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THE MAGNETIC SUSCEPTIBILITY OF Cu^* IN ZnO

CHAPTER I 

INTRODUCTION

Considerable study, both experimental and theoretical, has 

been devoted to the analysis of impurity states in host crystals. 

Generally the characteristics exhibited by the impurity states are 

thought to arise from one of two models. The localized picture, i.e., 

crystal field t h e o r y , t r e a t s  the impurity state as arising from the 

impurity free ion states. The free ion states are then perturbed by 

localized electrostatic fields due to the nearest neighbor ligands and
5exhibit Stark splittings. As there usually exists covalency between 

the impurity ion and its nearest neighbor ligands, the free ion values 

for the spectroscopic parameters are reduced, e.g., the spin-orbit and 

Slater-Condon parameters. The delocalized picture or effective mass 

theory^ treats the impurity states as arising from either the unpertur­

bed conduction or valence band states, depending upon whether the 

impurity ion is a donor or acceptor respectively. Since the introduc­

tion of the impurity ion into the crystal lattice destroys the period­

icity of the crystalline potential, the effect of the impurity ion is



2
to introduce a perturbation to the crystalline potential centered at

the impurity site. Due to the nonperiodicity of the perturbing

potential, the crystal momentum ic is no longer a good quantum number

and hence the perturbation introduces interactions between the band

states forming wave functions localized around the impurity site.

This then results in the formation of discrete levels.

The impurity problem to be treated here is that of a transition

metal ion in a diamagnetic host crystal, i.e., Cu^* in ZnO, ZnS and

CdS. On entering the host lattice, the electronic configuration of the

transition metal becomes [Ar] (3d)^ where the Argon subshell is des-
2ignated by [Ar]. The (4s) valence electron of the transition metal 

have been given up to the valence band of the crystal and participates 

in the crystal bonding. As the 3d electrons which are responsible 

for the impurity states are tightly bound, crystal field theory has 

been successful in interpreting the impurity levels attributed to the
4transition metal ion.

2+ 9The electronic ground state configuration of Cu is [Ar] (3d)

where the core electrons denoted by the Argon subshell form deep lying

core states and will not be considered further. It is well known that

the free ion electronic configurations d^ and d^^”^ have identical
7multiplet terms and that the energy spacing between the multiplet 

terms is the same for both the d" and d^^"^ configurations. The 

intervals for the d^^ " configuration are inverted relative to those 

of d". Similarly it can be shown that the Stark splitting of the 

free ion levels due to the crystal field of the surrounding ligands



is the same for the and d^^"" configurations, only the sign of the
9crystal field parameters being reversed. Thus except for the constant

9shift of all electronic levels, the solution for the (3d) configuration 

may be found from that for the (3d)^ configuration by employing the 

hole formalism. Here one need only reverse the sign of those parameters 

which depend upon the sign of the electronic charge. The hole formalism 

will be used throughout this work.

The one electron quantum mechanical Hamiltonian for the free 

ion will then be taken as

»fi= - 4  * '' A  + i

where the first and second terms are the kinetic and potential energy 

of the system respectively and the last term is the spin-orbit interac­

tion energy arising from the relative motion of the electron and the

nucleus. The solution of the free ion Hamiltonian for a (3d)^ config-
2 2uration gives the multiplet terms D^yg.

For the host crystals under consideration, the paramagnetic 

ion enters a lattice site having local tetrahedral symmetry.

Since the crystal field experienced by the impurity ion due to the 

nearest neighbor ligands obeys the Laplace equation, the tetrahedral 

field may be expanded in terms of the generalized Legendre polynomials

where r,0 and ^ are the coordinates of the 3d electron. Simplification 

of the potential may be carried out on noting the following. For



matrix elements of within the (3d)^ configuration, the triangular 

rule of spherical harmonics rules out those terms in the expansion for 

which 4 and for odd I. Since commutes with the operations of 

the point group, symmetry considerations then dictate the form of 

V^. Thus on choosing the axis of quantization to be the hexagonal 

c-axis, the form of is given by^^

\  = *4 (^4 [^4 4* («,*)])' 0-1)

The constant term for which 2 = 0  has not been retained in the expansion
2of as this term serves only to shift the D multiplet.

For wurtzite structures, there usually exists a slight trigonql

distortion along the hexagonal c-axis. This results from the fact that

the parameter u denoting the cation-ligand spacing along the hexagonal

c-axis in the unit cell is somewhat different than its value in the
13ideal hexagonal structure. Thus a perturbing local field having the 

point symmetry will be superimposed on the predominant tetrahedral 

field. For reasons given in the preceeding paragraph, the trigonal 

perturbation assumes the form^^

Vt = B° r^ Y° (8,*) + B° r"̂  Y° (8,*] . (1-2)

As the point group is a subgroup of T^, there exist terms in

which have the same functional form as V^. Thus these terms may be 

incorporated in the larger tetrahedral potential term and have not



been included in the expression for V^.

On inclusion of the magnetic interaction energy

= Uq ( Î + gg s) •^  (1-3)

of an external magnetic field with the orbital and spin magnetic moments 

of the electron, the Hamiltonian for the impurity ion is then given by

2
H = - ^  + V(r) + + X t s  + (& + gg s) - ̂  , (1-4)

where the diamagnetic term (e^/8mc^) x r|^ is neglected. As the 

crystal field interaction energy is much larger than the spin-orbit 

interaction energy for the 3d electrons of the iron group,^ the unper­

turbed Hamiltonian for the impurity ion will be taken as

«0 = - * V(r) f  (1-5)

and on inclusion of the magnetic dipole interaction of the electronic 

magnetic moment with the external field, the perturbation to the 

unperturbed Hamiltonian is then given by

H^ = X t-s + + gg s)-J- . (1-6)

Here the spin-orbit interaction energy will then be treated as being

the same order of magnitude as the trigonal field.

In this work, the temperature dependence of the magnetic
2+susceptibility of the paramagnetic ion Cu in the diamagnetic host



lattice ZnO will be investigated. If the medium is sufficiently 

rarefied so that Boltzmann statistics is applicable, the molar suscep­

tibility is given by

N 'X = —  -2-2-------  . (1-7)
%  ;

n

where the magnetic moment

Hn = -

is the time average of the magnetic moment for the stationary state 

W^. The summation over the quantum index n denotes a summation over 

all stationary states. If it is assumed that the energy can be 

expanded in a power series of the magnetic field strength

, (1-8)

the average magnetic moment for the stationary state n becomes

Pn = - ... . (1-9)

On substituting the relations (1-8) and (1-9) for and respectively

into equation (1-7) for x, the Boltzmann factor may then be developed

as a power series i n a n d  the portion of the susceptibility x which
2is independent of the field strength reduces to



/kT-2W^^^^]e"VkT
X = N -----    (1-10)

Ï e n/kT n

As symmetry considerations gives qualitative information about 

the properties of the solutions of the Hamiltonian and provides 

simplifications in the calculation of the eigenstates, some group 

theoretical results will be considered in the work to follow. The 

character tables of the and point groups and the additional 

characters of their double groups may be found in Appendix 2. Here 

it will be seen that the notation used is that of both Bethe's and 

Mulliken's since both are used extensively.



CHAPTER II

PRELIMINARY CONSIDERATIONS

Cubic Field

The solutions diagonalizing the unperturbed impurity Hamiltonian

12are the one electron cubic wave functions which have been given in

Table 1. Here the hexagonal c-axis is the axis of quantization and the

ire chc 
15,16

2phase of the basis for the TgCTj) manifold are chosen to conform with

that of the pseudoangular momentum functions.

The eigenvalues of H^ may be found using the triangular rule 

of spherical harmonics and the relation

/qVq Y^*(6,4>) yJ'"' (8,*) (8,*) sine d0 d<|) = ),

where the values for c^(Jlm,J-'m') may be found in Condon and Shortley.^ 

If the term energy <3d^|- + V(r)|3d^> for the (3d) configura­

tion is neglected, the Stark splitting is then

3d



where <r^>2^ is the expectation value of calculated using the

normalized (3d) radial functions. As the hole formalism is being

employed, the sign of the coefficient is negative and hence the 
2doubly degenerate E(T^) manifold lies above the triply degenerate 

^TgfTj) manifold. In crystal field theory, the Stark splitting of 

the ^E(T^) and manifolds is designated as lODq where

thus

<e|V.le> = 6D

and

= - 4Dq

Trigonal Perturbation 

As the crystals under consideration have a small axial distor­

tion along the hexagonal c-axis, the cubic potential must then be 

modified by a small trigonal component having the lower symmetry 

The effect of the trigonal perturbation on the cubic field levels is

ascertained on noting that when the local symmetry of the cation site
2is lowered from T^ to the irreducible representation E(T^)

2remains irreducible in the point group while the TgCT^) represen­

tation is reducible and can be factored into the irreducible 
2 2representations A^fCg^) and EfC^y) of the point group, (see for
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TABLE 1
ONE ELECTRON CUBIC WAVE FUNCTIONS

^E

® '*2 V-f '*-1

'*-2 V f  '*1

'^2

*2 = f f  ‘*2 "x/r ‘*-1

"̂2 ° -x/t  '*-2 'x/r '̂1
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example Wilson, Decius and Cross^^). Hence under the influence of
2the trigonal perturbation, the level remains degenerate while

2the triply degenerate level splits into an orbital doublet
2 2 E(Cgy) and an orb.ital singlet The relative positions of

the ^E(Cgy) and levels derived from the level will

depend upon whether the trigonal distortion represents a compression

or distention along the hexagonal c-axis.

The matrix elements of the trigonal perturbation

= B° r^ Y°(0,<j>) + r"̂  Y“(0,<|.)

are evaluated using as basis the cubic wave functions and are given 

below

<tj |vjt;> =<t- lvJt-> = Do . - f o r  

<t° |v̂ |t°> = -2Da - 6Dt 

<e|V^)e> = <e'|v^|e'> = Dr 

<tg |V^|e> = <t’ lv^|e'> =/2(Do - -^D-r), 

where the trigonal parameters Do and Dt are defined as follows

1 r r  oo ."X
= - T T  7 —  ®2 "3d

- T T  J ê r  ®4 <r̂ "3d
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In the presence of a trigonal field, it is customary to
2define the energy separation of the E(T^) level from the center of 

2gravity of the levels to be lODq even though a small part

of this energy splitting is due to the trigonal field, (see Figure I). 

This, in effect, modifies the expressions (I-l) and(1-2) given pre­

viously for the tetrahedral field and trigonal perturbation respect­

ively. The cubic field term giving rise to the energy separation 

lODq must then be redefined to be

''c = * w  ( h - d

and the perturbation representing the trigonal distortion becomes

\  = ^2 ^2 - 27- ^4 ‘ Y"^)] (II-2)

The above expressions for the cubic and axial fields offers the simplifi-
2cation that matrix elements of within the E(T^) manifold vanish.

The matrix elements for the terms and given by equations (II-l)

and (II-2) respectively are shown in Table 2. The non-zero matrix elements

not shown in Table 2 may be determined from the Hermitian property of the 
operator V^. Here the energy splitting lODq is then defined by

lODq = (- A° - Dr)

and the trigonal parameters K and k ' are given by the relations

20K = - Do - - ^ D t (II-3)

and

K = Do - Dt , (II-4)
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2where the energy separation of the manifold split apart by

the trigonal field is 3K.

Spin-Orbit Considerations 

As discussed previously, one need only consider the one 

electron spin-orbit interaction energy

Hso = - Ç t-s. (II-5)
9Since a (3d) configuration is under consideration, the multiplet 

structure is inverted as the shell is more than half filled yielding 

a negative value for the spin-orbit parameter (see Condon and Shortley^) 

Here the spin-orbit parameter will be defined as being positive, the 

negative sign appearing in the spin-orbit interaction energy, equation 

(II-5), then takes into account the inverted multiplet structure.

The energy level splitting, including the spin-orbit inter­

action energy, may be investigated qualitatively as follows. The

spin-orbit interaction energy transforms like the identity representation
17under the operations of the full rotation group, the irreducible 

representations of the full rotation group being labeled by J, the total 

angular momentum of the system with the inclusion of spin. The compon­

ents of the basis for the irreducible representations of the full 

rotation group are then labeled by M^, the component of the total angular 

momentum along the z-axis.
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TABLE 2

MATRIX ELEMENTS OF IN THE CUBIC REPRESENTATION*

e'

® ^2 ^2 ^2

/2 k '

/2 K'

^2 -K

2 2K

* The non-zero matrix elements not listed may be found 

from the Hermitian property of the operator V^.
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On lowering the spatial symmetry of the Hamiltonian with the

inclusion of the tetrahedral and axial fields, the symmetry of the

Hamiltonian is lowered from that of the full rotation group to

The wave functions with the inclusion of spin will then form basis

for the irreducible representations of the double group, here

the double group must be used as the total angular momentum of the
18system is half integer. Since the ultimate degeneracies of the 

energy levels is independent of the initial functions, one may then 

investigate the reduction of the reducible representation formed from 

the direct product of the cubic functions forming the basis of the 

irreducible representations of the group with the spin functions 

under the operations of the double group (for character table 

see reference 42). Under the symmetry operations of the group,

the spin functions -y and - form basis for the two fold degener­

ate double valued representation while the orbital functions form 

basis for the single valued representations and E. The direct

product representation of the spin and orbital functions is reducible 

and on reduction give

Direct Product Representation Irreducible Representations
of the ITjy Group
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Either by inspection of the secular equation or by investi­

gating the transformation properties of the direct product functions, 

linear combinations of these functions may be constructed exhibiting 

the symmetry of the group. These functions are given in Table 3.

The transformation properties of the wave functions given in Table 3 

are indicated and following standard convention the first index labels 

the irreducible representation of the double group and the second 

and third indices label the parent trigonal and tetrahedral levels 

respectively from which the functions were derived.

