This dissertation has been microfilmed exactly as received

67-15,905

STOCKHAM, Leo Warren, 1934-RADIATIVE HEAT TRANSFER FROM A FINITE CYLINDRICAL PARTICLE CLOUD.

The University of Oklahoma, Ph.D., 1967 Engineering, aeronautical

University Microfilms, Inc., Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

RADIATIVE HEAT TRANSFER FROM A FINITE

CYLINDRICAL PARTICLE CLOUD

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

DOCTOR OF PHILOSOPHY

ΒY

LEO WARREN STOCKHAM

Norman, Oklahoma

RADIATIVE HEAT TRANSFER FROM A FINITE

CYLINDRICAL PARTICLE CLOUD

APPROVED BY A ma 4 m

DISSERTATION COMMITTEE

ACKNOWLEDGMENTS

This course of study and research was sponsored by the United States Air Force under the supervision of the Air Force Institute of Technology.

It is a distinct pleasure for the author to express his sincere thanks and appreciation to Dr. Tom J. Love for his guidance and support throughout the complete academic program and in particular the present work.

He would also like to thank the many other persons who contributed substantially to this endeavor. Some of them were:

Other members of the Dissertation Committee, Dr. W. N. Huff, Dr. E. F. Blick, Dr. J. E. Francis, and Dr. J. A. Payne, all of whom provided encouragement and help.

Mr. Eugene Haberman, who made available the computer facilities of the Air Force Rocket Propulsion Laboratory, Edwards, California, where the major portion of the computer computation was carried out.

Mr. Phil Morosky, member of the staff of the AFRPL Computer Facility, who helped get the programs running at AFRPL and who remained the author's point of contact throughout the research period.

And, finally, my wife, Ruth and our children for their patience and understanding.

iii

ABSTRACT

The problem of radiative heat transfer from a metalized propellant rocket exhaust is of current concern to the aerospace industry. The problem involves the transfer of thermal radiation from an axisymmetric dispersion of metallic oxide particles and includes the effects of absorption, emission, and anisotropic scattering.

The present work differs from previous works in that all of the above mentioned effects are included in the analysis. Specifically this work considers thermal radiation to the base region of a finite cylindrical cloud of absorbing, emitting and anisotropically scattering particles.

A Monte Carlo model of the problem is developed which permits the radiation to orginate either within the cloud or from a black circular surface at the base of the cloud. The emitted photon (bundle of energy) is then followed through a series of probable paths until it leaves the cloud and hits or misses the base plane. Anisotropic scattering is introduced through the scattering distribution function which is characteristic of aluminum oxide dispersions.

The model is run through some twenty-six different cases and comparisons are made with regard to variations in such parameters as optical diameter, height to diameter ratio, and anisotropic versus isotropic scattering.

iv

TABLE OF CONTENTS

.

	Pe	ege
ACKNOWLED	GMENTS	iii
ABSTRACT		iv
LIST OF T	MBLES	vi
LIST OF F	FIGURES	vii
CHAPTER		
I.	INTRODUCTION	l
II.	MODEL DESCRIPTION	7
III.	THE DISTRIBUTION FUNCTIONS	18
IV.	ANISOTROPIC SCATTERING	28
v.	NUMERICAL DATA	38
VI.	ERROR ANALYSIS	90
VII.	HEAT TRANSFER CALCULATIONS	95
VIII.	DISCUSSION OF RESULTS	105
XI.	CONCLUSION AND CLOSURE	124
LIST OF F	REFERENCES	126
APPENDICI	IES	
Α.	THE COMPUTER PROGRAMS	130
в.	PROBABILITY CONSIDERATIONS	151
с.	CONFIGURATION FACTORS FROM A FINITE RIGHT CIRCULAR CYLINDER TO SURROUNDING BASE RINGS	158
D.	ISOTHERMAL CLOUD APPROXIMATION	161

v

LIST OF TABLES

Table		Page
5 - 1	Cases Considered for Emission From Cylindrical Cloud	39
5-2	Cases Considered for Emission From Black Surface at the Base of the Cylinder	40
A-1	Computer Execution Time	130

LIST OF FIGURES

.

Figure		Page
2-1	General Geometry	10
2-2	Projections of Internal Geometry	12
2 - 3	Projections of Internal Geometry	15
2 - 4	Geometry of Impact Radius	17
2 - 5	Projection of Impact Radius Geometry	17
3-1	Isotropic Scattering or Emission From a Volume Element .	20
3 - 2	Diffuse Emission From a Surface Element	20
3 - 3	Geometry of Scattering	26
3-4	Graph of Sin η s(η)	26
3 - 5	Approximation of Graph of Sin η s(η)	26
4-1	Anisotropic Scattering Coordinate Systems	29
4-2	Anisotropic Scattering Approximation	31
4-3	Scattering Function versus Polar Angle	35
4-4	Scattering Approximation versus Polar Angle	35
4-5	Rayleigh Scattering Approximation	37
6-1	Flux Ratio versus Thousands of Original Emissions	93
6-2	Flux Ratio versus Thousands of Original Emissions	94
8-1	Scattering Comparison, Optical Diameter .5, Emission From Base Surface	106
8-2	Scattering Comparison, Optical Diameter 1.0, Emission From Base Surface	107

····· ·

8-3	Scattering Comparison, Optical Diameter 2.0, Emission From Base Surface	108
8-4	Scattering Comparison, Optical Diameter 5.0, Emission From Base Surface	109
8 - 5	Scattering Comparison, Optical Diameter 10.0, Emission From Base Surface	110
8-6	Height to Diameter Ratio Comparison, Optical Diameter 2.0, Emission From Base Surface, Isotropic Scattering	111
8-7	Radiative Equilibrium and Scattering, Optical Diameter 2.0, Emission From Base Surface	112
8-8	The Effect of Optical Diameter, Emission From Base Surface, Isotropic Scattering	113
8-9	The Effect of Optical Diameter on Energy Ratio, Emission From Cloud, Isotropic Scattering	1.14
8-10	The Effect of Height to Dismeter on Energy Ratio, Emission From Cloud, Isotropic Scattering	115
8-11	Scattering Comparison, Optical Diameter 2.0, Emission From Cloud	116
8-12	Scattering Comparison, Optical Diameter 5.0, Emission From Cloud	116
8-13	Comparison of Apparent Emittance for Several Cloud Shapes	118
8-14	Spectral Apparent Emissivity versus Optical Diameter	121
B-1	Graph of f(x)	157
B-2	Graph of F(x)	157
C-1	Configuration Factor Geometry	160
C-2	Configuration Factor Geometry	160

CHAPTER I

INTRODUCTION

For many years physical scientists have concerned themselves with the analysis of radiant energy transport through absorbing and scattering media. Until recently, however, engineers considering thermal effects have not been greatly involved with it. Now, largely through the impetus of aerospace requirements, engineers find themselves with a need to accurately predict radiative heating through a variety of such media in diverse configurations.

One such engineering problem is the prediction of the radiant heating of a spacecraft structure which views a rocket exhaust plume. The problem is particularly significant in connection with the use of metalized solid propellant rocket motors. A detailed review of the theory of thermal radiation as it relates to rocket exhaust plumes has recently been given by Rochelle (1). A less comprehensive but very clear discussion of the state of knowledge of the solid rocket problem is given by Carlson (2).

The current work is motivated by the rocket exhaust heating problem. However, in view of the existance of (1) and (2) no useful purpose would be served by a detailed review of the problem here. Hence, the discussion will be confined to those areas necessary to set the stage for this work.

The general formulation of the problem of radiative heat transfer in absorbing, emitting, and scattering media is thoroughly covered in the literature. The works of Love (3) and Sparrow and Cess (4) are specific examples. An excellent treatment of electromagnetic scattering is available in the work by Van de Hulst (5) and treatments of a variety of the aspects of scattering are contained in the work edited by Kerker (6).

The specific problem to be treated in this work is the radiative heat transfer from a finite cylindrical cloud of particles which absorb, emit and scatter radiation. The radiation can originate either within the cloud or from a black circular surface at the base of the cloud.

There are several methods which have been applied to related heat transfer problems involving scattering. Among these are the method of quadratures used by Love (7) and Love and Hsia (8), the numerical solution of Evans, Chu, and Churchill (9), and the two step procedure developed by Edwards and Bobco in (10) and applied by Bobco in (11).

In (7) Love studied the effect of anisotropic scattering on the heat transfer between plane diffuse walls and a medium which was either isothermal or in radiative equilibrium. The medium was infinite in extent in two dimensions and either finite or semi-infinite in the third. The work of Love and Hsis (8) essentially extended the previous work to cases in which - specified temperature distribution existed in the medium. The quadrature method involves replacing the scattering integral, appearing in the integrodifferential equation as written along a line of sight, by a Gaussian quadrature. This reduces the problem to the solution of a set of first order non homogeneous differential equations.

In (9) Evans, Chu and Churchill consider anisotropic scattering in parallel plane dispersions of finite thickness. The dispersions have free boundaries. The technique used involves a reduction of the integrodifferential equation to a set of integral equations. The integral equations are solved by numerical iteration using a Gaussian quadrature for the integrals. Scattering is limited to scattering functions which can be approximated by a very few terms of a series of Legendre polynomials.

The method of Edwards and Bobco (10) obtains a first order solution from the ordinary diffusion approximation and boundary conditions which are satisfied in the mean. This solution is then used in the "source term" (emission plus scattering) of the formal equation of transfer along with the exact boundary conditions to obtain a second order solution. In (11) Bobco applies this method to obtain solutions for a two dimensional, semi-infinite slab. Scattering is isotropic. In (12) the method is applied to a semi-infinite cone but the isotropic scattering restriction remains.

All of the above mentioned techniques incorporate either plane parallel geometry or isotropic scattering as a simplification. Means by which these restrictions can be removed and still permit a solution are not obvious.

A fourth method of solution is the Monte Carlo technique, which has recently been applied to radiative heat transfer by Perlmutter and Howell (13, 14, 15) and Corlett (16). An excellent description is given by Howell in (17). Although this method previously had not been applied to heat transfer problems involving scattering, the extension seemed

tractable. The flexibility of the method seemed particularly attrac-

The particles in the cloud considered in this work are of aluminum oxide and were chosen to be in distributions believed typical of aluminized propellant rocket exhausts. Experimental data on the optical properties of alumina at rocket exhaust temperatures have been obtained by Gryvnsk and Burch (18), Carlson (19) and Adams (20). Mie theory calculations for absorption and scattering coefficients have then reported by Bauer and Carlson (21) and Plass (22, 23). Bauer and Carlson present their calculations averaged over particle distributions believed typical of those occuring in rocket exhausts. Plass gives values as a function of particle radius. The values obtained by Plass (23) using the data of (18) are believed to be the most accurate available for alumina (1). Barthy and Bauer (24) present calculations based on (18) and averaged over suitable particle distributions. In addition, they present curves showing the angular scattering for these particle distributions. For this work an angular scattering distribution is required and the one chosen is based on the shape of those in (22). It should be noted that Love and Wheasler (25) and Love and Beattie (26) have experimentally obtained similarly shaped angular scattering distributions for particle clouds of aluminum, carbon, glass, silica and iron.

Among currently published practical methods of calculating radiative heat transfer from metalized rocket plumes are the methods of Fontenot (27), Morizumi and Carpenter (28), Bartky and Bauer (24) and Edwards and Bobco (12). The first three are thoroughly discussed in both (1) and (2). Fontenot assumes a single particle size and neglects all effects of scattering.

Morizumi and Carpenter use a neutron scattering analogy in an infinite cylindrical cloud to relate particle absorption to extinction ratio and cloud emittance. Heat transfer is calculated using an effective temperature and a configuration factor from surface elements of the cloud to the point of interest. Scattering is isotropic.

Bartky and Bauer discuss the application of solutions of the isothermal slab to the rocket exhaust problem. They indicate that a one dimensional beam approximation along a line of sight offers promise for handling inhomogeneous plumes if the plume is divided into increments in which the density, pressure and temperature do not change appreciably.

The isotropic scattering restriction to the work of Edwards and Bobco has been previously mentioned.

In addition to radiation originating from emission within the exhaust plume Carlson (2) points out another complication which should be considered. In (29) Carlson et al., show that "searchlight" emission, "transport of chamber emitted radiation into the plume with subsequent scattering by the particle cloud to the surroundings," may be important. The inclusion of this effect in the above mentioned methods of solution would appear to be extremely difficult.

In his closing remarks Howell (17) makes the following conclusion. "Monte Carlo appears to have a definite advantage over other radiativetransfer calculation techniques when the difficulty of the problem being treated lies above some undefined level. Just where this level is cannot be established, probably being a function of the experience, competence, and prejudice of the individual working the problem. However, problems above this nebulous benchmark in complexity can be treated with

greater flexibility, simplicity, and speed."

It is the opinion of this investigator that cylindrical geometry, anisotropic scattering and searchlight effect combine to elevate this problem above that "nebulous benchmark".

CHAPTER II

MODEL DESCRIPTION

General Description

The Monte Carlo method is applied to calculate the radiative transfer from a finite cylindrical cloud of particles to the cylinder base region. The radiation originates either from uniformly distributed isotropic emission within the particle cloud or from a black circular surface at the base of the cloud. The radiative flux to a series of rings, concentric with the cylinder and lying in the base plane, is calculated. Directional properties of the cloud emittence are not determined.

The particles are assumed to be uniformly distributed throughout the cloud. Scattering is either isotropic or anisotropic and multiple scattering is included. The optical depth (diameter), scattering to extinction ratio, particle mass and size distribution, cylinder height to diameter, and scattering function are chosen consistant with each other and remain constant for a given calculation.

Continuum thermal radiation from the surface or the particles is the only mode of energy transport. The boundaries of the cylindrical cloud are considered free.

Monte Carlo Application

The Monte Carlo method used in this work consists of following, one

at a time, a large number of photons, or bundles of energy, through a cylindrical particle cloud from suitably chosen emission points along probable paths until they leave the cloud and either hit or miss the base plane. At each decision point along the path the subsequent direction and length of travel are selected in accordance with the appropriate probability distribution functions (see Chapter III). In this model a photon is considered to be emitted from an appropriately chosen point in a direction randomly chosen from a distribution representing either isotropic emission if from a volume element or diffuse emission if from a surface element. The maximum distance which a photon could travel along this direction and remain in the cloud is then calculated. This maximum path length is compared with a probable path length chosen randomly according to the appropriate distribution function. If the probable path length is greater than the maximum path length, the photon is considered to exit the particle cloud. If the exit direction of travel intersects the base plane, the impact radius is calculated and recorded. If its direction of travel takes it away from the base plane it is recorded as a miss.

If the probable path length is less than the maximum path length the photon is scattered or absorbed. This is considered to take place at a point which is a distance equal to the probable path length along the maximum path direction. The decision as to whether the photon is absorbed or scattered is based on the scattering to extinction ratio. If the photon is absorbed and the cloud is considered in radiative equilibrium a new photon is immediately emitted from the same point in an appropriately determined direction since there can be no heat accu-

mulation in the cloud. If the photon is scattered, a direction of scattering is chosen according to the scattering function. In either case, once the new direction is determined, the calculations proceed as before and continue cycling until the photon leaves the cloud and either hits or misses the base plane. A new photon history is begun after each hit or miss.

If the photon is absorbed and the cloud not considered in radiative equilibrium, the photon history is terminated immediately and a new history begun.

Model Geometry

The geometry of the model used in this investigation is depicted in Figure 2-1. The model consists of a finite right circular cylinder and the infinite plane through its base. A cylindrical coordinate system has its origin at the midpoint of the base of the cylinder with the z axis coinciding with the axis of the cylinder. The reference direction from which the szimuthal coordinate angle is measured is taken as the x direction of a right handed orthogonal cartesian system whose origin and z axis coincide with those of the cylindrical system. The x direction is arbitrarily located and fixed. The direction of departure from any given point (z_1, Φ_1, r_1) is given in a spherical coordinate system centered at the point and having as its reference for azimuthal angle (θ) a direction parallel to the above mentioned x direction and as its reference for polar angle (η) a direction parallel to the axis of the cylinder. The distance in the direction (θ, η) from the point (z_1, Φ_1, r_1) to the surface of the cylinder is called the maximum path length $\boldsymbol{\ell}_{m}$. The probable distance a photon would travel

Figure 2-1. General Geometry

on any given trial is called the probable path length l_p . If the probable path length is less than the maximum path length, the photon is assumed to travel a distance l_p in the direction (θ , η) to a new point (z_2, θ_2, r_2) at which a new direction of departure must be determined.

If the probable path length were greater than the maximum path length the photon would leave the cloud and would be considered to travel in a straight line until it hit the base plane $(\eta > 90^{\circ})$ or be counted as a miss $(\eta \le 90^{\circ})$.

To follow photons from point to point through the cloud one must have expressions for r_2 , z_2 , Φ_2 in terms of r_1, z_1 , Φ_1 , ℓ_p , ℓ_m . These are obtained next.

The projection of the internal geometry on the base plane is shown for several values of r_1 , Φ_1 and θ in Figure 2-2. Note that for given values of r_1 , Φ_1 and θ the triangle with sides R, b, r_1 is completely determined. Note also that the angle θ can be considered to be the sum of the angle Φ_1 and an angle ζ where it is understood that θ is the principle value of the angle represented by this sum. Therefore

 $\zeta = \theta - \Phi_{1}, \ \theta > \Phi_{1}$ $\zeta = \theta - \Phi_{1} + 2\pi, \ \theta < \Phi_{1}$

The angle α is

$$\alpha = | \pi - \zeta |$$

Since $\cos x = \cos (-x)$

 $\cos \alpha = \cos (\pi - \zeta)$

or

$$\cos \alpha = -\cos (\zeta)$$

Finally, substituting for ζ gives

 $\cos \alpha = -\cos \left(\theta - \Phi_{1}\right) \qquad (2-1)$

Assuming for the moment that the maximum path length intersects the vertical surface of the cylinder, the length b represents the projection of $\boldsymbol{\ell}_m$ on the base plane.

$$b = l_m \sin \eta$$

Since R, r_1 , and cos α are known the value of b can be calculated using the law of cosines.

$$R^2 = b^2 + r_1^2 - 2br_1 \cos \alpha$$

or

$$b^2 - (2r_1 \cos \alpha)b + (r_1^2 - R^2) = 0$$

Applying the quadratic formula gives

$$b = r_1 \cos \alpha + (r_1^2 \cos^2 \alpha + (R^2 - r_1^2))^2$$

and since

 $R \stackrel{\geq}{=} r_1$

this is of the form

$$b = s \pm (s^2 + m^2)$$

Therefore since b is a scalar length and must be positive it is necessary to choose the positive root.

$$b = r_{1} \cos \alpha + (r_{1}^{2} \cos^{2} \alpha + (R^{2} - r_{1}^{2}))^{\frac{1}{2}}$$
(2-2)

The maximum path length is therefore

$$l_m = b/\sin \eta$$
 (2-3)

If the direction of the path takes the photon out the top or bottom of the cylinder the value for ℓ_m as calculated above will be too large. The essiest way to determine whether this situation exists in the case of exit through the top is to compare the value of $z_1 + \ell_m x$ cos η and the height (H) of the cylinder. If $z_1 + \ell_m \cos \eta$ is greater then the height of the cylinder then the path leads through the top of the cylinder. The correct value for ℓ_m would then be

$$\boldsymbol{\ell}_{\underline{m}} = (\mathbf{H} - \mathbf{z}_{\underline{1}}) / \cos \eta \qquad (2-4)$$

If $z + \ell_m \cos \eta$ is negative, the path leads through the bottom of the cylinder. In this case

$$t_{\rm m} = -z_{\rm l} / \cos \eta \qquad (2-5)$$

It is important to notice that for given Φ_1 , θ and r_1 , the direction of the projection of ℓ_m on the base plane is fixed. Hence neither the distance traveled along ℓ_m nor the fact that ℓ_m intersects the top or bottom of the cylinder will have any effect on the angle α .

