By
SHEN-SHENG A. CHOU
Diploma
Taiwan Provincial Taipei Institute
of Technology
Taipei, Taiwan, Republic of China
1969
Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
December, 1974

TRUSS-ANALOGY METHOD FOR THE ANALYSIS

OF STEEL DIAPHRAGM

Report Approved:

ACKNOWLEDGMENTS

In the final preparation of this report, I would like to express my sincere gratitude to the following:

To my major adviser, Dr. Duane S. Ellifritt, for his assistance and guidance throughout the preparation of this report;

To all the professors in the School of Civil Engineering for their valuable instruction and friendliness throughout my years of study at this institution;

Finally, to my parents, sister, for their support and encouragement during my studies.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1 General 1
1.2 Brief Description of West Virginia Tests 2
1.3 Scope and Objective of Investigation 2
II. APPROACH OF TRUSS-ANALOGY METHOD 7
III. DESCRIPTION OF THE TRUSS-ANALOGY METHOD 9
IV. CORRELATION WITH TEST RESULTS 12
V. MATHEMATICAL MODELS 21
5.1 General 21
5.2 Limitations of the Mathematical Models 21
VI. SUMMARY AND CONCLUSIONS 27
VII. RECOMMENDATIONS FOR FUTURE RESEARCH 29
REFERENCES 31
APPENDIX - "STRUDL" COMPUTER INPUT LIST 32
Figure Page

1. Diaphragm Test Frame 3
2. Welding Steel Deck to Test Frame 4
3. Diaphragm Loading Device 5
4. Bryan Test Specimen 8
5. Relationship Between Diagonal Stresses and Shear Load 8
6. Illustration Example 11
7. Through 15. Correlation Curves 13-20
8. Cross-Section Area V.S. L/T Ratio 22
9. Buckling Load V.S. L/T Ratio 23
10. Effectiveness of Steel Dĕck Illustration 30
11. Typical Configuration of Truss Analogy 32

CHAPTER I

INTRODUCTION

1.1 General

The behavior of light gage steel panel diaphragms does not yield nicely to analysis. The large number of relatively small parts involved, with possible individual movement, and the stress concentrations that are present near the welds as local buckling and tearing around welds when horizontal load is applied, prevent the application of conventional methods of analysis with large degree of confidence. Accordingly, a considerable number of isolated tests have been performed by a number of persons and institutions over a period of time.

Among these tests, the most recent were conducted by the Department of Civil Engineering of West Virginia University in the late 1960's. There followed an extended series of more than one hundred diaphragm tests, utilizing many types of panels, steel thickness, patterns of welds, panel spans, and panel depths. Information that has evolved from these tests has provided a firm basis for the design and installation of light gage steel diaphragms in many parts of the country. Ultimate strength and working strength values have been established for many different systems, and the performance of such diaphragms under load has been accurately cataloged.

All the mathematical models developed in this report are adjusted according to these test resülts.

1.2 Brief Description of West Virginia Tests

At West Virginia University a large-scale diaphragms testing program was begun in 1967. Tests were made on $16,18,20$, and 22 gage decks with lengths of 12,16 and 20 feet long. Panel widths tested were 18, 24, 30 , and 36 inches. All tests were made on a horizontal cantilever test frame, illustrated in Figure 1. Connections between the perimeter members of the frame, as well as connections at the purlin ends, were made with light clip angles and bolts. The entire frame assembly was supported on a roller system and could be moved easily prior to attaching the deck, indicating that all interior connections could be considered pinned. The steel deck was then welded to the frame, thus creating a shear-rigid diaphragm (see Figure 2). The diaphragm was then loaded in its plane by a hydraulic jack and load cell arrangement in line with the free edge (Figure 3). Load was applied in increments from zero to failure with deflection measurements made at each stage of loading. For more detail arrangement and test procedures, see Reference 1.

1.3 Scope and Objective of Investigation

Tested diaphragms were evaluated with respect to two major behavioral parameters, ultimate strength and shear stiffness. From the West Virginia University research, it is apparent that strength and stiffness are primarily influenced by sheet thickness, purlin spacing, panel width, panel length, yield strength of material, deck shape, fastener type, and arrangement. The purpose of this report is to develop a truss-analogy method to determine these two parameters in

Figure 1. Diaphragm Test Frame.

terms of the most significant of the variables mentioned above. The report is divided into sections covering the approach of the trussanalogy method, description of the method, development of empirical equations, correlations with test data, and conclusions. An example problem is included in the Appendix.

