
TBL¢TDL«0,03
FOR Keg STEP 1 UNTIL MF DO
BEGIN
DOUBLE(AFLMFsKIoAFLLMF oK) o TBHoTHLsXs SUMIHSSUMIL s +5 €5 SUMIH,SUMIL)
DOURLECAFIMF oK), AFLIMFsK)s TOH» TOL » X5 SUM2H» SUM2L s+ € 5 SUM2H» SUM2L )3
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DOUBLE(TAHsTAL» TBH»>TBLaX»¢»TBHsTEBL )3
DOURLE (TCHa TCLoTDHs TDL o X» €2 TUH»TDL )3
END
END ELSE
BEGIN
SUM1H¢SUM2He] ,03 SUMIL ¢SUM2L€0,03
TAHeTBHeXFL2xN)3 TCHeTDHeXF [ 2xN=2]) 3
TALETBLEXFLL2xN]3 TCLeTDLeXFLI2xN=2)3
FOR Ket STEP t UNTIL MF DO
REGIN
DOUBLECAFIMF oK), AFLIMF»K)s TBHs TBL,» Xs SUMIH» SUMLIL s+, €, SUMIH, SUMIL) S
DOURLECAFEMFsKI,AFLEMF oK1 TDH» TDL»X» SUM2H» SUM2L » +» €5 SUM2H» SUM2L ) 5
DOUBLECTAH)TAL»TBH, TBLo X»¢» TBH,TBL )3
DOUBLECTCHsTCLoTOH» TDLs»X»¢»TOH»TDL )3
END
END3
DOUBLECPPFINI»OsPPFIN=1150s/5SUMEHISUMILSAG»O0sPPFIN)»0»xsA5»0s+sPPFIN)>»
OsXsABs0s+sPPFINIS0»X2A3505+sPPFINISOsXsA250,+sPPFINI,0sx,A1,0,
+9B6,00PPFIN=1)90sX%sB5s00+sPPFIN=1)s0sXs848s05+sPPFIN=1)s0sXsB83»
Os+sPPFIN®1)s0s%sB250s+sPPFIN=1150s%XsB150,+»/sSUM2H»SUM2LsX»K2»
OsXs/s=s¢p TAH,TAL)S
DOUBLEC TAHsTAL,TAH, TAL»X» SUMHpSUML» +»¢» SUMH» SUML) 3
END3
NX50: DOXI€SUMH;
LOWODXIeSuML3
END OF DDX13

PROCEDURE CALCX(NIF N2FsRTFsRTFLIKIF KIFLoK2FsK2FLoALF»ALFL2A2F,A2FL s XIF
sXIFLa XXFoXXFLo XFFoXFFL)3
REAL RTF»K1F»K2F»ALFsA2F3 INTEGER NIF,N2F3 ARRAY XIFsXXF»XFF(O};
REAL RTFLsK1FLsK2FLSALFLIA2FLIARRAY XIFLsXXFLsXFFLLOD}
BEGIN
REAL ANNJ INTEGER I3
REAL ANNL H
DOUBLE (s 1e0sRTFH)RTFLIALFSALFL»Xp /s ¢s XFFTL1)oXFFLEL1))S
DOUBLEC» 1eVUsRTFRTFLIAZFIACFLIXs/s¢s XFFL2)2oXFFLL2))3
FOR le2,1+1 WHILE ISNIF DO
BEGIN
DPOWCKIFsK1FLoTOM, TOML,I=1)3 DOUBLECXIFLI=1)sXIFLEI=1)sTUMsTOMLIALIF»A
1FLsXpxs¢» ANNs ANNL )}
DOUBLECs 1a0sRTFSRTFLAANNSANNL X, /¢ XFFE2xI=1],XFFLI2XI=1])3
END3
FOR I ¢ 2, I+1 wWHILE ISN2F 00
BEGIN
NPOWCK2F»K2FL»TOM» TOML» I=1)3
DOUBLECXXFL1I=1 )X XFLEI=1)sTUM» TUML,A2FsA2FLoXsXs ¢ ANNs ANNL) 3
DOUBLEC» 1 eO0sRTF,RTFLIANNSANNL S X» /¢ XFFL2XI o XFFLLZXx11)}3
END
END;

