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ON SOME RELATIONS BETWEEN CANONICAL CORRELATION,
MULTIPLE REGRESSION, AND FACTOR ANALYSIS

CHAPTER I 

INTRODUCTION

General Introduction 
Two important and somewhat overlapping research areas in psycho

logy are prediction and the exploration of relationships among 
variables. The term "prediction" as used here can refer either to 
the anticipating of future events or to the dependence of one 
variable on another in a contemporaneous sense. The relationships 
among variables may be studied in terms of the variables as observed, 
or in terms of factors which are presumed to underly them and which 
may be expressed as linear combinations of them. Only linear 
prediction and linear relationships will be considered in this 
dissertation.

The statistical models most often used for prediction are the 
simple and multiple regression models, which assume that the pre
dictor or predictors have only certain fixed values rather than 
being free to vary (Johnson & Jackson, 1959). Other linear models 
which do not have this restriction and which involve a single 
criterion (Graybill, 1965) will not be dealt with here. The
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direction of prediction in the regression model is one way, so that 
if y is predicted from x one cannot also predict x from y.

The models used to explore mutual relationships among variables 
are the bivariate correlational and the multivariate factor analytic 
models, which assume that all variables are free to vary and all 
pairs of relationships bi-directional. The correlation model ex
presses the relation between x and y in terms of equations enabling 
one to predict x from y or y from x. The factor analytic model is 
concerned with relations among several variables, but does not aim 
explicitly at predicting any one of them from the others.

Both correlation and regression have to do with relating or 
predicting in terms of observed scores or measures, while factor 
analysis seeks more fundamental and conceptually simpler relation
ships which underly those actually observed.

Canonical correlation analysis (Hotelling, 1935, 1936) is a 
statistical technique which combines some of the features of 
regression, correlation, and factor analysis. It permits the 
investigator, within the same analysis and assuming only one model, 
both to predict and to explore relationships among variables. Sev
eral predictors and several criteria, all free to vary, can be 
analyzed simultaneously, and relationships within and between pre
dictor and criterion sets exhibited and studied. Although canon
ical correlation analysis has been available to researchers for 
thirty years, it has been little used, perhaps because of its seem
ing complexity and because of a lack of general appreciation of 
just how useful a research tool it can be.
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This dissertation will be concerned with canonical correlation 

both from the mathematical and empirical standpoints. On the math
ematical side, the purpose is to explain canonical correlation 
analysis by relating and comparing it to simple and multiple regress
ion and correlation and to factor analysis. This purpose will be 
achieved through the exhibiting of certain algebraic relationships 
and through the use of an illustrative problem involving artificial 
data with known properties. In the process of explaining canonical 
correlation analysis in terms of the more familiar statistical 
techniques, new light will be thrown on those techniques as well.

On the empirical side, canonical correlation analysis will be 
applied to real data in which the underlying relationships (factor 
structure) are not clearly known. The understanding gained from 
the consideration of the algebraic demonstrations and the illustra
tive problem will then be brought to bear on the interpretation of 
the results of an analysis of real data.

To avoid misunderstanding at the outset, it must be pointed 
out that there is a lack of uniformity of terminology in the liter
ature. Canonical correlation analysis has been referred to by at 
least one author (Koons, 1962) simply as "canonical analysis," 
while another author (Seal, 1963) uses that label to refer to a 
somewhat different procedure. Bartlett (19M-7) and McKeon (1962) 
use "canonical analysis" to refer to a very generalized approach 
to multivariate analysis which includes the usual canonical correla
tion analysis as one aspect. In this dissertation, "canonical 
correlation analysis" will refer only to the procedure developed
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by Hotelling for studying the relations between two sets of vari
ables, and "canonical analysis" in the sense meant by Bartlett 
will not be taken up. There will be no treatment of Rao’s (1958) 
"canonical factor analysis." "Factor analysis" will refer only 
to the principal components method of analysis (Hotelling, 1933) 
which ençloys ones in the diagonal of the correlation matrix and 
which yields orthogonal factors. There will be no considenation 
of the issue of rotation of factor axes. The following abbrevia
tions will be used hereafter in the text: CCA = canonical corre
lation analysis, MPA = multiple regression analysis, FA = factor 
analysis.

Mathematical Introduction 
Before reviewing the literature on CCA, it is essential for 

understanding the issues involved first to describe in a general 
way how it represents an extension of the more familiar correla
tion and regression techniques and how it relates to FA. In this 
section, for the sake of clarity and continuity, no proofs will be 
offered for the descriptive and interpretative comments which are 
made. Such comments will receive empirical and mathematical sup
port in later sections.

Simple Correlation and Regression 
Where there are only two variables to consider, the relation

ship between them may be summarized using simple correlation or 
regression. With either model, the linear expression relating y 
to X (or for predicting y from x), when both x and y are in stan-



dard score form, is;

CD

Here is the predicted y score for the î th person, and though
it is derived from standardized variables, it is not itself in stan-

2dard form. It has a mean of zero and a variance equal to ryx
In this chapter of the dissertation, observed variables such 

as X and y will be symbolized by lower-case letters to indicate 
that they are in standard form. Derived variables such as Y^, which 
are linear combinations of x or y, will not ordinarily, as derived, 
be in standard form and will be symbolized by upper-case letters. 
When such derived variables are deliberately standardized, this 
fact will be noted and they will then be referred to in lower-case. 

In single correlation and regression involving x and y scores, 
r^^ is both a regression wei^t and a correlation coefficient. As

A,a regression wei^t it reflects the rate of change in Y with respect
to X, and as a correlation coefficient it reflects the strength of

2the relationship between y and x. That is, lOOry^ gives the per
centage of variance in y accounted for by its relationship to x.
The test for determining whether r^^ differs significantly from 
zero is the same whether the correlation or the regression model is 
assumed.

Under the correlation model, an equation similar to (1) can 
be written for predicting x from y . Under the regression model, 
there is no point in predicting x from y , since the x values are 
fixed.
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For the purposes of this dissertation, and perhaps generally, 

it is convenient to make a change in notation and rewrite equation 
(1) as:

= V i -

Rather than talking about Y  as the predicted value of y, it
will facilitate the discussion to talk about P as the simple
weighted predictor of y. Though there is no over P, it is under
stood to be an estimate. Like Ÿ, P has a mean of zero and a 

_ 2variance o f  r^^.

Multiple Correlation and Regression
To move to a more complex situation, suppose that one has data

on four variables, x^, xgj y^, and y2, and that one wishes to develop
formulas for predicting the y ’s from the x's. The simplest approach 
is to predict each y variable separately from the x variable which 
correlates most highly with it. If x^ is the predictor which corre
lates most highly with ŷ ,̂ and Xg correlates highest with y^, the 
equations are:

(3a) P̂ ĵ  = r^^^^x^^, where P̂ ĵ  predicts y^^, and

(3b) P = r X , where P predicts y .
y 2̂ 2

It will often be the case that the prediction of the y ’s can 
be improved by using MRA rather than simple regression or corre
lation. Whereas the latter make use of simple weighted predictors, 
MRÀ makes use of composite weighted predictors. That is, x^ and Xg



are first weighted and combined to form a predictor of y^, and then 
recombined with different wei^ts to predict y^:

(i+a) MRA: P.^ = a, ,x., + a^ where predicts y._, andil 11 il 21 i2 il il

(M-b) MRA: P = a x + a x ,  where P predicts y .i2 12 il 22 i2 i2 Id

The "MRA" prefix is to make clear that these are multiple regres
sion equations. Later equations having this same general form will 
be prefixed "FA" and "CCA". In this way it is not necessary to use 
different sets of symbols when talking about the different methods 
of analysis.

The correlation between P^ and ŷ  ̂is called a multiple corre
lation and is here symbolized as "mult R^." The weights a-, ̂ and 
a^^, called standard partial regression weights, are chosen so that 
the error in predicting ŷ  ̂from P^ is a minimum and thus mult R^ is 
a maximum. Unlike the situation in simple correlation and regres
sion, these weights are not in general also interpretable as corre
lation coefficients. In the special case where x^ and X2 are un
related, the weights are both regression and correlation coefficients :

®12 = 2̂2 ' ''xgy;-

Mult is the correlation between P^ and y^, with a^^ and a^^

chosen so that mult is a maximum. Although the mult R ’s are 
called correlation coefficients, they do not imply a two-way relation-



ship as in the case of simple correlation, since and have 
only certain fixed values and do not vary as a function of the y's.

P, and P are not in standard score form, but have means of
' 2 2zero and variances equal to mult and mult respectively (proof

in Appendix I). They may be standardized by dividing the weights 
throu^ by the respective mult R's as follows :

(5a) MRA: p̂ ^̂  = x^̂  ̂+ ^21 x^^,
mult Rĵ  mult R^

(5b) MRA: p = ^12 x + ^22 x ,
^ mult R^ ^ mult Rĵ  ^

or more simply, designating the transformed coefficients by v ’s;

( S c ) MRA: = v^x.^ + V l 2 '

(5d) MRA:

The v's are partial regression weights which are appropriate
ly applied to standard Xĵ  and x^ scores, just as were the a’s. The 
v's, however, are scaled so that the composite predictors are in 
standard form (and p^ and p^ are therefore now in lower-case letters) 
Such a scaling of regression wei^ts is sometimes called "normal
izing" (Koons, 1962), though "normalizing" may have other meanings 
(Anderson, 1958). Whatever it is called, such scaling, being a 
linear transformation, does not affect the multiple correlation 
between the composite predictor and the criterion.

In MPA, standardizing the composite does not seem to be too
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commonly done, but in CCA it has been done by some authors and not 
by others, with resultant confusion when comparing different studies 
or different mathematical presentations. Standardizing the com
posite offers the same advantages as standardizing any other type 
of score: it simplifies the algebra and it puts all scores on a
common scale, making possible comparisons within and between indi
viduals across different types of scores.

The requirement in MRA that the x values be fixed often proves 
to be a severe restriction in practice, and this aspect of the model 
is often ignored. The x's are treated as if they were free to vary, 
with the result that the statistical tests for the mult R ’s and 
regression weights are rendered questionable. As will be seen, in 
CCA the x ’s are truly free to vary.

Factor Analysis
Both in the simple and multiple cases, correlation and regres

sion have to do with observed relationships rather than any pre
sumably more basic ones. The factor analytic approach to studying 
the covariations among x^, x^, y^, and y^ is not designed explicit
ly to predict any one of them from the others, but rather to show 
how each variable is composed of a weighted sum of factor variables 
common to all of them. It may also be employed to produce a set 
of factor scores for each individual in the sample, though this 
aspect of FA is not as well-known. These two aspects of FA will 
now be considered separately.

Observed variables as linear function of factor variables. If
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it were known, for exaiigle, that each of the x variables reflected 
both verbal and motor ability on the part of each individual, and 
if it were known just how much of each type of ability was involved 
in each of the x ’s, one could write:

(6a) FA: and

That is, the score of the i/th person on each of the x variables
is a linear combination of his standing on the factor variables p^
and p^. Verbal and motor ability are assumed to be uncorrelated
in the population and the p ’s, as estimates of these abilities, are
referred to as orthogonal factor variables or factor scores. Note
that the p ’s are in standard score form.'

There is no explicit error term in the FA model here described.
If X is a function of a large number of factors, it may be that the
last factor or factors will be dismissed as ’’error.” This matter
will be considered further in a later chapter.

The f’s in (6a) and (6b) are factor loadings. A loading is a
prodr'It-moment correlation between one of the original (x) variables
and one of the factor (p) variables. For example, f^^ is the corre-

2lation between x^ and p^, and f^^ shows what proportion of variance
in Xĵ  is accounted for by individual differences in verbal ability.

2Similarly, f is the correlation betvjeen x and p , and f shows12 1 2  ^12 g
how much of the x variance is accounted for by p . If f + f = 1, 1 2 11 12
then all the variation in x̂  is explicable in terms of the two 
factors.
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The variation in can likewise be explained as a result of 

its loadings on the two factors. Further, the correlation between 
and x^, which is an index of their common variation, is equal 

to the sum of crossproducts of the respective factor loadings:

(60) FA: = ( % )  (fĝ ) + C y  (fg;) •

The observed variables could be said in this case to have a factor
complexity of order two, since two common factors underly each of 
them.

Factor variables as linear functions of observed variables.
The above equations, (6a) and (6b), are such that the observed
variables are expressed as explicit functions of the factor variables. 
It is possible to invert the expressions so that the p's appear as 
explicit functions of the x's:

(7a) FA:

(7b) FA: p^2 -  '** ''22^i2*

The v's are partial regression wei^ts, scaled so that the 
p's will be in standard form. Note that except for the "FA" pre
fix, these equations are identical to (5a) and (5b). The "FA" 
prefix means that while the x's may have the same values in both 
pairs of equations, the v's will not, and the p's will have quite 
different meanings. The p's in FA are estimates of pure orthogonal 
factor measures, while the p's in MRA may be quite complex factor- 
ially and are not generally orthogonal to one another. Thus the
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composite scores in (7a) and (7b) are conceptually simpler than 
those in (5a) and (5b)

Matching factors from separate analyses. Considering now the 
y variables, assume for the moment that they too reflect verbal and 
motor ability and that the loadings are known. (The fact that these 
assumptions cannot really be made for either the x ’s or the y ’s 
will be taken up later.) Then one could write:

(8.) FA:

(8b) FA:

Here the g’s are loadings and the q ’s are estimates within 
the y set of pure verbal and pure motor ability. The explicit 
equations for the factor scores are:

(9a) FA:

(9b) FA: q = w y  + w y ,i2 12 il 22 i2

where the w ’s are partial regression weights which standardize
the q ’s and the correlation between q and q is zero. The y ’s and1 2
the x ’s in these FA equations are not fixed, but are free to vary.

Both p^ from (7a) and q^ from (9a) are here assumed to be 
estimates of pure verbal ability in the same group of subjects.
In the ideal case the correlation between p^ and q^ would be ident
ically one. In actuality it will be less than one, but will furnish 
some information concerning the extent to which the verbal factor 
does saturate the two sets of variables (the x set and the y set).
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Similar remarks apply to p^ and with respect to the assumed motor 
factor.

In the example it is assumed that the factors are known, and 
that the same two factors underly the x and y sets. In practice 
the factors are not known, but are inferred after the analysis from 
an examination of the loadings. It is not necessarily the case that 
the same factors will inhere in both sets, and if they do they may 
not appear in the same order when the sets are analyzed separately. 
As will be seen in the review of the literature which follows, 
matching up pairs of factors from separate analyses is an important 
problem in FA.