Without the inclusion of the spin-orbit interaction energy in 

the Hamiltonian, the energy level splitting exhibited by the Hamiltonian

H = Hfi+ + Vt

using the functions given in Table 3 as basis remains the same as 

discussed previously except now the levels exhibit twice the degeneracy

due to the inclusion of the spin functions. On including the spin-
/

orbit interaction energy in the Hamiltonian, the energy pattern is now
2 2split owing to the scrambling of the free ion and states

2in the cubic wave functions. The final energy splitting of the D 

free ion state is shown in Figure 1. The spin-orbit levels and 

Fg are still shown to remain degenerate up through the spin-orbit 

perturbation even though and Fg are distinct irreducible represen­

tations of the Cgy double group. This remaining degeneracy is due to
19the fact that the Hamiltonian is invariant under time reversal, an 

additional symmetry operation which has not been considered here.
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TABLE 3

CUBIC FIELD FUNCTIONS FORMING BASIS 
FOR THE IRREDUCIBLE REPRESENTATIONS

OF THE C  DOUBLE GROUP

(^E(^E))

r^C EC'T,))

r^.r^c^EC^Tp)

(Tj)

'''s \ f T  T

’''6 v f  T

(Tj)

J _  t°r2. ,2m 2 ^2

2 2

_L,2r,,2m 2 2

T h

i>/[ = / —  [("Y^2^ " — f  ̂ 2^^



'E(6Dq)

V.Free Ion V,

Figure 1. Energy level diagram of Cu^* in a Tetrahedral field
(Strong axial field)
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Under time reversal the basis of the irreducible representations 

and r g are interchanged,^^ thus they must correspond to the same 

eigenvalue of the Hamiltonian and serve as basis for the doubly degen­

erate r^, Fg level.

The matrix elements of H = - ç t ‘S may be evaluated in theso
representation given in Table 3 using the relation

andZO

(J ) H  y(J-M+l)(J+M) i|̂ CJ,M-l)- op

= Ti M

where the operators and J are the step operators constructed from 

the angular momenta operators and are defined by the general relations

= J; + i Jy

J- = ^x " i '̂ y-

The matrix elements for H are shown in Table 4. Here it is seen thatso
the spin-orbit parameter ç has been defined such that 

G = 2 <-%- t+ iHgol tg >
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TABLE 4

MATRIX ELEMENTS O F x l ’s IN THE
UNCOUPLED REPRESENTATION

T ®  -"IT -f^2 " T ^ 2 ~ T ^ 2  T ^ 2

][_J: -  -s'X/2-

--s' - s'/yb

-i- t; s A/f

T  2̂ s 7̂ 2

T  2̂ -  Ç /  2

-y ^2 - S /2

'4'^5

*3 (/ 2

S / 2
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and

1; 4 e > .

where ç = ç' for the pure ionic model. Although in the free ion the

radial part of the wave function is independent of the magnetic quantum
2 2number m, the cubic wave functions for the and E levels construc­

ted from the free ion functions may exhibit somewhat different radial 

dependence owing to covalency with the surrounding ligands. Thus the 

spin-orbit parameters ; and need not be equal and are reduced from 

their free ion values.

External Magnetic Field 

For the case of an external magnetic field applied parallel to 

the hexagonal c-axis, the magnetic energy term is given by

The relation (II-7) may be employed to determine the matrix of the 

operator +g^ s^) in the representation given in Table 3 and the 

results are shown in Table 5. Here again owing to the mixing of the 

cation 3d orbitals with the nearest neighbor ligand 2s and 2p orbitals, 

an orbital reduction parameter has been included in the formalism.

The orbital reduction parameter for the intrablock Tg elements 

is defined as

k = <tl |t,| tt > (II-8)
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and for the interblock elements

= y f  ' 4  I":!"' (II-9)

It is seen that when there is no covalency between the substitutional 

cation and the nearest neighbor ligands, the orbital reduction para­

meters become k= k'= 1.

For the external magnetic field directed perpendicular to the 

hexagonal c-axis, the magnetic energy term resulting from the inter­

action of the magnetic moment with the external field may be written 

as

* *s

Similarly as above, the matrix elements of the operator + g^ s^) 

have been evaluated in the representation given in Table 3 and are 

shown in Table 6. The orbital reduction parameters found in Table 6 

are defined consistent with the definitions (II-8) and (II-9) for k 

and k' respectively.



] 1
2 e
1
2 ^2
1
2 ^2
1
2 ^2
1
2 2̂
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TABLE 5

MATRIX ELEMENTS OF (& + g IN THE 

UNCOUPLED REPRESENTATION

^4’^S

h .  4 -^s - / 2  k'

\p^ — \p2 k

t>3 -  k + - ?  : s

*4

X l  ~ 4 °' ~~r*̂ 2 ~r *̂2 " x ! i

- / T k '

^ • -7*3

1
— 8s

- - 8 s



24

TABLE 6

MATRIX ELEMENTS OF (1^+ g s ) IN THE 

UNCOUPLED REPRESENTATION

Interblock Elements 

'*'3 '*'4 T ^ 2  ~ ~ T ^ 2

h  C i  k' ; /i k'k'' T

*̂ 6 . /I- k' i k'-i k' /-y k

T e  7 - 7  k' k' k'

- 4  k'

Intrablock Elements

’̂3 ’*'4 4~ ̂2 ■ 4 ̂2 ■ 4 ̂2 4 4
— - 4  ̂4 4n/?«s “"tTtsj

- _ L k  . i ^ K  4 -/4 g^

4 Bs - J t  ^

4 - 2

4 i _

4 4



CHAPTER III

SECOND ORDER PERTURBATION THEORY

General Considerations

Dietz et. al.^^ have worked out the first order theory for

an one electron system in their analysis of the optical spectrum of
2+ 2+Cu :ZnO. Since the spin-orbit parameter for the Cu free ion is

-1 2+ rather large, ç = 830 cm" , and the Qq value for Cu :ZnO is approx­

imately 600 cm one finds that there are large off diagonal
2 2elements connecting the cubic field E(T^) and TgCTj) manifolds.

Thus a first order theory may not be adequate to interpret the system.

The problem is then to reduce the 10x10 secular equation to 

one of manageable size. This can be achieved if a similarity trans­

formation is carried out to reduce the magnitude of the elements 
2 2connecting the TgCTj) and E(T^) manifolds. The perturbing effect

2 2 of the E(Tj) manifold on the TgCTj) ground state manifold is then
2reduced and the TgCT^) manifold may then be diagonalized independent­

ly of the excited ^E(T^) manifold.

This transformation may be constructed using the second order
22 23degenerate perturbation formulism developed by Van Vleck. ' A

25
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brief discussion of this method is as follows. Assume that the 

Hamiltonian of the system can be expressed as

H = + A , (III-l)

where is the Hamiltonian of the unperturbed system and H^ and H^ 

are the perturbing terms. The parameter A, as is customary, des­

ignates the order of magnitude of terms appearing in the expansion of 

the Hamiltonian and is chosen such that when 0 the Hamiltonian of 

the system reduces to the unperturbed Hamiltonian H^. Further let 

the unperturbed Hamiltonian be diagonal in those quantum numbers 

represented by the high frequency index k which labels the coarse 

structure of the energy matrix. The low frequency quantum index j is 

then reserved to label the subblock structure of a given k manifold.

A unitary transformation is then to be constructed which 

eliminates elements of magnitude A arising from the perturbing term 

Hj connecting the ground state manifold labeled by the symmetry index 

k with other perturbing levels (k' ^ k). The form of the transforma­

tion may be taken as^^

T = e^^  ̂= I + iA S - - L  + ..., (in-2)

where I represents the unit matrix and S is a Hermitian matrix chosen 

to satisfy the conditions to be imposed on the transformation. The 

transformed Hamiltonian matrix G may be written as

G = T'^ H T =  G^ + AG^ + A^ G% + ... (HI-3)
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or on multiplying through on the left in the above expression by T, 

the equation for the determination of G takes the form

(I + i A S  - -J A^ ..)(Gq + AGj + A^ G2 + . . .)

= (H^ + AHj + A^ H2)C + i A S - -y A^S^+...) ,

where in the above relation, the expansion for T given by equation 

(III-2) has been introduced. On equating coefficients of like powers 

of A, one finds that up to the second order the elements of the trans­

formed Hamiltonian,equation (III-3), are given by

Cl = - SC,) (III.4)

Gj = * i(HjS - SGj) - ^(H^S^ - S^G^) .

The transformation matrix S is defined from the following 

conditions, first that there be no elements of G^ connecting the ground 

state manifold with other perturbing levels and the second condition 

is that the transformation does not effect the intrablock elements 

H(kj,kj') of the ground state manifold. The first condition is full- 

filled if the transformation satisfies the condition that

Gj (kj;k'j') = 0 (kfk')
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or

Hj(kj;k'j') = i[H^(k'j';k'j') - H^(kj;kj)] S(kj;k'j')

from which it is seen that the interblock elements of S are given by

H (kj;k'j')
S(kj;k'j') = i — --------  . (III-5)

'k - ^k'

Here the j dependence of the unperturbed energy difference 

is ignored as it is assumed that the unperturbed intralevel spacing of 

the ground state manifold is much smaller than the interlevel spacing 

of the ground state manifold with other perturbing levels. The 

unperturbed energy difference (E^-E^i) is then to be measured from the 

center of gravity of the two manifolds under consideration. The intra­

block elements of S may be chosen to be zero

S(kj;kj') = 0

and hence the second condition is satisfied.

The elements for the k manifold of the transformed energy 

matrix G may now be determined on substituting equation (III-5) for S 

into the expression (XII-4) for the transformed energy matrix, thus we 

have

G^(kj;kj) = H^(kj;kj) (III-6 )

Gi(kj;kj') = Hj(kj;kj') (III-7)
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and

GgCkjlkj) = HgCkjikj') (III-8 )

k V k j "  - Gk'

Field Independent Terms

First, only those terms up through the spin-orbit interaction

energy and trigonal field will be treated. From the optical spectrum

it is found that the cubic field splitting is about an order of mag-
2nitude larger than the intralevel splitting of the TgCT^) manifold

which arises from the spin-orbit interaction energy and trigonal 
14field. Thus the unperturbed Hamiltonian will be taken as

H = H + V 0 c

and the perturbation is then given by

- G %'S

Mg = 0 ,

where the elements for are given in Table 7. The wave functions

diagonalizing are found in Table 3 and here it is seen that those

quantum numbers associated with the quantum index k are the symmetry 
2 2indices TgCT^) and E(T^) denoting the Stark levels into which the
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TABLE 7 •

MATRIX ELEMENTS OF THE HAMILTONIAN EXCLUSIVE OF THE MAGNETIC 

FIELD TERMS IN THE UNCOUPLED REPRESENTATION

—  f» _L p' _L. t® _1_ —L  t" _L t'*'2 2 2 2 ■  2 2 "  2 2 2 2

e 6Dq - ç / ^ ( 2 K  -ç )

e' 6Dq - ç (2K - ç )

T  4  - 5

T  4  - 40,+ZK 7 - i  Ç

T  ^2 -4Dq-K- - y  Ç

■ y  ^2 -4Dq-K-ç/2
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TABLE 7 (continued)

^4' 's

*5 *6 *3 *4

J^5 6Dq / - I  ( 2 K ' + ( ' ) - i ; '

6Dq (2K'+ç')+1ç

i|̂ 2 -4Dq-K+ - y  ç

4)̂  -4Dq-K+ -y ç
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9 2free ion (3d) D configuration splits under the influence of the 

tetrahedral field. The quantum index j are those symmetry indices 

labeling the irreducible representations of the group. From 

symmetry arguements alone, the basis chosen give maximum factori­

zation of the Hamiltonian matrix H as can be seen from inspection

of Table 7. Since the perturbation introduces first order ele-
2 2ments connecting the E(T^) and TgfT^) manifolds, a transformation

is to be carried out such that the transformed Hamiltonian does not

contain first order interlevel elements. The first symmetry species
2to be treated are those elements associated with the r^^Tg( T^) and 

2r^,r^( E) levels. The second order elements which fold into the 
2TgCTj) manifold may be found on substituting the first order inter­
level elements given in Table 7 into equation (III-8) for Gg. It is 

then found that

' - 2^ ,

As there are no first or second order elements connecting the compon- 
2ents of the Tg) subblock with other symmetry species of the

2TgCTj) manifold, the second order energy for the doubly degenerate 
r^,r^(^T2) level is given by

W(kj;kj) = H^(kj;kj) + H^(kj;kj) + GgCkjikj) (III-IO)
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and on substituting into the above relation (III-lO) the elements 

given in Table 7 for and and the expression

(111-9) for GgC^gi^g), the second order energy expression (III-IO) 

becomes

 ̂ (2K' + ;')2 - - r L20Dq "  ̂ " lOEki

From inspection of Table 7, it is seen that those elements of 

H associated with the symmetry species may be grouped into two

identical subblocks. There are first order elements connecting compon­

ents having the same transformation properties of the two distinct 
2r^( T^) representations as well as first order elements connecting the

2 2components of the r^( E) and r^( Tg) levels. The second order correc­

tion to the energy arising from folding the interblock elements into 
2the TgfTj) manifold may be evaluated as previously shown for the 

r^,Tg(Tj) subblock and it is found that

1 1  1 1  ̂ ^i ^ 0. A 4.0\ f i 4.0. JL 4.0̂
^ 2 ^ ~ ^ 2 ’ T ^ 2 ^  ^ ^2^" ~ 2 ^ V  ~ T ^ 2 ^  “ ■ Î W  (III-12)

^2  ̂ ~ T ^ V  ~2~ ^2^ ^ ^2 "̂ ~ 2 ^ V  " T ^ 2  ̂ “ " 20Dq^^*^ ^

^2 '̂ " T ^ 2) = °2  ̂- f  4 ' "  ' T h ^  ÎÜDq^^*^'"^'^ '
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2The elements for the r^( T^) manifolds of the transformed Hamiltonian 

G are then determined on substituting into the relation

G(kj;kj') = H^(kj;kj') + Hj(kj;kj') + GgCkjikj') , (III-13)

2the intralevel elements of r^( for and given in Table 7 and

the second order corrections evaluated in equation (III-12).

On isolating the manifold, (see Table 8), it is found

that there are now first and second order elements connecting the
2components of the two unperturbed r^( T2) levels. Thus to obtain the 

second order energy expressions, a 2x2 energy matrix must be diagonalized. 