FORMAT Fe1( /"APPROX. CELL CONSTe 1ST RUN=" E17,1U),
FR2(S(E17.10+,X5) J»
FB10OC /PEXTRAPGLATION FOR CELL CONDTANT®),
FR3( /"APPROX, CELL CONST, 2ND RUN="E17,10)»
Fea( /"APPROX. RUN CONST, 15T RUN="E17.,10)»
FBS( /"APPROXe RUN CUNST. 2ND RUNSTEL7.10)»
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Fe13¢( /"RELATIVE DIFFERENCE IN 2%/ )»
FB6( /"Z2(APPROX) VS RHOCAPPROXI"/ ),
Fe12¢( /  U"NEXT TO LAST FIT IS UPTIMAL FOR £ VS RHO") »
FRB( ZXOMPINITXITZIN)I"XL6"HHO(N)I"X16"(ZL=1)V " X14"P(NOess)™
/ )
FB16¢( /7"SUM OF (P RATIO = Z#RHO RATIO)=" E17.10),
FB17 ( /UDERIVATIVE MATRIX"™/ )» FBIBCUCEL7.102X5)/))
FR20C /P"DERIVATIVE VECTOR"™Z )
FB21¢( /"CHANGE VECTOR®™/ )»
FB22¢( /PMATRIX IS SINGULAR™),
FB11C /EXTRAPOLATION FUR RUN CONSTANT™)S
LABEL LO7»NX1oL71oNX2sL3750L315L45,0L965L47>L43oNX335NX3U,L89,
OWToLAO0sLU1oNX3,SINGULLUNSNXG»LU2,LA4»LI94sLIS5»PLTS
LABEL L77,L88,L4863
If NUMRUN=1 THtN REAOCCRs»/» FUR IXQe! STEP 1 UNTIC N1 OO0 PLIXG))
ELSE READ(CRs/sFOR IXQ«1STEP 1 UNTIL N1 00 PlLIXul»
FOR 1x@¢ 1 STEP 1 UNTIL N2 NO PPLIXQ1)}

WRITECLPIND]»<X4 "PRESSURES FOR FIRST RUN =">);
HRITECLP»<"*" X315, 6(F10,5,X2)» X15 "#">, FUR IXQe€l STEP 1 UNTIL N1 DO
PLIX@I)3

IF NUMRUN=2 THEN REGIN
WRITECLPINDO)»<X4 "PRFESSURES FOR SECUND RUN =">);
WRITECLP»<"%" X31s 6(F10455X2)s X15 m#">, FuR [XQel STEP 1 UNTIL N2 DU
PPLIXd1); ENDS
WRITECLP»<"#" X118 "«">)3}
NRITECLPIPAGE)»<20("wwwhwu®)>)}
COMMENT EXTRAPULATION FOR FIRST CELL CUNSTANTS
NNNeN; MM € M; N € NN; M ¢ MMM}
IF WH#1 THEN GO TO NX1;
READC(CR»/»K10,A10)7 IF NUMRUN=1 THEN GN TU L97;
READ (CR»/»K20» A20)}
L97¢ GO TO L3113
NX1: IF WH#2 THEN GU TO NX23
READCCR,/»K10)3 IF NUMRUN = 1 THEN GO TO L773
READ(CR,/»K20)5 L77: GO TU L373
NX2: FOR NuUe2,Nd+1 WHILE NQSN1 U0 DOUBLE(PINQ)»U,PING=1J,0s/,¢sPRATINU=]
J»PRATLINU=1])}
FOR NOei»NQ+IWHILE NQSN DO
REGIN DNUBLE(»1,00¢»FEIsNQI»FLIIANEI)S YINUIEPRATINI=NNENE=1]3
END3
FOR K « 2s5K+1 WHILE K<M 00 FOR NQel,NQ+1 WHILE NQSN LO
REGIN HAMePIN1I=NN+NG )3 LPOWCHAMs O» TUM» TUML s K=1))
FIK»NQI«TUMS FLIK)NQ)€TOMLS END’
WRITE(LP,FB10);
ORNORCNSMoEPSTILONS YoFsFLsApAL»BFF»BFFLAIMIN)D 3
DOUBLECs140s ALMINSL)»ALIMINS1Ys/serK1poK1L)3 HWRITECLPSFB1»X1)3 IF
MUMRUN=1 THEN GO TO L373
DOUBLE(K1sK1Ls¢pK10,K10L)3
COMMENT EXTRAPULATION FUR 2ND CELL CONSTANT;
FOR Nue2,NQ+] wHILE NQSN2 U0 DOUBLECPPINQI»0sPPINQ=11»0s/s¢sPPRATIN
Q=1),PPRATLING=1))3
FOR NQ ¢ 1,NQ+1 WHILE NQSN DO
REGIN Fl1,NQI€1,03 VYINQ)¢ PPRAT[N2=NN+NQ=1]) 3
FLL1»NQJ€0,03
END3
FOR Ke2,K+1 WHILE KSM U0 FUR NQe¢1,NQe¢1 WHILE NwSN LD
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BEGIN HAMePPIN2=NN+NQ)} UPOWCHAM» 0, TUM» TUML »K=1) 5
FIK»NQI€TUMS FLIKsNQI«TOML; END;
WRITECLP»FB10);

