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Preface

This report contains the description of B*-trees and a
partial analysis of their storage characteristics. Tuwo
bufferiny methods for B*-tree nodes are presented. FEmpiri-
cal results gqiven from algorithas tested on the computer.
Programs were written in PL/I, compiled on the optimizing
compiler, and run on the I384 370/1063.

I would like to tnank my advisor, Dr. Phillips, and the
other members of ry committee, Dr. Cahandler and Dr. Fisher,

for their help on this report.
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CHAPTER 1
STORAGE STRUCTURES

There are many techniques and structures used for the
storaje and access of data. Yany of these allow "keyed"
access to data records. Keyed access 1is the ability to

access a data record by specifying a key that is associated

with that recori. The key may be uiirelated to the physical
storage location of the data recordc. There are twon major
classaes of kxeyed access storage techniques: key to address

transformations and search tree structurese. Within each of
these classes, there are techniques for accessing data on
external as well as internal storage.

Key to address transformation (also called *"hashing")
is the mathematical transformation of the key into a physi-
cal storage address. Although the key may not be totally
unrelated to the physical location of the data record, the
selection of aan appropriate function may make it seem that
way. Key to address transformation has been used for the
storage of data‘on both internal arnd external storage.

This method is typically faster than search tree struc-
tures, 9Yacause auch of the time the data record may be
accessed with o intermediate accesses. Huwever, it is nec-

essary to obtain a key to address function which is appro-
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priate for a given set of key values. The range and
distribution of the values of keys may affect the efficiency
of a key to address transformation system to a great degree.
This makes it difficult to use such a system in a general
database application in which the properties of keys are not
known in advance.

A possible solution to this problem has been introducec
by Fagin, (10), which consists of combining a radix tree, or
trie (15), with key to address transformation. This techni-
que, called extendible hashing, transforms the key into a
pointer to a paje W&ith several kxeys. The range of xey val-
ues within a page is dynamic. decause of this, the hashing
function is not as tightly oound to the characteristics of
the key values as it 1is 1in conventional key to address
transformation systeas.

A search tree is a tree structure in which the keys are
arranged in such a manner that they can be accessed by key
value. There are four major operations performed on search
trees: searching, insertion, deletion, and traversal.
Searching is the process of searchinygy for a given key's pos-
ition in the tree. Insertion is the process of inserting a
key into the tree, and deletion the process ot deleting a
key from the trée. The traversal of a search trge involves
traversing the tree, normally accessing keys in collating

seytence.



Binary Search Trees

A binary search tree 1is a search tree in which each
node contains one key and two pointers. The left pointer of
each node points to a (possibly empty) subtree in which all
keys are less than the key in the parent of the subtree.
Similarly, all keys in the right subtree are greater than
the key in the nsarent. The pointers in leaf nodes are null.

The search of a binary tree begins at the root node and
proceeds to its descendants, visiting one node at each
level. Wwhen a node is visited, 1if the desired key is less
than the node's Xey, then the left pointer is followed. If
the desired key 1is greater than the node's key, the right
pointer is followed. The search terminates when the desired
key is found or shen a3 null pointer is encountered. When a
key is inserted 1into a binary tree, a search is performed
for the xey. If the search is successful, the key cannot be
inserted. If a null pointer is encountered, it is set to
point to a nes node that contains the new key and two null
pointers.

Keys are aluways deleted from 1leaf nodes or semi-leaf
nodes in a binary tree. A semi-leaf node is 3 node with
only one descendant. If a key to be deleted has two descen-
dants, then that key i1s exchanged with the next larger or
next swaller ey in the tree, which has 4t most one descen-
dant. Then, the key and its node are deleted. I[f the
lJeleted node hal a descendant, the descendant 1is wmoved up

into thhe space laft by the deletion.



There are several ways to traverse binary search trees,
the most common of which 1is the inorder traversal. This
type of traversal accesses all keys in order. Other methods
of traversal include preorder, postorder, and level order
(16). |

B8inary search trees may or amay not be well-balanced. A
well-balanced binary ;earch tree is one in which each node's
tWwo subtrees have approximately the same height. When a
binary search tree is built by insertion of random keys, it
is likely to bYe well-balanced. On the other hand, consider
the case where the keys are inserted in ascending order. A
degenarate tra2e is then formad in which every left pointer
is null. This tree is essentially no more more than a lin-
ear linked list.

The average search time for a randomly built binary
search tree is 0(logN) where N is the number of keys in the
tree (16). The average search time for a degenerate binary
search tree is 0O(N). The average time for insertion corre-
sponds very closely to the search time, since there 1is a
constant time after the correct null pointer is found. The
average time to delete a key from a binary search tree is

0(logil) .
Height Balanced Trees

Uacunstrained binary; search trees have good character-
istics 4hen they area well-balanced, but the fact that they

may ba degenerats can cause prublems. deight balanced trees
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have provisions, or constraints, for keeping the tree
well-balanced (13, 16). A height balanced tree has some
value, k, which is the maximum difference in heights of a
node's tdo subtrees. When an insertion or a deletion causes
the heights of a node's tuwo subtrees to differ by more than
k, an adjustment is made to rebalance the subtrees. Height
balanced trees are often named by their value of k. For
example, 1f a tree had a value of one for k, it would be
called an HB(1) tree.

The adjustaents made to the tree to keep it halanced
are cailed rotations. There are only two types of rotations
used in rebalancing. Each of these reguires a fixed amount
of tine. This neans that the average time for insertion and
deletion remains O(logN), while the average search time
decreases (if k < N).

There have been several variations of HB(k) trees
developed. A partially height balanced tree (HB(kl1l,k2)) has
two values for k: one for the bottom level of the tree and
one for the upper levels (12). Weight balanced trees use
the number of nodes contained in, rather than the height of,
the subtrees to test for rebalancing (16).

deight balanced trees are appropriate primarily for the
internal storaje of data. Other methods are generally used
for storing data on secondary storage. By storing more than
one Xey 1n a node, the numoer of accesses to secondary stor-

age can Oe sijnificantly reduced.



B-trees

The B-tree wWwas first developed by Bayer and McCreight
(3) in 1972. Since then, B-trees and variations thereof
have become common data structures for the storage of
infornation on secondary storage devices.

A 3-tree is a search tree that has the following prop-

erties:

1. zach path frou the root to any leaf has the
same length, h, also called the height of the
trea.

2. tach node has at most m descendants.

3. kach node, except the root and the leaves,

has at least CEIL(n/2) descendants. The root
is a leaf node or aas at least tuwo
descendantse.

4. Each node holds between FLOOR((m-1)/2) and

m—-1 keys, except the root which holds betueen
1 and m-1 keyse.
5. Each non-leaf node wWith k keys has k+l
descendants.
Since the path from the root to any 1leaf has the same
length, every leaf node must reside on the same level. For
this reason, the B-tree is said to have uniform height.

In b-trees, insertions occur only at the leaf node
level. The 1e3af node 1level is also referred to as the
bottom 1level. An insertion may cause a node to become
overfull, that is, to contain more than m=1 Xeys. If this
hanpens, the node mnay be split into two nodes, and the

middle ey of the overfull node 1inserted into the parent

node. This 1Jveration 1is called node splitting. An



alternative method of handling overfull nodes is overflow
sharing. In this operation, some of the keys and pointers
from the overfull node are moved into one of its siblings.
Overflow sharing 1is not possible if both of the overfull
node's siblings contain the maximum possible number of keys.
I1f overflo« sharing is used, 4hen possible, it tends to keegp
more keys in each node. This causes the tree to be
snallower and have better search characteristics.

4hen a key is deleted from a B-tree, it is deleted from
a leaf node. If the key to be deleted is in an upper level
node, it 1is first swapped with the next larger or next
smaller Xey in the tree, which always appears on tha bottom
level. A deietion may cause a node to Decome underfull,
that is, to contain less than FLOOR((mw-1)/2) keys. If this
happens, the underfull node may be merged with a sibling
that contains FLOOR((m—-1)/2) keys. This operation is called
node merginge. When a node becomes underfull and a merge is
not possible, an underflow share is performed. Underflowu
sharing consists of moving some of the keys and pointers

from a sibling into the underfull node.
b-tree Variants

Several variations of the B-tree have come about 1in
recent years. There seeus to be a lack of uniformity in the
terminolojy used in the definition of theses structures. The

definition of some ¢f the terms used in this paper followe.



The leaf nodes of a 3-tree have no descendants in the
tree, but do contain keys and pointers to external nodese.
External nodes may be imaginary nodes without information,
or data records associated with keys in the leaf nodes. The
bottom level of the tree refers to the leaf node level, or
the level of the tree at which all leaves are present. The
upper levels of the tpee are any levels other than the bot-
tom level. Comer (€) and Wagner (21) use "sequence set" to
refer to the bottom level, and "index set" to refer to the
upper levels of certain B-tree variations. In discussing
B-trees, Knuth (15) uses "leaf node'" to refer to the exter-
nal nodes defined above, but chanjes the definition to agree
with the abova 4hen discussing modifications wused in the
B¥~tree.

In a conventional 8-tree, data stored with the key may
be large enough to occupy a8 considerable portion of an index
node. If a large amount of data is stored with the keys in
the nodes, the order of the B-tree may be relatively small,
and so the height relatively large. Also, in a B-tree, all
pointers on the bottom level are not used. Since most of
the pointers 1in the tree are on the bottom level, most
pointers in tne tree are not used. A solution to these
problems is to-store each key and associated data on the
bottom level of the tree (16). When a leaf node éplits, the
middle xey i3 juclicated and proevaqgate:d to the next higher
level. The ocijinal key and data remain on the bottom

level. The uoper level teys and pointers are merely a



"roadmap"™ to the bottom level. A search in this structure
is not complete until the bottom level is reached. If a key
that has a duplicate in an upper level is deleted from a
leaf node, the upper level key does not need to be deleted.
It can still function to guide searches to the bottom of the
tree.

Instead of storing data with each kxey on the bottom
level of the tree, as suggested above, a pointer to an asso-
ciated data record can be stored. The permmits the same
structure to be used for both leaf nodes and upper level
nodes. Hodever, if the same structure is used, one pointer
on each leaf nolde is not used. These extra pointers can be
used to link all the bottom level nodes horizontally to aid
in the traversal of the tree (8, 16, 21).

In the trees Jjust described, the upper level keys are
used only to guide searches. These keys can be compressed,
using any of several techniques, to allow a greater branch-
ing factor on upper levels (4, 14, 21). Key compression
results in keys Wwith variable lengths. Because of this, the
number of bytes wused in a node, rather than the number of
keys a node contains, 1is used to determine underflow and

overflow conditions in ugper level nodes.



CHAPTER II
THE B+-TREe INDEX

The structure 'presented in this chapter is the
B*-treetl, described by Comer (8) and Knuth (16). A descrip-
tion of the 8*-tree is given, followed by a partial analysis
of the storage characteristics of the B*-tree. Empirical
results are presented, showing the convergence of the den-
sity of the B*-tree after alternate insertions and deletions
of rancdom keyse.

©ach node in the B*-tree contains only keys and point-
erse. The bottom level pointers point to data records, or
external nodes. On the bottom level, there is one pointer
per kXey. Each leaf node has a link to the next leaf node to
the right, except the rightmost node, whose link is nuil.

fach upper level key is copied from a bottom level key
during a node split on insertion. From that time on, the
upper level kéy is used only to direct searches to the bot-
tom level. A 3uccessful sedrch 1in a B*-tree is detected
only shen a natéhing key is found at the bottom level.

Some implementations of the B*-tree (16) .have data

stored witihi the xeys in ledar nodes, making the structure of

- ——— - — - — ——— - > > ——

13+-tree is read "8 plus tree."

10
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leaf nodes different from the structure of the upper level
nodes. The 3*-tree structure discussed in this paper is one
in which the same structure is used for both leaf nodes and
upper level nodes. The B*-tree has one key per pointer in
the bottom level and one more pointer than keys in the upper
levels. Since one more pointer per node is used on the
upper levels than on the bottom level, there is an extra
pointer on each leaf node. The unused pointer on each leaf
nocde is used as a horizontal link to the "next'" leaf node.

The horizontal 1links across the bottom 1level can be
maintained Wwithout much difficulty. The only time a hori-
zontal link is updated is during an node split or merje. In
either case, no additional node accesses are required beyond
those ordinarily required for a split or merge.

The horizontal links allow the "next"™ key and pointer
to be accessed wWithout using upper level nodes, after the
initial search. This makes it possible to traverse several
trees simultaneously, keeping only one node per tree in mem-
ory at a time.

In the 3*-tree, only the keys in leaf nodes are associ-
ated with data records. The upper level keys are duplicated
from kays 1in tne bottom level keys, and are only used to
reference other nodes. The duplication of xeys on the upper
levels may cause the number of Xeys per node to be mislead-
ind. A B*-tr2e Jith N extarnal nodes ihas 1 keys in the bHot-
tom level or tae tree, Dbut the number of xeys 1n upper

levels may vary. [his variance may be small, but a unit of
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measurement can be chosen which will show the overall
storage <characteristics of the tree more accurately than
keys per node. Instead of using the total number of keys
per node, the number of external nodes per internal node can
be used, that 1is, the number ¢f keys on the bottom level
divided by the number of nodes in the tree. This unit will
be called "effective keys per node." The number of effec-
tive keys per node in 4 tree of order m with N external

nodes is represanted as E(m,N).
Storage Characteristics

Best and xorst Cases

To find the ugper and loder bounds on E(m,N) for a
B*-tree of order m «4ith N external nodes, it is necessary to
determine the maximum and minimum nodes in the tree. N can
then be divided by these values to obtain the maximum and
minimum value for E(n,N).

The minimum number of pointers in a node is

d = CEIL(m/2).
The max imum number of leaf nodes is

“LOOK(N/(d-1)).
If there are n nodes on a levei, L, of a tree, and if n>1,
then there are n pointers on level L-1, the level immedi-
ately above. Thils can be seen intuitively since each node
except the root wust have a pointer to it from the next

higher level. [he @wmaximua nuaper of nodes on an upper level
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with n pointers is
FLOOR(n/d).

Using the above, one can progress from the bottom level
of the tree upward, counting the number of nodes on each
level, wuntil the number of nodes on a level is one. When
the root node 1is reached (where the number of nodes on the
level is one), the maximum possible number of nodes in a
B*-tree for the jiven order, m, and size, N, is obtained.

The minimum possible number of nodes may be found simi-
larly. The ainiaun number of leaf nodes is

CeIL(n/(m=-1)).
The winimum nuwber of nodes on an upper level with p point-
ers 1is
CEIL(p/m) .

On an upper level, each node has one more pointer than
key. Therefore, on an upper level with n nodes and p point-
ers, there are (p-n) keys. Using this, the maxinmum or mini-
mum number of keys in the tree may be counted along with the
nodes.

In each progression upward during the counting, the
maximum or minimum number of levels in the tree may be tal-
lied. The aligorithm in Figure 1 may be used to find the
maximum and minimum number of keys, nodes, and levels in a
B¢+-tree of order M with N external nodes.

The functions for the waxiwum and winiwmum number of
nodes and keys 4ould be linear if the FLOOR and CZIL func-

tions were not present, since J is divided by the sawme value
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each time through the loope. This implies that a linear
approximation to the maximum and minimum number of nodes in

a B*-tree can be obtained.

r.---.----‘.--“ = - v ---‘---_---------‘.----------.--‘-----‘-1

STAT: PrOC (WAXNOﬁES, MAXXEYS, MINNODES, MINKEYS,
MAXLEV, MINLEV, M, N);

MAXNODES, YAXKEYS,MAYLEV,MINNODES,MINKEYS,MINLEY = 0

|

|

I

|

|

|

| D = CZIL(m/2);

| /* FIND MAXIMUNS x/

| J = FLGOR(N/(D-1))+N;

| DO WHIL=Z J > 1;

{ I = FLOJ&(J /D),

| MAXNCDES = MAXNCDES+1;
| MAXKEYS = MAXKZEYS+J-1I;
i MAXLEY = MAXLEV+1l;

I Jd =13

| END;

|

| /* FIND MINIMUMS */

| J = CEIL(N/(M=1))+N;

l DO WHILE J > 1;

1 I = CEIL(J/M);

| MINNODES = MINNODES+I;
| MINKEYS = MINKEYS+J-I;
i MINLEY = MINLEV+1l;

| J = 1;

| ENC;

| END STAT;

!

mMmeEmTeeacGeuwSaw SN o -------------.-.‘---‘.-.-----.-'.-..----J

Figure 1. Aljocithm to Find the Maximum and Minimum
Xeys, Modes, and Levels in a Bt*-tree

[f ther2 are i nodes in a level of the tree, then there

dare n-1 Xxeys in all levels above that level. This is shoun



by the following:

1. If a level has only one node, then it is the

root node and there are no keys in the above
levelse.

