This disseriation has been
 microfilmed exactly as received $\quad 67-15,911$
 COLE, Jon Kieth, 1937-
 OPTIMIZATION PROBLEMS IN BANACH SPACE.
 The University of Oklahoma, Ph.D., 1967
 Mathematics

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

OPTIMIZATION PROBLEMS IN BANACH SPACE

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPFY

BY
JON KIETH COLE
Norman, Oklahoma
1967

OP TIMIZATION PROBLEMS IN BANACH SPACE

ACKNOWLEDGEMENTS

I wish to express my gratitude to Dr. G.M. Ewira for his many helpful criticisms and suggestions made during the preparation of this dissertation. I also wish to extend my particular thanks to my old friend Dr. M.Q. Jacobs for several stimulating conversations which gave rise to my interest in the area herein discussed. The members of the weekly seminar in Differential Equations and Variational Theory held at the University of Oklahoma from September 1965 to August 1967, before whom I had the opportunity of presenting many of these results, are to receive my thanks for their critical appraisal. My special thanks go to Dr. Ewing and Dr. W.T. Reid, the sponsors of the seminar, for their detailed discussion of my presentations and their many useful suggestions.

TABLE OF CONTENTS

Page
FOREWORD 1
Chapter
I. THE BOCHNER INTEGRAL 4
II. EXISTENCE AND COMPACTNESS OF SETS OF FUNCTIONS 11
III. THE EQUATION OF EVOLUTION AND TIME-OPTIMAL CONTROLS. 34
IV. TIME-OPTIMAL CONTROL OF A NONLINEAR PROCESS. 50
V. EXAMPLES 59
BIBLIOGRAPHY 64

FOREWORD

The recent profusion of control-theoretic publications dealing with problems in finite-dimensional Euclidian spaces has inevitably given rise to attempts to extend these results to more general settings. The most natural avenue of extension is to Banach spaces of various kinds, especially Hilbert spaces.

Here we treat only the question of time-optimal controls for the canonical problem. Extensions to more general questions are simple, and the literature abounds with such extensions. In particular, see [1], [2] and [5].

Our first results are somewhat in the spirit of those given by Jacobs in [II]. We prove, in a Hilbert space setting, the existence of measurable controls bounded within a varying restraint set and the weak compactness of a class of functions.

In the following section we treat the question of a time-optimal control for a linear process in a separable and reflexive Banach space. Our work is based upon existence theorems found in Kato [3] and Kato and Tanabe [4]. It somewhat overlaps recent unpublished results of Friedman [2] and the recent publication of Lions [7]. We prove several
corollaries concerning what one might term traditional control problems. In particular, we deal with a problem raised in Roxin [8].

Next, we discuss the same question for a nonlinear process, motivated by the paper of Lee and Markus [6]. The reader will no doubt notice that the hypotheses on the control function are quite strong, due to the absence of a Banach space form of the classic Carathéodory existence theorem for differential equations.

We have usually followed the notation most commonly used in the current literature on control. Elements of the various spaces considered are subscripted, and functions are superscripted. We usually use some form of the term "strong" as a modifier of some other term only when it is necessary to make a distinction from the weak form of the same modified term. However, even in cases where no confusion would be likely to result from the omission of some form of "strong", it is sometimes retained for purposes of emphasis. We never omit any form of "weak".

Where the context makes the meaning clear, we have omitted such phrases as

$n \rightarrow \infty$

All the functions hereafter considered are functions from a compact interval of the real line, generally denoted by I, to a Banach space of one sort or another. The measure on I is always the usual Lebesgue measure, and in some
cases where no confusion with terms such as "strongly measurable" and "weakly measurable" is likely the modifier "Lebesgue" is omitted. This is frequently done when the function considered is from I to the real line. We never omit any form of "strong" or "weak" as a modifier of any form of the term "measurable".

The Hausdorff metric on the metric space of closed and bounded subsets of a metric space is symbolized by dist [,] , while the metric of the original space is symbolized by dist(,).

Derivatives are taken in the usual sense of the limit of the difference quotient.

The term "almost everywhere" is used in the sense of "except on a set of measure zero".

OPTIMIZATION PROBLEMS IN BANACH SPACE

CHAP TER I

THE BOCHNER INTEGRAL

In the past few decades several theories of integration have been developed that are somewhat divergent from that due to Lebesgue. We shall consider a theory due to S. Bochner.

The Bochner integral makes possible the integration of functions to a Banach space from an abstract set, S, on which a σ-finite measure has been defined on a σ-algebra of subsets, called the measurable subsets of S. The value of the integral of such a function is again an element of the Banach space, and many of the most useful and important properties of the Lebesgue integral can be extended almost word for word to this more general setting. As examples, we mention two such results. They are analogues of familiar results from Lebesgue theory, and will be used repeatedly in the sequel.

$$
\begin{equation*}
\left\|(B) \int_{S} u(t)\right\| \leqq(L) \int_{S}\|u(t)\| \tag{1.1}
\end{equation*}
$$

(B) $\int(a u(t)+b v(t))=a(B)$ S
B) $\int u(t)+b(B) \int v(t)$, where a S S
and b are real.
We now proceed to the precise definition of the Bochner integral that is most relevant to our controltheoretic setting. Let

$$
u: I \rightarrow B,
$$

where B is a Banach space and I is a closed and bounded interval of the real line. Then u is said to be countablyvalued if the range of u is a countable subset of B and u assumes each non-zero value, u_{k}, on a Lebesgue measurable subset, E_{k}, of I.

In the setting in which we are interested, the countably valued function u is said to be Bochner integrable if the function

$$
\begin{equation*}
\|u()\|: I \longrightarrow R:: t \longrightarrow\left\|_{u(t)}\right\| \tag{1.3}
\end{equation*}
$$

has a finite Lebesgue integral over I, and the Bochner integral of u over I is defined by
(B) $\int_{I} u(t)=\sum_{k=1}^{\infty} u_{k}$ mea.s $\left(E_{k}\right)$.

THEOREM 1.1. If the function defined by (1.3) has a finite Lebesgue integral over I, then the limit in (1.4) exists.

Proof. (Our proof follows [I, 79].) Note that

$$
\text { (L) } \int_{I}\|u(t)\|=\sum_{k=1}^{\infty}\left\|u_{k}\right\| \text { meas }\left(E_{k}\right) .
$$

تence, $\quad\left\{\sum_{k=1}^{K}\left\|u_{k}\right\|\right.$ meas $\left.\left(E_{K}\right), K=1,2, \ldots\right\}$ is a Cauchy sequence, and since

$$
\| \sum_{k=1}^{K} u_{k} \text { meas }\left(E_{k}\right)-\sum_{K=1}^{K+L} u_{k} \operatorname{meas}\left(E_{K}\right)\left\|\leqq \sum_{k=K+1}^{K+L}\right\| u_{k} \| \text { meas }\left(E_{K}\right),
$$

we see that $\left\{\sum_{k=1}^{K} u_{k}\right.$ meas $\left.\left(E_{k}\right), K=1,2, \ldots\right\}$ is also a Ca.uchy sequence, and hence converges.

> Q. E. D.

Next, a function u from I to B, not necessarily countably-valued, is said to be Bochner integrable over I iff there is a sequence $\left\{u^{n}\right\}$ of countably-valued Bochner integrable functions from I to B such that

$$
\begin{equation*}
u^{n}(t) \rightarrow u(t) \quad a \cdot e \cdot \text { on } I ; \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
\text { (I) } \int_{I}\left\|u^{n}(t)-u(t)\right\| \rightarrow 0 . \tag{1.6}
\end{equation*}
$$

We define the Bochner integral of u by

$$
\begin{equation*}
\text { (B) } \int_{I} u^{n}(t) \rightarrow(B) \int_{I} u(t) \text {. } \tag{1.7}
\end{equation*}
$$

THEOREM 1.2. Given the above conditions on $\{u \mathrm{n}\}$, the limit in (1.7) exists.

Proof. By definition (1.4),

$$
\text { (B) } \int_{I} u^{m}(t)=\sum_{k=1}^{\infty} u_{k}^{m} \text { meas }\left(E_{K}^{m}\right), m=1,2, \ldots
$$

Consider two elements, u^{m} and u^{n}, of $\left\{u^{n}\right\}$, and then sequentialize the countable collection of Lebesgue measurable subsets of $I,\left\{E_{k, I}^{m}, n: k, I=1,2, \ldots\right\}$,
where $E_{k, I}^{m}, n=E_{k}^{m} \cap E_{1}^{n}$. Denote this sequentialized collection
by

$$
\left\{E_{j(k, 1)}:: j(k, I)=1,2, \ldots\right\} .
$$

Then,
(1.8) $\sum_{j(k, 1)=1}^{\infty} u_{k, 1}^{n} \operatorname{meas}\left(E_{j(k, I)}\right)=\sum_{I=1}^{\infty} u_{I}^{n} n_{m e a s}\left(E_{I}^{n}\right)=(B) \int_{I} u^{n}(t)$,
where $u_{k, 1}^{n}$ is the functional value of u^{n} on $E_{j(k, 1)}$.
A similar statement holds for u^{m}.
Also,
(1.9) $\sum_{j(k, 1)=1}^{\infty}\left\|u_{k, I}^{n}\right\| \operatorname{meas}\left(E_{j(k, I)}\right)=\sum_{1=1}^{\infty}\left\|u_{1}^{n}\right\|_{\operatorname{meas}\left(E_{1}^{n}\right)}$ $=(L) \int\left\|u^{n}(t)\right\|$,
and a similar statement holds for u^{m}. Also, the function $u^{r_{1}}-u^{m}$ is countably-valued and constant on each of the sets $\mathrm{E}_{\mathrm{j}(\mathrm{k}, \mathrm{I})}$, and

$$
\begin{aligned}
& \text { (L) } \int_{I}\left\|u^{n}(t)-u^{m}(t)\right\|=\sum_{j(k, I)=1}^{\infty}\left\|u_{k, I}^{n}-u_{k, I}^{m}\right\| \operatorname{meas}\left(E_{j(k, I)}\right) \\
& \leqq \sum_{j(k, I)=1}^{\infty}\left\|u_{k, I}^{n}\right\| \operatorname{meas}\left(E_{j(k, I)}\right)+\sum_{j(k, I)=1}^{\infty}\left\|u_{k, I}^{m}\right\| \operatorname{meas}\left(E_{j(k, I)}\right) \\
& =(I) \iint_{I}\left\|u^{n}(t)\right\|+(L) \int_{I}\left\|u^{m}(t)\right\| .
\end{aligned}
$$

From the preceding statement and (1.8) and its analogue for m, we see that the limits

$$
\begin{aligned}
& \sum_{j(k, I)=1}^{\infty}\left(u_{k, 1}^{n}-u_{k, I}^{m}\right) \text { meas }\left(E_{j(k, I)}\right) \text { and } \\
& j(k, I) \sum_{1=1}^{\infty}\left\|u_{k, I}^{n}-u_{k, I}^{m}\right\| \operatorname{meas}\left(E_{j(k, I)}\right) \text { both exist, and } \\
& j(k, I) \sum_{j=1}^{\infty} u_{k, 1}^{n} \operatorname{meas}\left(E_{j(k, I)}\right)-\sum_{j(k, I)=1}^{\infty} u_{k, 1}^{m} \operatorname{meas}\left(E_{j(k, I)}\right) \\
& =\sum_{j(k, I)=1}^{\infty}\left(u_{k, I}^{n}-u_{k, I}^{m}\right) \operatorname{meas}\left(E_{j(k, I)}\right) .
\end{aligned}
$$

Also, since

$$
\begin{aligned}
& \left\|\sum_{j(k, I)=1}^{K} u_{k, I}^{n} \operatorname{meas}\left(E_{j(k, I)}\right)-\sum_{j(k, I)=1}^{K} \operatorname{meas}\left(E_{j(k, I)}\right)\right\| \\
& =\left\|\sum_{j(k, I)=1}^{K}\left(u_{k, I}^{n}-u_{k, I}^{m}\right) \operatorname{meas}\left(E_{j(k, I)}\right)\right\| \\
& \leqq \sum_{j(k, 1)=1}^{K}\left\|u_{k, 1}^{n}-u_{k, 1}^{m}\right\|_{\text {meas }}\left(E_{j(k, I)}\right) \quad \text { for } \quad \text { a.1 } K \text {, }
\end{aligned}
$$

we see that

$$
\begin{equation*}
\left\|(B) \iint_{I} u^{n}(t)-(B) \underset{I}{\int_{I}} u^{m}(t)\right\|=(L) \iint_{I}\left\|u^{n}(t)-u^{m}(t)\right\| . \tag{1.10}
\end{equation*}
$$

But since $\left\|u^{n}(t)-u^{m}(t)\right\| \leqslant\left\|_{u^{n}(t)-u(t) \|}+\right\| u^{m}(t)-u(t) \|$, we see that

$$
\begin{align*}
(L) \iint_{I}\left\|u^{n}(t)-u^{m}(t)\right\| & \leqq(L) \int_{I}\left\|u^{n}(t)-u(t)\right\| \tag{1.11}\\
& +(L) \int_{I}\left\|u^{m}(t)-u(t)\right\|
\end{align*}
$$

By condition (1.6) we see that the right side of (1.11) approaches zero as m and n become large. Hence the sequence $\left\{(B) \int_{I} u^{n}(t)\right\}$ is Cauchy and hence convergent, and we have shown that the limit in (1.7) exists.