Canonical Correlation Analysis 
CCA is like FA in that it breaks the x and y sets into ortho

gonal factors, but it does this simultaneously rather than in two 
separate analyses, and it produces matched pairs of p and q com
posites. CCA is like MRA in that it maximizes the correlation 
between the predictor and criterion, but in CCA both the predictor 
and criterion are composites, while in MRA only the predictor is a 
composite. CCA directly yields equations such as the following;

(lOa) CCA:

r = maximum;

(lOb) CCA: P12 = v^^x.^ + v^^x.^,

r = maximum; 
^2^2

(10c) CCA: r = r = r = r =0.P1P2 Pl̂ 2 P2*ïl



The "CCA" prefix distinguishes theâe equations from previous 
MRA and FA equations of the same general form and using the same 
symbols. Here the v ’s and w ’s are partial regression wei^ts which 
are scaled so as to standardize the p ’s and q ’s.

CCA as developed by Hotelling did not include any consideration 
of factor loadings, and perhaps as a result a number of users of CCA 
have interpreted the v and w weights as if they were loadings. It 
is possible, however, to calculate loadings by solving (10a) and 
(10b) explicitly for the x ’s and y ’s:

(lia) CCA: + ^12^12' ^ 1  = h A l  *

(11b) CCA: X^J = f21^11 + ^22^12’ ^12 " ®21®il * ®22%2"

The f ’s are correlations between the x ’s and the p ’s, and the
g’s are correlations between the y ’s and the q’s. It is also poss
ible to obtain the correlations of the x ’s with the q’s and the y ’s 
with the p ’s: these are loadings between sets. Both kinds of load
ings can be useful in evaluating the results of a CCA.

In CCA, the correlation between p. and q is called a canon-
3 3

ical correlation, and the composites p and q are sometimes refer-
3 j

red to as canonical variâtes. (The notation p refers to the
ij

score of the _ith individual on the ĵ th composite predictor, while
Pj is a general reference to the ĵ th composite predictor.) In this
dissertation, the term "canonical factor" will sometimes be used as
a synonym for canonical variate. The term "factor variable" or
"factor score" will be used to refer to a composite score such as
p. or q derived from either an FA or a CCA.
3 3



CHAPTER II

REVIEW OF THE LITERATURE 
Hotelling, who developed CCA, also made two specific pro

posals for its application which are of relevance to psychological 
research. The first (Hotelling, 1935) was in the area of pre
dicting academic achievement. He suggested that instead of using 
a single criterion of academic success, such as cumulative grade 
point average, several of the more common criteria be used, allow
ing the analysis itself to wei^t and combine these into a "most 
predictable criterion," This proposal seems rarely to have been 
followed: almost all researchers continue to rely on multiple
regression and the single criterion. Often the single criterion 
is not truly unitary. Grade point average, for example, is a 
weighted sum (all weights being equal) of grades in a number of 
courses; CCA, by assigning different wei^ts to grades in different 
course areas, could enhance the predictability of academic success. 

One investigator who did follow Hotelling’s suggestion was 
Jones (1964-), who used CCA to predict talented behavior in students. 
Test data gathered on 4-50 students in the seventh grade was used 
to predict their performance as h i ^  school seniors. Talented be
havior was defined in terms of grade average, aptitude and achieve
ment test scores, teacher and peer nominations for various kinds

15
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of talents, and awards received for talented achievements. These 
raw criterion measures were factor-analyzed to remove redundancy, 
yielding a set of 21 uncorrelated factor variables. The raw pre
dictors, drawn from test scores and classroom performance, were 
also factor-analyzed to yield seven uncorrelated factor variables, 
(While the factored predictors did not correlate with one another 
and the factored criteria did not correlate with one another, the 
factored predictors did correlate with the factored criteria.
That is, the factor variables were orthogonal within sets but not 
across sets.) The seven factored predictors and the 21 factored 
criteria were then subjected to a CCA, yielding five significant 
canonical correlations for the first five matched pairs of canon
ical variâtes. These correlations ranged from .78 to .29.

Jones did not make use of canonical loadings in interpreting 
the meaning of the canonical factors, but he was explicitly aware 
of the fact that the canonical weights are partial regression co
efficients which can not in general be used for interpretation.
He was able to use these weigjits for interpretation in his study, 
however, because of having factor-analyzed the predictor and 
criterion sets before using them in the CCA. Jones’ discussion 
of the rationale was as follows:

Ward (1962) has shown that beta weights cannot be 
interpreted in the multiple linear regression case 
because the weights represent only one of several 
possible solutions to the regression equation and 
because the predictor variables typically have some 
linear dependencies. Ward states, however, that the 
beta wei^ts can be interpreted in the special case 
of orthogonal variables . . . .  Because the variables 
in this study are all factor variables . . . they meet 
Ward’s criterion of orthogonality (1969-, p. 37).
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It will be proved in Appendix II that the reason canonical 

weights can be interpreted in this special case is that they are 
in this instance identical with the canonical loadings within sets. 
Thus Jones has shown one way in which a meaningful CCA can be 
carried out. In the general case, however, weights and loadings 
are not identical. If for some reason an investigator cannot or 
does not wish to use factored variables as input to a CCA, he can 
still interpret the results by recourse to the canonical factor 
loadings, as will be shown later.

Hotelling’s second proposal for the application of CCA was as 

follows :
A use sometimes made for factor analysis in the past 

is in testing for the relations between two sets of 
variâtes. One study of the relations of character with 
mentality, for example, used seven mental tests and seven 
estimates of character traits by acquaintances. A stand
ard factor analysis technique was applied to the mental 
measurements, and independently to the character scores, 
so as to get seven mental factors and seven character 
factors. A name was applied to each of the fourteen 
factors thus found, and a plausible matching of character 
factor with mental factor was arranged so as to get seven 
pairs. The correlations within the pairs thus calculated 
were then computed, and judged in each case insignificant.

This kind of use of factor analysis should clearly be 
superseded by an examination of canonical correlations 
between the two sets of variâtes. The largest canonical 
correlation will be larger than all the correlations 
between the two sets actually found, and has a better 
chance of being found significant and thus demonstrating 
the existence of a relation between the two sets if one 
actually exists. The other canonical correlations, in 
decreasing order of size, and the corresponding canonical 
variâtes, will help elucidate the nature of any relations 
that may exist between character and mentality. The 
separate factor analyses of the two sets were really quite 
useless for this purpose (1957, p. 79).
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Ten years before Hotelling made the statement just quoted,

Burt (191+7) published a study in which he applied both CCA and 
separate factor analyses to the same data. The data he used were 
artificial, since he wished to show under what conditions the two 
types of analysis would lead to the same result. One set of (fic
titious) variables was supposed to consist of students’ scores on 
four tests, while the other set (also fictitious) consisted of 
estimates by four different teachers of the academic ability of 
each of the students. Thus there were eight variables in all, 
four in each set.

Burt factor-analyzed each set separately to get four "test" 
factors and four "teacher" factors. He then wished to use each 
test factor to predict one of the teacher factors. Rather than 
pairing off the factors on the basis of plausible resemblances in 
the way that Hotelling criticized, Burt resorted to still another 
FA, lumping all ei^t variables together and analyzing them as if 
they constituted one set. This overall analysis yielded four 
general factors pretaining both to test and teachers’ estimates; 
in fact, the loadings on these four general factors were ident
ical to the loadings obtained in the separate analyses. Burt 
had arranged the data so that this would be the case. The overall 
analysis enabled Burt to match factors from the separate analyses 
on the basis of knowledge concerning the existence of general fact
ors underlying both sets.

Burt also carried out a CCA of the two sets. Since CCA as 
Burt was using it produced wei^ts but not loadings, he had to find
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some basis for comparing the canonical and factor analyses. He 
solved this problem by calculating factor weigjits (like those in 
equation 7a) for comparison with the canonical wei^ts, and he 
found the respective sets of wei^ts to be proportional. He 
concluded that the same factors were extracted in the CCA and in 
the separate FAs (and in the overall FA, for that matter).

Acknowledging that his artificial data presented something 
of a special case, Burt argued that his approach would be useful 
with real data. To the extent that the results of an overall FA 
and separate FAs agree, so also would the results of a CCA and 
separate FAs agree. He suggested that an investigator employ 
both CCA and an overall FA in attempting to understand a given 
problem. Presumably the CCA would provide maximum predictability 
for the pairs of canonical variâtes, while the FA would provide a 
key to the interpretation of the CCA. It will be shown in this 
dissertation that through the interpretation of canonical loadings 
CCA can be used both to elucidate factor structure and to describe 
relationships between sets of variables. A separate FA is not 
required.

In this same article Burt made a statement which seems to have 
been misunderstood by later investigators. He said, "Factors we 
may consider to be identifiable in terms of their weights" (1947, 
p . 104). Burt was not here referring to interpreting factors ; he 
was noting that if the same variables receive the same relative 
wei^ts by two different factoring procedures, then the same fact
or must be involved in both cases. Factors may be identifiable in
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terms of their wei^ts, but it is a long established practice 
(Fruchter, 1947; Harman, I960) to interpret them in terms of their 
loadings.

Quite recently. Das (1965) pursu»  ̂.rt's suggestion that 
both an overall FA and a CCA be carried out on the same set of 
empirical (rather than artificial) data. Before making the com
parative analyses, Das argued than only one particular kind of FA, 
namely principal components analysis (PCA), was really comparable 
with CCA. According to Das, the fundamental PCA equation is as 
follows :

(12) PCA: P ij , = + • • •  + v ^ x . ^ ,

while the fundamental CCA equations are:

(13) CCA: P i i  = v^ x^ j^  + + • • •  +  v ^ x ^ ;

«11 ' "ll/il + "21^12 + + W i n  •

In both of these, the factor variables are expressed as func
tions of the original variables. Both the PCA and CÇA solutions 
yield regression wei^ts which enable one to compute factor scores 
for each individual in the sample.

Other types of FA assume the following fundamental equation 
(assuming that there are .as many factors as original variables):

(14) FA: Xii = fiiPii + fi2Pi2 + + ^InPin*

Here the FA solution directly yields the loadings rather than the 
wei^ts. Das makes much of the fact that in (12) and (13) the
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factor variables (p’s and q's) are dependent whereas in (14-) they 
are independent. While this may be true in a formal sense, it does 
not seem to have much practical significance. The weights in (12), 
and separately in (13) can be used to calculate loadings, and the 
loadings in (14) can be used to calculate weights. Burt, in his 
1947 article cited by Das, computed both weights and loadings from 
what was essentially a model such as (14). As will be shown, both 
are useful in both CCA and FA. The weights enable one to compute 
factor scores for each person on each factor, and the loadings 
enable one to make possibly fruitful hypotheses about what the 
factors mean.

There is another way in which PCA and CCA are alike that does 
seem to have some practical significance. Both require that ones 
be placed in the diagonal of the correlation matrix. Other types 
of factor analysis permit "communality” estimates rather than ones 
in the diagonal. The issue of coramunalities will not be treated 
here (see Harman, 1960), except to note that the choice of commu
nality estimates is to some extent a subjective matter which can 
affect the values of the weights and loadings. For this reason,
PCA is the only type of FA considered in this dissertation.

Das did not compare CCA and PCA in his empirical demonstration. 
Rather he used principal axis FA, which is computationally the 
same as PCA except that communality estimates are used, stating 
that he wished to see how the differences in model would affect 
the outcome. His data consisted of the scores of 223 Indian college 
students on five "experimental non-verbal reasoning tests" and 12
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"reference tests for reasoning." The principal axis FA was done 
on all 17 tests, while for CCA the tests were divided into sets of 
five and 12 as indicated.

For comparative purposes. Das reported the loadings for the 
first five principal factors and the weights for all five canonical 
variâtes. He acknowledged that weigjhts and loadings have different 
statistical meanings, and he showed that variables with higher load
ings on a given factor in the FA did not always have higher weights 
on the corresponding factor of the CCA. He did note a ro u ^  corres
pondence in the relative sizes of wei^ts and loadings for the first 
factors only, which led him to conclude that "where there is a 
general factor running through the combined set of measurements, it 
will appear as the first canonical variate when the measurements 
are divided into two sets" (p. 6M-) . He added that this conclusion 
is consistent with Burt’s expectations.

Das’ final conclusions were:
It may be inferred from these illustrative results that 

where generation of ideas regarding the nature of a domain or 
set of measures is required, factor analysis is likely to 
retain its pre-dominant position in the analysis of psycho
logical data. ... For purposes of prediction and the testing 
of statistical hypotheses concerning the relations between 
two sets of variables, canonical analysis appears to be the 
more appropriate statistical method (p. 66).
In other words. Das seems to ingly, with FA one can interpret 

but not make statistical tests, while in CCA one can make statisti
cal tests but not interpret. It is the main purpose of this disser
tation to show, however, that with CCA, through the use of canonical 
loadings, both interpretation and the making of statistical tests 
are possible.
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There are relatively few other studies reported in the litera

ture in which CCA has been used with real data. Cooley and Lohnes 
(1962) present the results of a CCA in which relationships are 
sou^t between a number of measures of early home environment and 
several measures of present orientation toward people. They present 
only weights in their results, and appear to interpret them as if 
they were loadings. King, Bowman, and Moreland (1961), seeking 
factors common to biochemical levels and intelligence, take a simi
lar interpretative approach, citing Burt's (1997) statement that 
factors are identifiable by their weights as justification for 
interpreting in terms of wei^ts. Wittenbom (1963) followed up a 
CCA with a series of MBAs, taking one criterion variable at a time, 
in an attempt to clarify the nature of the relationships between 
the predictor and criterion sets. Such a two-step procedure is 
unnecessary, since the use of canonical loadings will do a clearer 

job of showing how the two sets are related.
The relative neglect of CCA, as well as the failure to exploit 

it fully in those cases where it has been used, may be due in part 
to the extreme difficulty, for non-mathematicians, of Hotelling's 
original articles. Almost a dozen years after these appeared,
Thomson (1997) attempted a "popular" presentation. Though very much 
easier to follow, this article still did not suggest that any more 
information could be gotten out of an analysis them one or more 
canoniceil correlation coefficients. Thomson indicated briefly, with
out comment, how CCA is an extension of MBA to the case of several 
criterion variables. He ceilculated one kind of canonical loadings.
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but only as a conçutational step in getting the weights; he did not 
identify the loadings as such, nor indicate that they m i ^ t  be help
ful in elucidating factor structure. Thomson’s linking of CCA to 
MBA, however, was an ingortant step forward in furthering the under
standing of CCA, and his demonstration will be recapitulated, with 
more commentary than he provided, later in this dissertation.

In a recent book on multivariate statistics, Anderson (1958) 
devotes a chapter to CCA. Although more strai^tforward than 
Hotelling’s original articles, Anderson’s presentation is still 
heavy going for non-mathematicians. His development is based on 
deviation scores rather than standard scores, which introduces some 
extra complexity into the discussion. Anderson provides one worked 
example, involving two predictor and two criterion variables. He 
interprets the results of the wei^ts, and makes no mention of load
ings.