2. A node is added to a 1level if and only if a

key is added to the wupper levels in the
process of node splittinge.

3. A nod2 is deleted from a level if and only if

a xey Ls deleted from the upper levels in the
process of node merging.
This implies that the maximum and wminimuwm number of keys can
be found using
N+FLOOR(N/(d-1))-1
for the maxinum, and
H+FLOOR(N/(in—-1))~-1
for the minimua.

The linear approximation for the maximum and minimum
number of nodes in a B*-tree can also be found. As stated
previously, the maximum number of leaf nodes is

FLOOR(N/(d-1)).
The maximum number of keys on upper levels of the tree is
FLOOR(N/(d-1)-1).
The maximum number of nodes 1in a B-tree with k keys is
approximated by FLOOR(k/(d-1)), so the maximum number of
nodes in the upéer levels of a B*-tree is apptoximately
FLOOR ((FLOOR(N/(d-1))-1)/(d-1)).
The waxiaum number of nodes in the entire tree can be

approximated by adding FLCOR(N/(d=-1)) to the above, giving

FLOOK((n=-1)/(d=-1))+n
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where
n = FLOOR(N/(d-1)).

The minimum effective keys per _node may be estimated by
dividing N by the above. '

1t can be shouwn that the linear approximation for the
maximum number of nodes 1ﬂ a B*-tree has a maximum error of
'L-1, where L is the number of levels in the tree. There are
two places uhere errog is introduced. One stems ftom the
fact that the root node may be less than 1/2 full. This
tends to make the approximation less than the actual
maximum. The other source of error is the fact that on each
upper level, it may not be possible to have all nodes at
minimum capacity. This tends to make the approximation
greater than the actual maximum. The maximum error for this
is one node for each level. The top level has two possible
errors of one, but since the they are opposing, an error of
only one may occur at this level.

An approximation of L, the number of 1levels in a
Bt-tree, is given by

L <=1 + log, (N + FLOOR(N/(d-1))-1).
Therefore, the maximum error in the linear approximation of
the maximum number of nodes in a B*-tree is
e <= log , (N + FLOOK(n/(d-1))-1).
A similar derivation for the minimum number of nodes 1n a
Bt-tree can be done, yielding
FLOOR((n-1)/(m-1))+n

where
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n = FLOOR(N/(m-1))
for the minimum. The maximum error turns out to be
e <= log (N + FLOOK(n/(m-1))-1).
Similarly, the number of nodes in a B¢*-tree with p keys per
node may be approximated by

(N/p-1)/p+N/p.

Average Storade Characteristics

A B¥-tree can be built by insertihg random keys to
obtain the storage characteristics of the tree. If such a
tree is built, its density, or number of keys per node with
respect to node capacity, 1is higher than that of a tree of
identical size that has undergone a series of alternate
insertions and deletionse. By the same token, after a tree
has undergone a series of deletions it tends to be wmore
sparse than normal. As a newly built tree undergoes alter-
nate insertions and deletions of random keys, its density
converges to a value which will be called the average den-
sity. The average storage characteristics of a B*~tree are
those of a tree that has undergone an infinite number of
alternate insertions and deletions of random keyse.

To obtain the average storage characteristics of a
B*-tree, its dénsity must be adjusfed after the tree is
built initially. This can be done by performing alternate
insertions and deletions on the tree until the density nears

the average. The density can also be adjusted by inserting
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more than the desired number of keys into the tree, and then
deleting the difference.

A tree with a relatively small order, m, tends ta
approach the average density faster and smoother than a
tree witah a larjer order. Consider a tree of order 201 with
13 nodes and 2000 keys on the bottom level. Consider fur-
ther a leaf node at 9Q% capacity, containing 180 %eys. In
order for the node to share or split, there must be 21 more
insertions into that node than deletions from it.

Consider a second case in Wwhich a tree of order 11 has
2000 keys on the bottom level and 27 leaf nodes. A node at
90% capacity on the bottom level contains 9 keys. Only 2
more insertions than deletions must occur in this node for a
split or overflow share to take place. A split or shnare
operation is much more likely to occur in this tree than in
the tree of order 201. This means that after a given number
of alternate insertions and deletions, the tree of order 11
will probably have a density closer to the average than that
of the tree of order 201.

The two trees have different average densities. The
average density of the tree of order 201 is slightly greater
than that of the tree of order 11 empirical results show
that the averagé density of 3*-trees increases at a decreas-
ing rate as the order increases. Furthermore, if the number
of alternate insartions and Jdeletions is normalizad to the
node s5ize, 3*-trees of lowver orders still <converge to the

averdge density <raster tian Bt-trees of larger orders.
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Trees of relatively large orders have nearly the same
average density.

Any differences betuween the average storage character-
istics in a B*-tree and a B-tree wWwould be caused by the dif-
ference in the way insertion splits and deletion merges are
done on the bottom level. when a leaf node splits 1in 3
B-tree, a key is remqved from the bottom level and promoted
to the next higher level. In a B*-tree, a leaf node split
causes a key to be duplicated and promoted to the upper
level, so one of the leaf nodes has one more key than it
would in a B-tree. In a B-tree, 4when a node merge occurs,
the key in the parent node that separates the two nodes
being merged is moved into the middle position of the node
resulting from the merge. When a merge occurs on the bottom
level of a 3*-tree, that key is merely deleted, since it
does not refer directly to a data record. This leaves the
merged node witin one less key than it Wwould have in a
B-tree.

Most of the nodes of a B*—-tree are at the bottom level.
In the following discussion, it will be assumed that the
upper levels of the tree reflect the characteristics of the
botton level. The root, witn a different aminimum number of
keys than the ofher nodes, Wwill be ignored. The difference
in the densities of the bottom 1level of a B*-tree and the
upper levels is expected to ba negiigable, especially since
the upper levels usually contain a small percentage of nodes

in the tree.
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gmpirical Results

Empirical data was gathered for B*-trees of several
orders. The trees approach average densities of .76 to .80.
The density of trees newly built averaged from .84 to .86,
for trees of order 7, 11, 12, 13, 15, 24, 35, and 49. After
each tree was built, a series of alternate insertions and
deletions of randonm keys 4as done, fecording the storage
characteristics periodically. Next, a series of insertions,
a series of deletions, and another series of alternate
insertions and deletions «4ere done. The results provide
data for the approach of an underfull tree to the average.

The data from Table I was obtained by the wmethod
described above. The "Operations" column refers to the num-
ber of alternate insertions and deletions. One operation is
defined 4as an insertion and a deletion pair.

Figures 2 and 3 illustrate the way relatively sparse
and dense B*-trees approach average densitye. The tree of
order 35 approaches the average density much slower than the
tree of order 13, as expected. Empirical data for these
trees, as well as trees of other orders, 1is given in appen-
dix A.

The expected number of nodes in a Et-tree of order m
with Y %Xeys and an average density of .78 is

(ii/e=1)/p+N/p
where
P = .73(m-1).

N can be divided by this to obtain the expected effective
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keys per node:

E(m,N) = p2 / (p - p/N + 1).
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TABLE I

STORAGZ CHARACTERISTICS OF THE BOTTUM
LEVEL OF A 8*-TREE

Number of Number of
Operations Nodes Density
0 196 +8375
10 199 .8375
20 201 .8292
30 202 «3251
40 204 «8170
50 ’ 204 .8170
60 203 «8210
70 203 .8210
890 203 .8210
90 203 .8210
100 203 .8210
120 204 «8170
140 204 «8170
10?0 207 .8052
180 209 «7974
200 210 «7937
2290 210 «7937
240 210 «79317
260 211 .7899
280 211 .7899
300 211 .7899
350 212 «7862
400 214 71788
450 212 «7862
500 214 .7788
550 215 «1752
600 213 .7825
650 214 .71788
700 213 .7825
750 216 <7716
300 216 «7716
909 216 .7716
1000 218 .7645
1100 217 - 7680
1209 216 .7716
13090 215 « 1752

Order = 13, Number of Keys = 2000
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CHAPTER III
INDEX NODE BUFFERING

It is inefficient to access secondary storage for the
root noce each time the tree 1is used. It is preferable to
Keep the root node in memory until tae program has completed
its operations, and then output the root node to secondary
storaje. For so1e J+-trees, it wmay also be feasible to «eep
more than the root node in memory, especially 1if the root

nocde has only a few descendants.
Least Recently Used Replacement Method

The first bufferiny method presented 1is tne "least
recently used replacement” method (18). Using this techni-
que, the K most recently used nodes remain in mewory. K
pointers are set to point to the nodes in the buffer. The
first pointer refers to the most recently used node and the
Kth pointer to the least recently used. If the node refer-
red to by the third pointer 1s reguested as input, the first
pointer is set ﬁu point to that node, the third pointer to
the node previously referred to by the second, and the sec-
ond pointer to the node previously referred to hy the first
pointar. This is 1llustrated in Fiqure 4. By adjusting the

rpointers in this tashion aach tiwe a node in the buffer 1is
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accessed, the relative time since the last access 1is

retained for.each node in the buffer.

Pointer Page
| 3 | 1 |
fesmmecnanjenccnccncnncccancssacacnanaas]
| 1 | 2 |
femeeaamcefocnmanaenacancananacanacnaana]
| 2 | 3 i

lesseavnevenbruecnersaenucsncaemevaseneneracenwenld

vefore Access to Page 2

Puinter Page
eSS s s sasquesannisaRERenasmReeneesanas"y
| 2 ] 1 i
fummestecmumemmmmeccnacecsnecmeaanaane]
| 3 | 2 |
fecccccncajucncccanccrsncnmnnencccncsnany
| 1 1 3 |

lassansnenbaaseancvsvancsarswunacnocwcccscnavenad

After Access to Page 2

Figure 4. Pointers to Buffered Pages for Maintenance of
Time Since Last Reference

If a node that is not in the buffer is requested as
input, the nole replaces the least recently used node in the
buffer. The pointers to the nodes are then adjusted to
retain the relative times =since last reference. If the
replaced node nas been updated iu memory, it wust be output
to seconrdary storage before its replacement. A flag for
each novde in the buffer is5 used to teli whether the node has

been altered.
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If a node in the buffer 1is requested as output, it is
replaced with the structure that would normally be output to
secondary storade. The node's flag is set to indicate that
the node has been altered, and the pointers to the nodes are
adjusted to reflect the access to the node. If the node
requested as output is not in the buffer, then the least
recently used node is_replaced, atter outputting it to sec-
ondary storade if necessary. The new nodef's flaj is then
set to indicate alteration of Lhe node, and the node point-
ers are adjusted.

At the end of the proygram, any nodes with their altera-

tion flags set must be output to secondary storage.

Apalytical Recformance

If the nuwber of nodes in the buffer is greater than or
equal to the hzight of the tree, then the root node will
remain in memory during a series of searchese. During
updates that do not require any node shares, splits, or
merges, the root will also remain in memory. Most of the
Insertions or deletions in a Bt-tree do not require shares,
splits, or mer jes, so the root node will remain in menmory
during most updates to tne tree. inis teduces the numober Gi
accesses to seéondary storage by at least one for each
search, and by at least one for most insertioné and dele-
tions. |

Consider a tree with a height equal to the number of

noies in the bHufrer. After each search, the nodes in memory
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will be the same nodes that Qere accessed in the search.
Since the root node is always accessed in a search, 1t will
always remain in memory. If the root node has two descen-
dants, then there is a 50% chance of saving an access on the
second level during each search. 1If the root has three des-
cendants, an access uill.be saved one third of the time on

the second level. This reasoning can be generalized for any
number of nodes on all levels. If a series of searches is
performed on the tree, then the average number of accesses

saved by buffering the nodes is

| h
: > 1
i=1 ny

where h 1is the height of the tree and n is the number of
nodes at each level. This is equal to
ho - n. -1 \
2 ()
1=1 !

J——

If the buffer size is p nodes and the height of the tree is

h, then the average number of accesses saved is at least

| » n;-1) p/h

> Lo o ) -
I ge1 i

U N
This assumes that duplicate nodes may be presentlin memory,
and levels are accessed in any order, both of which are

false. Even so, the error in this approximation is rela-

tively small for lacrge trees.
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Levels of the tree that have a large number of nodes
Wwill maxe little contribution to the savings in accesses to
secondary storage. The top two 1levels are responsible for
the major part of access reduction in trees of relatively
large orders.

The discussion 50 far has been limited largely to ran-
dom searchiny. As spated before, there is no change in the
number of access2s reguired in insertions and deletions
that do not cause shares, splits, or merges. However, if a
node split, marje, OC snare 1is necessary, at 1least one
sibling wust oe accessed. This incredses the nuabher of
accesses for the operation, and causes another bottom level
node to reside in wmemory. Since there are a lot of nodes on
the bottom level, this may increase the number of accesses
for the next operation by decreasing the number of upper
level nodes in nmemory. When a split or a merge propagates

activity up the tree, most of the parent nodes will already

be in menory, since they were the last nodes accessed.

Empirical Performance

Empirical results were obtained for the number of
accesses required tor random searcies oIl bt-trees. Taoles
11 and I1il contéin data for buffer sizes of 1, S5, 10, and 2C
nodes, for trees of order 12 and 24. The trees dJere built
With N randod Keys. After tite trees were built, N alternate
insertions aad leletions Were nDerformed to Jecrease the dern-

sity. next, searches were .erforued on all the elements of
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the tree. The average number of accesses per search is
given. The empirical results correspond closely to the ana-
lytical estimation given above.

The empirical results also show that node buffering
cuts the number of accesses required for B*-tree updates.
For example, a tree of order 24 and size 2400 was built, and
2400 alternate insertions and deletions wWere performed.
With a buffer of size one, the number of accesses required
for the alternate insertions and deletions was 20,058.
Using a ten node buffer, the number of accesses required was
reduced to 12,271, nearly a 39% reduction. The number of
nodes in the tree after the operations was 140. The
decrease in accasses was brought about by keepiny only about

7% of the nodes in the tree in memorye.

TABLE II

AVERAGE NUMBER OF ACCESSES PER SEARCH
FOR A B*~-TREE OF ORDER 12

Tree Number Accesses Per Search

Height  of Keys K=1 K=3 K=10 K=20
2 50 2.00 .36 - -
2 100 2,00 «b0 .28 -
3 309 3.00 1.51 1.07 «62
3 600 3.00 1.73 1.44 <97
4 1200 4.00 2.44 1.87 " 1.46
4 2 40 0 - - 2 - 1 3 1 . 7 2

& = Juffer Size, in Nodes
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TABLE III

AVERAGE NUMBER OF ACCESSES PER SEARCH
FOR A B*-TREE OF ORDER 24

Tree Numb er Accesses Per Search

Heigdht of Keys K=1 K=2 K=10 K=20
2 50 2.00 - - -
2 100 2.00 <17 - -
2 300 2.00 .81 <47 -
3 600 3.00 1.16 .78 <54
3 1209 3.00 1.41 1.00 .78
3 24090 ©3.00 1.71 1.42 .97
3 5000 - - 1.68 1.36

X = Buffer Size, in Nodes

Height wWeighted Method

It is wusually more‘ advantageous to keep upper level
index nodes in memory rather than leaf nodes. The level of
the tree in which a node resides can be used, as well the
the time since the nodet's last reference, to determine the
next node in the buffer to be renlaced. This will cause a
greater rercentage of the buffered nodes to be from the
upper levels of the tree, which {in turn will cause fewer
dccesses tu secondary storage.

To use this "height weijhted'" buffering method, each
node in the buffer must have itz height present, as well as

the time since it was last referenced. Each node's time
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since last reference is maintained in the same manner as in
the ledast recently used replacement method.

gach time, t, has a value between 1 and K inclusively,
where K is the buffer size. Each height, h, has a value
between 1 and L inclusively, where L is the height of the
tree. The wost recently used node has t=1. The root node
has h=1. Tne formula used to assign a priority, P, to a
node is

P =t + 0 * X
where x is a weighting factor for the height. The node with
the yr=2atest valus for P is replaced next.

If x > K, then t will be ignored except for nodes on
the same level. Similarly, if x < 1/L, then h will not be
used. A value for the weighting factor, x, should be deter-
mined so that

1/L <= x <= K.

If x = K is used, node replacement will depend almost
entirely on the level of the tree in which each node
resides. This causes the maximum possible number of upper
level nodes to reside in the buffer. During a share, split,
or merge on the bottom level, however, each time a node is
read from or written te the buffar, an access to secondary

storage Will probaoly be necessarye.