The uniqueness of the limit follows from the fact that any two sequences of functions with properties (1.5) and (1.6) can be combined into a single such sequence by alternating their terms.

Q. E. D.

Suppose the function u maps I into B. We say that u is almost separably-valued if there is a subset E_{0} of I such that meas $\left(I-E_{0}\right)=0$, and the set $u\left(I-E_{0}\right)$ is separable.

We say that u is weakly measurable if for each $b *$ of B^{*}, the adjoint space of continuous linear functionals on B, the function

$$
b * u: I \rightarrow R:: t \rightarrow b *[u(t)]
$$

is Lebesgue measurable.
Finally, we say that u is strongly measurable if u is weakly measurable and almost separably-valued.

We say that a function u is Bochner p-integrable if u is strongly measurable and the function

$$
\|u()\| p: I \longrightarrow R:: t \rightarrow\|u(t)\| p, p>1
$$ has a finite Lebesgue integral on I.

In the case where $p=1$, it can be shown [I, 80] that this condition is equivalent to Bochner integrability as defined following Theorem 1.1. It is frequently useful to replace that definition by this characterization.

Finally, we define the norm of a Bochner p-integrable function by

$$
\begin{equation*}
\|u\|_{p}=\left[(L) \int_{I}\|u(t)\|^{p}\right]^{1 / p}, \quad p \geqq 1 \tag{1.12}
\end{equation*}
$$

We denote the class of Bochner p-integrable functions from I to B by $B_{p}(I, B)$, and remark that it is shown in [I, 81] that $B_{p}(I, B)$ is a Banach space under the norm defined by (1.12).

It is useful to note that if the function u is Bochner p-integrable and also bounded, then u is Bochner p^{*}-integrable, where $p^{*} \geqq 1$.

CHAPTER II

EXISTENCE AND COMPACTNESS OF
 SETS OF FUNCTIONS

In the sequel we shall have need of a version of the Riesz theorem and related results. We first prove the following lemma.

LEMMA 2.1.1. Suppose X is a real Hilbert space [IV, 73]. Then one can define an inner product (u,v) on $B_{2}(I, X)$, where u and v are elements of $B_{2}(I, X)$, the set of Bochner square-integrable functions from I to X, by the statement

$$
\begin{equation*}
(u, v)=(L) \int_{I}[u(t), v(t)] \tag{2.1}
\end{equation*}
$$

Where $[$,$] symbolizes the inner product on X$.
Proof. Since $B_{2}(I, X)$ is a Banach space with the norm defined by (1.12) with $p=2$, we see that the function $u-v$ is an element of $B_{2}(I, X)$.

Hence the functions

$$
\begin{gathered}
\|u()-v()\|_{2}^{2}: I \rightarrow R:: t \rightarrow\|u(t)-v(t)\|^{2} ; \\
\|u()\|_{2}^{2}: I \rightarrow R:: t \rightarrow\|u(t)\|^{2} ; \\
\|v()\|_{2}^{2}: I \rightarrow R:: t \rightarrow\|v(t)\|^{2}
\end{gathered}
$$

are Lebesgue integrable. Then since

$$
[u(t), v(t)]=\frac{\|u(t)\|^{2}+\|v(t)\|^{2}-\|u(t)-v(t)\|^{2}}{2},
$$

the function

$$
[u(), v()]: I \longrightarrow R:: t \rightarrow[u(t), v(t)]
$$

is Lebesgue integrable. Hence (u, v) is well defined by (2.1). The familiar properties of the inner product follow readily from the properties of the Lebesgue integral and the inner product on X. To illustrate,

$$
\begin{aligned}
(a u, v) & =(I) \int_{I}[a u(t), v(t)]=(L) \int_{I} a[u(t), v(t)] \\
& =a(L) \int_{I}[u(t), v(t)]=a(u, v) .
\end{aligned}
$$

The other properties follow similarly.
Q. E. D.

Suppose $\left\{x_{n}\right\}$ is a sequence of elements of a Banach space, X. We say that x_{n} converges weakly to a point x_{0} of X iff for each continuous linear functional x^{*} defined on $X, x^{*}\left(x_{n}\right)$ converges to $X^{*}\left(x_{0}\right) \ldots$

THEOREM 2.1. Suppose $\left\{u^{n}\right\}$ is a sequence of elements of $B_{2}(I, X)$ that converges weakly to u^{0} of $B_{2}(I, X)$. Then there is a subsequence of $\left\{u^{n}\right\}$, called $\left\{u^{j(n)\} \text {, such }}\right.$ that the sequence of arithmetic means of the elements of $\left\{u^{j}(n)\right\}$ converges strongly to u^{0}. That is, the sequence of functions $\{\mathrm{vk}\}$, defined $\underline{\mathrm{by}}$

$$
\mathrm{v}^{k}=\frac{1}{k_{j}} \sum_{n)=1}^{k} u^{j(n)}, k=1,2, \ldots
$$

has the property that

$$
\left\|v^{k}-u^{0}\right\|_{2}=\left(v^{k}-u^{0}, v^{k}-u^{0}\right)^{1 / 2} \xrightarrow{\longrightarrow} 0
$$

Proof. It is enough to show that $\left(v^{k}-u^{0}, v^{k}-u^{0}\right) \rightarrow 0$, and without loss of generality we take u^{0} equal to 0 . As defined in (2.1), the function

$$
(, v): B_{2}(I, X) \rightarrow R:: u \longrightarrow(u, v)
$$

is continuous and linear, and so (, v) is an element of $B_{2}^{*}(I, X)$, the adjoint space to $B_{2}(I, X)$.

It is well known [IV, 124] that a weakly convergent
sequence of elements of a Banach space is bounded in norm, so there is a constant M with the property that
$\left\|u^{n}\right\|_{2} \leqq M, n=1,2, \ldots$
Let $j(1)=1$, and take

$$
S(1)=\left\{n::\left|\left(u^{n}, u^{j}(1)\right)\right| \leqq 1, n>j(1)\right\} .
$$

We see that $S(1)$ is not empty, since

$$
\left(u^{n}, u^{j(1)}\right) \longrightarrow\left(0, u^{j(1)}\right)=0
$$

due to the weak convergence of u^{n} to 0 .
Let $\operatorname{minS}(1)=j(2)$, and suppose, proceeding inductively, that

$$
j(1)<j(2)<\ldots<j(k) .
$$

and define $S(k)=\left\{n::\left|\left(u^{n}, u^{j(1)}\right)\right| \leqq 1 / k, \ldots, \mid\left(u^{n}, u^{j(k)}\right)\right\}$
@ $1 / k ; n>j(k)\}$.

We see that $S(k)$ is not empty just as in the case of $S(1)$. Let $\operatorname{minS}(k)=j(k+1)$, and the sequence $u j(n)$
is well defined. But then

$$
\begin{aligned}
& \left(\frac{u^{j(1)}+u^{j(2)}+\ldots+u^{j(n)}}{n}, \frac{u^{j(1)}+u^{j(2)}+\ldots+u^{j(n)}}{n}\right) \\
& =\frac{1}{n^{2}} \sum_{1, m=1}^{1, m=n}\left(u^{j(1)}, u^{j(m)}\right)=\frac{n M^{2}+2 / 1+4 / 2+\ldots+2(n-1) /(n-1)}{n^{2}}
\end{aligned}
$$

$$
\leq \frac{M^{2}+2}{n} \rightarrow 0
$$

Q. E. D.

A set is said to be weakly compact if every sequence of elements of the set contains a weakly convergent subsequence. It is said to be weakly compact in itself if every sequence of elements of the set contains a subsequence that converges weakly to an element of the set.

THEOREM 2.2. Let C\#(B) denote the set of nonempty, convex, closed and bounded subsets of a complete inner product space B. Suppose that

$$
G: I \longrightarrow C \#(B),
$$

and that $U\{G(t):: t \in I\}$ is bounded. Then the set of functions $B_{2}(G)$, where by definition the function u is an element of $B_{2}(G)$ iff

$$
\begin{aligned}
& u: I-B ; \\
& u \in B_{2}(I, B) ; \\
& u(t) \in G(t) \quad \text { a.e. } \cdot \text { on } I ;
\end{aligned}
$$

is weakly compact in itself.
Proof. If $p>1$, then $B_{p}^{*}(I, B)=B_{q}\left(I, B^{*}\right)$, where $1 / p+1 / q=1[I, 89]$. Hence, since B is reflexive, we see that

$$
B_{p}^{* *}(I, B)=B_{q}^{*}\left(I, B^{*}\right)=B_{p}\left(I, B^{* *}\right)=B_{p}(I, B) .
$$

Thus $B_{2}(I, B)$ is reflexive and so closed and bounded spheres of $B_{2}(I, B)$ are weakly compact in themselves [I, 38]. Since the elements of $B_{2}(G)$ take their values almost everywhere in a bounded set, the set $B_{2}(G)$ is also bounded. Hence if $\left\{u^{n}\right\}$ is a sequence of elements of $B_{2}(G)$, there is a subsequence, also called $\left\{u^{n}\right\}$, and an clement u^{0} of $B_{2}(I, B)$ such that

$$
u^{n} \rightarrow u^{0}(\text { weak })
$$

We must show that u^{0} is an element of $B_{2}(G)$.
By Theorem 2.1 there is a subsequence, also called u^{n}, such that

$$
\frac{1}{n} \sum_{k=1}^{n} u^{k}=v^{n} \rightarrow u^{0}(\underline{\text { strong }}) .
$$

That is,

$$
\left[(L) \int_{I}\left\|v^{n}(t)-u^{0}(t)\right\|^{2}\right]^{1 / 2}=\left\|v^{n}-u^{0}\right\|_{2} \rightarrow 0
$$

We now quote a result on real variables given in [III, 86]. If a sequence of elements of L_{2} converges in norm to zero, there is a subsequence that converges to zero almost everywhere.

Thus we can suppose that

$$
\left\|v^{n}(t)-u^{0}(t)\right\|^{2} \rightarrow 0 \text { a… } \text { on } I \text {. }
$$

or that

$$
\begin{equation*}
v^{n}(t) \rightarrow u^{0}(t)(\text { strong }) \quad \text { on } E_{0}, \tag{2.1a}
\end{equation*}
$$

where E_{0} is a subset of I, and meas $\left(I-E_{0}\right)=0$. For each u^{n} there is a subset, E_{n}, of I such that $\operatorname{meas}\left(I-E_{n}\right)=0$ and for each t in $E_{n}, u^{n}(t)$ is an element of $G(t)$.

By the convexity of each $G(t)$ and the definition of v^{n}, we see that for each t in $\bigcap_{n=1}^{\infty} E_{n}, v^{n}(t)$ is an
element of $G(t)$, where $n=1,2, \ldots$
From (2.1a) and the closure of each $G(t)$, we see that for each t in $\bigcap_{n=0}^{\infty} E_{n}, u^{\circ}(t)$ is an element of $G(t)$. Since $\operatorname{meas}\left(I-\bigcap_{n=0}^{\infty} E_{n}\right)=0$,

$$
u^{O}(t) \in G(t) \quad \text { a.e. }
$$

Hence u° is an element of $B_{2}(G)$.
Q. E. D.

A map G from a metric space X into the space of closed and bounded subsets of a metric space Y is said to be upper semicontinuous (hereafter abbreviated to u. s. ㄷ.) at the point x_{0} of X iff

$$
\bigcap_{n=1}^{\infty}\left[\overline{U\left\{G(x):: x \in S\left(x_{0}, 1 / n\right)\right\}}\right] \subset G\left(x_{0}\right),
$$

where $S\left(x_{0}, 1 / n\right)$ denotes the sphere of radius $1 / n$ centered at X_{0} and the upper bar denotes closure. The concept of upper semicontinuity can be defined for more general spaces, but the above definition will suffice for our purposes.