If a photon is scattered or absorbed at some point (r_2, Φ_2, z_2) on its path from (r_1, Φ_1, z_1) , it will be as a result of the value ℓ_p , which is obtained from probability considerations, being less than ℓ_m . The path will be in the given direction, however, and its projection on the base plane will be shorter but coincide with b. This projection is shown as c in Figure 2-3. It will have the value

$$c = l_p \sin \eta$$
 (2-6)

The values c, cos α , and r_1 completely determine the triangle with sides r_1 , r_2 , c. Hence the value of r_2 can be calculated using the law of cosines.

$$r_2 = + (c^2 + r_1^2 - 2cr_1 \cos \alpha)^{\frac{1}{2}}$$
 (2-7)

The value of z_2 is simply the sum of the z_1 value of the starting point and the vertical component of ℓ_p . (Figure 2-1)

$$\mathbf{z}_{2} = \mathbf{z}_{1} + \boldsymbol{\ell}_{p} \cos \eta \qquad (2-8)$$

The szimuthal angles Φ_1 and Φ_2 are related through the angle β between r_1 and r_2 . Figure 2-3 shows β . From the law of cosines

$$\cos \beta = \frac{-1}{2r_1r_2} (c^2 - r_1^2 - r_2^2)$$

and from the law of sines

$$\sin \beta = (c/r_2) \sin \alpha$$

In principle β could be calculated from either of the above equations. However, since some computer programming languages do not incorporate the inverse sine and inverse cosine functions but dc recognize the inverse tangent it is convenient to calculate β from

$$\beta = \tan^{-1} (\sin \beta / \cos \beta)$$

$$\beta = \tan^{-1} [(-2cr_1 \sin \alpha) / (c^2 - r_1^2 - r_2^2)] \qquad (2-9)$$

The principle values of the angle generated by the arctangent function in a computer lie between $-\pi/2$ and $+\pi/2$. Since β has the range $0 \leq \beta \leq \pi$ it is necessary to add π to the angle generated by the computer if it is negative.

The value of
$$\Phi_2$$
 can be calculated from

$$\Phi_2 = \Phi_1 + \beta \quad 0 \leq \zeta \leq \pi \quad (2-10)$$

 \mathbf{or}

$$\Phi_2 = \Phi_1 - \beta \qquad \pi \leq \zeta \leq 2\pi \qquad (2-11)$$

where it understood that Φ_2 is the principle value of the angle. ($0 \leq \Phi_2 \leq 2\pi$)

The radius to impact is derived from Figures 2-4 and 2-5 as

$$R_{h} = (c^{2} + r_{1}^{2} - 2cr_{1} \cos \alpha)^{\frac{1}{2}}$$
 (2-12)

where

$$c = z_1 \tan(\pi - \eta) = -z_1 \tan \eta$$
 (2-13)

Figure 2-5. Projection of Impact Radius Geometry

CHAPTER III

THE DISTRIBUTION FUNCTIONS

Emission Point Selection

A differential volume element of a right circular cylinder can be expressed as

To select emission points in such a fashion that they will be uniformly distributed throughout the cylindrical cloud requires that the ratio of the number of points in dV to the total number of points selected be the same as the ratio of dV to the cylinder volume. Hence

$$\frac{N_{dV}}{N_{T}} = \frac{r \ dr \ d\Phi \ dz}{\pi R^{2} H}$$

The fact that

$$\begin{array}{c} H & 2\pi & R \\ \hline & & \\ &$$

and that

$$f(r, \Phi, z) = \frac{r}{\pi R^2 H} \ge 0$$

makes $f(r, \Phi, z)$ the joint probability density function. Since $f(r, \Phi, z) dr d\Phi dz$ can be written as

$$(\frac{2rdr}{R^2})(\frac{d\Phi}{2\pi})(\frac{dz}{H})$$

r, Φ , z are independent variables in the probability sense. Hence their individual distribution functions are

$$F(r) = \int_{0}^{r} \frac{2r}{R^{2}} dr = \frac{r^{2}}{R^{2}}$$
$$F(\Phi) = \int_{0}^{\Phi} \frac{d\Phi}{2\pi} = \frac{\Phi}{2\pi}$$
$$F(z) = \int_{0}^{z} \frac{dz}{H} = \frac{z}{H}$$

It is shown in Appendix B that the required probability distribution can be satisfied by taking the distribution function equal to a large number of random numbers. Therefore

$$r = R \sqrt{R_r}$$
(3-1)

ł

$$\Phi = 2\pi R_{\bar{\Phi}}$$
(3-2)

$$z = H R_{\perp}$$
(3-3)

where $R_{\rm c}$ denotes a random number for x.

The selection of emission points uniformly distributed over the base of the cylinder is accomplished by setting z = 0.

Direction of Emission from a Volume Element

For isotropic emission from a volume element the number of photons reaching an element of the surface area of a unit sphere surrounding the volume element must be proportional to the area of the surface element. Hence the ratio of the number hitting a differential surface element to the total number of photons hitting the sphere must equal the ratio of the area of the differential element to the area of the sphere. From Figure 3-1

Figure 3-1. Isotropic Scattering or Emission from Volume Element

Figure 3-2. Diffuse Emission from a Surface Element

$$\frac{\frac{N}{s}}{N_{T}} = \frac{\sin \eta \, d\eta \, d\theta}{4\pi}$$

The fact that

$$\int_{0}^{2\pi} \int_{0}^{\pi} \frac{\sin \eta \, d\eta \, d\theta}{4\pi} = 1$$

and

$$\frac{\sin \eta \, d\eta \, d\theta}{4\pi} \ge 0$$

and

$$\frac{\sin \eta \, d\eta \, d\theta}{4\pi} = \left(\frac{\sin \eta \, d\eta}{2}\right) \left(\frac{d\theta}{2\pi}\right)$$

shows that the probability density functions for η and θ are

$$f(\eta) = \frac{\sin \eta}{2}$$
, $f(\theta) = \frac{1}{2\pi}$

These can be satisfied by setting the corresponding distribution functions equal to random numbers. Hence

$$\cos \eta = 1 - 2R_{\eta} \qquad (3-4)$$

$$\theta = 2\pi R_{\theta} \qquad (3-5)$$

Direction of Emission of a Photon from a Diffuse Surface

In the case of a diffuse emission from a surface the intensity (I) of the radiation is independent of direction. The geometry under consideration is shown in Figure 3-2. Since the intensity is not a function of direction the energy per unit time incident on a differential surface element of a unit hemisphere above dA can be expressed as

$$dE = I \cos \eta dw dA = I \sin \eta \cos \eta d\eta d\theta dA$$

The total energy per unit time incident on the surface of the hemisphere is then

$$E = \int_{2\pi}^{2\pi} \frac{\pi}{2}$$

$$E = \int_{2\pi}^{2\pi} dE = dA I \int_{0}^{2\pi} \sin \eta \cos \eta d\eta d\theta$$

$$E = 2\pi dA \left[\frac{\sin^2}{2}\right]^{\pi/2} = \pi dAI$$

The fraction of the total number of photons or bundles of equal energy emitted by dA which strike ds, a differential surface element is

$$\frac{N_{ds}}{N_{T}} = \frac{dE}{E} = \frac{I \sin \eta \cos \eta d\eta d\theta dA}{\pi I dA}$$
$$\frac{N_{ds}}{N_{T}} = \frac{\sin \eta \cos \eta d\eta d\theta}{\pi}$$

Noting that

$$\frac{2\pi \pi/2}{\int_{0}^{\pi} \frac{\sin \eta \cos \eta d\eta d\theta}{\pi} = 1$$

and that

$$\frac{\sin \eta \cos \eta}{\pi} \ge 0$$

gives the probability density functions for η and θ as

$$f(\eta) = 2 \sin \eta \cos \eta$$
$$f(\theta) = \frac{1}{2\pi}$$

Hence

$$F(\theta) = \frac{\theta}{2\pi}$$

ənd

$$F(\eta) = \sin^2 \eta$$

θ

These can be satisfied by taking

$$= 2\pi R_{o} \qquad (3-6)$$

and

Since
$$\sin^2 \eta = 1 - \cos^2 \eta$$
 one could also take

 $\cos \eta = \sqrt{1 - R_{\eta}}$

 $\sin^2 \eta = R_{\eta}$

or since 1 - R_{η} is just another set of random numbers

$$\cos \eta = \sqrt{R_{\eta}}$$
 (3-7)

Probable Path Length

In traversing a path through an absorbing and scattering medium a beam of photons is attenuated in proportion to its intensity and the optical depth of the path.

Let N be the number of photons at length ℓ

 N_{O} be the number of photons at ℓ = 0

- 8 be the mass extinction coefficient
- ρ be the mass density of the particle cloud

Then

Integrating between o and $\ell,$ assuming $\rho\beta$ constant gives

$$\int_{N_{O}}^{N} \frac{dN}{N} = -\rho\beta \int_{O}^{L} d\ell$$

and

 $\ln (N/N_{O}) = -\rho\beta\ell$

The fraction of the number of photons originally incident which remain at $\boldsymbol{\ell}$ is then

$$N/N_{o} = e^{-\rho\beta\ell}$$

The fraction removed at or prior to L is thus

$$1 - N/N_0 = 1 - e^{-\rho\beta l}$$

This can be thought of as the probability that the path length will be less than or equal to l, and as such is the distribution function for l.

$$F(\ell) = 1 - e^{-\rho\beta\ell}$$

Hence one may choose values of probable path length $\boldsymbol{\ell}_{n}$ from

$$R_{t_p} = 1 - e^{-\rho\beta t_p}$$

giving

$$\boldsymbol{\ell}_{\mathrm{p}} = -\frac{1}{\rho\beta} \ln (1 - R_{\boldsymbol{\ell}_{\mathrm{p}}})$$

or since 1 - R, is simply another set of uniformly distributed random numbers

$$\ell_{\rm p} = -\frac{1}{\rho\beta} \ln R_{\ell_{\rm p}} \tag{3-8}$$

In this work a principle parameter is the optical diameter of the cylinder. The cylinder is given a physical diameter of two. Thus

$$\rho\beta D = TAU = 2\rho\beta$$

Substituting in (3-8) for $\rho\beta$ gives

$$\boldsymbol{\ell}_{p} = -\frac{2}{TAU} \ln \boldsymbol{R}_{\boldsymbol{\ell}_{p}}$$
(3-9)

It should be noted that this represents the path length in a uniform medium. Since the cylinder has definite but free boundaries, if ℓ_p is greater than the distance to the cylinder boundaries, the photon is considered to exit the cloud.

Scattering Direction

The scattering function $s(\eta, \theta)$ is defined such that the probability of a photon, which is scattered by a particle, leaving in a direction contained in the solid angle dw' about a direction (η, θ) with respect to the direction of incidence is given by

$$s(\eta,\theta) \frac{d\omega'}{4\pi}$$
 (3-10)

The geometry is illustrated in Figure 3-3. Expression (3-10) can be

written as

$$\frac{1}{4\pi}$$
 s(N,0) sin N dN d0

which can be written

$$\left(\frac{1}{2} s(\eta) \sin \eta \, d\eta\right)\left(\frac{1}{2\pi} \, d\theta\right) \tag{3-11}$$

for the axisymmetric scattering functions used in this work. In view of (3-11) and since (3-10) integrated over 4π is equal to one,

$$f(\eta) = \frac{1}{2} s(\eta) \sin \eta$$
$$f(\theta) = \frac{1}{2\pi}$$

are probability density functions for η and θ respectively. Thus

$$R_{\theta} = \frac{1}{2\pi} \int_{0}^{\theta} d\theta = \frac{\theta}{2\pi}$$
(3-12)

ənd

$$R_{\eta} = \frac{1}{2} \int_{0}^{\eta} s(\eta) \sin \eta \, d\eta \qquad (3-13)$$

For isotropic scattering $s(\eta) = 1$ so that η

$$R_{\eta} = \frac{1}{2} \int_{O}^{\eta} \sin \eta \, d\eta$$

or

$$\cos \eta = 1 - 2 R_{\eta} \qquad (3-14)$$

which is the same as (3-4) for volumetric emission.

As an approximation to the anisotropic case, one can plot the graph of $s(\eta) \sin \eta$ for $0 \le \eta \le \pi$ as in Figure 3-4 and approximate the graph by triangles and rectangles as in Figure 3-5. The sum of the areas of the triangles and rectangles is the total area (A_T) under the curve. Hence one can let

$$A(\eta) = R_{\eta} A_{T}$$

Figure 3-5. Approximation of Graph of $Sin\eta S(\eta)$

and solve for the η which gives the correct value for A. This is the approach used in this work.
CHAPTER IV

ANISOTROPIC SCATTERING

Coordinate Transformation for Anisotropic Scattering

For anisotropic scattering the scattering function is symmetric with respect to the incident direction of the photon and can be described in terms of a polar angle (η) measured with respect to the incident direction. Since the incident direction will not normally coincide with the vertical it is necessary to obtain relations for the polar and azimuthal angles (η_1 , θ_1) of the direction of scatter as measured in the usual reference coordinate system in terms of the direction of scatter (η , θ) measured in the anisotropic scattering system and the direction of incidence (η_0 , θ_0) measured in the reference system. The angles involved are illustrated in Figure 4-1.

Consider a unit vector in the direction of scatter (P). Let R_x , R_y , R_z be its components in the scattering coordinates and R_x , R_y , R_z be its components in the reference coordinates.

Then

$$R_{x} = \sin \eta \cos \theta$$

$$R_{y} = \sin \eta \sin \theta \qquad (4-1)$$

$$R_{z} = \cos \eta$$

ənd

$$R_{X} = R_{x} \sin \theta_{o} + R_{y} \cos \eta_{o} \cos \theta_{o} + R_{z} \sin \eta_{o} \cos \theta_{o} \qquad (4-2)$$

$$R_{Y} = -R_{x} \cos \theta_{o} + R_{y} \cos \eta_{o} \sin \theta_{o} + R_{z} \sin \eta_{o} \sin \theta_{o}$$

$$R_{Z} = -R_{y} \sin \eta_{o} + R_{z} \cos \eta_{o}$$

In equations (4-2) use has been made of the Eulerian angles for locating one set of Cartesian coordinates with reference to another set having the same origin.

The components in the reference system can also be expressed as

$$R_{X} = \sin \eta_{1} \cos \theta_{1}$$

$$R_{Y} = \sin \eta_{1} \sin \theta_{1}$$

$$R_{Z} = \cos \eta_{1}$$
(4-3)

Hence from (4-3), using the relation

$$\tan x = \sin x / \cos x$$

one obtains

$$\theta_1 = \tan^{-1} \left(\frac{R_y}{R_X} \right) \tag{4-4}$$

$$\eta_{1} = \tan^{-1} \left[R_{X}^{/} (R_{Z} \cos \theta_{1}) \right]$$
 (4-5)

The solution is obtained by solving equations (4-1) and (4-2) for R_{χ} , R_{γ} , and R_{Σ} and using these values in (4-4) and (4-5).

Approximation Technique

The method of approximating the distribution function for anisotropic scattering is outlined in the last section of Chapter III. This section is devoted to the derivation of specific expressions for the polar angle η .

The expressions used for calculating η in the approximation for anisotropic scattering are derived with the aid of Figure 4-2. By comparing the value of the product of the total area (A_T) and the ran-

Figure 4-2. Anisotropic Scattering Approximation

dom number (R_{η}) with the partial sums of the individual areas in Figure 4-2a one can determine the points between which η must lie. The problem thus is reduced to deriving an expression for η corresponding to each of the conditions in Figure 4-2b, c, d, e.

Consider Figure 4-2b. s is the area of a triangle.

$$\mathbf{s} = \mathbf{R}_{\eta} \mathbf{A}_{\mathrm{T}} = \frac{1}{2} \eta^2 \frac{\mathbf{j}}{\mathbf{s}}$$

and since $0 \leq \eta$

$$\eta = + (2 R_{\eta} A_{T} \frac{a}{j})^{\frac{1}{2}}$$
 (4-6)

Equation (4-6) gives the correct value for η less than a.

The expressions for η between a and b, b and c, and c and d will be similar. The expression valid for $a < \eta < b$ is derived below.

Consider Figure 4-2c. The area s is the sum of the areas of a triangle and a rectangle. Hence

$$s = R_{\eta} A_{T} - a_{l} = \frac{1}{2} \left[j - (j - (\frac{j - h}{b - a})\eta_{a}) \right] \eta_{a} + (j - (\frac{j - h}{b - a})\eta_{a})\eta_{a}$$
$$= j\eta_{a} - \frac{1}{2} \left(\frac{j - h}{b - a} \right) \eta_{a}^{2}$$

Therefore

$$\eta_{g}^{2} - 2j \left(\frac{b-a}{j-h}\right)\eta_{g} + 2\left(\frac{b-a}{j-h}\right)\left(R_{\eta}A_{T} - a_{l}\right) = 0$$

Letting

$$s_{2} = (b - a) / (j - h)$$

gives

$$\eta_{a}^{2} - 2j s_{2}\eta_{a} + 2 s_{2} (R_{\eta} A_{T} - s_{1}) = 0$$

Applying the quadratic formula gives

$$\eta_{g} = js_{2} \pm \left[(js_{2})^{2} - 2s_{2} (R_{\eta} A_{T} - s_{1}) \right]^{\frac{1}{2}}$$
(4-7)

Now

$$js_2 = j(\frac{b-a}{j-h}) > j(\frac{b-a}{j}) = b - a$$

And since

 $0 \leq \eta_a \leq (b - a)$

One must choose the negative root in Equation (4-7). Thus

$$\eta = a + js_2 - \left[(js_2)^2 - 2s_2 (R_\eta A_T - a_1) \right]^{\frac{1}{2}}$$
(4-8)

is the expression sought.

For $b < \eta < c$

$$\eta = b + hs_{\downarrow} - \left[(hs_{\downarrow})^{2} - 2s_{\downarrow}(R_{\eta} A_{T} - c_{\downarrow}) \right]^{\frac{1}{2}}$$
(4-9)
$$s_{\downarrow} = (c - b) / (h - g)$$

$$c_{\downarrow} = s_{\downarrow} + s_{2} + s_{3}$$

For $c < \eta < d$

$$\eta = c + gs_{6} - \left[(g\varepsilon_{6})^{2} - 2s_{6} (R_{\eta} A_{T} - c_{2}) \right]^{\frac{1}{2}}$$
(4-10)
$$s_{6} = (d - c) / (g - f)$$

$$c_{2} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5}$$

The expression for $d < \eta < e$ is derived using Figure 4-2d. The area(s) is again considered as the sum of the areas of a rectangle and a triangle.

Defining

$$c_{3} = c_{2} + a_{6} + a_{7}$$

$$s = R_{\eta} A_{T} - c_{3} = \eta_{g} f + \frac{1}{2} \eta_{g} \left(\frac{i - f}{e - d}\right) \eta_{g}$$
or

$$\eta_{g}^{2} + 2f s_{8} \eta_{g} - 2s_{8} (R_{\eta} A_{T} - c_{3}) = 0$$
 (4-11)

where

$$s_8 = (e - d) / (i - f)$$

$$\eta_{a} = -fs_{8} + \left[(fs_{8})^{2} + 2s_{8} (R_{\eta} A_{T} - c_{3}) \right]^{\frac{1}{2}}$$
(4-12)

where the positive root is required because of the negative first term and the necessity for positive $\eta_{\rm p}$.