ORNORCN)MeEPSTLONSYsFoFL2A»AL,BFF,BFFL,MIN)}
DOUBLEC»1e0sAIMINSI LI ALIMINGL1I0/»¢sK20K2L)5 NWRITECLPSFB3sK2)3
K20¢K2; K20LeK2L3
DOUBLECKIs»KILsK2,K2L 24222400 /5¢5K2,K2L)3 K10€K2UeK1€K23
K10L¢K20LeKIL¢K2L 3
L37t IF WH=2 THEN DOUBLE(K10sK10L»¢»K1,K1L)3 IF NUMRUN=2 THEN
DOUBLE(CK20,K20L»¢sK2,K2L )3
COMMENT EXTRAPULATION FOR FIRST RUN CONSTANT 3
BEGIN DEFINE SEGMENTBUMP =0#;3
X1Q¢1.03
X1QL€0,03 XI[01eZT1[0)€¢1,03
XILIO)¢ZTILLOY&¢0, 0}
FOR NQe2sNQ+1 WHILE NQSN1 00
BEGIN
DOUBLECPINE)»0sA650s%5A5505+sPINQ)»0sxXsAUs0s+sP{NQIsUsXsA3505+,PINQ)>»
0s%XsA2505+sPINQ)»0s%xsA150,+,PINQ=1150,B6,0,%»B5s0,+sPINQ~1])>
0sXsBas0s+sPINQ=1150s%sH350,+sPINQ=1),50,x582,05+sP[NQ=1150s%>»
BlsUs+s/ser ZT1INQ=1),2TILINQ=11)}
DOUBLECXIQsXIQL,ZTI1CNQG=1)»ZTILINQ=1)sXsesXIQsXIQL)}
DOUBLE(XIQsXIOL,€»XIINQ=1)»XILINQ=1])}
END3
FOR NQel,NQ+IWHILE NQ@ S N DO
BEGIN YINQ) ¢ PINI=NN+NQ)IXK1«#(N1=NN+NQ=1) x XIIN1=NN+NU=1]}
FL1sNQ)el1,03
FLI15NQ)«0,05
END;
FOR NWe¢2»,N@+1 WHILE NQSN1 D0 BEGIN DPOWCK1sK1L,» TOM» TOML,NQ=1)}
OQUBLECPINQ)» O, TOMa TOML A XIINQ=1 1o XELINQ=1 15X, X5 €, PNINQIsPNLING
1)3 END3
PNI1leP[1)3
PNL[11¢0.03
FOR Ke2,K+1 WHILE K<SM DO FOR N@e¢1,NQ+1 WHILE NQSN VO
BEGIN HAMeP[NI=NN+NQ])} DPOW(HAM» Op TOM» TOML s K=1)3
FIKsNQ)eTOMS FLIKsNQ]e€TUML} END;
WRITE(LP»FB11);
NDRNORCN,MsEPSILONSY,FsFLsASALIBFF,8FFL,MIN);
DOURLE(»140,ACMINS11,ALIMINSL1])s»/5¢sAK1,AKIL)S
WRITECLP» FB4,»AK1)S
DOUBLECAK1,AKIL,¢»A10,A10L)3
END3
IF NUMRUN=1 THEN GO Tn L3135
COMMENT EXTRAPULATION FOR 2NU RUN CONSTANT}
BEGIN DEFINE SEGMENTBUMP =0#%;
X]Qe1,0;3
XIQL#0,03 XXIT0)¢ZT2101¢1,03
XXILLQ)€ZT2LINJe0,03
FOR NWe2sNQ+1 WHILE NQSN2 U0 BEGIN
DOUBLECPPINR]»0pA650sX%sA5,0s+sPP{NQ)»0sXsAb,0s+,PP(NU)»0sXpAa3:0:40
PPINU)sD,xpA2,0,+sPPINQ)»O0sxsALs0s+,PPINQ=1),0,86,0,%,85,0s%s
PPINQ=1)9NsXpBU,0s+sPPINE=1)50s%X58350,+sPPIN"=1350sX%XsB2,0s+»
PPINQA=1150s%sB1,00+»/,¢,ZT2(NQ"1),2T2LINQ=1})3
POUBLE(X1QsXIOL,2T2CNO=112T2LINQ=1)sX,¢»XIQsXIuL))
DOUHLECXIQo XIQAL,¢» XXIINA=1 1o XAILENQ=11)3