On diagonalization the eigenvalues are found to be given by

(III-14)
w"( V ^ ) )  = - 4D, . 4 - K  - - i ç  -

' 430^  ̂ * 4  [(3K ^ 4 '  ■ ÏÜD^ * 250",

and

W (r^( Tg)) = - 4Dq + -y K - (III-15)

_1_ (2k '-ç V  - 4- [(3K+ - y  C- c2l + J _  (2k '-ç V ) 2  
■ 40Dq  ̂ iODq 20Dq

+ 2( &  (2K’-ç')2] 4  .
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The eigenfunctions for the doubly degenerate W^( level may

be expressed as

2 lODq

*2 " T  V  + + G[(-2- t+jÏÔD'q^ 2 (III-16)

T 1 (2K'-;')( -le)]
T  ÎÔDq 2

and for the W ( r^(^T2)) level

'̂ 5 " iW q 4  c')]-* 4 ^2^2 2' lODq
 l/K'  ̂ -'lODq

n r  1 (2K -ç')( i.e.')]
V T  ÎÔ T ^

'1'4 = B[(- y  t p  + Y § y ( y  e)] -a [ ( y  t p

/T 1 (2K'c')(le)] 
/ —  roTa 2 •2 lODq

The mixing coefficients a and 3 are defined by the condition of 

normalization
+ 6% = 1

and by the relation

«6

) (3K + -1 ; - + 2^^(2K -Ç ) P



36

and it is found that

2where the unperturbed energy splitting of the r^( T^) manifold is 

given by

« = T ^ - I S 5 q * 2 k

and the perturbed energy splitting is

Aj = - w" ( r^c^Tg)). (111-2 0)

Two useful expressions relating the unperturbed energy 6 and the inter­

action energy where

"l2 = / ?

to the perturbed energy separation A^ may be obtained from equations 

(III-18) and on reduction it is found that

6 =(a^ - 8 )̂ Aj (III-22)

and

Wj2 = a 3 Aj . (III-23)
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TABLE 8

THE TRANSFORMED HAMILTONIAN FOR 

THE SUBBLOCK

1 1 j.0 1 1 j.+
T H  ~ T ^ 2  ~ ~ 2 ^ 2  ~ 2 ^ 2

JL 2K L l _  [ L  rr+l! (2K'-ç')]2 h  "lODq J  2 iG lODq

^  ' ÎÜDq

4 -  t: . ( 1 (2K'-;')2
T  - 20Dq

4 - t 2  . Ç 1 p K '-;')2
-  - 20D-q
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External Magnetic Field 

To interpret the paramagnetic resonance spectra and suscept­

ibility measurements, it is necessary to include into the Hamiltonian 

formalism the energy arising from the external magnetic field. The 

case to be treated first is that for which the external field is 

directed perpendicular to the hexagonal c-axis. The Hamiltonian for 

the magnetic energy assumes the form

(see equation (1-3)). The matrix elements of the operator 

have been previously evaluated using as basis the uncoupled represen­

tation and are given in Table 6 . It is seen from inspection of Table 6
2that there are magnetic elements connecting the TgC^^) ground state 

2with the excited E(T^) state. As these terms give rise to second order 

corrections to the g-factors and quadratic Zeeman effect, they must be 

folded into the manifold.

A transformation matrix T is then to be constructed such that 

it reduces to the second order not only the perturbation H^ treated in 

the previous section but also those magnetic terms resulting from the 

magnetic energy H™. This can be achieved if we take for the perturba­

tion the Hamiltonian

H = H, + if P 1
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where

- ç t s  (III-24)

and

The elements of the transformation matrix S may be determined from 

equation (II1-5) and are given by

S(kj;k'j') = - [H^(kj;k'j') + l/(kj;k'j')]

and the second order correction to the energy (III-8) becomes

GgCkjikj') = - Ï [HjCkj;k'j-)Hi(k'j";kj') (III-26)
j"

Hj(kj;k'j")lf(k'j";kj')+jf(kj;k'j")H^(k'j";kj')+H^(kj;k'j'V(k'j";kj')]

(k'jik)

The summation over the high frequency index k' has already been carried 

out effectively as there are only two manifolds under consideration.

The first term in the above expression for Gg, equation (III-26), have 

been evaluated previously and will not be considered further. The 

second and third terms are seen to be linear in the magnetic field 

strength and give rise to second order corrections to the g-factors
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and quadratic Zeeman effect. The last term in equation (II1-26) is 

quadratic in the field strength^ and contributes to the quadratic 

Zeeman effect.

If the expression represents those terms in equation (III- 

26) which contributes to the magnetic energy

G%(kj;kj') = - j^^[H^(kj;k’j")ff(k’j";kj') (III-27)

+ H^(kj;k'j")Hj(k'j";kj')+H™(kj;k'j")H"'(k'j”;kj')] ,

2explicit expressions for the magnetic terms folded into the T2 (T^) 

manifold may be obtained on substitution into the above expression 

(III-27) the interlevel elements for if and listed in Tables 6 and 

7 respectively, thus

Gg C*;:*;) = (v^;*,) (III-28)

= (_ . j t - )  = G^C j t ^ ;  j t ^ )  . _

^2 ( = ^2 ~ T ^ 2 '  ■ ^ ■ l Ê q  ^0 94

<  (*4 : - - t 9  = “ 2 (*3 ; - T



41

J Ï  lODq °

f  *4= 4 - 4 )  ' =2 (*3 ; 4  4 > = < / 4  - «

=2 ( T ‘2 = - 4 9  = 4 ^

I ,-„t I . , 12
<  ( 4 4 = 4 4 )  = ’ "o^- t o d , 4

4 (- 4*2= - 49 = %** m 4
The magnetic elements G”'(kj;kj'), i.e.,

G"‘(kj;kj') = H^kjjkj') + (kjjkj'). (III-29)

2for the TgCTj) manifold of the transformed Hamiltonian G may then be 

written on compiling the results given in Table 6 for the intrablock 

elements H"'(kj;kj') and the second order terms G^^kj;kj') evaluated 

in equations (III-28). After carrying out the following simplification
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^2 = — J’ gg + k G /lODq

n, = - yik'ç'/lODq

H4 = -J- gg + 2 k's'/lODq

’̂c = " / 0 lODq '

the magnetic elements.equation (III-29), of the transformed Hamiltonian 

may then be reduced to the form

g" « j ; = g” (- -i t’ ;- - j Ç  (III-31)

= = - O T ^ o  ■ '

2
g" I t p  = g" (-  f  t - ; -  4 t “) .  -  ^

2g“* (*4:- 4-9 = ̂ »y- 4*P = -it”!*
g"* 4 t p  = g” (*,; 4 t p  . (nj*

g"* 4'p = (*3:- 4*P “ /t (”2* "3> “0̂
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g"* (*4 ; - j t * )  = g"* (ipy - ^ t p  = - i (n2+ iHj)

( t ^ 2 ’ - r 4 ^  = "̂5 %

(- - T ^ r ” " t V  = *̂5 ■" A q  "0

The form of the magnetic elements in the energy representa­

tion, i.e., the representation which diagonalizes the Hamiltonian up 

through the spin-orbit interaction energy and trigonal field, is found 

on carrying out the transformation indicated by the expressions (III- 

16) and (III-17) for the basis of the energy representation. With 

the help of the magnetic elements evaluated in the uncoupled repres­

entation, equation (III-31), the specific form of the elements in the 

energy representation are obtained and have been listed in Table 9.

The simplification

 ̂“ (0 ^1* * ilg (a+ 3) (III-32)

t = (Bn^ - ^ ^ 0̂ 2) + i TI3 (6

has been carried out on expressing the magnetic elements in the energy 

representation and those off diagonal-elements quadratic in the field 

strength 9 4 connecting the subblock structure associated with the



TABLE 9
MAGNETIC ELEMENTS OF IN THE REPRESENTATION DIAGONALIZING THE FIELD

INDEPENDENT TERMS

_*3 _^4 ^^1* V

k'^ 2 _ . 2 su - isu tu - itu^iV-3 lODq o ̂  o o o o

’"4 is*Uo<^ t*u^-^ i t * u ^ ^
*

+

Y o b q ' (I+a^)Po ^  [«^114+ 206115] ^  [a6n 4 + ( 6 ^-a^)ng]%f ê

- ^  (l+*^)Uo [aBn^+ceZ-aZjngjl^

k"^ „2 , 2 -ft,2 ,„2
I lODq^  ̂ ^  '4 '5Cl+ 6 ~ ) v ^ %  [6 n,-2o6nr]9f

^2
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W(r^,rg(^T2)),W*(r^(^T2)) and W’(r^(^T2)) energy levels have not been

shown as they contribute to the third and fourth order Zeeman terms.

Since there are magnetic elements connecting the subblock 
2structure of the manifold, (see Table 9), a second order trans­

formation must be carried out to fold these elements into the

respective subblocks associated with the W(I^,r ^(^1 2)), W^(r^(^Î2))
2and W~(r^( ?2)) levels as these terms contribute to the quadratic 

Zeeman effect. The quadratic terms brought into the respective 

subblocks may be obtained as shown previously and it is found that

‘g” Wj;»,) = ^  (in-33)

'g" = (- 4 ^  • 4 7

where the energy denominators are defined by equation (III-20) and

A2 = W(r^,r5 (^T2)) - W"(r^(^T2)). (IIX-34)

2On isolating the subblock structure of the T2 manifold, the magnetic 

elements of the transformed Hamiltonian are obtained on combining the 

second order elements evaluated in equation (III-33) with the intra­

level elements given in Table 9. The results are shown in Table 10.
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TABLE 10
MAGNETIC ELEMENTS CONTRIBUTING TO THE 

LINEAR AND QUADRATIC ZEEMAN EFFECT FOR THE 

MAGNETIC FIELD DIRECTED PERPENDICULAR TO THE 

HEXAGONAL c-AXIS

2 |s|2 ^ 2 It'2 k'^ \ 2 ..2
A, ■ lODq 1 %  %

w" (FgC^Tp)

V ^ i lODq 2o8ng)
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TABLE 10 (continued)

r c f e C T a »

W q (B - 2aBn5)lij,'H

i -  [ ( s V ) n 5 * a 6 n , ] > ^

[(B2-a2)ns+oBn4]2)w2 ,%?
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The energy matrix given in Table 10 may then be diagonalized 

to determine the g-factors and the coefficients of the quadratic 

Zeeman terms, (the coefficients of those terms proportional to 

and Pq ̂  respectively), and it is found that for the WCr^^TgC^Tg))level

g_L Cr4,r5(^T2)) = 0 (III-35)

and

W - ( r 4 , T g ( % ) )  = ^  ; (III_36)

the W'^(rg(^T2)) level

gj_ = ! 2 ^1. gg- yiag k (III-37)

k' [2a^' - y2a3(2K'-?')])
^ lODq /

and

f  • - f S r  • - i - / » « ' A

and for the W'tr^t^Tg)) level

- 2 . I l_ + /^6k^ _k^[26^ç'+ & g ( 2 K ' -;')]) (III-39)
I " \ 2 lODq I

and

w[^^(r'(^T2)) = -2 - W  ^[aBn^+Ce -O )ng] _ \(III-40)

where the parameters s and t, and n^, Hg, ig, n^, and appearing in 

the expressions for the quadratic Zeeman terms may be eliminated by 

the relations (III-32) and^(III-30) respectively. The sign for the
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2ground state g-factor g(r^( Tg)) has been chosen such that when the

trigonal field is set equal to zero (K = k' = 0 ) and the orbital

reduction parameters are set equal to the no-covalency values

(k = k' = 1), the ground state g-factor reduces to the spin only value

(gg =2). As the excited state g-factor gj_(rg(^Î2)) vanishes for the
+ 2above simplification, the relative sign of g^(r^( Tg)) is left arbitrary 

For the case of the external magnetic field directed parallel 

to the hexagonal c-axis, the magnetic energy is given by

H" = M.(», + g, S ) ^ .

where the z-axis is parallel to the hexagonal c-axis. The matrix ele­

ments of + gg s^) using as basis the uncoupled representation are 

shown in Table 5. Here it is seen that the structure of the magnetic 

elements is somewhat simpler than that for the case treated previously,

i.e.,9^ J_c-axis.
2The magnetic elements folded into the TgCT^) manifold are 

determined on substituting the interlevel elements given in Table 5 

and Table 7 for + ggS^) and respectively into equation (III-27) 

for G^^kj;kj') and it is found that

2
‘=2 ‘ t m - 4 1 )
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^2 " T ^ r  = - Gg ( yt°;- ~ t ^ )  = #  ̂  y^'?f

On inclusion of the intralevel elements H”'(kj;kj') given in Table 5,
2(see equation (III-29)), the magnetic elements appearing in the TgCT^) 

manifold of the transformed Hamiltonian are

(III-42)
g" = g" . - 2 ^

g" (T'r 4'P ° ■ (" 4"*2’‘ 4'P ° 4ss

G - ( - 4 Ÿ - 4 9 - t 4 « s - - 1# :

g” ^ 4 * r '  T ‘2’ = - g“ (- 4 ' 2 >  ° m i ,  "0 ^
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The form of the magnetic elements in the energy representation 

may be found using the transformation which diagonalizes the field 

independent terms, equations (III-16) and (III-17). The magnetic ele­

ments in the energy representation are given in Table 11. From

inspection of Table 11, it is seen that there are linear terms in
+  2 - 2 connnecting components of the W (T^( T^)) and W (r^( Tg)) levels

having the same transformation properties. These elements contribute

to the quadratic Zeeman effect and may be folded into the respective

subblock structures on carrying out a second similarity transformation
2to isolate the subblock structure of the T2 (T^) manifold and it is 

found that

^^2 (^l)*l) = ^^2  ̂  ̂ (III-43)

ODqj
+ k';' \ 2 2 2

lODql *̂ 0 ^

and

'g” = 'c; («.-;♦-) = - 4jc.S[g3-k- (HI-44)

. 7 2 (o.̂ -6^) !li’ V  2 2
lODq j

where the perturbed energy splitting has been defined in equation
2(111-20). Since the r^,Tg( T^) manifold does not have connecting ele- 

2ments with the r^( T2) manifolds, the g-factors and the coefficient of
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the quadratic Zeeman effect for the level may be determined
2on diagonalization of the T^) energy matrix given in Table 11

and it is found that

* [2>/2 ^  l"'

and

wf,̂  ̂ = - 2k'2/10Dq (III-46)

The g-factors and coefficients of the quadratic Zeeman effect for the
+ 2 _ 2 W (Tg( Tg)) and W (r^( Tg)) levels are obtained on combining the trans­

formed elements, equations (III-43) and (III-44), with the diagonal
+ 2elements given in Table 11, thus we find for the W (r^( Tg)) level

g|, ^ -  A]

J L  rg2 (2K'-;') -v/2a6c'n\ 
lODq  ̂ J )

and

* I f.