Thus

$$\eta = d - fs_8 + \left[(fs_8)^2 + 2s_8 (R_\eta A_T - c_3) \right]^{\frac{1}{2}}$$
(4-13)

The final expression for $e < \eta < \pi$ comes from Figure 4-2e.

$$p = \frac{1}{2} (\pi - \eta) \frac{i}{(\pi - e)} (\pi - \eta) = (1 - R_{\eta})A_{T}$$
$$(\pi - \eta)^{2} = 2(\pi - e)(1 - R_{\eta})A_{T}/i$$
$$\eta = \pi - \left[2(\pi - e)(1 - R_{\eta})A_{T}/i\right]^{\frac{1}{2}}$$

Defining

$$s_{10} = \left[2(\pi - e)A_{T} / i \right]^{\frac{1}{2}}$$

$$\eta = \pi - s_{10} (1 - R_{\eta})^{\frac{1}{2}}$$
(4-14)

The Anisotropic Scattering Function

The anisotropic scattering function used in this work is believed to be representative of the scattering function of a distribution of aluminum oxide particles in a rocket exhaust. Bartky and Bauer in reference (24) present scattering function curves for two representative particle distributions at a temperature of 1700[°] C and for several wavelengths of radiation. The curves all have the same general shape.

The scattering function chosen for this work has the same general shape as those of Bartky and Bauer and is shown in Figure 4-3. The shape is assumed not to vary with temperature or wavelength of radiation.

The scattering function approximation as described in the preceding section is applied (see Figure 4-4) giving the following values for the approximation parameters.

8	н	8	f	=	1
Ъ.	=	20	g	=	20
с	=	60	h	=	40
đ	=	120	i	8	12
е	8	170	j	=	80

Rayleigh Scattering Approximation

The Rayleigh scattering function is commonly expressed as $\frac{3}{4}(1 + \cos^2\eta)$ where η is the polar angle between the direction of incidence and the direction of scatter. For this scattering function the probability density function for η is

$$f(\eta) = \frac{3}{8}(1 + \cos^2 \eta) \sin \eta$$
 (4-15)

Applying the scattering approximation to (4-15), see Figure 4-5, gives the following values for the approximation parameters.

8	-	45	f	=	•98
Ъ	=	45.01 ¹	g	=	1.1395
с	=	45.02	h	=	1.13971
đ	H	-90	i	=	1.140
е	H	135	j	=	1.140

¹These values are essentially 45 or 1.140. They are used to eliminste two sets of triangles and rectangles from the approximation without encountering internal difficulties which would occur in the computer program if b = c = a and g = h = j.

Figure 4-5. Rayleigh Scattering Approximation

CHAPTER V

NUMERICAL DATA

The numerical data presented in this section consists of the computer output for the various cases considered. The data is presented in tabular (computer printout) and graphical form.

The computer output listings are largely self explanatory. The values indicated for A through J are the parameters for the anisotropic scattering approximation described in Chapter IV. The number of emissions corresponds to the number of photons traced from original emission to exit from the cloud. The number "OUTSIDE" is the number of hits in the base plane outside the area covered by the rings.

In the case of emission from the surface the value given for each ring is the ratio of the number of hits per unit area in the nth ring divided by the number of emissions per unit area from the base surface. This corresponds to spectral flux incident on ring n divided by the spectral flux emitted by the surface. It will be called flux ratio.

For emission from the cloud the value given for the nth ring is the number of hits in ring n divided by the product of the number of original emissions and a factor (2n - 1). Flux calculations require the (2n - 1) factor. The ratio of hits in ring n to the number of original emissions corresponds to the spectral energy incident on ring n

divided by the spectral energy leaving the cloud. It will be called energy ratio.

The graphical presentations are flux ratio vs radius ratio and energy ratio vs radius ratio. The radius ratio is the radius in the base plane, from the center of the cloud to the point considered, divided by the radius of the cloud. The point for each ring is plotted at a radius ratio corresponding to the radius of the areal bisector of the ring. The curve through the points is the author's estimate of best fit. The cases considered are listed in Tables V-1 and V-2.

TABLE V-1

CASES CONSIDERED FOR EMISSION FROM CYLINDRICAL CLOUD

τ	н/д	σ/β	SCAT	Pages
•5	5	1	I	41,67
1	5	1	I	42,67
2	5	l	I	43,68
2	10	1	I	44 ,6 8
2	20	1	I	45,69
2	5	l	A	46,69
5	5	l	I	47,70
5	5	1	A	48,71
10	5	1	I	49,72

TABLE	V- 2
-------	-------------

CASES CONSIDERED FOR EMISSION FROM BLACK SURFACE AT BASE OF CYLINDER

· .. .

Т	н/р	σ/β	SCAT	RADEQ	Pages
•5	5	1.	I		50,73
•5	5	1	А	-	51,74
l	5	l	I	-	52 , 75
1	5	l	А	-	53 , 76
1	5	l	R	-	54,77
2	5	l	I	-	55 , 78
2	5	l	А	-	56 , 79
2	5	l	R	-	57 , 80
2	10	l	I	-	58,81
2	10	l	А	-	5 9, 82
2	20	l	I	-	6 0, 83
2	5	•5	I	No	61,84
2	5	•5	А	Yes	62,85
5	5	l	I	-	63,86
5	5	l	А	-	64,87
10	5	l	I	-	65,88
10	5	l	А	-	66,89

CYLINDER OPTICAL DEPTH	0.500	
HEIGHT TO DIAMETER RATIO	5.000	
BASE HEIGHT TO DIAMETER RATIO	-0.000	
SCATTERING TO EXTINCTION RATIO	1.000	
ISOTROPIC SCATTERING		

EMISSIONS	REEMISSIONS	ABSORPTIONS	SCATTERINGS	MISSES	OUTSIDE
200000	0	0	79228 100	144	32173

HITS/EMISSIONS/(2N-1), RING WIDTH= 0,50R

1 0.01501000	2 0.01291500	3 0.00545300	4 0.00314714
5 0.00215389	6 0.00158182	7 0.00125923	8 0.00098800
9 0.00081765	10 0.00066000	11 0.00054690	12 0.00047804
13 0.00039420	14 0.00036537	15 0.00030897	16 0.00028161
17 0.00023894	18 0.00020643	19 0.00020149	20 0.00017551
21 0.00015500	22 0.00014558	23 0.00012444	24 0.00012074
25 0.00010949	26 0.00009324	27 0.00009019	28 0.00007891
29 0.00007842	30 0.00006864	•	······································

.

CYLINDER OPTICAL DEPTH	1.000
HEIGHT TO DIAMETER RATIO	5.000
BASE HEIGHT TO DIAMETER RATIO	-0.000
SCATTERING TO EXTINCTION RATIO	1.000
ISOTROPIC SCATTERING	

EMISSIONS	REEMISSIONS	ABSORPTIONS	SCATTERINGS	MISSES	CUTSIDE	
200000	0	C	160497 1	C0330	34578	

ħ

HITS/EMISSIONS/(2N-1), RING WIDTH= 0.50R

1	0.01430500	2	0.01209666	3	0.00460400	4	0.00278286
5	0.00197500	6	0.00144682	7	0.00117615	8	0.00094067
ę	0.00077559	10	0.00065868	11	0.00055857	12	0.00047609
13	0.00039800	14	0.00036241	15	0.00030172	16	0.00027387
17	0.00024803	18	0.00021843	19	0.00020203	20	0.00017718
21	0.00015610	22	0.00015419	23	0.0013100	24	0.00012191
25	0.00012041	26	0.00010324	27	0.00008604	28	C.00008355
29	0.00007561	30	0.00007492				

CYLINDER OPTICAL DEPTH	2.000
HEIGHT TO DIAMETER RATIO	5.000
BASE HEIGHT TO DIAMETER RATIO	-0.000
SCATTERING TO EXTINCTION RATIO	1.000
ISOTROPIC SCATTERING	

EMISSIONS	REEMISSIONS	ABSORPTIONS	SCATTERINGS	MISSES	CUTSIDE
100000	0	0	173681	50022	17948

HITS/EMISSIONS/(2N-1), RING WIDTH= 0.50R

1 0.01425000	2 0.01260000	3 0.00446400	4 0.00273143
5 0.00176333	6 0.00137182	7 0.00112769	8 0.00086133
9 0.00071412	10 0.00065316	11 0.00054095	12 C.00047217
13 0.00039800	14 0.00035889	15 C.OCO31172	16 0.00027419
17 0.00023697	18 C.00022314	19 0.00020081	2C C.00017231
21 0.00016000	22 0.00014977	23 0.00013556	24 0.00012489
25 0.00010980	26 0.00009902	27 0.00009849	28 C.00009200
29 0.00008088	30 0.00007203		

£

CYLINDER OPTICAL DEPTH	2.000			
HEIGHT TO DIAMETER RATIO	10.000			
BASE HEIGHT TO DIAMETER RATIO	-0.000	 	 	
SCATTERING TO EXTINCTION RATIO	1.000			
ISOTROPIC SCATTERING		 	 	

EMISSIONS	REEMISSIONS	ABSORPTIONS	SCATTERINGS	MISSES	OUTSIDE
200000	0	0	370953 10	00079	57700

.

HITS/EMISSIONS/(2N-1),RING WIDTH= 0.50R

1 0.00684500	2 0.00593166	3 0.00213900	4 0.00131500
5 0.00098611	6 0.00076455	7 0.00065192	8 0.00053667
9 0.00045765	10 0.00040816	11 0.00033952	12 0.00030696
13 0.00029100	14 0.00026389	15 0.00022793	16 0.00020952
17 0.00018439	18 0.00017714	19 0.00016162	20 0.00015090
21 0.00014829	22 0.00012442	23 0.00012211	24 0.00010585
25 0.00010918	26 0 .00010451	27 0.00008934	28 0.00008191
29 0.00008421	30 0.00008059		

\$

CYLINDER OPTICAL DEPTH	2.000
HEIGHT TO DIAMETER RATIO	20.000
BASE HEIGHT TO DIAMETER RATIO	-0.000
SCATTERING TO EXTINCTION RATIO	1.000
ISOTROPIC SCATTERING	

EMISSIONS	REEMISSIONS	ABSORPTIONS	SCATTER INGS	MI SSE S	OUTSIDE
200000	0	0	381086	99948	71558

HITS/EMISSIONS/(2N-1),RING WIDTH= 0.50R

1 0.00471500	2 0.00392667	3 0.00142500	4 0.00089500
5 0.00061278	6 0.00048409	7 0.00039000	8 0.00034467
9 0.00029294	10 0.00025395	11 0.00022619	12 0.00020630
13 0.00018520	14 0.00017370	15 0.00014621	16 0.00013597
17 0.00013409	18 0.00011086	19 0.00011824	20 0.00011013
21 0.00009634	22 0.00008442	23 0.00008989	24 0.00008415
25 0.00007857	26 0.00007029	27 0.00007038	28 0.00006582
29 0.00006465	30 0.00005771		

CYLINDER C HEIGHT TO BASE HEIGH SCATTERING ANISOTROPI	DTICAL DE DIAMETER I It to diami to exting C scatter	PTH RATIO ETER RATIO CTION RATION ING	2 5 0 ~0 10 1	• 000 • 000 • 000			
4= 8.	.0000 8=	20.000	C= 60.0	00 D=1	20.000	E=170.000	
F= 1.	0000 G=	20.000	H= 40.0	00. I =	12.000	J= 80.000	
EMISSIONS 100000	REEMISSI 0	JNS ABSOI	RPTIONS 0	SCATTER 149866	INGS MI 9 49773	SSES DUT: 16671	SIDE

HITS/EMISSIONS/(2N-1), RING WIDTH= 0.50R

1	0.01324000	2	0.01388000	3	0.00501000	4	0.00286857
5	0.00203222	6	0.00154455	7	0.00118462	8	0.00105267
9	0.00079882	10	0.00064737	11	0.00058667	12	0.00045957
13	0.00042080	14	0.00035778	15	0.00033172	16	0.00028097
17	0.00023394	18	0.00022143	19	0.00020946	20	0.00017667
21	0.00015537	22	0.00014419	23	0.00012444	24	0.00012511
25	0.00010510	26	0.00009412	27	0.00009132	28	0.00008691
29	0.00007140	30	0.00006780				

46

A

CYLINDER OPTICAL DEPTH	5.000		
HEIGHT TO DIAMETER RATIO	5.000		
BASE HEIGHT TO DIAMETER RATIO	-0.000		
SCATTERING TO EXTINCTION RATIO	1.00 0		
ISOTROPIC SCATTERING		 	<u>.</u>

EMISSIONS	REEMISSIONS	ABSORPTIONS	SCATTERINGS	MISSES	OUTSIDE
100000	0	0	561346 4	9936	19082

HITS/EMISSIONS/(2N-1), RING WIDTH= 0.50R

1 0.01672000	2 0.01487333	3 0.00386000	4 6.00213714
5 0.00154889	6 0.00121091	7 0.00093308	8 0.00074800
9 0.00065059	10 0.00058632	11 0.00049714	12 0.00042000
13 0.00037560	14 0.00033444	15 0.00029586	16 0.00026548
17 0.00023939	18 0.00022914	19 0.00019784	2C C.00016897
21 0.00016537	22 0.00014535	23 0.00014000	24 C.00012851
25 0.00011878	26 0.00011333	27 0.00009849	28 0.00009455
29 0.00007895	30 0.00007390		

47

.

CYLINDER OPTICAL DEPTH 5.000 HEIGHT TO DIAMETER RATIO 5.000 BASE HEIGHT TO DIAMETER RATIO -0.000 1.000 SCATTERING TO EXTINCTION RATIO ANISOTROPIC SCATTERING B = 20.000 C = 60.000 D = 120.000A= 8.0000 E=170.000 F = 1.0000G= 20.000 H= 40.000 I= 12.000J = 80.000EMISSIONS REEMISSIONS ABSORPTIONS SCATTERINGS MISSES OUTSIDE 0 0 17941 100000 415554 49927 HITS/EMISSIONS/(2N-1)_RING WIDTH= 0.50R 1 0.01288000 2 0.01537666 3 0.00424200 4 0.00245714 7 0.00103923 8 0.00088733 5 0.00173778 6 0.00131818 12 0.00044522 11 0.00052333 9 0.00073647 10 0.00065053 13 0.00039320 14 0.00036519 15 0.00031621 16 0.00028065 17 0.00024515 18 0.00021457 19 0.00019108 20 0.00019436 22 0.00014209 23 0.00013533 24 0.00012255 21 0.00014805 27 0.00009340 28 0.00008309 25 9.00011510 26 0.00010078 29 0.00007368 30 0.00007610

CYLINDER OPTICAL DEPTH Height to diameter ratio	10.000 5.000	
BASE HEIGHT TO DIAMETER RATIO	-0.000	
SCATTERING TO EXTINCTION RATIO	1.000	
ISOTROPIC SCATTERING		

.

EMISSIONS REEMISSIONS ABSORPTIONS SCATTERINGS MISSES OUTSIDE 100000 0 0 1555672 49826 18637

HITS/EMISSIONS/(2N-1), RING WIDTH= 0.50R

1	0.02101000	2	0.02093000	3	0.00361200	4	0.00193429
5	0.00147778	6	0.00107727	7	0.00084692	8	0.00072467
9	0.00063765	10	0.00052632	11	0.00044381	12	0.00039913
13	0.00034480	14	0.00031778	15	0.00028552	16	0.00025355
17	0.00022212	18	0.00020143	19	0.00018730	20	0.00017179
21	0.00015585	22	0.00014256	23	0.00013178	24	0.00011915
25	0.00010204	26	0.00009745	27	0.00008906	28	0.00008655
29	0.0008000	30	0.00007102		T	.	

49

CYLINDER OPTIC Height to diam	AL DEPTH Eter Rat	10	0.500	
ISOTROPIC SCAT	TERING	UN RATIO	1.000	
EMISSIONS REE	MISSIONS	ABSORPTION	S SCATTERINGS MI	SSES OUTSIDE
200000	0	0	107194 157435	4488
FLUX RATIO,RIN	G WIDTH=	0.50R		
1 0.10465998	. 2	0.07785330	3 0.01905199	4 0.00806000
5 0.00424000	6	0.00280909	7 0.00195846	8 0.00137867
9 0.00096706	10	0.00082737	11 0.00069048	12 0.00054261
13 0.00040720	14	0.00036815	15 0.00029724	16 0.00023226
17 0.00020788	18	0.00018343	19 0.00014919	20 0.00014154
21 0.00011024	22	0.00010930	23 0.00009200	24 0.00008213
25 0.00007143	26	0.00006980	27 0.00006038	28 0.00005564
29 0.00005228	30	0.00005966		

EPISSICN FRCP BL	ACK SURFACE AT BAS	E OF CYLINDER	
CYLINCER OPTICAL Height to clamet	CEPTH Er Ratio	0.500	
SCATTERING TO EX Anisctropic scat	TINCTION RATIO Tering	1.000	
#= 8.0000	B= 20.000 C= 60	.000 C=12C.000	E=170.COC
F= 1.0000	6= 20.000 H= 40	•OCO I= 12.000	J= 80.000
200000	0 0	114252 179193	2255
FLUX RATIC,RING	NIDTH= 0.50R		·
1 0.05189999 5 0.00209111	2 0.04146665 6 0.00121636	3 C.01031200 7 C.CCC78462	4 C.00402000 E C.00056133
9 0.00045529 13 0.00016960 17 0.00008364	10 0.00033158 14 0.00013333 18 0.00006857	11 C.CCC29143 15 C.CCC1200C 19 G.CCC06811	12 C.00019217 16 C.00009097 20 G.00006154
21 0.00005317 25 0.00003265 29 0.00002246	22 C.000C4372 26 O.000C2431 30 O.000C1932	23 C.OCCC3911 27 C.CCCC2264	24 C.00003787 28 C.00002473
يسمعون معدينهم المعرب والبني ببين فيتبعد ومعركا والمتعالمين			

}

CYLINDER OPTICAL DEPTH	1.000
HEIGHT TO DIAMETER RATIO	5.000
SCATTERING TO EXTINCTION RATIO	1.000
ISOTROPIC SCATTERING	

EMI SSIONS	REEMISSIONS	ABSORPT IONS	SCATTER ING S	MISSES	CUTSIDE
200000	0	0	188310 135	i867	4991

52

FLUX RATIO,RING WIDTH= 0.50R

۰.

1	0.17527996	2	0.13817994	3	0.02981199	4	0.01163428
5	0.00645778	6	0.00395273	7	0.00273077	8	0.00188000
9	0.00140588	10	0.00109684	11	0.00081143	12	0.00066348
13	0.00054560	14	0.00042667	15	0.00038138	16	0.00030839
17	0.00026545	18	0.00021657	19	0.00019784	2C	0.00016718
21	0.00014732	22	0.00013256	23	0.00011556	24	0.00010340
25	0.00009388	26	0.00009020	27	0.00007019	28	0.00005527
29	0.00006561	30	0.00064610				•

.

.