Two recent books dealing with the use of electronic computers 
in the behavioral sciences contain chapters on CCA. Koons (1962) 
took the small correlation matrix that Thomson had analyzed earlier 
and showed in more detail how to analyze it. Like Thomson, he used 
canonical loadings only as a step in the calculation of the weights. 
Toward the end of the article he calls for the joint application of 
CCA and FA to the same data as a way of increasing the understanding 
of both methods. Koons’ presentation would be a useful ’’cookbook” 
for potential users of CCA, except that there are some algebraic and 
computational errors that could be confusing.

The other computer-oriented chapter on CCA is by Cooley and
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Lohnes (1962) . They show algebraically how canonical wei^ts and 
correlations are obtained. They provide a worked exangle, but as 
already noted, the results are interpreted in terms of wei^ts.
They also provide a computer program for CCA written in IBM FORTRAN. 
Although a knowledge of matrix algebra is assumed on the part of 
the reader, this chapter by Cooley and Lohnes is probably the most 
easily understandable introduction to the subject now available.
It will not, however, enable the researcher fully to exploit the 
possibilities inherent in CCA.

Meredith (1964) described a method of applying CCA to the "true 
score" component of observed scores, thus correcting the canonical 
correlation coefficient for attentuation. He coincidentally took 
up the "more or less unrelated" problem of interpretation:

The usual method of analysis is to compute the canonical 
correlations and the associated matrices of regression 
wei^ts (transformation matrices) for determining the 
canonical variâtes from the original measures. If the 
variables within each set are moderately intercorrelated the 
possibility of interpreting the canonical variâtes by 
inspection of the appropriate regression wei^ts is practically 
nili However, the correlations between the canonical variâtes 
and the original measures can be very enli^tening (p. 55) .
These "enlightening" correlations are what are here called

loadings. Meredith did not refer to them as such. He showed how
to calculate both loadings within and loadings between sets, but
did not point out that there is a relation between them. It is
proved in Appendix II that for each factor, the loadings between
sets equal the loadings within sets multiplied by the associated
canonical correlation coefficient. It is also proved that the sum
of squares of loadings between sets for a given varie^le equals the
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squared multiple correlation between that variable and all the var
iables of the other set.

Meredith provided an example consisting of a CCA of the 
Wechsler Intelligence Scale for Children, with the verbal subtests 
making up one battery and the performance subtests making up the 
other. Subjects were 100 boys and 100 girls. He did the analysis 

both in terms of the observed scores and the hypothetical true scores, 
and perhaps because his attention was focused on this aspect of the 
analysis, he did not interpret the canonical loadings, although 
they were given in the results section. Inspection of his first 
factor loadings suggests that there is a general verbal factor 
which strongly saturates all the verbal subtests, particularly 
Digit Span and Comprehension, while it saturates primarily only 
three of the performance subtests— Picture Arrangement, Picture 
Completion, and Coding. The first canonical correlation between 
batteries is .68, which becomes a .97 when corrected for attenuation.

In one section of a mathematically-oriented monograph relating 
CCA to FA, discriminant function analysis, and scaling theory,
McKeon (1962) indicates that CCA may be used for matching factors 
from separate test batteries. He proves that the matrix of what 
are here called loadings within sets can be obtained from a matrix 
of suitably scaled canonical weights, thou^ he uses the terms 
"factor structure" and "factor matrix" rather than "loadings."
Using data published by another author, McKeon offers as an example 
the CCA of a battery of occupational preference tests and a battery
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of personality measures. The matrix of canonical weights, the 
"factor matrix," and the canonical correlations are given without 
comment or discussion.

McKeon has in essence solved the interpretation problem in 
CCA, though perhaps more by implication than by explication. A 
later paper by Mukherjee (1966), which cites McKeon in the intro
duction, presents a series of CCAs of learning data in which only 
the weights are given— "factor matrices" or "loadings" are not 
mentioned. Mukherjee uses the highest weighted variable as the 
basis for interpreting a factor, and discounts the variable with 
the lowest weight, though it will later be shown that a variable 
may have a low wei^t and still have a h i ^  loading.

Mukherjee also makes the statement that the criterion variable 
with the highest weight can be predicted as well as the entire com
posite criterion of which it is a part. That is, he states in 
effect that if y^ has the highest weight in g^, for example,then 
r^ y “ q - the first canonical correlation. Actually, r^ y

is what is here called a loading between sets, and it would equal 
the first canonical correlation only if the weights for yg, y^, and 
so on, were all identically zero.

McKeon, in another section of his monograph, takes up the 
question of finding an overall index of association between batter
ies. Each canonical correlation is a measure of association between 
matched pairs of factors extracted from the two batteries, and McKeon 
notes that the root mean square canonical correlation has been pro
posed as an overall measure of association between the two batteries
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each taken as a whole. He offers an alternative which is a function
only of the first squared canonical correlation coefficient. In

2this dissertation an index (called H for Hotelling) will be pro
posed which takes into account not only the size and significance 
of all the canonical correlations, but also the factor structure of 
the two batteries.

To summarize the review of the literature, there seems to have 
been no investigator, whether of an applied or a theoretical bent, 
who has made an attempt to clarify thoroughly the relationships 
between MBA, FA, and CCA, or who has fully exploited the inter
pretative possibilities inherent in the examination of the canonical 
loadings within and between sets. Weights and loadings have been 
confused by many authors, while others have used loadings without 
recognizing that they have some of the same properties as ordinary 
factor loadings, plus some unique properties that can also be help
ful in interpretation. There are also differences in notation 
and terminology in the literature which, though not presented in 
detail here, are a possible source of perplexity to the investigator 
who would like to find out what CCA is all about.

In what follows, an artificial problem and a problem involving 
real data will be analyzed extensively, with sufficient commentary 
given at every step to make clear what that step involves. Ref
erences to differences in notation and terminology will be made at 
appropriate places in the various analyses. It will be shown how 
MRA and CCA are related, and how CCA, through the use of loadings, 
can elucidate factor structure. An overall index of relationship
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between batteries which takes account of factor structure will be 
proposed. Algebraic proofs, and a complete summary in matrix nota
tion of all important definitions and relationships, will be pre
sented separately for MRA and CCA in Appendices I and II respect
ively.



CHAPTER III

ILLUSTRATIVE ANALYSES OF ARTIFICIAL DATA 
The artificial data for this illustrative problem is shown in 

terms of "true" factor scores in Table 1. These factors have no

TABLE 1.— "True" factor scores for the 
illustrative problem

Subject
Pi

Variables 

?2 % 92

1 -1.11 .62 -1.12 - .58
2 - .27 .71 - .26 1,76
3 .29 .90 .31 - ,55
9 - .4-6 -1.72 - .96 - .98
5 1.55 - .02 1.59 - .15

Mean 0.00 0.00 0.00 0.00
Variance 1.00 1.00 1.00 1.00

particular meaning— this problem is intended to show in detail how 
to do the complete MRA and CCA. Interpretation will be taken up 
in the next chapter. All calculations for this problem were 
carried out to six decimal places; these were rounded to two places 
for brevity of presentation. Note that the factor measures in 
Table 1 are in standard score form.

30
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The ideal factor scores in Table 1 are transformed into 

"observed” scores using the following relations:

(15a) = (.81)p.^ + C-.60)p.g, y.^ = (.87) + (.^9)q^2’

(15b) = ('28)p^^ + (-.96)p^g, y.g = (-.96)q^^ + (.29)g^g.

(The i subscript on x, y, p, and q will hereafter be dropped, but 
implicitly there.) The coefficients of the p ’s and q's are factor 
loadings. The "observed scores" thus obtained from (15a) and (15b) 
for each of the five-subjects are given in Table 2. It is from 
these observed scores that the MRA and CCA proceed.

, TABLE 2.— "Observed" scores for the illus
trative problem

Subject
^1

Variables 

xg y^ ^2

1 -1.26 - .91 -1.26 .91
2 - .63 - .76 .63 .76
3 0.00 - .30 0.00 - .45
M- .63 1.52 - .63 .30
5 1.26 .45 1.26 -1.52

Mean 0.00 0.00 0.00 0.00
Variance 1.00 1.00 1.00 1.00

Vector and Matrix Notation 
The four columns of Table 2 are standard score vectors,
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symbolized by x^, Xg, y^, and yg. For example.

(16)
- .91
- .76
- .30 
1.52
.4-5

The sum of squares for any variable is obtained by premultiply
ing the standard score vector by its transpose: sum of squares =
xl X.. -] -] The sum of crossproducts for any two variables is of the
form x^ Xjj i/j. For n degrees of freedom, the variance of any var
iable, say ^̂ 2 5 is (l/n)^^ Z 2 = 1.00, and the correlation between 
any two variables, say x^ and yg, is (1/n) x£ alternatively

(1/n) y_2 2ii •

The two columns of x scores make up the predictor matrix X:

(17) = £2] -

•1.26 - .91
■ .63 - .76
0.00 - .30
.63 1.52

1.26 .1̂ 5

The matrix product (1/n) X'X gives the matrix of intercorrelations 
for the x ’s and is symbolized by -, :

(18) = (1/n) X ’X =

Y is the two-column matrix of y scores from Table 2, and the 
product (1/n) Y ’Y gives the intercorrelations of the y ’s (Rgg)• The

^^1^1 ^^1^2
1.00 .79

r
_^2^1

r
X2X2 .

.79 1.00
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product (1/n) X ’̂Y gives the correlations of the x's with the y ’s 
(Rĝ g), and (1/n) Y ’X the correlations of the y ’s with the x ’s 

(Rgi) • R^2 ^21 contain the same entries but with rows and

columns interchanged, so that one is said to be the "transpose” of 
the other.

All four columns of Table 2 make up the data matrix D:

(19) £  = [x x ]  = &2 Ï1 £ 2 ] •

The matrix of intercorrelations of all the variables in Table 
2 may be obtained directly using D:

(20) R = (1/n) D ’D =
(1/n) X ’X (1/n) X ’Y
(1/n) Y ’X (1/n) Y'Y

-11 -12
3 i -22

R is a supermatrix (a matrix whose elements are matrices). Numeric
ally,

(21) R
1.00 .79 .60 -.84
.79 1.00 .07 -.37
.60 .07 1.00 -.70

-.84 -.37 -.70 1.00

Multiple Regression With £  Single Criterion 
The usual MRA approach to predicting the y ’s from the x ’ç' wbu-ld 

take each y separately. To predict y^, for example, the following 
correlation matrix would be used:
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(22)

- 1.00 .79 .60
R r .79 1.00 .07-11 -T.2

-21 ^22 .60 ,07 1.00

The correlations involving y2 are left out, and tiie matrices
R,„ and R , are replaced by the vectors r,„ and r„^, while the ~12 —21 —12 —21
matrix R^^ is replaced by the single number rg2 which represents 
the correlation of y^ with itself. From (22) the vector of standard 
partial regression weights, a, for predicting y^ from the x's, is 
found by:

(23) MRA: a =

- -
a 2.67 -2.11 .60 1.451 -1

.•2.
= h i  ^12 = -2.11 2.67 .07 -1.08

_ — . — n

where R ^ is the inverse of R . (The inverse of a matrix is anal- -11 -11
ogous to the reciprocal of an ordinary number.) The prediction 
equation for ŷ  ̂is therefore:

(24-) MRA: P = (1.4-5)x + (-1.08)x , r = maximum = mult R.
^1^1

is not in standard score form. Mult R is found by:

2 -1 (25) MRA: mult R = r R__ r = *79.-21 -11 -12
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Simultaneous Regression Analyses Involving 

More Than One Criterion Variable 
In the same manner as above, separate equations could be devel

oped for predicting y^. However, it is possible to do both MRAs at 
once using the full correlation matrix shown in (20) and (21). The 
matrix of regression wei^ts for both y^ and y^ is given by;

(26) MRA: A = Rĵ 2 ^11 ^12 1.1+5 -1.1+5

^21 ^22 -1.08 .78

which yields a pair of prediction equations:

(27a) MRA: = ( 1.1+5) x^ + (-1.08)X2,
(27b) MRA: Pg = (-1.45)x^ + ( .78)X2.

The two squared mult R ’s between P^ and y^ and between P^ and 
y2 respectively are found on the diagonal of the matrix where

.79 -.82
-1(28) MRA; =

— .82 .93

2 2 That is, mult R̂  ̂= .79 and mult R^ = .93. The off-diagonal elements
of Rg ^ have no simple meaning, but are useful in subsequent cal
culations.

Standardizing the Composite Predictors
P and P are not in standard form; they have zero means and

2 ^  variances equal to their respective mult R 's. They may be stand
ardized by dividing the P^ wei^ts throu^ by mult R^ and the Pg
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weights through by mult R^. This will give a new matrix of weights.
V:

(29a) MRA: V = À Z, where Z =
(mult R^) -1

'"ll ^12 1.63 -1.51 ,

_^21 ^22 _ -1.21 .81

(mult R^) -1

(29b) MRA: V

The prediction equations become:
(30a) MRA: = v^^x^ + v^^x^ = (1,63)x^ + (-1.21)x^, and

(30b) MRA: p = v x + v x =  (-1.51)x + ( .81)x .2 12 1 22 2 1 2

The multiple correlations are the same whether the a weights or 
V weights are used.

Equations (30a) and 30b) yield a pair of composite predictor 
scores for each of the five subjects. These five pairs may be 
written as P:

(31) MRA
- .96
- .11 
.37

- .80 
1.51

1.17 
.31+ 

- .24 
.27 

-1.59

This P matrix is shown below in tabular form in the right half of 
Table 3, for comparison with the "true" predictor scores from 
Table 1,
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TABLE 3.— "True" factor predictor scores 
compared with composite predictors from 

multiple regression

"True" Regression
Scores Scores

Subject
"l "2 ^2

1 -1.11 .62 - .96 1.17
2 - .27 .71 - .11 .34
3 .29 .40 .37 -..24
4 - .46 -1.72 - .80 .27
5 1.55 - .02 1.51 -1.54

While there is some resemblance in Table 3 between the "true"
p^ scores and the MRA p^ scores, there is little resemblance between
the two sets of p^ scores. In general, MRA will not produce weighted
combinations which approximate underlying factor structure (Cattell,
1952, pp. 18-20). Further, the "true" p^ and p^ are uncorrelated,
while the p and p from MRA are, and in general would be, corre- 1 2
lated.