Lmpirical Besults

Tiqure 3 SnVW4s the results oif testing different values

for x on a R-tree of order 24. The Duffer size used was ten
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nodes. The graph shouws the number of accesses required for
a sequence of insertions, alternate insertions and dele-
tions, and searches on the B*-tree. The actual operations

performed can be found in appendix B. The best value for x

seems to be between 8 and 10, for this case.
Considerations

The insertion of a kay into a node requirss a time of
0Cid), where ' is the number of xeys in the node. If there
are several hundred keys per node, this time may be signifi-
cant. oy ra2ducing the node size and increasing the buffer
size, the total time required for updates might be reduced.

In a wulti-user environwent, the effect of node buffer-
ing chdnges. Because several different trees are likely to
be used concurrently, the number of nodes in the buffer for
each tree is reduced, which in turn reduces the access sav-
ings. The use of multiple buffers would probably be unfeas-
ible for updates, because of problems with the duplication
of nodes. A common buffer, with a "lockout mechanism™ could
be used, instead.

The efficiency of traversing a B*-tree using horizontal
links is not afrected mucn b0y node buffering, siince mailby
nodes are acceséed only one tiuae. However, node buffering
may be useful in 3+-tree traversals in a multi-user environ-
ment, since 3 node can Ye held 1in the buffer for edch of

saverai trav=zrsals. The Hast heiyght weijzhting factor for
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buffering in such a system would probably not be the same as

it would for a system with only one B*-tree.
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tor for Operations on a B*-tree of Order 24
with a 10 Node Buffer



CHAPTER IV

A STORAGZ AND ACCESS SYSTEM DESIGN FOR A

KELATIONAL DATABASE

A comprehensive relational database has been defined to

have the follosing characteristics:

1. An interiace for a hich level, nonprocedural
dati languaye which provides the following
cagabilities for both dpplication programmers
and nontecnnical users: query, data
manipulation, Jata definition, and data
control facilities.

2. Lfficient file structures in which to store
the database and efficient access paths to
the stored database.

3. An efficient optimizer to help meet the
response-time requirements of terminal users.

4, User views and snapshots of the stored
database.

S. Integrity control - validation of semantic
constraints on the database during data
manipulation, and rejection of offending data
manipulation statemeirits.

6o Concurrency control - synchronization of
siaul taneous updates to a snared datapbase by
multiple users.

7. Selective access control - authorization of
access privilegaes of one user's database to
otihners.

3 necovery from voth sort and hard crashes.

a. A report Jenerator for a higihly stylized

display of the results of interactions
against the datashase and such application-

IR



oriented computational facilities as
statistical analysis (15, p. 185-186).
A system design is presented here to supply the second iten
above for a relational database. The design of the file

system is based on the B*-tree, described in Chapter Il.

Qelational Database Structure

A relation is a set of n-tuples, or tuples. A relation
may be thougynt of as a logical €file, and a tuple as a loqi-
cal record within that file. A tuple is a character string

witih one or wora2 fields, or attributes. See Figure 6.

| attribute 1 | attribute 2 | <e« |} attribute N |

lesavasssveannscsdasvmascwncsancsacsnsndosncvendcancscscaacncsand

TUPLE

r----.---------.----1

| tuple 1 |
jrmaw -------—-----—--’
| tuple 2 |
S
| . |
| . !
' - '
fammmmesammcacaanan.
| tugple N |
| S —
RELATICN

Figure 5. Structure 0of Tuples and Relations
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A relational database contains a set of relations, on
which operations such as joins, projections, and selections
may be performed.

The storage and access system of a relational database

system should provide the following capabilities:

1. kelation definition.

2. Access path definition.

3. Tuple addition, deletion, and update.
4. Tuple iuaccess.

5. Access path deletion.

O Relation deletion.

A base relation is 2 reiation that i3 not defined on
any other relations. The base relation is the primary
entity to be stored by a relational database storagye and
éccess system.

The definition of a relation involves the definition of
the ‘tuples and attributes of the tuples, such as the tuple
length and the position and length of the attributes. Each
relation definad must have a name by wWwhich it 1is to be
referenced. The 1information on a newly defined base
relation is stored on a secondary storage structure, such as
a cataloj.

There dre several possible access paths to a base
relation. the  nost stralqgiitiorward is seqguential accesse.
Another aetnod of access is the use of a set of direct links

from tuples in one base relation to tuples in another.
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Still another access method involves the use of an index,
such as the B*-tree, in which the bottom 1level pointers
reference tuples, either directly or indirectly. The access
paths must be maintained during the addition, deletion, and
updating of tuples.

A high level design of a storage and access system for

a reiational database follows.
The Storage and Access Systen

In this systes, a base relation contains tuples which
are stored on d2ajes. A payge 1s a physical record from 2
file used by all base relations. A base relation page, as
illustrated in Finure 7, <contains a status word, a set of

tag bits, and a set of tuples.

| status | tag bits... ]

tuples

| i
| |
! |
I |
| |
1 |
| |
| |
[§ 4

figqure 7. oLase Relation Paye
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The status flag is set to -2 if the page is full, -1 if
the page is partially full, and is a positive 1link in the
list of available pages if the page is empty. Each tuple
has a tag bit associated with it 1indicating whether the
tuple is currently being used. Any full or partially full
page is dedicated to a single relation. Any page on the
available list is available to any relation.

Ahen a page becomes empty, by the deletion of its last
tuple, it is removed from the set of base relation puages and
placed onto the available list. Similarly, if all the pages
in a reiativn are full when a tugle 1is added, a page is
taken from the available 1list and placed into the set ot
pages in the bYase relation.

The set of pages in a base relation are not necessarily
contiguous. There must exist a method to access the pages
of a relation segquentially, as well as find a partially full
page, if there is one, for the addition of a new tuple. The
capability must exist to access a page directly to update,
delete, or read a given tuple. Also, there must be effi-
cient means of adding pages to and deleting pages from a
base relation. The solution to these problems is to use the
Bt*-tree for the managemenit of pages for base relationse.

There is a‘ d*-tree for each base relation with bottom
level pointers referring to the pages of the base relation.
The keys in the tree dre the pange numbers. Each base rela-
tion has tne root of this paje index stored in the catalog,

along 4ith other iaformation. vhen a page is added to or
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deleted from the relation, the page number is added to or
deleted from the index. W®When the relation is to be accessecd
sequentially, the page index is traversed.

The page index is typically only two or three levels in
height. For example, if the index node size 1is 19,00¢C
bytes, wWwhich is a common size for physical records on sec-
ondary storage devices, then over 2300 page numbers may be
stored 1in eacn 1index node. This would make it highly
unlikely for 3any page 1index to exceed three levels in
height.

Wwhen a base relation is defined, information on attrib-
utes must be supplied. The length, name, and position 6f
each attribute is required. Information on tuple indexes,
if any, must also be present. Information on any binary
links associated with the relation is supplied, as well as a
possible clustering attribute, «hich wWwill be described
later. Each index has a root node, attribute name, and a
flag that specifies whether the values of the attribute are
to be unigque. A base relation may be temporary or cata-
loged. A temporary base relation may be cataloged at a time
other than &hen it is defined. The folloding information is

stored in the cdtaloq ror base relations:

1. base relation name.

2. root node of page index.
J. luple 1enytne.
{. sumber of attributes.

5. Attribute information.
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a. Attr ibute name.

b. Position within the tuple.

C. Length of the attribute.
6. Number of tuple indexes.

7. Tuple index information.

de Attribute name.
b. Root node.
Ce Unique key flag.

3. Clustering attribute.

9. tuanber of sets of binary links.
10. Biagary link information.

a. Attribute name.

be Relation name.

Ce Root node.

The above information is kept in the catalog for all
relations except temporary relations. The same information
is stored in internal memory for temporary relations.

The deletion of a base relation involves deleting all
the tuples and indexes, and removing the relation's entry.,
if any, from the catalog. The page index 1s traversed,
placing each page of the relation onto the list of available
pages. After the last access to each index node in the page
index, the node is placed onto the available list for index
nodes. The tuple 1indexes 3ad binary link indexes are
deleted 1n the sawe manner, except that no base relation

p3jes need to ba deleted.
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Tuple Index

A tuple indgx is a B+-tree 1index in which all the vai-
ues of an attribute in a relation are used as keys. Each
tuple has one key. A tuple identifier 1is associated with
each key 1input to the index. The tuple identifier is a
fullword integer that contains the number of the page irn
which a tuple rasides in the first halfword and the relative
position of the tuple within the page in the second half-
word. The tuple identifiers are the bottom level pointers
of each tugple index.

Zach xey 1in a bt—-tree umust be unigue, in order to allox
deletions. It is sometines necessary to have an index in a
relational database in which some of the keys may be dupli-
cated. Eacn tuple index has a flag associated with it that
tells whether duplicate keys are allowed. If duplicate keys
are allowed in an index, then the tuple identifier is conca-
tenated with the original key to form a unique key, which is
inserted into the tree. There are twWo types of searches in
an index that allows duplicate keyse. The first type is a
search for the entire key, or a specific search. In this
search, the oriyinal key and the concatenated tuple identi-
fier are sought, and both must match for a successful
search. This type of search 1is performed for the deletion
of a tupie.

The second type of searcn is a jeneric search, or a
search for only 4 .ortion of the xey. Cnly the original key

from the tupla 1is sought in this search. The tuple
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identifier is ignored. Since only a left hand portion of
the key 1s considered, there may be more than one matching
key in this type of search. The search is done by concaten-
ating the lowest possible value in collating sequence to the
primary key, in place of the tuple identifier. This results
in the first match, 1if any, being obtained after a normal
specific search for that key. From that point, the tree is
traversed until the first xey that does not match the pri-
mary <ey is found. The idea of a generic s=arch may be gen-
eralized to allow a complete traversal of the tree by
specifying a null primary key (7).

FEach tuple index 1is maintained as tne corresponding
relation is updated. "When an addition t¢ the relation takes
place, a key is inserted into the index. Similarly, the
deletion of a tuple in the relation causes the deletion of
that tuple's key from the index. A tuple update which
changes the value of the attribute used by the index causes

a deletion from and then an insertion into the index.
Clusterinyg

When a relation is processed sequentially, using a page
index, eacn paye i3 read only once. when the same relation
is processed inérder, using a tuple index, each page may be
read several times - up to once per tuple. This can make
processing relations inorder very inefficient, especially if
the tugles ar2 in random ocrder with respect to the attribute

the index 1is HYased on.
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The physical order of the tuples can be maintained so
that each page is read only once when the relation is proc-
essed in order of some attribute. A relation maintained in
such a manner is said to be clustered on the attribute. A
relation can be <clustered on only one attribute. That
attribute 1s called the clustering attribute.

A clusterel. relqtion has 1its page index modified ta
contain information on the largest attribute in each page,
in addition to the information stated previously. Each key
in the page index contains the maximuwm attribute value in
the page, a fiaj indicatiny whether the page is full, and
the page number.

The aljorithm for insertion into a <clustered relation
is given in Figure 8. ¥hen a tuple is inserted into a clus-
tered relation, the page index 1is searched for the first
clustering attribute value greater than or egual to the
attribute value in the tuple to be inserted. If the result-
ing pagye is not full, the tuple is inserted into that page.
If the page is full, then it is split into two pages, each
page containing half the tuples, so that each attribute
value in one page is less than or equal to each attribute in
the other. The tuple is then inserted into the appropriate
page, and the éage index is updated to contain an entry for
the new page. When a page split takes place, any tuple
indexes or binaCy links on the reiation are chanyed to con-

tain new tuple identifiers for all the tugles in one of the
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two pages, since the their old tuple identifiers would no

longer be accurate.

r----- LG L B R R R K R L B L A R R & K R X ] .----.--.-------------.-------1

I
| INCLUSTER: PROC (TUPLE, ATTR_VALUE);

| SEARCH PAGE IMNDEX FOR ATTR_VALUE;

| IF PAGE IS NOT FULwL THEN DO;

| INSERT TUPLE INTC PAGE;

| IF PAGE BECOMES FULL THEN UPDATE PAGE INDEX;

| END;

| «LSE DG;

| SORT TUPLES IN PAGE ON CLUSTERING ATTRIBUTE;

I

| UPLUATZ TUPLe IGDENTIFIZRS OF RELCCATED TUPLES IN
] BINARY LINKS AND TuPLZ INDEXES;

| INSERT TH& MEW TUPLE INTO THE APPROPRIATE PAGE;
| UPDATZ THE PAGE INDEX;

! END;

1

|

L

|
|
|
I
|
|
I
I
i
PLACE THE UPPER 1/2 UF THE TUPLES INTO A NEW PAGE; |
|
I
|
|
I
END INCLUSTER; !

;

Figure 8. Algorithm for Insertion Into a Clustered kel-
ation

Deletion in a clustered relation is fairly straightfor-
ward. A tuple is deleted from its page. Even if the tuple
had the 1larjest value for the clustering attribute in the
paje, the paje index is not chanyed. The value in the paye
index can still be used to separate attribute values. If
tne tuple deletion leaves a paje empty, then the entry for
that pdge in the page index 1s deleted.

If @ tuple update in a clustered relation results in a

new value for the clusteriny attribute, the old tuple is
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deleted from and the new tuple inserted into the relation.
Splitting a page in a <clustered relation can involve a
considerable amount of overhead, since tuple 1indexes and
binary 1links, as well as the page index, may have to be
changed. Although a clustered relation is sowmewhat more
costly to maintain than are other base relations, the bene-
fits from inexpensive‘inorder nrocessing may offset the high

maintenance coste.
binary Links

3irary links are sets of links that connect the tuples
of two relationse. Links go froam each tuple in one relation
to all the tuples 1in another relation that have the same
value for some attribute. Similarly, links go from the
tuples in the second relation to all tuples in the first
relation with the attribute matching.

The binary links from one relation to another are
stored in a B8t*-tree. Each key consists of the "from™ tuple
l1dentifier concatenated to the "“to" tuple identifier. A
generic search can be done on the binary link index to find
all the tuples in a3 relation 1linked from a tuple in another
relation. The search is done for the "from" tuple identi-
fier.

The insertion of a tuple into a linkea relation
involves updatingy the binary link indexes going both to and
from the relation. All matching tuples in the other rela-

tion are found. If a tuple index is available on the appro-
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priate attributas, it is used. Ctherwise a serial search of
the relation is performed. As each matching tuple is found,
an insertion is made into both binary link indexes.

When a tuple is deleted from a linked relation, every
key in the tuwo associated binary link indexes that contain
that tuple identifier, in either the "from" tuple identifier
or the "to" tuple identifier, must also be deleted. The
maintenance of linked relations 1is mwmoderately expensive,
particularly when there is no tuple 1index on the linking
attribute. towever, binary links can play an important part
in the implenentation of views, and can be worthwhile in

relatively stable relations.
Procedures

Figure 9 shoss a block diagram of the procedures used
in the storage and access systea. There are three primary
procedures: STORE, DEFINE, and ACCESS. High level pseudo-
code, or program design language, descriptions are given for
these procedures 1in Appendix D. STORE is used for tuple
insertion, deletion, and updating in base relations. STORE
also updates binary links and tuple indexes associated with
the base relation being changede.

DEFINE is dsed for the definition of base relations and
access paths. The followingy operations are supported by

DEFINE:

1. Cefine 3 relation.

2. Cefine a tuple index.



3. Define binary links.
4. Delete binary links.
Se Delete a tuple indexe.

6. Delete a relation.

v v v

foemmsaaaay L L LT TN (oo encaen,

1 STORE | 1 DEFINE | 1 ACCESS |
=] | r=| | | | ==
lemeccmmen]anay | pemsmeceemeed |
| | I |
1 v v Vv |
PO L LE LYY P | rewcanacay geemeacaney 1
=>] BINARY [(=====ee| [CATALOG |[. { SEARCH [<=]
l LINKS | ==+ l l i ‘----l i i
leacssccand ] I | P l leocanaccad l
| 1 | I . |
| | | | |
| i v | I
| pewesesecaeg I ' (e eaamny l romeananey l
«>] TUPLE |{=e=eaaal |INDEXIQ |(===efe=ee]|TRAVERSE|<=]
I INDEX |e==] | | I | | I
Leascsasanwd ' lasccccaad ‘ tecanascswal l
1 | 1
| { | |
| { i 1
feoavacaa, | reescaaany | reemecccaay ]
=>] TUPLE | | | BTREE | | I NEXT [<=|
I STORAGE |=mmm=m=a=)>] i o— P
laccananed loncacanand lecaccansd '
|
1
frmmmmman |

| FETCH |<=J
| |

| PR P |

Figure 9. Block Diagram of Major Procedures

r
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When one of the above items is defined, the information
is placed into the cataloy. If a tuple index or a set of
binary links is defined on an existing relation, then the
entire relation is processed, setting wup the binary link
index or tuple index as if each tuple encountered were a new
tuple being inserted into the relation.