CYLINDER OPTICA Height to diame Scattering to e Anisotropic sca	L DEPTH <u>Ter Ratio</u> Xtinction Ra Ttering	1.00 5.00 TIO 1.00	10 10 10	
A= 8.0000	B= 20.000	C= 60.000	D=120.000	E=170.CO0
F= 1.0000	G= 20.000	H= 40.000	I= 12.000	J= 80.C00
<u>EMISSIONS REEM</u> 125000	ISSIONS ABS 0	DRPTIONS SC 0 1	ATTERINGS 27418 1029	MISSES OUTSIDE 50 2C65
FLUX RATIO,RING	WIDTH= 0.5	DR		
1 0.08636799	2 0.07	289598	3 0.0180735	9 4 0.00661486
<u>5 0.00352355</u>	6 0.00	210909	7 0.0014621	5 8 0.00104960
9 0 .00068518	10 0.00	050189	11 0.0005059	0 12 0.00036313
13 0.00032000	14 0.00	026667	15 0.0001875	9 16 0.00017858
<u>17 0.00014352</u>	18 0.00	013349	19 0.0001072	4 20 0.00008862
21 0.00007180	22 0.00	07144	23 0.0000625	8 24 0.00006672
25 0.00005224	26 0.00	005145	27 0.0000410	6 28 0.00003258
29 0.00004042	30 0.00	002603		

CYLINDER O HEIGHT TO SCATTERING ANISOTROPI	DI ANET DI ANET TO EX C SCAT	DEPT ER RA TINCT TERIN	H TIO Ion Rat G	<u> 10</u>	1.000 5.000 1.000))			
A=45.	0000	B= 4	5.010	C=	45.020	0=	90.000	E=135	.000
F= 0.	9800	G×	1.140	H=	1.140	[=	1.140	J=]	• 140
EMISSIONS 100000	REEMI	SSION 0	S ABS	DRPTI O	ONS SCA	TTER 1812	INGS I	AI SSES	OUTSIDE 2163

FLUX RATIO, RING WIDTH= 0.50R

1 0.16735998	2 0.13099997	3 0.03224799	4 0.01235428
5 0.00667555	6 0.00410182	7 0.00264308	8 0.00188267
9 0.00138353	10 0.00097895	11.0.00080190	12 0.00064522
13 0.00051040	14 0.00037185	15 0.00033931	16 0.00027484
17 0.00027030	18 0.00021600	19 0.00017730	20 0.00015795
21 0.00016098	22 0.00010791	23 0.00009333	24 0.00009872
25 0.00009143	26 0.00007373	27 0.00005509	28 0.00005018
29 0.00005895	30 0.00004407		

54

.

CYLINCER GPTICAL CEPTH HEIGHT TO CIAPETER RATIO SCATTERING TO EXTINCTION RATIO ISCTROPIC SCATTERING		2.CCC 5.000 1.CCC				
REEMISSIONS C	ABSORPTIONS O	<u>SCATTERING</u> 167430	<u>s misses</u> 55650	<u>CLISIDE</u> 226C		
,RING WICTH=	C.SOR	- 				
5997 2	C.22854662	3 0.042	91199	4 C.01506285		
<u>3111 6</u>	C.00449818	7 6.003	10461	£ C.00216800		
1412 10	C.CC118547	11 C.OCC	85714	12 C.00072348		
9840 14	0.00043111	15 C.CCC	40414	16 C.0C031871		
5212 18	C.CCC216UO	<u>19 C.CCC</u>	19135	20 0.00018462		
7073 22	C.00013209	23 G.OCO	11733	Z4 Ca00009191		
9959 26	C.GOCG/843	27 0.000	しつせぎょ	22 0.00000545		
	PTICAL CEPTH CIAPETER RAT TC EXTINCTI SCATTERING REEMISSIONS C , RING WICTH= 5997 2 3111 6 1412 10 9840 14 5212 18 7073 22 9959 26	PTICAL CEPTH 2 CIAMETER RATIO 9 TC EXTINCTION RATIO 1 SCATTERING 1 REEMISSIONS ABSORPTIONS C 0 , RING WICTH= C.50R 5997 2 C.22854662 3111 6 C.00449818 1412 10 C.00449818 1412 10 C.00213547 9840 14 C.00013209 9959 26 C.00013209	PTICAL CEPTH 2.CCC CIAMETER RATIO 5.000 TC EXTINCTION RATIO 1.CCC SCATTERING 1.CCC REEMISSIONS ABSORPTIONS SCATTERING REEMISSIONS ABSORPTIONS SCATTERING REEMISSIONS ABSORPTIONS SCATTERING RING WICTH= C.50R 5997 2 C.22854662 3 C.042 3111 6 C.00449818 7 C.CC3 1412 10 C.CC112547 11 C.0CC 9840 14 C.0CC43111 15 C.CCC 5212 18 C.00013209 23 C.0C0 9959 26 C.00C7843 27 C.CCC	PTICAL CEPTH 2.000 CIAPETER RATIO 5.000 TC EXTINCTION RATIO 1.000 SCATTERING 1.000 REEMISSIONS ABSORPTIONS SCATTERINGS REEMISSIONS ABSORPTIONS SCATTERINGS REEMISSIONS ABSORPTIONS SCATTERINGS MISSES C 0 167430 55650 , RING WICTH= C.22854662 3 G.00449818 7 G.00449818 7 G.00449818 7 C.00249818 7 G.000449818 7 G.000449818 7 G.000449818 7 G.000449818 7 G.000449818 7 G.00001309 11 IS C.000021600 19 G.00013209 23 C.00011733 G.00013209 23 C.00011733 G.000013209 23 C.00011733		

55

• •

CYLINDER OPT HEIGHT TO DI SCATTERING T ANISOTROPIC	ICAL DE AMETER O EXTIN SCATTER	PTH RATIO CTION RAT ING	2 5 10 1	• 000 • 000 • 000		
A= 8.00	00 B=	20.000	C= 60.0	000 D=120.	000 E=17	70.000
F= 1.00	00 G=	20.000	H= 40.0	000 I= 12.	.000 J= 8	0.000
EMISSIONS R 100000	EEMISSI	DNS ABSC	IRPTIONS 0	SCATTERING 179094	5 MI SSE 5 72180	0UTSIDE 1990
FLUX RAYIO,R	ING WID	TH= 0.50	R	<u> </u>		
1 0.142759	98	2 0.126	81330	3 0.029	35199	4 0.0103257
5 0.005204	44	6 0.003	41454	7 0.002	26769	8 0.0016586
9 0.001131	76	10 0.000	80211	11 0.000	60000	12 0.0005304
13 0.000393	60	14 0.000	32444	15 0.000	29379	16 0.0002038
17 0.000221	82	18 0.000	17829	19 0.000	12541	20 0.0001271
21 0.000109	27	22 0.000	09209	23 0.000	11467	24 0.0000748
25 0.000071	02	26 0.000	06902	27 0.000	06340	28 0.0000596
29 3.000049	82	30 0.000	04610			

.

56

• ••

CYLINDER O HEIGHT TO SCATTERING ANISOTROPI	PTICAL DE DIAMETER TO EXTIN C SCATTER	EPTH RATIO Iction Ra Ling	ATIO	2.00 5.00 1.00	0 0 0		· · · · · · · · · · · · · · · · · · ·	
A=45.	0000 B=	45.010	C=	45.020	D=	90.000	E=13	5.000
F= 0.	9800 G=	1.140	H=	1.140	[=	1.140	. = ل	1.140
EMISSIONS 100000	REEMISSI	ONS AB	SORPT 0	IDNS SC	ATTER 6212)	RINGS 570	MI SSES 77	OUTSIDE 2020

FLUX RATIO, RING WIDTH= 0.50R

• • •	1 0.26939997	2 0.21307995	3 0.04475199	4 0.01641142
	5 0.00800444	6 0.00471636	7 0.00307385	8 0.00215467
	9 0.00149176	10 0.00120421	11 0.00095048	12 0.00060174
	13 0.00056320	14 0.00043111	15 0.00036276	16 0.00026968
	17 0.00024485	18 0.00022629	19 0.00016541	20 0.00015282
	21 0.00013268	22 0.00010512	23 0.00009067	24 0.00008170
	25 0.00008735	26 0.00006980	27 0.00006717	28 0.00005309
	29 0.00005474	30 0.00004407		•

CYLINDER OPTICAL DEPTH	2.000
Height to diameter ratio	10.000
SCATTERING TO EXTINCTION ISOTROPIC SCATTERING	RATID 1.000

FULSSIONS	REEMISSIUNS	ABSURPTIONS	SLATTERINGS MI	SSES OUTSIDE
1 00000	0 '	0	167086 55433	2286
FLUX RATIO	,RING WIDTH=	0.50R		
1 0.2847	1996 2	0.22905328	3 0.04224799	4 0.0155200
5 0.0079	7778 6	0.00496727	7 0.00301538	8 0.0021600
9 0.0014	9412 10	0.00113053	11 0.00086095	12 0.0007391
13 0.0005	5320 14	0.00049926	15 0.00036966	16 0.0003380
17 0.00020	8121 18	0.00018514	19 0.00017730	20 0.0001641
21 0.0001	5415 22	0.00012465	23 0.00010489	24 0.0000842
25 0.0000	9143 26	0.0008000	27 0.00007396	28 0.0000712
29 0.00004	4842 30	0.00004203		

58

.

HEIGHT TO DI	AMETER	PTH RATIQ	2 10	•000			· ••••
SCATTERING T ANISOTROPIC	O EXTIN Scatter	CTION RA Ing	TIO 1	•000			
A= 8.00	00 B=	20.000	C= 60.0	00 D	=120.000	E=170	.000
F= 1.00	00 G=	20.000	H= 40.0	1 00	= 12.000	J= 80.	.000
							• •
EMISSIONS R	EEMISSI	ONS ABS	ORPTIONS	SCATT	ERINGS	ISSES	OUTSIDE
ENISSIONS R 100000	EEMISSI 0	<u>DNS ABS</u>	ORPTIONS 0	SCATT 1783	<u>ERINGS</u> 57 7231	I SSES	OUTSIDE 2014
ENISSIONS R 00000 Flux Ratio,R	EEMISSI O Ing Widt	DNS ABS TH= 0.5	ORPTIONS O OR	SCATT 1783	<u>ERINGS F</u> 57 7231	ILSSES 9	OUTSIDE 2014
ENISSIONS R 00000 FLUX RATIO,R 1 0.140279	EEMISSIO O Ing Wid 98	DNS ABS TH= 0.5 2 0.12	OR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCATT 1783	<u>ERINGS </u> 57 7231 0.02862399	IISSES	OUTSIDE 2014 4 0.0103028
EMISSIONS R 00000 FLUX RATIO,R 1 0.140279 5 0.005302	EEMISSI O ING WID 98 22	DNS ABS TH= 0.5 2 0.12 6 0.00	OR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCATT 1783	ERINGS F 57 7231 0.02862399 0.00220000	ISSES	OUTSIDE 2014 4 0.0103028 8 0.0014426
ENISSIONS R 00000 FLUX RATIO,R 1 0.140279 5 0.005302 9 0.001124	EEMISSI 0 ING WID 98 22 71	DNS ABS TH= 0.5 2 0.12 6 0.00 10 0.00	ORPTIONS 0 60R 2733330 337818 0087368	SCATT 1783 3 (7 (11 (ERINGS F 57 7231 0.02862399 0.00220000 0.00067810	11 SSES 9 9	OUTSIDE 2014 4 0.0103028 8 0.0014426 2 0.0005252
ENISSIONS R 00000 FLUX RATIO,R 1 0.140279 5 0.005302 9 0.001124 13 0.000425	EEMISSI 0 ING WID 98 22 71 60	DNS ABS TH= 0.5 2 0.12 6 0.00 10 0.00 14 0.00	ORPTIONS 0 60R 2733330 337818 087368 0032741	SCATT 1783 3 (7) 11 (15)	ERINGS F 57 7231 0.02862399 0.00220000 0.000270000 0.00029379	11 SSES 9 9	OUTSIDE 2014 4 0.0103028 8 0.0014426 2 0.0005252 6 0.0002593
EMISSIONS R LOODOO FLUX RATIO,R 1 0.140279 5 0.005302 9 0.001124 13 0.000425 17 0.000193	EEMISSI 0 ING WID 98 22 71 60 94	DNS ABS TH= 0.5 2 0.12 6 0.00 10 0.00 14 0.00 18 0.00	ORPTIONS 0 60R 733330 337818 0087368 0032741 0017600	SCATT 1783 3 (7 (11 (15 (19 (ERINGS F 57 7231 0.02862399 0.00220000 0.00067810 0.00029379 0.00013946	1 SSES 9	OUTSIDE 2014 4 0.0103028 8 0.0014426 2 0.0005252 6 0.0002593 20 0.0001179
ENISSIONS R 100000 FLUX RATIO,R 1 0.140279 5 0.005302 9 0.001124 13 0.000425 17 0.000193 21 0.000101 25 0.000259	EEMISSI 0 ING WID 98 22 71 60 94 46	TH= 0.5 2 0.12 6 0.00 10 0.00 14 0.00 18 0.00 22 0.00 26 0.00	ORPTIONS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCATT 1783 3 (7 (11 (15 (19 (23 (ERINGS 57 7231 0.02862399 0.00220000 0.00029379 0.00013946 0.00008889	1 SSES	OUTSIDE 2014 4 0.0103028 8 0.0014426 2 0.0005252 6 0.0002593 20 0.0001179 24 0.0000817

CYLINDER O HEIGHT TO SCATTERING ISOTROPIC	PTICAL DEPTH DIAMETER RATI TO EXTINCTIO SCATTERING	2 0 20 N RATIO 1	• 000 • 000 • 000		
				· · · · · · · · · · · · · · · · · · ·	
EMISSIONS	REEMISSIONS	ABSORPTIONS	SCATTERINGS	MISSES	OUTSIDE
100000	0	0	167004	55517	2273

FLUX RATIO, RING WIDTH= 0.50R

1 3.27807996	2 0.22769328	3 0.04293599	4 0.01589143
5 0.00806666	6 0.00475273	7 0.00316615	8 0.00217333
9 0.00148941	10 0.00117895	11 0.00093714	12 0.00064522
13 0.00057120	14 0.00040889	15 0.00036000	16 0.00036258
17 0.00025818	18 0.00022743	19 0.00020757	20 0.00016513
21 0.00015415	22 0.00013860	23 0.00011467	24 0.00008681
25 0.00008653	26 0.00008235	27 0.00006264	28 0.00006691
29 0.00005193	30 0.00004949	•	

..

2.000		
5.000		
0.500	<u>.</u>	
	2.000 5.000 0.500	2.000 5.000 0.500

EMISSIONS	REEMISSIONS	ABSORPTIONS	SCATTERINGS	MISSES	OUTSIDE
200000	0	99120	<u>99166</u> 7	1987	1078

FLUX RATID, RING WIDTH= 0.50R

1 0.10563998	2 0.08237997	3 0.01364399	4 0.00454857
5 0.00227555	6 0.00122727	7 0.00084154	8 0.00062533
9 0.00038706	10 0.00031579	11 0.00021048	12 0.00018087
13 0.00015440	14 0.00010519	15 0.00009241	16 0.00006710
17 0.00006000	18 0.00005029	19 0.00004162	20 0.00003641
21 0.00003220	22 0.00003721	23 0.00002756	24 0.00002213
25 0.00002082	26 0.00001725	27 0.00001170	28 0.00000945
29 0.00001474	30 0.00001288		

CYLINDER HEIGHT 1 SCATTERI ANISOTRI	COPTICA	L DEPTH TER RAT XTINCTI	IO DN RATIO	2.000 5.000 0.500			
A#10071KC	8.0000	B= 20	.000 C=	60.000	D=120.000	E=170.000)
F=	1.0000	G≠ 20	.000 H=	40.000	I= 12.000	J= 80.000)
EMISSION 100000	IS REEM 86	15510NS 508	ABSORPTI 86508	IONS SCAT	TERINGS M 613 6244	I SSE S OL 7 225	UTSIDE 59
FLUX RAT	IO, RING	WIDTH=	0.50R				
FLUX RAT	10,RING	WIDTH=	0.50R	95 3	0.03852799		.01364000
FLUX RAT 1 0.21 5 0.00	10,RING 771997 689333	WIDTH= 2 6	0.50R 0.1801599 0.0042254	95 3 45 7	0.03852799 0.00287077	4 (8 ().01364000).00200800
FLUX RA1 1 0.21 5 0.00 9 3.00	10,RING 771997 0689333 0149882	WIDTH= 2 6 10	0.50R 0.1801599 0.0042254 0.0010652	95 3 65 7 26 11	0.03852799 0.00287077 0.00076762	4 (8 (12 ().01364000 .00200800 .00066957
FLUX RA1 1 0.21 5 0.00 9 0.00 13 0.00	10,RING 771997 689333 149882 1050560	WIDTH= 2 6 10 14	0.50R 0.1801595 0.0042254 0.0010652 0.0004222	25 3 45 7 26 11 22 15	0.03852799 0.00287077 0.00076762 0.00037241	4 (8 (12 (16 ().01364000).00200800).00066957).00030065
FLUX RAT 1 0.21 5 0.00 9 3.00 13 0.00 17 0.00	10, RING 771997 689333 149882 050560 1025576	WIDTH= 2 6 10 14 18	0.50R 0.1801599 0.0042254 0.0010652 0.0004222 0.0002160	25 3 5 7 26 11 22 15 00 19	0.03852799 0.00287077 0.00076762 0.00037241 0.00020216	4 (8 (12 (16 (20 (0.01364000 0.00200800 0.00066957 0.00030065 0.00015897
FLUX RAT 1 D.21 5 D.00 9 J.00 13 D.00 17 D.00 21 D.00	10, RING 771997 689333 149882 050560 1025576 013366	WIDTH= 2 6 10 14 18 22	0.50R 0.1801599 0.0042254 0.0010652 0.0004222 0.0004222 0.0002160 0.0001200	95 3 15 7 26 11 22 15 10 19 10 23	0.03852799 0.00287077 0.00076762 0.00037241 0.00020216 0.00010311	4 (8 (12 (16 (20 (24 (0.01364000 0.00200800 0.00066957 0.00030065 0.00015897 0.00008766

	·					······································	()	<u>ソ</u>
CYLINDER OPTICAL DEPTH Height to diameter ratio				5.000 5.000				
SCATTERING	TO EXTI	NCTIC	IN RATIO	1.000				
ISOTROPIC	SCATTERI	NG						
EMISSIONS	REEMISS	IONS	ABSORPTION	S_SCATI	rer ings	MISSES	i 0	UTSIDE
00000	C	•	0	3819	580	38750	15	48
FLUX RATIO	,RING WI	DTH=	0.50R					
1 0.4598	3995	2	0.39354657	3	0.0542	8799	4	0.0169142
5 0.0080	1333	6	0.00480000	7	0.0027	8769	8	0.0019093
9 0.0013	9529	10	0.00099789	11	0.0008	1333	12	0.0005008
13 0.0004	8160	14	0.00035407	- 15	0.0003	1034 ·	16	0.0002464
17 0.0002	3394	18	0.00019771	· 19	0.0001	4703	20	0.0001138
21 0.0001	0927	22	0.00009953	23	0.0000	9956	24	0.000885
25 0.0000	6122	26	0.00006431	27	0.0000	6189	28	0.0000436
29 0.0000	3579	30	0.00004271					

...

3

.

. ..

.
EMISSION FROM BLACK SURFACE AT BASE OF CYLINDER

. .