The following theorem generalizes a result of Jacobs [II,31].

THEOREM 2.3. Suppose the map G from I to C\#(H) is u.s.e., where C\#(H) denotes the collection of convex, closed and bounded subsets of a separable Hilbert space which has the real numbers as its scalar field.

If $\overline{U\{G(t):: t \in I\}}$ is compact in itself, then $S(G)$ is not empty, where the function u is an element of $S(G)$ iff
$u: I \rightarrow H$ (strongly measurable) ;
$u(t) \in G(t)$ for each t in I.

Proof. Select a denumerable orthonormal basis $\left\{b_{i}\right\}$ for H. (For a discussion of the relevant definitions and a proof that such a basis must exist, see [III,78].) We now define a function u and show that it is an element of $S(G)$. For each t in I there is an element x_{0} of $G(t)$ such that $\left[, b_{1}\right]$ is a minimum over $G(t)$. To show this, consider t in I. Since the map

$$
\begin{equation*}
\left[, b_{1}\right]: H \rightarrow R:: x \rightarrow\left[x, b_{1}\right] \tag{2.2}
\end{equation*}
$$

is continuous and linear, there is a real number m such that

$$
m=\inf \left(\left[x, b_{1}\right], x \in G(t)\right) .
$$

Take a sequence $\left\{x_{n}\right\}$ of elements of $G(t)$ such that $\left[x_{n}, b_{1}\right] \rightarrow m$. Then since $G(t)$ is bounded, it is weakly compact [I,38]. Hence there is a point x_{0} of H and a subsequence of $\left\{x_{n}\right\}$, also called $\left\{x_{n}\right\}$, such that x_{n} converges weakly to x_{0}.

By Theorem 2.1 there is a further subsequence, also called $\left\{x_{n}\right\}$, such that the arithmetic means of the elements of $\left\{x_{n}\right\}$ converge strongly to x_{0}. That is,

$$
\frac{1}{n} \sum_{k=1}^{n} x_{k}=z_{n} \rightarrow x_{0} \text { (strong) }
$$

Since each $G(t)$ is convex and each x_{k} is an element of $G(t)$, then each z_{n} is an element of $G(t)$. Since $G(t)$ is closed, x_{0} is an element of $G(t)$. Due to the definition of $\left\{x_{n}\right\}$, the weak convergence of x_{n} to x_{0} and the continuity and Iinearity of the map $\left[, b_{1}\right]$,

$$
\left[x_{n}, b_{1}\right] \rightarrow\left[x_{0}, b_{1}\right]=\inf \left(\left[x, b_{1}\right], x \in G(t)\right) .
$$

Since x_{0} is an element of $G(t)$, the infimum is actually a minimum.

Suppose that this does not uniquely define $u(t)$. That is, suppose there is another element of $G(t)$, say x_{1}, such that $\left[x_{0}, b_{1}\right]=\left[x_{1}, b_{1}\right]$. Then let

$$
U_{1}(t)=\left\{y:: y \in G(t) \text { and }\left[y, b_{1}\right]=\underline{\min }\left(\left[x, b_{1}\right], x \in G(t)\right)\right\} .
$$

We now minimize the function $\left[, b_{2}\right]$ over $U_{1}(t)$.
To see that this minimum exists, observe that $U_{1}(t)$ is bounded, since it is a subset of $G(t)$. Since $U_{1}(t)$ is the intersection of the closed set $G(t)$ and the pre-image of the closed subset of the reals consisting of the single point $\underline{\min }\left(\left[x, b_{1}\right], x \in G(t)\right)$ under the continuous map $\left[, b_{1}\right]$, then $U_{1}(t)$ is also closed. To show that $U_{1}(t)$
is convex, consider two elements, x and y of $U_{1}(t)$ and two non-negative real real numbers, a and b, such that $a+b=1$. Since
$\left[a x+b y, b_{1}\right]=a\left[x, b_{1}\right]+b\left[y, b_{1}\right]=(a+b)\left(\underline{\min }\left(\left[x, b_{1}\right], x \in G(t)\right)\right)$, and x and y are elements of $G(t)$, which is convex, we see that $a x+b y$ is an element of $U_{1}(t)$. Hence $U_{1}(t)$ is convex.

Thus the minimum of $\left[x, b_{2}\right]$ over $U_{1}(t)$ exists by the same argument that showed the existence of the minimum of $\left[x, b_{1}\right]$ over $G(t)$.

Suppose that this does not uniquely define $u(t)$. That is, suppose that $U_{2}(t)$ consists of more than one point, where

$$
U_{2}(t)=\left\{y:: y \in U_{1}(t) \text { and }\left[y, b_{2}\right]=\min \left(\left[x, b_{2}\right], x \in U_{1}(t)\right)\right\} .
$$

Then we can minimize $\left[x, b_{3}\right]$ over $U_{2}(t)$ by the above argument. This yields a set $U_{3}(t)$ of elements that minimize $\left[x, b_{3}\right]$ over $U_{2}(t)$. We proceed in this manner, minimizing $\left[x, b_{n+1}\right]$ over $U_{n}(t)$, where
(2.3) $U_{n}(t)=\left\{y:: y \in U_{n-1}(t)\right.$ and $\left[y, b_{n}\right]$

$$
\left.=\underline{\min }\left(\left[x, b_{n}\right], x \in U U_{n-1}(t)\right)\right\} .
$$

If after a finite number of such steps we obtain a set $U_{n}(t)$ consisting of a single point, we define that point
to be $u(t)$.
In the case where no $U_{n}(t)$ consists of a single point, we say that

$$
u(t)=\bigcap_{n=0}^{\infty} U_{n}(t),
$$

where we define $U_{0}(t)$ to be $G(t)$.
To show that the above intersection can contain at most one point, suppose that it contains two points, y and z. Then since y and z are both elements of $U_{n}(t)$ for all n, we see that

$$
\left[y, b_{n+1}\right]=\left[z, b_{n+1}\right]=\min \left(\left[x, b_{n+1}\right], x \in U_{n}(t)\right) \quad, n=0,1, \ldots
$$

But then y and z have the same 'coordinates' and are hence equal.

To show that the intersection is not empty, select a sequence of points of $I,\left\{x_{n}\right\}$, such that each x_{n} is an element of $U_{n}(t)$. There is a subsequence of $\left\{x_{n}\right\}$ that converges weakly to a point x^{*} of H. Since each $U_{n+1}(t)$ is a subset of $U_{n}(t)$, we see that for each n we can find a subsequence of our original sequence that consists solely of elements of $U_{n}(t)$, and still converges weakly to x^{*}. But since convex, closed and bounded subsets of a reflexive Banach space are weakly compact in themselves [I, 37-38], we see that x^{*} is an element of each $U_{n}(t)$. Hence the intersection is not empty, and so $u(t)$ is well defined.

Next we show that the function u so defined is strongly measurable.

Consider the coordinate map, c^{k}, where (2.4)

$$
c^{k}: I \rightarrow R:: t \rightarrow\left[u(t), b_{k}\right], k=1,2, \ldots
$$

We show that each c^{k} is Lebesgue measurable. To this end,
let $\quad F^{1}(s)=\left\{t:: t \in I\right.$ and $\left.\left[u(t), b_{1}\right] \leqq s\right\}$.

It is enough to show that $F^{1}(s)$ is closed. Suppose that $\left\{\mathrm{t}^{\mathrm{n}}\right\}$ is a sequence of elements of $\mathrm{F}^{1}(\mathrm{~s})$ and that $t^{n} \rightarrow t^{\circ}$. To show that t^{0} is an element of $F^{1}(s)$, consider the following special case of a theorem due to Jacobs [II, 16].
(2.5) Let $C(X)$ be the collection of closed and bounded subsets of a metric space, X, and I be a compact interval of the real line. Suppose

$$
F: I \longrightarrow C(X)(\underline{u} \cdot \underline{s} \cdot \underline{c} .)
$$

and that $\left\{t^{n}\right\}$ and $\left\{x^{n}\right\}$ are sequences of elements of I and X respectively such that

$$
\begin{aligned}
& t^{n} \rightarrow t^{0} I \\
& x^{n} \rightarrow x^{0} X \\
& x^{n} \in F\left(t^{n}\right) \text { for all } n .
\end{aligned}
$$

Then we conclude that x^{0} is an element of $F\left(t^{0}\right)$.

Since each $u\left(t^{n}\right)$ is an element of the compact set U\{G(t)::teI\}, we see that there is a subsequence of $\left\{t^{n}\right\}$, also called $\left\{t^{n}\right\}$, and a point h_{0} of H such that

$$
\begin{equation*}
u\left(t^{n}\right) \rightarrow h_{0}(\text { strong }) \tag{2.5a}
\end{equation*}
$$

By the definition of the function u, each $u(t)$ is an element of $G(t)$. Hence, by (2.5), (2.5a) and the convergence of t^{n} to t^{0}, we see that h_{0} is an element of $G\left(t^{0}\right)$. Hence, again due to the definition of the function $u,\left[u\left(t^{0}\right), b_{1}\right] \leqq\left[h_{0}, b_{1}\right]$.

Since for each $n,\left[u\left(t^{n}\right), b_{1}\right] \leqq s$, we see from (2.5a) and the continuity of the inner product map that

$$
\left[u\left(t^{n}\right), b_{1}\right] \rightarrow\left[h_{0}, b_{1}\right] \leqq s .
$$

Hence $\left[u\left(t^{0}\right), b_{1}\right] \leqq s$, and we see that t^{0} is an element of $F^{1}(s)$. Hence $F^{1}(s)$ is closed, and so c^{1} is measurable, where

$$
c^{1}: I \longrightarrow R:: t \rightarrow\left[u(t), b_{1}\right]
$$

We now show by induction that each c^{k} is measurable. Suppose that we have closed subsets of I,

$$
\begin{equation*}
J_{1}(=I), J_{2}, \ldots, J_{k} \tag{2.6}
\end{equation*}
$$

such that the maps $c^{1}, c^{2}, \ldots, c^{k}$ are measurable on $J_{1}, J_{2}, \ldots, J_{k}$ respectively, and
$\ldots \quad J_{i}>J_{i+1}, i=1,2, \ldots, k-1$;

$$
\begin{equation*}
\operatorname{meas}\left(J_{i}-J_{i+1}\right)<\frac{\varepsilon}{2^{i+2}} \quad, i=1,2, \ldots, k-1, \varepsilon>0 ; \tag{2.8}
\end{equation*}
$$

(2.9) $\quad c^{i}$ is continuous on $J_{i+1}, i=1,2, \ldots, k-1$.

Recall the following form of Lusin's Theorem [V,236]:
Suppose S is \mathfrak{a} measurable subset of the reals and f is a measurable map from S to the reals. Then if $\varepsilon>0$, there is a closed subset of S, call it E, such that f is continuous on E, and meas $(S-E)<\varepsilon$.

Given the closed subsets mentioned in (2.6), Lusin's Theorem shows that there is a closed subset J_{K+1} of I such that

$$
\begin{equation*}
J_{k} \supset J_{k+1} ; \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{meas}\left(J_{k}-J_{k+1}\right)<\frac{\varepsilon}{2^{k+2}} \tag{2.11}
\end{equation*}
$$ c^{k} is continuous on J_{k+1}.

The maps $c^{1}, c^{2}, \ldots, c^{k}$ are certainly continuous on J_{k+1}. We now show that the map c^{k+1} is measurable on J_{k+1}. Let

$$
F^{k+1}(s)=\left\{t:: t \in J_{k+1} \text { and }\left[u(t), b_{k+1}\right] \leqq s\right\}
$$

Suppose that $\left\{t^{n}\right\}$ is a sequence of elements of $F^{k+1}(s)$ and $t^{n} \rightarrow t^{\circ}$. We show that t^{0} is an element of $F^{k+1}(t)$,
which is then seen to be closed. We will have then shown that c^{k+1} is measurable on J_{k+1}.

Since each $u\left(t^{n}\right)$ is an element of $\overline{U\{G(t): t \in I\}}$, which is compact in itself, there is a subsequence of $\left\{t^{n}\right\}$, also called $\left\{t^{n}\right\}$, and a point h_{0} of H such that (2.12a)

$$
u\left(t^{n}\right) \rightarrow h_{0}(\text { strong })
$$

By another application of (2.5), the theorem of Jacobs, h_{0} is an element of $G\left(t^{0}\right)$.