CHAPTER II

APPROACH OF TRUSS-ANALOGY METHOD

In 1964, Eric R. Bryan conducted a series of tests on shear of thin plates. The apparatus consisted of an aluminum sheet, 18 inches by 12 inches by 0.01 inches thick. The edge members, also of aluminum, are pinned at the corners (as shown in Figure 4) so that all the shear is carried by the sheet. There are four strain gages attached in tensile diagonal and compressive diagonal directions. A plot of test results which indicates the relationship between shear load Q and diagonal stresses is shown in Figure 5.

It can be seen that, after buckling, the compressive stresses do increase because of the restraint of tensile field, but at a much lower rate than the tensile stresses. They also become asymptotic to a certain value, whereas the tensile stresses continue to increase. As a result, the compressive stress, after buckling, is a small percentage of the tensile stress as the external load.is increased. Consequently, the excessive compressive stress then is carried by its panel edge members. If the panel edge member is a part of the steel deck itself, which will be discussed later, the buckling failure will be the panel edge flute buckling failure.

Based on the above analysis, the truss-analogy approach, with compressive diagonal members ignored, is constructed.

Figure 4. Bryan Test Specimen

Figure 5. Relationship Between Diagonal Stresses and Shear Load

CHAPTER III

DESCRIPTION OF THE TRUSS-ANALOGY METHOD

Since the truss-analogy structure is a highly statically indeterminate structure, it is desirable to use a computer to solve. As far as I know, there are two computer programs available; these are "Plane Frame and Truss Program". and "STRUDL" program. The former limits the number of truss members to not more than 400 and joints to not more than 200. In this report "STRUDL" is used. The following steps are used in the analytical procedures.

1. Set up a "STRUDL" coordinates system as shown in Figures 6 and 7.
2. All the member property input data are known except the crosssection of those imaginary internal truss members. A value for that was first assumed and this value could easily be adjusted later, because in the elastic medium the deflection of a member is directly proportional to its sectional area. Equation (1) shows the relationship between cross-sectional area, a, and deflection:

$$
\begin{equation*}
\frac{\Delta_{t}}{A_{t}}=\frac{\Delta_{c}}{A_{c}} \tag{1}
\end{equation*}
$$

where Δ_{t} is the test data deflection, A_{c} is the assumed computer input data, A_{t} is the cross-sectional area needed, and Δ_{C} is the computer output result of deflection corresponding to A_{c}. Figure 17 is the plot of cross section, V.S. L/T ratio.
3. After the cross-sectional area of the diagonal has been determined, assume values of the buckling force and ultimate tensile force in the diagonal, then compare computer deflection results with test results. If the test results do not agree, readjust the previous assumptions. Continue this trial-and-error process until the computer results fit the test results in an acceptable region. Figure 18 is the plot of buckling force in compressive member V.S. L/T ratio.
4. As the trial-and-error process continued, it was found that after the steel deck was torn off around the welds, namely when the ultimate tensile force had been reached, it still resisted some force. This phenomenon can be explained: when one steel deck panel was torn off, the adjacent welds picked up the load that had formerly been carried by the weld that fáiled. Therefore, when any member reached its ultimate tensile force, it was taken out and fifty percent of its ultimate tensile force was applied to that joint in the direction of that member in the next computer run. On the other hand, when a member buckled, it was merely taken out (see Figure 8).

Figure 6. Illustration Example

CHAPTER IV

CORRELATION WITH TEST RESULTS

The following are ten correlation plots. From these plots, it is seen that the computer input assumptions are well confirmed.

The designations on the test curves, such as $W-3$, refer to tests made at West Virginia University.

Figure 8. Correlation Curves

Figure 9: Correlation Curves

Figure 11. Correlation Curves

Figure 12. Correlation Curves

Figure 13. Correlation Curves

Figure 14. Correlation Curves

Figure 15. Correlation Curves

CHAPTER V

MATHEMATICAL MODELS

5.1 General

Since the length of purlin spacing, L, and the thickness of steel decks are the dominating parameters of shear strength of steel diaphragms, so the values of the section area, buckling force and ultimate tensile force equations herein are all expressed in terms of L / t ratio. All data curves are so plotted by using second order parabolic interpo1ation.