END3}
BEGIN

END3

END3
L31:

L4S:
BEGIN

L47:s
L43:

NX33¢

NX30:
BEGIN
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FOR NQe1,N@+1 WHILE NQSN DO
YINQ]¢ PPIN2=NN+NQIxK2*(N2=NN+NU=1)x XXI[N2=NN+NG=1] 3}
FL1sNQle1,03 FLI1,NQI«0,0;3

FOR N4 ¢ 2,NG+1 WHILE N@ € N2 DO

BEGIN DPOWCK22K2L» TOM» TOMLNQ=1)
DOURLEC(PINQ)»0» TUMs» TUML » XXIENQ=11, XXILINU=1]sXpXs€»PN[N1+
NQJI,PNLINLI+NQ])) S END;

PNIN1+1)ePPL1]s PNLIN1+11¢0.0;
FOR K¢2,K+1 WHILE K<SM DD FUR NQ¢1,NQ+1 WHILE NQSN 0O
BEGIN HAMEPPIN2=NN+NQ ]} DPOWCHAM, 0, TOMy IOMLsK=1)3
FIKsNQI€TOMS FLIK»NQJeTOMLS END3

WRITE(LPs»FB11);

ORNOR(N, M, EPSTILON» Yo FoFLoA» AL BFF,BFFLAMIN)S
DOUBLEC»140,ALMINS 1], ALEMINS 115/, €5 AK2,AK2L) I WRITE(LPSFBS5,AK2) 3
DOUBLECAK2»AK2L,¢»A205A20L)3

NeNNNS MEMM3TEMP € TEMP+273, 153 DOUBLECTEMP,00R» 05 %, ¢5RTHRTL) S
COMMENT CALCULATION OF ZC(APPRUX) AND RHOCAPPROX)S

NNNEeWHT 73 MMeM;

FOR J¢WwH1 STEP t UNTIL MM 0O

KIL€K10L3 AK1Le€A1OL;
Kl1eK103 AK1€A103 IF NUMRUN=1 THEN GO TU L473 K2¢K2U3 AK2¢A20;
K2L¢K20L; AK2L€A20L3
NNe€O;
NNENN+1 3
WRITECLP,FB1,K1)5 WRITE(LP,FB4» AK1)}
IF NUMRUN=1 THEN GU TO NX33; WRITL(LPsFB3sK2)3 WRITE(LPsFBS»AK2)S
CALCXINI,N2,RTH)RTLsK1»KILIK2,K2LoAK1»AKIL»AK2sAK2L o XIoXIL o XX]»
XXILsXsXL)3
CALFY(N»JsN1»M2,NUMRUNSFIT,)K1,K1L,K2,K2L»)AK1»AKIL,AK25AK2L,P,PP,X1»
XILo XXIoXXILoXoXLoYpFsFL)S
1F FIT=2 THEN FOR NQ€¢1,NQ+1 #HILE NQSN DO Y[NQ) ¢ Y[(NQ] + 1,03
IF NUMRUN=1 THEN GO TO NX30;3
FOR NQe€1,NG+1 WHILE NQSN DU DOUBLECXINW1»0s¢>0uMIINQI»DUMILING]I)}
FOR NUel1sNQ+2 WHILE NQSN DU X[{(NQ+1)UIV 2)€DUMIENQIS
FOR NUe2,NQ+2 wHILE NQSN DU XIN1 + NOQ DIV 2 ] ¢ DUMIINQ]S
COMMENT CALCCULATIUN OF (Z=1)V AND Z(APPROX) VS “HUCAPPROX);
DEFINE SEGMENTBUMP =0#%}
WRITE(LP,FB8)S
FOR NOel,NQ+1 WHILE NQSN DU DUUBLECYINQ1»O0s5140,=pxIN@1,05/p€sZVINQ
»ZVLINQ] )
FOR NQet,NQ+1 WHILE NQSN1 U0 WRITEC(LP»FB2,PINQ),YINQI»XINA],
ZVINW]» PNINQ]);
FOR N4 ¢ 1,NQO+1 WHILE NQSNZ UD
WRETECLP,FR2» PPINQ]» YIN1I+NQI,»XINI+NQ@I»ZVINI+NQI,PNINI+NR])}

COMMENT FIRST SAVE FOR PLOTTING;