Since the maps $c^{1}, c^{2}, \ldots, c^{k}$ are continuous on J_{k+1}, we see that

$$
\begin{equation*}
\left[u\left(t^{n}\right), b_{i}\right] \rightarrow\left[u\left(t^{0}\right), b_{i}\right], i=1,2, \ldots, k \tag{2.13}
\end{equation*}
$$

(Remember that $t^{n} \longrightarrow t^{0}$ and

$$
\left.c^{i}: I \rightarrow R:: t \rightarrow\left[u(t), b_{i}\right], i=1,2, \ldots\right)
$$

Again, by the continuity of the inner product map and (2.12a), we have

$$
\begin{equation*}
\left[u\left(t^{n}\right), b_{i}\right] \rightarrow\left[h_{0}, b_{i}\right], i=1,2, \ldots, k+1 \tag{2.14}
\end{equation*}
$$

We now consider two cases: A and B.
A.

$$
u\left(t^{0}\right)=h_{0}
$$

In this case, since each t^{n} is an element of $F^{k+1}(s)$, we see that

$$
\begin{equation*}
\left[u\left(t^{n}\right), b_{k+1}\right] \leqq s, n=1,2, \ldots \tag{2.15}
\end{equation*}
$$

So, by (2.15) and (2.14) for the case $i=k+1$, we see that

$$
\left[u\left(t^{0}\right), b_{k+1}\right]=\left[h_{0}, b_{k+1}\right] \leqq s,
$$

and t^{0} is an element of $\mathrm{F}^{\mathrm{k}+1}(\mathrm{~s})$.
B.

$$
u\left(t^{0}\right) \neq h_{0} .
$$

By (2.13) and (2.14) we see that

$$
\begin{equation*}
\left[u\left(t^{0}\right), b_{i}\right]=\left[h_{0}, b_{i}\right], i=1,2, \ldots, k . \tag{2.16}
\end{equation*}
$$

Thus both h_{0} and $u\left(t^{0}\right)$ are elements of $U_{i}\left(t^{0}\right)$, $i=1,2, \ldots, k$, where $U_{i}\left(t^{0}\right)$ is as defined by (2.3). Then by the definition of $u\left(t^{0}\right)$,
(2.17) $\underline{\min }\left(\left[x, b_{k+1}\right], x \in U_{k}\left(t^{0}\right)\right)=\left[u\left(t^{0}\right), b_{k+1}\right]=\left[h_{0}, b_{k+1}\right]$

From (2.14) and the fact that each t^{n} is an element of $F^{k+1}(s)$,

$$
\left[h_{0}, b_{k+1}\right] \leqq s
$$

and so from (2.14) we see that $\left[u\left(t^{\circ}\right), b_{k+1}\right] \leqq s$, and hence that c^{k+1} is measurable on J_{k+1}.

Thus we have established by induction the existence of a sequence $\left\{J_{k}\right\}$ of closed subsets of I, with $J_{1}=I$, such that

$$
\begin{equation*}
J_{k} \supset J_{k+1}, k=1,2, \ldots ; \tag{2.18}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{meas}\left(J_{k}-J_{k+1}\right)<\frac{\varepsilon}{2^{k+2}}, k=1,2, \ldots ; \tag{2.19}
\end{equation*}
$$ c^{k} is measurabie on $J_{k}, k=1,2, \ldots$

From (2.18) each c^{k} is measurable on $\bigcap_{k=1}^{\infty} J_{k}$, and by (2.18) and (2.19), we see that

$$
\operatorname{meas}\left(I-\bigcap_{k+1}^{\infty} J_{k}\right)<\sum_{k=1}^{\infty} \frac{\varepsilon}{2^{k+2}}<\varepsilon
$$

Since \mathcal{E} is arbitrary, each c^{k} is measurable almost everywhere on I. That is, each c^{k} is measurable on I, and we remind the reader that "measurable" has heretofore meant "Lebesgue measurable".

We must now show that each map b^{k}, where

is weakly measurable.
It is known [IV, 110] that each linear functional in H^{*} is of the form

$$
\begin{equation*}
[, h]: H \rightarrow R:: x \rightarrow[x, h], \tag{2.21}
\end{equation*}
$$

where h is some point of H. But $\left\{b_{k}\right\}$ is a complete orthonormal basis, and so each h of H has a unique representation of the form

$$
\begin{equation*}
h=\sum_{i=1}^{\infty}\left[h, b_{i}\right] b_{i} . \tag{2.22}
\end{equation*}
$$

Hence, from (2.20a) and (2.22), we see that for all choices of k, t and h,

$$
\begin{equation*}
\left[b^{k}(t), h\right]=\sum_{i=1}^{k}\left[u(t), b_{j}\right]\left[h, b_{i}\right] . \tag{2.23}
\end{equation*}
$$

Hence the function

$$
\begin{equation*}
\left[b^{k}(), h\right]: I \rightarrow R:: t \rightarrow \sum_{i=1}^{k}\left[u(t), b_{i}\right]\left[h, b_{i}\right] \tag{2.24}
\end{equation*}
$$

is identical with the function

$$
\begin{equation*}
\sum_{i=1}^{k}\left[h, b_{i}\right] c^{j}(): I \rightarrow R:: t \rightarrow \sum_{i=1}^{k}\left[h, b_{i}\right] c^{i}(t) \tag{2.25}
\end{equation*}
$$

where we remind the reader that $c^{i}(t)=\left[u(t), b_{i}\right]$.

Then for each h in H, the function defined by (2.25) is Lebesgue measurable, being the linear sum of a finite number of Lebesgue measurable functions defined over a finite interval. Hence for each h in H, the function defined by (2.24) is Lebesgue measurable.

Hence the composition of any linear functional in H^{*} with any b^{k} as defined in (2.20a) is of the form

$$
[, h] b^{k}: I \rightarrow R:: t \rightarrow\left[b^{k}(t), h\right],
$$

which we have shown to be Lebesgue measurable. Hence each
b^{k} is weakly measurable. Since the range of each b^{k} is in H, which is by hypothesis separable, each b^{k} is strongly measurable.

Further, since $\left\{b_{k}\right\}$ is an orthonormal basis, for each t in I,
$b^{k}(t)=\sum_{i=1}^{k}\left[u(t), b_{i}\right] b_{i} \rightarrow \sum_{i=1}^{\infty}\left[u(t), b_{i}\right] b_{i}=u(t) \quad$ as $k \rightarrow \infty$.

Hence the function u is the pointwise limit of the sequence $\{b k\}$ of strongly measurable functions, and by Theorem 3.5.4.(3), $[I, 74]$, the function u is itself strongly measurable.
Q. E. D.

COROLLARY 2.3.1 The function u defined in Theorem 2.3 is Bochner integrable.

Proof. Since $U\{G(t):: t \in I\}$ is bounded, there is a constant M such that for each t in I and for each k,

$$
\begin{aligned}
(2.26)\left\|b^{k}(t)\right\|=\left(\sum_{i=1}^{k}\left[u(t), b_{i}\right]^{2}\right)^{1 / 2} & \leq\left(\sum_{i=1}^{\infty}\left[u(t), b_{i}\right]^{2}\right)^{1 / 2} \\
& =\|u(t)\| \leqq M
\end{aligned}
$$

Since each c^{k} is Lebesgue measurable, where $c^{k}(t)=\left[u(t), b_{k}\right]$, we see that for each k, the function (2.27) $\quad\left\|b^{k}()\right\|: I \longrightarrow R: t \longrightarrow\left\|_{b^{k}(t)}\right\|$
is Lebesgue measurable, being defined as in (2.26) by a finite number of Lebesgue measurable functions. From (2.26) we see that for each k, the function defined by (2.27) is bounded by M, and so has finite Lebesgue integral. Hence each b^{k} is Bochner integrable on I, and so by Theorem 3.7.9, [I, 83], a generalization of the classic dominated convergence theorem of Lebesgue, and the pointwise convergence of b^{k} to u on I, we see that

$$
\text { (B) } \int_{I} b^{k}(t) \rightarrow \text { (B) } \int_{I} u(t) \text { (strong). }
$$

Q. E. D.

COROLIARY 2.3.2. If $p>1$, then u is Bochner p-integrable.

Proof. Since $\|u(t)\|$ is bounded on I, the function

$$
\|u()\|^{p}: I \rightarrow R:: t \rightarrow\|u(t)\|^{p}
$$

is bounded and has finite Lebesgue integral on I.
Q. E. D.

Suppose X and Y are metric spaces. A map F from X to $C \#(Y)$ is said to be upper semicontinuous with respect to inclusion (hereafter abbreviated to \underline{u}. S. ․ . …) at a point x_{0} of X iff
(2.28) for any $\boldsymbol{\varepsilon}>0$ there is a $\delta(\boldsymbol{\varepsilon})>0$ such that if dist $\left(x, x_{0}\right)<\delta(\varepsilon)$, then

$$
F(x) \subset \cup\left\{S_{\boldsymbol{\varepsilon}}(z):: z \in F\left(x_{0}\right)\right\}
$$

THEOREM 2.4 Suppose that H is as in Theorem 2.3 and that
$G: I \rightarrow C \#(H)(\underline{u} \cdot \underline{s} \cdot \underline{c} \cdot \underline{i}),$.
and that each $G(t)$ is convex, closed and bounded. Then there is a map u from I to H that is strongly measurable and such that $u(t)$ is an element of $G(t)$ for each t in I.

Proof. Our proof will lean heavily upon the methods of the preceding theorem. The map which we exhibit is the same. The hypotheses on each $G(t)$ are the same, and so the map is still well defined.

We shall show only the measurability of c^{1} on I, where

$$
c^{1}: I \longrightarrow R:: t \longrightarrow\left[u(t), b_{1}\right] .
$$

The measurability of each c^{k} and the strong measurability of u follow exactly as in the preceding theorem.

As in Theorem 2.3, let

$$
F^{1}(s)=\left\{t:: t \in I \text { and }\left[u(t), b_{1}\right] \leqq s\right\}
$$

We show that $F^{1}(s)$ is closed, and hence that c^{1} is measurable.

Suppose that $\left\{t^{n}\right\}$ is a sequence of elements of $F^{\prime}(s)$, and that $t^{n} \rightarrow t^{0}$. We show that t^{0} is an element of $\mathrm{F}^{1}(\mathrm{~s})$.

Consider some $\boldsymbol{\varepsilon}>0$ and the $\delta(\boldsymbol{\varepsilon})>0$ of the
definition of u.s.c.i. above. By the fact that $t^{n} \rightarrow t^{0}$, there is an integer \mathbb{N} such that if $n \geqq \mathbb{N}$, then
$\left|t^{n}-t\right|<\delta(\boldsymbol{\varepsilon})$. By the definition of $\quad \delta(\boldsymbol{\varepsilon})$, we see that for each $X^{\mathbb{N}}$ in $G\left(t^{\mathbb{N}}\right)$ there is an element y of $G\left(t^{0}\right)$ such that $\operatorname{dist}\left(x^{\mathbb{N}}, y\right)<\boldsymbol{\varepsilon}$. Since $u\left(t^{\mathbb{N}}\right)$ is an element of $G\left(t^{\mathbb{N}}\right)$, there is an element y^{N} of $G\left(t^{0}\right)$ such that dist $\left(u\left(t^{\mathbb{N}}\right), y^{\mathbb{N}}\right)<\boldsymbol{\varepsilon}$.

Since H is a separable Hilbert space and $\left\{b_{k}\right\}$ is a complete orthonormal basis, we see that
(2.29) $\left.\left[u\left(t^{\mathbb{N}}\right)-y^{\mathbb{N}}, u\left(t^{\mathbb{N}}\right)-y^{\mathbb{N}}\right)\right]=\operatorname{dist}^{2}\left(u\left(t^{\mathbb{N}}\right), y^{\mathbb{N}}\right)=$

$$
\sum_{i-1}^{\infty}\left[u\left(t^{\mathbb{N}}\right)-y^{N}, b_{i}\right]^{2}
$$

From (2.29) and the inequality immediately preceding, we see that

$$
\begin{equation*}
\left[u\left(t^{N}\right)-y^{N}, b_{1}\right]^{2}<\varepsilon^{2} \tag{2.30}
\end{equation*}
$$

From the linearity of the inner product in its first argument, (2.30) and elementary algebra, we see that (2.31) $\left.\quad-\boldsymbol{\varepsilon} \leqq\left[u\left(t^{\mathbb{N}}\right), b_{1}\right]-y^{\mathbb{N}}, b_{1}\right] \leqq \boldsymbol{\varepsilon}$.