A set of Dinary links or a tuple index may be deleted
witnout deletin) the existing relation. Wwhan a relation is
deletad, any dinary links or tuglz indexes associated with
that relation are also deleted.

ACCISS pruvides for the access of tuples using any of
the following operations:

1. Given a tuple 1identifier, get the tuple to

which it refers.

2. Given a relational operator and a value of an
attribute, get all the tuple identifiers of a
relation whose tuoles satisfy the
restriction.

3. Given a tuple identifier of one relation,
obtain tuple identifiers of another relation

of tuples that match on a given attribute.

4. Using the page index for a relation, g¢get the
next tuple. '

5. Using a tuple index for a relation, get the

next tuple identifiar.

In operatiyn 2 above, a tuple 1index 1is used if one is
available on the requested relation and attribute.
Jdtherwise, 3 sa2riai  search 1s perforaned on the bDbase
relation. Sinilacly, hinary links are used in operation 3

if the appruoriate set exists. If not, and if one |is
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available, a tuple 1index is used. If binary 1links and a
tuple index both cannot be used, then a serial searcn of the
base relation is performed.

For operations 4 and 5 above, a '"cursor", contaianing
the index node and offset within the node of the current
key, is %ept hy the calling program. The cursor contains a
null wvalue on the first call. ACCESS "increments" the
cursor to tne next position in the node, or to the next
node, eacl tiie the procedure 1is called. An end=-of-file
flaj is set after the end of the relation has been
encounterecd.

As shoawn in Figure Y, several supgorting procedures are
calla? vy 5T07Z, DEFINE, and ACCZ5S. TUPLS IND=ZX is called
to insert, delete, or update a key in a tuple index. BINARY
LINKS performs the same function for a binary 1link index.
BTREE is a general purpose routine that provides for the
insertion and deletion of keys in B*-tree indexes. INDEXIC
is a buffered input/output procedure for index nodes.

CATALGG is a set of procedures which may be called to
obtain or store information on relations and access paths.
Certain information is kept on each relation and access
path, as J42li uas other iteas. At  tne beylnning of tane
relational datasbhase's main prograi, the cataloqg information
is read from secondary storage by a call to a catalog
vrocedure. sirilarclty, 4T tne end vt the main Jatabase
zrograi, a call to a catalog procedure causes tiae catalog

infornation to he written Haci: out to secondary storaje. At
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this time, the catalog procedure calls INDEXIO to write any
index nodes remaining in memory out to secondary storage.
Also, at the end of the program, the <catalog procedure
deletes any existing temporary relations. Catalog
procedures are called by STOXE and ACCESS to obtain tuple
format and access paths for relations.

SEARCH is a procedure used to searcin an index for a
given xey. It is wused withh tuple i1ndexes, binary link
indexa2s, and D2aj2 indexas for ciustered relations. TRAVIRSE
is used to get the next tuple identifier, given the last
“"cursor ", or index rniocde ani reiative offset of the key
“Within the index node. rne cursor pay be set to nuli to
start «4ith the first tuple identifier, or it may be set by a
call to SEARCY, if the traversal is to begin somewhere other
than the beginning. FETCH reads a tuple from the base
relation page, 4Jgiven a tuple identifier. NEXT traverses the
page index, much 1like TRAVERSE dces the tuple index. It
returns a tuple identifier to ACCESS, which, in turn, calls
FETCH to retrieve the tuple itself.

It should be noted that the high level design of a
complex system such as this should not be held coupletely
static. If the reasons for a chanje outweigh the reasons
not to change, Athen a change should be mddea $ome of the
decisions in the design of this system Were based wupan
exgected 2roguertias of the calling »roqgram. As the calling
routines are lesigjned, it «£ill o>robably ba advantajeous to

nodify tnis Jdesiyn to bDetter suit them. The access routines
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are particularly susceptible to <change, since they are
directly dependent upon the needs of the calling program.
The storage and access system just described is meant
for use with an intermediate processor for queries. The
intermediate processor is to use this system to perform the
storagde and a4access of tuples. The intermediate processor
that vrocesses joins,‘vieu accesses, etc., «€ill probably not
be the saue procedure that receives and analyzes source
guery statements. For further details on relational

database systeus, see (1, 15).



CHAPTER V

SUMMARY, CONCLUSIONS, AND SUGGESTIGHNS

FOR FURTHER RESEARCH

sumiwary and Concilusions

Tae wunit of storaje utilization 1in a 3*-ftree wWas
aefined to be tne effective keys per ncde, or the numoer of
botton level keys dividel by the nuwber a9f nodes in the
tree. An alyoritim for determining the exact upper and
lower bouncs for storage utilization in B*-trees «as pres-
ented, alonj with a linear approximation of the bounds and
an associated error limit.

An approximation for the averaye density of a Bt-tree
Wwas determined empirically to be between .76 and .80. An
approximation of the average effective keys per node was
derived from this. Empirical data showed that Bt-trees
built from a series of insertions have higher densities than
do S+-trees that have unierjone deletions as well 3as inser-
tions. Pensities cf BP*-trees 0of larger orders decredse at
slower rates than do B+*-trees of relatively small orderse.

A+-tree nude buffering «as tested using two methouds.
The least recently used replacement amethod piclts the node
that was wuseld ileast recently to be repiaced. The heizht

welchtecd method uses the height of a node in the tree, as

52



R, v SRR ——— A 1 e

53

well as its time since last reference, to determine which
node will be replaced. Empirical results shouwed that node
buffering significantly reduces the number of accesses
required for the searching and maintenance of B*-trees.
Furthermore, the height weighted method proved to be more
effective than the least recently used replacement method.
An application of 3*-trees in a relational database wuas
illustrated by the high level design of the storage and
access systea of a relational database. Rt+-tree indexes
were us=d in the nanagement of payges for relation storage,
to order tuples of a relation Dy an attribute, and to store

sets of wmany to wany binary links between relations.
s5uggestions for Further Research

The effect of three way splitting, keeping each node at
least at 2/3 capnacity instead of at 1/2, can be determined
empirically for B*-trees. Also, sharing among a node and
both its siblings, instead of just one, coculd be done to
help reduce the amount of splitting and increase the density
of the tree.

The averagje storage utilization of B*-trees has yet to
be determined analytically.

Tests can ybe performed to determine empirically, as
well as analytically, the concentration of 3¢*-tree densities
arouiti tne averije, [t 4as found that as 3*=-trees aoproach
the 1tverage density unoger alternate insertions and dele-

tions, thay seem to exinibit a certain amount of hysteresis,



54

which increases as the order increases. Hysteresis 1is
resistance to change. For example, a B*-tree of a high den-
sity may approach the average density under alternate inser-
tions and stop short of the analytical average.

Several test cases of Bt-trees approaching their aver-
age densities can be run, and the resuiting data fitted to a
curve to aid in finding their characteristics analytically.
The data trom Agpendix A was fitted to the function of a
constaat tim2s an exponenticl. The data fit the curves
fairly well, but the individual functions «sere not suffi-
ciently simiiar to Jraw conclusions.

More empirical Jata can bg obtained to find the effect
of the taso wethods of node buffering on the nuaber of
accesses required for searching and updating B*-trees. The
amount of the effect could be given in terms of order,
height, and buffer size. The analytical value for the above
effect could also be determined.

Other variations of the two node buffering methods can
be examined. For example, the number of keys in a node can
be used in the wWweighting to determine replacement, along
with the other parameterse. Instead of using P=t+h*x for
repldcement adetarmigatioi, D=T+nx*x couid bDe usedq. this
would correspond better to the number of nodes on each
level. Thera could he two buffers used. The first buffer
wouild h2 ouly, 2 tu 3 nodes ii sice, and would use the least
racently used ra2placement method. Tine second buffer would

be lar jer, and sould use the neignt of and number of Xeys in
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each node to determine replacement. A decision would have
to be made on Where to put nodes that qualify to remain in
both buffers.

After finding an optimal node buffering method, the
characteristics of buffers of different sizes «could be
deternined. 1t could possibly be more efficient, in terms
of accesses to secondary storage, to use smaller nodes and
larcer buffers.

Tonere 15 31 vast amount of research to be done 1in the
field of relational databases. Sone suggestions for addi-
tional aorit nu the storajge and access system presented in
this paper foliode.

Inlea structures can be desligned so that one index on &
common attribute of two or more relations can refer to
tuples in any of the relations. This method, and the method
used in the vpresent system, could be 1implemented and com-
pared in terms of time and storage costs.

The implementation of view relations could be designed
in such a way that binary links and predetermined projec-
tions make the access to a view relation very efficient.
Allowing binary links between relations to be defined by a
general Jjolu, ratner thatt the equilvalence or a single
attribute, would facilitate this.

In a clustered relation, overfull pages split, auch
lixe index nodes. this analogy could be extended to keeg
pages at least at 1/2 capacity by using meryging and under-

flow s1ariag ia pages. This could be explored to determine
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whether the 1increased storage utilization would offset the
overhead of changing tuple identifiers in binary 1links and
tuple indexes, after each merge or share. The above concept
could be carried one step farther, if it seemed worthuwhile,
to include overflow sharing and three way splitting, merg-
ing, and sharinje.

instead of separqtinq the tuple puges and page index,
the tuples themselves could be stored on the bottom level of
the p4age index., The leaf nrodes would have a different
structure and order than that of the upper level nodes.
instead of using tupie iden*tifiers, a unijgue attribute value
for the tuple coulu be used for identification. Cach rela-
tion woulc have a "key attribute', one in 4hich no :duplica-
tion of keys is allowed.

This would regquire a different node tormat fo; leaf
nodes of tuple indexes. Binary links would contain key
attribute values instead of tuple identifiers. The ability
to <cluster relations on any attribute would not be sup-
ported, since every relation would, in effect, be clustered

on the key attribute.



BIBLICGRAPHY

(1) Astranan, M. M., et al. "System R: Relational
Approdch to Database Management." ACHM

Transactions ¢on Database Systems, 1, 2 (June,
1976), 97-137.

(2) fayer, Re. "Symmetric 3inary B-trees: Data Structure
Maintenance Algorithms." Acta Ipnformatica, 1
(17272), 29C-ZC6.

(3) Bayer, R. and FE. McCreiaht. "Jrganization and
Haintenance of Large (rdered Indexes." Acta
Iuformatica, 1 (1972), 173-139.

(4) Bayer, R. and M. Schxolnick. '"Concurrency of
Jperations on 3-trees." Actag Informatica, 9
(1277), 1-21.

(5) Bayer, R. and X. Unterauer. "Prefix B-trees.”"™ ACH
Trausactions on Ratabase Systemsr 2, 1 (March,
1977), 11-26.

(6) Blasgeii, Y. #. and K. P. Eswaran. "Storage and Access
in relational Data Bases."™ IBM Systeuws Journal.,
16, 4 (1977), 363-3717.

(7) Christian, D. D. "A B-tree Index Approach to
Accessing Records on Direct Access Auxiliary
Storage." (Unpub. M.S. thesis, Oklahoma State
University, 19738.)

(8) Comer, D. "The Ubiquitous B-tree." (Computing
survess, 11, 2 (June, 1979), 21-138.

(3) Davis, ae. o. "uiplilicai dehavior of 3-trees."
(Unpud. Me.5. report, Oxzlahoma State University,
1974.)

(10) Fagin, R., J. Nievergyeit, N. Pippenger, and H.R.
Struny. "Zxtendible Hdshing - A Fast Access
dathod LOr Uynawic fiilese™ ACHY Iransactions an
Lataduyse Systews, 4, 3 (sSepteumber, 1979),

315-244.

51



(11)

(12)

(13)

(14)

(15)

(16)

17)

(18)

(19)

(20)

(21)

(22)

58

deld G., and M. Stonebreaker. "8-trees Re—-examined."

Communjcations of the ACY, 21, 2 (February,
1978), 1i39-143.

Hernon, M. B. "The Desiyn and Application of Research
Tool for Height Balanced Trees." (Unpub. M.S.
thesis, Oklahoma State University, 1979.)

Horowitz, £. and S. Sahni. Fundamentals of Data
Structures. Computer Science Press, Ince.,
Wwoodland H#Hills, California, 1976.

Xeehn, D. ani J. Lacy. "YSAH Ddta Set Desiyn
Paraneters." 134 Systews Journgl, 13, 3 (1974),
135=-212.

£in, ae M"Rorational Database Systens." ACH Computips
Sdrva2ss5, 11, 3 (oeptember, 1979), 135-212.

Znuth, D. Toe Art of
Sortiay apd Searcc
Co., xeading, ias

Cowputer Proyramwing, Yolume 33
u;gg. Addison-Yesley Publisning
S., 1°073.

‘faruyana, K. and S. Saitn "analysis of Desijn
Alternatives for Virtual Memory Tndexes.”
Cgm&uuisa&igns of the ACHM, 20, 4 (april, 1977),
245-254.

dattson, R., Lecsei, J., Siutz, D., and Traijer, 1.
"Evaluation Techniques for Storage Heirarchies."
I8M Systems Jourpal, 9, 2 (1970), 78-117.

McCreight, E. '"Pagination of B*-trees with Variable

Length Records.'" Communications of the ACM, 20,
9 (Saptemwber, 1977), 670-674.

Senko, 4. E., £E. B. Altman, M. M. Astrahan, and P. L.
Fehder. "Data Structures and Accessing in
Database Systems." I13M Systems Jourpnal, 12, 1
(1973), 30-93.

wajner, . "“"Tncexing Desiqn Considerations.!" IG5V
Systz2us Joeuraal, 12, 4 (1973), 351-367.

Yao, A. C.~C. "Cn Random 2-3 Trees." Acta
Informatica, 9 (1973), 159-170.



APPENDIX A
TEST RESULTS FOR B*-TREE DENSITIES

This data was obtained using the program TESTREE,
listed in Appendix C. £ach "Operation"™ is the insertion of
a ranjon ey and the deiotion of another random key. The
"humpber of Nodes" is the nuwmber of nodes on the bottom level
of tha tree. in2 "lensity" is the density of the botton

level.