FOR NQ « 1 STEP 1 UNTIL N DO
REGIN
TEMPXAINQJe XINQ)3
TEMPYAINQle <ZVINQDS
END}?
IF F1T=2 THEN FOR NQe1,NQ@+1 WHILE NQSN DO Y[NQ@)eY[NQ]I=1,0}
ORNORCN, JsEPSILONSYsFsFLsA» AL BFFsBFFL,MIN)SUDOUBLECRFFIJ)SBFFLIJIS¢
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»TRFINN»JIsTBFLENNSJ])3
END}
COMMENT PERTURBATION OF A ANOD N3
IF FIT=1 THEN 4
BEGIN FOR NQe¢1,NO+1 WHILE NWSN}1 DO
BEGIN SUMeSUML€0,03 FOR Kel,K+1 WHILE K<J 0O
DOUBLE(XINGIw(Kh=1)s0sALJUsKIsALLJsKIpXaSUM»SUML s +»¢»SUM»SUML);
YINQ)€SUM3 DOUBLECSUMpSUML»140s=»XINQI»02/»¢»2VINQI»ZVLINQ])S
END3
IF NUMRUN=1 THEN GO TD L&9;
FOR NWUel,NQ+1 WHILE NQSNZ2 U0
BEGIN SUM«0,03
SUML€0,03 .
FOR KelsK+1l WHILE KSJY DO DOUBLECXINI+¢NQI*(K=1)s0,ALJsK]I»ALIJ,K])p»XpSUM,SU
MLo+s¢,SUM»SUML) 3
YINL4NQI€SUMS  DOUBLECSUMs SUMLS»1,0s=s XINT+NQ)»0s/s¢sZVINL4NQ],ZVLE

N1+NQ))3

END; La93
END ELSE
BEGIN FOR NQ¢1,NQ+1 WHILE NWSN1 DO
BEGIN SUM ¢ 1,05

SUML«0,03

FOR Keé1oK+1l WHILE K<J DO DUUBLECXINQI*K»00ACJsKIsALLJsK]s X)) SUM»SUML

s+ €pSUMpSUML) 3

YINQIe€SUM; NOUBLECSUM, SUML »1,05=s XENQI o XLINQTIs/s¢»ZVINQI»ZVLIN
Q) b
ENDS

IF NUMRUN=1 THEN GO TO L86&3
FOR NQe1,NQ+1 wHILE NQSN2 VO
BEGIN SUM¢1,05SUML«U,03F0R Kel,Kk+¢l WHILE KSJ DO DOUBLECSUM»SUMLALJ»K]>»
ALLJUSKI s XINLI4NQI*KpUpXs ¢ SUM» SUML )}
YIN1+4NQI€SUM3 DUOUBLECSUMsSUML »14Us s XINT*NUW]»0s/s€»ZVINI#NQ]I,2ZVLI
Ni+NQ1)3
END;LBSS
ENDS WRITE(LPSFBB)3
FOR NUe1,NQ+]1 WHILE NQSN1 U0 WRITECLP»FB2,PINQ),YINQ)»X[NQ]»
ZVENQI,PNINW])3 FOR NQe1,NQ+l WHILE NWOSN2 DO
HRITE C LP,FB2sPPINQ)»Y [NI+NQI»XIN1+NQ]sZVINI+NQI,PNINLI+NQ])
H
BEGIN DEFINE SEGMENTBUMP =023
COMMENT FIRST SAVE FDR PLOTTYING SECOND GRAPH3
FOR NWQel STEP 1 UNTIL N DD
BEGIN
TEMPXBINQleXINQY3 TEMPYBINQY¢ ZVINQI]S
END 3
IF NUMRUN=2 THEN
BEGIN FOR NQe1,NQO+1 WHILE NQSNL1 DO
BEGIN DUMIINQ) € PINQI3 P1(2xN@=1] ¢ DUMIINQ] 3
DUMILINQI«N,03PILI2XNU=1]¢€¢0,03
ENDS3 FOR NQe1,NQ+1 WHILE NWSN2 DD
BEGIN DUMIENGI«PPING]3 P1L2XNU)eDUMIING])3
DUMILING) €0 U3 PILE2XNQ)€0,03
END END3
CALCXC(N1»N2sRTHRTLIK1I,K1LsK2,K2L s AK1»AKILSAK2o AK2L ) XIs XIL o XX o XXIL»
XoXL)3
ZETAOEDDXI(NISN2sJoFIToA»ALIPIPPsXsXL)3 WRITECLPSFE162ZETAO)S
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DOUBLE(SS22s552L,»2¢0s%xs¢»DA1,DA1L)3