5.2 Limitations of the Mathematical Models

The mathematical models are:

1. Valid for W and $W B$ type decks.
2. Used for standard weld patterns only.

Since the L/tratio of the test stee 1 diaphragms were ranged from 1000 to 3000 , the mathematical models obtained from Figure 18 will be considerably accurate when L/t ratio within that range. The following equations are to the stee 1 deck type specified as 22,20 and 18 gage deck.

For 22 gage deck: (From L/t $=1300$ to $L / t=3000$)

$$
\mathrm{a}=1.732 \times 10^{-7} \mathrm{~L}^{2} \mathrm{t}^{-2}+89.7 \times 10^{-5} \mathrm{~L} \mathrm{t}^{-1}-0.974
$$

For 20 gage deck: (From L/t $=1000$ to $L / t=3000$)

$$
\mathrm{a}=-1.665 \times 10^{-7} \mathrm{~L}^{2} \mathrm{t}^{-2}+68.57 \times 10^{-5} \mathrm{~L} \mathrm{t}^{-1}-0.478
$$

Figure 16. Cross-Section Area Versus L/t Ratio

Figure 17. Buckling Loads Versus L/t Ratio

For 18 gage deck: (From $L / t=500$ to $L / t=2500$)

$$
\mathrm{a}=-2.74 \times 10^{-7} \mathrm{~L}^{2} \mathrm{t}^{-2}+87.64 \times 10^{-5} \mathrm{~L} \mathrm{t}^{-1}-0.442
$$

Apparently, the member buckling force plotted in Figure 17 is the combination of the effects of local buckling and overall buckling. Since the steel deck is formed by a piece of thin steel plate, the thickness of the deck strongly influences the magnitude of local buckling load prior to overall buckling.

As it was pointed out in the introduction of this report, the behavior of light gage panel diaphragms does not yield nicely to analysis because the large number of relatively small parts involved. One of the most important properties among those small parts is the quality of welding which was assumed perfect in this method. Consequently, the buckling forces were obtained on the basis of this assumption.

Even though the quality of welding was inspected in the laboratory, it is necessary to investigate how good that assumption is, as far as the determination of buckling forces is concerned.

AISC presents an interaction diagram of axial force Q versus (b/t) $\sqrt{\text { fy }}$ shown below. It indicates that when $b / t \sqrt{\text { fy }} \geq 200$, the capacity of resisting axial load decreases to about 20 percent of its capacity when $b / t \sqrt{f y} \leq 100$, and remains a low limit up to $b / t \sqrt{\mathrm{fy}}=$ 300. In our case, assume $b / t \sqrt{f y}=330$ for 22 gage deck. Curve 1 represents 22 gage which is rather flat regardless of length L, so this conforms with the AISC curve.

For curve $2, b / t \sqrt{f y}=180$, which represents 20 gage deck which is controlled by both $(b / t) \sqrt{f y}$ ratio and Euler's $1 / L^{2}$ ratio. Since $(b / t) \sqrt{\text { fy }}$ ratio of 18 gage and 20 gage are both in the range of 100 to

200, from AISC's curve, the slope in this range is almost constant as is that in Figure 17.

The lowest point of each curve represents when $L=6.8$ feet, the second lower point represents $L=5^{\prime}$, and the highest point represents $L=4 '$. From curves 2 and 3, it can be seen that the buckling force almost doubles as L decreases from 4^{\prime} to 5^{\prime} or from 5^{\prime} to 6.8', which is consistent with the AISC column strength curve.

The following are the equations for 22,20 and 18 gage deck separately:

22 Gage: (L/t ratio from 1500 to 2750)

$$
F a=-0.43210^{-6} \mathrm{~L}^{2} \mathrm{t}^{-2}+13.7910^{-4} \mathrm{~L} \mathrm{t}^{-3}+0.501
$$

20 Gage: (L/t ratio from 1000 to 2500)

$$
F a=1.17810^{-6} \mathrm{~L}^{2} \mathrm{t}^{-2}-77.1810^{-4} \mathrm{~L}^{-1}+13.29
$$

18 Gage: (L/t ratio from 800 to 2000)
$F a=3.47410^{-6} L^{2} t^{-2}-15910^{-4} L^{-1}+19.51$.
Ultimate tensile force of truss member:

$$
T=3.50 t / .036
$$

CHAPTER VI

SUMMARY AND CONCLUSIONS

When the analytical results for the truss-analogy model were compared with the test data, four conclusions were reached:

1. The truss-analogy method provides some important information; that is, the stresses in steel decks are due to external in-plane load. From this additional information a designer can visualize what portions of a diaphragm are critical, and can predict how the stress of one deck panel is transmitted to adjacent panels after that panel fails.
2. This method is a valuable and rather unique way to solve a steel deck floor or roof with openings by removing members in absent panel areas during analysis.
3. It can be a tool for a designer to anticipate the capacity of a steel diaphragm which has already been built and contains some defective welds due to imperfect workmanship.
4. The mathematical expressions for calculating buckling load and ultimate tensile load have been developed in this method. After these two values of a particular design case have been obtained, it is justified and desirable for a designer to decide whether the extra welds are needed to strengthen the diaphragm by comparing the buckling force and ultimate tensile force. In other words, it would be senseless to do so if the buckling force controls.

Throughout the above four conclusions, it can be seen that the advantage of this method is to provide knowledge of how steel diaphragms behave under in-plane force and how to attack some design cases with configurations other than a rectangular shape.

CHAPTER VII

RECOMMENDATIONS FOR FUTURE RESEARCH

The following recommendations are offered for future research:

1. In many structures, shear-resistant light gage metal diaphragms are connected directly to beams or columns of the steel framework, and may continuously brace these members along their length. The light-gage wall cladding on a building frame, for example, can brace the columns against weak axis buckling if adequate connection is provided between the columns and the diaphragm. Similarly, light-gage steel roof or floor decking can restrain lateral buckling of truss chords, beams and purlins. This action of the diaphragm in bracing individual members has been investigated by Cornell University in 1967. However, if the truss-analogy method can be developed for buckling-restraint diaphragms, the advantages are obvious as indicated in the previous conclusions.
2. As in practice, the edge members of a light-gage diaphragm can be connected in several fashions, such as two corners pinned with the other two corners rigid or even semi-rigid. Suppose there was a fourcorner, rigid-connected diaphragm, as shown in Figure 18 (the dotted line indicates the deflection curve under load P). As you can see, the stee 1 deck in Zones 1 and 3 experience little shear strain. In other words, only the stee 1 deck in Zone 2 was resistant to shear force. Therefore, what proportion of the shear capacity, after all corners
pinned shear diaphragm have been taken into account, is in question. After this question has been answered, the truss-analogy method can then be applied by removing members in Zone 1 and 3.

Figure 18. Four Corner
Fixed
Diaphragm

REFERENCES

(1) "Strength and Stiffness of Steel Deck Subjected to In-Plane Loading." Civil Engineering Studies, Report No. 2011. West Virginia University, 1970.
(2) Beaufait, Fred W. Computer Methods of Structural Analysis. New York: McGraw-Hill Book Company, 1970, pp. 447-477.
(3) Bryan, E. R. and W. M. El-Dakhakhni. "Shear Flexibility and Strength of Corrugated Decks." Journal of the Structural Division, ASCE, Vol. 119, No. ST 11 (November, 1968), pp. 2549-2580.
(4) Easley, J. T. and D. E. McFarland. "Buckling of Light Gage Corrugated Metal Shear Diaphragms." Journal of the Structural Division, ASCE, Vol. 128, Nö. ST 7 (JuTy, 1969), p. 1497.
(5) Pekoz, T. B. and G. Winter. "Torsional-Flexural Buckling of ThinWalled Sections Under Eccentric Load." Journal of the Structural Division, ASCE, Vol. 95, No. ST 5 (May, 1969), p. 1349.
(6) Bryan, E. R. and W. M. Dakhakhni. "Shear of Thin Plates With Flexible Edge Members." Journal of the Structural Division, ASCE, Vol. 90, No. ST 4 (August, 1964), pp. 1-14.