/2 (o^-gZ) k ' ç V   ̂ efk'2
ÎÜDq I ■ lODq
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and for the W'Cr^C^T^)) level

2k' . a^(2K'-ç')+v/2aBc'A
lODq L ijlODq 

and

"if tr^c'V) = - ^  (111-50)

2The sign of the ground state g-factor g|| (r^( Tg)) has been chosen to 

conform with that of g^ (r’(^T2)), that is the g-factor g^ (r^(^T2)) 

reduces to the spin only value (g^ = +2) when the simplification 

(K = K' = 0) and (k = k' = 1) has been carried out. Similarly as for 

the case treated previously, (^J_c-axis), the excited state g-factor 

g II vanishes for the above approximations, thus the sign is

left arbitrary.
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TABLE 11

MATRIX ELEMENTS OF lf= y (A +g s IN THE REPRESENTATION
0 z z

DIAGONALIZING THE FIELD INDEPENDENT TERMS

*3 *4

"o l y V " *

♦ î ♦ ;

'‘J _  |̂ 4(a'-6̂ )g3-62[k. ̂ (2K'-ç')] L[ĝ *k- ^^(2K'-ç')

y q ] % “W -  ^  Ho
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TABLE 11 (continued)

*2 *2

*̂ 2 ~ T  (a^-e^)g3+e^[k- ^ q ( 2 K  -ç )] ^-<xB[g^+k-^-^(2K -ç )]

è ï '  %  W ?  - V 2 (“ - 8^) ^



CHAPTER IV

Cû "̂  IN THE TETRAHEDRAL SITES

OF CdS, ZnS AND ZnO

tIf the trigonal distortion is neglected K = K =0, the 

energy level splitting reduces to that shown in Figure 2. The 

symmetry species E^yg and G denote a twofold and a fourfold irred­

ucible representation of the T^ double group respectively.^ The spin-
2orbit energy splits the TgCT^) manifold in the first order by the

3 2energy difference ( -^ ç) while the E(T^) manifold remains degenerate.
2 2The second order spin-orbit energy then shifts the G( E) and G( Tg)

3 2levels by the factor ( -y C /lODq). The mixing coefficients may be 

obtained using the relations (111-18) for a and 6 respectively and it 

is found that a = and 3 = - The g-factor for the 2^

ground state may then be found on reduction of either of the two re­

lations (111-39) or (111-49) for g^ or g|| respectively, thus

8 =  ̂ + " T  ^

If the orbital reduction parameter is approximately unity, the g-factor 

of the ground state is then near the spin only value g^ = 2 .

56
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Figure 2. Energy level diagram of Cu^* in a Tetrahedral field
(Weak axial field)
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If now a small trigonal distortion exists along the hexagonal
L i i20Dq
■z r2 2

c-axis (2K'’̂  20b'~~ ̂ degeneracy of the G( T^) level is lifted as
2shown in Figure 2. The trigonal field splitting of the G( T^) level

is determined from the relations (111-11) and (111-14) for W(r^,rg(^l2))

and W*(r^(^Ï2)); here the trigonal parameter k' and those terms less

than K have been neglected as it is assumed that k '<<ç ' and K'^ç^/lODq <ç
2respectively. The g-factors for the r^( T2) ground state are given by 

the expressions (111-39) and (111-49) for gĵ  (r”(^T2)) and g^ (Tg(^T2)) 

respectively and on reduction it is found that

2 [ -^ + - f  k + (2+k)] (IV-1)

and

= 2 [ k - - 1  - 1  (2+k)] , (IV-2)

where the approximate expressions for the mixing coefficients used in 

the reduction of the above expressions for g^ and g^ are

6 = ( - T  - - T - b ^

and only those terms of order of magnitude K/ç have been retained.

As the free ion value for the spin-orbit parameter ç of Cu^*
—  -1is about 830 cm , and if the trigonal distortion is small, one expects

2the spin-orbit splitting of the l^(Tj) level to be approximately
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1000 cm~^. The ground state g-factors should then be very near the 

spin-only value g^ = 2. The effect of a small trigonal distortion is 

to split the G( T^) level and to introduce anisotropy in the ground 

state g-factors.

Cuf + iCdS

25Broser et. al. have measured the fine structure of the 

infraredabsorption and emission spectra of Cu^* in ZnS and CdS crystals. 

From their interpretation of the optical spectra of Cu^*:CdS, the energy 

level pattern shown in Figure 3 was obtained. The cubic field and spin- 

orbit parameters consistent with the energy level splittings shown in

Figure 3 were given and it was found that Dq = 556 cm  ̂and ç = 565 cm \
2 2+The g-factors for the r^( T^) ground state of Cu ;CdS have been measur-

27ed by Morigaki and the values obtained were

2.240 + 0.005

g^ = 1.75 t 0.05 .

The expressions (IV-1) and (IV-2) for the ground state g-factors may 

then be used to determine the orbital reduction parameter k and the 

ratio K/c. It was found that

k = 0.94
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and

K/ç = 0.0626 ,

25The spin-orbit parameter given by Broser may then be used to deter­

mine the value K = 35 cm  ̂ for the trigonal parameter. The trigonal
2 -1splitting of the G( T^) level is then equal to 2K = 70 cm .

Cu^*:ZnS

25Broser et. al. made the following assignments from their

observed infrared emission spectra of Cu^*:ZnS, (see Figure 3). The
2symmetry assignments of the excited state levels in the TgCT^) mani­

fold were determined in this work from the observed anisotropy of the

ground state g-factors (g|| > gĵ ), which indicates that the trigonal
2parameter is positive, thus placing the r^( T^) level above the 

2T^) level. As polarization studies of the observed spectra
2 2were not given, the relative positions of the T^( E) and r^,Tg( E) 

levels are not determined.

Broser determined the cubic field and spin-orbit parameters 

and found Dq = 624 cm ^and c, = 596 cm ^. These values are consistent 

with the following relations

3E(l) = lODq + ; + ^20Dq

and
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2

E(l) - E(5) = 4  CC - 4 - ,  )

If instead of using the transitions E(l) and E(5) in the determination 

of Dq and ç, one uses the energy splittings measured from the center 

of gravities of the r^(^E);r^,r^(^E) and levels,

the values for the spin-orbit parameter and Dq value are then found to 

be ; = 627 cm'^ and Dq = 613 cm'^ and are consistent with the relations

1 3-1[E(1) . E(2)]= lODq t ; + ^

2
^ E ( l )  + E(2)]= - -y[E( 6 ) + EC5)] =

The trigonal parameter may be deduced from the observed splitting of 
2the G( T^) spin-orbit level as this splitting is equal to 2K. Thus 

the trigonal parameter determined from the optical measurements is 

K = 40 cm'^.
29Estle et. al. have obtained the following values for the 

2g-factors of the r^( T^) ground state,

g,l = 2.151

and

g^ = 1.990 .

Similarly as in the case for Cu^*:CdS, equations (IV-1) and (IV-2)
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may be used to determine the values for the orbital reduction parameter 

k and the ratio K/C . The values obtained were k — 1.0 and K/ç = 0.0283.

If the value ç = 627 cm”  ̂ for the spin-orbit parameter is used, the tri­

gonal parameter is then found to be K = 18 cm  ̂ and the trigonal splitting 
2of the G( level predicted from the anisotropy of the g-factors is
-1 2 2K = 36 cm . It is seen that the trigonal splitting of the G( level

predicted from the anisotropy of the g-factors is half that predicted

from the infrared measurement 2K = 80 cm Possibly the discrepancy
29may be accounted for on noting that Estle et. al. express doubt as to 

the possible model for the photosensitive copper center in ZnS. On the 

other hand if the following assignment

G(V)

fH iH
6 6u o/—>LO O  \0 o>_/ rH ^ tow M  W o

'
\0
r

vO

r6 ;r4 ,rg( E)

is made for the E(5) and E(6 ) transitions, one finds that the trigonal
2 “ 1 splitting 2K of the G( level is then 35 cm" . This value agrees

with that found from the anisotropy of the g-factors.



64

Cu^*:ZnO

The optical absorption spectra of Cu^*:ZnO has been measured 

by several investigators.^^’ Dietz et. al.^^ measured the

polarized absorption spectra and from interpretation of the fine struc­

ture made the following assignments, (see Figure 4). From interpre­

tation of their optical spectra, Weakliem^^ and Dietz et. al.^^ have 

determined the Dq value to be 500 cm”  ̂and 569 cm~^ respectively. The 

discrepancy in the two values arise from the fact that Weakliem assumes 

the spin-orbit parameter to be near the free ion value ç = 830 cm"^ 

while Dietz's value for ç is approximately an order of magnitude smaller. 

The cubic field ^TgCT^) level is split in the first order owing to the 

combined effect of the spin-orbit interaction energy and the trigonal 

field and Dietz et. al. assign a value of 123 cm  ̂for the splitting of 

the two r^C^Tg) levels. The cubic field ^E(T^) level is split in the 

second order owing to the interplay of the trigonal field and spin-orbit 

interaction energy and Dietz et. al. found this splitting to be 39 cm 

Previous optical measurements^^’ of Cu^*:ZnO confirm the doublet

structure of the spectra arising from transitions between the ground
2 2state and the excited r^( E) and T^) levels.

Estle et. al.^^ and Dietz et. al.^^ have measured the electron

paramagnetic resonance spectra of Cu^*:ZnO and obtained the g-factors 
2for the r^( Tg) ground state, (see Table 12). The g-factors deter-

2 2mined from the optical Zeeman effect for the F^( T^) and r^,Fg( E) 

levels are also included in Table 12, (see reference 14).
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TABLE 12

EXPERIMENTAL G-FACTORS OF Cu^*:ZnO

Author g-Factor
Optical Optical ESR

Dietz g„ 1.63 0.76 0.74
et. al.^^ II

+ .03 + .06 + .02

0.0 1.50 1.531

+ .2 + .02 + .002

Estle g„ - 0.7383
et. al. II

+.0003

1.5237

+.0003
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14 2Dietz et, al, set up the secular equation for the

manifold and using the results from their optical and electron para­

magnetic resonance measurements found the crystal field parameters

for the manifold to be ; = 86 cm K = -10 cm  ̂ and k = 0.46.
2Here they neglected second order terms brought into the mani-

2fold. From analysis of the second order splitting of the E[T^) level

and the g-factors for the r^,r^(^E) level, Dietz et, al. found the
2following values for the crystal field parameters connecting the

and ^E(T^3 manifolds, k' = -77 cm”\  = 720 cm"^ and k' = 0.87.

The spin-orbit parameter ç is seen to be reduced by an order

of magnitude from that of the free ion value ; = 830 cm \  This large

reduction of the spin-orbit parameter may be attributed to the small
2value found for the splitting of the r^C T^] levels as this splitting 

is about an order of magnitude smaller than would be expected. The 

orbital reduction parameter k is about 60% smaller than would be expec­

ted on the basis of the previous results for Cu^*:CdS and Cu^*:ZnS.

This reduction arises from the small values found for the g-factors of 

the ground state compared to the spin-only value g^ = 2 .

Due to the small value obtained for it is questionable 

whether a first order theory adequately describes the system and that 

the approximations used in analysing the previous crystals is valid, 

i.e., Cu^*:CdS and Cu^^:ZnS.

One may determine the orbital reduction parameter and the
2mixing coefficients for the TgCTj) manifold using the second order
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expressions for the g-factors given in equations (III-39) and (III-49) 

If one makes the parametric substitution

a = sin 9

6 = cos 0

2for the mixing coefficients, the g-factors for the T^) level may 
then be written as

g = - 2 ( 4 ^  COS20 -k sin^0- [ 2(ç'-2K')sin^0

- /Tç' sin20] 1 (IV-3)

g_^(r’(^T2)) = 2 ^  cos^ 0 + J^Y'k sin2 0

—  [ "Y" ) sin2 0 -  2 ç cos 0

The orbital reduction parameter k may be eliminated in the theoretical 

expressions for the g-factors given above on forming the following 

linear combination

■ g|| = -y + COS20 ] (IV-4)

- sin0 [(ç '-2K') sin0 - VY ç'cos0 ].

Equation (IV-4) shown above is then seen to depend only upon the para­

metric angle .0 and the second order correction terms where the g-factors 

g II and g^ are determined from experiment. As the ratio K*/;' is not
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determined, equation (IV-4) can be simplified on assuming that the 

trigonal parameter k' may be neglected relative to the spin-orbit 

parameter ;', that is 2K'<<ç',and hence equation (lV-4) reduces to 

that of a function of the parametric angle 6 and the product k';'.

The resulting expression may then be iterated to determine the angle 

0 for various values of the product k c. and in Table 13 the mixing 

coefficients and the orbital reduction parameter consistent with the 

values obtained for the angle 0 are shown.

On the other hand if the values for the interlevel elements 

k = 0.87, K = -77 cm”  ̂and = 720 cm"^ given by Dietz are used in 

the determination of the parametric angle 6 , the mixing coefficients 

and the orbital reduction parameter are found to be

a = 0.7478

B = 0.6639 (lV-5)

k = 0.46

From inspection of Table 13 and equation (lV-5), it is seen that the 

values found for the mixing coefficients and orbital reduction para­

meter differ approximately by (±0.005) in the third significant figure 

for a reasonable variation in the contribution from the second order 

correction terms. As this variation is not significant in the work to 

follow, those values given in equation (lV-5) will be used.