Redundancy in Multiple Regression 
The primary interest in MRA is focused on the mult R's, but 

it can be instructive to look at all the intercorrelations among 
Pg, and y^. These are shown in Table 4̂. It is shown in

Appendix I that the R^ ^ matrix from equation (28) is useful in 
calculating the correlations in Table 4.
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TABLE ■+.— Upper triangular correlation 
matrix of predictors weighted by mult
iple regression and simple unweighted 
criteria (multiple correlations are 

underlined)

Pi P2 ^1 ^2

p1 1.00 - .95 .89 - .92
1.00 •- .85 .96

1.00 - .70

^2 1.00

' from Table M- that there is a 1
within this system of variables. For example, p^ correlates -.95
with p^, which means that what one predicts, the other will predict
almost as well. Further, although p has been weighted so that it1
is the maximum predictor of ŷ ,̂ it actually correlates more highly 
with y2 than with y^. There are no clear-cut relationships in 
Table M-. Everything is correlated highly with everything else, 
so that it is hard to give an unequivoccLL interpretation to any 
relationship. By contrast, it will be seen that in CCA relation
ships are more clear-cut. Prediction using MRA may be said to be 
"blindly empirical" in that accuracy of prediction is maximized with 
little understanding gained of relationships among predictors and 
criteria.
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Canonical Correlation as a Generalization 

of Multiple Regression 
Whereas MRA weights and combines only the predictor variables, 

CCA finds weights for both the predictors and the criteria. It will 
now be shown, following and elaborating on Thomson (199-7) , how in 
an algebraic sense CCA is a generalization of MRA to the case of 
multiple criteria.

Let y^ and y^ from the present example be weighted and combined 
into a single criterion, Qj:

(32) CCA, MRA: = b̂ ^y^^ + b^^yg,

where is not necessarily in standard form and the b ’s are not 
yet specified in value. The reason for the j subscript on Q will 
become apparent. is now a single criterion to be predicted from 
the x ’s. The matrix equation for the standard partial regression 
weights to be applied to the x ’s is:

-1
(33) CCA, MRA: a^ =

which is identical in form to equation (23). The vector r^^ has a 
different meaning in the two equations, however. In (23) it repre
sents the correlations of y^ with the x ’s, while in (33) it stands 
for the correlations of Qj with the x ’s. The squared multiple 
correlation between Qj and the wei^ted sum of x ’s is:

2 -1(39-) CCA, MRA: mult R^ = r^^ R^^ r^^,



which has the same form as equation (25), but with rather than 
as the single criterion.

In (33) and (3M-), r^^ =
'xgQj

It is a function of the as

yet unspecified b ’s and the correlations of and Xg with y^ and

(35a) CCA, MRA: rXjlQ.

(35b) CCA, MRA: r^ „

Both of these complicated expressions can be expressed com
pactly in one matrix equation:

(35c) CCA, MRA: r^g =
R b 
12 j

where b =
-j

Ij

2j
, and

” 22 -j

where R̂ ^̂  and R^^ are as given in equations (20) and (21) . The 
expression in the denominator of (35c), which is the matrix equi
valent of the denominator in (35a) and (35b), is a single number, 
or scalar, when multiplied out.

The transpose of r^^, which is r^^, is expressed as:
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b ’ R 
“j "21

(35d) CCA, MRA: =
R b 
“22 “j

Sbustituting the expression for from (35c) into (33) gives
an eguation for the vector of a wei^ts in terms of the b ’s:

“1R R b -11 1 2  “ j
(36) CCA, MRA: a = R r = ------ -------“j 1 1  1 2

J  b ’ R b 
i  “j -22 -j

Substituting both (35c) and (35d) into (34) gives an expression 
for the squared multiple correlation:

-1b' R R R b 
2 -1 “ j “ 21 1 1  1 2  “jf371 CCA. MRA: mult R. = r_ R r =
' 4

Equations (36) and (37) hold for all real nonzero values of 
b^^ and b ^ I t  may be asked, however, if one particular pair of 
values for the b ’s will result in the highest possible multiple 
correlation. The answer is "yes," and these values may be found by 
differentiating (37) with respect to b and setting the result equal 
to zero. When simplified, one form of the resulting matrix equation 
is:

(38) CCA, MRA: (e"^ r"^ - A j = S.,

2where A = mult R as given in equation (37), and is an identity 
3 3

matrix. (An identity matrix has ones in the diagonal and zeros 
elsewhere.) Aj is called a latent root, or an eigen value, of the
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-1 -1

matrix formed by the product R  ̂ R,, R,^ , and b. is palled a“22 “21 “11 “12 “3
latent or eigen vector. Equation (38) is called a characteristic
equation. It is sometimes written as:

(39) CCA, MRAr ( R R  R - A R  ) b = 0 *^ 1  -LI "12 i“ 22 -j -

Equation (39) can be obtained from (38) by premultiplying
—1throu^ by R«__ In either equation, the product R R R is -22 -21 -11 -12

familiar; it is the matrix R^ ^ from equation (28).
The characteristic equation (38) is solved by setting the deter

minant of the matrix within the parenthesis equal to zero and solving

for A j

“ 22 “ 21-11 “12 " ^ j “ = 0 .(M-0) CCA, MRA:

Equation (M-0) can now be applied to the illustrative problem
that has already been analyzed by MRA. The numerical value of 

-1 -1
“ 21 “11 “21 toown from (28), and premultiplying this by R. 
gives :

(M-la) CCA, MRA:

Substituting these values into (40) gives :

22

1.94 1,35 .79 — , 82 .44 -.33

1.35 1.94 -, 82 ,93 -.51 .70

(41b) CCA, MRA:

- -

,44 -.33 A. 0
3

-.51 .70 0 A.
- - - 3 _

= 0
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Expanding the determinant and simplifying:

(41o) CCA, MRA: (.44 - A O  (.70 - A O  - (-.33) (-.51) = 0,
2 0 0 

(41d) CCA, MRA: A . - 1.14A. + .14 = 0,
0 3 2

(41e) CCA, MRA: A = 1.00 = canon R, ;1
(41f) CCA, MRA: A 2 “ .14 = canon R^ .

Corresponding to the largest value of A , A^ =. 1.00, is the 
vector b^, which is found by substituting A^ back into equation (38)

(42a) CCA, MRA:
,44 -.33

-.51 .70

1.00 0

0 1.00

11

'21
=  0

(42b) CCA, MRA:
-.56 -.33

-.51 -.30

11

21
= 0, or

(42c) CCA, MRA: (-.56)b^^^ + (-.33)b^^ = 0,21

(42d) CCA, MRA: (-.51)b^^ + (-.30)b^^ = 0.

Either (42c) or (42d), when solved for b^^, gives ;

(42d) CCA, MRA: b^^ = (-1.71)b^^.



44
Thus, any pair of and values which stand in the pro

portion (1.00) : (-1.71) will satisfy the characteristic equation. 
Setting b^^ arbitrarily equal to 1.00,

(42f) CCA, MRA: h ^ =
bll 1.00

/ 2 1 _ -1.71
, and

(42g) CCA, MRA: = b^^y^ + b^^y^ = - l.flYg-

The problem of finding b weights which give the highest
squared multiple correlation is now solved. Substituting the
values of b from (42f) into (37) will give the highest mult 

2R = 1.00. Of course, such a computational step is unnecessary,
^ 2 since the highest mult R^ has already been found as the largest
root of (38) :

2 2(43) hipest mult R^ = canon R^ = ^ 1.00.

The vector of regression weights, for predicting are 
found by substituting the b^ values into (36). The results of 
the analysis thus far, then, yield an unstandardized composite
predictor, P^, which is maximally correlated with an unstand
ardized composite criterion Q,:

(44) CCA: ^11^1 ®21^2’ ^1 ^11^1 ^ ^21^2’ ^P^Q^ = max.

The use of the double prefix "CCA, MRA" will be dropped here
after; it has been used long enough to make the point that MRA is
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a special case of CCA.

The problem of standardizing and will be deferred until 
Pg, and have been discussed. If A^ = .14̂  is substituted 

into (38) , a second solution for the b wei^ts is found;

(M-5) CCA: b^ =

which leads to a second set of a weights and thus a second pair 
of composite scores:

b ^ 1.0012

.9122

(M) Pg = + =22*2' «2 = ̂ 2^1 * "22^2'

subject to the restriction that r„ „ = r_ n “ n “ That
^1^2 ^1^2

is, Pg and Qg constitute a second pair of composites which is 
orthogonal to the first pair.

The results of the analysis thus far can be collected and 
expressed in matrix notation as follows :

(47a) CCA: A =  a^j =
a a b , b.11 12 11 12

a„, a _ b„..21 22 21 22
(47b) CCA: unstandardized P = X È» unstandardized 2. = Y _B.

The variance-covariance matrix for the composite predictors
is:

(48a) CCA: unstandardized (1/n) P ’P - (l/n)A’X ’X A = A'R^^ A
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aJ R, a.-1 -11 -1 
0 a’ R.“2 -11 -2

The variances are on the diagonal, and the covariances (off- 
diagonal elements) are zero, since is orthogonal to , 
Similarly, for the Q ’s;

(>+8b) CCA: unstandardized (1/n) ~
b+ R b ~L ” 22~L

0 -2 -22^2
— Z , 

“ 2

Standardizing the Factor Scores 
Pĵ j Pg, Qjj and QgCan now be standardized by dividing through

the wei^ts of each by its own standard deviation. This is done 
in terms of matrices by:

-h -h(48c) CCA: V = A Z^ , and W = B Ẑ ^

and the standardized matrix equations, symbolically and numeric
ally, are:

(48d) CCA: P = X V =

(48e) CCA: & = Y W =

-1.26 - .91
- .63 - .76
0.00 - .30
.63 1.52

1.26 .45
-1.26 .91

.63 .76
0.00 - .45
- .63 .30
1.26 -1.52

1.57 
- .96

.46
-1.33

.40

. 68
1.33
1.21

-1.11 .62
- .27 .71

.29 .40
- .46 -1.72
_1.55 - .02
-1.12 - .58
— .26 1.76

.31 - .55
- .46 - .48
1.54 - .15
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Note that the X and Y values in (48d) eind (48e) are taken from 

Table 2, while the composite scores, P and turn out to be identi
cal with the "true" factor scores in Table 1„ In this artificial 
problem, the CCA has reproduced the factor scores exactly from an 
analysis of the observed x and y scores.

Alternative Scaling of Factor Scores
Some authors prefer to set the variances of the composites

2equal to the respective canon R values : var =- var = X j•

%This can be done by replacing V with V* = V and W with W* =

Koons (1962) calls V* and W* the

"absolute" regression weights and V and W the "normalized" regress
ion wei^ts. The use of the term "normalized" could be confusing 
since ordinarily a normalized vector is one in which the sum of 
squares of the elements equals one. The sum of squares of a vector 
of V and W weights does not equal one, nor does the sum of squares 
of the composite scores weighted by V and W equal one. V and W are 
scaled so the variance, not the sum of squares, of the composite 
scores is one.

Canonical Loadings Within Sets 
The matrices V and W are regression wei^ts obtained in the 

usual textbook methods of analysis. For interpretative purposes 
loadings within sets may be calculated directly utilizing the
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definition of a loading as a correlation between an observed score 
and a factor score. The loadings of the observed predictors (x*s) 
on the composite predictors (p’s) is given by:

.81 -.60
(49a) CCA: F = (1/n) X ’P = (1/n) X ’X V = =

.28 -.96

These loadings make it possible to express the observed scores 
as a function of the factor scores. Interchanging the right and 
left expressions of (49a) :

(49b) CCA: (1/n) X ’ P = P,
(49c) CCA: (1/n) P ’ X = P \
(49d) CCA: (1/n) P P ’ X = P F ’, and since P = X Y,
(49e) CCA: (1/n) X V V ’ X ’ X = P F \
(49f) CCA: X Y  V ’ = P F ’, and from Appendix 2, V V ’ =
hence
(49g) CCA: X = P F ’, or in ordinary notation:

(49h) CCA: ^1 = fllPl + ^12^2 ('Bi)p^ + (-.eo)?^,

(49i) CCA: *2 = ^21*1 + ^22^2 ^ + (-.96)P2'

The numerical values on these last two equations are identical with
those for X and X in (15a) and (15b).

The loadings of the observed criteria (y's) on the composite 

criteria (q’s) are:
.87 .49

(50a) CCA: G = (1/n) Y ’£ = (1/n) Y ’Y W = W = '
.96 ,29

, and

(50b) CCA: Y = &  G ’, or
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(50c) CCA: ^ ^12^2 ^  ̂ + ('%9)q2,

(SOd) CCA: y2 » g^^^q^ + ^22^2 ^ ("'9G)q^ + (.29)q2,

exactly as in the equations for the y ’s in the ri^t half of 
equations (15a) and (15b),

The use of leadings within sets for interpretation will be tak
en up more thoroughly in connection with an empirical problem. One
property of suchloadings may be pointed out here, however:
(51) CCA: F F' = R , and G G ’ = R .^ mmm — * wmiæ «mm ttim^ ̂

YThat is, the sum of crossproducts of any two rows of F (or G) 
gives the correlation between the observed variables whose load
ings are given on those two rows, as was previously shown in equation 
(6c).

Canonical Loadings Between Sets 
The loadings of the x ’s on the q’s are found by:

(52a) CCA: M = (l/n)X’ Û  = (l/n)X’Y W = R^^W,

and the loadings of the y ’s on the p ’s by:
(52b) CCA: Nfp (l/n)Y’P - (l/n)Y’X V = R^^ V.

Actual calculation of these loadings is facilitated by the relat

ions: (1/2) (1/2)
(52c) CCA: M = F ̂  and N = jG ^  (proof in Appendix II) .

Since the y variables have been designated as criteria, only
the N loadings will be discussed here (althou^ the x ’s could just
as well be designated as criteria and M discussed in the same way).
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The numerical values for N are:

(53) CCA: N =
.87 .18

-.96 .11
The values in the first row of N are the correlations of

with p and with p : r = .87 and r = .18. The sum of
1 2 ViPi %

2 2squares of the loadings between sets, (.87) + (.18) =■ .79, is
the squared multiple correlation between and the x*s. Similar 
remarks apply to y^ with respect to the second row of the matrix 
N in (53). It is proved in Appendix II that these relationships 
are true in general.

In the next chapter, loadings within and between sets will 
be discussed more fully in connection with a CCA of empirical 
data.