APPENDIX
"STRUDL" COMPUTER INPUT LIST

Truss Configurations

Figure 19. Typical Configuration of Truss Analogy

Joint Coordinates

Joint No.	X	Y	Joint No.	X	Y
1	0.0	0.0	33	120.0	240.0
2	24.0	0.0	34	144.0	240.0
3	48.0	0.0	35	168.0	240.0
4	72.0	0.0	36	192.0	240.0
5	96.0	0.0	37	0.0	4.0
6	120.0	0.0			
7	144.0	0.0			
8	168.0	0.0			
9	192.0	0.0			
10	0.0	80.0			
11	24.0	80.0			
12	48.0	80.0			
13	72.0	80.0			
14	96.0	80.0			
15	120.0	80.0			
16	144.0	80.0			
17	168.0	80.0			
18	192.0	80.0			
19	0.0	160.0			
20	24.0	160.0			
21	48.0	160.0			
22	72.0	160.0			
23	96.0	96.0			
24	120.0	120.0			
25	144.0	144.0			
26	168.0	168.0			
27	192.0	192.0			
28	0.0	0.0			
29	24.0	24.0			
30	48.0	48.0			
31	72.0	72.0			
32	96.0	96.0			

```
CARD
    l TYPE PLANE FRAME
    UNITS KIP IN
    CONSTANTS E 29000 ALL
    4 JOINT COORD
    5 1 0 0
    6 2 240
    7 3 48 0
    84720
    9 5 960
    10.61200
    11 7 144 0
    12 8 168 0
    13 9 192 0
    14 10 0 80
    15 11 24 80
    16 1248 80
    17 13 72 80
    18 1496 80
    19 15 120 80
    20 16 144 80
    21 17 168 80
    22 18 192 80
    23 19 0 160
    24 20 24 160
    25 21 48 160
    26. 22 72 160
    27 23 96 160
    28 24 120 160
    29 25 144 160
    30 266 168 160
    31 27 192160
    32 28 0 240 S
    33 29 24 240
    34 30 48 240
    35}3117224
    36 32 96 240
    37}333120 24
    38. 34 144 240
    39. }35168\quad24
    40 .36 192 240
    41 3704 S
    4 2 ~ J O I N T ~ R E L
    43 28 MOM Z
    44 37 FOR Y MOM Z
    4 5 ~ M E M ~ I N C ~
    46 1 1 2
    47 2 2 3
    48 3 34
    49445
    50 5 56
    51.667
    52.778
    53 8 8:9
54 9 37 10
```

CARD				
55	10	2	10	
56	11	2	11	
57	12	3	11	
58	13	3	12	
59	14	4	12	
60	15	4	13	
61	16	5	13	
62	17	5	14	
63	18	6	1.4	
64	19	6	15	
65	20	7	15	
66	21	7	16	
67	22	8	16	
68	23	8	17	
69	24	9	17	
70	25	9	18	
71	26	10	11	
72	27	11	12	
73	28	12	13	
74	29	13	14	
75	30	14	15	
76	31	15	16	
77	32	16	17	
78	33	17	18	
79	34	10	19	
80	35	11	19	
81	36	11	20	
82	37	12	20	
83	38	12	21	
84	39	13	21	
85	40	13	22	
86	41	14	22	
87	42	14	23	
88	43	15	23	
89	44	15	24	
90	45	16	24	
91	46	16	25	
92	47	17	25	
93	48	17	26	
94	49	18	26	
95	50	18	27	
96	51	19	20	
97	52	20	21	
98	53	21	22	
99	54	22	23	
100	55	23	24	
101	56	24	25	
102	57	25	26	
103	58	26	27	
104	59	19	28	
105	60	20	28	
106	61	20	29	
107	62	21	29	
108	63	21	30	

```
CARD
    109 64 22 30
    110 65 22 31
    111 66 23 31
    112 67 23 32
    113 68 24 32
    114 69 24 33
    115 70 25 33
    116 71 25.34
    117 72 26 34
    118 73 26 35
    119 74 27 35
    120 75 27 36
    12176 28 29
    122 77 29 30
    123 78 30 31
    124 79 31 32
    125 80 32 33
    126 81 33 34
    127 82 34 35
    128 83 35 36
    129 84 1 37
    130 MEM PROP PRISM AX 6.2 IZ 10.8
    131 1
    132 2
    133 3
    1344
    135 5
    136 6
    137 7
    138 8
    139 9
    140 34
    141 59
    142 84
    143.75
    144 50
    145 25
    146 76
147 77
148 78
149.79
150 80
151 81
152 82
153 83
154 MEM PROP PRISM AX 3.09 IZ 0.865
155 26
156 27
157 28
158.29
159 30
160 31
161 32
162 33
```

```
CARD
    163 51
    164 52
    165 53
    166 54
    167 55
    168 56
    169 57
    170 58
    171 MEM PROP PRISM AXX 0.168 IZ 0.1
    172 10
    173 11
    174 12
    175 13
    176 14
    177 15
    178 16
    179 17
    180 18
    181 19
    182 20
    183 21
    184 22
    185 23
    186 24
    187 35
    188 36
189 37
190 38
191 39
19240
19341
19442
19543
196.44
197 45
19846
199 47
20048
201.49
202 60
203.61
204 62
205 63
206 64
207 65
208 66
209 67
210.68
211.69
21270
213 71
214 72
215}7
21674
```