CYLINDER OPTICA HEIGHT TO DIAME SCATTERING TO E	L DEPTH TER RATI XTINCTIO	O N RATIO	5.00 5.00 1.00	00 00 00		
ANISCIRUPIC SCA	TIERING	<u></u>	<u> </u>			<u> </u>
¢= 8.0000	8= 20.	000 C=	60.000	D=120.	000 E=	170.000
F= 1.0000	G= 20.	000 H=	40.000	I= 12.	000 J=	80.000
EMISSIONS REEM	ISSIONS	ABSORPT	IONS SC	ATTERING	S MISS 54511	ES OUTSIDE 2047
					······································	
FLUX RATIO,RING	WIDTH=	0.50R				
1 0.24175997	2	C.254479	94	3 0.047	77599	4 0.01563428
5 0.00778666	6	0.004847	27	7 0.003	16000	8 0.0020613
9 0.00147765	10	0.001084	21	11 0.000	77333	12 0.00063130
13 0.00052320	14	0.000425	19	15 0.000	38897	16 0.0002903
17 0.00026182	18	0.000213	71	19 0.000	17946	20 0.0001476
21 0.00014341	22	0.000104	19	23 0.000	10311	24 0.0000910
25 0.00008327	26	0.00064	31	27 0.000	06642	28 0.0000560
29 0.00005754	30	0.000040	68			

· · ·

64

. .

EMISSION FROM BLACK SURFACE AT BASE OF CYLINDER

CYLINCER OPTICAL CEPTH Height to ciameter ratio	10.000 5.000	
SCATTERING TO EXTINCTION RATIO ISCTROPIC SCATTERING	1.000	

.

EMISSIONS	REEMISSIONS	ABSORPTIONS	SCATTERINGS	MISSES	CUTSIDE
100000	0	0	734189	27548	1007

FLUX RATIG, RING WIDTH= . 0.50R

1	0.57603991	2	0.54925320	3 0.05518399	4 0.01389143
5	0.00642667	6	0.00335273	7 0.00216923	8 0.00138933
9	0.00100235	-10	0.00078947	11 0.00056762	12 0.00037391
13	0.00031840	14	0.00026074	15 0.00018759	16 0.00018581
17	0.00014303	18	0.00013829	19 0.00010054	20 0.00008205
21	0.00007415	22	0.00006140	23 0.00006222	24 0.00005617
25	0.00004245	26	0.00004863	27 0.00004000	28 0.00002545
29	0.00002526	30	0.00002034		
	1 9 13 17 21 25 29	1 0.57603991 5 0.00642667 9 0.00100235 13 0.00031840 17 0.00014303 21 0.00007415 25 0.00004245 29 0.00002526	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.5760399120.5492532030.0551839950.0064266760.0033527370.0021692390.00100235100.00078947110.00056762130.00031840140.00026074150.00018759170.00014303180.00013829190.00010054210.00007415220.00006140230.00006222250.00004245260.00004863270.00004000290.00002526300.000020340.00002034

EMISSION FROM BLACK SURFACE AT BASE OF CYLINDER

CYLINDER O HEIGHT TO SCATTERING ANISOTROP	DPTIC/ DIAMI 5 TO I	AL DEPTH ETER RATI Extinction Attering	IO DN RATIO	10.(5.(1.(000 000 000		· · · · · · · · · · · · · · · · · · ·	· · •
A= 8.	.0000	B= 20	.000 Cª	= 60.00I	0 D=	-120.000	E=170.()00
F= 1.	.0000	G= 20	,000 Ha	= 40.000	FI 0	= 12.000	J= 80.(000
EMISSIONS 100000	REE	ISSIONS 0	ABSORP1	TIONS S	SCATTE 73839	ER I NG S 1941	MISSES 393 J	OUTSIDE
FLUX RATIO	D _P RIN(G WIDTH=	0.50R					
1 0.3259	5997	2	0.393439	990	3 (.059943	99 4	0.01710285
5 0.0084	43555	6	0.004687	727	7 0	.002963	08 £	3 0.00191733
9 0.001	26118	10	0.000968	842	11 0	.000740	<u>95 1</u> 2	2 0.00056000
13 0.0004	6400	. 14	0.000364	\$44	15 (.000317	24 10	0.00024645
17 0.0001	9636	18	0.000161	114	19 0	.000142	70 20	0.00013538
21 0.000	1220	22	0.000120	093	23 (0.000075	56 24	0.00009532
25 0.0000	7347	26	0.000048	863	27 0	000057	36 21	B 0.00003927
29 0.0000)3860	÷ 30	0.000034	458				

· •

./**n**

.05 ₽n .04 ENERGY RATIO VS RADIUS RATIO Emission From Cloud Optical Depth Height/Diameter Scattering/Extinction Anisotropic Scattering 5 5 1 .03 •02 .01 °o⊟ 2 3 4 0 5 6 1 r/R

.07 ₫n •06 .05 ENERGY RATIO VS RADIUS RATIO Emission From Cloud Optical Depth Height/Diameter Scattering/Extinction Isotropic Scattering 10 51 •04 .03 •02 .01 0 6 2 3 5 0 1 4 r/R

ŕ/R

r/R

· ____

r/R

fn FLUX RATIO VS RADIUS RATIO •1 Emission From SurfaceOptical Depth2Height/Diameter10Scattering/Extinction1Isotropic Scattering .01 .001 ┝╍┼╶┼╸ 0 2 3 6 5 1 4 r/R

fn FLUX RATIO VS RADIUS RATIO Emission From SurfaceOptical Depth2Height/Diameter20Scattering/Extinction1Isotropic Scattering •1 .01 •001 2 3 5 Ļ 6 1 Û r/R

ć

FLUX RATIO VS RADIUS RATIO Emission From Surface Optical Depth 2 Height/Diameter 5 Scattering/Extinction .5 Anisotropic Scattering Radiative Equilibrium

fn

•1

 f_n 3 FLUX RATIO VS RADIUS RATIO Emission From Surface Optical Depth 5 Height/Diameter 5 Scattering/Extinction 1 Isotropic Scattering ┠┼┾┟┼┼┼┥ .1 .01 •001 ⊞ 2 3: 5 6 1 4 0 r/R

CHAPTER VI

ERROR ANALYSIS

For a given ring (ring r) the Monte Carlo analysis can be viewed as a large number of independent trials with only two possible outcomes; a photon hits ring r or it does not. From physical aspects of the problem it is reasonable to assume that for a large sequence of emissions the relative frequency of hits in ring r will approach a limit. This limit

$$p_r = (hits in ring r) / (n emissions)$$

 $n \to \infty$

is the probability that a photon will hit ring r or the probability of success in an independent Bernoulli trial.

A random experiment consisting of such trials with probability p for success and 1 - p = q for failure is governed by the binomial probability law which can be approximated by the normal probability law (34). The probability that a random experiment will have an observed value between given limits may be had by integration of the normal probability law over the appropriate interval. This can be translated into the probability that the observed value of a random experiment after n trials will differ by a small number ϵ from its true probability p. The result for m successes in n trials (see (36) and (25) equation 24) is that the probability of the inequality

$$\left|\frac{\mathbf{m}}{\mathbf{n}} - \mathbf{p}\right| \leq \epsilon \tag{6-1}$$

as n becomes large is given approximately by

$$P = \operatorname{erf} \frac{t}{\sqrt{2}} \tag{6-2}$$

where

$$t = \epsilon \sqrt{\frac{n}{pq}}$$
(6-3)

It should be noted that the true probability for a hit in ring r is not known. However, a best estimate for p_r is available after n emissions from the ratio of hits to emissions. The use of this best estimate in the error analysis is the usual practice (25).

To obtain values of p_r from the numerical data given it is necessary to multiply by (2r - 1)/4 if emission is from the surface or by (2r - 1) if emission is from the cloud.

Considering rings one through twelve, the values of p_r are of order .001 or greater in all cases calculated and the number of emissions is 10^5 or greater. Therefore equation (6-2) should enable one to obtain a good working estimate of the probable error associated with the Monte Carlo numerical results of this work.

Using (6-2) gives the following estimates.

$\frac{\mathbf{p}_r}{r}$	Confidence	Error
.001	•954	20%
.001	.68	10%
.01	•998	10%
.01	.888	5%

These error limits hold for the individual points calculated. In the

absence of a systematic error in the program it is expected that there is equal likelihood for the individual value to be high or low. Thus a smooth curve through the points should be close to the true values.

Figure 6-1 shows the variation of Monte Carlo numerical results as a function of the number of original emissions for a typical case. The relatively smooth behavior indicated lends further support to the belief that the final values do not differ greatly from the true values. At the least, one would anticipate that the values obtained suffice to indicate the important trends.

Figure 6-2 shows the result on a linear scale for ring eight starting with two different sets of initial random numbers. The answers are within ten per cent of each other after one hundred thousand emissions.

Figure 6-2. Flux Ratio versus Thousands of Original Emissions

Illustration of the variation of the Monte Carlo numerical result for two different sets of inital random numbers. The graph is formed by connecting the values of flux ratio for increments of five thousand emissions by straight lines. The values are for ring eight, the optical diameter is two, emission is from the base surface, and the scattering is anisotropic. The arrows indicate the area of overlap of ten per cent error for the two cases. There is a 98.26% probability that the correct value lies within these limits. The circle is the value obtained from a smooth curve through points for rings one through twelve.

CHAPTER VII

HEAT TRANSFER CALCULATIONS

Spectral Flux from a Black Surface

The intensity of radiation of a black body is given by

$$I_{bb}(T) = \int_{0}^{\infty} I_{bv}(T) dv$$

where

$$I_{\rm bv}(T) = \frac{2h\nu^3n^2}{c^2} \left[\frac{1}{e^{\rm hv/kT} - 1}\right]$$

is Planck's expression for monochromatic intensity. To convert to spectral intensity one must define $I_{b\lambda}(T)$ such that

$$| I_{b\lambda}(T) d\lambda | = | I_{b\nu}(T) d\nu |$$

since the same energy is being represented (3). The relationship between frequency and wavelength is

 $\lambda = c/v$

so that

$$d\lambda = - (c/v^2)dv$$

Therefore

$$I_{b\lambda}(T) = \frac{v^2}{c} I_{b\nu}(T) = \frac{2hv^5n^2}{c^3} \left[\frac{1}{e^{h\nu/kT} - 1}\right]$$

or

$$I_{b\lambda}(T) = \frac{2hc^2n^2}{\lambda^5} \left[\frac{1}{e^{hc/k\lambda T} - 1}\right]$$

Also

$$I_{bb}(T) = \int_{a}^{0} \frac{c}{v^{2}} I_{b\lambda}(T) \left(\frac{-v^{2}}{c}\right) d\lambda$$

or

$$I_{bb}(T) = \int_{0}^{\infty} I_{b\lambda}(T) d\lambda$$

The flux leaving the surface of a black body is

$$q_{bb}(T) = \int_{\omega} I_{bb}(T) \cos \theta d\omega$$

where θ is the polar angle between the outward surface normal and the central direction of the solid angle dw. Substituting for $I_{bb}(T)$ gives

$$q_{bb}(T) = \int_{\omega} \left[\int_{0}^{\omega} I_{b\lambda}(T) d\lambda \right] \cos \theta d\omega$$

Noting that $I_{b\lambda}(T)$ is not a function of θ and integrating over the hemispherical solid angle above the surface gives

$$q_{bb}(T) = \pi \int_{0}^{\infty} I_{b\lambda}(T) d\lambda$$

Define spectral flux $q_{b\lambda}(T)$ such that

$$q_{bb}(T) = \int_{0}^{\omega} q_{b\lambda}(T) d\lambda$$

Then by comparison

$$q_{b\lambda}(T)d\lambda = \pi I_{b\lambda}(T)d\lambda \qquad (7-1)$$

is the energy per unit area per unit time contained in the wavelength interval λ to λ + d λ which leaves the surface.

The spectral flux can also be thought of as the number of bundles of energy or photons corresponding to wavelengths between λ and λ + $d\lambda$

which leave surface s per unit time divided by the surface area and multiplied by the energy of each bundle

$$q_{b\lambda}(T)d\lambda = N(s,\lambda) \frac{e}{A_s} d\lambda$$
 (7-2)

Flux Incident on Ring n from a Black Surface at the Base of the Cloud

The spectral flux incident on an area n per unit area and time can be defined similarly to equation (7-2). Thus

$$q_{n\lambda}(T)d\lambda = N(n,\lambda) \frac{e}{A_n} d\lambda$$

so that

$$q_{n\lambda}(T) = \frac{N(n,\lambda)}{N(s,\lambda)} \frac{A_s}{A_n} q_{b\lambda}(T)$$

Defining flux ratio

$$f(n,s,\lambda) = \frac{N(n,\lambda)}{N(s,\lambda)} \frac{A_s}{A_n}$$
(7-3)

gives

$$q_{n\lambda}(T) = f(n,s,\lambda) \pi I_{b\lambda}(T)$$
 (7-4)

es the spectral flux et surface n es a result of emission from the black surface s.

If the spectral flux to a surface n from a black surface s is given by equation (7-4) then the total flux may be calculated from

$$q_n(T) = \int_0^\infty q_{n\lambda}(T)d\lambda = \pi \int_0^\infty f(n,s,\lambda) I_{b\lambda}(T)d\lambda$$

Assuming the index of refraction of the media between surfaces to be unity

$$q_{n\lambda}(T) = 2\pi \int f(n,s,\lambda) \frac{hc^2}{\lambda^5} \frac{e^{-hc/k\lambda T}}{1 - e^{-hc/k\lambda T}} d\lambda$$

This can be evaluated following the lead of Love (3).

Let

$$x = hc/k\lambda T$$
 $\lambda = hc/kxT$ $d\lambda = (-hc/kx^2T)dx$

Then

$$q_n(T) = 2\pi \int_0^{\infty} f(n,s,x) \frac{x^3 (kT)^4}{h^3 c^2} \left[\frac{e^{-x}}{1 - e^{-x}}\right] dx$$

The Reiz quadrature can be used to evaluate

$$\int_{0}^{\infty} e^{-x} \Phi(x) dx = \sum_{p=1}^{M} a_{p} \Phi(x_{p})$$

where a and x are weighting coefficients and quadrature points respectively.

Hence

$$q_n(T) = \pi T^4 \sum_{p=1}^{M} s_p f(n,s,x_p) \frac{2x_p^{3}k^4}{h^3 c^2 (1 - e^{-x_p})}$$

 \mathbf{or}

$$q_{n}(T) = \pi T^{\mu} \sum_{p=1}^{M} A_{p} f(n,s,\lambda_{p})$$
(7-5)

where

$$A_{p} = \frac{2s_{p}x_{p}^{3}k^{4}}{h^{3}c^{2}(1 - e^{-x_{p}})}$$
(7-6)

and

$$\lambda_{\rm p} = \rm hc/kx_{\rm p}T \tag{7-7}$$

.

The A_p 's and λ_p 's have been calculated by Love (3) for M = 5 and by Hickok (30) for M = 6, 7. Hickok showed that M = 7 gave improved values for heat transfer calculations. Therefore use M = 7. Thus 7

$$q_{n}(T) = \pi T^{\mu} \sum_{p=1}^{\gamma} A_{p} f(n, s, \lambda_{p})$$
(7-8)

where

$$A_{1} = 0.14125 \times 10^{-11} (BTU ft^{-2}hr^{-1} oR^{-4})$$

$$A_{2} = 5.98749 \times 10^{-11}$$

$$A_{3} = 22.65796 \times 10^{-11}$$

$$A_{4} = 20.53423 \times 10^{-11}$$

$$A_{5} = 4.93863 \times 10^{-11}$$

$$A_{6} = .27503 \times 10^{-11}$$

$$A_{7} = .00194 \times 10^{-11}$$

$$A_{7} = .00194 \times 10^{-11}$$

$$\lambda_{1} = 13.41488 (10^{4}/T) (T in^{0}R, \lambda in microns)$$

$$\lambda_{2} = 2.52236 (10^{4}/T)$$

$$\lambda_{3} = 1.00846 (10^{4}/T)$$

$$\lambda_{4} = .52845 (10^{4}/T)$$

$$\lambda_{5} = .31649 (10^{4}/T)$$

$$\lambda_{6} = .20336 (10^{4}/T)$$

$$\lambda_{7} = .13351 (10^{4}/T)$$

Emission from a Volume Element

The following development parallels that of Love (3). Other derivations are available in the literature. (For example Jakob (31))

Experimental studies have shown that the intensity of radiant energy traversing a semi-transparent medium is decreased by absorption in proportion to the intensity and length of path. This experimental fact is commonly called Beer's Law and is mathematically expressed as

$$\frac{dI_{v}}{dx} = -\rho_{c} \kappa_{v} I_{v}$$
(7-9)
where I_v is the monochromatic intensity in direction x, ρ_c is the density of the cloud or medium being traversed, and \varkappa_v is the monochromatic mass absorption coefficient.

Equation (7-9) was originally developed for the attenuation of beams of light and contains no term accounting for local emission of thermal radiation. Hence an additional term must be added to account for such emission when it exists.

$$\frac{dI_{v}}{dx} = -\rho_{c} \kappa_{v} I_{v} + J_{v} \qquad (7-10)$$

For a medium in thermodynamic equilibrium the intensity of radiation will not change along a path so that dI_v/dx is zero. Thus

$$J_{v} = \rho_{c} \varkappa_{v} I_{v}$$

For a medium in which rapid chemical changes are not taking place a "local thermodynamic equilibrium" is approximated so that the emission from an elemental volume in any direction may be taken as $\rho_c \kappa_v I_v dV$, (3). Integration over all directions gives

for the monochromatic emission of a volume element. In a medium in thermodynamic equilibrium, having a refractive index n, the intensity of radiation is n^2 times the intensity of radiation of a black body at the temperature of the medium. Hence the monochromatic emission (n = 1) becomes

$$4\pi \rho_{c} \kappa_{v} I_{b,v}(T) dV$$

This may also be expressed in spectral quantities as

$$4\pi \rho_{c} \kappa_{\lambda} I_{b,\lambda}(T) dV$$
 (7-11)

where

$$I_{b\lambda}(T) = \frac{2hc^2n^2}{\lambda^5} \left[\frac{1}{e^{hc/k\lambda T} - 1}\right]$$

Integration over the complete wavelength band can be accomplished using the Reiz quadrature as in the preceding section

Thus

$$\begin{bmatrix} \text{energy per unit} \\ \text{time per unit volume} \end{bmatrix} dV = 4\pi \rho_c T^4 \left[\sum_{p=1}^{M} \mu_{\lambda p} \right] dV \qquad (7-12)$$

where the A and λ_p are the weighting functions and quadrature points given in the preceding section.

The Apparent Emittance of the Particle Cloud, as Viewed in the

Base Plane, Resulting from Emission within the Cloud

The data presented in Chapter V for emission from the particle cloud gives the number of original emissions (N_E) , the number of scatterings (N_s) and a value for each ring n of $\Phi_{n\lambda}$ defined as

$$\Phi_{n\lambda} = \frac{N_{Hn}}{N_E}^{1}$$
(7-13)

where $N_{\rm Hn}$ is the number of hits in ring n. The values are for a given τ , $\frac{\sigma}{\beta}$, H/D, and scattering function. If the cloud is considered to be in radiative equilibrium then the data for $\frac{\sigma}{\beta} = 1$ can be used for any value of $\frac{\sigma}{\beta}$, with isotropic scattering, by calculating the number of photons absorbed and hence the number of photons reemitted $(N_{\rm R})$ from

$$N_{R} = N_{s} \left(1 - \frac{\sigma}{\beta}\right) = N_{s} \frac{\varkappa}{\beta}$$
(7-14)

For a uniform isothermal cloud of volume V the total energy emitted, which is equal to the sum of the original emissions and the reemissions

¹The tabular data for cloud emission has an additional factor (2n-1).

multiplied by the energy of each emission, can be obtained from equation (7-11) as

$$(N_{\rm E} + N_{\rm s} \frac{n_{\lambda}}{\beta_{\lambda}}) e d\lambda = 4\pi \rho_{\rm c} V_{n_{\lambda}} I_{b\lambda}(T) d\lambda \qquad (7-15)$$

In (7-15) it has been assumed that the reemissions are uniformly distributed throughout the cloud (see appendix D).