DOUBLECSS3,SS3L,»240,x»€5D2K1,02K1L )3

DOUBLECSS4s558L,»240s%xs¢sD2A15D2A1L)3

DOUBLE(SSSsSS5Ls»2409x»¢sD2K1A1,D2K1A1L)}

551¢552€¢553¢554¢855¢55K6¢0,03

SS1LeSS2L¢SS3L¢SSALESSHLESSK6L€0,03

FOR NGeg STEP § UNTIL N2 DO BEGIN

SSK1¢5SK2¢SSK3¢SSKU€SSKS5¢0.03

SSKIL¢SSK2L¢SSK3IL€SSKAL¢SSKSL«0.03

HAMEX[2XNQJI3 HAMLEXLT2xNQ]S

FOR Ke¢i STEP 1 UNTIL J DO BEGIN

DPOWCHAMs HAML» TOM» TOML 2K ) 3

DOUBLECTUM» TOML,ALU»KYsALLU)K)sXp€r» ZETAL,ZETALIL)S

DOUBLECZETAL»ZETALIL,SSK1sSSKiLa+,¢»SSK1,SSKIL)}

DOUBLECZETAL,»ZETAIL,K»0sX» SSK2sSSK2L »+»€¢»SSK2,55K2L )}

DOUBLECN@=1505K,00X»»10+sKs0sX»ZETALS»ZETALIL »XsSSKI»SSK3L s +5€555K3»
SSK3L)3

DOUBLEC1+Ks0sKs0oXs ZETAL s ZETALL» X9 SSK4)SSKUL»+»€»SS5KU»SSKAL) 3

DOUBLE(K»OsKs0,x» 2ETAL»ZETALL 2%, SSKS»SSKSLo#» €5 SSKH, SSK5L)

F SUM OVER K LUOP’

DPOW(K2,K2L» ZETA2,» ZETAZL I NU=1)3

DPOW(K2,K2L» ZETA3»ZETA3LsNU=2)3

NDPOWCK2,K2Lo ZETAUS ZETAULSNU=3) 3

DOUBLECPPINQ)» 0 AK2,AK2L 0% ZETA2,ZETA2L s Xp XXIINQ=3 s XXILINQ=1]sX)»»
1,UsSSK1»SSKILs+s=s€sS5K6»SSKEL) S

NOURLE(NG=1s0,PPINQ],0sxsAK2,AK2L » X, ZETA3SZETA3L»X»XXIINQ=1],
XXILINQ=1)sXsNQ=1505S5SK2»SSK2LsXsK2sK2L2/»+s5SK6sSSKO6L»X»S5S1»
SS1Ls+s¢»SS1,551L)3

NOUBLECPPEINQ)» 0, ZETA2,ZETA2L s Xo XXIENQ=11 o XXILINQ=11»X»SSK2,SS5K2L»
AK2sAK2L» /9 +»5SK65SSKOL9X»SS25SS2L»+0¢»552,552L)3

$53€553+(SSKOX((NA=1)x(NQ=2)xPPINQIXAK2XK2% (NQ=3)xXXI[NQ=1)=(NO=1)x
SSK3/(K2%2))+((NQ=1)XPPINQ)IXAK2XK2*(NQ=2)XXXI[NQ=1]+(NQ=1)X55K2
/K2)%2);

SSUESSY+(SSKOX(=SSK4/(AK2#2) )+ (PPINOIXK2#(NQ=1)XXXI[NQ=1]1+SSK2/AK2)
*2)3

§$5€¢5554+(SSKOX ((NA=1)xPP[NQIxK2+(NQU=1)xXXIINQ=1)+(NQ~1)xSSK5/(AK2X
K2))+((NQ=1)XPPINQIXAK2xK2* (NQ=2)XXXTINQ=1]+(NU=1)IXSSK2/K2)X
(PPINGIXK2%(NQ=1)xXXI[NQ=1]+SSK2/AK2))

F SUM OVER NQ LnOP3
NDOUBLE(SS1»SS1L,»240sx,¢,DK2,0K2L)5
DOUBLEC(SS2s552L50240s%0¢»DA2,DA2L)5
NDOUBLE(SS3»553L,»2.0,x»€»D2K2,02K2L)3
DOUBLE(SS4»SSaL,»240s%s¢sD242,02A2L)3
DOUBLE(SS5,555Ls»240sxs€»D2K2A2,D2K2A2L)3
NP?K1K2¢D2K1A2¢02A1K2¢D2A1A2¢0,03
D2K1K2L¢U2K1A2L«D2A1K2L€D2A1A2L¢0,0}