The spin-orbit parameter ç may be determined using equation 

(111-21) for Wj2 equation (111-23) relating the interaction energy 

W^2 to the perturbed energy separation and on eliminating the
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TABLE 13

SENSITIVITY OF THE MIXING COEFFICIENTS AND THE ORBITAL 

REDUCTION PARAMETER TO SECOND ORDER CORRECTIONS

k'c'

800 0.757 0.653 0.454

600 0.755 0.656 0.454

400 0.752 0.659 0.456

200 0.749 0.662 0.458

000 0.746 0.665 0.461
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trigonal parameter k ' using the relation K's'/lODq = 4D, it is found 

that

( = * 4  “ • -TOq (IV-*)

where D is the splitting of the ^E(T^) manifold and is approximately 

40 cm The trigonal parameter K may be found using equation (II1-22} 

and on eliminating the unperturbed energy splitting 6 using equation 

(111-19} and the relation k' = 4DxlODq/;', one obtains

à
8ç'

Thus relations for ç and K have been found which depend only on quanti­

ties which may be inferred from experiment.

As the mixing coefficients are rather insensitive to second 

order corrections, the values given by equation (IV-5} are used in the 

determination of the spin-orbit and trigonal parameters. The parameters 

best fitting the reported perturbed energy separation = 123 cm  ̂

and the interlevel spin-orbit parameter ;' = 720 cm'^ are

Ç = 198 cm ^

K = -20 cm'l.

The spin-orbit parameter is still seen to be unusually low al­

though its value has been increased to 25% of its free ion value.

From the susceptibility fittings for Ni^*:ZnO and Co^*:ZnO, one would 

expect a reduction of about 55% as the free ion values of Ni^^ and
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are ç = -340 cm”  ̂ and ; = -178 cm"^ respectively and it was found

by Brumage that they were reduced to ç =  -175 cm  ̂and ç = -104 cm ^

for Ni^*:ZnO^^ and Co^*:ZnO^^ respectively. Although no values were
2+ 2+reported for the orbital reduction parameter of Ni :ZnO and Co :ZnO, 

the orbital reduction parameter k = 0.46 for Cu^*:ZnO is abnormally 

small as a reduction of 75% for k indicates strong covalency. The tri­

gonal parameter determined for Cu^^:ZnO, K = -20 cm \  was found to be 

consistent with the value of K calculated from the trigonal parameters 

Do and D t found by Brumage^^ for Ni^*:ZnO, i.e., the calculated 

value was K = -36 cm ^.
2As the second order elements folded into the manifold

were large 100 cm the third order elements were evaluated to

see if they made any significant correction to the energy. It was

found that the third order correction was negligible, (see Appendix I).

A fourth order transformation was carried out to determine whether
2the second order transformation effectively isolated the mani­

fold. In Appendix I it may be seen that this is the case as the 

fourth order elements were four orders of magnitude smaller than the 

second order correction.



CHAPTER V

MAGNETIC SUSCEPTIBILITY OF Cu^* IN ZnO

Several investigators at the University of Oklahoma, W. H.

Brumage, J. P. Mahoney, and C. R. Yarger, have measured the magnetic

susceptibility of Cu^*:ZnO in the temperature interval from 30°K to

300“K for both the hexagonal c-axis oriented parallel and perpendicular

to the external magnetic field. The crystals on which the suscepti-
26bility measurements were carried out are those used by Weakliem in

his optical studies. The susceptibility measurements are given in

Table 14 and in Figure 5 the susceptibility x (per gram sample) has been

plotted as a function of inverse temperature °K In Figure 5, it is

seen that the susceptibility curves have not been adjusted so that the

values of x at the liquid nitrogen point 77“K for the nitrogen run

(77°K 5T <300°K) corresponds to that of the helium run (30°K 5T <77°K).

The susceptibility curves are seen to exhibit large anisotropy

over the temperature interval (30°K <T <300°K); the curve obtained for

X lying above that obtained for x • Measurements of x,exhibit Curie _L II J.
behavior up to the liquid nitrogen point while one must go to somewhat 

lower temperatures, (^50®K), before the susceptibility curve obtained 

for Xi, exhibits Curie behavior. The non-Curie behavior above 77®K is

73
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TABLE 14

MAGNETIC SUSCEPTIBILITY (PER GRAM SAMPLE) OF Cuf*- 
DOPED ZnO CRYSTAL.* CONCENTRATION: 1.1%

T
(°K) X|| X 10^ 

(cgs-emu)
T

(°K)
X 10^

(cgs-emu)

77 6.63 77 7.96
93 5.81 91 6.89
104 5.57 110 6.39
124 4.97 135 5.74
148 4.62 164 5.17
213 3.12 213 3.94
292 1.98 247 2.78

297 2.67

77 6.56 77 8.08
147 4.60 134 5.79
181 3.81 197 4.34
217 2.97 232 3.83
297 2.02 297 2.71
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TABLE 14 (continued)

T X X 10? T X X 10?
(°K)__________ (cgs-emu)_______ (°K)_______ (cgs-emu)
77 6.27 77 7.60
62 7.60 55 9.22
47 8.59 48 10.04
36 9.71 42 11.01
33 9.86 31 13.45

69 7.20
67 7.44
66 7.46
77 6.67

* Different groupings in the above measurements for the magnetic 

susceptibility corresponds to independent observations, for example 

the spread at the liquid nitrogen point gives a measure of the 
reproducibility.
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Figure 5. Magnetic susceptibility (per gram sample) of Cu^^:ZnO
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attributed to the presence of low lying magnetic levels of
2owing to the splitting of the cubic manifold by the inter­

play of the spin-orbit interaction energy and the trigonal field.

This gives independent confirmation of the optical results of Dietz
2as to the presence of an excited level lying near the r^( ground 

state, (^^123 cm .

The ratio of the Curie constants obtained from the slopes of 

the experimental susceptibility curves in the low temperature interval 

is approximately

C||/Cĵ = 0.23 - 0.25 .

This agrees well with the ratio of the square of the magnetic moments 

found from electron paramagnetic resonance measurement^^

|g||/gi I  ̂= 0-234.

The molar concentration B, where

B = (mole wt. ZnO) C
3g^

3may be found using the spin only formalism valid at low temperatures 

and it was found that for the Curie constants of both X|| and %^the con­

centration of the Copper ion in ZnO was approximately ̂ 1.1%.

Theoretical expressions for the molar susceptibility for both 

X|| and Xj m̂ay be found using the general expression (I-IO), therefore
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NjJo (V-1)

and

-2m,/:) ( r : ( \ n
4T 6" V e-Al/k?

_2kŵ (2) (r̂ ,r̂ (2T̂ ))
4T

,-62/kT)

4T
(V-2)

-2kW
4T

, _Al /kT

where

Z = 1 * e - ' l / k ?  .  s - ' z /k T

C21The expressions for the g-factors and the quadratic coefficients W

are given in Chapter III. The perturbed energy separations and Ag

are given by equations (III-20) and (III-34) respectively.

It is seen in the above relations (V-1) and (V-2) for x.. and x, 
2respectively that the E manifold does not contribute directly to the 

susceptibility as the Boltzmann factor nearly vanishes for the temper­

ature interval under consideration.
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Using the crystal field parameters best fitting the optical 

spectra, one finds that the calculated susceptibility curve shown in 

Figure 6 does not conform with that obtained from experiment. It is 

seen that the calculated curve for x^crossed that for )^at T<^60°K 

giving results contradicting the experimental curve. Below T = 77°K 

the low temperature end of the susceptibility curves determined using 

the optical parameters did not conform well with the difference

X||) found for the experimental curve. In Figure 7 the calculated 

curve using the parameters determined by Dietz et. al. is shown. Here 

the second order correction to the energies and to the linear and quad­

ratic Zeeman effect is zero. Although the fit is somewhat better, the 

calculated curve does not show the correct curvature at high tempera­

tures and in the low temperature interval the calculated curve for X|j 

falls below that obtained from experiment.
2On increasing the energy splitting of the two r^( T^) levels

to the value 150 cm~\ one obtains the calculated curve shown in Figure

8 . The values for the interlevel spin-orbit, trigonal field and orbital
14reduction parameters were those given by Dietz et. al. It is seen

that the curvature exhibited by the calculated curve has shifted to a

slightly higher temperature, (Tc^77°K), while at low temperatures the

curve for x^ falls slightly below that obtained from experiment. This

results from the fact that the quadratic Zeeman terms are directly pro-
2portional to the energy splittings of the T^ manifold. Thus the 

difference between the temperature independent susceptibility for x^
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X X 10

; = 197 cm 
K = -20 cm 
ç' =720 cm" 
k ' = -77 cm"l 

= 123 cm"

T"^ X 10^

12 16 20 24 28 32

2+Figure 6 . Calculated magnetic susceptibility of Cu :ZnO 
(Optical Parameters)
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ç = 86 cm-1 
K = -10 cm-1
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2
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4 8 24 28 3212 16 20

Figure 7. Calculated magnetic susceptibility of Cu^*:ZnO 
(Dietz's parameters)
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and X|| becomes smaller for a larger energy separation. For tempera­

tures -above 77°K, the shape of the calculated susceptibility curves

is largely dictated by the Boltzmann factor since the g-factors for
2the manifold remain nearly constant. The temperature at which Xy 

crosses Xj_is seen to shift towards higher temperatures as the energy 

spacing is increased.
The effect of the second order corrections to the linear and

quadratic Zeeman terms is shown in Figure 9. Here the energy splitting
2of the r^( T2) levels remained at the value predicted experimentally, 

i.e., 123 cm \  and the product k'ç' is 400 cm ^. The interlevel tri­

gonal parameter was assumed small relative to the larger spin-orbit 

parameter. It is seen in Figure 9 that the difference Ax = (Xĵ “ X||) 

for the low temperature interval has increased owing to the fact that 

the magnitude of the difference of the quadratic Zeeman coefficients

becomes smaller as the second order corrections are decreased. Above 

77°K the form of the calculated curve is largely dictated by the excited 

state g-factors as they are quite sensitive to second order corrections. 

The temperature at which X|| crosses Xĵ  is seen to increase for smaller 

values of the interlevel spin-orbit parameter.

It is seen from inspection of Figures 8 and 9 that for the high 

temperature interval, (T>77°K), the curvature and placement of the cal­

culated curves do not agree with that found from experiment. A satis­

factory fit could not be found for reasonable variation of the crystal 

field parameters.
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X X 10

ç = 216 cm 
K “ "22 cm 
ç' = 720 cm'^ 
k ' = -77 cm'l 

= 150 cm

T"^ X 10^
12 16 20 24 28 32

Figure 8. The calculated magnetic susceptibility (per gram sample)2for a larger r( T̂ ) ground state energy separation
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12 -

= 114 cm

X 10

3224 288 204 12 16

Figure 9. The calculated magnetic susceptibility (per gram sample)
for a smaller value for the interlevel spin-orbit parameter



CHAPTER VI

DELOCALIZATION OF THE Cuf* 3d ORBITAL

Orthogona1ization to the Bloch Functions 

As there is relatively little quantitative information con­

cerning the character of the bonding of the compound ZnO, the bonding 

will be approximated by the ionic model. This model gives the simpli­

fication that the valence band functions are constructed from linear 

combinations of the doubly negatively ionized oxygen (2s) and (2p) 

atomic orbitals while the conduction band functions arise from the 

doubly ionized zinc (4s) and (4p) atomic orbitals.

The basis for the band functions will be taken as the normal- 
31ized Bloch sum

b^(t?) = [Nfî (it)] 2 I eik'*i *^^(r-a.), (VI-1)
i

where the index i denotes a summation over the N equivalent lattice 

sites of the crystal and the term n^(k) represents the integral

J2̂ (k) = I 
i IT (VI-2)

The wave vector ^ labels the irreducible representation of the trans-

85
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lation group under which the Bloch function b^(k,r) transforms and the 

quantum index n represents that collection of quantum numbers (n,£,m) 

labeling the atomic orbitals from which the Bloch sum is constructed. 

The valence band functions may then be found using the method of tight 

binding and are given by

x„(î.î) = Î (Vl-3)
n

where the band index v labels the irreducible representation of "the 

group of the wave vector to which the valence band functions 

belongs. The summation over the quantum index n is then restricted to 

the Bloch functions constructed from the doubly ionized oxygen orbitals. 

In principle, the expansion coefficients are found on setting

up the energy matrix for the one electron Hamiltonian of ZnO using the 

Bloch functions as basis and solving the resulting secular equation.

Since the Cu^* ion enters the ZnO lattice substitutionally 

forming a deep acceptor state, the unnormalized wave function for the 

localized Cu^* hole is then

* 1 1  it) i t , h  (VI-4)
-*■ Vk

where D) is the unperturbed free ion wave function. The mixing 

coefficients A^(^) giving the amount of admixture of the delocalized 

valence band states into the localized state is to be determined from 

orthogonalization of the localized function with the valence band
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functions. Unfortunately the expansion coefficients defined in

equation (VI-3) have not been evaluated for ZnO and hence the valence 

band functions are not known. Thus the mixing coefficients A^(k) 

defined by equation (VI-4) giving the amount of delocalization of the 

Cu^* hole cannot be evaluated directly.

In this work, the localized function will be constructed by 

admixing the Bloch functions forming the basis for the valence band 

states with the Cu^* free ion functions. The localized function is 

then given by

,m
k n

D) = t;( D) + ; I X* d )  (VI-5)

where the mixing coefficients X̂ (îc) are to be determined on orthogon- 

alizing the localized functions to the Bloch sums. The condition of 

orthogonality is

<b^.(^,r); = 0

or

I X%(i() <b^.(i?); b^(i?)>= - <b^,(ic,?); ,j,;(̂ D)> , (VI-6)

where use has been made of the fact that the Bloch sums are orthogonal 

with respect to the wave vector it. In general Bloch functions constru­

cted from different atomic orbitals do not exhibit orthogonality for a 

general point in k space, thus a system of simultaneous linear equations
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given by equation (VI-6) must be solved to determine the mixing 

coefficients.