Since y^{N} is an element of $G\left(t^{O}\right)$, then by the definition of $u\left(t^{0}\right)$,

$$
\begin{equation*}
\left[u\left(t^{0}\right), b_{1}\right] \leqq\left[y^{N}, b_{1}\right] \tag{2.32}
\end{equation*}
$$

Since t^{N} is an element of $F^{1}(s)$, we see that

$$
\begin{equation*}
\left[u\left(t^{\mathbb{N}}\right), b_{1}\right] \leqq s . \tag{2.33}
\end{equation*}
$$

From (2.31), (2.32) and (2.33) we see that

$$
\left[u\left(t^{0}\right), b_{1}\right]=s+\varepsilon .
$$

Since $\boldsymbol{\varepsilon}$ is arbitrary,

$$
\left[u\left(t^{0}\right), b_{1}\right] \leqq s
$$

and $F^{1}(s)$ is closed.

Q. E. D.

Theorems 2.3 and 2.4 are motivated by the well known lemma of Filippov [11]. By strengthening the hypothesis on the map G of Theorem 2.3 from u.s.c. to u. s. c. i. (Filippov originally hypothesized u. s. c. i.), we are able to eliminate the quite restrictive hypothesis of compactness of the set in which the controls take their values. Indeed, this set need not even be bounded.

CHAPTER III

THE EQUATION OF EVOLUTION AND
 TIME-OPTIMAL CONTROLS

Let X be a separable and reflexive Banach space. Assume that the linear uperator A from X into itself either is independent of t or satisfies the following concitions:
(i) For each t in an interval [$0, T$] the operator $A(t)$ is closed and the domain of $A(t)$ is dense in X and independent of t;
(ii) for $\operatorname{Re}(\lambda) \leqq 0,(\lambda I-A(t))^{-1}$ exists;
(iii) for $\operatorname{Re}(\lambda) \leqq 0,\left\|(\lambda I-A(t))^{-1}\right\| \leqq \frac{c}{1+|\lambda|}$, where c is a real constant;
(iv) $\left\|(A(t)-A(s)) A(r)^{-1}\right\| \leq k|t-s|^{a}$, where $k>0$ and $a>0$.

Then by the results given in $[3,211],[4,117]$ and [11,363], if

$$
u:[0, T] \rightarrow X: B t \rightarrow u(t)
$$

in such a manner that
(3.0) $\|u(t)-u(s)\| \leqq c|t-s|^{b}$, where $c>0$ and $b>0$, there is a unique differentiable solution to

$$
\begin{equation*}
\frac{d x(t)}{d t}+A(t) x(t)=u(t), t \in[0, \mathbb{T}] \tag{3.1}
\end{equation*}
$$

of the form

$$
\begin{equation*}
x^{u}(t)=S(t, 0) x_{0}+(B) \int_{0}^{t} S(t, s) u(s), t \in[0, T] . \tag{3.2}
\end{equation*}
$$

where the linear operators $\{S(t, s)::(t, s) \in[0, T] \times[0, T]\}$ where $s \leqq t$, from X into itself all have norm less than or equal to one and are all continuous in t and s simultaneously.

It should be emphasized that $\{S(t, s)::(t, s) \in[0, T] x[0, T]\}$ depends only upon $\{A(t):: t \in[0, \mathbb{T}]\}$ in a very complicated manner which it is not feasible to discuss here, but which is developed in $[3,210]$.

If the function u fails to satisfy the very strong condition given in (3.0), which is called Holder continuity, the function x^{u}, defined in (3.2), may fail to be differentiable, and so of course may fail to satisfy (3.1). However, if u is merely bounded and strongly measurable, then the function x^{u} is still well defined, and is called the weak solution to (3.1).

THEOREM 3.1. Let U_{M} be the set of strongly measurable functions that satisfy the following conditions:

$$
\begin{equation*}
u:[0, T] \rightarrow X ; \tag{3.3}
\end{equation*}
$$

(3.4) $u(t) \in U$ a.e., where U is a convex, closed and bounded subset of X;
(3.5) (L) $\int_{0}^{T}\|u(t)\| p \leqq M$, where $p>1$. (That is,
$\left.\|u\|_{p}=M^{1 / p}.\right) ;$
(3.6) $\quad x^{u}(0)=x_{0}$ and $x^{u}\left(T^{u}\right)=x_{1}$, where $0 \leqq T^{u} \leqq T$. We say that the control u directs its response x^{u} from x_{0} to x_{1} in time T^{u}.

If U_{M} is not empty, it contains a time-optimal control.

Proof. We begin the proof by establishing the following lemma.

LEMMA 3.1.1. If u maps $[0, T]$ into X, and u is strongly measurable and bounded, then for almost all s in $[0, T]$,

$$
\frac{1}{\boldsymbol{\varepsilon}}(B) \int_{S}^{s+\varepsilon} u(t) \longrightarrow u(s) \quad \text { as } \varepsilon \longrightarrow 0^{+} .
$$

Proof of the Lemma. If the function f from $[0, T]$ to the real numbers is bounded and Lebesgue measurable, then it is well known that

$$
\frac{1}{\boldsymbol{\varepsilon}}(\mathrm{~L}) \int_{s}^{s+\boldsymbol{\varepsilon}} \mathrm{f}(\mathrm{t}) \longrightarrow \mathrm{f}(\mathrm{~s}) \text { as } \boldsymbol{\varepsilon} \longrightarrow 0^{+}
$$

for almost all s in $[0, T]$.

Since X is separable, let $\left\{x_{n}\right\}$ be a countable dense subset of X. Since u is strongly meacurable and bounded, the function

$$
\left\|u()-x_{n}\right\|:[0, T] \longrightarrow R:: t \longrightarrow\left\|u(t)-x_{n}\right\|
$$

is bounded and Lebesgue measurable for each x_{n}. Applying the above quoted result, we see that
(3.7) $\frac{1}{\varepsilon}(L) \int_{S}^{s+\varepsilon}\left\|u(t)-x_{n}\right\| \longrightarrow\left\|u(s)-x_{n}\right\|$ as $\varepsilon \longrightarrow 0^{+} \underline{\text { for }}$

$$
\mathrm{s}_{\mathrm{s}} \mathrm{E}_{\mathrm{n}}, \mathrm{n}=1,2, \ldots,
$$

where E_{n} is a subset of $[0, T]$ and meas $\left([0, T]-E_{n}\right)$

$$
=0, n=1,2, \ldots
$$

Then meas $\left([0, T]-\bigcap_{n=1}^{\infty} E_{n}\right)=0$. Select s in $\bigcap_{n=1}^{\infty} E_{n}$ and then
select some x_{n} from $\left\{x_{n}\right\}$ such that $\left\|u(s)-x_{n}\right\|<\delta$, where $\delta>0$. We must also demand that $s \neq \mathrm{T}$ in order that integration over the range [s,s+\&] be defined for sufficiently small positive $\boldsymbol{\varepsilon}$.

Then by properties (1.1) and (1.2) of the Bochner integral and the properties of the norm of a Banach space,

$$
0 \leqq\left\|u(s)-\frac{1}{\boldsymbol{\varepsilon}}(B) \int_{S}^{S+\boldsymbol{\varepsilon}} u(t)\right\|=\frac{1}{\boldsymbol{\varepsilon}}\left\|(B) \int_{S}^{S+\boldsymbol{\varepsilon}} u(s)-(B) \int_{S}^{S+\boldsymbol{\varepsilon}} u(t)\right\|=
$$

$$
\frac{1}{\boldsymbol{\varepsilon}}\left\|(B) \int_{S}^{s+\boldsymbol{\varepsilon}}(u(t)-u(s))\right\| \leqq \frac{1}{\boldsymbol{\varepsilon}}(\mathrm{~L}) \int_{\mathrm{S}}^{\mathrm{S}+\boldsymbol{\varepsilon}}\|(\mathrm{u})-u(t)\| \leqq
$$

$$
\frac{1}{\boldsymbol{\varepsilon}}(L) \int_{s}^{s+\boldsymbol{\varepsilon}}\left\|u(s)-x_{n}\right\|+\frac{1}{\boldsymbol{\varepsilon}}(L) \int_{S}^{s+\boldsymbol{\varepsilon}}\left\|u(t)-x_{n}\right\| \leqslant \delta+\frac{1}{\boldsymbol{\varepsilon}}(L) \int_{s}^{s+\boldsymbol{\varepsilon}}\left\|u(t)-x_{n}\right\| .
$$

Since we see by (3.7) that the second expression
in the last term of the above inequality approaches

Hence

$$
\frac{1}{\boldsymbol{\varepsilon}}(B) \int_{S}^{S+\boldsymbol{\varepsilon}} u(t) \longrightarrow u(s) \quad \text { as } \boldsymbol{\varepsilon} \longrightarrow 0^{+}
$$

The lemma is established, since s was any point of $\bigcap_{n=1}^{\infty} E_{n}$.

Now, let $\left\{u^{n}\right\}$ be a sequence of elements of U_{M} such that

$$
\begin{aligned}
& \left\|u(s)-\mathrm{x}_{\mathrm{n}}\right\| \text { as } \boldsymbol{\varepsilon} \text { approaches zero positively, we have that } \\
& 0 \leqq \frac{\lim }{\varepsilon \rightarrow 0^{+}} \frac{\sup }{}\left\|u(s)-\frac{1}{\boldsymbol{\varepsilon}}(B) \int_{S}^{s+\varepsilon} u(t)\right\| \leqq 2 \boldsymbol{\delta} . \\
& \text { Since is arbitrary, } \\
& \xrightarrow[\varepsilon]{\lim } \underset{\longrightarrow}{\sup }\left\|u(s)-\frac{1}{\boldsymbol{\varepsilon}}(B) \int_{s}^{s+\varepsilon} u(t)\right\|=0 .
\end{aligned}
$$

$$
\begin{equation*}
\mathbb{T}^{\mathrm{n}} \rightarrow \mathbb{T}^{0}=\frac{\inf _{\mathrm{n}}\left(\mathbb{U}_{M}^{u}\right),}{} \tag{3.8}
\end{equation*}
$$

where for simplicity of notation we replace $\mathbb{T u}^{m}$ by \mathbb{T}^{m}.
Since U_{M} is bounded as a subset of $B_{p}([0, T], X)$ in the norm defined by (1.12), there is an element u^{0} of $B_{p}([0, T], X)$ and a subsequence of $\left\{u^{n}\right\}$, also called $\left\{u^{n}\right\}$, such that

$$
\begin{equation*}
u^{\mathrm{n}} \rightarrow \mathrm{u}^{0}(\text { weak }) . \tag{3.9}
\end{equation*}
$$

We shall show that u^{0} is an element of U_{M} and that u^{0} is time-optimal.

As is well known, there is a family $\{f i\}$ of linear functionals on X and a set $\left\{c_{i}\right\}$ of real numbers such that x is an element of the convex set U iff $f^{i}(\mathrm{X}) \leqq c_{i}$ for all i. (Due to the separability of X, these sets may be denumerable, but this is irrelevant to our proof.)

In what follows, $\boldsymbol{\varepsilon}>0$ and $0 \leqq \mathrm{~s}<\mathrm{s}+\boldsymbol{\varepsilon} \leqq \mathbb{T}$.
Let
(3.10) $u(\boldsymbol{\varepsilon}, n, s)=\frac{1}{\boldsymbol{\varepsilon}}(B) \int_{S}^{s+\boldsymbol{\varepsilon}} u^{n}(t), n=0,1, \ldots$

From [I,80],
(3.11) $f^{i}(u(\boldsymbol{\varepsilon}, n, s))=\frac{1}{\boldsymbol{\varepsilon}}(L) \int_{S}^{s+\boldsymbol{\varepsilon}} f^{i}\left(u^{n}(t)\right)$ for all i, and $\mathrm{n}=1,2, \ldots$ Since each $\mathrm{u}^{\mathrm{n}}, \mathrm{n}=1,2, \ldots$ takes its
values almost everywhere in U, then for almost all t in $[0, T]$, all i, and $n=1,2, \ldots, f i(u n(t)) \leq c_{i}$. Hence from (3.11),

$$
\text { (3.12) } f^{i}(u(\boldsymbol{\varepsilon}, n, s)) \leqq c_{i} \text { for all } i \text {, and } n=1,2, \ldots
$$

From (3.9) we see that for all i,
(3.13) $f^{i}(u(\boldsymbol{\varepsilon}, n, s)) \longrightarrow f^{i}(u(\boldsymbol{\varepsilon}, 0, s)) \quad$ as $n \longrightarrow \infty$.

From Lemma 3.1.1 and (3.10) we see that
(3.14) $u(\boldsymbol{\varepsilon}, 0, s) \rightarrow u^{0}(s)$ a.e. on $[0, \mathbb{T}], \underline{\text { as }} \boldsymbol{\varepsilon} \longrightarrow 0^{+}$.