Case 1 -~ Order: 7 N: 2000

Number of Number

Operations of Nodes Density

'S ELELELLIE LELLLLLELEEE D lhdede et |
| 0 1 393 | 84.82 |
| 10 | 394 | 84.60 l
| 20 | 395 ] 84.39 i
| 30 | 3739 | 33.54 |
{ 40 | 399 | 83.54 !
I 50 | 399 ] 83.54 |
| 60 { 399 | 33.54 |
| 70 T 399 { 83.54 l
1 80 ] 401 ] §3.13 |
| 90 | 403 | 82.71 |
] 100 1 404 | 32.51 ]
| 120 ] 106 | £2.3C ]
] 140 | 409 | 81.50 |
| 160 | 113 | 80.71 |
| 18C | 414 ] 20.52 |
| 200 ! 413 ] .71 |
| 220 { 415 | 80.32 |
| 24¢ { 416 ] a0.13 |
| 250 ] 415 | 90 .32 |
| 289 1 413 1 79.74 |
] 300 | 418 | 79.74 |
| 350 I 420 | 719.37 1
| 400 | 423 | 78.50 |
| 450 | 429 | 77.70 |
| 500 | 434 | 76.80 |
} 550 ] 435 | 70.63 |
| 600 1 439 ] 75.93 l
| 650 | 438 | 76.10 |
| 700 | 439 | 75.93 |
| 750 | 442 | 75.41 |
| 800 | 442 | 75.41 I
| 300 { 446 | 74.74 |
| 1000 | 447 { T4.57 1
| 1100 | 440 | 75.75 |
} 1200 | 4336 | 76.10 !
| 13C0 | 434 I 76.45 |
L 4
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Case 2 - Order: S N: 1500

Number of Number

Operations of Nodes Density
AL ELLLESELI LR LA LD DALl Ll bbbl ]
] 0 | 218 | 86.01 i
| 10 | 221 ] 84.84 |
| 20 ] 223 | 84.08 1
1 30 | 22 | 83.71 ]
| 40 | 224 | 83.71 |
| 50 | 226 | 82.%96 |
| 60 1 22 | B82.96 |
| 70 | 225 | 32.75 |
| 80 ] 220 | 82.90 ]
| 90 | 226 | 82.96 |
| 100 | 22 ] 22.460 |
| 120 | 227 ] 82.60 |
| 140 I 228 | 82.24 |
| 150 ] 229 | 2l1.813 |
| 120u | <3¢ | 31.52 |
| 200 | 235 | 75.79 |
| 220 | 2356 | 79.45 {
| 240 | 238 | 78.73 |
| 250 ] 239 i T3 .45 ]
| 290 | 237 | 79.11 |
| 300 | 230 | 79.45 |
| 350 | 237 | 79.11 |
| 400 | 238 | 78.78 |
| 450 | 239 | 78 .45 |
| 500 | 23¢ | 78.78 |
| 550 | 2317 | 79.11 |
| 600 | 238 | 78.78 i
| 650 | 238 | 78.78 |
| 700 | 241 | 77 .80 |
| 750 i 241 | 77.60 i
| 800 | 240 | 78.13 |
1 900 | 242 | 77.4¢ |
| 1000 | 243 | 17.16 |
| 1100 | 243 | 77.16 |
| 1200 l 247 | 75.91 |
| 1300 | 245 | 75.60 |
L
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Case 3 - Order: 9 N: 1500

Number of Number

Operations of Mhodes Density

| 0 | 295 | 63.56 |
i 10 | 294 | 63.78 |
| 20 | 294 i 63.78 1
| 30 ] 292 | 64.21 |
i 40 { 292 | 64.21 |
| 50 | 291 | 64.43 |
| €0 | z8¢8 | 65.10 {
1 70 T 286 | 65.56 1
| eo ] 234 | 66.02 |
] 90 | 283 | 66.25 ]
| 100 ] 291 | 66.73 |
] 120 | 279 | A7.20 |
| 140 | 278 { 67 .45 |
| 166G | 271 | 67.66 ]
| 120 ] 273 | 68.67 |
| 200 { 271 | 069.1Y |
| 220 I 269 | 69.7C I
| 2490 | 289 { 69.70 |
| 200 I 26y | 69.7C |
] 280 | 268 | 69.96 |
| 300 | 267 } 70.22 |
i 350 1 268 i 70.75 |
| 400 | 267 | 70.22 |
1 450 | 265 ] 70.75 |
| 500 | 261 | 71.84 |
| 550 | 259 ! 72.39 |
| 600 | 257 i 72.96 |
| 650 i 255 | 73.53 |
I 700 ] 255 1 73.53 |
] 750 1 256 | 73.24 i
| 800 } 253 | 74.11 |
| 900 | 250 | 75.00 |
| 1000 | 250 ] 75.00 |
{ 1100 i 251 | 74.70 1
| 1200 1 243 ! 77.16 |
| |

1300 | 245 | 76.22

Loeanuman avsnbdoacavavsanseundsoavamnancand



Case 4 - Order: 11 N: 1500

Number of Number

Operations of Nodes Density

P b L L LELEDS DALl bl bl Dl bbbkl )
| 0 | 184 { 81.52 1
| 10 | 18¢ i 81.08 |
i 20 | 187 | 80.21 |
| 30 | 187 | 80.21 l
| 40 | 187 | 80.21 l
| 50 | 187 | f0.21 |
| 60 | 187 | 30.21 |
| 70 | 1838 { 79.79 |
| 20 | 109 | 79.37 l
| 90 | 199 { 79.37 |
| 100 1 189 | 15.37 |
! 120 | 1e¢ | 75.37 |
| 140 | 123 | 79.37 |
] 160 | 192 | 78.13 |
| 136 1 193 | 77.72 |
| 200 | 104 ] 77.32 |
| 220 { 194 | 717.32 |
| 249 | 124 | T17.32 1
| 250 ] 12¢< | 756.92 |
| 280 | 195 | 76.92 |
| 300 | 195 | 76 .92 |
| 350 1 195 | 76.92 |
| 400 | 194 | 77.32 |
| 4150 | 193 | 77.72 |
| 500 | 193 1 77.72 |
| 550 | 196 { 76.53 |
| 600 I 197 | 76.14 l
1 650 | 197 l 76.14 |
i 700 | 196 i 76.53 |
| 750 | 195 1 76 .92 |
{ 800 | 195 | 76.92 |
| 900 | 194 | 77.31 |
] 1000 | 196 | 76.53 |
1 1100 ! 197 | 76.14 i
| 1200 | 194 | 77.32 |
| 1300 | 165 | 76 .92 |
L 4
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Case 5 - Order: 11 N: 1500

Number of Humber

Operations of Nodes Density

i 0 | 240 1 62.50 i
l 10 1 238 1 63.03 1
1 20 1 234 | 64.10 ]
| 30 ] 233 | 64.38 |
1 40 I 232 1 64.65 1
l 50 i 231 | 64.954 l
| 60 | 231 | 64.94 |
{ 70 ] 231 | 04.%4 ]
| 80 | 230 ] 6£.22 |
| 90 | 228 | 65.79 |
| 100 ] 225 ] A6.37 |
{ 120 ! 225 | 60..07 ]
| 140 | 223 | 67.26 |
| 160 ] 223 | 57.26 |
] 150 | 223 ] 67.206 |
| 209 | 222 | 67.57 |
| 220 ] 221 | 6737 |
] 24¢ ] 221 | 67 .07 1
| 260 | 221 | 67.37 ]
| 280 | 220 { 68.119 |
l 300 1 217 { 69.12 l
| 350 | 214 | 70.09 1
| 400 ] 210 | 71.43 |
| 450 | 208 | 72.16 i
| 500 | 209 | 71.717 l
| 550 | 209 | 71.717 |
| 600 | 206 ] 72.82 ]
1 650 { 206 l 72.82 [
1 700 | 205 | 73.17 |
| 750 | 205 | 73.17 |
| 800 i 205 | 73.17 |
{ 900 | 203 1 73.89 1
| 1000 | 202 | 74.25 |
] 1100 | 196 ] 76.53 |
] 1200 | 198 | 15.756 |
| 1300 | 199 | 75.38 |
[ 8
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Case 6 - Order: 13 N: 2000

- Number of Number
Operations of Nodes Density

r.---- mes B --T--‘--------'--------.--1
| 0 | 199 1 83.75 |
{ 10 1 199 | 83.75 |
l 20 1 201 l 82.92 |
1 30 | 202 1 82.51 |
| 40 ! 204 1 81.70 1
| <0 | 204 | 81.70 |
! 60 | 203 | 82.10 !
| 70 " 203 ] g2.10 |
| 80 1 203 | 82.10 |
| 90 | 203 | 82.10 |
] 100 i 203 | P2.10 1
| 120 | 204 { 81.70 |
| 140 | 201 | 81.70 |
| 150 ] 201 1 A0.52 ]
| 130 | 206 | 19.71 |
i 200 ] 21¢ | 79.37 |
| 220 ] 210 | 79.37 |
] 249 | 219 | 79.37 i
| 260 | 211 ] 78.59 |
] 220 | 211 | 78.99 |
I 300 | 211 | 78.99 |
| 350 | 212 i 78.62 |
i 400 l 214 | 77.893 !
| 450 | 212 | 78 .62 |
| 500 | 214 | 77.88 f
1 550 | 215 ] 77.52 |
{ 600 ] 213 ] 78 .25 l
| 650 | 214 | 77.88 |
| 700 | 213 i 78.25 ]
] 750 i 216 1 717.16 |
1 800 i 216 | 77.16 |
| 900 | 216 | 77.16 {
{ 1000 l 216 | 76 .45 |
l 1100 l 2117 | 76 .80 |
| 1200 | 216 1 77.16 ]
! 1390 | 215 l 77.52 i
L
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Case 7 - Order: Zz4

Number of
Operations

Number
of Nodes

N

: 2000

Density

| 0
| 50
| 100
| 150
| 200
] 250
| 300
| 350
| 400
| 450
| 500
| 350
| 600
| 650
] 700
| P30
! 800
| 350
| 570
| 950
1 1000
| 1059
| 1100
| 1150
| 1200
| 1250
| 1300
| 1350
| 1400
| 1450
| 1500
| 1550
] 1600
| 1650
1 1700
| 1750
| 18006
] 1850
| 1900
| 1950
| 2000
1 2100
] 2264
| 2500
| 2400
| 2509
L

— . -t — G UMD S — G — —D GuAD D WD G D D R —— - — — "D — —o— —— — — W — ——— G — D — S D D . SO

102
104
106
107
107
107
107
107
107
107
107
103
108
108
107
197
197
107
107
108
103
107
108
108
110
111
111
111
110
109
109
109
109
109
109
103
1uag
103
103
108
108
107
10¢%
11¢
110
1C%

|
|
|
l
1
|
|
|
|
!
|
|
|
!
|
l
|
i
I
|
|
!
|
|
!
|
|
|
|
|
|
!
|
|
|
|
I
!
|
|
|
!
I
I
!

84.8%
83.48
82.16
81.52
81.52
81.52
80.39
80.89
30.87%3
80.59
80 .S
80.23
80.28
£0.28
30.89
80.89
80.36G
80.39
80.453
£0.28
B0.29
79.65
80.28
80.28
79.05
78 .45
78.45
78 .45
79.05
79.52
79.62
79.62
79.62
T79.62
T79.62
30.23
3023
80.23
80.23
80.23
80.23
T79.52
75.02
79 .02
79.02
79.02

e S —— s S D G S D e ) TS SUAS CREE ChAE GG COUD GIGD M WS CED GINS UD D Gawm S RS —n — D S — S S, — D — " Gu—— D W e SN =D @
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Case 8 - Order: 35 N: 3000

Number of Number

Operations of Nodes Density

| 0 | 104 { 84.84 |
| 100 i 105 | 84.03 |
1 200 | 105 | 84.03 1
| 300 | 105 ] 84.03 l
| 4100 | 107 | 82.46 |
| 500 1 107 ] 32.46 {
| 600 | 108 | 81.70 |
| 7C0 ] 108 ] 21.70 |
| 500 | 109 | 830.95 |
] 900 | 106 { 80.95 ]
| 1600 | 1069 | 3C .35 ]
| 1100 ] 109 | 80.95 |
| 12900 | 109 | 8C.55 |
| 1300 | 1086 ] 21.70 |
| 1100 | 103 | 31.70 |
| 1590 ] 100 | €1.790 |
| 1600 | 108 | B1.70 |
| 1700 | 103 | 81.70 |
| 13006 ] 198 ] 81.70 |
l 1900 | 108 | 81.70 |
l 2000 | 108 | 31.70 |
| 2100 | 103 ] 81.70 }
| 2200 | 109 | 80.95 |
| 2350 l 109 | 80.95 ]
| 2500 ] 109 | 80.95 |
| 2650 | 106 | 80.95 |
| 2300 | 109 | 80.95 |
| 29°0 | 109 | 80.95 |
L 1
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Case 9 - Order: 35

Number of
Operations

Number
of Nodes

N: 3000

Density

|
!
|
|
|
1
|
|
|
|
|
]
|
|
!
I
|
|
|
!
|
I
|
|
|
|
|
|
L

0
100
200
300
400
500
600
700
8Co
900

10C0U
1100
1200
1300
1400
150¢C
10900
1700
1300
1300
2000
2100
2200
2350
2500
2650
2800
2950

cawsweesnaswvendnccssennnandoccsccnnnaw

- G S . — S T — —— — —— S —D ) P ——- Smrn GED S S — —— — — — —

142
141
138
137
135
134
133
133
133
131
128
12¢
123

17
4 <

127
127
127
126
124
124
123
121
121
120
120
129
120
119

. e TS D Do S S dum SAwm S Gmgn W D i W o D et S N et e e sl GG

62.14
62.58
63.94
64.41
65.36
€£5.85
66.34
60.34
66.34
67.36
35.93
68.93
68.93
€9.48
69.413
59.4°
69.48
70.03
71.15
71.16
71.74
72.92
72.92
73.53
73.53
73.53
73.53
74.15

|
|
|
|
|
|
|
|
|
|
!
|
|
I
!
I
|
I
|
]
]
|
|
1
|
|
|
|
4
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Case 10 - Order: 49 N: 3000

Number of Nnumber

Operations of Nodes Density

| 0 | 74 | 84 .46 |
| 100 | 74 i 84.46 |
| 200 I T4 | 84.46 |
| 300 | 75 l 83.33 l
| 400 | 75 | 83.33 |
| 500 | 76 | 82.24 |
| 600 | 76 | 82.24 |
| 700 T 15 1 B2.24 [
| 800 | 76 | 82.24 |
| 900 ] 76 | 82.24 1
| 1000 ] i | 21.17 |
| 1100 ] 717 | 21.17 !
| 1200 | 71 | 81.17 |
| 1300 | 717 1 31.17 ]
| 110C | 77 | 31.17 {
| 15C0 | 77 | 81.17 |
| 1500 | 177 | 31.17 |
| 170u I 17 1 8l1.17 {
] 18C0 | 77 ] 21.17 |
| 1900 | 78 | 830.13 |
i 2000 i 73 | 80.13 |
| 2100 ] 78 | 80.13 |
| 2200 { 78 l 80.13 |
| 2350 | 78 | 8G.13 |
| 2500 | 78 1 80.13 1
| 2650 | 78 | 80.13 |
| 2800 | 18 | 80.13 ]
| 2950 | 78 | 80.13 |
L 4
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Case 11 - Order: 49

Number of
Operations

Number
of Nodes

N

: 3000

Density

1 0
| 100
! 200
{ 300
| 400
| 500
| 500
1 700
| 3¢C0
| 900
| 1000
] 11C9
| 1200
| 1300
! 14900
| 1500
] 1o0C
] 170¢C
] 13920
l 1900
| 2000
| 2100
i 2200
| 2350
| 2500
1 2650
| 2800
| 2350
L

S . St —— M S — ] —— . D S . o St e b tmmd Ste Sew VD eume Gaue EEUA ) SEED

99
98
97
26
96
95
94
94
94
92
92
G2
92
92
ac
83
8b
88
22
86
88
37
37
817
817
817
817
87

D e D D G D D — — — — . —— — i, ~——— =) D —— e et WA D Wb D

63.13
63.78
64.43
65.10
65.10
65.79
66.49
66.49
66 .49
67.93
67.93
67.93
67.933
07.93
69 .41
71.02
71.02
71.02
71.02
71.02
71.02
71.84
71.84
71.84
71.84
71.84
71.84
71.84

|
i
!
|
|
|
|
|
!
|
!
!
|
|
!
|
!
!
!
|
|
|
|
|
|
|
1
1
4
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APPENDIX B
TEST RESULTS FCR BUFFERZD B*-TREES

Tne following dapa «“as obtained from the program TES-
TREZ, listed in Appendix C, for B*-trees of several sizes
and orlars. Thre: cperations J4ere performed: insertion of
random k%eys (Insert), searching for random keys (oearch),

and alternate insertion and deletion of randoa keys (Alter-

nate). Each "Alternate" operation consists of an insertion
and deletion »air. Cas=23 1 through 1€ are from runs usiny
the Least Recently Used Repiacement method. Cases 17

through 28 are froa runs using the Height Weignted buffering

methold.

Case 1 - Order: 50 Buffer: 20

] Coeration [ Number of | Nuaber | Numb er |
| Type | Operatiorns I of Reads ] of Writes |
’--O----------- +a--- ----------+--------------+------a--------{
I Insert | 1200 | 122 | 100 |
| altarnate | 1200 | 066 ! 858 |
| S=arcn | 1200 i 420 | 2 |
| Insert I 1200 | 533 ] 733 ]
| Alternate | 2400 l 35314 | 3510 |
| Search | 2400 | 1695 | 0 |
| 1Insert | 2601 | 2631 i 2485 |
| Alternate | 500G | 28714 ] 3562 |
] 3eArCH | 3000 ] 4309 | 0 i
lammas snnmcannhsaacenamesanes benanancocnmuncbananweemeeennnd
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Case 2 - Order: 50 Buffers: 10

rmeama=n -------f.- -m wes wuw ------?----.‘----- ---?-----.--------1

| Operation | Number of | Number i Number |
| Type ] Uperations f{f of Reads | of Writes |
}----- - - - +¢- e Ghem  n @ @ - on +---—---------- f---------------'
| Insert 1 100 | 4 { 0 |
] Alternate | 100 | 0 l 0 |
| Search | 100 | 0 | 0 |
] Insert | 200 | S | 0 |
] Alternate | 300 | 0 | 0 |
| Search | 300 { 0 | 0 |
] Insert | 300 | 66 | 64 |
| Alternate 1 600 1 495 | 439 |
] Search | €£0C ] 257 | 1 |
| Insert | 600 ] 440 | 415 }
| Alternate | 1200 | 1678 | 1656 |
{ Searcih i 1200 | 3306 | 0 l
| Insert | 1200 ] 1247 ] 1169 }
| Alternate ] 2400 | 1422 | 43717 |
| Search i 2108 ] 2124 | 0 |
L 4

---Qn--N-----L-——------u'n---L--.-------.---L-.'------‘l-’-.