Significance of Canonical Correlations 
Bartlett (1947) has provided an approximate significance 

test for the canon R ’s which is summarized in Cooley and Lohnes 
(1962). If N = the total number of subjects, m^ = the number of 
X variables, m^ = the number of y variables, where m^ < m^, and 
^ j = canon , then:

Mg
(54a) A  =TT (1 -X.), and

j=l ^

(54b) Chi-square = - [n - .5(m^ + m^ + 1)] log^ A

with m^m^ degrees of freedom. A significant chi-square leads to
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rejection of the null hypothesis of no relation between the two 
sets. If chi-square is significant, the first root may be removed 
from (5M-a) so that

m, 2
CSSa) y\ = TT Cl - A.), and

j=2 J

(55b) Chi-square = - Fw - .5(m + m + 1)1 log / \L 1 2  J e
with (m^ - 1)(m^ - 1) degrees of freedom. This process can be re
peated until an insignificant chi-square is obtained or until all 
the roots have been removed except the last. The tests for the 
canon R ’s from the current problem are given in Table 5. Because

TABLE S.—  Significance tests for canonical correlations from artificial
data problem

Number Largest
of Roots Remaining 2 Chi-
Removed Root 2 1 - canon R Lambda square df p

(Canon R )
0 1.00 0.00 0.00 oo <.01
1 .lt̂ . 85 .86 .38 1 n.s.

the largest canon R is 1.00 when rounded to two decimals, the 
resultant A  = 0.00 and chi-square is infinite. Carrying more 
decimals would result in a very large chi-square value which is 
clearly significant. The second root is not significant.
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Intercorrelations of Canonical Variâtes 
To complete the comparison and contrast of MRA and CCA, Table 

6 is presented for consideration as an analogue of Table 4. In 
Table 6, the intercorrelations between the composite predictors 
and Composite criteria are shown. The canonical correlation co
efficients are underlined in Table 6, just as the multiple corre
lation coefficients were underlined in Table M-. In Table 6 it 
can be seen that there are no relationships among the variables

TABLE 6.— Correlation matrix for 
canonical variâtes (for compari

son with Table 4-)

^1 ^2 '̂l 2̂
1.00 .00 1,00 .00

1,00 .00 .37

% 1.00 .00
1.00

except for the specific relationships between the two matcdied 
predictor-criterion pairs. The relationships in Table 6 are 
clear-cut, in contrast to Table 4- where everything is fairly 
highly correlated with everything else. The results of a CCA 
should in theory at least, be conceptually much simpler than the 
results of several MRAs involving the same set of predictors and 
a series of singçle criterion variables.



53
The Case in Which m_ / mfc X ^

In the present problem and in the one which follows the x 
and y sets contain equal numbers of variables. That is, = m^.
If there are more predictors than criteria, then m^< m^, which 
makes no practical difference in the computations as outlined here.
The characteristic equation (38) will still yield the appropriate
number of latent roots and vectors. The case of m^< m^ docs make 
a' difference in some of the algebraic proofs, and for this reason
it is discussed in Appendix II.

If the number of criteria exceed the number of predictors, 
then m^> m̂ ,̂ and in this case the characteristic equation (38) 
would lead to extra computational labor. It is therefore advisable 
to disregard the labels "predictor" and "criteria" and simply 
define the y set as being smaller than or equal to the x set, so 
that m^ <  m^ always holds,

In other words, if there are more predictors thar; criteria, 
define x as the predictor set and y as the criterion set. If there 
are more criteria than predictors, define x as the criterion set 
and y as the predictor set.  ̂ will then always be the matrix 
of intercorrelations of the variables in the larger set, and 
the matrix of intercorrelations of the smaller set.

A Computer Program for Canonical Correlation Analysis 
A computer program for CCA has been written by Mitchell (1965) 

and is available from the IBM 1620 Users Group Library. This
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program calculates and prints out means, standard deviations, all 
the canon R’s and their significance tests, and the complete matrices 
of simple correlations, wei^ts, loadings between sets, and factor 
scores (P and 2) for all subjects. The program does not print 
out loadings within sets, though these can easily be calculated 
by dividing the loadings between sets for a pair by the canon R 
for that pair. The program also prints out the R~^ matrix 
of multiple regression weights, and could be modified fairly easily 
also to print out R^ so that a complete MRA would be available 
in addition to the complete CCA. The program is written in FORTRAN 
for the IBM 1620 with card input; output is via cards and IBM 
typewriter. In its present foim the program is suitable for 60K 
storage, but it can be adapted to 2OK or 40K, and it will take up 
to a total of 50 variables divided into two sets which may be equal 
or unequal in size.



CHAPTER IV

APPLICATION OF CANONICAL CORRELATION ANALYSIS 
TO EMPIRICAL DATA

In this chapter CCA will be applied to data from a study of 
the effects of prolonged chlorpromazine treatment on a sample of 
51 chronic schizophrenic female patients in a state mental hospital. 
The study was double-blind and 21 concurrent placebo-control sub
jects were also used. A detailed report of the selection of sub
jects and the experimental design is found in Clark et al, (1967).

Among the measures used in the study was a Psychologist's 
Scale, with five items labelled as follows:

1. Ideational fluency
2. Expressiveness and gestures
3. Affective status
M-. Motor activity
5. Ease of testing

Each item is ratable on a 13-point scale from -6 to +6, with zero 
representing the rating assigned a hypothetical normal person.
The entire scale, with concrete descriptions of the rating cate
gories, is given in Appendix III.

Each patient was rated on each item of this scale at "base
line" (prior to start of treatment) and again at "peak dose"
(after 12 weeks of treatment). Ratings were made on the basis of 
behavior observed during the administration of some simple

55
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psychological tests. Response to treatment was expressed in terms 
of change scores adjusted for changes also found in the placebo- 

control group (these are called "psi" scores in Ragland & Costiloe, 
1963, where their derivation is given). Each of the treated patients, 
therefore, had five baseline scores and also five adjusted change 
scores on the same scale items. The baseline scores constitute a 
battery of predictors and the change scores a battery of criterion 
variables.

Some questions which are of interest in this situation include:
1. How well can response to treatment be predicted?
2. When the batteries are factored by CCA, what is the 

process by which the factors are interpreted?
3. What are the interpretations for this set of data?

Prediction
The first question can be answered in terms of each criterion 

variable separately and of the criterion battery as a whole, and 
also in terms of factors derived from the two batteries.

Simple Correlations and r
The R^g matrix of simple correlations, shown in the upper right 

corner of Table 7, provides one answer to the question of how well 
response can be predicted. The highest correlation in the first 
column of R̂ ^̂  is underlined— it is the correlation of -.51 between 
baseline "Ideational fluency"and adjusted change on this same item. 
When squared, it indicates that about 26% of the criterion variance
for this item is accounted for by the predictor. The highest corre
lations in subsequent columns of R^^ are underlined. In every case
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TABLE 7.— Psychologist's Scale: Upper triangular matrix of simple
correlations among predictors and criteria (decimal points omitted)

Predictors Criteria
%dea Expr Aff Mtr Ease Idea Expr Aff Mtr Ease

Idea 100 54 51 55 73 -51 -37 -45 -34 -46
Expr 100 71 76 60 -19 -63 -55 -49 -32
Aff 100 81 67 -15 -35 -80 -38 -40
Mtr 100 72 -25 -45 -72 -63 -51
Ease 100 -31 -36 -59 -40 -65
Idea 100 54 40 41 62
Expr 100 57 49 59
Aff 100 38 62
Mtr 100 45
Ease 100

they fall on the diagonal, which means that change in each item is 
predicted best by initial status on that item.

Prediction with MRA will be discussed later, since the mult R's 
occur as a by-product of CCA.

A rough index of how well response in an overall sense can 
be predicted can be provided by taking the sum of the squares of
the underlined elements of » divided by the total variance of
the criterion set. The total variance is 5.00, since each score
contributes a variance of 1.00. Thus;

(56) r^ = (1/5) (-.51)^ + (-.63)^ + (-.80)^ + (-.63)^ + (-.65)^ ]
r^ = .1̂ 2.

Since each squared element gives the proportion of variance 
in one criterion measure accounted for by one predictor measure, 
r gives a crude estimate of the proportion of variance in the
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entire criterion set accounted for by the entire predictor set.
"~2r is not a precise estimate, however, because the squared corre
lations which go into it do not in general represent independent 
components of variance, since the criterion variables are inter
correlated and thus share variance among themselves.

The average squared multiple correlation will be taken up in 
connection with CCA. It too involves the adding together of non- 
independent portions of variance.

Canonical Correlation: Weights and Loadings Within Sets
The results of the CCA are given in Tables 8-12. The tests 

of significance summarized in Table 8 show that all five canon R’s 
are significant. More exactly, all five of the roots account for 
a significant amount of variance between sets, and as each of the

TABLE 8.— Psychologist’s Scale: Tests of significance
for canonical correlations

Number Largest 2 Chi-
of Roots Remaining 1 - canon R Lambda square df P
Removed Root 2

(canon R )
0 .80 .20 -.03 157.5 25 .01
1 .58 .42 .16 85.0 16 .01
2 .38 .62 .37 45.5 9 .01
3 .30 ,70 .59 24.1 4 .01
4 .16 .84 .84 7.7 1 .02

first four roots is removed, there still remains a significant 
amount of variance accounted for by the ones, or the one, remaining. 

In Table 9, the canonical regression weights for the predictor
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set are in the upper half of the table, and the weights for the 
criteria are in the lower half. Table 10 gives the loadings with
in sets for the two sets in the upper and lower halves of the table, 
and also sums of squares for rows and columns. Each half of Table 
10 follows the usual format for reporting the results of an FA, 
except that an extra row has been added at the bottom of each half 
of the table. These extra rows will be explained later.

TABLE 9.— Psychologist’s Scale: Canonical Weights

Predictors
Factor

I
Factor

II
Factor

III
Factor

IV
Factor

V

1. Idea
2. Expr
3. Aff 
■+. Mtr 
5. Ease

-.18 
- .60

.76

.62

.21

- .08 
-1.28 

.21 
- .13 

.69

- .09
•26

-1.50
.73
.93

-1.46 
.44 
.12 

— . 64 
1.18

- .30
- .61 
- .61
1.69 
- .72

Criteria
1. Idea
2. Expr
3. Aff 
■+. Mtr 
5. Ease

.25

.55
- .99
- .39̂
- .24

- .27
1.07
.12
.35

- .81

.13
- .19

.87
- .43
- .99

1.26 
-. 31 

.21 

.20 
- .73

.20 

.63 

.14 
- .97 

.33

Comparison of Table 9 and 10 shows that a variable with a high 
loadings on a given factor will not necessarily have a high weight 
on that same factor. For example, on predictor factor I, the "Ease 
of testing" item has a relatively low weight of .21 and a relatively 
high loading of .68. A low weight can mean either that a variable 
is irrelevant to the factor, or that it has been partialed out because
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TABLE 10.— Psychologist’s Scale: Canonical loadings within sets,

2 2svuns of squares, and'calculations leading to H and H21 12

Predictors
Factor

I
Factor

II
Factor
III

Factor
IV

Factor
V

Sum of 
Squares

1. Idea.
2. Expr.
3. Aff. 
M-. Mtr. 
5. Ease

.38

.88

.81̂

.68

-.07
-.78
-.32
-.40
.02

.36

.26

.14

.34

.55

-.64 
—. 04 
-.05 
-.15 
-.01

-.55
-.35
-.31
.05

-.49

1.00
1.00
1.00
1.00
1.00

Sum of Squares 2.29 .88 .63 .45 .76 5.00
Proportion of 
Total Variance .^6 .18 .13 .09 .15 1.01
2R (Proportion 

of Total 
Variance) .39 .10 .05 .03 .02 2.59 =

Criteria

1. Idea.
2. Expr.
3. Aff. - 
M-. Mtr. 
5. Ease

-.14
-.19
-.86
-.46
-.54

-.00
.68
.25
.44

-.11

-.42 
-.44 
.03 

—. 60 
-.69

.80

.14

.16

.30

.08

.40

.54

.41
-.38
.48

1.00
1.00
1.00
1.00
1.00

Sum of Squares 1.30 .73 1.20 .79 .98 5.00
Proportion of 
Total Variance .26 .15 .24 .15 ,20 1.00
2Rî  (Proportion 

of Total 
Variance) .21 .08 .09 .05 .03 2.46 = H

21

it correlates highly with some other variable which does have a high 

weight on that factor. These are two very different circumstances,
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but they can not be discriminated simply by looking at the weight. 
If a variable has both a low weight and a low loading on a given 
factor, it can be clearly stated that it is irrelevant to that 
factor. If it has a low weight and a h i ^  loading, it can be clear
ly stated that it has been partialed out in the calculation of the 
factor scores for that factor, Thou^ partialed out, it is still 
of use in interpreting the factor.

2Canonical Correlation: Loadings Between Sets and Mult R

The complete CCA provides information about the prediction of 
the original criterion variables taken singly, which may be of 
interest in some cases, though this is not the prime purpose of CCA. 
In Table 11 the loadings between sets for the criterion set are

TABLE 11.— Psychologist’s Scale: Loadings between sets for the
criterion set

Factor Factor Factor Factor Factor Sum of
I II III IV V Squares 

(Mult R^’s)
.44-

Criteria 
1. Idea -.13 -.00 —. 26 .4-4 .16
2 . Expr -.17 .52 -.27 .08 .21 .54
3. Aff -.77 .19 .02 .09 .16 . 66
H-. Mtr -.4-1 .33 -.37 .17 -.15 .46
5. Ease -.4-8 -.08 -.tf2 .04 .19 .45

given. These are the correlations of the original (observed) 
criterion variables with each of the factored predictors. The 
entry in row one, column one is -.13, which is the correlation 
between adjusted change in "Ideational fluency" and the first
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predictor factor. The rest of row one contains the correlations of 
this change item with the other four predictor factors, and the 
sum of squares of this row is the squared multiple correlation be
tween this first change item and all the original predictors.

In effect, what is illustrated in Table 11 is how CCA takes 
the original multiple regression equation and breaks it into five 
orthogonal components, each of which then predicts an independent
portion of each of the original criterion variables,,

 2
From the last column of Table 11, mult R can be calculated as 

an index of overall goodness of prediction. In this case it is:

2(57) mult R = (1/5) (.IW- + .51+ + .66 .^6 +’ .1+5)
■ 2mult R = .51.

Canonical Correlation: Prediction of Factors
When the predictor and criterion are both factored by CCA,

2the canon R *s show how well each change factor can be predicted
by its associated predictor factor. The five significant canon 

2R ’s, from Table 8, are .80, .58, .38, .30, and .16. The first of 
these is higher than any of the squared simple or multiple corre
lations obtained from these data. The square roots of the above 
values give the five canon R values of .89, .76, .61, .55, and .39. 
(This author prefers to work directly with squared correlations, 
since these provide a direct estimate of shared variance.)

Canonical Correlation: H as an Overall
Index of Relationship 

To show how CCA can furnish an estimate of how well the
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criterion set a whole can be predicted, it is necessary to dis
cuss Table 10 in more detail. Since the Table consists of two 
complete factor analyses, only the bottom half pertaining to the 
criterion set will be explained. Similar remarks would apply to 
the top half.

The first row of the lower half of Table 10 gives the within- 
sets loadings for "Ideational fluency." These are -.14, -.00,
-.42, .80, and .40, and their sum of squares, as indicated in the 
last column, is 1.00, which is the total variance of this variable. 
The last three of the five loadings are of substantial size, which 
means that the bulk of the variance for this variable is distributed 
among the last three change factors.