Throughout the following discussion two simplifying approx­

imations will be made. The first approximation to be made is that 

the overlap between atomic .orbitals centered on neighboring ligand 

sites is small so that we can drop the overlap terms in equation 

(Vl-6). The Bloch functions are then orthogonal in the quantum index 

n and equation (Vl-6) reduces to

X®(^) = - <b^(%,?); . (Vl-7)

The second approximation to be made is that the mixing coefficient 

aJJ(Îc) is determined primarily from the overlap between the localized 

copper 3d orbitals and its nearest neighbor ligands.

Crystal Structure of ZnO

The crystalline form of zinc oxide is wurtzite structure and 
4 47belongs to the space group. The wurtzite lattice can be consid­

ered as two interpenetrating close-packed hexagonal lattices, one of 

zinc and one of oxygen, where the zinc lattice is displaced from that 

of oxygen by the translation (uct^) along the hexagonal c-axis. The 

lattice constant c is the distance between two adjacent equivalent 

sites along the hexagonal c-axis and for ideal wurtzite structure the 

parameter u is close to the value u = 3/8.
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In Figure 10, the unit cell of wurtzite on the conventional 

hexagonal axis is shown; the origin is chosen to lie along the six 

fold screw axis while the glide plane 111^2 contains the unit
Atranslation vector t^.

The coordinates of the ions in the unit cell given in terms 

of the conventional hexagonal axis are^^

(I) (1/3, 2/3, 0)
(VI-8)

(II) (2/3, 1/3, 1/2)

for the oxygen ligands represented by the open circles and

(III) (1/3, 2/3, u)
(VI-9)

(IV) (2/3, 1/3, u+1/2)

for the zinc cations represented by the blackened circles where the 

first two coordinate points along the and axes respectively are 

given in units of the base lattice constant a, while the third coordin-
Aate point along t^ is given in units of the lattice constant c.

2+If it is assumed that the Cu ion enters the zinc site at 

(1/3, 2/3, u), the nearest neighbor ligands to the copper ion are then 

situated at

(1) (1/3, 2/3, 0)
(2) (2/3, 1/3, 1/2) (VI-10)
(3) (2/3, 4/3, 1/2)
(4) (-1/3, 1/3, 1/2)
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(IV)

(11)0 I

At

Figure 10. Unit cell of wurtzite on the conventional hexagonal axes
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and in Figure 11, the base plane projection giving the relationship 
2+of the Cu ion and its nearest neighbor ligands is shown. It is seen

that the ligands situated at sites (3) and (4) are equivalent to that

situated at the site (2), differing only by the fundamental translations

(a (-a respectively, while the ligand situated at site (1)

is not equivalent to that at site (2) but does lie in the same unit cell.

The orientation of the_ Cartesian coordinate axes given in Figure
3511 are chosen to conform with that of Bates; the x axis is directed 

along the mirror plane while the y axis is contained in a glide plane 

m^yg- Expressions relating the hexagonal system to the Cartesian sys­

tem may be obtained from inspection of Figure 11 and it is found that

*2= ;

On expressing the ligand coordinates given in the hexagonal system into 

those of the Cartesian system, the nearest neighbor ligand sites are

0) (VI-11)

T VT ’ ■ T > 4 
(2) ( " 1) -y)

(4) ( \ / 4  ' 0, -y)
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_ y

Figure 11. Base plane projection of the wurtzite structure
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and the site for the Cu^* ion is then given by

Similarly as for the coordinates in the hexagonal system, the Cartesian 

coordinates measured relative to the axes in the base plane are in 

units of the lattice constant a and those along the c-axis are given in 

units of c.

The direction cosines giving the relative orientation of the

nearest neighbor ligand sites to that of the copper ion are found using

the above coordinates expressed in the Cartesian system. Since the

trigonal distortion is small, the ZnO lattice will be approximated by

the ideal wurtzite structure and hence the parameter u = 3/8 and 
33c/a = 8/3 are used to determine the following direction cosines for

the ligand sites

(VI-13)
(1) (0, 0, -1)

(2) 4 )
(3) ( -y - 7 4 .
(4) 7 4 . 4

Since the space group for wurtzite is nonsymmorphic, that is 

the two oxygen sites in the unit cell are not equivalent as they are 

not related by the fundamental translations but rather by operations 

involving a nonprimative translation, then in construction of the
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Bloch functions the linear combination of the oxygen orbitals include 

only those orbitals centered on equivalent sites. The localized 

function given by equation (VI-5) then assumes the form
(VI-14)

K^D) = r(^D) + 1  I [xy)(k) b^I)(k,r)+ X^^^^(k) b y ^ ) ( U ) ] ,
k n

where the superscripts (I) and (II) denote those Bloch functions con­

structed from the ligand orbitals situated on sites equivalent to the 

oxygen sites labeled (I) and (II) respectively. The mixing coefficients 

and X^^^) are given by the relation (VI-7) and it is found that 

the localized function is given by

f'm(̂D) = <|/;(̂D) - I l[< b̂I) (%,?); b̂ )(̂ ,r)
k n

- (t?); ' P ^ D ) >  b("^(i^,r)] (VI-15)

Evaluation of the Two Center Overlap Integrals

The evaluation of the mixing coefficients given by the relation 

(VI-7) is simplified on expressing the ligand (2p) and the copper (3d) 

orbitals in terms of the real wave functions listed in Table 15, wjiere
I

the axis of quantization implied is the hexagonal c-axis and the phase 

chosen is that defined by Condon and Shortley. If now the vector 

(^^ - ^^y) defines the relative position of the 0^ ion to that of 

the Cu^* ion, the directed orbitals given in Table 15 may then be
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expressed in terms of functions quantized around the 

axis. That is if o, tt and 6 refer to the component of angular momentum 

around the axis of quantization (R^ - R^^], the real wave functions 

listed in Table IS may then be expressed as linear combinations of 

the pa and pv^ functions and the da, dir_̂ and d6^ functions for the p 

and d orbitals respectively. Thus the overlap integrals between the 

real wave functions may then be expressed as functions of the direction 

cosines (&,m,n) giving the orientation of the vector - R^^) stret­

ching between the two sites relative to a space frame and the para­

meters (sda), (pda) and (pdir). For example the parameter (pd%) 

represents the overlap integrals between the oxygen 2p%^ functions

with the copper 3dir̂  functions.
36Slater and Koster have worked out expressions for the energy 

integrals of a crystal in terms of the parameters given above and 

from their results the expressions for the overlap integrals to be 

evaluated here are obtained and are listed in Table 16. Those over­

lap integrals not listed in Table 16 may be found on cyclically 

permuting the coordinates and direction cosines. The direction 

cosines found in equation (VI-13) may then be substituted into the 

relations listed in Table 16 to obtain explicit expressions for the 

overlap integrals between the real wave functions of the copper ion 

and the nearest neighbor oxygen ions. The results are given in 

Appendix III.

The radial dependence of the real wave functions given in
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TABLE 15

THE REAL WAVE FUNCTIONS FOR THE 2p AND 3d ORBITALS

Px = =

2£

x / r  (P-i ■ p p

( - f )  = i ^ T ^ P i  " p - p

P, =

3d

"xy = - y - T  ("2 - ".2)

xz \/ 4ir d r  W i  - o-i)

yz \/ 4ti d—  R.(r) ( ^ )  = i y W i  + d.j)

2 2
4x2.yZ f/î&- = p p  ("2 * 4 .2)

1 / IS 3z^-r^
z‘ —  J ~  *d(r) t ) = 4^
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TABLE 16

THE TWO CENTER OVERLAP INTEGRALS EXPRESSED 

IN TERMS OF THE SLATER-KOSTER PARAMETERS*

<s;xy> = / y  £m (sda)

<s;z^> = [n^ -- ^  (£^+m^)] (sda)

<x;xy> = / y  &^m(pdo) + m(l-2£^) (pdu)

<x;yz> =\/T £mn(pda) -2£mn(pdïï)

<x;xz> = v/T £^n(pda) + n(l-2£^) (pdir)

<x;x^-y^> = - y  / y  £(Jl^-m^)(pda) +£(l-£^+m^) (pdir) 

<y;x^-y^> = - y  / Y  m(£^-m^) (pda) -m(l+£^-m^) (pdir) 

<z;x^-y^> = / y  n(£^-m^) (pda) -n(£^-m^)(pdn)

<x;z^> = £[n^— ^  (£^+m^)](pda) - '/y&n^(pdn) 

<y;z^> = m [n^— ^  (&^+m^)](pda) - \/3mn^(pdn)

<z;z^> = n [n^- (*-^+m^)] (pda) + /3n(£^+m^) (pdir)

*The real wave function d^^2 2̂ been abbreviated as d^2.
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Table 15 was obtained from the Hartree-Fock functions found for the 
2+ 2Cu and 0 ” ions as the atomic orbitals of these ions serve as basis 

for the localized D state and the unperturbed valence band states 

respectively. The normalized Hartree-Fock radial functions given by 

Clementi^^’̂ ^ are

R^sCr) = 8.473 + 1.055 + r[-10.385

(VI-16)
+ 12.733 _ 1.251

Rgpfr) = r[2.077 + 7.336 e'^'^Sr + 7.223

- 3.478 + 2.274

RgjCr) = (r)2 [33.43 + 97.73 + 113.14

The free ion 2p and 3d radial functions are seen to be constructed from 

the Slater type nodeless 2p and 3d orbitals respectively while the free 

ion 2s function is constructed from the Is and 2s Slater type orbitals. 

The angular dependence for the 2s, 2p and 3d functions may be found in 

Table 15.

The Slater-Koster parameters may be determined on evaluation 

of the following overlap integrals
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, ‘“2^B ^

■“l^A "“2^B
</&*

between unnormalized Slater type nodeless functions appearing in the 

expansion of the following overlap integrals

<2s;3d^2> = \/r &n(sdo)

<2py;3dy2> = y r  m^n(pdo) + n(l-2m^) (pdir).

The vector r^ and r^ are to be measured relative to the 0^ and Cu^* 

sites respectively. Once the overlap integrals given above have been 

evaluated for several orientations of the oxygen anion, the Slater- 

Koster parameters are easily obtained.

The requisite two center integrals involving two unnormalized 

Slater type nodeless functions can be reduced to a single center one
37dimensional integral on using the technique of Gaussian transformation, 

(for discussion and relevant formulas see references 38 and 48). After 

carrying out the transformation indicated above, the expressions for 

the overlap integrals were found to be
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-air. -Ogig
<e ;xgZg6 > = - tnaiOga^

”*̂ 1̂ A ”^2^B 2 3<rAe iXsZge > = (VI-17)

■“l^A "“2^B 2 _  2_ ,
" V  ’W  " = "“i“2 %  tî2-”

The one dimensional integrals ^3 appearing above are

given by

= 2n
3* - —  - —  -yjig

^ ) 2  [3(fg) ^ + 3(£g)“2 + (£g) ^]e du (VI-18)

1 f'
TTÜ) [15(£g) + 15(£g)"^ +6 (£g) ^+(£g)‘ l̂ e"'^du

h  =
' £' 

(T^u) [3(fg)
Ü

+ 3(£g)-2 + (£g) g-V?idu ,

where the parameters £(u) and g(u) are de£ined as £ollows

£(u) = u(l-u) a

and

g(u) = a^/u + a^y(l-u)
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The one dimensional integrals ^3 may then be evaluated by

numerical quadrature once the orbital exponents and appearing in
2-the expansion for the radial functions given in (VI-16) for 0 and

Cu^* orbitals respectively and the ionic distance a^ are known. For
0 32ZnO the ionic distance was taken to be 1.96 A and the Slater-Koster 

parameters obtained were

(sdo)= 0.03088

(pdo) = 0.05434
(VI-19)

(pdir) = 0.0393

Since we are interested in the orthogonalization of the cubic 

wave functions given in Table 1 with the valence band functions, the 

cubic wave functions must be expressed in terms of the real wave func­

tions given in Table 15 and its found that

‘2 “ - / I  'xy * i V  * ‘/ I  "yx' (vi-20)

t‘ = v/i7i[-d̂ 2 2 * * 1 dxy + i yiTZ dyj

e . JT/3 [,/î/2 d^2 2 * d;2 » i \fi/2 d^^ - i d^J
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e' -Jÿi [ - y w d 2 2 - d , + lyîTî d - 1 d ]
X -y

The overlap integrals between the cubic wave functions and the nearest 

neighbor ligands may be expressed in terms of the two center parameters 

on using the results given in Appendix III for the expressions of the 

two-center integrals between the real wave functions and the cubic wave 

functions. These results are given in Appendix IV. Those integrals 

not listed in Appendix IV may be found using the relations

<i; tg > = - <i; t^> (VI-21)

and

<i; e'> = - <i;e> (VI-22)

where i takes on the values x,y,z.