From (3.12) and (3.13), we see that for all i,

$$
\begin{equation*}
f^{i}(u(\varepsilon, 0, s)) \leqq c_{i} . \tag{3.15}
\end{equation*}
$$

Hence for each i, for any positive $\boldsymbol{\varepsilon}$, and for any s in $[0, \mathbb{T}], u(\boldsymbol{f}, 0, s)$ is an element of U.

From (3.14) and the closure of U, we see that for almost all s in $[0, \mathbb{T}], u^{0}(s)$ is an element of U. Hence condition (3.4) is satisfied.

From the reflexivity of $B_{p}([0, T], X)$ and conditions (3.5) and (3.9) it follows that $\left\|u^{0}\right\|_{p} \leqq M^{1 / p}$. Hence condition (3.5) is satisfied for u^{0}.

Cunsider now the responses to the controis
$\left\{u^{n}:: n=0,1, \ldots\right\}$, where
(3.16) $x^{n}(t)=S(t, s) x_{0}+(B) \int_{0}^{t} S(t, s) u^{n}(s), n=0,1, \ldots$.

$$
\text { Since } u^{n} \text { is an element of } U_{M}, n=1,2, \ldots \text {, it }
$$

follows that
(3.17) $x^{n}(0)=x_{0}$ and $x^{n}\left(T^{n}\right)=x_{1}, n=1,2, \ldots$

The function x^{0} as defined by (3.16) is the weak solution of (3.1) corresponding to the control u^{0}, and we must show that $x^{0}(0)=x_{0}$ and $x^{0}\left(T^{0}\right)=x_{1}$. Since $S(0,0)=I[4,210]$, it is clear from (3.16) that $x^{0}(0)=x_{0}$. To show that $x^{0}\left(T^{0}\right)=x_{1}$, we will show that (3.18) $\quad \mathrm{x}^{\mathrm{n}}\left(\mathrm{T}^{\mathrm{n}}\right) \rightarrow \mathrm{X}^{0}\left(\mathrm{~T}^{0}\right) \quad($ weak $)$.

Since $x^{n}\left(T^{n}\right)=x_{1}, n=1,2, \ldots$, it follows that (3.19) $x^{n}\left(T^{n}\right) \rightarrow x_{1}$ (strong) and a fortiori (weak).

Since the weak limit is unique [IV,121], it will follow from (3.18) and (3.19) that $x^{0}\left(T^{0}\right)=x_{1}$. We now proceed to prove (3.18).

Since S is continuous is t and s simultaneously $[3,210], T^{n} \rightarrow T^{0}$ and $[0, T] x[0, T]$ is compact, it follows that
(3.20) $S\left(T^{n}, s\right) \longrightarrow S\left(T^{0}, s\right) \quad$ (strongly and uniformly in $\left.s\right)$. Since the functions $u^{n}, n=1,2, \ldots$ take their
values almost everywhere in U, they are uniformly bounded almost everywhere. Hence it follows from (3.20) that

Let f be a continuous linear functional on X and suppose that u and v are elements of $B_{p}([0, T], X)$ and that a and b are real numbers. Due to the linearity of the Bochner integral and the functional f,

$$
\begin{aligned}
& f\left[(B) \int_{0}^{T^{O}} S\left(T^{\circ}, s\right)(a u(s)+b v(s))\right]= \\
& \operatorname{af}\left[(B) \int_{0}^{T^{O}} S\left(T^{0}, s\right) u(s)\right]+b f\left[(B) \int_{0}^{T^{0}} S\left(T^{\circ}, s\right) v(s)\right]
\end{aligned}
$$

Since S is bounded $[3,210]$, we see that the map F, where
(3.22) $F: B_{p}([0, T], X) \rightarrow R:: u \rightarrow f\left[(B) \int_{0}^{T^{0}} S\left(T^{0}, s\right) u(s)\right]$.
is a continuous linear functional on $B_{p}([0, T], X)$. Hence from (3.9),
(3.23) $F\left(u^{n}\right)=f\left[(B) \int_{0}^{T^{\circ}} S\left(T^{0}, s\right) u^{n}(s)\right] \rightarrow f\left[(B) \int_{0}^{T^{0}} S\left(T^{0}, s\right) u^{0}(s)\right]$

$$
=F\left(u^{0}\right)
$$

Since f was arbitrary in X^{*}, it follows from (3.23) that

$$
43
$$

(3.24) (B) $\int_{0}^{T^{\mathrm{L}}} S\left(T^{\circ}, s\right) u^{n}(s) \rightarrow(B) \int_{0}^{T^{\circ}} S\left(T^{\circ}, s\right) u^{\circ}(s) \quad$ (weak).

We write
(B) $\int_{0}^{T^{\circ}} S\left(T^{o}, s\right) u^{n}(s)$ in the form
(3.25)

$$
\begin{aligned}
\text { (B) } \int_{0}^{T^{0}}\left[S\left(T^{n}, s\right)-S\left(T^{0}, s\right)\right] u^{n}(s)+(B) \int_{T^{\circ}}^{T^{n}} S\left(T^{n}, s\right) u^{n}(s)+ \\
\text { (B) } \int_{0}^{T^{0}} S\left(T^{0}, s\right) u^{n}(s)
\end{aligned}
$$

We have shown that the first integral in (3.25) converges strongly to zero. (See (3.21).) The second integral converges strongly to zero due to the fact that $\mathbb{T}^{n} \longrightarrow T^{0}$ and S and $u^{n}, n=1,2, \ldots$ are all uniformly bounded. Hence it follows from (3.24) and the statement immediately above that

$$
\begin{equation*}
(B) \int_{0}^{T^{n}} S\left(T^{n}, s\right) u^{n}(s) \rightarrow(B) \int_{0}^{T^{0}} S\left(T^{0}, s\right) u^{0}(s) \quad \text { (weak). } \tag{3.26}
\end{equation*}
$$

It then follows from (3.20) that

$$
\begin{equation*}
\left.S\left(T^{n}, 0\right) x_{0} \rightarrow S\left(T^{0}, 0\right) x_{0} \quad \text { (strong }\right) \tag{3.27}
\end{equation*}
$$

Hence it follows from (3.16), (3.26) and (3.27) that

$$
x^{n}\left(T^{n}\right) \rightarrow x^{0}\left(T^{0}\right) \quad(\text { weak })
$$

Q. E. D.

Several interesting corollaries are easily obtained.

Corollary 3.1.1. By making M sufficiently large, condition (3.5) may be omitted.
 This corollary is proved in $[2,10]$. Q. E. D.

The set attainable from x_{0}, called R_{0}, is defined by
(3.28) $R_{0}=\left\{z:: z \in X\right.$ and some u of U_{M} directs its response from x_{0} to z in time less than or equal to T.\}

A set F is weakly closed iff for any sequence $\left\{x_{n}\right\}$ of elements of F,

$$
\begin{equation*}
x_{n} \rightarrow x_{0}(\text { weak }) \text { implies } x_{0} \in F \tag{3.29}
\end{equation*}
$$

Corollary 3.1.2 The set attainable from x_{0} is closed and weakly closed.

Proof. Since strong convergence implies weak convergence, it follows that if a set is weakly closed, it is strongly closed. We show that R_{o} is weakly closed. To this end, suppose that $\left\{z_{n}\right\}$ is a sequence of elements of R_{0} and that

$$
\begin{equation*}
z_{n} \rightarrow z_{0} \quad(\text { weak }) . \tag{3.30}
\end{equation*}
$$

Note that for each $n, z_{n}=x^{n}\left(T^{n}\right)$, where $0=T^{n}=T$ and each X^{n} is the response to some control u^{n}

45
of U_{M}. As in Theorem 3.1, there is a subsequence of $\left\{z_{n}\right\}$, also called $\left\{z_{n}\right\}$, an element u° of U_{M}, and a real number T° of $[0, T]$ such that

$$
\begin{equation*}
u^{n} \rightarrow u^{0} \quad(\text { weak }) \quad \text { and } \quad T^{n} \longrightarrow T^{0}, \tag{3.31}
\end{equation*}
$$

where for each n, the control u^{n} directs its response from x_{0} to z_{n} in time T^{n}.

By the proof of Theorem 3.1, and the definition of the subsequence $\left\{z_{n}\right\}$,

$$
\begin{equation*}
\mathrm{X}^{\mathrm{n}}\left(\mathrm{~T}^{\mathrm{n}}\right) \rightarrow \mathrm{X}^{\mathrm{O}}\left(\mathrm{~T}^{\mathrm{O}}\right) \quad(\text { weak }) . \tag{3.32}
\end{equation*}
$$

By (3.30), (3.32) and the uniqueness of the weak limit, $z_{0}=x^{0}\left(T^{0}\right)$, and so z_{0} is an element of R_{0}.
Q. E. D.

Corollary 3.1.3. The set attainable from x_{0} is bounded.

Proof. Suppose u is an element of U_{M}. Then its response x^{u} has the form given by (3.2). Since each S has norm less than or equal to one $[3,210]$ and

$$
\|x(t)\| \leqq\left\|S(t, 0) x_{0}\right\|+\left\|(B) \int_{0}^{t} S(t, s) u(s)\right\| \leqq\left\|x_{0}\right\|+T\|u\|
$$

for all t in $[0, T]$.
Q. E. D.

W: say that z is an element of $R(t)$, the set attainable from x_{0} at time t iff there is a control u
of U_{M}, where the constant M is as in Theorem 3.1, that directs its response from x_{0} to z in time t, where $0 \leqq t \leqq T$.

It is clear that for each t in $[0, T], R(t)$ is bounded, for $R(t)$ is a subset of R_{0}. To show that each $R(t)$ is weakly closed and hence closed, suppose that $\left\{z_{n}\right\}$ is a sequence of elements of $R(t)$ and that

$$
\begin{equation*}
z_{n} \rightarrow z_{0}(\text { weak }) . \tag{3.33}
\end{equation*}
$$

As in the proof of Theorem 3.1, there is an element u° of U_{M} and a subsequence of $\left\{z_{n}\right\}$ also called $\left\{z_{n}\right\}$, such that
(3.34) $u^{n} \rightarrow u^{0}\left(\right.$ weak) and $x^{n}(t) \longrightarrow x^{0}(t)$ (weak).

Since for each $n, z_{n}=x^{n}(t)$, it follows from (3.33), (3.34) and the uniqueness of the weak limit that $z_{0}=x^{0}(t)$. Hence z_{o} is an element of $R(t)$, which is seen to be weakly closed.

Remark 3.1.1. Since each $S(t, s)$ is a bounded. linear operator and Bochner integration is a linear operation, $R(t)$ is convex for each t in [$0, T$]. Since each $R(t)$ is also closed and bounded and X is separable, each $R(t)$ is weakly compact in itself [I,38].

THEOREM 3.2. For each constant M, as defined in Theorem 3.1, the map

$$
\begin{gather*}
47 \\
R:[0, T] \longrightarrow C \#(X):: t \longrightarrow R(t)
\end{gather*}
$$

is continuous.
Proof. We have seen that R is well defined. To show that R is continuous, we use the previously noted fact that $C \#(X)$ is a metric space under the Hausdorff metric, where
(3.36) $\underline{\operatorname{dist}}[A, B]=\frac{\text { supremum }}{a \in A, b \in B}\left[\frac{\inf }{b \in B} \frac{\operatorname{dist}}{}\left(a, b^{\prime}\right), \frac{\inf }{a \in A} \frac{\left.\operatorname{dist}\left(a^{\prime}, b\right)\right] .}{}\right.$ We show that if $\left\{\mathrm{t}^{\mathrm{n}}\right\}$ is a sequence of elements of $[0, T]$, then

To establish (3.37) it is enough to show that for every $\boldsymbol{\varepsilon}>0$, there is a $\boldsymbol{\delta}(\boldsymbol{\varepsilon})>0$ such that when $\left|t^{\mathrm{n}_{-}}+\mathrm{t}\right|<\boldsymbol{\delta}(\boldsymbol{\varepsilon})$, then
(3.38) if $z_{n} \in R\left(t^{n}\right)$, there is a $z_{0}^{n} \in R\left(t^{0}\right)$ such that $\underline{\operatorname{dist}}\left(z_{n}, z_{o}^{n}\right) \leqq \varepsilon / 2 ;$
(3.39) if $z_{0} \in R\left(t^{0}\right)$, there is a $z_{n}^{0} \in R\left(t^{n}\right)$ such that dist $\left(z_{0}, z_{n}^{0}\right) \leqslant \varepsilon / 2$.