CARD							
217	MEM	1 REL					
218	10	STA	MOM	Z	END	MOM	Z
219	11	STA	MOM	2	END	MOM	2
220	12	STA	MOM	Z	END	MOM	2
221	13	STA	MOM	2	END	MOM	Z
222	14	STA	MOM	Z	END	MOM	2
223	15	STA	MOM	2	END	MOM	2
224	16	STA	MOM	2	END	MOM	Z
225	17	STA	MOM	2	END	MOM	Z
226	18	STA	MOM	Z	END	MOM	Z
227	19	STA	MOM	Z	END	MOM	Z
228	20	STA	MOM	Z	END	MOM	2
. 229	21	STA	MOM	2	END	MOM	Z
230	22	STA	MOM	Z	END	MOM	Z
231	23	STA	MOM	2	END	MOM	Z
232	24	STA	MOM	Z	END	MOM	Z
233	25	STA	MOM	Z			
234	26	STA	MOM	Z			
235	33	END	MOM	Z			
236	35	STA	MOM	Z	END	MOM	Z
237	36	STA	MOM	2	END	MOM	Z
238	37	STA	MOM	2	END	MOM	Z
239	38	STA	MOM	Z	END	MOM	Z
240	39	STA	MOM	Z	END	MOM	2
241	40	STA	MOM	2	END	MOM	2
242	41	STA	MOM	Z	END	MOM	Z
243	42	STA	MOM	Z	END	MOM	2
244	43	STA	MOM	Z	END	MOM	Z
245	44	STA	MOM	Z	END	MOM	2
246	45	STA	MOM	Z	END	MOM	Z
247	46	STA	MOM	Z	END	MOM	2
248	47	STA	MOM	Z	END	MOM	Z
249	48	STA	MOM	2	END	MOM	Z
250	49	STA	MOM	Z	END	MOM	Z
251	51	STA	MOM	Z			
252	58	END	MOM	Z			
253	60	STA	MOM	Z	END	MOM	2
254	61	STA	MOM	Z	END	MOM	2
255	62	STA	MOM	2	END	MOM	Z
256	63	STA	MOM	Z	END	MOM	Z
257	64	STA	MOM	Z	END	MOM	Z
258	65	STA	MOM	Z	END	MOM	Z
259	66	STA	MOM	2	END	MOM	2
260	67	STA	MOM	Z	END	MOM	Z
261	68	STA	MOM	2	END	MOM	2
262	69	STA	MOM	2	END	MOM	Z
263	70	STA	MOM	2	END	MOM	Z
264	71	STA	MOM	Z	END	MOM	Z
265	72	STA	MOM	Z	END	MOM	Z
266	73	STA	MOM	2	END	MOM	Z
267	74	StA	MOM	Z	END	MOM	Z
268	76	STA	MOM	Z			
269	83	END	MOM	2			
270	84	STA	MOM	Z			

```
CARD
    271 LOADING '1' '4.55'
    272 JOINT LOAD
    273 9 FOR Y -6.0
    274 INACT MEM 42 19 21 40 44 63 65
    275 STIFFN ANALYSIS
    276 LIST FOR DISP ALL
    277 FINISH
```

Shen-Sheng A. Chou
Candidate for the Degree of
Master of Science

Report: TRUSS-ANALOGY METHOD FOR THE ANALYSIS OF STEEL DIAPHRAGM
Major Field: Civil Engineering
Biographical:
Personal Data: Born September 25, 1948, in Sheng-hai, China, the son of Mr. and Mrs. C. H. Chou.

Education: Received the Diploma from Taiwan Provincial Taipei Institute of Technology, Taipei, Taiwan, in June, 1969; completed the requirements for the Master of Science degree in December, 1974.