The spectral energy hitting ring n is $N_{Hn} = d\lambda$ which can be obtained from equations (7-13) and (7-15) as

$$E_{n\lambda}d\lambda = N_{Hn}ed\lambda = \frac{4\pi \rho_c \kappa_{\lambda} I_{b\lambda}(T) V N_E \Phi_n d\lambda}{(N_E + N_s \frac{\kappa_{\lambda}}{\beta_{\lambda}})}$$
(7-16)

Now if the cloud is considered to be a diffuse cylindrical surface of the same size and temperature as the particle cloud the energy $E_{n\lambda}^{}d\lambda$ could be expressed as

$$E_{n\lambda}d\lambda = e_{\lambda}\pi I_{b\lambda}(T) \land F_{2n}d\lambda \qquad (7-17)$$

where A is the surface area and F_{2n} is the configuration factor from the cylinder to ring n. Equating (7-16) and (7-17) and substituting $\pi R^2 H$ for the cylinder volume and $2\pi RH$ for the surface area gives

$$\epsilon_{\lambda} = \frac{2\rho_{c} \kappa_{\lambda} R N_{E} \Phi_{n\lambda}}{F_{2n} (N_{E} + N_{s}\frac{\kappa_{\lambda}}{\beta\lambda})}$$

or setting $\tau_{\lambda} = 2\rho_{c} \beta_{\lambda} R$

$$\epsilon_{\lambda} = \frac{\tau_{\lambda} \frac{\varkappa_{\lambda}}{\beta_{\lambda}} N_{E} \Phi_{n\lambda}}{F_{2n}(N_{E} + N_{s} \frac{\varkappa_{\lambda}}{\beta_{\lambda}})}$$
(7-18)

Using the Reiz quadrature and a similar development gives

$$\boldsymbol{\varepsilon} = \frac{2\pi \rho_{c} R N_{E}}{\sigma F_{2n}} \sum_{p=1}^{M} A_{p} \left[\frac{\varkappa_{\lambda} \Phi_{n\lambda}}{N_{E} + N_{s} \frac{\varkappa_{\lambda}}{\beta_{\lambda}}} \right] \lambda_{p}$$
(7-19)

The Apparent Emittance of the Particle Cloud, as Viewed in the

Base Plane, Resulting from Energy Emitted by a Black

Surface at the Base of the Cloud

The scattering, by a rocket exhaust plume, of energy radiated to the plume from a high temperature combustion chamber motivates this derivation.

The spectral flux incident on ring n as a result of scattering of energy emitted by a black surface covering the base of the cloud is (equation 7-4)

$$q_{n\lambda} d\lambda = f(n,s,\lambda) \pi I_{b\lambda}(T_s) d\lambda$$
 (7-20)

The value of $f(n,s,\lambda)$ is presented in the numerical data as flux ratio for given H/D, τ , $\frac{\sigma}{\beta}$, and scattering function.

Considering the cloud as a diffuse cylinder at temperature T_c , the spectral flux on ring n would be

$$q_{n\lambda}^{d\lambda} = \epsilon_{\lambda} \pi I_{b\lambda}^{(T_c)} F_{2n}^{(A_{cyl}/A_n)} d\lambda \qquad (7-21)$$

Now

$$A_{cyl} = 2\pi RH$$

 $A_n = \pi (.5R)^2 (2n -$

so that from (7-20) and (7-21)

$$\epsilon_{\lambda} = \frac{f(n,s,\lambda)}{F_{2n}} \frac{I_{b\lambda}(T_{s})}{I_{b\lambda}(T_{c})} \frac{(2n-1)}{16} \frac{D}{H}$$
(7-22)

1)

If $f(n,s,\lambda)$ is not a function of wavelength

$$\epsilon = \frac{f_{ns}}{F_{2n}} \left(\frac{T_s}{T_c}\right)^4 \left(\frac{2n-1}{16}\right) \frac{D}{H}$$
 (7-23)

It should be remembered that f(n,s) is for a given optical diameter (τ) , cylinder geometry (H/D), scattering to extinction ratio $(\frac{\sigma}{\beta})$ and scattering function. In addition it should be noted that some combinations of T_s/T_c could provide values for apparent emissivity which would be greater than 1.

Flux Incident on Ring n from Emission within the Cloud

The spectral energy incident on ring n is given by equation (7-16). The area of the nth ring for ring width of .5R is given by

 $A_n = (.5R)^2 \pi (2n - 1)$

Substituting $\pi R^2 H$ for the volume of the cloud and dividing (7-16) by A n gives

$$q_{n\lambda}d\lambda = \frac{16\pi \rho_{c} \kappa_{\lambda} I_{b\lambda}(T) H N_{E} \Phi_{n\lambda}d\lambda}{(N_{E} + N_{s} \frac{\kappa_{\lambda}}{\beta_{\lambda}})(2n - 1)}$$
$$= \frac{16\pi \lambda \frac{\kappa_{\lambda}}{\beta_{\lambda}} H \pi I_{b\lambda}(T) N_{E} \Phi_{n\lambda}d\lambda}{(N_{E} + N_{s} \frac{\kappa_{\lambda}}{\beta_{\lambda}})(2n - 1)}$$
(7-24)

Using the Reiz quadrature to integrate over wavelength gives

$$q_{r_{I}} = \frac{16\pi H T^{L}N_{E}}{D(2n-1)} \sum_{p=1}^{M} A_{p} \left(\frac{\tau_{\lambda} \frac{\tau_{\lambda}}{\beta_{\lambda}} \Phi_{n\lambda}}{N_{E} + N_{s} \frac{\kappa_{\lambda}}{\beta_{\lambda}}} \right)_{\lambda_{p}}$$
(7-25)

or for a gray cloud

$$q_{n} = \frac{16\tau \frac{\mu}{\beta} \Phi_{n} \frac{H}{D} N_{E} \sigma T^{4}}{(N_{E} + N_{s} \frac{\mu}{\beta})(2n - 1)}$$
(7-26)

The equations derived in this section are subject to the same limitations as equation (7-18). See Appendix D.

CHAPTER VIII

DISCUSSION OF RESULTS

Some qualitative results of this investigation are presented in Figures 8-1 through 8-12. The curves used in the comparisons are taken from Chapter V.

Figures 8-1 through 8-8 concern the case of emission from the surface at the base of the cloud. In Figures 8-1 through 8-5 the effect of isotropic and anisotropic scattering on the flux scattered back to the base plane by the perticle cloud is compared. The comparison is made at five different values of optical diameter (τ). If one examines the curves at some given radius ratio (r/R = 4) and assumes that the flux emitted by the base surface is constant then the following effects can be noted. At an optical diameter of .5 the isotropic scattering result is 150 percent greater than the anisotropic result. This difference decreases to 100 percent at $\tau = 1$ and to 50 percent at $\tau = 2$. The Rayleigh scattering result, which was calculated at $\tau = 1$ and $\tau = 2$, coincides with the isotropic result. At $\tau = 5$ the result is essentially the same for isotropic and anisotropic scattering. At $\tau = 10$ the anisotropic result provides the greater flux, being some 30 percent higher than for isotropic scattering.

Figures 8-6 through 8-8 show the effect of other parameters on the

flux scattered back to the base plane.

Figure 8-6 shows the effect of the height to diameter ratio for isotropic scattering and $\tau = 2$. The effect is negligible.

Figure 8-7 shows the effect of scattering to extinction ratio for radiative equilibrium and non radiative equilibrium. It should be remembered that radiative equilibrium with isotropic scattering is independent of scattering to extinction ratio. The curves show that radiative equilibrium with anisotropic scattering moves the solution toward that of isotropic scattering as expected. Non radiative equilibrium gives a substantial reduction in flux. For example the flux is reduced by a factor of four at a radius ratio of four.

The effect of optical diameter is indicated in Figure 8-8.

Figures 8-9 through 8-12 concern the case of emission within the cloud. The original emissions are uniformly distributed throughout the cloud. The energy ratio is the ratio of the energy hitting at radius ratio r/R to the energy leaving the cloud and as such can be considered a quasi configuration factor.

Figure 8-9 shows the effect of optical diameter while Figure 8-10 shows the effect of height to diameter ratio at $\tau = 2$. Figures 8-11 and 8-12 compare the effects of anisotropic scattering and isotropic scattering. It is shown that for $\tau = 2$ and 5 anisotropic scattering gives higher values than isotropic scattering. This would correspond to a higher emittance for the anisotropic scattering cloud which agrees with the general observations of Rochelle (24).

In Figure 8-13 the apparent emittance of the particle cloud is compared with apparent emittance values of other particle clouds as present-

ed in the literature. Since the author knows of no other solution for finite cylindrical systems a strict comparison cannot be made. The approximate nature of equation 7-18 also makes a true comparison difficult. Nevertheless, some indication of the validity of the current solution may be afforded by a comparison with other related results. Hence, Figure 8-13.

The finite cylinder which is used in the comparison has a height to diameter ratio of five, isotropic scattering and is arbitrarily viewed from a radius ratio of four. The emittance is presented for three values of absorption to extinction ratio and is shown in curves 3, 7, and 8. Curve 4 reflects the correction applied to curve 3 as described in Appendix D.

Curves 1, 5, and 6 are taken from (24) and are for an infinite slab of finite thickness. Curve 2 is taken from (28) and is for an infinite cylinder of finite diameter. Point 9 is taken from (12) for a ten degree semi-infinite cone at a radius ratio of 2.

In (37, 38) Tien and Abu-Romia present curves for the "spectral apparent emissivity" in the base plane of a semi-infinite cylindrical gas body. The gas is assumed to be uniform and isothermal. As defined in (37), the "spectral apparent emissivity" is the ratio of the monochromatic radiative flux incident on a surface element to that which would leave the surface element if it were black and at the same temperature as the cloud. This definition of emissivity is somewhat unusual and is not an apparent emittance of the cylindrical cloud. Nevertheless it is instructive to compare the values of "spectral apparent emissivity" as calculated from this work with those of (37). The appropriate values for the comparison are obtained by multiplying those from equation (7-18) by the factor $F_{2n}A_{cyl}/A_n$. The comparison is made for a radius ratio of 1.25. This corresponds to the midpoint of ring three which is close to the base of the cylinder and from which the finite cloud and the semi-infinite cloud should appear much the same. The results, shown connected by a smooth curve in Figure 8-14, seem to be in very good agreement.

As a quantitative illustration of the methods of this work it seems appropriate to consider an example problem. Suppose one desires to know the value of radiant flux at a point in the base plane of a finite cylindrical particle cloud and surface system with the following characteristics:

> Cylinder Optical Diameter $\tau = 2$ Particle Cloud Temperature $T_c = 4500^{\circ}R$ Base Surface Temperature $T_s = 7200^{\circ}R$ Ratio of Absorption to Extinction $\varkappa/\beta = .005$ Flux is desired at r/R = 3.75Both isotropic and anisotropic scattering are to be considered.

The surface is black and the cloud gray.

Height to diameter ratio $H/D \approx 5$

Consider first the flux resulting from redistion emitted by the base surface and scattered by the particle cloud. Equation (7-8) applies and becomes

$$q_n(T_s) = T_s^{\mu} f_n \sigma$$

for a gray cloud. Since \varkappa/β is very small it is reasonable to consider

the scattering to extinction ratio as unity for this portion of the problem. Thus from page 78 $f_n = .00215$ for isotropic scattering and from page 79 $f_n = .00145$ for anisotropic scattering (assuming the anisotropic scattering function to be the one described in Chapter IV). The flux from the surface to the point is thus 9880 BTU Hr^{-1} Ft⁻² for isotropic scattering and 6670 BTU Hr^{-1} Ft⁻² for anisotropic scattering.

The flux resulting from emission within the cloud is found using equation (7-26). It should be noted that the radius ratio chosen for this problem corresponds to the midpoint of ring number eight¹. Using n = 8 and data of pages 68, 69, 43 and 46 gives fluxes of 483 BTU Hr⁻¹ Ft⁻² for isotropic scattering and 525 BTU Hr⁻¹ Ft⁻² for anisotropic scattering.

The parameters of the above problem were chosen to be somewhat representative of those of a metalized propellant rocket with the base surface representing the high temperature combustion chamber radiating to the particle cloud. Of course allowance must be made for nozzle expansion ratio. This could be done in the program by reducing the radius of the emitting surface. In the absence of data for that condition, however, an approximation can be made by simply reducing the flux by a factor equal to the expansion ratio. If an expansion ratio of twenty is assumed then the flux components from the surface and from the cloud become of the same order of magnitude for the temperatures considered.

¹It should be evident that the need for such a choice exists only because of the formulation of equation (7-26). It would be quite possible to combine Φ and (2n - 1) in a factor plotted as a function of radius ratio. This was not done in this work because of the need for Φ_n alone in equation (7-18) and the lack of physical significance of such a factor.

Thus both are important contributions to the total heat flux and attempts to determine the apparent emittance of rocket exhaust plumes from effective temperatures, configuration factors and heating rates (i.e., $\epsilon_a = q_{ab}/\sigma T_a^{\ \mu}F_{ba}$) as was done in (20) must include both considerations.

CHAPTER IX

CONCLUSIONS AND CLOSURE

The Monto Carlo method has been shown to be a feasible method for analyzing the radiative heat transfer to the base region of a cylindrical particle cloud. The effects of anisotropic scattering can be included through use of the approximation developed in Chapter IV.

The computer program presented in Appendix A is believed to be a useful tool for the investigation of certain aspects of radiant heating by metalized propellant rocket exhausts. Specifically, the importance of anisotropic scattering and searchlight effect on base heating could be fruitfully examined.

There does not seem to be any reason why the combined effects of gas-particle emission could not be examined in this way. It would appear to be a matter of simply specifying an appropriate emissive power distribution, rather than the uniform source used in this work, and summing over the applicable wavelength intervals. The same can be said for specified temperature distributions in the cloud as long as the extinction coefficient does not vary significantly with temperature.

A severe limitation exists in regard to other than uniform particle distributions. The author believes it is infeasible to consider distributions in which the extinction coefficient varies continuously slong

the photon path although it may be possible to section the cloud and permit different optical properties in each section. The difficulty arises in the need to determine the optical depth from any point in the cloud to the cloud surface along any direction. This limitation would not exist in plane parallel geometry so the method would seem to have even more promise for anisotropic scattering analyses in that geometry.

LIST OF REFERENCES

- Rochelle, W. C. "Theory of Thermal Radiation from Liquid and Solid Propellant Rocket Exhausts," Preliminary draft of a Technical Memorandum, NASA/Marshall Space Flight Center, October 1966.
- 2. Carlson, D. J. "Metalized Solid Propellants Exhaust Plumes," AIAA Paper No. 66-652, Part II, June 1966.
- 3. Love, T. J. <u>Radiative Heat Transfer</u>. Columbus, Ohio: Charles Merrill Books Inc., 1968.
- 4. Sparrow, E. M. and R. D. Cess. Radiation Heat Transfer. Belmont, California: Brooks/Cole Publishing Company, 1966.
- 5. Van de Hulst, H. C. Light Scattering by Small Particles. New York: John Wiley and Sons, Inc., 1957.
- 6. <u>Electromagnetic Scattering</u>. M. Kerker, editor. The Macmillan Company, New York: 1963.
- 7. Love, T. J., Jr. "An Investigation of Radiant Heat Transfer in Absorbing, Emitting, and Scattering Media," USAF Aeronautical Research Laboratories Report ARL 63-3, Wright-Patterson AFB, Ohio: January 1963.
- 8. Love, T. J. and H. M. Hsia. "Radiative Heat Transfer Between Parallel Plates Separated by a Non-Isothermal Medium with Anisotropic Scattering," Aerospace Research Laboratories Report ARL 65-211, October 1965.
- 9. Evans, L. B., C. M. Chu and S. W. Churchill. "The Effect of Anisotropic Scattering on Radiant Transport," ASME Journal of Heat Transfer, (August 1965), pp. 381-387.
- 10. Edwards, R. H. and R. P. Bobco. "Radiant Heat Transfer from Isothermal Dispersions with Isotropic Scattering," Aerospace Technology Research Report SSD 50134R, Los Angeles: Hughes Aircraft Company, 1965.
- 11. Bobco, R. P. "Directional Emissivities from a Two-Dimensional, Absorbing-Scattering Medium: The Semi-Infinite Slab,"

Aerospace Technology Research Report SSD 60072R, Los Angeles: Hughes Aircraft Company, 1966.

- 12. Bobco, R. P. and R. H. Edwards. "Radiation from an Absorbing Scattering Conical Dispersion with Non-Uniform Density," Aerospace Technology Research Report SSD 60571R, Los Angeles: Hughes Aircraft Company, 1966.
- 13. Howell, J. R. and M. Perlmutter. "Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls," <u>ASME Journal of Heat Transfer</u>, Vol. 86, No. 1 (February 1964), pp. 116-122.
- 14. Perlmutter, M. and J. R. Howell. "Radiant Transfer Through a Gray Gas Between Concentric Cylinders Using Monte Carlo," <u>ASME Journal of Heat Transfer</u>, Vol. 86, No. 2, (May 1964), pp. 169-179.
- Howell, J. R. and M. Perlmutter. "Monte Carlo Solution of Radiant Heat Transfer in a Nongrey Nonisothermal Gas with Temperature Dependent Properties," <u>AIChE Journal</u>, Vol. 10, No. 4, (July 1964), pp. 562-567.
- Corlett, R. C. "Direct Monte Carlo Calculation of Radiative Heat Transfer in Vacuum," <u>ASME Journal of Heat Transfer</u>, (November 1966), pp. 376-382.
- 17. Howell, J. R. "Calculation of Radiant Heat Exchange by the Monte Carlo Method," NASA TM X-52101, 1965.
- 18. Gryvnsk, D. A. and D. E. Burch. "Optical and Infrared Properties of Al₂O₃ at Elevated Temperatures," <u>Journal of the Optical</u> Society of America, Vol. 55, No. 6 (June 1965), pp. 625-629.
- 19. Carlson, D. J. "Emittance of Condensed Oxides in Solid Propellant Combustion Products," <u>Tenth Symposium (International)</u> on Combustion. Pittsburg: The Combustion Institute, 1965.
- 20. Adams, J. M. "A Determination of the Emissive Properties of a Cloud of Molten Alumina Particles," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 7, 1967, pp. 273-277.
- 21. Bauer, E. and D. J. Carlson. "Mie Scattering Calculations for Micron Size Alumina and Magnesia Spheres," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 4 (1964), pp. 363-374.
- 22. Plass, G. N. "Mie Scattering and Absorption Cross Sections for Aluminum Oxide and Magnesium Oxide," <u>Applied Optics</u>, Vol. 3, No. 7 (July 1964), pp. 867-871.