Suppose z_{0} is an element of $R\left(t^{0}\right)$. Then some control u^{0} of U_{M} has a response x^{0} such that (3.40) $z_{0}=x^{0}\left(t^{0}\right)=S\left(t^{0}, 0\right) x_{0}+(B) \int_{0}^{t^{0}} S\left(t^{0}, s\right) u^{0}(s)$.

From (3.40), we see that z_{n}^{0} is an element of $\mathrm{R}\left(\mathrm{t}^{\mathrm{n}}\right)$, where
(3.41) $z_{n}^{0}=x^{0}\left(t^{n}\right)=S\left(t^{n}, 0\right) x_{0}+(B) \int_{0}^{t^{n}} S\left(t^{n}, s\right) u^{0}(s)$.

From (3.40), (3.41), the triangle property of the norm, the uniform boundedness of $\mathrm{S}(\mathrm{t}, \mathrm{s})$, the previously noted properties of the Bochner integral and the boundedness of the restraint set U, we see that
(3.42) dist $\left(z_{n}^{0}, z_{0}\right)=\left\|z_{n}^{0}-z_{0}\right\| \leqq\left\|S\left(t^{n}, 0\right)-S\left(t^{0}, 0\right)\right\| \cdot\left\|x_{0}\right\|+$

$$
\left\|(B) \int_{0}^{t^{0}}\left[S\left(t^{0}, s\right)-S\left(t^{n}, s\right)\right] u^{0}(s)\right\|+\left\|(B) \int_{t 0}^{t^{n}} S\left(t^{n}, s\right) u^{0}(s)\right\| \leqq
$$

$$
\left\|S\left(t^{n}, 0\right)-S\left(t^{0}, 0\right)\right\| \cdot\left\|x_{0}\right\|+\left(t^{0}\right) \frac{\operatorname{maximum}}{s \in[0, T]}\left\|S\left(t^{0}, s\right)-S\left(t^{n}, s\right)\right\| \cdot\|u\|+
$$

$$
\left|t^{n}-t^{\circ}\right| \cdot\|u\|,
$$

where $\|U\|=\frac{\sup ^{\prime}\|x\|<+\infty}{x \in U}$.

From (3.20) and (3.42) we see that

$$
\begin{equation*}
\underline{\operatorname{dist}}\left(z_{n}^{0}, z_{o}\right) \rightarrow 0 \text { as } t^{n} \rightarrow t^{0} . \tag{3.43}
\end{equation*}
$$

Now, suppose that z_{n} is an element of $R\left(t^{n}\right)$. There is a control u^{n} with a response x^{n} such that
(3.44) $z_{n}=x^{n}\left(t^{n}\right)=S\left(t^{n}, 0\right) x_{0}+(B) \int_{0}^{t^{n}} S\left(t^{n}, s\right) u^{n}(s)$.

Then z_{0}^{n} is an element of $R\left(t^{\circ}\right)$, where
(3.45) $z_{0}^{n}=x^{n}\left(t^{0}\right)=S\left(t^{0}, 0\right) x_{0}+(B) \int_{0}^{t^{0}} S\left(t^{0}, s\right) u^{n}(s)$.

By the same argument with which we established (3.43), we see that
(3.46) \quad dist $\left(z_{0}^{n}, z_{n}\right) \rightarrow 0$ as $t^{n} \rightarrow t^{0}$.

It follows from (3.43) and (3.46) that for every $\boldsymbol{\varepsilon}>0$ there is a $\boldsymbol{\delta}(\boldsymbol{\varepsilon})>0$ such that when $\left|t^{\mathrm{n}}-\mathrm{t} 0\right|<\boldsymbol{\delta}(\boldsymbol{\varepsilon})$, conditions (3.38) and (3.39) hold. Thus we have established (3.37).
Q. E. D.

CHAPTER IV

TIME-OP TIMAL CONTROL OF A NONLINEAR PROCESS

Based upon a well known paper of Lee and Markus [6], we consider a control problem in a Banach space setting. Our results depend upon a theorem which extends the method of successive approximations to a class of differential equations in a Banach space. The theorem we use is found in [I, 67], and we quote:

THEOREM 4.1. Suppose that B is a Banach space and that

$$
f: R x B \rightarrow B:(t, x) \rightarrow f(t, x),
$$

where f is continuous in each variable separately for
$(4.1) \quad\left|t-t_{0}\right| \leqq a,\left\|x-x_{0}\right\| \leqq b$,
and f satisfies
$\|f(t, x)\| \leqq M ;$

$$
\begin{equation*}
\left\|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right\| \leqq c\left\|x_{1}-x_{2}\right\| \tag{4.3}
\end{equation*}
$$

for t, x, x_{1}, and x_{2} in the regions indicated in (4.1). Here a, b, M, and c are positive constants and

$$
a M \leqq b .
$$

Then there is exactiy one continuously differentiable function x such that

$$
\begin{equation*}
\frac{d x(t)}{d t}=f(t, x(t)) \quad \text { and } \quad x\left(t_{0}\right)=x_{0} \tag{4.5}
\end{equation*}
$$

where $\quad\left|t-t_{0}\right| \leqq a$.
The solution is of the form $x(t)=x_{0}+(B) \int_{t_{0}}^{t} f(t, x(t))$.
In preparation for the use of this theorem, suppose that B_{1} and B_{2} are Banach spaces and that
(4.6) $\quad f:[0, T] x B_{1} x B_{2} \rightarrow B_{1}::(t, x, u) \rightarrow f(t, x, u)$,
where f is continuous in t and u simultaneously and also Lipschitzian in x. (See condition (4.3).)

Suppose also that

$$
\begin{equation*}
\|f(t, x, u)\| \leqq \mu(t, u) \tag{4.7}
\end{equation*}
$$

where the function μ is real-valued and upper semicontinuous.

Consider a function u such that
(4.8) $u:[0, T] \rightarrow B_{2}$ (continuous).

The range of u is compact in B_{2}, and so μ is bounded on $[0, T] x \operatorname{Range}(u)$. Hence f is bounded on $[0, T] \times B_{1} \times \operatorname{Range}(u)$ To apply Iheorem 4.1 to the function defined in (4.6),
note that

$$
\begin{equation*}
f:[0, \mathbb{T}] x B_{1} \rightarrow B_{1}::(t, x) \rightarrow f(t, x, u(t)) . \tag{4.9}
\end{equation*}
$$

Then f as defined in (4.9) is continuous in t and Lipschitzian in x. Due to condition (4.7) f is bounded in norm by some constant M. Since f is defined for each x in B_{1}, the inequality in (4.4) is autc matically satisfied, where $T / 2=a$.

Hence by Theorem 4.1 there is a unique continuously differentiable solution to the differential equation

$$
\begin{equation*}
\frac{d x(t)}{d t}=f(t, x, u(t)) \tag{4.10}
\end{equation*}
$$

of the form
(4.11) $x^{u}(t)=x_{0}+(B) \int_{t u_{0}^{u}}^{t} f\left(t, x^{u}(t), u(t)\right), \quad 0 \leqq t_{0}^{u} \leqq T$.

We call the solution x^{u} to (4.10) the response to the control u.

Next, we suppose that

$$
\begin{equation*}
K:[0, T] \longrightarrow C\left(B_{1}\right) \quad \text { (upper } \text { semicontinuous) }, \tag{4.12}
\end{equation*}
$$

where $C\left(B_{1}\right)$ is the space of closed and bounded subsets of B_{1}. A control u is said to direct its response x^{u} from x_{0} to the target set $K\left(t_{1}^{u}\right)$ if
(4.13)

$$
x^{u}\left(t_{0}^{u}\right)=x_{0} ;
$$

$$
\begin{equation*}
x\left(t_{1}^{u}\right) \in K\left(t_{1}^{u}\right) \tag{4.14}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leqq t_{0}^{u} \leqq t_{1}^{u} \leqq \mathbb{T} \tag{4.15}
\end{equation*}
$$

We call $\left(t_{1}^{u}-t_{o}^{u}\right)$ a time of flight.
THEOREM 4.2. Let $\{u\}$ be a closed set of equicontinuous controls which take their values within C_{2}, a subset of B_{2} which is compact in itself. Then of the controls which direct their responses from x_{0} to the varying target set there is a control $u^{0}, ~ a l s o$ an element of $\{u\}$, that has minimum time of flight. That is, (4.16) $\left(t_{1}^{0}-t_{0}^{0}\right)=m=\underline{\inf }\left\{\left(t_{1}^{u}-t_{0}^{u}\right):: u\right.$ directs x^{u} from x_{0} to $\left.K\left(t_{1}^{u}\right)\right\}$.

Proof. Since $\left(t_{1}^{u}-t_{o}^{u}\right) \geqq 0$ for each u, the infimum in (4.16) surely exists. Hence there is a sequence $\left\{u^{n}\right\}$ of elements of $\{u\}$ such that

$$
\begin{equation*}
\left(t_{1}^{n}-t_{0}^{n}\right) \rightarrow m \tag{4.17}
\end{equation*}
$$

Since each element of $\left\{u^{n}\right\}$ takes its values in C_{2}, the sequence is bounded. As elements of $\{u\}$, the elements of $\left\{u^{n}\right\}$ are equicontinuous. Hence by Ascoli's Theorem [III,39] and the compactness of $[0, T]$ there is a function u^{0} that is equicontinuous with $\{u\}$ and a
subsequence of $\left\{u^{n}\right\}$, also called $\left\{u^{n}\right\}$, such that

$$
\begin{equation*}
\left(t_{1}^{n}-t_{0}^{n}\right) \rightarrow m \tag{4.18}
\end{equation*}
$$

$$
\begin{equation*}
t_{1}^{\mathrm{n}} \rightarrow t_{1}^{0} \tag{4.19}
\end{equation*}
$$

$$
\begin{equation*}
t_{0}^{n} \rightarrow t_{0}^{0} \tag{4.20}
\end{equation*}
$$

(4.21) $u^{n}(t) \rightarrow u^{0}(t)$ (uniformly on $\left.[0, T]\right)$.

We show that u^{0} is the desired optimal control by showing that u^{0} has time of flight $\left(t_{1}^{0}-t_{0}^{0}\right)$.

Suppose that $\left\{x^{n}\right\}$ is the sequence of responses to the sequence of controls $\left\{u^{n}\right\}$. Each x^{n} is of the form (4.22) $x^{n}(t)=x_{0}+(B) \int_{t_{0}^{n}}^{t} f\left(t, x^{n}(t), u^{n}(t)\right), \quad 0 \leqq t \leqq T$.

Since f is bounded in norm due to (4.7) and the compactness of $[0, T] \mathrm{XC}_{2}$, we see from (4.22) that the elements of $\left\{x^{n}\right\}$ are equilipschitzian and a fortiori equicontinuous. We see that they are also uniformly bounded, and so by Ascoli's Theorem there is a function x^{0} and a subsequence of $\left\{x^{n}\right\}$, also denoted by $\left\{x^{n}\right\}$, such that (4.23) $\quad x^{n}(t) \rightarrow x^{0}(t)$ (uniformly on $[0, T]$).

The statements (4.18), (4.19), (4.20) and (4.21) remain true for the subsequence of u^{n} correspording to the subsequence $\left\{x^{n}\right\}$. We will show that x^{0} is the response to u^{0}
and that u^{0} directs x^{0} from x_{0} to $K\left(t_{1}^{0}\right)$ in time ($t_{1}^{0}-t_{0}^{0}$). This will complete our proof.

We have seen that u^{0} is equicontinuous with $\{u\}$. From (4.21) and the fact that each u^{n} takes its values in C_{2}, which is compact in itself and hence closed, we see that u^{0} takes its values in C_{2}. Hence $u^{0} \in\{u\}$.