Subsequent rows in the lower half of Table 10 show how the 
variance of each of the other four change score items is distributed 
among the five change factors. The sum of squares of each row is 
one, and the total sum of squares is 5.00, which is the total 
variance of the criterion set.

The first column in the lower half pf Table 10 gives the load
ings of all five change items on the first canonical change factor. 
These are -.14, -.19, -.86, -.46, and -.54, and their sum of squares 
is 1.30. This sum of squares, when divided by the total of 5.00, 
gives the proportion of the total criterion variance contributed 
by the first change factor, which in this case is .26.

Subsequent columns contain the loadings for change factors 
II throu^ V, with the column sums of squares and proportion of 
total variance contributed by each factor given at the bottom of
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each column. Whereas the row sums of squares are always 1.00 (with
in rounding error), the column sums of squares may not be, since 
some factors may contribute more to the overall variance than do 
others. This uneven contribution of the factors is' obscured when 
the factor scores are standardized or when their variances are 
arbitrarily set equal to the corresponding canon R^’s. The next 
to the last row at the bottom of Table 10 shows that the five 
change factors respectively contribute proportions of .26, .15,
.24, .15, and .20, and these add up to 1.00 or 100% of the total 
variance,

The entries in the last row at the bottom of Table 10 shows 
how much of the total criterion variance is accounted for by each 
predictor factor. The first entry, .21, is arrived at as follows:
the first predictor factor accounts for .80 of the variance of the

2first criterion factor (canon R^ = .80), and in turn the first 
criterion factor contributes .26 to the total criterion variance; 
therefore the first predictor factor accounts for (.80) (.26) = .21 
of the total criterion variance. In the same way, predictor factor 
II throu^ its relationship with criterion factor II accounts for 
(.58)(.15) F .08 of the total criterion variance, and this .08 is 
independent of the previous .21 because factors I and II are ortho
gonal. The remaining three predictor factors also account for 
independent and significant portions of the total criterion variance 
because they are orthogonal to the first two factors, and to one 
another, and because their associated canonical correlations are 
•significant.
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The sum of all the entries in the last row of Table 10 is .*16.

2This sum, symbolized by is analogous to a squared correlation
between criterion and predictor sets each taken as a whole. It is

~ 2 ^to be compared with the r and mult R values of .42 and .51 
computed previously, but is a more precise index of overall good
ness of prediction since it contains no redundant variance. The 
computing formula is:

.2 2(58) H = canon R,
21 k=l ^

where s is the number of significant canon R's and m^ is the number 
of variables in the criterion set.

The subscript 21 on H indicates that it is the variance of the 
second battery which is being accounted for by the first. In 
general, this will not be the same as the proportion of variance 
in the first battery accounted for by the second, because of diff
erences in factor structure in the two batteries, or because of a
different number of variables in the two sets, or both. That is,

2 2 2 
H ^l ^ general. For these data = .59, which is the
sum of entries in the last row in the top half of Table 10. The

2 2difference between H „ and H in this instance is largely due to12 21
the fact that predictor factor I has a much larger sum of squares
(2.29) than that of criterion factor I (1.30).

The question of how well response can be predicted has now
been answered exhaustively in terms of simple, multiple, and canon-

2ical correlations and and in terms of the original variables
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and of factor variables derived from them. More will be said abotit 
these measures of predictiveness in the section on interpretation 
of the factors.

The Process of Interpretation
Most published reports of factor analyses proceed with inter

pretation on the basis of loadings such as are given in Table 10.
In many cases loadings smaller than some arbitrary absolute magni
tude (it is often + .30) are considered negligible. Rather than 
set such a cutting point which is applied to the whole table of 
loadings, it might be more meaningful to consider each loading in 
relation to the size of the factor of which it is a part.

In the upper half of Table 10, for example, "Ideational 
fluency" has loadings of .38 on factor I and .36 on factor III. 
However, factor III has a much smaller sum of squares than factor 
I, so that relatively speaking the loading of .36 is much more 
important than the loading of .38, If the loadings were expressed 
as percentages of their respective factor sums of squares, their 
true importance in the analysis would be more readily apparent.
Thus the loading of .38 contributes (100)(,38)/(2.29) = 6% to the 
factor I sum of squares, while the loading of .36 contributes 
(100)(,36)/(.63) = 21% to the factor III sum of squares. There
fore "Ideational fluency" may be said to be of negligible value 
in defining factor I, while it seems quite important in defining 
factor III.

In Table 12 the loadings from Table 10 have been converted
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TABLE 12.— Psychologist’s Scale; Percentage of sum ^ 
of squares contributed by each item to each factor ’

Factor Factor Factor Factor Factor
I II III IV V

Predictors
1. Idea 21 -93 -i+l
2. Expr -70 -16
3. Aff 31+
•+. Mtr 31 -18 18
5. Ease 20 1+8 -32

Total 85 88 87 93 88

Criteria
1. Idea -15 82 16
2. Expr 61+ -15 29
3. Aff -57 17
■+. Mtr -16 26 -30
5. Ease -22 -39 23

Total 95 90 100 82 85

aEntries smaller than 15 have been omitted.
bA negative percentage means that the loading
from which the percentage was calculated was negative.

to percentages of the respective factor sums of squares in the
maner just described. The first column in the top half of Table
12 shows that 85% of the sum of squares for predictor factor I
comes from three items— "Affective status," "Motor activity," and
"Ease of testing." These same three items, as adjusted change
scores, make up 95% of the sum of squares for criterion factor I
in the lower half of the table. Factor I, both with respect to
initial status and change, will be interpreted in terms of what
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these three items have in common, exclusive of what they contribute 
to the other factors.

Each of the remaining four factor pairs, like the first, 
involve the same items in both the predictor and criterion sets. 
Factor IV, for example, is made up largely of "Ideational fluency" 
in both halves of the table. It is not accurate to say there
fore that factor IV means the same at the original item, since 
this item also contributes to factors III and V. For purposes of 
interpretation, an attempt must be made conceptually to split the 
item into three uncorrelated components to be parceled out to 
factors III, IV, and V.

Interpretation of the Factors 
Considering then each column of Table 12 in the li^t of 

the table as a whole, the following interpretations are offered 
for the factors.

Factor Elation-depression. This is affective status 
along the elation-depression dimension, expressed more motorically 
thaja verbally. To the extent that it may be expressed verbally 
it has nothing to do with rate of speech. Its extreme manifest
ations can interfere with the process of testing. Initial status 
on this factor is predictive of change in this same factor, and 
the relation is negative, since the loadings have opposite signs 
in the upper and lower halves of Table 12. Prediction is better
than with the "Affective status" item which contributes most

? 2 heavily to this factor: the canon R is .80, while the mult R
for the item (from Table 11) is .66 and the highest simple r^
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(from Table 7) is (-.80)^ = .69-.

Factor II. Psychotic posturing. This is what the "Expressive
ness" item was intended to measure, but the item also picks up 
motoric restlessness, and that part of it is relegated to factor V. 
This factor pulls psychotic posturing out of "Expressiveness" and 
to a lesser extent out of the "Motor activity" item. It predicts
change in itself better than the "Expressiveness" item does: the

? ? canon R is .58, the mult R for the item is .5<+, and the highest
2simple r for the item is .*+0.

Factor III. Undercontrol vs. overcontrol of behavior. This 
factor has to do with ability to regulate both verbal and motor 
behavior in a situation where there is a demand placed on one to 
do so (the testing situation). It is unrelated to elation-depression 
and to psychotic posturing as such, but rather reflects the patient’s 
capacity to modulate behavior (throu^ tightening or easing of 
controls) in order to meet the task demands despite her standing 
on the first two factors. Change in this factor is not quite as
predictable as change in the "Ease of testing" item which contri-

2 2 butes most heavily to it: the canon R is .38, the mult R for
2the item is .4-5, and the highest simple r is .42.

Factor IV. This is Verbal speed and spontaneity, apart from 
verbal expression of affect and apart from comprehensibility of
speech which would make testing more or less difficult. The canon

2 2 R is .30, while the mult R for the "Ideational fluency" item which
2loads highly on this factor is .44 and the highest simple r for 

the item is .26.
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Factor V. General restlessness. This is the most tentatively 
defined of the factors, and it is defined in terms of what seems 
to be left over from the other factors. It could be dismissed 
simply as "error" except for two related facts: it contributes
more to the total sum of squares (in both the predictor and criter
ion s e t s )  than some of the previous factors, and its canon R is

2significant. The canon R is .16. No single item loads highest 
on this factor in both sets.

Discussion of results
The results indicate that the, Psychologist’s Scale is useful

in the study of prediction of response to chlorpromazine treatment
in' chronic schizophrenia. In particular, response along the bipolar
dimensions of elation-depression and psychotic posturing may be
predicted fairly well, since persons who are initially toward
either extreme on these dimensions will tend to shift toward the
middle (normal) as a result of treatment. Of course there is a
natural tendency for extreme ratings to shift toward the middle on
a bipolar scale, but this natural tendency was partialed out through
the use of adjusted change scores. Thus the shift actually found
was due to treatment.

To apply the above findings with respect to elation-depression
to a new sample, it would suffice to administer the Psychologist’s
Scale to each new subject prior to treatment, and to calculate a
Pĵ  score using the weights from column one in the top half of Table
9. Letting x-, , x , ... , x stand for the pretreatment scores on • ^ 2  5



71

the five items, then for each subject:

(59) p.. = (-.18)%. + (-.60)%. + (.76)% + (.62)%. + (.21)%. .il il xd i3 14- i5

If the resultant p.^ score for a given subject were near zero, one 
would not recommend treatment, since

(60) predicted q = $  = (canon R )p = .89p ,il il 1 il il

so that if p i s  near zero, the predicted amount of change is also 
near zero. If however p i s  quite deviant from zero, one would 
e%pect good results from treatment. (Cross-validation with a new 
sample of subjects will be taken up in the next chapter.)

Response in terms of the bipolar dimensions of undercontrol- 
over-control, verbal speed and spontaneity, and general restlessness
is not predictable in a practical sense, in each case a significant
but relatively small amount of the criterion variance is accounted 
for. On the basis of this analysis alone, chlorpromazine treat
ment would seem to be more strongly indicated for schizophrenics 
who manifest symptoms along the first two dimensions than for those 
whosÊ symptoms are primarily in the last three categories. Before 
making such a definite conclusion, however, it would be well to 
look at mean change along the last three dimensions, since it is 
possible to have a significant mean change and still have little 
correlation between initial value and change. Such a thing could 
happen if change was constant, regardless of starting level.

Apart from the pragmatic issue of predicting response, know-
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ledge of the factor structure of the scale may be of interest. Such 
knowledge could lead to an "orthogonalizing" of the scale; that is, 
a re-wording of the items so that they more clearly reflect the 
factored behavior categories rather than the original categories.
(Of course such a re-wording would mean that in effect a new scale 
had been created, and this scale would havë'fô be validated in a 
separate study.) Or the scale could be used as it stands in future 
studies, and the ratings converted to factor scores using the 
weights from Table 9, as illustrated in equation (59).

It cannot be concluded from this analysis that the five factors 
are truly more basic, "real,” or substantive than the original 
five items. Such a conclusion would only perhaps be defensible 
after a series of analyses in which different samples of subjects 
were used and in which other measures besides the Psychologist's 
Scale were included. The factors from this analysis represent an 
alternative way of dividing up the total variance which may have 
more pragmatic and heuristic value than the original. In any case, 
further study of the scale would seem desirable.



CHAPTER V - 

DISCUSSION
It has been illustrated through the use of artificial data 

how CCA is an extension of MRA to the case of multiple criteria, 
and also how CCA can reproduce the factor structure known to under- 
ly a set of variables. The author has applied CCA to a number of 
other artificial problems (not reported here), each using normally 
distributed factor variables, varying nvuri/ers of "observed" vari
ables in each set, an N of 50 observations, and an explicit error 
term (see discussion of error below). In each case the loadings 
within sets were good approximations of the original factor loadings.

It has also been shown in this dissertation that CCA, when 
applied to empirical data can yield factors capable of meaningful 
interpretation. A method for interpreting factors in terms of the 
percentage of sum of squares contributed by each variable to each
factor, rather than in terms of loadings, has been suggested.

2Finally, H has been proposed as an overall index of association 
between batteries which takes factor structure into account as 
well as the number of significant canonical correlations. In this 
chapte]^ a number of practical and theoretical issues raised by CCA 
will be discussed, and recommendations made for further research»

73
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Methods of Cross-Validation

When CCA is used for prediction,'the question..of cross-validation

arises. That is, how well will the results of this analysis hold
up with a new sample of subjects? At least two approaches to cross-
validation are possible with CCA. The most direct approach would
be to repeat the entire analysis using the same two sets of variables
and a new sample of subjects. The loadings within sets could be
compared to see if the same factor-pairs emerged from both analyses,

2and A , the diagonal matrix of canon R ’s, could be compared for 
the two analyses. All comparisons would be more qualitative than 
quantitative; no statistical tests for differences between load
ings or between canon R's from separate analyses are known to 
this author.

A second approach to cross-validation with CCA would be to 
consider the criterion weights (one set for each factor) from the 
first analysis to be sufficiently good estimates of the "true" 
weights that no further validation is needed for them. In the new 
sample, one could apply these weights to the criterion variables 
to get a set of composite criteria (q's), for however many of the 
composites might be of interest in a particular study. A separate 
MRA could then be carried out for predicting each q from all the 
observed predictors (this could actually be accomplished by 
simultaneous MRAs using the Rg ^ matrix, as indicated in Chapter 
II). The mult R's from the new sample could then be compared 
with the corresponding canon R ’s from the original sample. This 
second approach would not directly produce any loadings in the MRA
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for congarison with those from the CCA. However, to the extent 
that the cross-validation holds up, the MRA weights for each 
composite predictor in the new sançle should be roughly pro
portional to the corresponding predictor weights from the CCA.

The second approach to cross-validation is obviously cruder 
than the first, but it may be preferred as a less expensive alterna
tive if funds or computer time (or both) are not available for 
repeating the CCA. A complete MRA is cheaper than a complete CCA.
It may also be preferred if only the first few out of a large 
total number of factor-pairs are of interest, so that repetition 
of the entire CCA would involve a great deal of wasted computer 
time. It should be borne in mind that the second approach involves 
switching from a variable-predictor model (CCA) to a fixed-pre- 
dictor model (MRA).

If the investigator is satisfied with the cross-validation, 
however it is carried out, he has in hand for future application 
the matrices of predictor and criterion wei^ts. For simplicity, 
consider only v and w, the vectors of wei^ts associated with p 
and q. Given a new individual, who was neither in the original 
sample nor in the cross-validation sample, and given that a set 
of x-measurements is available for this individual, it is desired 
to predict his standing on q^.