F SEGMENTHUMP3}

COMMENT SOLUTION FOR DELTA A AND DELTA N3
IF NUMRUN=1 THEN

NOUBLECD2K1AL,D2K1ALL»DA1»DALLSX,D2A1,D2A1L UKL »DK1Ls»Xp =y
D2K1,02K1L,D2A1,D2A1L»xsD2K1AL,D2K1A1L»D2K1AL1,D2K1ALL X0 "5/>»
€, CHGL1),0BDUM);

DOUBLE(D2K1AL»D2K1ALL,UK15UK L 2X»D2K1o02K1L,DA1,DALLSI X,
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D2K1,D2K1L,D2A1,D2A1LsxsD2K1A1sD2K1A1L,D2K1A1,D2K1ALL X0 =0/
€, CHGL2),DRDUM)}
GO TO L&23
END3 i
OMTX{1,11¢D2K13 DMTX[1521€¢D2K1A1} DMTXC1»3)¢D2K1K23D0MTX(is4)¢
D2K1A23 DMTX(2,1)¢D2K1A13 DMTXL2,2)¢D2AL3
DMTX{25,3)¢D2A1K23 DMTX(254)¢D2A1A23 DMTX[3,1)1¢D2KiK23
DMTX[3,2)¢D2A1K23 DOMTX[353)1€02K23 DMTX(3,4)e¢D2K2A23 OMTX[4,1)¢
D2K1A2; OMTX(4,2)¢D2A1A23 UMTX[4,31¢D2K2A23 OMTX[4»,41¢D2A2}
OMTXLI1,13€D2K1L30OMTXL[152)¢D2K1ALLSOMTXLLL,3)€¢D2K1K2L3DMTXLLL1540¢D
2K1A2LI0OMTXLE2,1)¢D2K1AILSDMTXLE2»2)«D2ASLIDNTXL[253)¢D2ALK2LSDMTXLL254)
€D2A1A2L30MTXLL3,1)¢D2KIK2LSOMTXLL3,23¢N2A1K2LI0OMTXLL3,33€D2K2LIDMTXLESS
43¢D2K2A2L50MTXLL4,11¢D2K1ALLIOMTXLL4,2)¢D2A1A2L30MTXALL4»3)€¢D2K2A2LIDMTX
L{4as48)¢D2A2L5
SLUN[12]¢TRUE?
IF NOT SLONE12) THEN GO TO NX33
WRITECLP»FB17)3 WRITECLP»FB18, FOR [e€1,]I+1 WHILE I<4 DO
FOR KelsK+l WHILE K<4 DO DMTXCI»K))3
NX38 INVERTC4,DMTX, 8=6,SINGUL)S GO TO ON3
SINGUL? WRITECLPsFB22) 3
ONt DVECI[1)e=DK1} DVECL[2)e=DA13 DVEC(31le=DK23 OVEC(4] e=DA2}3
DVECLL1)¢=DKILDVECLL2)¢=DAILIVVECLL3)e=DK2LIDVECLLG)¢=DA2L}
IF NOT SLONE12) THEN GO TO NXx43
WRITECLP»FB17))
WRITECLP>FB18,FOR I€¢{1STEP 1 UNTIL 4 DO FOR K¢I1STEP t UNTIL 4
DO OMTX(I»K1)3
WRITECLP»FB20)3 WRITECLP»FB18,FOR I¢f STEP 1 UNTIL 4 D0 OVECL[I))3

NX43 FOR I€1 STEP 1 UNTIL 4 DO
BEGIN KK€0,03KKL¢0Ds03 FOR K¢l STEP 1 UNTIL 4 DO
DOUBLECOMTXEI»KI»OMTXLLISKI»OVECLKI»OVECLLKI»XoKKoKKL s #9¢sKKoK
KL)3
CHGLI)e KK3
CHGL[I)eKKL3
END3 IF NUT SLONC12] THEN GO TO L423

WRITECLPs FB21)3 WRITECLPsFB18,FOR l¢t STEP 1 UNTIL 4 DO CHGLI));
L423 DOUBLECCHGL11sCHGLE1)sK1oK1Lo4s¢sK15KIL)S
DOUBLE(CHGL2)»CHGLL2),»AKE»AKIL» ¢5¢» AK15AKIL )3
IF NUMRUN#1 THEN
BEGIN
DOUBLECCHGL31,CHGLE3]sK2,K2Lo+s¢,K2,K2L )}
DOUBLECCHGL4)»CHGLEAY»AK2,)AK2L » 45 ¢» AK2, AK2L )3
END3
IF NN=1 THEN GO TO L43;3
GO TO IF NN=3 THEN PLT ELSE L433
OWT: WRITE(LP,FB12);
PLT$ IF NOT SLONE25] THEN DRAWITC(TEMPX,TEMPY,N1»,N2)}
IF NOT SLONC25] THEN DRAWIT(TEMPXC»TEMPYC»N1»N2)3