Case 3 - Order: 50 Buffer: S

r------—‘------f ---------ﬂ----fu----.--'-----?--------------1

| Operation i Number of | Number i Number i
! Type | Operations | of Reads ] of Hrites |
{ Insert I 100 | 4 i 0 |
| Alternate | 100 | 0 | 0 I
] Search | 100 | 0 | 0 |
| 1Insert i 200 | 40 | 38 |
] Alternate | 300 | 254 | 250 |
| Search | 300 | 152 I 2 |
| Insert | 300 | 238 | 226 [
] Alternate ] £00 | 909 | 304 {
I Search i 600 | 429 i 0 )
I Insert | 600 | 608 | 563 |
I Altarnate i 1200 ! 2175 | 2155 |
i Search l 1200 | 1CS51 i U |
| Insert ] 1200 1 11956 i 1354 |
] Alternate { 2400 | 5939 | 4899 i
] Search | 2400 | 2902 | 0 |
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Case 4 - Crder: 50 Buffer: 1

| Operation j Number of l Numb er | Number 1
| Type | Operations ! of Reads ] of Writes I
feemmcncccsanacjancncnancscnccteccsnccnancsnncjennsnccccccana
] Insert | 100 1 106 | 59 |
| Alternate | 100 | 403 | 205 |
] Search | 100 | 200 1 0 |
| 1Insert l 200 | 426 | 2417 |
| Alternate I 300 l 1214 ] 625 |
| Searcn } 300 | 60C | 0 |
| Tusert | 300 | 668 | 403 |
| Alternate | €00 | 24290 ] 12239 |
| Searca | 6060 | 1200 | 0 |
| Tusert i 600 | 1351 1 829 }
| alternate i 12090 ] 1890 | 2551 |
]  Seacch | 1200 l 2400 | 0 |
| Tusert | 1200 | 2994 | 1683 |
| nlternate i 2400 ] 14592 i 5113 |
] Searca ] 2400 ] 7200 | ¢ i
lesvnavswuscwnasnsbunarnucscacanmvasbonanccanvnavnaenbsanacncacssncaavaesd
Case 5 - Order: 24 Buffer: 20
bbbl bbbl L Ll R b DL LD LS L el L L il Al e b LR
| Operation | Dlumber of | Number | Number i
| Type | Operations | of Reads ] of Writes |
femmmmccccncncjenccnncccnnnnnfencnannnccacccfncnccaccnccaan
| Insert | 600 | 113 I 90 |
| Alternate | 600 | 625 | 608 |
] Search | 600 | 322 | 1 I
I Insert | 600 | 543 i 490 |
| Alternate i 1200 | 1954 | 1922 l
] Search | 1200 { 933 { 0 |
| Insert | 1200 | 1540 ] 1372 |
] Alternate | 2400 | 5069 i 4695 |
| Search | 2400 | 1695 | 0 I
| 1Insert | 2601 | 4410 | 35623 |
| Alternute | 3600 | 13300 | 38F6 |
] Searcn | 5C00C | 5800 | U |
L

weceascnencawevhcscacanccacscsbecasvsccsvaencanboscancsesccsencsccad
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Case 6 - Order: 24 Buffer: 10

] Operation { Number of | Number i Number |
| Type | Operations ] of Reads ] of Writes [
| Insert I 300 | 58 | 48 l
] Alternate l 300 | 237 | 279 |
| Search | 300 | 142 | 0 I
| 1Insert | 300 | 290 | 269 |
| Alternate | 600 | 1037 { 1018 i
| Search | 600 ] 468 | 0 |
| Iansert | 60G | 786 | 709 |
I Alternate ] 1200 | 2547 ] 2366 i
| <fearch | 1200 | 1200 l 0 |
| Insert l 1200 | 2103 | 1729 |
| Aiternate | 2400 1 7155 ] 5116 |
| Search ] 2100 | 3405 | 0 1
I AL R L L L L R L L e R L L LR L LR,
| Insert I 5000 ] 8562 | 6745 {
| Alternate | 53000 | 159113 | 10043 |
| Searcn 1 5000 | 4386 J 0 }
Case 7 - Crderc: 24 Buffer: S
S e G e Y U 0 5 Y - -
] Operation ] Number of | Number | Number |
| Type | Operations ] of Reads | of Writes |
}-------------* - ------------+--------------’--------------‘l
] 1Insert | 100 | 7 | 2 |
] Alternate | 100 { 37 i 35 |
Il Search | 100 { 17 i 3 i
] Insert | 200 ] 173 | 158 |
] Alternate | 300 | 479 | 467 |
] Search | 300 } 243 | 0 |
| Insert I 300 l 436 i 378 |
| Alternate | 600 | 1512 | 1251 l
]l Search | 600 ] 694 | 0 i
| Insert | £00 ! 1089 | 39C |
] Alternate | 1200 | 3504 | 2585 {
| Search | 1200 | 1638 | 0 |
I Insert i 1200 | 2562 | 1900 |
] Alternate | 2400 | 8514 | 5254 |
] Searcn { 2400 | 4092 | 0 |
L ]

commeasasncnonenhbsavsnsanenence --*‘-‘-----J---‘-‘--.--_.-----.-



Case B8 - Orders: 24 Buffer: 1

| Operation | Number of | Number | Number |
i Type | Uperations { of Reads | of Writes |
'.----- --«------*---- - e es e e e - *—------—------+----—---------4’
| Insert | 50 ] S8 i 35 |
| Alternate l 50 | 200 { 99 |
} Search | 50 | 100 i 0 |
| Insert | 50 | 117 i 17 {
] Alternate | 1090 | 421 | 235 |
] Search | 100 1 200 | 0 |
I Insert | 200 i 472 | 307 |
| Alternate ] 200 | 1244 | 675 |
| Search | 300 | 500 | 0 |
| Insert I 300 ] 885 | 505 |
| Mtecnate ] 500 | 3696 | 1355 |
| Search | €00 | 1300 | 0 |
| Insert | 600 | 2127 | 1003 |
| Alternate | 1200 ] 7377 | 2671 |
| Searcch | 1290 ] 3600 | 0 |
| Inserct | 120G | 4257 | 2001 ]
| Alternate | 2400 | 14727 | 5331 |
| Search | 240¢C | 7200 | 0 |
leannecanunanenhenne cnannenennbhoeneananannnueandaccnncceaneeeead

Case 9 - Order: 12 Buffer: 20

] Operation ] Number of | Number ] Number |
| Type | Operations | of Reads Il of Writes |
I Insert i 300 | 106 | 82 |
] Alternate | 300 | 396 | 374 |
I Search i 300 | 187 | 0 |
| Insert | 300 | 389 | 333 |
| Alternate |- 600 | 1315 | 1164 |
| Search i 600 | 580 | 0 |
| Insert | €00 l 1099 | 886 1
| Alternate | 1200 | 3749 | 2595 |
I Seartch | 1200 | 1747 | 0 |
| Insert | 1200 | 2772 } 2050 l
| Alternate | 2400 | 3338 | 4783 |
] Search | 2400 | 4123 | 0 |
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Case 10 - Order: 1z Buffer: 10

| Cperation | Number of | Number { Numb er i
i Type | Operations ] of Reads | of Writes |
] Insert | 100 | 12 | 2 |
] Alternate | 100 | 59 | 517 |
I Search | 100 l 28 ] 5 |
| Insert | 200 | 260 | 222 {
] Alternate | 300 | 632 | 584 1
| Search | 300 | 322 | 0 |
] 1Insert | 300 | 551 | 443 |
| Alternate | 600 | 1855 | 1371 |
| Search | 600 | 862 | 0 |
] 1Insert i 600 1 1338 | 1013 |
| Alternate ] 1200 ] 4656 | 2932 |
| 3Search | 1200 | 2241 | 0 |
| Insert | 1290¢C ] 3241 i 2163 |
| Alternate | 2400 ! 16448 I 4956 I
|  Searcn | 2400 | 5110 ] 0 |
Lamausmuamccsandoann anouassnaabucncunnmanacendbonnanenennnsensd
case 11 - Crder: 12 guffer: S
AR LR L AR L R L LR L e e P LRI L L L E AL LY
| Cperation i Number of | Number | Number |
| Type | Operations ] of Reads |l of Writes i
jrrccnnccnnsnspencnanmnccacncjenccnnencacaca o cnnnancacanca
| 1Insert | 50 l 9 | 4 |
] Alternate | 50 l 44 | 43 |
I Search | 50 | 18 | 2 |
] Insert I 50 | 44 i 41 |
| Alternate | 100 | 151 | 138 1
| Search I 100 | 60 | 0 |
] Insert | 200 | 423 | 349 |
] Alternate | 300 | 940 l 689 |
] Search | 300 | 454 | 0 i
] Insert | 300 | 706 | 534 |
| Altacnate | 600 | 2222 | 1446 |
| 3Searcn | 500 | 1036 | 0 |
| Insert | €00 | 1553 | 1112 |
] Alternate | 1200 1 5708 | 3004 l
] Search | 1200 1 2926 | 0 1
L 3
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Case 12 - Order: 12 Buffer: 1

| Operation | Number of | Nuwmber i Number |
| Type ] Operations ] of Reads ] of Writes |
| Insert | 50 | 91 1 61 |
| Alternate | 50 | 208 i 115 |
! Search } 50 | 100 | 0 |
| Insert | 50 | 131 | 91 |
] Alternate | 100 | 435 | 251 |
| Search | 100 | 200 | 0 |
| TIasert | 200 | 167 | 413 |
] Alternate | 300 | 1302 | 751 |
| Searcn | 300 | 900 | 0 |
| Tasert | 390 | 1127 | 563 |
| Alternate ] 600 | 3808 | 1499 |
| Search | 600 ] 1800 | 0 |
| Insert | 500 | 2293 | 1151 |
] Alternate i 1200 | 3061 | 3035 |
|  Seaccih | 1200 ] 4300 | 0 |
lLacaacennaccnccankacensaanusnanshoanannmanascnnabscncnncncnaaead

Case 13 - Orders: 6 Buffer: 20

r----.--- CRmeoamp o ‘----------.?-------.-Q----,—------------'1

| Operation ] Number of | Number | Number |
| Type | Operations | of Reads | of Writes |
femcencnncacnejancancnnnanncfeavcecnanananajececnanccnnena]
] Insert | 300 | 455 | 356 |
| Alternate | 300 | 1051 | 750 |
] Search | 300 | 458 | 0 |
] Insert | 300 1 848 ] 603 |
| Alternate | 600 | 2846 I 1685 |
{ Search | 600 | 1322 | 0 |
| Insert | 600 | 2124 | 1328 l
] Alternate | 1200 | 6478 | 2628 l
I Search | 1200 | 3195 { 0 l

Llacsswnsccncancebannacsacaancccsbaccnnanasncsacsbscvnoscnccscccaanvad
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Case 14 - (Crder: 6 Buffer: 10

| Operation ] Number of l Number I Numb er |
i Type | Operations ] of Reads | of Writes |
]l 1Insert 1 50 | 26 | 15 |
| Alternate | €0 ] 88 | T6 |
| Search | 50 | 38 ] 0 |
| Insert | 50 | 92 ] 71 |
| Alternate | 100 | 268 | 206 |
| Search i 100 | 123 | 0 |
| Insert | 200 | 598 | 442 |
| Alternate | 300 | 1457 | 346 |
| Searci | 300 | 655 I 0 |
] Insert | 300 | 1048 | 077 |
| Alternate | 600 ] 3535 | 17€0 |
| Searcn | €0C ] 1720 | 0 |
| Insert | 600 | 2537 | 1371 |
| Alternate | 1200 | 7437 | 20655 1
| Searcn | 12060 ] 3637 | 0 |
Leananmuosnsvuaunheannesaanann nsowvaboacsnsevasvnssnnnsbnscansnsnsacannd
Case 15 - Order: o Buifer: 5
LR LEELLEES Bl L L e b L LE LR PR DL L PR LR
] Operation | Number of { Number | Number |
| Tyoe | Operations | of Reads | of Writes |
feccascccccncafenccccnaccncccpencccnnnccanactanncncnnancnna]
] Insert | 50 | 60 | 45 |
] Alternate | 50 | 149 | 107 |
i Search I 50 l 13 | 0 |
I Insert | 50 | 123 | 95 |
| Alternate | 100 I 379 | 261 {
f Search | 100 | 147 ] 0 |
]| Insert | 200 | 796 | 481 |
] Alternate | 300 | 1790 { 883 |
| Search | 300 1 801 | 0 |
Il Insert | 300 | 1268 | 702 |
| Alternate | £00 ] 1208 | 1783 i
| Search | 600 | 1956 | 0 |
| Insert | 500 | 3195 | 1385 |
| Alternate i 1200 | 8499 I 2669 |
| Search | 1200 | 4051 1 0 {
L 4
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Case 16 - Order: 6 Buffer: 1

| Operation | Number of | Number i Number |
i Type | Operations | of keads | of urites i
l------ - - -----+.--- S waeomeees *--------------*----.----------'
] Insert i 50 | 151 | 87 I
| Alternate | 50 | 326 | 133 i
| Search | 50 | 150 | 0 |
I Insert | 50 | 210 i 111 |
] Alternate | 100 | 670 | 293 |
]| Search | 100 | 300 | 0 |
] Insert | 200 | 1069 | 497 |
] alternate | 200 ] 2623 | 895 |
| Search | 300 | 1200 | 0 ]
i Insert | 300 | 1€01 ] 705 |
| Alternate | 607 ! 5657 ] 1785 |
] Search ] 500 i 3000 | 0 |
I Insert | 600 | 37386 | 1391 |
| Alterrate | 1200 | 12227 | 2679 |
|  Search | 1200 | 6000 | 0 |
L Jd

meamsmnacasncscvbdsnonvaunuamastabonuananasenessdoeosscrsaccaceaen

Case 17 - Order: 24 duffer: 10
Height tieighting Factor: 1

| Operation | Number of | Mumber | Number |
| Type | Operations | of Reads | of Writes i
| Insert i 300 | 54 | 43 i
] Alternate | 300 1 280 ] 271 |
I Search | 300 | 135 | 8 i
I Insert l 300 | 289 ] 267 1
| Alternate 1 600 i 1027 | 1016 1
] Search | 600 | 460 | 6 |
I Insert { 600 ] 751 | 680 |
| Alternate | 1200 | 2331 | 2305 |
I Search i 1200 | 1101 | [¢) ]
I TInsarct ] 1200 1 193¢ | 1659 |
| Altarnate | 2400 ] 65642 { 5127 |
] Search | 2400 | 3163 ] 5 |
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Case 18 - Order: 24 Buffer: 10
Height Weightinyg Factor: 2

| Operation | Number of | Number | Number |
| Type | Operations ] of Reads ] of uWrites |
*-------- --.--+---. --------c*--------------*---------------’
] Insert | 300 | 54 I 43 |
| Alternate | 300 | 272 | 269 ]
] Searci | 300 | 143 | 7 |
| Insert | 300 | 296 | 269 ]
| Alternate ] 600 ] 1015 i 1005 |
I Search | 600 | 453 | 5 |
| Insert | 600 1 748 i 072 |
| Alternate | 1200 | 2365 | 2338 |
| 3Search | 1200 | 1096 | 4 |
| Insert i 1200 | 1810 | 1592 |
| Alternate | 2400 ! 6120 I 5120 |
] Searcn | 2400 | 2919 i 4 |
Casa 19 - (rier: 24 3uffer: 10
Yeight weighting Factor: 4
bbb bR ekl Al Ll el kbl L L bbb bbbl LD AL bl bl |
| Operation | Number of { Number | Number }
i Typbe } Operations | of Reads | of Writes i
| Insert | 300 I 54 | 43 |
| Alternate ] 300 | 272 l 269 |
] Search | 300 | 143 | 1 |
| Insert | 30¢C | 298 | 268 |
] Alternate | 600 | 1011 | 1002 |
Il Search l 600 | 462 | 4 i
I Insert | 600 l 156 | 679 |
} Alternate | 1200 ] 2364 | 2337 I
] Search I 1200 | 1096 l 4 l
I Insert | 1200 | 1801 | 1588 1
| Alternate | 2400 | 60189 | 5143 |
| Searcn | 2400 ] 2821 } 1 |
L 4

ceensamenveoevschsensmnoersacsnssnscsbacesncnnncosanndoccanassvaccas
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Case 20 - QOrder: 24 Buffer: 10
Height #Weighting Factor: 6