Normalization of the Delocalized Functions

The normalization integral for the delocalized functions given 

by (VI-15) assumes the form

< >= l - I  I ( | < b ^ ^ ) ( 2 , r ) ;  4 ; > | 2 + | < b ( I I ) ( & ; 2 ) ;  >1^;>|^), (VI-23)

k n

where in the reduction of the expression for the normalization integral 

use has been made of the following; the overlap integrals in the ex­

pression for the normalization integral are Hermitian, the cubic field
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functions denoted by are normalized and the approximation that 

the Bloch functions are orthogonal. The indices n and n' in the above 

expression (VI-23) denotes a summation over the real wave functions 

X, y, and z of the oxygen ligands. On expanding the Bloch sums, one 

finds that the above expression becomes

k n T
where the summation over the vector t , i.e.,

^ 1 ---- 1  x/ t  ^

denotes the summation over the two inequivalent lattice sites desig­

nated by (I) and (II), (see equation (VI-8)). If the expression 

enclosed in the brackets of equation (VI-24) is now expanded, the 

normalization integral is given by

<♦? V  ° Ï i {  (VI-25)
k n T “

“.a

The last term in equation (VI-25) containing the ïc dependence vanishes 

as the vector (R^-&g)Q^g is a translation vector of the lattice and
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hence

I . (VI-26)
t

where the summation is over the first Brillouin zone. Thus the normal­

ization integral reduces to

^ - I I I  !<*%( (VI-27)
n a -»T

Approximate expressions for the normalization integrals of 

the cubic field functions are obtained on substituting the expressions 

for the overlap integrals between the cubic field functions with the 

directed orbitals of the nearest neighbor ligands listed in Appendix 

IV into the above relation (VI-27) and on reduction its found that

= <♦(.:♦(•> = <♦(-: = 1 - 4  I(sdo)2 (VI-28)

* (pdo)^ * 4 ( P W ^ ]

and
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Orbital Reduction Parameter

2The orbital reduction parameter within the manifold

was previously defined as

k = <t2l»,|t2> ,

(See equation (II-8)). It is now of interest to evaluate the orbital 

reduction parameter using the delocalized functions given by equation 

(VI-15), that is

k  =< •

On substituting the expression for the delocalized function ij;, +. into
I 2̂

the above relation for k, one finds that

k = (H^ + Hg + H3), (VI-30)

where

Hi = <tg U J  t+ > (VI-31)

Hg = - I I I [<b^ Æ,r); t^^*<b^(%,r |%Jt2> (VI-32)
x t n

T/f+ <b^(k,r);t2>< b^ (k,r)l£jt2> ]
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and

H, . % % I <b;,(k',?);t2>* (VI-33)
-4"

T k',k n',n

In the above relations for and the summation over the vector 

T represents the summation over the two inequivalent lattice sites 

designated by (I) and (II). The Hermitian property of along with 

the approximation that the Bloch functions are orthogonal has been 

used in the reduction of the above expressions for and H^.

The value of the term may be found from Table 5 on setting 

the parameter k appearing there to its ionic value, thus

Hi = <t* I*,It; >= 1

+ .If now operates on the cubic field orbital t^ in the ex­

pression (VI-32) for Hg, then

= |t; > + VS"|e>

and the expression for becomes

"2 = - I I I [2 <bĵ(i<,r);tj>*<bj(l<,r);t2>
T k n

+ y^(< b^(^,r);t2> < b^(lc,r);e> +< b^(îc,r);t2>< b^(îc,r) ;e>*)]
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The Bloch function bj^(î,r) appearing in the above expression for Hg 

may be expanded using the relation (VI-1) and on reduction its found 

that

n 01 B T k

<*j,(r-Rg-T);e> * <*|̂ (r-Rj-T);t*><*̂ (r-R̂ -T);e> )]

or on noting that

the expression for reduces to

- ► a nT

+ <(|)j^(r-R^-T),t2> <(|)j^Cr- ĝ-T);e> )].

On expressing the overlap integrals appearing in the above expression 

for H2 in terms of the Slater-Koster parameters given in Appendix IV, 

one finds that after reduction H2 becomes
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= - - y  [(sdo)^ + (pda)^ + - y  ( p d i r ) ( V I - 3 5 )

The band term (equation (VI-33)) may be expressed in terms 

of the ligand orbitals on expansion of the Bloch sums and after reduc­

tion is given by

'<*̂ (̂r-R̂ -Tj;t2>*< (|)ĵ(r-̂yT);t2>«f>ĵ< (r-R̂, -T)|&J'|)̂ (r-RyT)> ,

The above expression may be simplified on summing over the wave vectors 

k and k using the relation (VI-26), and then summing over the lattice 

vectors and After performing the summations indicated above, 

the expression for becomes

«3 = 1 1  ,I >'
■t n,n ot,B

Since the approximation that the Bloch functions constructed from the 

ligand orbitals centered on inequivalent lattice sites are orthogonal, 

the above expression for reduces to
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^3 = Z I ,I > (VI-36)T n,n a

For the impurity problem under consideration, the angular 

momentum operator is to be centered at the impurity site, thus on 

noting that

= -^(xa/3y - y9/3x) = - p  [(x-X^-T^) 3/9y

-(y-To-Ty)9/9x + (X^+Tx)9/9y-(Y^+Ty)3/9x]

or

», = (»,)“*" * -Î- lCX^*T^)S/3y - (Y^*y3/3x! ,

where (G^)^*^ is the angular momentum operator centered at the 

(^^+t) ligand site, one finds that the expression (VI-36) for is 

then given by

H3 = % I , I <*n'(f-^a"T);t2>*<* (r-& -?);t2 >^ 4. n,n a “ z n a ^
T
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and since the integrals involving the o p e r a t o r s 9 / 9 x  and 9/9y 

are independent of a particular ligand site, then

H; = I ; ,(?)! ♦^(?)> (VI-37)
T n,n

+ 4" <*n'Cr)|3/3y|*n(r)> [ I CV̂ x̂ ‘̂*’n ' ’ V

If the summation over the ligand orbitals is carried out, the 

first term in the above expression for becomes

t n u
/ * (VI-38)

= 4 Z p2pyC?-t^-î);t2 > < 2p^C?-^^-î);t2 >
T \

■ "2Px(^A'"^’4  2Py(r4^-?);t2 >j ,

where use has been made of the following relations

W P o p  ' 0

(*z).p |2P;' = » 

'*z>op I V  ' * I V
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and

On summing over the ligand sites, (over the indices o and t), and ex­

pressing the overlap integrals in terms of the Slater-Koster parameters 

given in Appendix IV, equation (VI-38) reduces to

4/9 [2 J 5 (pda) - (pd,r)] (pdir) (VI-39)

The second and third terms appearing in the expression (VI-37) 

may be evaluated as follows

I ,<*n'(r)l a/By|*n(r)> [ I I (%
1 n,n " " T a “

becomes 

h■ f  <2s(r)|9/8yl 2p^(r)> [J I (X^+t^) (VI-40)

•( <2s(r-&g-T);t2 > <2p̂(r-R̂-î);t2 >

-  ( < 2 s ( r - & ^ - T ) ; t 2  ^ ^ 2 p y ( r - ^ ^ - T ) ; t 2 > * )  ]

on noting that due to parity considerations, the only nonvanishing 

elements of
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are of the form

<2s|9/3y |2py>

<2Py|3/3y |2s> ,

and as directed ligand orbitals may be chosen to be real, the
1 3Hermitian property of the operator ̂  may then be used to obtain 

the result that

<2s|3/3y |2py> = - <2py|3/3y |2s> .

—yThe indices a and t may now be summed over the nearest neighbor ligand 

sites and on expressing the overlap integrals in terms of the Slater- 

Koster parameters, it is found that equation (VI-40) becomes

<2s(r)|3/3y|2p (r)> I J (X^ + T^) (VI-41)
-»• aT

(<2s(r-^^-T);t2 >*< 2py(r-S^-r);t2 > 

- <2s(r-&^-T);t2> <2p^(r-^^-T);t2 > )

" (sdo)(pdn)<2s|3/3y| 2py>.

Similarly as shown above, the last term in equation (VI-37) for 

reduces to
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“T  I ,  ̂  ̂ I V  (VI-42)n,n ^  a

y ( s d a ) ( p d i r )  <2s|S/3x|2p^ > ._4 / 1
3

Thus on compiling the results given in equations(VI-39), (VI-41) and 

(VI-42), one finds that is given by

H3 = -^ [2 / J  (pda) - (pdir)] (pdir) (VI-43)

+ -y y ^  (sda) (pdir) (<2s|s/ay|2py> +< 2s 19/9x |2p^>) .

The orbital reduction parameter k may be expressed in terms 

of the Slater-Koster parameters on compiling the results given by 

equations (VI-28), (VI-35), (VI-43) forJ{'^, and respectively 

and after reduction it is found that

k = ^1 - - i -  (sda)2 + (pda)2 + (pdir)^]j (VI-44)

•̂1 + -y [(sda)^ + (pdo)^] + -y (pda) (pdir)

- (pdir)^ + - ^ y P  (sda)(pdir)(<2s|9/9y|2p >
y

+ <2s|9/9x|2p^ >)]
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On substituting the values given in equation (VI-19) for the Slater- 

Koster parameters, one finds that for the terms independent of the 

matrix elements of the operators 3/9x and 3/3y the contribution to 

the orbital reduction parameter k is 0.989. The contribution to k 

from the last term in equation (VI-44) may be estimated using the 

radial functions given by equations (VI-16) and is found to be less 

than 1%.

Spin Orbit Parameter 

The spin-orbit interaction energy is given by

= ( h W c ^ ) ( ^ V ^ x  p). 0 ,

where V^ is the crystalline potential and a the Pauli spin matrix.

The spin-orbit parameter will be evaluated assuming the following.

Since most of the spin-orbit interaction arises when the electron
49is close to the nucleus , the interaction energy will then be approx­

imated by

“ T l  ( T "  - W ' >  '4m c

where V is the atomic potential of the nucleus. Matrix elements of 
1 3Vthe operator ( —  -^ ) between orbitals centered at different lattice

1 3Vsites will then be neglected as the magnitude of the operator ( -p — )
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is appreciable only near the nucleus where overlap is small. The 

value of the radial integral

7 T 1  *T 4 ?  I4m c

will be treated as a parameter to be determined from the free ion 

intervals.
2The spin-orbit parameter within the TgCT^) manifold was 

previously defined as (see Chapter II)

and for the delocalized picture will be given by

S = -2 < -T ^t+ I "so I -T  h i   ̂ '

where the wave function + is the product of the spin function
1 2-y and the delocalized orbital given by equation (VI-14). On neg­

lecting the cross terms as they are small, one then obtains

Ç = -2 Jf [< —  ̂2 iHĝl -jt2 > + n  I <bj.(k',r);t2 >
T k,k n,n'
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or

ç = .2 i t  [< H I -it* > * l l  I (VI-45)
î f , r  „.n’

01,3 Y,<S
*

>

The above expression (VI-45) may be simplified on summing the wave 

vector k and k' over the first Billouin zone and then summing over 

the lattice vectors and R^. After carrying out the above simpli­

fications, one finds that

^ a,3 n,n

‘*’n ' l ^ s o

Since two center integrals involving the spin-orbit interaction energy 

are small the above expression for the spin-orbit parameter then becomes

 ̂= -2 tg I t-s| tg > (VI-46)

n,n ^ a
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where the radial integrals involving the operator ( ^ \ )
4m c ^

are to be replaced by the value of the free ion spin-orbit parameter 

A to be determined from experiment.

The matrix elements of the operator (&.s) appearing in the 

above relation may be evaluated using the following relations

(t s)'

(I'S)

(ts)

(%'S)

op

op

op

op

op

1
2 ^xV > T  I" ' T V  + " T

—  Pv" = 7 V  * T

T  V

I- T  V

1
2 ^z' f  I- 4 - V  " -f T  Py> '

where the phase of the ligand 2p orbitals is that given by Condon and 

Shortley. On summing over the quantum indices n' and n denoting a sum 

over the ligand orbitals, one then finds that the expression (VI-46) 

for the spin-orbit parameter reduces to

' = [ 4 v 4 » o n c < p / H - * ) = 4 > *■> a ^T

The overlap integrals in the above relation may be expressed in terms 

of the Slater-Koster parameters given in Appendix IV on summing over
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the nearest neighbor ligand sites to the impurity center. On reduc­

tion one then obtains

; = - I 1 - -y [(sdo)^+ (pdo)2+ -1  (pdn)2]j-l (VI-47)

^cu “ T  ^otCpda) -  - y  (pdïï)] (pdiT))

2where the normalization term is given by (VI-28). If the values 

for the Slater-Koster parameters given by equation (VI-19) are sub­

stituted in the above expression for ç, there results

Thus for a value of = 150 cm~^ for the spin-orbit parameter of the 

oxygen 2p orbital it is seen that there is no reduction.



CONCLUSION

Recently the spin-orbit coupling in the valence bands of ionic 

crystals with zincblend and wurtzite structure was investigated in the 

tight binding approximation.^^ For these compounds the spin-orbit 

splitting of the valence band at r(k=0) deviates from the one electron 

average of the splittings for the two atoms in the unit cell in con­

trast to that for the predominately covalent semiconductors. It was 

shown that for ZnO a small admixture of the 3d orbital of the cation 

with the 2p orbital of the anion could account for the inverted nature 

of the spin-orbit splitting of the valence band at Î = 0. This results 

from the fact that the 3d orbital of the cation contributes a negative 

term to the spin-orbit coupling in the valence band at ic = 0. An 

emperical estimate of the amount of admixing was made by Shindo et.al.^^ 

and from their results the admixture of the 2p band with the copper 3d 

orbital is expected to be approximately one order of magnitude greater 

than that obtained here (c^O.3 vsciO.06). For a value of 0.3 for the 

mixing coefficient, it is found that the spin-orbit parameter of the 

copper 3d orbital is only reduced to approximately 88% of its free ion 

value. Thus from these considerations, admixture of the valence band 

with the localized 3d orbital may not fully account for the large 

reduction.

119
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An alternative approach to account for the large reduction

in the spin-orbit parameter is to consider the problem in the strong

field limit. That is the crystal field overcomes the electrostatic

interactions between equivalent electrons and the ground state
9 5 4electronic configuration belongs to the crystal field 3d (tg^ ) con-

9 2figuration rather than the free ion 3d ( D) term. As the absence of

the center of inversion symmetry element in the group introduces

an odd parity term in the crystal field potential, the crystal field

jfftg) orbital of copper may then mix with the ZidCtg) orbital. Thus

owing to the fact that matrix elements of the angular momentum vector 
2£ within the T^CT^) manifold are the same as those of the angular 

momentum vector for an atomic p state except for a multiplicative con­

stant of (-1), the mixing of the Apftg) orbital with the Sd^tg) orbital

will then introduce a term in the expression for the spin-orbit para­

meter

^3d  ̂ t^3d ■ ^ ^4p] '

which then leads to reduction.

C. A. Bates has made a theoretical study of Cu^*:ZnO in order
35to account for the large hyperfine Constants found from experiment.