L94: ENDS .
L95¢ END END END ENUL3
IF IND<AMT THEN
BEGIN

ARRAY LAIRDEO35)3

FILL LAIRDC%] WITH "OO0END OF00 DATA OQOSET "3
SYMBOLCOs4455421»LAIRD»=90,15)3

PLOT(3,0,=5)3

IND€IND+13
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GO TO Lé603
ENDJ
IF NOT SLONC25] THEN
BEGIN
ARRAY LAST[0:5])3
FILL LASTC#] WITH "OOPLOTTIOONG FINOOISHED "3
SYMBOL ( 158455489,LAST»=90,17);
PLOT(450,=3)3
END3
WRITECLPIPAGE])S
WRITE ¢ LP» <"]/0 TIME =" F7,2 " SEC."// "PROCs TIME="™ F742 " SEC,">
» TIME(3)/60 » TIME(2)/60 )3
END OF PRUGRAM,
ARCTAN IS SEGMENT NUMBER 0079,PRT ADDRESS IS 0117
C0S IS SEGMENT NUMBER 0080,PRT ADDRESS IS 0075
EXP IS SEGMENT NUMBER 0081,PRT ADURESS IS 0072
LN IS SEGMENT NUMBER 00825PRT ADDRESS IS 0071
SIN IS SEGMENT NUMBER 0083,PRT ADDRESS IS 0076
OUTPUT(W) IS SEGMENT NUMBER 0084,PRT ADDRESS IS 0045
BLOCK CONTROL IS SEGMENT NUMBER 0085,PRT ADDRESS IS 0005
INPUT(W) IS SEGMENT NUMBER 0086»,PHRT ADDRESS IS 0144
X TO THE I IS SEGMENT NUMHBER 0087,PRT ADDRESS IS 0073
GU TO SOLVER IS SEGMEMT NUMBER 0088sPRT ADDRESS IS 0065
ALGOL WRITE IS SEGMENT NUMBER 0089,PRT ADDRESS IS 0014
ALGOL READ IS SEGMENT NUMBER 0090,PRT ADDRESS IS 0015
ALGOL SELECT IS SEGMENT NUMRER 0091,PRT ADDRESS 1S 0016
COMPILATION TIME = 208 SECONDS.
NUMBER OF ERRORS DETECTED = 000. LAST ERROR ON CARD 2
NUMBER OF SEQUENCE ERROURS COUNTED = 0o
NUMBER OF SLOW WARNINGS = 0.
PRT SIZE= 4703 TOTAL SEGMENT SIZE= 6389 WORDS.
DISK STORAGE REQe= 360 SEGS,.3 NOs SEGSe= 92
ESTIMATED CORE STORAGE REQUIREMENT = 29335 WORDS.
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Program 200; Comment ORNOR CALL;

Begin Integer AMT, I: READPT(AMT); I 1;

I.60:Begin Integer N,M; READPT(N,M);

Begin Real AO,AT,epsilon,Temp; Integer n,k,comp,NN,MIN;

Array F 1l:M,1:N,Y,X 1l:N, a 1:M,1:M, BFF 1l:M;

Format FM10(5(Jl), 'Y(N)',2(J1)),FM12(5(J1), 'X(N)',2(J1)),
FM11(J7, 'TEMPERATURE=',F5.2,S5,'PER CENT HELIUM=',
F5.2,S85, 'NO. OF DATA POINTS=', I3,S5,'M=',13),

FM9 (5 (R10,85),J1);

Mc Procedure ORNOR (201,1,10);

READPT (Temp, comp, epsilon) ;

READPT(Y 1, ..., YN, X1, ..., X N);

PRINT (FM11l,Temp, comp,N,M); PRINT (FM10); PRINT(FM9,Y 1, ...,Y N):
PRINT (FM12); PRINT(FM9,X 1, ...,X N);

For n-l,n+l While n < N Do F[1,n]~1.0;

For k+<2,k+1 While k € M Do For n<l While nsN Do F[k,n]-X[n]
tk=1y; (or any function of X n desired)

ORNOR (N,M, epsilon,Y,F,a,BFF,MIN);

End End;

If I < AMT Then Begin I+“I+l;

Goto 160 End End;