] Operation ] Number of | Number i Number i
i Type | Operations 1 of Reads | of Writes i
] Insert | 300 | 54 | 43 |

] Alternate | 300 | 272 | 269 ]
] Search l 300 | 143 I 1 |
| TIusert | 300 { 301 | 270 |
] Alternate | 500 | 1011 | 1002 |
| Search | 600 { 462 | 4 |
] Insert ] 600 | 757 | 679 |
| Alternate } 1200 | 23564 | 2331 i
i Search | 1200 | 1096 | 4 ]
| Insert ] 1200 | 1725 | 1541 |
| Alternate | 2400 ] 5711 { 5134 |
| Search | 2400 ] 2638 | 2 |
Llansnanvnsnmevhannusannsennasbhavanunnansannnbunanenenanevanl
Case 21 - QOrder: 24 Buffer: 10

Jdelght weighting Factor: 3

| Operation | Number of ] Number | Number |
| Type | Operations I of Reads ] of Writes }
jemrenncncacaajannnancccnacncjeccncnannccacadmncacncncnacaa]
] Insert | 300 | 54 | 43 1
| Alternate | 300 | 272 | 269 |
Il Search i 300 | 143 | 7 J
| Insert ] 300 I 298 | 268 |
] Alternate § 600 | 1004 i 997 |
] Search | 600 | 466 | 2 |
| Insert | 600 | 752 | 673 |
| Alternate { 1200 | 2369 | 2342 |
] Search | 1200 | 1103 | 2 |
| Insert | 1200 | 1705 l 1523 l
] alternate | 2400 | 5668 | 5133 |
I Saarch | 2400 ! 2587 | 2 {
Lm 4

meermervwssench s s s rsnsancsmboasvcassacvnnanbcavsuncoscanvasns
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Case 22 - Order: 24 Buffer: 10
deight Weighting Factor: 10

| Operation | Number of i Number | Number |
| Type ] Operations ] of Reads | of Writes |
*--------:----*-------—------+--------------*---.----------4
| 1Insert | 300 | 54 | 43 |

] Alternate | 300 | 272 | 269 i
| Search | 3900 | 143 | 7 |
I Insert | 300 | 296 | 265 l
| Alternate | 600 ] 1005 | 995 1
| Search | 600 | 4617 | 1 |
| Tnsert | 600 | 762 i 684 |
| Alternate | 129¢C ] 2356 | 2332 |
| Searci | 1200 | 1100 | 1 |
| Tunsert | 1200 | 1711 | 1532 |
| Alternate | 2400 | 607 | 5133 |
| Search | 2400 ] 2687 | 2 |
lacamnoeuvarnanheunearssanascsmnusbuvevsnesenvnasnwublicseseanswuocccanmad
Cise 23 - urder: 12 Buffer: 10
deizht weigjhting Factor: 1
e LELIEELE R R LR L L L e L LR L e P L L LR L L Y]
1 Operation | HNumber of | Kumb er | Number |
| Type | Operations | of keads ] of Writes |
*-------------*-—------------+----¢-------.-+--—-------—---{
{ Insert | 100 | 13 | 3 |
] Alternate | 100 | 55 | 55 |
] Search | 100 | 29 ] 8 |
] Insert I 200 | 261 | 223 {
| Alternate | 300 | 566 | 552 i
I Search | 300 | 2174 { 7 1
| Insert i 300 | 509 i 421 |
] Alternate | 600 i 1711 | 1361 |
] Search | 600 | 78S | 7 |
| Insert | 600 | 1283 | 994 |
| Alternate | 1200 | 4348 | 2891 |
| Search | 1200 { <030 | 4 |
| 1Insert | 1200 i 3037 } 2153 |
] Alternate { 2400 | 10064 | 6003 |
I Search | 2400 | 15914 | 5 |
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Case 24 - (Order: 12 Buffer: 10
Height %eijhting Factor: 2

| Operation | Number of | Number | Number ]
] Tyoe | Operations { of Reads ] of Writes |
'.-------- -----*---- ----------+—-----—-------*---------------‘
| Insert i 100 I 14 | 4 |
| Altecrnate | 100 | 60 | 60 |
| Search | 100 | 217 | 7 |
| 1Insert { 200 } 255 | 2114 |
[ Alternate | 300 { 560 | 544 |
! Search | 300 [ 260 | 4 |
! Insert l 300 | 480 } 411 }
| Alternate | 60¢C | 1592 | 1349 |
] Search | 600 | 729 | 6 i
| Iasart ] €00 | 123¢ ) 973 |
| Alternate | 120¢ ] 4178 | 2883 |
| Search | 1200 ] 1974 { 3 {
| Insert | 120C ] 29171 l 2170 |
| Alternate | 2400 | 97900 ] 5985 |
| Search | 2400 i 4463 { B ]
Lomoanmmneecennnvboaasnavonnaoancensbdswnannnnesevanndcsonsvacanvanaend

Case 25 - Crder: 12 Buffer: 10
Height Weighting Factor: 4

| Operation ] Number of | Number | Number |
i Type | Operations | of Reads ] of Writes ]
|l Insert | 100 1 14 i 4 I
| Alternate | 100 | 60 | 60 1
]l Search | 100 | 21 | 7 }
]l Insert | 200 | 247 | 207 i
] Alternate i 300 | 556 I 540 {
| Search l 300 i 260 } 3 i
] Insert | 300 | 474 | 407 |
| Alternate | 600 | 1566 | 1351 |
| Search i 69C | T17 | 4 |
| Insert | 600 | 1244 | gl |
] Alternate { 1290 ! 4173 ] 2887 |
I Search i 1200 l 19606 | 2 |
] 1Insert | 1200 1 2973 I 2174 !
| Alternate | 2400 | 9659 | 5951 |
| Searcn i 2400 ] 1454 | 4 |
L F

--'----------L--.-----—.-—--L-c--_—--------‘-------------.
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Case 26 - QOrder: 12 Buffer: 10
Height weighting Factor: o

] Operation | Number of | Numb er | Number |
| Type | Operations ] of Reads ] of Writes ]
] Insert | 100 | 14 | 4 |
| Alternate l 100 1 60 | 60 i
] Search | 100 | 217 | 7 |
| Iusert { 200 | 241 | 205 i
| Alternate | 300 | 557 | 541 |
| Search- | 300 | 260 | 3 |
| TIisert | 300 | 463 | 399 |
| Alternate | 600 ] 1483 | 1345 |
| Searcn | 600 | 676 | 4 l
| Tosert | £00 | 1209 | 369 |
| Alternate | 1200 { 4200 | 2382 |
| Search | 1200 | 2024 ] 1 |
| Tiisert | 1200 | Jo14 | 2131 |
| anlternate | 2400 | 9822 | 59236 |
| Search ] 2400 | 4522 | 1 |
lenssmavsansnaeuheanovnenessencscsnassnbanccscasnecescssnsnbovsananenasasaad

Case 27 - Order: 12 Buffer: 10
Height weighting Factor: 8

Searcn | 2400 | 4522 | 1

cevusmuoesnsnanhcinencrnaencarnnencblnsccnasnssmanacdvonssanceccacsen

] Operation | Number of | Numb er | Numb er l
| Type | Operations | of Reads | of Writes |
}-------—-----*---- ----------+--------------+--------------4’
I Insert l 100 | 14 | 4 |
] Alternate i 100 | 60 | 60 |
| Search | 100 | 27 | 7 |
] Insert | 200 | 240 | 199 |
| Alternate | 300 | 573 | 558 |
| Search | 300 | 258 | 2 |
| Insert i 300 | 453 | 393 |
| Alternate | €00 | 1459 | 1344 |
| Search | 600 | 676 | 3 |
| Insert | 00U | 1144 | 563 |
| Alternate | 1200 | 4301 | 28814 |
| Search | 1200 | 2031 | 2 |
| 1Insert | 1200 | 3012 l 2172 |
| Alternate | 2400 | 9823 | 5939 |
! ;
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Case 28 - Order: 12 Buffer: 10
Height Weighting Factor: 10

| Operation | Number of i Number | Number ]
| Type | Operations | of Reads ] of Writes i
| Insert | 100 | 14 | 4 |
| Alternate | 100 | 60 | 60 |
| Sedrch | 100 1 27 | 7 |
| Insert | 200 | 244 | 202 |
] Alternate | 300 l 571 | 554 |
| Search | 300 | 260 | 1 {
| Insert | 300 | 456 | 391 |
| Altecnate | 600 | 14546 | 1342 |
| Search | 600 | 676 | 3 1
] Insert | €00 | 1186 | 961 |
] Alternate | 1200 | 4301 | 2894 |
| Search | 1200 | 2053 | 1 |
| Insert | 1200 | 3007 | 2157 |
| Alternate | 2400 ] 9833 | 5921 |
| Search | 2400 I 4520 | 1 |
L 4



APPENDIX C

LISTING OF COMPUTEK PROGRAMS

This appendix contains listinygs of the PL/I progfam and
procedures used to obtain eipirical data given in Appendixes
A and 3. Tne proygrams were compiled on the PL/I Optimizing
conriler anl run on an IB8Y 370/169 computer. The main pro-
yram, TESTREE, 15 listed, followed by the procedures BTEEE,

INDEXIO, GOFLND, TRKRAVEL, and rANF.

(U]
JY
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/* TESTREE */
TESTREE: PROGC OPTIONS (MAIN);

It

AUTHOR: ROUBERT WEBSTER
DEPARTMcNT OF COMPUTER SCIENCE
OKLAYOMA STATE UNIVERSITY
1979

THIS PRCGPaAM IS USED TO TEST THESE PROCEDURES:

1. 3TREE - I[NSERT AND DELETE FROM A MODIFIED BTREE.
2. TNDLYTIO - PSRFOKM RUFFERED I/C ON INDEX NODES.

3. GCFIND - STARCcH THE B3TREE FUR A GIVEN KEY.

4, TRAVEL - [RAVZIRSE THE TREE USING THE BOTTOM LEVFL

FILE>S nE,UTRPED:

1. SYSI#
2. SYSPRINI
3. BRINDEX - «IGTONAL(L), BLXOTZE(1000)

INPUT:

AT THE BEGINNING OF THE PROGRAM, THREEZ PARAMETERS ARE
READ FROM SYSIN IN FREE FORMAT:

1. MAX_BRANCU - MAXIMUM BRANCHING FACTOR OF THE TREE.
2. VAX_KEY3 - MAXIMUM NUMBER OF KEYS TO BE PLACED INTO
THE TREE AT ONE TIME.

AFTER THESE ARE INPUT, THE OPERATIONS MAY TAKE PLACE.

ANY OF 8 OPERATIONS MAY BE SPECIFIED FROM FILE SYSIN. SOME
SOME OF THESE USE A COUNT FIELD. OPERATIONS ARE SPECIFIED
BY ENTERING A NUMBER FROM ONE TO EIGHT IN THE FIRST TWO
COLUMNS. COUNTS ARE ENTEReD IN COLUMNS 3 THROUGH 15.

THE OPEKATIUNS AVAILABLE AKE As FOLLOYS:

lo I&SuRl RawDUS ELEMENTS. COUNT SPECLFIES HOW MANY.

2. DELZTZ RANDOM ELEZMENTS. COUNT SPECIFIES HOW MANY.

Je SuAkCiad FOx xANDUM ELEMENTS. COUNT SPECIFIES HOW
MANY . '

4. TRAVERSE TYE TRSE USING BOTTOM LEVEL LINKS. COUNT
1o LGT Usile.

Se SoTLF A Mew TRPEC., COUNT IS USED IO TELL dCw HANY
NODES AREZ TO SE PLACZD iN THE AVAILAJLE LIST.

pe WXTTE TIHZ TLOEY NODES XEMAINTNG Id TJdE BUFFER OUT TO
Tl Tafae THUIS SHCULC ALWAYS Bue DONE AT THY cdD CF
THZI PRYOGRAM. CCUNT IS NOT USED.

7. CuUKT T NUMBEL OF NUDES ANC ¥X£Ys AT EACH LEVEL,
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USING AN INORDER TRAVERSAL OF THE TREE.
CUUNT IS NOT USED./

8. PuLRFORM ALTERNATE INSERTICNS AND DELETIONS OF RANDOM
KEYS. COUNT TELLS HOW MANY OF EACH OPERATION.

VARIABLES:

ACTION - VARIA3LE THAT TELLS WHICH OPERATION TO PERFORM.
AREAY - ARxAY OF RANDO4 INTEGERS USED TO MAKE KEYS.
COUNT - VARIAJLEZ THAT TZLLS £iOa MANY TIMES TO DO AN
OPERATION.
EOF = FLAG TU SIGAMAL ThE Z4D OF THE TRAVERSAL.
FIRST - PCLNTER TO THE FIRST ELEMENT IN "ARRAY™ THAT IS
IN THZ TREE.
FCUND - FLAS SET BY "GUFIND" TELLING WHETHER A KEY WAS
FoUND .
J, K - TEVPORARY YARIASLES.
KEY - CHARACTSR XEV.
KETH = PCSLTION CF THTZ K&Y «ITidlis THE CURRENT RECORD.
KEYLENGTH - CYARACTER LENGTY OF XEYS IN THE IREE.
LAST - PUINTER To THE LAST SLEMENT Il "AKKAY'" THAT TS IN
THE TRIE.
MAX_3BANCH - CRDEZ OF THE TRAE.
MAX_KEYS - JAXIMUM LUMBER OF KEYS PER NODE.
CURRENT KEY.
MAX_NOLFS - MAXIMUM NUMBER OF NODES IN THE TREE.
POINTER - POINTER ASSOSIATED WITh THE XEY IN THE TREE.
RECORD4§ - INDZX NODE NUMBER THAT CONTAINS THE CURFENT KEY.
RESULT - RESULT FLAG FROM "BTRES".
ROOT - ROOT NODE OF THE TREE.
STAT - 6 MEMBER ARRAY GIVING STATISTICS FOR AN OPERATION:
STAT(1) - NUMBER OF NODE READS
STAT(2) - NUMBEK OF NODE WKITES
STAT(3) - NUMBER OF NODE& SPLITS

STAT(4) - NUMBER OF INSERTION SHARES
STAT(5) - NUMBEwr OF DELETION SHARES
STAT(6) - NUMBER OF NODE HERGES

1 NODE - NODe STRUCTURLE USSD IN “INDEXIO"
2 NC_¥EYs - GUABER OF ¥EYS (Gk LINK ON AVAILARLZ LIST)
2 KEYS - Xe'fS JUF THE NOCE
2 PTRS - PQINTERS CF THE HODE

*/

DCL

(VYAX_JR200CH, MAX_<oY¥S)  TLIXES SINng

KEYLeNGTu  FIY¥eD 3Ta T&IT(I),

slile¥  FILZ 2% (PEGeCHAL(L),ReCIIAE(LCNN)),

[NDFAIO =2XTE«"MAL ZHTRY (FILXKZD 3IN, 1, 2 FIKED 381,
2 (%) CHAk (*), 2 (*) FIXFD BT& (31,0), FTXED BIN,
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FIXZD 3IN, FIXED BIN, (*) FIXED BIN);

BTREE EXTEKNAL ENTRY (CHAR(*), FIXED BIN (31,0), FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN, FIXED BIN, (*) FIXED BIN),

GOFIND EXTERNAL ENTRY (CHAR(*), FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN, FIXED BIN, FIXED BIN (31,0),
BIT(*), (*) FIXED BIN),

TPAVEL EXTERNAL ZNTRY (FIXZD BIN,FIXED BIN,FIXED BIN(31,0),
CHAR(*), FIYED BIN, FIXED BIN, (*) FIXED BIN, BIT(*)),

RANF EXTEENAL ENTRY (FIX:ZD 3IN (31,0)) RETURMS (FLOAT BIN),

TRUE B3IT(1) INIT ('1'RB),
FALSE BIT(1) TNIT (*'0'B);

GET FILY (SYSIN) LIST (VAX_3KRAMNCH, MAX_KEYS);
BEGILA;

DCL

CARFAY (VAX_KLEYS)Y, P20INTER) FIXSD BIN (31,0),

KEY CHA/ (XZYLENGTH),

(FIRST,LASI,S5TAT(6),J,K,RO0T,ACTICN,COUNT,RESULT,RECORDH,
KEYi#, NUVKEYS(30), NUMNOUES(30)) FIXED BIN,

LOW BUILTIN,

(EOF, FOUND) BIT(1),

1 NODE,
2 NO_KEYS FIXED BIN,
2 KEYS (MAX_BRANCH-1) CHAR(KEYLENGTH),
2 PTRS (O:MAX_BRANCH-1) FIXED BIN (31,0);

/* SET UP KEY AxkRAY */

DO J = 1 TO MAKX_KEYS;
AKRRAY(J) = RANF(0) * 10 ** (KEYLENGTH - 1);
END;