Now p^ and q^ are in standard form, and canon is the 
product-moment correlation between them as well as the regression 
weight for predicting one from the other. Since p^ and q^ are 
both free to vary, the bivariate correlation model is applicable.
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and

/\ A(61) = (canon '̂ü  P^^edicts

which has the same form as equation (2) in Chapter I. To predict 
q^ for individual _i, apply the vector v^ to his scores on the x 
variables to get his p^ score, then apply equation (61) to get 
his score on

Note that Q^, which is not in standard form, predicts q^, which
is in standard form. If it is desired that the predictor of q^ be
in standard form, simply divide (61) through by canon R^, and

(62) q^^ = $^^/(canon R^) = p^^.

That is, if one has the standardized predictor in hand, the best
guess (assuming a linear relationship) as to the value of the
standardized criterion is that it will be identical with the
standardized predictor.

Using either (61) or (62), if a person is one standard
deviation above the mean on p^, it will be predicted that he is
one standard deviation above the mean on the criterion. That is,
if p = 1, then Q - canon R , and q =1. 

il il 1 il

The vector ^  of wei^ts for the y measurements do not come 
explicitly into the foregoing discussion at all. The y measure
ments are not actually taken; it is predicted that if they were 
taken, and if they were combined into one score using w^, then 
the resulting composite score is best estimated by or q ^
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(whichever the investigator prefers).

Parsimony, Orthogonality, and Error 
A common use made of FA is in "data reduction," in which a 

large number of variables is replaced by a smaller number of factors 
which account for almost all the variance in the original variables. 
If the sum of squares of loadings for a given factor is quite 
small in relation to the total sum of squares of loadings, that 
factor may be dismissed as due to "error" or simply as negligible.
If several factors are eliminated in this way, then the investigator 
may claim that he has replaced the original variables with a more 
parsimonious set of factor variables which account for the same 
essential phenomena. Some factor analysts (Thurstone, 194-7) 
feel that such data reduction is one of the chief functions of 
FA.. The use of communalities rather than ones in the diagonal 
of the correlation matrix matrix is defended because (among other 
things) it enhances the prospects of eliminating factors.

The common factor model, as distinguished from the principal
components FA model so far referred to in this dissertation, has
a fundamental equation of the following form:

(53) = fiiPii + + --- + firPir + ̂ l^il +

where there are r common factors underlying the x measurements, 
represented by the p ’s, a factor specific to x^, represented by 
S.J, and an explicit error term. The f coefficient for s^ has a 
single subscript because there is only one such coefficient for
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each specific factor. Only the conmon factors are analyzed, since 
there are more or less subjective methods for removing the variance 
contributed by the specific factors and by the error term. If the 
resulting number of common factors is fewer than the number of 
original variables, a claim for parsimony is made.

Actually, such a claim for parsimony ignores the fact that 
under the common factor model there are as many specific factors 
as there are original variables (Harman, 1960). Adding these to 
the common factors gives more factors than variables. Nor is all 
error removed from the common factor model by the explicit error 
term; the factor loadings resulting from the analysis are still 
estimates of population values. Finally, the use of the common 
factor model, rather than the FA model used here, tremendously 
complicates the calculations required for getting wei^ts from 
loadings, and loadings from wei^ts.

Using the principal components FA model or CCA, the investigator 
may find that in some cases some of the factors or factor-g^irs 
extracted contribute very little to the total sum of squares and 
may be ignored. However, even if all the factors are relatively 
large, there may still be considerable value in having transformed 
the original variables into a set of orthogonal variables. The 
alternative structuring of the data may be conceptually simpler 
if not more parsimonious than the original data, and, in addition, 
orthogonal variables have convenient algebraic properties which 
may be desirable.

The question of whether "nature" is orthogonal or whether the
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structuring provided by an FA or CCA is more "real" or closer to 
nature need not be raised if the analysis provides results which 
are meaningful in terms of the context in which it is carried out.

With respect to CCA, Meredith (1964), in the article referred 
to in Chapter II, has shown one way in which error due to test 
unreliability can be removed from the analysis. For those who 
subscribe to the notion that an observed scores can be represented 
as the sum of a "true" and an "error" component, and who find the 
present methods of assessing test reliability acceptable, Meredith’s 
treatment may prove satisfactory.

One effect which error may have on a CCA may be seen in Table 
10 with reference to the analysis of empirical data. Predictor 
factor I and criterion factor I have the same structure— that is, 
"Affective status" has the highest loading in both, and "Motor 
activity" and "Ease of testing" are the next most important in 
defining the factor-pair. However, the loadings are all some
what smaller in the criterion set, with the result that the criterion 
sum of squares of loadings for factor I is 1.30, as compared with 
a predictor sum of squares of loadings for factor I of 2.29. Thus 
error may lead to differences in saturation of members of a factor- 
pair without destroying essential structure. The same sort of 
effect might be seen in an FA repeated using the same variables 
and the same or different subjects.

2
^22 Battery Reliability 

If the two sets of variables in a CCA consist simply of the
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same battery of measurements given twice to the same subjects, or
if the second set consists of "alternate forms" of the tests in

2the first set, then can be considered an index of the reliability
of the entire battery. It would be expected that the factor structure
would be much the same in the two batteries, though of course the
two sets of loadings should be inspected to see if such is indeed
the case. Even when the factor structure is the same, a factor may
be more strongly saturated in one battery than in the other, as
indicated in the preceding section. Such differences in saturation

2will of course affect the value of H21

Limitations of Canonical Correlation Analysis 
Now that electronic computers are becoming more generally 

available, it is possible to apply CCA to much larger problems 
than formerely. There are still some limitations with respect to 
sample size relative to number of variables in both sets, and with 
respect to arithmetic accuracy, which must be taken into account.

From looking at the chi-square test for significance of 
canonical correlations in equation (5M-b) , it is clear that the 
number of subjects necessary for a valid test must at least be 
greater than .5(m, + m^ + 1] or the resulting chi-square will 
be negative. This seems to be a rather generous limitation. In 
practice, however, it has been the author’s experience that N 
must be about twice as large as the total nujnber of tests in both 
sets to detect significance. Canonical correlations of .99 have 
been found insignificant when the total number of tests approached 
the total number of subjects.
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Computer accuracy is another factor which can cut down the 

size of problems even though the computer has the storage capacity 
for large problems. The CCA program for the IBM 1620 described 
at the end of Chapter III has the storage for up to fifty variables 
divided into two sets. However, with floating-point arithmetic 
and eight-digit accuracy, the results with problems larger than a 

total of twenty variables are questionable. The inversion of large 
matrices leads to considerable rounding error, and the iterative 
procedures for finding roots and vectors for a matrix lead to more 
such error. As a result, computer outputs of CCAs should not be 
accepted uncritically. The author has found a satisfactory check 
to consist of ascertaining that the row sums of squares of loadings 
within sets are all tolerably close to 1.00; this check could be 
built into future computer programs or (with small problems) made 
by desk calculator.

Suggestions for Further Research
Horst (1961) has provided a generalization of CCA to more 

than two sets of variables. The treatment is largely mathematical, 
and the development is in terms of canonical weights with no 
consideration of problems of interpretation of results. It would 
be worthwhile to see if the approach to CCA in this dissertation 
could be extended to the general case developed by Horst, and to 
discover if new problems arise as a result of his generalization.

Another field requiring investigation is that of working out 
significance tests for the loadings within sets in CCA ( or
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alternatively for the weights). The significance tests known to 
this author, such as those of Lawley (given in Harman, 1960) or 
Rao (1958) assume a common factor model rather than the principal 
components or CCA model, though perhaps they could be, adapted for 
use with the latter models.

It might also be desirable to develop a significance test for
2 2thou^ it seems plausible to argue that if is calculated

using only significant canon R's, one should have as much confidence
in it as in the canon R's. In general, this dissertation has
had little to say about tests of significance, estimation of para-

2meters, or the distribution of such statistics as H . Such matters21
could profitably be pursued with more rigor now that the meaning of 
CCA and its relationships to more familiar methods of analysis 
have been clarified.

Finally, the present results could be related to "canonical 
analysis" in the general sense as discussed by Bartlett (19M-7) 
and McKeon (1962), in which the basic CCA model, through the use 
of pseudo-variates and conditional inverses, may be applied to a 
whole range of statistical techniques including analysis of variance 
and covariance and discriminant function analysis.



CHAPTER VI 

SUMMARY
Although canonical correlation analysis (CCA) has been avail

able as a statistical tool for more than.thirty years, relatively 
little use of it is found in the psychological literature, and 
there seems to be no instance in which it has been used for the 
joint purpose of prediction and exploration of relationships 
among variables. CCA is like multiple regression analysis (MRA) 
in its predictive function, and it is like factor analysis (FA) 
in that it can be used for the conceptual restructuring of data. 
Where attempts have been made in the literature to give FA-type 
interpretations to the results of a CCA, however, these have almost 
always made use of canonical wei^ts, rather than loadings which 
may be derived frqm the analysis. The inappropriateness of wei^ts 
for interpretation, and the possibility of obtaining loadings from 
a CCA, seem not to be generally appreciated. Mathematical treat
ments of CCA have not focused explicitly on problems of inter
pretation, and further have lacked uniformity of notation and 
terminology. Methodological studies have indicated relationships 
between CCA and MRA, or between CCA and FA, bt_i: there has been 
no unified presentation of all three, and no studies have exhaustive
ly explored the implications of these relationships.

83
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In this dissertation it is shown how CCA is an extension of 
MRA t o  the case of several criterion variables, with a relaxation 
of the restriction that the predictors be fixed, and also how a 
canonical correlation coefficient is only a particular kind of 
multiple correlation. It is thus made clear that the weights 
obtained from a CCA are partial regression wei^ts. Whereas MRA 
produces such weights only for the observed predictors, CCA 
produces weights for both sets of observed variables, and either 
set may be treated as "predictor" or "criterion." It is made 
clear that such weights, either in MRA or CCA, are useful in 
calculating composite scores for each individual in the sample, 
but that they are not very helpful in speculating about the meaning 
of these composite scores. The implications of using standardized 
or non-standardized composite scores is discussed, and matrix 
equations for standardizing them presented.

It is shown how factor loadings, which are appropriate for 
interpretation of the composite scores obtained from a CCA, may 
be computed. Two kinds of loadings— loadings within sets which 
link CCA to principal components FA, and loadings between sets 
which link it to MRA— are described and the relation between them 
given. Both MRA and CCA are applied to the same artificial data 
problem, which is small enough so that it is possible to see 
what happens to each variable and to each subject in the sample.
The similarities and differences between MRA and CCA are illustrated 
with this problem, and it is also used to show how CCA can reproduce 
the factor structure known to underly two sets of variables. All
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computational steps for a complete CCA are shown, and reference 
is made to an available computer program which calculates loadings 
as well as weights. CCA is then applied to empirical data to 
show that it is capable, through the use of loadings, of producing 
meaningful factors in a situation where the structure is not 
known beforehand.

An index of overall association between two batteries of 
measures, which is a function of the number and size of the 
significant canonical correlations and of factor structure and 
saturation, is developed. A method for interpreting factors, 
whether from a CCA or an FA, in terms of the percentage of sum 
of squares contributed by each variable to each factor, rather 
than in terms of loadings as such, is demonstrated. Alternative 
cross-validation methods for CCA are described, as are certain 
pragmatic limitations on the number of variables that may b e . 
analyzed even with electronic computers. The question of whether 
CCA and FA are useful primarily as a means of reducing a larger 
number of variables to a smaller number of factors, or primarily 
as a means of transforming sets of correlated variables into new 
sets of orthogonal variables, is discussed. In any case, CCA 
would seem to be the method of choice for matching factors from 
different sets of variables.

Algebraic proofs and a summary matrix notation of all 
important definitions and relationships are given separately for 
MRA and CCA in the appendices.
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APPENDIX I

MULTIPLE REGRESSION ANALYSIS: DEFINITIONS, SUMMARY
OF ALGEBRAIC RELATIONSHIPS, AND PROOFS

The definitions and equations,ÿhich follow are given for the
general case of several criteria predicted separately by the same
set of predictors. To apply them to the case of only one criterion,

replace R and R with r and r in what follows.
“12 “21 “12 “21

Definitions
N = number of subjects
n = N - 1 = degrees of freedom
m̂  ̂ = number of variables in the predictor set
m = number of variables in the criterion set

2
= an observed score in the predictor set, in standard form

y = an observed score in the criterion set, in standard form
3

X = N by m^ matrix of standard scores of all subjects on all x 
variables

Y = N by m^ matrix of standard scores of all subjects on all y 
variables

R,, = m by m, matrix of correlations within the x set-11 1 1
—12 ” "’l "̂ 2 n^trix of correlations of the variables in the

X set with the variables in the y set
89
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by m matrix which is the transpose of R ”21 2 1 ” L2

R = m by m matrix of correlations within the y set 
” 22 2 2

Relationships and Proofs 
The matrix B of standard partial regression weights is given

by:

Cl) B = R-^ R^^.

2The squared multiple correlations (mult R ’s) are found on the
diagonal of R , where2.1

C2) S 2.I = %  %  h z -

Proof 1
When the observed predictors (x’s) are uncorrelated, the

regression weights are also correlation coefficients. That is,
-1 -1 if R = , then R = 1 . Then from equation (1) , ^  = K  _ R =11 11 11 12

I R, = R . Thus in this case the weights are identical with the  12 ”12
simple correlations between the x ’s and the y ’s.

Q. E. D.
Proof 2

The matrix of unstandardized composite predictor scores is
P* = X JB. It can be shown that the variance-covariance matrix for
P* equals R , which means that the variance of each unstandard-2.1
ized composite predictor equals the squared, multiple correlation
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between it and its criterion. The variance-covariance matrix is; 
(3a) (1/n) p*’ P* = (1/n) (QC B) ' (X B) ,

(3b)
(3c)

(3d)

(3e)

(3f)

(3g)

= (1/n) B ’ X* X B,

= (%1 Rj_2) ’ ̂ 11 (̂11 -12̂ ’
= R R"^ R R"^ R , where (R”^) ’ = R'^ , 

21 11 11 11 12 11 11

-21 -11 - 12’

^2.1"
Q. E. D,

It follows that the composite predictors may be standardized 
by dividing each colimn of B̂ throu^ by the corresponding mult R, 
to give a new matrix of weights, V:

u
-1

(M-) V = B Z, where. Z =

(mult R^) 0
0 (mult R )

0
0

(mult R^ ) 
2

-1

(5) Then P = X V,

where the diagonal elements of (1/n) P ’ P are ones.
To intercorrelate the composite predictors:

(6a) R = (1/n) P' P,
PP

(6b) = (1/n) V ’ X' X y.
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(6c) = V' V, where V = B Z,
(6d) = Z' B ' R^^ B Z, where Z' = Z.