Since

$$
\left\|x^{n}\left(t_{0}^{n}\right)-x^{0}\left(t_{0}^{0}\right)\right\| \leqq\left\|x^{n}\left(t_{0}^{n}\right)-x^{0}\left(t_{0}^{n}\right)\right\|+\left\|x^{0}\left(t_{0}^{n}\right)-x^{0}\left(t_{0}^{0}\right)\right\|
$$

it follows from (4.20), (4.23) and the continuity of x^{0} that

$$
\begin{equation*}
x^{n}\left(t_{o}^{n}\right) \rightarrow x^{0}\left(t_{0}^{0}\right) \tag{4.25}
\end{equation*}
$$

From (4.25) and the fact that for each $n, x^{n}\left(t_{0}^{n}\right)=x_{0}$, it follows that

$$
\begin{equation*}
x^{0}\left(t_{0}^{0}\right)=x_{0} . \tag{4.26}
\end{equation*}
$$

From the inequality

$$
\left\|x^{n}\left(t_{1}^{n}\right)-x^{0}\left(t_{1}^{0}\right)\right\| \leqq\left\|x^{n}\left(t_{1}^{n}\right)-x^{0}\left(t_{1}^{n}\right)\right\|+\left\|x^{o}\left(t_{1}^{n}\right)-x^{0}\left(t_{1}^{0}\right)\right\|
$$

conditions (4.19) and (4.23) and the continuity of x^{0}, it follows that

$$
\begin{equation*}
x^{n}\left(t_{1}^{n}\right) \rightarrow x^{0}\left(t_{1}^{0}\right) \tag{4.27}
\end{equation*}
$$

Since for each n we know that $x^{n}\left(t_{1}^{n}\right)$ is an element of $K\left(t_{1}^{n}\right)$, it follows from (4.19), (4.27), the upper
semicontinuity of K and the theorem of Jacobs [II, 16] quoted in the preceding section that

$$
\begin{equation*}
x^{0}\left(t_{1}^{0}\right) \in K\left(t_{1}^{0}\right) \tag{4.28}
\end{equation*}
$$

From (4.21), (4.23) and the fact that f is Lipschitzian in its second argument and continuous in its third argument we see that

$$
f\left(t, x^{n}(t), u^{n}(t)\right) \longrightarrow f\left(t, x^{0}(t), u^{0}(t)\right) .
$$

Hence from the boundedness of f and the generalized Lebesgue theorem $[I, 83]$ we see that
(4.29) (B) $\int_{t_{0}^{0}}^{t} f\left(t, x^{n}(t), u^{n}(t)\right) \rightarrow(B) \int_{t_{0}^{0}}^{t} f\left(t, x^{c}(s), u^{0}(s)\right)$
on $[0, T]$.

From (4.20) and the boundedness of f we see that
(B) $\int_{t_{0}^{n_{0}^{0}}}^{t_{0}^{0}} f\left(t, x^{n}(t), u^{n}(t)\right) \rightarrow 0$.

From (4.29) and (4.30) it follows that
(4.31) (B) $\int_{t_{0}^{n}}^{t} f\left(t, x^{n}(s), u^{n}(s)\right) \rightarrow(B) \int_{t_{0}^{o}}^{t} f\left(t, x^{o}(s), u^{n}(s)\right)$
on $[0, T]$.

From (4.22) and (4.31) it follows that
(4.32) $x^{n}(t) \rightarrow x_{0}+(B) \int_{t_{0}^{0}}^{t} f\left(t, x^{0}(s), u^{0}(s)\right)$ on $[0, T]$.

From (4.23) and (4.32) we see that
(4.33) $x^{0}(t)=x_{0}+(B) \int_{t_{0}^{0}}^{t} f\left(t, x^{0}(s), u^{0}(s)\right)$ on $[0, T]$.

Since u° and x° are continuous and f is
simultaneously continuous in its first and third arguments and Lipschitzian in its second argument, it follows that the function

$$
\begin{equation*}
f:[0, T] \rightarrow B_{1}:: t \rightarrow f\left(t, x^{0}(t), u^{O}(t)\right) \tag{4.34}
\end{equation*}
$$

is continuous. Hence we see from this and (4.33) that
(4.35) $\quad \frac{d x^{0}(t)}{d t}=f\left(t, x^{0}(t), u^{\circ}(t)\right)$.

Thus we see that x° is the response to u°. It follows from (4.26) and (4.28) that u^{0} has time of flight $\left(t_{1}^{0}-t_{0}^{0}\right)$.
Q. E. D.

We define the set attainable from x_{0} by
(4.36) $A_{0}=\{z:: z \in B$, and there is a control u of $\{u\}$ that directs its response from x_{0} to $\left.z.\right\}$

Corollary 4.1.1. The attainable set is compact in itself.

Proof. Suppose $\left\{z_{n}\right\}$ is a sequence of elements of A_{0}. Then by the proof of Theorem 4.1 there is a subsequence of $\left\{z_{n}\right\}$, also called $\left\{z_{n}\right\}$, a control u° of $\{u\}$ with response x^{0} such that
(4.37)

$$
z_{n}=x^{n}\left(\mathrm{t}_{1}^{n}\right) \rightarrow x^{0}\left(t_{1}^{0}\right) .
$$

Hence $x^{0}\left(t_{1}^{0}\right)$ is an element of A_{0}, which we see is compact in itself.
Q. E. D.

EXAMPLES

The reader has doubtless noticed that the compactness hypothesis in Theorem 2.3 is quite restrictive. One is tempted to replace it by demanding only that $U\{G(t):: t \in I\}$ be bounded and then using the fact that its closed convex hull would be compact in itself. [I,38]

This would be a simple matter if one could replace the strong convergence of x_{n} to x_{0} in (2.5) by weak convergence. The following counterexample shows that this is impossible.

Let the space of (2.5) be I_{2}, and let $I=[0,1]$. For each t in $[0,1]$ suppose that the constant (and a fortiori continuous) map G be

$$
G(t)=\left\{x::\|x\|=1, \quad x \in I_{2}\right\} .
$$

Let x_{n} be defined by:

$$
\begin{aligned}
& a_{n}^{n}=1 ; \\
& a_{n}^{i}=0, \quad i \neq n .
\end{aligned}
$$

For each n, let $t^{n}=1 / n$. Then we see that

$$
t^{n} \rightarrow 0 ;
$$

$$
x_{n} \rightarrow 0(\text { weak }) ;
$$

$$
x_{n} \in G\left(t^{n}\right) \text { for each } t^{n}
$$

Hence the hypotheses of (2.5) are satisfied with the exception of that of strong convergence. But it is clear that $0 \$ G(0)$.

Since the map G is continuous and the space considered is quite highly structured, it would seem unlikely that the hypothesis of weak convergence could be retained by means of any very realistic strengthening of any of the other hypotheses.

A better counterexample in which the map G is u.s.c. and each $G(t)$ is closed, bounded and convex has been obtained. However, it has not been included.

I am indebted to Dr. Ewing for the following example, which relates a standard problem in variational theory to control theory.

In we read Theorem 3.1 down to the familiar realvalue setting, we have a simple form of the Mayer problem,

$$
\begin{equation*}
t^{1}(u, x)=\text { global minimum on } C, \tag{5.1}
\end{equation*}
$$

where C is the class of all pairs
$u:\left[t^{0}, t^{1}\right] \rightarrow R, \quad x:\left[t^{0}, t^{1}\right] \longrightarrow R$ such that u is measurable
and x is A. C. on $\left[t^{0}, t^{1}\right]$, and

$$
\begin{equation*}
|u(t)| \leqq M \text { on }[0, T] \tag{5.2}
\end{equation*}
$$

such that
(5.3) $x(t)=f[t, x(t), u(t)]=A(t) x(t)+u(t)$ abe. \cdot on $\left[t^{0}, t^{1}\right]$
where $A($) is a continuous scalar function and such that
(5.4) $\quad t^{0}=0 \quad t^{1} \leqq T=$ constant

$$
x\left(t^{0}\right)=0 \quad x\left(t^{1}\right)=x_{1}=\text { constant. }
$$

Theorem If C is not empty, then there is an element $\left(u^{0}, x^{0}\right)$ of C such that

$$
t^{1}\left(u^{0}, x^{0}\right)=\frac{\operatorname{infimumt}^{1}}{(u, x) \epsilon C}(u, x)
$$

Proof. Every (u, x) of C can be extended to $[0, T]$ by setting $u(t)=u\left(t^{1}\right)$ and $x(t)=x\left(t^{1}\right)$ for $t \in\left(t^{1}, T\right]$.

Define

$$
\begin{equation*}
z(t)=\int_{0}^{t} u(s) \text { for } t[0, T] . \tag{5.5}
\end{equation*}
$$

We see by (5.2) that z is lipschitzian with constant M.

Let $\left\{\left(u^{n}, x^{n}\right)\right\}$ be a sequence of elements of C such that

$$
t^{1}\left(u^{n}, x^{n}\right) \rightarrow \frac{\text { infimum }}{(u, x) \in C} t^{1}(u, x)
$$

and let $\left\{z^{n}\right\}$ correspond via (5.5) to $\{u\}$. The functions in $\left\{z^{n}\right\}$ being equi-lipschitzian are a fortiori equicontinuous and are equally bounded. Hence by Ascoli's Theorem we can suppose the sequence so chosen that it converges uniformiy to z^{0}, where

$$
z^{0}:[0, T] \longrightarrow R,
$$

and z° satisfies the same Lipschitz condition as the z^{n}. Moreover, $\dot{z}^{\circ}(t)$ exists and is $\leqq M a$. e. on $[0, T]$. Hence we can define

$$
u^{0}(t)=\left\{\begin{array}{l}
\dot{z}^{0}(t) \text { when it exists } \\
\text { an arbitrary real number in }[0, \mathbb{T}] \text { elsewhere },
\end{array}\right.
$$

and $u^{0}:[0, T] \rightarrow R$ is an admissible component of $(u, x) \in C$. Observe that
(5.6) $\quad x^{n}(t)=\int_{0}^{t}\left[\exp \int_{r}^{t} A(s)\right] u^{n}(r) \quad$ for $\quad t \in[0, T]$.

$$
\text { Since } \begin{aligned}
x^{n}(0) & =0 \text { and } x^{n}\left[t^{1}\left(u^{n}, x^{n}\right)\right]=x_{1} \\
& =\text { constant by }(5.4),
\end{aligned}
$$

it follows from (5.6) (after an integration by parts) that $x^{0}(0)=0$ and $x^{0}\left[t^{1}\left(u^{0}, x^{0}\right)\right]=x_{1}$. Hence the pair
(u^{0}, x^{0}) furnishes the desired minimum.
Extensions to more general Mayer problems and to some forms of the Bolza Problem should be easy. Notice that in (5.6) the term $\exp \int_{r}^{t_{A}}(s)$ plays the role (with a slight change of notation) of the operator $S(t, x)$ of Theorem 3.1.

Since we are treating the case of a real variable, the rather elaborate hypotheses of Theorem 3.1, particularly the highly restrictive uniform Hölder condition (iv), are not necessary.

The foregoing example, with Theorem 3.1, illustrates the difficulty of obtaining the Banach space analogues of familiar theorems of real variables.

BIBLIOGRAPHY

Books

I. Hille, E. and Phillips, R. S. Functional Analysis and Semi-Groups. Waverly Press, Baltimore, Md., 1957.
II. Jacobs, M. Q. "The Existence of Optimal Controls". UnpubIished Ph.D. dissertation, University of Oklahoma, Norman, Oklahoma, 1966.
III. Kolmogorov, A. N. and Fomin, V. J. Elements of Functional Analysis. vol. 2, Graylock Press, Albany, New York, 1961.
IV. Liusternik, L. A. and Sobolev, V. J. Elements of Functional Analysis. Translated from the Russian by A. E. Lebarre, et al., F. Ungar, New York, New York, 1961.
V. McShane, E. J. Integration. Princeton University Press, 1944.

Articles

1. Balakrishnan, A. V. "Optimal Control Problems in Banach Spaces". SIAM Journal on Control, Ser. A, 3 (1965), pp. 152~180.
2. Friedman, A. "Optimal Controls in Banach Spaces". To appear.
3. Kato, T. "Integration of the Equation of Evolution in a Banach Space". Journ. Math. Soc. Japan, 5 (1953), pp. 209-233.
4. Kato, T. and Tanabe, H. "On the Abstract Evolution Equation", Osaka Math. Journ., 14 (1962), pp. 107-133.
5. Lasalle, J. P. "The Time-Optimal Control Problem". Annals of Math. Studies, 45, pp. 1-24.
6. Lee, E. B. and Markus, L. "Optimal Control for Nonlinear Processes". Archive for Rational Mechanics and Analysis, 8 (1961), pp. 36-58.
7. Lions, J. L. "Optimization Problems for Parabolic Equations". Functional Analysis and Optimization, pp. 115-131, ed. by E. R. Caianello, Academic Press, New York, New York, 1966.
8. Roxin, E. "The Existence of Optimal Controls". Michigan Math. Journ., 9 (1962), pp. 109-119.
9. Tanabe, H. "A Class of the Equations of Evolution in a Banach Space". Osaka Math. Journ., 11 (1959), pp. 121-145.
10. Tanabe, H. "On the Equations of Evolution in a Banach Space". Osaka Math. Journ., 12 (1960), pp. 363-376.
11. Filippov, A. F. "On Certain Questions in the Theory of Optimal Control". SIAM Journal on Control, Ser. A, 1 (1963), pp. 76-84.