- 23. Plass, G. N. "Temperature Dependence of the Mie Scattering and Absorption Cross Sections for Aluminum Oxide," Applied Optics, Vol. 4, No. 12 (December 1965), pp. 1616-1619.
- 24. Bartky, C. D. and E. Bauer. "Predicting the Emittance of a Homogeneous Plume Containing Alumina Particles, <u>AIAA Journal</u> of Spacecraft and Rockets, Vol. 3, No. 10 (October 1966), pp. 1523-1527.
- 25. Love, T. J. and R. A. Wheasler. "An Experimental Study of Infrared Scattering by Clouds of Particles," Aerospace Research Laboratories Report ARL 64-109, June 1964.
- 26. Love, T. J. and J. F. Beattie. "Experimental Determination of Thermal Radiation Scattering by Small Particles," Aerospace Research Laboratories Report ARL 65-110, June 1965.
- 27. Fontenot, J. E., Jr. "Thermal Radiation from Solid Rocket Plumes at High Altitude," <u>AIAA Journal</u>, Vol. 3, No. 5 (May 1965), pp. 970-972.
- 28. Morizumi, S. J. and H. J. Carpenter. "Thermal Radiation from the Exhaust Plume of an Aluminized Composite Propellant Rocket," <u>AIAA Journal of Spacecraft and Rockets</u>, Vol. 1, No. 5 (October 1964), pp. 501-507.
- 29. Carlson, D. J., C. H. Lewis, Jr., R. A. DuPuis and A. D. Bauer. "Solid Propellant Exhaust Radiation Studies Interim Technical Report No. 3, (AD 463290) Prepared for ARPA by Aeronutronic, Newport Beach, California: March 1965.
- 30. Hickok, R. L. "Radiation Heat Transfer in Evacuated, Non-Gray, Diffuse Enclosures," Unpublished M. S. Thesis, Norman, Oklahoma: The University of Oklahoma, 1963.
- 31. Jakob, M. "Heat Radiation," <u>Proc. Phys. Soc. (London)</u>, Vol. 59, Pt. 5 (1947), p. 728.
- 32. Kahn, H. "Multiple Quadrature by Monte Carlo Methods," <u>Mathe-</u> <u>matical Methods for Digital Computers</u>. Edited by Ralston and Wilf. New York: John Wiley and Sons, Inc., 1960.
- 33. Hamilton, D. C. and W. R. Morgan. "Radiant-Interchange Configuration Factors," NACA Technical Note 2836, December 1952.
- 34. Perzen, E. Modern Probability Theory and Its Applications. New York: John Wiley and Sons, Inc., 1960.
- 35. Feller, W. <u>An Introduction to Probability Theory and Its Appli-</u> <u>cations</u>, Vol. I, New York: John Wiley and Sons, Inc., 1950.

- 36. Uspensky, J. V. Introduction to Mathematical Probability. New York: McGraw-Hill Book Company, Inc., 1937.
- 37. Tien, C. L. and M. M. Abu-Romia. "Radiative Energy Transfer to Outer Base Regions of Cylindrical and Conical Gas Bodies," Institute of Engineering Research Report AS-63-4, University of California, Berkeley: 1963.
- 38. Tien, C. L. and M. M. Abu-Romia. "A Method of Calculating Rocket Plume Radiation to the Base Region," <u>AIAA Journal of Spacecraft and Rockets, Vol. 1, No. 4 (August 1964), pp. 433-435.</u>

APPENDIX A

THE COMPUTER PROGRAMS

The computer programs, and their imput formats, used in this work are listed in this appendix. The programs were originally written in FORTRAN II-D and converted to be compatible with the FORTRAN IV, IBM 7040 system at AFRPL. Subsequent modifications used FORTRAN IV. The random number generator was available and is presented for information only. It is listed in MAP.

The running times for these programs were almost a linear function of the optical diameter. Table A-1 gives an indication of the time reguired on the AFRPL 7040 per 10,000 photon histories.

Emission	Optical	Туре	Time per
Source	Diameter	Scattering	10,000 Histories
Cloud	2	I	5 (min.)
11	2	А	7
11	5	I	12
11	5	А	17
Surface	2	I	5

TABLE A-1 COMPUTER EXECUTION TIME

Surface	2	А	6
11	5	I	9
11	5	А	16

The Input Variables

.

- ·

Variable	Description		
IPHIL	The number of printouts desired. The program prints		
	results after completion of a fixed number (N) of		
	photon histories. IPHIL determines the number of		
	times the program will trace N photon histories.		
	Thus IPHIL times N is the number of histories traced.		
IREQ	Flag for non radiative equilibrium. If the value is		
	other than zero or blank the cloud will not be in radi-		
	ative equilibrium.		
HTOD	The height to diameter ratio of the cloud.		
TAU	The cylinder optical diameter.		
SIGBET	The scattering to extinction ratio.		
N	The number of histories traced between printouts.		
ISO	Flag for scattering. If the value is other than blank		
	or zero the cloud will use the anisotropic scatter-		
	ing approximation.		
NR	The number of rings on which hits are to be recorded.		
RW	The ratio of the width of a ring to the radius of		
	the cloud.		
BHD	The height of the base of the cloud above the plane		
	on which hits are recorded divided by the cloud		

.

diameter. It is used only when emission is from the cloud and is normally zero (blank).

SA, SB, ..., SJ Parameters of the anisotropic scattering approximation as described in Chapter IV.

Input Format						
Card Number	Columns	Format	Variable			
1	1- 5	I 5	IPHIL			
	5-10	I5	IREQ			
2	1-10	F10.2	HTOD			
	11-20	F10.2	TAU			
	21-30	F10. 2	SIGBET			
	31 - 35	I 5	N			
	36-40	I 5	ISO			
	41-45	I 5	NR			
	46-60	F15.2	RW			
	61-70	F10.2	BHD			
3	1-50	5 F10.2	SA,, SE			
4	1-50	5 F10.2	SD,, SJ			

```
С
      THEMAL RADIATION FROM A FINITE CYLINDRICAL CLOUD OF ABSORBING,
C
      EMITTING AND SCATTERING PARTICLES
      DIMENSIONA(125)
      DIMENSION ARRING(125)
 4003 READ899, IPHIL, IREQ
  899 FORMAT(215)
      READ99, HTOD, TAU, SIGBET, N, ISC, NR, RW, BHD
   99 FORMAT(3F10.2,315,F15.2,F10.2)
 - UA=.98765431
      UB=.91827363
      UC=.45678913
      UD=-64563847
      UE=.48407195
      UF=.47362935
      UG=.54397841
      UH=.67374981
      UI=.49178433
      UJ=.32721983
      UK=.79321459
      PI=.314159265E+01
      R=1.0
      H=2.0+HT0D
      DO 337 I=1,NR
      RIN=I
  337 ARRING(I)=2.#RIN-1.0
      IF(IS0)901,902,901
  901 READ 991, SA, SB, SC, SD, SE
      READ 991, SF, SG, SH, SI, SJ
  991 FORMAT(5F10.2)
      SA=SA/180.0*PI
      SB=SB/180.0*PI
      SC=SC/180.0*PI
      SD=SD/180.0*PI
      SE=SE/180.0+PI
      A1=.5+SA+SJ
```

A2=.5+(SB-SA)+(SJ-SH)A3=(SB-SA)+SHA4=.5+(SC-SB)+(SH-SG)A5=(SC-SB)+SGA6=.5+(SD-SC)+(SG-SF) A7=(SD-SC)#SF A8=.5*(SE-SD)*(SI-SF)A9=(SE-SD)+SFA10=.5*(PI-SE)*SI C1=A1+A2+A3C2=C1+A4+A5 C3=C2+A6+A7 C4=C3+A8+A9 AK=C4+A10 S1=2.0#AK#SA/SJ S2=(SB-SA)/(SJ-SH)S3=S2#S2#SJ#SJ S4=(SC-SB)/(SH-SG)S5=S4+S4+SH+SH S6=(SD-SC)/(SG-SF)\$7=\$6#\$6#\$G#\$G S8=(SE-SD)/(SI-SF)\$9=\$8*\$8*\$F*\$F C1K=C1/AK C2K=C2/AK C3K=C3/AK C4K=C4/AK A1K=A1/AKSET INITIAL VALUES 902 ISCAT=0 KABS=0 IREM=0 **H=0** INISS=0 IOUT=0

С

DO 903 I=1.NR 903 A(I)=0 DO 5001 IPHM=1, IPHIL DO 100 -I=1.N С PICK EMISSION POINT 1 U=RAND1(UA) UA=U AZ1=U*.628318530E-01+PI/5.0 U=RAND1(UB) UB=U Z1=U#H U=RAND1(UK) UK=U R1=R=SQRT(U) PICK EMISSION DIRECTION С 2 U=RAND1(UC) UC=U THETA=2.0+PI+U U=RAND1(UD) UD=U CDET=1.0-2.0+U CALCULATE MAXIMUM INTERNAL PATH LENGTH С 3 COAL=-COS(AZ1-THETA) E=R1+COAL ELS=E+SQRT(E*E+R*R-R1*R1) SIET=1.0-COET+COET ELMAX=ELS/SIET IF(H-Z1-ELMAX*COET)5,6,6 5 ELMAX=(H-Z1)/COET GOT066 6 IF(Z1+ELMAX*COET)65,66,66 65 ELMAX=-Z1/COET CALCULATE PROBABLE PATH LENGTH С 66 U=RAND1(UE) UE=U

ł

/

i
```
. C
        DETERMINE IF PHOTON ESCAPES
        IF(ELMAX-ELP)60.60.7
        DETERMINE SCATTERING OR ABSORBING POINT
  С
      7 C=ELS+ELP/ELMAX
        R2=SQRT(C*C+R1*R1-2.0*E*C)
        Z2=Z1+COET+ELP
        SIBET=C/R2*SQRT(1.0-COAL*COAL)
        COBET=-(C*C-R1*R1-R2*R2)/(2.0*R1*R2)
        BETA=ATAN(SIBET/COBET)
        IF(BETA)15.16.16
     15 BETA=BETA+PI
     16 YAW=THETA-AZ1
        IF(YAN)21,22,22
     21 YAW=YAW+2.0+PI
     22 IF(YAW-PI)23,25,25
     23 AZ2=AZ1+BETA
        IF(AZ2-2.0*PI)55,55,24
     24 AZ2=AZ2-2.0+PI
        GOT055
     25 AZ2=AZ1-BETA
        IF(AZ2)26,55,55
     26 AZ2=AZ2+2.0+PI
     55 AZ1=AZ2
        R1=R2
        Z1=Z2
  C
        DETERMINE IF SCATTERED OR ABSORBED
        U=RAND1(UF)
        UF=U
        IF(U-SIG8ET)57,56,56
     56 KABS=KABS+1
        IF(IREQ)100,281,100
    281 IREM=IREM+1
        GOTO2
     57 ISCAT=ISCAT+1
```

ELP=-ALOG(U)/TAU+2.0

C PICK SCATTERING DIRECTION IF(IS0)904,28,904 ANISOTROPIC SCATTERING С 904 U=RAND1(UG) UG=U IF(U-A1K)700,701,702 700 ETAD=SQRT(S1+U) GOT0905 701 ETAD=SA GOT0905 702 IF(U-C1K)703,704,705 703 PH213=(S3-2.0+(U+AK-A1)+S2) IF(PM213.LT.0.0) PM213=0.0 ETAD=SA+S2*SJ-SQRT(PM213) GOT0905 704 ETAD=S8 GOT0905 705 IF(U-C2K)706,707,708 706 PM213=(S5-2.0+(U+AK+C1)+S4) IF(PM213.LT.0.0) PM213=0.0 ETAD=SB+S4+SH-SQRT(PM213) GOT0905 707 ETAD=SC GOT0905 708 IF(U-C3K)709,710,711 709 PM213=(S7-2.0+(U+AK-C2)+S6) IF(PM213.LT.0.0) PM213=0.0 ETAD=SC+S6+SG-SQRT(PM213) GOT0905 710 ETAD=SD GOT0905 711 IF(U-C4K)712,713,714 712 PM213=(S9+2.0+(U+AK-C3)+S8) IF(PM213.LT.0.0) PM213=0.0 ETAD=SD-S8+SF+SQRT(PM213)

137

ł

ı.

```
GOT0905
  713 ETAD=SE
      GOT0905
  714 ETAD=PI-SQRT(AK*(1.0-U)*2.0*(PI-SE)/SI)
  905 U=RAND1(UH)
      UH=U
      THETD=2.0+PI+U
      COETD=COS(ETAD)
      SIETD=SIN(ETAD)
      COTHD=COS(THETD)
      SITHD=SIN(THETD)
      SITH=SIN(THETA)
      COTH=COS(THETA)
      REX=SIETD+COTHD
      REY=SIETD+SITHD
      REZ=COETD
      RX=REX+SITH+REY+COET+COTH+REZ+SIET+COTH
      RY=-REX*COTH+REY*COET*SITH+REZ*SIET*SITH
      RZ=-REY*SIET+REZ*COET
      THETA=ATAN(RY/RX)
      IF(RX)112,113,113
  112 THETA=THETA+PI
      GOT0115
 113 IF(THETA)114,115,115
  114 THETA=THETA+2.0*PI
  115 COET=RZ
      60T03
     ISOTROPIC SCATTERING
С
   28 U=RAND1(UI)
      UI=U
      THETA=2.0+PI+U
      U=RAND1(UJ)
      UJ≐U
      COET=1.0-2.0+U
      GOTO3
```

.

...

.

.

138

,

```
DOES IT HIT THE PLANE
C
   60 = IF(COET)62,61,61
   61 IMISS=IMISS+1
      G0T0100 =
C CALCULATE AND REGISTER RADIUS OF HITS ON REFERENCE PLANE
   62 ZZ1=Z1+2.0+BHD
      C=-ZZ1+SIET/COET
      R2 = SQRT(C + C + R1 + R1 - 2.0 + E + C)
      RAT=R2/R/RW
      IRAT=RAT+1.0
      IF{IRAT- NR)715,715,69
   69 IOUT=IOUT+1
      GOT0100
  715 A(IRAT)=A(IRAT)+1.0
  100 :M=M+1 .
      RM=M
      D0101 I=1,NR
  101 A(I)=A(I)/RM/ARRING(I)
С
      OUTPUT
      PRINT98, TAU
   98 FORMAT(1H1,14X,22HCYLINDER OPTICAL DEPTH,F18.3)
     PRINT97.HTOD
   97 FORMAT(15X,24HHEIGHT TO DIAMETER RATIO,F16.3)
      PRINT977,BHD
  977 FORMAT(15X,29HBASE HEIGHT TO DIAMETER RATIO,F11.3)
      PRINT89,SIGBET
   89 FORMAT(15X, 30HSCATTERING TO EXTINCTION RATIO, F10.3)
      IF(IS0)130,131,130
  130 PRINT92
   92 FORMAT(15X,22HANISOTROPIC SCATTERING//)
      SA=SA=180-0/PI
      SB=SB+180-0/PI
      SC=SC+180_0/PI
```

SD=SD=180.0/PI SE=SE=180.0/PI

1

ł

PRINT91,SA,SB,SC,SD,SE

91 FORMAT(20X,2HA=,F7.4,3X,2HB=,F7.3,3X,2HC=,F7.3,3X,2HD=,F7.3,3X, 12HE=,F7.3//)

PRINT911,SF,SG,SH,SI,SJ

- 911 FORMAT(20X,2HF=,F7.4,3X,2HG=,F7.3,3X,2HH=,F7.3,3X,2HI=,F7.3,3X, 12HJ=,F7.3///) GOT0132
- 131 PRINT90 :
- 90 FORMAT(15X,20HISOTROPIC SCATTERING/////)
- **132 PRINT96**
- 96 FORMAT(15X,67HEMISSIONS REEMISSIONS ABSORPTIONS SCATTERINGS M 11SSES OUTSIDE)
 - PRINT95, M, IREM, KABS, ISCAT, IMISS, IOUT
- 95 FORMAT(120,3113,19,110///) PRINT93,RW
- 93 FORMAT(15X,21HHITS/EMISSIONS/(2N-1),13H RING WIDTH= ,F5.2,1HR//) PRINT94,(1,A(1),I=1,NR)
- 94 FORMAT(15X,13,F11.8,5X,13,F11.8,5X,13,F11.8,5X,13,F11.8) D0 5000 I=1,NR
- 5000 A(I)=A(I)*RM*ARRING(I)
 - IF(ISO)5050,5001,5050
- 5050 SA=SA/180-0+PI
 - SB=SB/180-0*PI
 - SC=SC/180.0*PI
 - SD=SD/180.0*PI
 - SE=SE/180-0+PI
- 5001 CONTINUE
 - - GO TO 4003

END

:

С : THERNAL RADIATION SCATTERED BY A FINITE CYLINDRIGAL CLOUD OF C PARTICLES. EMISSION IS FROM A BLACK SURFACE AT THE CLOUD BASE. DIMENSIONA(125) DIMENSION APAR(125) 4003 READ899. IPHIL. IREQ 899 FORMAT(215) READ99, HTOD, TAU, SIGBET, N, ISO, NR, RW 99 FORMAT(3F10.2,315,F15.2,F10.2) UA=.98765431 UB= 91827363 UC=.45678913 UD=+64563847 UE=.48407195 UF=.47362935 UG=.54397841 UH=.67374981 UI=.49178433 UJ=.32721983 PI=.314159265E+01 R=1.0 H=2.0+HTOD DO 337 I=1,NR RIN=I 337 APAR(1)=1./(RW+RW+(2.+RIN-1.)) IF(IS0)901,902,901 901 READ 991, SA, SB, SC, SD, SE READ 991.SF.SG.SH.SI.SJ 991 FORMAT(5F10.2) SA=SA/18020+PI SB=SB/180:0*PI SC=SC/180-0+PI SD = SD / 180 - 0 = PISE=SE/180-0+PI A1=.5+SA+SJ A2=.5=(SB-SA)+(SJ-SH)

A3 = (SB - SA) + SHA4=.5+(SC-SB)+(SH-SG)A5=(SC-SB)+SGA6=.5*(SD-SC)*(SG-SF)A7=(SD-SC)+SF A8-.5+(SE-SD)+(SI-SF) A9=(SE-SD)=SF A10=.5#(PI-SE)#SI C1=A1+A2+A3 C2=C1+A4+A5 C3=C2+A6+A7 C4=C3+A8+A9 AK=C4+A10 -S1=2.0+AK+SA/SJ S2=(SB-SA)/(SJ-SH)\$3=\$2#\$2#\$J#\$J S4=(SC-SB)/(SH-SG)S5=S4+S4+SH+SH S6=(SD-SC)/(SG-SF)S7=S6#S6#SG#SG S8=(SE-SD)/(SI-SF)S9=S8#S8#SF#SF C1K=C1/AK C2K=C2/AK C3K=C3/AK C4K=C4/AK A1K=A1/AK SET INITIAL VALUES С., 902 ISCAT=0 KABS=0 IREN=0 M=0 ÷ IMISS=0 IOUT=0 DO 903 I=1,NR

•

.

.

:

:

.