O
Here the (Ar)3d 4p configuration was mixed with the ground state 

g(Ar)3d configuration through the odd parity term appearing in the 

crystal potential. Bates estimated that the mixing coefficient to be 

approximately (k = 1/3). In this work the free ion energy splitting 

of 125,000 cm  ̂was used. On the other hand as the promotion energy
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between a 3d and 4p orbital is expected to decrease due to the effect 

of the crystal potential of the lattice, the amount of admixture may 

be quite large. For example if the promotion energy is approximately 

70,000 cm"\ the spin-orbit parameter is seen to reduce to^25% of its

free ion value. It is then seen that a quantitative formulation of 
the qualitative argument presented above may account for reduction.



APPENDIX I 

HIGHER ORDER PERTURBATION THEORY

2As the second order elements brought into the TgCTj) mani­

fold are of the same order of magnitude as the first order intrablock 

elements, e.g., GgCkjikj') — 100 cm  ̂for C = 720 cm \  the correc- 

tions to the energy for the TgCT^) manifold given by the third and 

fourth order terms will now be investigated and will be shown to be 

negligible.

The expression for the third order correction to the energy 

may be found on retaining terms up through the third order in A in 

the expansion of the transformed Hamiltonian G, (see Equation (III-3)),

G = G + A G, + A^G. + A^G-.0 1 2  3

The third order correction G^ is then found to be

G3 = iCHgS-SGg) + 4  + -L(S^G^-H^S^) , (AI-1)

where

Gg = + i(H^S-SG^) - 4  (AI-2)
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or on substituting for given by equation (AI-2) into the expression 

(AI-1) for Gj, the third order correction becomes

Gj = i(H2S-SH2) + SH^S - -y (sfc, + H^S^) (AI-3)

+ -4- [3SH - 2S^G - H S^]. 0 0 0 0

Since here there are only two manifolds labeled by the high frequency 
2 2index k, e.i., E(Tj) and ^2 (T^), the last term in equation (AI-3) is 

seen to vanish for the intrablock elements Gg(kj;kj') as S(kj;kj') = 0 

and G^ and are diagonal in the high frequency index k. The term

SHjS in equation (AI-3) is also seen to vanish as matrix elements of

the perturbation = - çt-s + within the ^E(T^) manifold are zero,

(see Table 7). Since = 0 for the problem under consideration, the

third order energy correction for the intralevel elements of the 
2T^(Tj) manifold may then be written here as

G3 = - - 1  (S^Gj + H^S^) , 

or on expanding it is found that

G3 (TgiiTgj') = ~ ^  I I  [S(T2j;Ej")S(Ej",T2j"')Gj(T2j"' iT^j')

+ H^(T2j;T/)S(T^j";Ej"')S(Ej‘" ;Tgj')], (AI-4)
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where the term -iSHg has been neglected as Hg = 0. In the above 

relation for it is seen that the summation over the high frequency 

index k has been carried out as there are only two manifolds labeled 

by k and only those terms have been retained which do not vanish owing 

to the fact that S(kj;kj') = 0. If the relation (III-5) for S is 

substituted into the above expression for and one notes that 

Gj(kjjkj') = H^(kj;kj'], the third order correction term may then be 

written as

= - 2TTO<i)2 (AI-5)

2where the energy denominator has been replaced by (lODq) .

Explicit expressions for the third order terms are found on sub­

stituting the expressions for listed in Table 7 into the above 

equation for G^ and on reduction the third order corrections to the 

ground state manifold are given by

1 I- 4K;'^ + c ; ' (2 K ' - ; ' ) ]
2lïÔDqf
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1 [(K+ 1  C)(2K'-C')2+;;'(2K'-;')]
2(10Dq)^

J_ in _J_ J(K-40c'(2K'-;')
■ 2 V  2 (lODq)^

- | ç (2k '-ç ’)^ - ;;'2]

The third order correction to the energy may now be estimated

using the values obtained for the crystal field parameters determined
- 1 -1from the fit of the optical data, i.e., ç = 200 cm , K = -20 cm ,

ç' = 720 cm  ̂and K* = -77 cm \  and it was found that G^fkjikj ] was

two orders of magnitude smaller than that obtained for the second order

correction CLiCkjikj') given by equations (III-9) and (III-12).

It is now of interest to investigate the order of magnitude of
2the fourth order terms folded into the manifold on performing

a second Van Vleck transformation. The order of magnitude of these 

terms determine how effective the first transformation isolated the 

^^2^"^d^ manifold from the ^E(T^) manifold.
The fourth order correction to the energy obtained on folding 

the second order interlevel elements GgCkjik'j') into the ^TgCT^) 

manifold is found from a simple extension of the second order theory
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described in Chapter III and it can be shown that
I .|L„ ( .11 , .

k V k j "

The second order interblock elements may be £ound“using equation 

(III-4) for G2 and on reduction it is found that

= fcAq-I [Hi(T2j;T2i")Hl(T2j";Gi')

where the summation over the high frequency index k has been carried 

out and the energy denominator (E° - E°,) has been replaced by (-lODq) 

The results of Table 7 for may then be used to obtain explicit 

expressions for the second order interlevel elements and on reduction 

it is found that

_ 1 [-2K;'+ ;(K'- -1 ;')]
"(lODq)
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/ T  1 [(K+-l;)(2K'-;')+
■ ■ V 2 (lODq)

On substituting the above results for GL^kjik'j') into the 

expression (AI-7) for G^(kj;kj'), one then finds that

^4^"T^2’ = G^C- -yt=;- - y t p

1 , [-2K;' + C(K'- (AI-9)
lîÔD^)^

1 [(K+ -1 c)(2K'-s')+ ;c']2
2TîÜDq)3

G4^‘ 4 ^ 2 ’ 4 4 ^  = G^C^Lt*;- -yt^)

- J T  ■  ....
1 1 [-2KÇ + 4(K - —=- Ç )]
2 (10Dq)3

 ̂ [(K+ -y Ç)(2K -Ç )+ ÇÇ ]
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If the values of the crystal field parameters determined from the fit

of the optical spectra are used in the evaluation of the fourth order
2elements folded into the manifold, then it is found that the

fourth order elements are four orders of magnitude smaller than the
2second order elements folded into the manifold, (see Chapter

III). Thus it is seen that the second order transformation effectively 
2isolates the TgCTj) manifold.



APPENDIX II

CHARACTER TABLES FOR THE T^ AND Cg^ POINT 
GROUPS AND THEIR DOUBLE GROUPS

The notation labeling the irreducible representations is
43 44that of both Mulliken's, (see Wilson, Decius and Cross ’ for

character tables for the T^ and C^^ point groups respectively and

D. S. McClure^ for the T^ double group) and Bethe's (see G. F.
42Koster for character tables).

E 3C2 ^^4 6 0d

^1 ^1 1 1 1 1 1

^2 ^2 ^2 1 1 1 -1 -1

^12 ^3 E 2 -1 2 0 0

^25 ^5 "l 3 0 -1 1 -1

^15 ^2 3 0 -1 -1 1
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3v
E

'l 1 1 1

'2 ^2 1 1 -1

^3 E 2 -1 0

Additional Characters of the Double Group

1/26

5/27

8

Additional Characters of the Double Group C^^



APPENDIX III

EXPRESSIONS FOR THE TWO-CENTER OVERLAP INTEGRALS BETWEEN THE REAL 
WAVE FUNCTIONS IN TERMS OF THE SLATER-KOSTER PARAMETERS

The direction cosines (&,m,n) gives the orientation of the 

oxygen ligand relative to the Cartesian system defined in Figure 11, 

All overlap integrals not listed are zero.

2<s;z > = (sdo)

<x;xz> = -Cpdir)

<y;yz> = -(pdtr) 
2<z;z > = -(pda)

(-2/2/3,0,1/3)

<s;xz> = - (sda)

<s;x -y^> = — (sda)
2 1 <sjz > = - —g- (sda)

<x;xz> = - -g- (pda) + —  (pdir)]
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(-2/2/3,0,1/3)

- j  (pda) + -y (pdn)] 

-|-'^[(pda) + (pdjr)]

<f\xy> = - —  / 2  (pdir)

<y;yz> = (pdir)

2 2 4<z;x -y > = - —

2<z;z > = g

<z;xz> = - -g-\/y (pda) + - y  (pdir)]

(pda) + -y (pdir)] 

y  [(pda) - 8 (pdir)]

i/2/Z, - /273,l/3)
2<s;xy> =  y  (sda)

= 4  v / i  (sdo)

<s;yz> = — y  y y  (sda)

<s;x -y > = - - y  (sda)

2 1 <sjz > = - —y  (sda)

<x;xy> = - -y y y  [2(pda) + S ^ J - ^  (pdir)]
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cyr/3.-/^,i/3) 

<x;xz> = [2 y 1/3 (pda) + rpdtr)]

<x;yz> = - - j  [(pda) -2 /I/3 (pdir)]

2 2 1 <x;x -y > = - — / T  [2,y^(pda) - -i|- (pdir)] 

<x;z^> = - \/T[(pda) (pdir)]

<y;xy> = - \/I[-2^y5 (pda) + -y  (pdir)]

<y;xz> = - - y  [(pda) -2^y^(pdir)]

<y;yz> = - - y  [ - 2 ^ ^  (pda) + -y(pdir)] 

<y;xf-y^> = - y  v/T [2(pda) + sy^(pdTr)]

<y;z^> = - y v / T  [ J ^  (pda) + -y(pdir)]

<z;xy> = - - y  [(pda) - 2 ^ ^  (pdir)]

<z;xz> = - y / T  [^yï(pda) + - y  (pdir)]

<z;yz> = - - y / f  [(pda) + 7 (pdir)]

<z;x -y > = - - y  [ ^ ^ y  (pda) - -y- (pdir)] 

<z;z^> = - - y  [(pda) - (pdir)]
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(v/275, y2/3,l/3]

2<s;xy> = - j  (sda)

<s;x2> =
t J - T

<s;yz> = - y \ / T  (sda)

2 2 <s;x -y

(sda)

<x;xy> = -^\/2"[2(pda) + (pdn)]

<x;xz> = (pda) + (pdir)]

<x;yz> = - - y  [-(pda) + 2 ^ ^  (pdir)] 

<x;x^-y^> = - 2 (pda) - (pdti)]

<x;z^> = - - y  / T  [ (pda) (pdir)]

<y;xy> = - \/T (pda) + - y  (pdir)]

<y;xz> = - [-(pda) + 2 ^ ^ ^  (pdir)]

<y;yz> = - - y  [ ~ 2 j ^  (pda) + y  (pdir)] 

<y;x^-y^> = - y  v T  [2(pda) + (pdir)]
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2<y;z > ■y (pda) + y  (pdir)] 

<z;xy> = - y  [(pda) + 2 ^ y y  (pdn)]

<z;xz> = y  x/T [ ^ y  (pda) + y -  (pdir)] 

<z;yz> = y  y r  [(pda) + T ^ y  (pdir)] 

<z;x^-y^> = - y  [^y/y (pda) - y -  (pdir)] 

<z;z > = - y -  [(pda) (pdir)]



APPENDIX IV
THE TWO CENTER OVERLAP INTEGRALS FOR THE CUBIC WAVE FUNCTIONS 

IN TERMS OF THE SLATER-KOSTER PARAMETERS

The direction cosines (&,m,n) gives the orientation of the 

oxygen ligand relative to the Cartesian system defined in Figure 11, 

All overlap integrals not listed are zero.

<x:

<x;

<s;t2> = (sda)

" n/ t  (Pdn)

(pdir) 

(Pdn)

<y;e> = (pdïï)

<z;t°> = -(pda)

+ 2 <s;t2> = -j (sda)

<s;t2> - - -y (sda)

(0, 0, - 1)

(-2/2/3,0,1/3)
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(-272/3,0,1/3)

<x;t2> = - >/5/18 [8(pda) - J 1/3(pdir)]

<x;t°> = 2 y%/9 [(pda) + ̂ 1/3 (pdir)]

«;e> = - -4- V-T" (Pdn)

<y;t2> = -i/1/6 (pdn)

<y;e> = -i /1/3 (pdir)

<z;t2> = 2/9 [(pda) +/1/3 (pdir)]

<z;t;> = - -g
<z;e> = - /2/3 (pdir)

[(pda) -8/1/3 (pdir)]

ü/273,-/2/3,l/3)

<s;t2> = - 1/3 (l+i/T) (sda)

<s;t2> = - 1/3 (sda)

<x;t*> = -/T/18 [2(l+/3i) (pda) + (-7+2/31) (pdir)]

<x;t°> = - /2/9 [(pda) + /1/3 (pdir)]

<x;e> = - “j  (-2+1/3) (pdir)

<y;t2> = -/273[-/T73(1+/31) (pda) + (-2+/31) (pdir) ]
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<z

{ / 2 1 1 , - s f y ï ,  1/3)

<y;t®> = / I / 3  [n/ Î / T  (pdo) + (pdir)]

<y;e> = 1/3 (pdir)

< z ; t 2 > = - 1/9 ( l + i / 3 )  [(pda) + /  1/3 (pdn)] 

<z;t°> = - 1/9 [(pda) - 8 / 1 / 3  (pdir)]

;e> = - y  ( l  + i / 3 )  (pdtr)

( / 2 / 3 ,  / 2 7 3 ,  1/3)

< s ; t 2 > = ---- ^  ( l - i / 7 )  (sda)

<s ; t°> = - 1/3 (sda)

<x;tg> = - / T / 1 8  [ 2 ( l - i / 3 )  (pda) - / Ï / 3  (7 + 2 / 3 1 )  (pdir)] 

< x ; t 2 > = - / T / 9  [(pda) + / 1 / 3  (pdir)]

<x;e> = - ^ \ / 1/3 ( 2 + 1 / 3 )  (pdïï)

= -y /T /3  [ / l / I  ( 1 - 1 / 3 )  (pdo) + ( 2 + 1 / 3 )  (pdïï)]

<y;t®> = - / T / 3  [ / Ï J Ï  (pda) + 1/3 (pdïï)]

<y;e> = - 1/3 (pdïï)



(upd) T + t-) E/Z/ = <9‘2>

[(upd) £/T / 8- (opd)] 6/1 - = <E%!z>

[(jipd) £/i /+ (opd)] (£/^T-i) 6/T - = <+)!z>

6£T
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