But-from the second proof above, B* R B = R , hence,11 2.1
(6e) R = Z R Z.“P P  2.1 -

To correlate the observed criteria with the composite predictors;

(7a) = (1/n) Y ’P,

(7b) = (1/n) Y' X V,

(7c) = R21 Y.



APPENDIX II

CANONICAL CORRELATION ANALYSIS; DEFINITIONS, 
SUMMARY OF ALGEBRAIC RELATIONSHIPS, AND PROOFS

Definitions
N = number of subjects
n = N - 1 = degrees of freedom
m^ = number of variables in the x set
mg = number of variables in the y set, where m^ < m̂ ^
Xj = an observed score in the x set, in standard form 
Yj = an observed score in the y set, in standard form 
X = N by m^ matrix of standard scores of all subjects on all 

X variables
Y = N by m^ matrix of standard scores of all subjects on all 

y variables
D = ĵX X J “ matrix of all the scores (data matrix)
R^2 ” by m̂  ̂ matrix of intercorrelations within the x set
^ 2  ” by mg matrix of intercorrelations of the variables in the

X set with the variables in the y set 

— 21 ~ "̂ 2 "'l ^^trix which is the transpose of R^^
—22 ~ ""g by m^ matrix of intercorrelations within the y set

93
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(1) (1/n) D ’D = R =
h l  -12

-21 R,22

The Problem
Find a pair of linear combinations of the observed scores

of the form p, = and q = w y , with v and w1̂ ^  ji j 1̂ z: jî j ji ji
not all zero, such that p^ and are in standard form and the 
correlation between them is a maximum. Find this correlation, 
which is called a canonical correlation.

Then find a second pair of standardized linear combinations,
Pg and q^, which are maximally correlated subject to the restriction 
that they are orthogonal to p and q. Repeat -this process until 
there are m^ correlated pairs of p's and q's.

First Solution
There are two approaches to a solution. The first finds the 

squared canonical correlations ( A . values) and the weights for 
the y's from:

-1 —1
(2a) (Rg2 ^21 —11 —12 ” ^ j j ~ ^ :

r -1 ’ -1
(2b) where = (b̂  Rg^ % 2  -j^ %  ~22 -j^ , j =1, 2, ..., m.

The vectors b,, b , , b constitute the m„ by m matrix B of-1 -2 -mn  ̂ 2 ~

weights to be applied to the y set. The wei^ts for the x set are 
found by:
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(3)

-1
A = ^  (B’ B)-%

-2 2

where A is an by matrix and (B’ Rg2 is a diagonal matrix.

The A and ̂  wei^ts, if applied to X and Y, will not produce stand
ardized con^osites. Rather, the composites will have zero means 
and variances equal to A ’ A and B ’ R^^ B respectively (these are 
diagonal matrices with the variances on the diagonal). If

(4)
(5)

V = A (A' R^^ A)"^ and W = B (B‘ R^^ B)"^,
then P = X V and 2. “ X  ÎÎ

are N by m^ matrices of standardized composites, and

(6a)
(6b)

(6c)

(1/n) P’P = (1/n) 2 ’2  = I, and
(1/n) P'2 = (1/n) 2 ’Z  = A  > where

A =
0 %

0
0

%
m2 J

In the above solution, V is rectangular (m^ by mg) while W
is square (m„ by m ), and P and 2  have the same number of columns — 2
(m^). Each column vector of composite scores in P has a matching 
column vector in 2  which correlates with it and with no other 
column vector in P or 2«
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Second Solution 

The alternative approach is to find the A.'s and A from:

(7a) ( ^  - X . I)a. = 0

(7b) where A = (a’ R R R a ) (a*. R a.) j = 1, 2, • 
J 3 tc tix 3 3 11 3

Note that in (7b) the index j ranges from 1 to whereas in
(2b) it ranged only from 1 to m^. If > m^, (7a) and (7b) will
yield m nonzero values of X plus m - m values which are identic- 

2 3 1 2
ally zero. For example,

(8) If m = 3  and m = 2, A. “ 1 2

"1 
0 A

0 0 
0

0 0 0
The matrix of A weights from (7a) will be square (n̂  by m^).

The matrix of weights is found by:

(9)
-1 -% B - R  R A ( A ’ R ^  .

“  “22 “21 “  “11

B will be a m by m matrix, but the last m - m columns will con- 2 1 1 2
tain zeros, and can be dropped, leaving B a square (m^ by m^) matrix.

V and are found from A and B̂ as before, only now both V and 
W are square, being m^ by m by m^ by m , respectively. P now has 
m^ - m^ more columns than 2_. For example, if m^ = 3 and m =2,
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(10a) V =[V V V-1 -2 -3j

^11 ^12 ^13
V V V21 22 23

V V31 32 33

(10b) W = w w 1 
-  [-1 - 2 \

w w 11 12

*21 *22

, and

(10c)

The set of N composite scores symbolized by p dees not correlate— 3
with any other vector in P or with any vector in 2,.

Proofs
In the proofs that follow, V refers to the m^ by m^ square 

matrix of weights which, when applied to the matrix of x scores, 
gives P = X V, and P will refer to the full N by m^ matrix of factor 
scores. The reasons for so defining V and P will become apparent. 

The basic equations obtained from the CCA are:

(11a) P = X V
(11b) (1/n) P ’P = I

2  = I  W 

(1/n) 2'â = Ig,

where I is an m^ by m̂  matrix and I is an m by m matrix;i J. J. c u <L

. %
(1/n) 2'P = &2'%(11c) (1/n) P’2 =
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%  %where Ai is an m by m matrix and A„ is an m by m matrix.0.1 1 1  -2 2 2

It is important to note that and are diagonal matrices
having the same numerical values in the corresponding diagonal
elements, except that when m> m , A will have m - m more rows

^ 1 2 “1 1 2
and columns than and all the elements of these extra rows and 
columns, including the diagonal elements, will be zero. 

Substituting (11a) into (11c) gives:

, % %
(lid) A  -l " À  2 "
(lie) = (1/n) (X V) * (Y W) , = (1/n) (Y W) ’ (X V) ,
(Ilf) = (1/n) V ’X ’Y W, = (1/n) W ’Y ’X V,

(llg) = V % p  W. = W ’R V.21

The loadings within sets, which are correlations of x ’s with 
p ’s and y ’s with g’s are:

(12a) F = (1/n) X ’ P G = (1/n) Y ’ &
(12b) = (1/n) X ’ X V = (1/n) Y ’ Y W

(12c) = V = Rgg W

Proof 1
From (12c) it follows immediately that when the observed x 

and y variables are orthogonal within sets (that is 
Rgg = I), the loadings within sets are identical with the canonical 
weights :
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(12d) If R = I, If R = I,
11 22

(12e) I  = I V = V. G = I W = W.

Q. E. D.

The loadings between sets, which are the correlations of 
the x*s with the q's and the y ’s with the p ’s, are found by:

(13a) M = (1/n) X' N = (1/n) Y ’ P,
(13b) = (1/n) X ’ I  W, = (1/n) Y ’ X V,

(13c) = Rĵ 2 = ̂ 21 -•

For the proofs that follow, certain relations involving V 
and W must be demonstrated. Both V and W are square matrices which 
are non-singular since they consist of columns of eigenvectors. 
Therefore they have inverses. In the rare instance when all the 
roots of (7a) are identically one, so that it would appear that 
all the eigenvectors would be equal in V and in W, V and W can 
still be made non-singular (Browne, 1958; pp. 89 ff.).

From (11b):

(14a) (1/n) P ’P =1^, (1/n) & ’ &  = I^,
(1%) (1/n) Y' X' X V = I^, (1/n) W ’ Y ’ Y W = I^,
(14c) V ’ R^^ X  = W ’ R^2 W = I^,

The matrix products (^^ V) and(R^^ W) are square and nonsingular, 
hence ;

(14d) V' = (R^^ V)"^, W ’ = (R^^ W)“^,
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-1 —1 -1 —1 
(14e) Y' = V W' = W

-1 -1(14f) V V» = R . W W' = R . ~L1  “ 22

Proof 2
Using (14f) it can be shown that the fundamental equation of 

factor analysis holds for the loadings within sets. That is, F F'

C15a) I F*= V)’. Ê G' = «0 !Q'
(15b) = Y  Y" R^. = «22 W W' Rgg.

(15c) • 5= -11’ ” h 2  & 2  -22’

(15d) = ^ 1 -  = £ 22-

Q. E. D.

Proof 3
Using (llg), (12c), and (14f) it can be shown that the loadings 

between sets equal the loadings within sets times the associated 
canonical correlation; that is, M = F , and N = A^ . For,

% _  -   -(16a) F A^ = (R^ V)(V’ R^^ W) , G A ̂ ^  (K’ ^  V)

(16b) = R (V V )  R W, = R (W W ’) R V,- 1 1  -12 -  - 2 2  -21 -

—1 —1 
(16c) = R R R W ,  = R R R V,“11 -11 “12 “  “22 “22 “21 “

(16d) = M.  ̂ = N.
Q. E. D.
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Proof 4-
Using (lH-f) it can be shown that the sum of the squares of the 

loadings between sets for a given observed variable (x or y) 
equals the squared multiple correlation between that observed 
variable and all the observed variables in the other set.

(17a) M MT = (R^2 E)'» M  N'= V) .

(17b) = R W W ’ R ,  = R V V ’ R ,
~ L 2 ---”21 ”2 1 -----”12

-1 -1 
(17c) = R R R , = R R R ,"12 ” 22 ” 21 ” 21 ” L1 ”12

(17d)  ̂ = & . 2 "  = ^ 2 . r

Q. E. D.

The expression for N N ’ is the more familiar, since the y
variables have here been treated as criteria. The diagonal element
d .. of R is the squared multiple correlation between y and all 
33 2.1 j

the x*s. If the x ’s are treated as criterion variables, then the
diagonal element d of R is the squared multiple correlation

33 “ L.2
between x^ and all the y ’s.

The final proof has no immediate application to this dissertation, 
but is included because some application for it may occur to sub
sequent investigators.

Proof 5
When the y variables are orthogonal to begin with, so that 

R^2 = j[, then the sum of the squared multiple correlations for 
predicting each of the y ’s from the x ’s (that is, the trace of
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Rg equals the sum of the squared canonical correlations. This 
follows from the fact that for a characteristic equation of the 
form

(18a) C K - X . I ) b .  = 0
] ]

the sum of the roots of K equals the trace of K. Then for equation 

(2a),
V. ' “1 —1

(18b) > A  = t r ( R  R R R ) .
^  j 22 21 11 12

-1
But if R^2 = then so that (18b) becomes

(180) ^  A. = tr (£^^ e'J ^2.1-

Q. E, D.

The foregoing can easily be adapted to the case in which the-1
X variables are orthogonal to begin with. Then R^^ = R^^ = 

and using characteristic equation (7a) instead of (2a):

-1
(18d) /  A = t r ( R R  R ) = tr Rj ^ 2  "22 "21 "1.2



APPENDIX III

PSYCHOLOGICAL EXAMINER'S RATING SCALE 
FOR SCHIZOPHRENIC PATIENTS 

T. S. Ray, Ph.D., and J. S. Chappell, M. S.
Ideational fluency.
+6 Patient chatters incessantly in disorganized way or even 

shouts unintelligibly.
+M- Patient insisently presents psychotic ideas to examiner, 

is so preoccupied with own productions that examiner has 
difficulty breaking into stream of ideas.

+2 Patient is overtalkative but interacts with examiner to 
satisfactory degree.

0 Patient exchanges ideas spontaneously with examiner 
without loss of ease.

-2 Answers questions without spontaneously elaborating.
Does not carry her end of the conversation. Waits for 
examiner to lead conversation.

-4- Verbally inhibited, replies with minimum answer to 
direct questions only, requires urging to reply, may 
speak in monotone or muffled or faint speech.

-6 Muteness, or absence of meaningful speech (may mumble to 
self) .

Expressiveness and gestures,
+6 Active posturing and/or bizarre behavior.
+4 Manneristic behavior and/or inappropriate facial expressions.

aReproduced with permission of senior author. 
^Abridged from original scale.
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+2 Histrionic animation of facial expressions, gestures, etc. 

which are in line with the general ideas being expressed.
0 Spontaneous but modulated use of gestures and facial 

expressions.
-2 Speech not accompanied by associated gestures and facial 

expression; reduction in spontaneity, or effortful use 
of gestures.

-4 Economy of movement, impassive facial expression, etc.
-6 Expressionless, masked facies, waxy flexibility.
Affective status.
+6 Patient seems excited, high, or manic (possibly with 

flight of ideas).
+4 Patient is silly and/or inappropriate with laughter or 

giggling.
+2 Patient maintains a gay, carefree, or jovial front or may 

be quite labile (emotional) in affect,
0 Patient is fairly responsive in a well-modulated way, 

smiling at appropriate times, becoming serious when 
appropriate, etc.

-2 Patient is quite serious, sober, or subdued, unsmiling, 
uneasy, self-conscious.

-4 Patient seems unhappy, sad, depressed or fearful, even 
suspicious, or complaining and peevish; or markedly 
flattened in affect.

-6 Patient may be profoundly depressed, withdrawn, or 
uncommunicative.

Motor activity.
+6 Patient is grossly overactive, may leave chair to move 

about room restlessly.
+4 Patient engages in continuous random movements, is motor- 

ically active while able to stay seated.
+2 Patient is restless or fidgety, may busy self with some

thing most of the time, fingering things, etc.
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G Motoric activity spontaneous and well-coordinated, 

absence of undue restlessness or inhibition,
-2 Movements have deliberate quality, slowness, lacking in 

spontaneity and ease of coordination or appears to be 
overcontrolled.

‘4- Inhibited, jerky movements or stereotyped rocking motion. 
Extremely effortful, tired appearing, lacking in energy, 
etc.

-6 Spontaneous movements absent, extreme economy of movements, 
possibly waxy flexibility or rigidity of musculature, 
stuporousness.

5. Ease of testing.
+6 Testing attempted but not possible due to overactivity or 

testing not attempted due to patient being in seclusion.
+4- Testing impaired due to overactivity, some portion of test 

not valid (note on test protocol).
+2 Testing not seriously impaired even thou^ the patient was 

overactive.
0 Testing accomplished without difficulty.
-2 Testing not seriously impaired (invalidated) even thou^i 

patient was underactive or slow.
-4 Testing impaired due to unresponsiveness of patient, some 

portion of test inadequately responded to (invalidated; 
note on test protocpl).

-6 Testing attempted but not possible due to lack of
participation of patient, or testing not attempted due to 
refusal of patient to come to testing room. (Overactive 
patients should be scored +6 rather than -6.)