903 A(I)=0 DO 5001 IPHM=1, IPHIL DO 100 I=1.N PICK EMISSION POINT С 1 U≠RAND1(UA) UA=U AZ1=U*.628318530E-01+PI/5.0 Z1=0 -U=RAND1(UB) **UB=U** R1=SQRT(U) C PICK EMISSION DIRECTION 2 U⇒RAND1(UC) UC=U THETA=2.0+PI+U U=RAND1(UD) UD=U COET=SORT(U) CALCULATE MAXIMUM INTERNAL PATH LENGTH С 3 COAL=-COS(AZ1-THETA) E=R1#COAL ELS=E+SQRT(E*E*R*R-R1*R1) SIET=1.0-COET+COET ELMAX=ELS/SIET IF(H-Z1-ELMAX#COET)5,6,6 5 ELMAX=(H-Z1)/COET GOTO66 6 IF(Z1+ELMAX*COET)65,66,66 65 ELNAX=-Z1/COET CALCULATE PROBABLE PATH LENGTH С 66 U=RAND1(UE) UE=U ELP=-ALOG(U)/TAU+2.0 C DETERMINE IF PHOTON ESCAPES

IF(ELMAX-ELP)60,60,7

C DETERMINE SCATTERING OR ABSORBING POINT 7 C=ELS+ELP/ELMAX R2=SQRT(C*C+R1*R1-2.0*E*C)Z2=Z1+COET=ELP SIBET=C/R2+SQRT(1.0-COAL+COAL) COBET = -(C + C - R1 + R1 - R2 + R2)/(2.0 + R1 + R2)BETA=ATAN(SIBET/COBET) IF(BETA)15.16.16 15 BETA=BETA+PI 16 YAW=THETA-AZ1 IF(YAW)21,22,22 21 YAW=YAW+2.0+PI 22 IF(YAW-PI)23.25.25 23 - AZ2=AZ1+BETA IF(AZ2-2.0+PI)55,55,24 24 AZ2=AZ2-2.0+PI GOT055 25 AZ2=AZ1-BETA IF{AZ2}26,55,55 26 AZ2=AZ2+2.0+PI 55 AZ1=AZ2 **£1**=**R2** Z1=Z2 DETERMINE IF SCATTERED OR ABSORBED С U=RAND1(UF) UF=U IF(U-SIGBET)57.56.56 56 KABS=KABS+1 IF(IREQ)100,281,100 281 IREM=IREM+1 **GOTO28** . 57 ISCAT=ISCAT+1 . PICK SCATTERING DIRECTION С IF(IS0)904,28,904 C ANISOTROPIC SCATTERING

.

904 U=RAND1 (UG) UG=U IF(U-A1K)700,701,702 700 ETAD=SQRT(S1+U) GOT0905 701 ETAD=SA **GOT0905** 702 IF (U-C1K) 703, 704, 705 703 PM213=(\$3-2.0*(U*AK-A1)*\$2) IF(PM213.LT.0.0) PM213=0.0 ETAD=SA+S2*SJ-SQRT(PN213) GOT0905 704 ETAD=SB GOT0905 705 IF(U-C2K)706,707,708 706 PM213=(S5-2.0+(U+AK-C1)=S4) IF(PM213.LT.0.0) PM213=0.0 ETAD=SB+S4+SH-SQRT(PM213) GOT0905 707 ETAD=SC GOT0905 708 IF(U-C3K)709,710,711 709 PM213=(S7-2.0+(U+AK-C2)+S6) IF(PM213.LT.0.0) PM213=0.0 ETAD=SC+S6+SG-SQRT(PM213) GOT0905 710 ETAD=SD GOT0905 711 IF(U-C4K)712,713,714 712 PM213=(S9+2.0+(U+AK+C3)+S8) IF(RM213.LT.0.0) PM213=0.0 ETAD=SD-S8+SF+SQRT(PM213) GOT0905 713 ETAD=SE

GOT0905

145

,

```
714 ETAD=PI-SORT(AK*(1.0-U)*2.0*(PI-SE)/SI)
  905 U=RAND1(UH)
      UH=U
      THETD=2.0+PI+U
      COETD=COS(ETAD)
      SIETD=SIN(ETAD)
      COTHD=COS(THETD)
      SITHD=SIN(THETD)
      SITH=SIN(THETA)
      COTH=COS(THETA)
      REX=SIETD+COTHD
      REY=SIETD*SITHD
      REZ=COETD
      RX=REX+SITH+REY+COET+COTH+REZ+SIET+COTH
      RY=-REX*COTH+REY*COET*SITH+REZ*SIET*SITH
      RZ=-REY*SIET+REZ*COET
      THETA=ATAN(RY/RX)
      IF(RX)112,113,113
  112 THETA=THETA+PI
      GOTO115
  113 IF(THETA)114,115,115
  114 THETA=THETA+2.0+PI
  115 COET=RZ
      GOTO3
      ISOTROPIC SCATTERING
С
   28 U=RAND1(UI)
      UI=U
      THETA=2.0+PI+U
      U=RAND1(UJ)
      UJ=U
      COET=1.0-2.0+U
      GOTO3
С
      DOES IT HIT THE PLANE
   60 IF(COET)62,61,61
   61 IMISS=IMISS+1
```

1

.

.

.

.

.

.

.

.

.

.

:

```
GOT0100
  C CALCULATE AND REGISTER RADIUS OF HITS ON REFERENCE PLANE
     62 C=-Z1*SIET/COET
        R2 = SQRT(C + C + R1 + R1 - 2.0 + E + C)
        RAT=R2/R/RW
        IRAT=RAT+1.0
                                                 ÷
        IF(IRAT- NR)715,715,69
     69 IOUT = IOUT + 1
        GOT0100
    715 A(IRAT)=A(IRAT)+1_0
    100 M=M+1
        RM=M
        D0101 I=1,NR
    101 A(I)=A(I)/RM=APAR(I)
  С
        OUTPUT
.
        PRINT976
    976 FORMAT(1H1,14X,47HEMISSION FROM BLACK SURFACE AT BASE OF CYLINDER
       1//)
        PRINT98, TAU
     98 FORMAT(15X,22HCYLINDER OPTICAL DEPTH,F18.3)
        PRINT97,HTOD
     97 FORMAT(15X,24HHEIGHT TO DIAMETER RATIO,F16.3)
        PRINT89,SIGBET
     89 FORMAT(15X, 30HSCATTERING TO EXTINCTION RATIO, F10.3)
        IF(ISO)130,131,130
    130 PRINT92
     92 FORMAT(15X,22HANISOTROPIC SCATTERING//)
        SA=SA=180.0/PI
        SB=SB=180-0/PI
        SC=SC=180.0/PI
        SD=SD+180-0/PI
        SE=SE=180.0/PI
        PRINT91,SA,SB,SC,SD,SE
     91 FORMAT(20X, 2HA=, F7.4, 3X, 2HB=, F7.3, 3X, 2HC=, F7.3, 3X, 2HD=, F7.3, 3X,
       12HE=,F7.3//)
```

.

.

```
PRINT911,SF,SG,SH,SI,SJ
```

911 FORMAT(20X,2HF=,F7.4,3X,2HG=,F7.3,3X,2HH=,F7.3,3X,2HI=,F7.3,3X, 12HJ=,F7.3///)

G0T0132

131 PRINT90

- 90 FORMAT(15X, 20HISOTROPIC SCATTERING/////)
- **132 PRINT96**
- 96 FORMAT(15X,67HEMISSIONS REEMISSIONS ABSORPTIONS SCATTERINGS M 11SSES OUTSIDE)

148

- PRINT95, M, IREM, KABS, ISCAT, IMISS, IOUT
- 95 FORMAT(120,3113,19,110///) PRINT93.RW
- 93 FORMAT(15X,10HFLUX RATIO,13H RING WIDTH= ,F5.2,1HR//) PRINT94,(I,A(I),I=1,NR)
- 94 FORMAT(15X,13,F11.8,5X,13,F11.8,5X,13,F11.8,5X,13,F11.8) D0 5000 I=1,NR
- 5000 A(I)=A(I)*RM/APAR(I) IF(ISO)5050,5001,5050

5050 SA=SA/180.0*PI

SB=SB/180.0*PI

```
SC=SC/180=0#PI
```

```
SD=SD/180.0+PI
```

```
SE=SE/180.0*PI
```

5001 CONTINUE

GO TO 4003

```
END
```

RANDOM	NUMBER	GENERATOR			
RAND1	PZE	**			
	SXA	AXT1,4			
	LAC	RAND1,4			
	CLA#	2,4			
	TZE	LOAD	·		
	STO	COMMON			
	SSP				
•·· *	LRS	27			
	SUB	A1			
	PAX	0,4			
	TMI	Α2			
	TXH	A3,4,35			
	STA	A4			
	PXD	0,0			
A4	LLS	##			
	TRA	AB			
A2	TXH .	A3,4,34			
	STA	A5			
	PXD	0,0			
A5	LRS	**			
	TRA	AB			
A3	TSX	S.XPRT,4			
	PZE	ERM,,24			
	TRA	S.JXIT			
ERM	BCI	4, ARGUMENT	OUT	OF	RANGE
LOAD	LDQ	RD			
AB	MPY	5T013			
	STQ	DUM1			
	CLA	DUM1			
	LBT			•	
	ADD	FX1			
	STO	RD			
	ARS	8			
	ORA	200C			

.

.

149

-

	FAD	200C
AXT1	AXT	** • 4
	TRA#	RAND1
2000	OC T	20000000000
5T013	DEC	1220703125
RD	DEC	5117
FX1	DEC	1
A1	OCT	200
COMMON	BSS	1
DUM1	PZE	
	END	

ı

1 .

APPENDIX B

PROBABILITY CONSIDERATIONS

It is not the purpose of this section to develop the relations or prove the theorems of the theory of probability. It is, rather, to concisely state the relations and theorems which are used so that terminology will not be misunderstood, to indicate how these relations are applied, and to show the validity of the method of application. References 17, 34, 35, 36 were used in preparation of this appendix.

The term "random variable" is used to denote a real number whose value is determined by the outcome of a random experiment.

A "random experiment" is an emperical experiment characterized by the property that its outcome under a given set of circumstances is not always the same but rather differs in such a way that numbers exist between 0 and 1 which represent the relative frequency with which the different possible outcomes (events) occur in a long series of independent trials of the experiment.

A "random event" is one whose relative frequency of occurrence, in a very long sequence of trials of the random experiment in which the event may occur, approaches a stable limit value as the number of observations is increased toward infinity.

The "probability" of a random event is the limit value of its relative frequency of occurrence.

A "probability function" is a rule defined over the complete sample space S of a random experiment which assigns to every event A, a subset of the sample space S, a non negative real number denoted by P(A) and conforming to the following exioms

- (1) $P(A) \geq 0$
- (2) P(S) = 1
- (3) For a series of mutually exclusive events A_1, A_2, \dots, A_n $P(A_1 U A_2 U \dots U A_n) = P(A_1) + P(A_2) + \dots + P(A_n)$

A "numerical valued random experiment" is a random experiment whose sample description space is the set of all real numbers from - ∞ to + ∞ .

The "distribution function", F(x), of a numerical valued random experiment is defined as having as its value at any real number x, the probability that an outcome of a trial of the experiment will be less than or equal to the number x. In addition

Lim F(x) = 0 $x \rightarrow -\infty$ Lim F(x) = 1 $x \rightarrow +\infty$

and for this work F(x) must be continuous monotone increasing between the values 0 and 1 for $0 \le x \le +\infty$

The "probability density function" is defined as

$$f(x) = \frac{d F(x)}{dx}$$

Since F(x) is continuous and monotone increasing

and F(x) is continuous (except perhaps at a finite number of points). In addition

$$F(x) = \int_{-\infty}^{x} f(x) dx \qquad \int_{-\infty}^{+\infty} f(x) dx = 1$$

Jointly distributed random variables are independent if their joint distribution function can be written as the product of their individual distribution functions.

$$F(x,y,z) = F_1(x) F_2(y) F_3(z)$$

Jointly distributed random variables are independent if their joint probability density function can be written as the product of their individual probability density functions.

$$f(x,y,z) = f_1(x) f_2(y) f_3(z)$$

In general, given any joint probability density function $f(x_1,x_2, x_3)$ the individual density of any variate may be found by integrating the function with respect to all other variates between the limits $-\infty$ to $+\infty$. Thus

$$f(x_1) = \int_{0}^{+\infty} f(x_1 x_2) dx_2$$

In this work values for the various variables must be chosen at decision points along the photon path. These values are to be chosen randomly but the distribution of values used for any one variable, after a large number of values have been chosen, must conform to the probability density function for that variable. Hence one must treat the selection of values for each variable as a numerical valued random experiment. The random event which occurs is that the value chosen will lie within some interval (i.e., between x and $x + \Delta x$). The probability function is defined in terms of the probability density functions. For example the probability that a value of x will lie between s and b is

$$P(a < x \leq b) = \int_{a}^{b} f(\underline{x}) dx = F(b) - F(a)$$
(B-1)

Probability zero is assigned to those events defined on intervals of the

sample description space which are not physically possible (i.e., probability of negative length is zero).

In selecting the values of the variables use is made of psuedo random numbers (32). For this work a psuedo random number, here after called random number, is defined to be a number between zero and one which is a member of a mathematically generated set of numbers uniformly distributed over the interval zero to one. That is to say, if a large number of random numbers are plotted as points on a line of length one, and the line is subsequently divided into equal subintervals, no matter how small, there will be about the same number of points in every interval. The random numbers can be reproduced as desired. It should be noted that "a large number" of random numbers is stressed. There is no implication that a small number will be evenly spaced on the interval zero to one.

Consider equation (B-1) and let
$$a = x$$
, $b = x + \Delta x$. Then

$$P(x < x_{1} \leq x + \Delta x) = \int_{Y}^{X} f(x) dx \qquad (B-2)$$

which, as a consequence of the continuity of f(x) and the mean value theorem can be expressed as

$$P(x < x_{1} \leq x + \Delta x) = f(\xi)\Delta x \qquad (B-3)$$

where ξ lies between x and x + Δx . As Δx becomes very small then

$$P(x < x_{1} \le x + \Delta x) = f(x) \Delta x$$

$$\Delta x \to 0$$
(B-4)

Hence the limit value of the relative frequency of occurance of values of x_1 lying between x and x + Δx is expressed by $f(x)\Delta x$. This can be interpreted as the fraction of the total number of values of x selected which lie between x and x + Δx . This is expressed as

$$\frac{N(x,\Delta x)}{N_{T}} = f(x)\Delta x \qquad (B-5)$$

Two convenient methods of insuring that values chosen correspond to (B-5) will be discussed. The first is illustrated using Figure B-1. The procedure would be to generate a large number of pairs of random numbers (R_x, R_y). The numbers would be considered points on the rectangular area of the figure, (Note x = 2Rx), and all of the points lying above the graph f(x) would be discarded. This would leave a uniform distribution of points covering the area under f(x). The x coordinates of these points would be the values selected for x. The shaded area is represented by the expression $f(x_1)\Delta x$ and, since the points are uniformly distributed, the fraction of the total number of points which lie in $f(x_1)\Delta x$, and hence the fraction of values of x between x_1 and $x_1 + \Delta x$ is

$$\frac{N(x_{1},\Delta x)}{N_{m}} = \frac{f(x_{1})\Delta x}{\text{Ares Under } f(x)} = f(x_{1})\Delta x$$

This is the distribution desired in order to satisfy equation (B-5).

The second method is to simply set the distribution function equal to a random number and solve for the variable.

$$F(x) = R$$

That this procedure satisfies equation (B-5) after a large number of values have been determined can be shown with the aid of Figure B-2. Suppose N_T values of R are used as F(x). The N_T values will be uniformly distributed along the ordinate between zero and one. To find the number of values of x chosen between x and $x + \Delta x$, consider the number of values of R which lie between F(x) and $F(x + \Delta x)$. Since the values are uniformly distributed, the number between F(x) and $F(x + \Delta x)$ is simply the total number multiplied by the length of the interval, $N_{T}[F(x + \Delta x) - F(x)]$. Since F(x) is monotone increasing between zero and one, there is a unique value of x for every value of R. Therefore the number of values of x lying between x and $x + \Delta x$ is $N_{T}[F(x + \Delta x) - F(x)]$. Hence the fraction of values lying between x and $x + \Delta x$ is

$$\frac{N_{T} \left[F(x + \Delta x) - F(x) \right]}{N_{T}} = \frac{N(x, \Delta x)}{N_{T}}$$

or

$$\frac{N(x,\Delta x)}{N_{\rm TP}} = \left[\frac{F(x + \Delta x) - F(x)}{\Delta x}\right] \Delta x$$
(B-6)

As Δx goes to zero and $N_{_{\rm T}}$ becomes large

$$\Delta x \stackrel{\lim}{\to} 0 \frac{F(x + \Delta x) - F(x)}{\Delta x} = \frac{dF(x)}{dx} = f(x)$$

Thus as N_T becomes large (B-6) becomes a good approximation to (B-5). This latter method is employed throughout this work.

APPENDIX C

CONFIGURATION FACTORS FROM A FINITE RIGHT CIRCULAR CYLINDER TO SURROUNDING BASE RINGS

The configuration factors desired are indicated in Figure C-1. They are from the outside surface of the cylinder to the individual base rings (i.e., F_{25}).

Hamilton and Morgan (33) present values for the configuration factors in concentric finite cylinders (Figure C-2). In their work surface A_1 is the interior of the outer cylinder, surface A_2 is the exterior of the inner cylinder and surface A_3 is the base area between cylinders. They specifically present values for F_{12} .

Using configuration factor algebra one obtains

$$F_{23} = \frac{1}{2}(1 - \frac{A_1}{A_2}F_{12})$$

or

$$F_{23} = \frac{1}{2}(1 - \frac{d}{r} F_{12})$$
 (C-1)

Continuing with the notation of Hamilton and Morgan let D = d/rand $L = \ell/r$.

For use in this work r = 1 and $\ell = 10$. From Hamilton and Morgan and equation (C-1) the following values are obtained.

	159	
D	F <u>12</u>	F23
1.5	.641	.0193
2	.464	.0360 «
2.5	• 358	.0525
3	.288	.0680
3.5		•0830*
24	.201	.0980
4.5		•1115*
5	.150	.1250
5•5		•1385*
6	.116	.1520

*Interpolated values

Using the summation rule of configuration factors one obtains the following configuration factors for the base rings.

$$F_{23} = .0193$$

$$F_{24} = .0167$$

$$F_{25} = .0165$$

$$F_{26} = .0155$$

$$F_{27} = .0150$$

$$F_{28} = .0150$$

$$F_{29} = .0135$$

$$F_{2-10} = .0135$$

$$F_{2-11} = .0135$$

Figure C-2. Configuration Factor Geometry

APPENDIX D

ISOTHERMAL CLOUD APPROXIMATION

The assumption of an isothermal cloud implies that the emissive power of the cloud is the same throughout its volume. For the cases examined in this work, uniform source in a cloud in radiative equilibrium, the emissive power distribution depends on the optical diameter of the cloud. An indication of the effect of optical depth on emissive power can be had from the works of Howell and Perlmutter (13) and Perlmutter and Howell (14). In (13) the solution for the emissive power distribution of a gas between infinite non reflecting parallel plates is presented. It is shown that the distribution between the plates is flat (isothermal) for low optical depth but becomes markedly arched with its high point midway between the plates for optical depths above two. In (14) the distribution for concentric infinite cylinders is given. For the limiting case of no inner cylinder it is shown that the distribution of emissive power is symmetrical about the outer cylinder axis.

In Chapter VII an expression is derived for the apparent emissivity of the particle cloud resulting from emission within the cloud. The derivation assumes that emissions and reemissions are uniformly distributed throughout the cloud. Since the works cited above indicate that

there is a marked departure from this condition for optical diameters above two, it seems appropriate to obtain a correction to the expression for the larger optical diameters. This is done as follows:

The distributions from (25) for optical depths of five and ten are assumed to apply along a cylinder diameter.

It is assumed that the radiation leaving the cloud is characteristic of radiation within one photon mean free path of the surface.

An average emissive power is determined for the portion of the cloud within one mean free path of the surface.

The ratio of the number of emissions and reemissions occuring if this average emissive power were uniformly distributed through the cloud to the number occuring for the uniform source case is determined.

The reciprocal of this ratio is a multiplicative correction factor to the emittance calculated by equation (7-18).

Approximate values for these correction factors are

<u> </u>	Correction		
5	1.2		
10	1.7		