/* SETUP FILS *x/

J = MAX_KEYS / MAY_BRANCm * 2;

CALL StTUP (J);

ON ENDFILE (SYSIN) STOP;

/% 4NTN LOOP  */
0C wHILa (i{RUEZ);

p)

LT (SYSILH) ZDIT (ACTION,COUNTY(CCL(L),F(2),T(13));
37

o~ ~
HC.T ¢
[
1

I

it r=

ol
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SELECT (ACTION);

WHEN (1) DO; /* INSERT */
PUT EDIT (*INSERT ', COUNT) (SKIP(S), A, F(5));
DO J = 1 TO COUNT;
/* INCREMENT POINTER TO LAST KEY IN TREE */
LAST = LAST + 1;
IF LAST > MAX_KEYS THEN LAST = 1;
PUT STRING (KEY) EDIT (ARRAY(LAST)) (F(KEYLENGTH));
CALL BTREE (KEY, ARKAY(LAST), 1, ROOT, KEYLENGTH,
MAX_BANCH, RESULT, STAT);
/* CHECK FOR ERROR */
IF RZSULT ~= 0 THLN
PUT &DIT ('** =RRGR ** ReSULT,KEY: ',RESULT,KEY)
(SKIP(2), A, F(5), A);
END;
wXxD); /* LNSERT %

~

WHEN (2) DO; /* DELETS */
PUT eDIT (*DELEITE *, COUNT) (SKIP(S), A, F(5));
DG J =1 TG CCUNT;
PUT STwING (KEY) ZDIT (ARRAY(FIRST)) (F(KEYLZNGTH));
CALL BTREE (¥EY, AKeAY(FIKST), 2, ROOT, KEYLENGTH,
maX_oRANCH, RaSULT, STAT);
/* CHeCX ©OR ZRROR %/
IF RESULT = 0 THEN
PUT EDIT (*** ERROR ** RESULT, KgY: *, RESULT, KEY)
(SXIP(2), A, F(5), A);
/* INCREMENT POINTER TO FIRST KEY IN TREE */
FIRST = FIRST + 1;
IF FIRST > VAX_KEYS THEN FIRST = 1;
ENC;
END; /* DELETE */

WHEN (3) DO; /* SEARCH */
PUT EDIT (*SEZARCH ¢, COUNT) (SKIP(5), A, F(5));
/* K L[S THE POINTER TG THE NEXT KEY TG BE HUNTED */
K = FIRST - 1
DO J =1 TO COUNT;
K =K+ 1;
IF K > MAX_KEYS THEN K = 1;
PUT S5TuTii5 (XEY) ZDIT (ARRAV(X)) (F(XEYLENGTH)):
CALL GUZFLAD (KEY,ROOCT,Ke{LeNGTH,MAKX_BRANCH,RuCURDH,
vzt4, POLNTER, FOUND, STAT);
IF FUUND & POINTER =~= ARKAY(K) THEN
PUT EDIT (***ZRPOR** KEY AND POIRTER DO NOT MATCH®,
'KEY,POINTER: *,XEY,POINTER) (SKI®(2),A,A,A,F(9));
cLof IF + FublD TiEh
PUT aDLT (*<iY NCGT FCUND: ', KEY, PCINTER)
(SK1I2, A, A, 5(3)),;
suby
I /% saadCli *x/

WHEN (1) D0 /*  TRAVERSE */



91

PUT EDiT ('TRAVERSE') (SKIP(S), A);

KEY = LOW(KEYLENGTH);

CALL GOFIND (XEY, ROOT, KEYLENGTH, MAX_BRANCH, RECORDY,
KEY}, POINTER, FOUND, STAT);

IF FOUND THEN PUT EDIT (*** ERROR ** LOW4 KEY FOUND: *,
POINTER) (5XIP(2), A, F(9));

ECF = FALSz;
DO J =1 TO MAX_KEYS WHILE (-~ EOF);
CALL TRAVEL (RECORD}, KEY#, POINTER, KEY, KEYLENGTH,
MAX_BRANCH, STAT, EOF);
IF ~ Z0F THEN PUT EDIT (KEY) (A);
aNl;
wiby  /* TRAVERSE */

wHeN (5) DO; /* SETUP NEW TREE */
PUT LDIT (*S5ETU™ HEY TREZ', COUNT) (SXIP(5), A, F(5));
CALL 5:oTU? (COUNT);
END,; /* GETUP  */

WHEN (A) Du; /* UWRITE OUT BUFFZRS %/
cUT LOULT (YWRITE CUT 3UFFERS!) (SKIP(%), A);
CALL INDEXIOC(5,NODE,RECORD3,KEYLZNGTE,MAX_BRANCH,STAT);
/* wECOnT4 IS HGT USED IN THEE ABOVE CALL */
ooy /*  &RITC CUT 3UFFzRS  */

KHEN (7) D0; /* TRAVERSZ, COUNT XEYS & NODES */
PUT SXIP(S5) LIST (*STOkAGEZ CHARACTERISTICS');
NUMKEYS = 03
NUMNODES = 0;

CALL TKAVERSE (ROOT, NUMKEYS, NUMNODE3, 0);

PUT EDIT ('LEVEL', 'KEYS', "NODES')
(SKIP(2), A, COL(8), A, COL(14), A);

DO J = 1 TU 30 WHILE (NUMNODES(J) > 0);
PUT EDIT (J, *.', NUMKEYS(J), NUMNODES(J))

(SKIP, F(2), A, COL(6), F(6), COL(13), F(5));

END;

END; /* TRAVERSE */

WHEN (38) DO; /* ALTERNATE INSERTIONS AND DELETIONS */
PUT EDIT (*ALTERNATE INSERTIUNS ANLD DELETIONS*, COUNT)
(SKIP(5), a, T(5));
L0 J =1 TU COUNT;

/* DELZTE A XEY */

PUT STRING (KEY) EDIT (ARPAY(FIRST)) (F(KEYLENGTH));

CALL 3TRZE (KEY, ARRAY(TIRST), 2, ROOT, KEYLENGTH,
VMAX_H CANCI, wE5YLT, OTAT);

/* CluCi &C? ZRROR  */

I7 RE35ULT ~= 2 THEN
POT £0IT (*'** ZgkulOQ ** HESULT, K&v¥e ', RZSULT, KEY)
(SHRLI20E)Y, wy T(3)y n)3

/*  DNCRReMENT BCLUTIY TO FIRST KEY IN TREE */

Findl = FlaoT + 17



IF FIRST > MAX_KEYS THEN FIRST = 1;

/* INSExT A KEY */

/* INCREMENT POINTER TO LAST KEY IN TREE */

LAST = LAST + 1;

IF LAST > MAX_KEYS THEN LAST = 1;

PUT STRING (KEY) EDIT (ARRAY(LAST)) (F(KEYLENGTH));

CALL 8TREE (KEY, ARRAY(LAST), 1, ROOT, KEYLENGTH,
MAX_BRANCH, RESULT, STAT);

/* CHECK FOR ZRROR */

IF RESULT ~= 0 THEN
PUT £DIT ('** ZRKOR ** RESULI, XEY: ', KESULT, KEY)
(SKIP(2), A, F(5), A);

-

v

&
END; /% ALTERNATE INSE&ATIOHNS AND DELETIONS */

OTHERWLIS: PUT LDIT ('INVALLD OPERATIGN: ', ACTIGH)
(SKIP(3), A, F(5));

END; /% SILICT  */

PUT LCAT('NOLEZ R ALS: ',STAT(1))(SKIP(3),A,CCL(20),F(5));
PUT ECIT('NO2DE WRITZS5: ',STAT(2))(SKIP,A,COL(20),F(5));
?UT EDIT('NODZ SPLITS: ',STAT(3))(SK1?2,4,CCL(20),F(5));
PUT EDIT(*INSERTION SHARES:*,STAT(4))(SKIP,A,COL(20),F(S)
PUT EDIT('DELETIUON SAAKES:*,STAT(5))(SXIP,A,COL(20),F(S))
PUT EDIT('NODS MeRGES:',STAT(O))(SKIP,A,COL(20),F(5));

);
7

END; /* MAIN LOOQOP */
SETUP: PxOC (MAY_NUDES);

/* THIS PROCEDURE SETS UP A THE LINKED LIST OF AVAILABLE
NODES FOR THE PROCEDURE "INDEXIO'" TO USE. MAX_NODES
TELLS HOW MANY NUDES TO PLACE IN THE AVAILABLE LIST.
THE INDEX FILE MUST HAVE A BLOCKSIZE OF 1000 BYTES.
*/

DCL 1 NODE, /* I1/0 STRUCTURE FUR "BTNDEY'" */
2 LINK FIXED oll,
2 «EST CHAK(C933)  INIT (* v),

(J,s, MAX_NOLES) FILED 3IN;

OPEN FILE (3INDZX) DIRECT OUTPUT,

WPITo €ILE (3I4DEX) FROM (uOcLe) KEYFRCM (J-1);
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END;

LINK = 0;
WRITE FILE (BINDEX) FROM (NODE) KEYFROM (J);

CLOSE FILE (BINDEX);
OPEN FILE (2INDEX) DIRECT UPDATE;

END; /* SETUP */
TRAVERSE: PROC («ECORD{#, NUMKEYS, NUMNJIODES, LEY7) RECURSIVE;

/* THIS PROCEDJRE TRAVERSES THE TRErm INCRDER RECURSIVELY
AND COUNTS THF NUMBESR OF KEYS AND NODES AT EACH LEVEL.

PAKAMETERS
RGCCRDy - CURRa kT INDEXK LCLE NUMBER
NUMKEYS - NUY35R OF KEYS ON AT EACH LEVEL
HUMNOCES - NUMBER GOF WNODES AT EACH LEVEL
LoV - CURRaNT LeVEL (ROCT = 1).

GLO2AL VARIAZILES:
KEYLEZNGTH - LEINGTE OF KEYS
MAX_BRaliCH - 1a¥iMUM BRANCHING FACTCR FOR TRzE.
STAT - STATISTICS FOR TREE.

*/
DCL
1 NODE,

2 NO_XEYS FIXED BIN,
2 KEYS(MAX_BRANCH-1) CHAR(KEYLENGTH),
2 PTRS(VAX_BRANCH) FIXED BIN (31,0),

(RECORD§, KUMKEYS(*), NUMNODES(*), LEV) FIXED BIN,
DEBUG BIT(1) INIT (*0's),
J FIXED BIN;

IF DEBUG THEL PUT SKIP LIST('TRAVERSE', LEV);
IF RECGRDE <= 0 THEN RzTURN;
CALL INDEXIO (1,HODE,RECORD#,KEYLENGTH,¥AX_BRANCH,STAT);
LEV = LEV + 1;
NUMKEYS(LEV) = NOU“KEYS(LZV) + NO_XEYS;
NOMNUDLS(LeV) = aUANUDES(LEY) + 1)
IF PTRS(2) > 2 THEN ©C J = 1 TG NO_KEYS + 15
CALL TRAVERSE (PTRS(J), NUMKEYS, NUMNODES, LEV);
END; '
LEV = LEV - 1;
RETCRN
Edl; /* TiATzwoiZ */

anb; /* coisliv LLUCKX Y/

My /% TIoTazz */
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/* 3TREE */
BTREE: PROC (XZY, XEYP0OS, ACTION, ROOT, KEYLENGTH,
MAX_BRANCH, RESULT, STAT);

l*

AUTHOR: RO3ERT WEZBSTER
DEPARTMENT OF COMPUTER SCIENCE
UKLAHOMA STATE UNIVERSITY
1979

TEIS PxOCZDUXE PLEKFOKMS MAINTENAHCE ON A MODIFIED B-TKEE
STRUCTURs - KEYS AND PCINTERS MAY BE IWSERTED AND DELETED.

Taug STRUCTURE UsED IS A B+TkEE. THIS IS A NOKRMAL B-TREE
ON UPPER LeVulS, EXCEPT THAT OuLY KEYS AND POINTERS TO CTHEER
NODES ARL STOR&d. ON THL 30TTOM LEVEL OF THE TREE, ALL THE
POTATSwS Anc MaeSATIVE. THE FIxST POINTER UF EACH BOTTUM
LEVEL NCLE POIwTS TO ITS RIGHT SIBLING. THE FIRST PCINTER CN
THE RIGHFIYCST 307TOY LEIVEL HO2& IS ZERO. THE OTHEXR POINTERS
ON THE RUTTOM LEVEL NODES PUINT TO EXTZwNAL RECOKDS
REPPuSENTELU dY THCLR ASSCCLATLD KEY. EZACH KeY HAS A POUINTER
("KEYPOS") THAT «AS INPUT AT THE TIME THE XEY WAS INSZRTED
INTO TuE TrnEme. NEEN ) UUDE To SPLIT ON THE BOTTUM LEVEL,
THE KEY PRCPACATED TC THoe UPPER LLVZL IS NCT REMCYZD FROM THE
BOTTOM LzZVEL. SIMILARLY, K£YS ARE NOT REVYOVED FROM OR ADDED
TO THE BOTTOM LEVEL DURING A SHARING OPERATIOL. THIS MEANS
THAT ALL KiYS ON UPPEZP LEVELS WeRS DUPLICATED FRCM BOTTOM
LEVEL KEYS.

INPUT PARAMAETELS:
KEY - KEY TO Bt INSERTED OR DELETED FROM TdAE TREE.
KEYPOS - POINTER TO B£ SET AT THE BOTTOM OF THE TREE.
ACTION - FLAG TELLING WHETHEk TO INSERT OR DELETE.
1 I5 FCR INSERTION, 2 IS FCR DELETION.

ROOT - IS THE NUMBER OF THEI ROOT NODE OF THE TREE.
KEYLEUGTH - LENGTH OF XEYS IN THE TREE.

MAX_BRANCH - MAXIMUM BRANCHING FACTCR OF THE TREr.

OUT?UT PARPAYETLRS @

RESULT - <.3ULT CoDzZ:

=> SUCCESS

=> KEY ALREADY EXISTS; INSERTION NOT DONE
=> XEY NOT FOUND; DELETION NOT DONE

=> 0Ul 07 NubDel; TRaNOLACTIGH NCT SCMNG
CTYING COUITS OF ACTIONS WITHIN THZ DPRCGRAN:
1) - (UMBEa OF NCDE READS

) = MUM3EP uF LCDE WRITZS

) = NUMEIL 0F NCDE SPLITS

) = NUMBEK OF SdAxE5 DUKRING INS&ATION
) = tiUMoEP CF SHAREL DURING DELATION

UiV VL LN O
|
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STAT(6) - NUMBER JOF NODE MERGES

PROCEDURES CALLED: INDEXIO
INTERNAL PROCEDURES:

BTKEE - MAIN PROCEDUKE

SZARCH - SZARCHES THE TREE FCR A KEY, RETURNS ITS
POSITION IF THE KEY IS FOUND, AND THE POSITION OF
THE NEXT HIGHExK KEY IF IT IS NOT FOUNC.

iNSERT - DOEsS AN IXNS&RTION INTOC THE TREE.

vEL - D0Oc&s5 A BELETION FROM THE TREE.

OVERLEFT - PZRFORM3 GVERFLOY Or UNLCERFLOW SHARING
TC Tdg Lelfl./

OVERRIGHT - PERTORMS OVERFLO& OR UNDFERTLOYW SHARING
TO TuE RIGUT.

CCuB1lic = IERGES Tuw0 XEYS FOR ULDERFLOa ON DELoTIOnN.

VAKIAGBLZS:

ACTION - TuwPUT PARAMETEx THAT TELLS WHETGLER TO INoezkT OR
DelouTla.
CURRENT - HJH3IZR OF THE NOCFE "CUR"™
DEBUG - DEBUGS3TNG GUTPUT FLAG
DOWNPTR - POIJTER THAT POINTS TO THE NCDz BELCw "CUR"™ IF
OM Al UFPER LeVEL, AND CONTAINS "KEYPOS"™ IF ON
THE BOTTUM LEVEL.
HEAD - HEAD OF THE AVAILABLE LIST OF NODES.
HORZ_PTR - TEMPORARY VARIABLE TO HOLD THE HORIZONTAL
PQINTER OF THE BUTTOM LEVEL.
I, J, X - TEAPURARY VARIABLES
KEY - INPUT PARAMETER, KEY TO BE INSERTED OR DELETED.
KEYLENGTH - INPUT PARAMETER, LENGTH OF KEY IN THE TREE.
KEYPOS - INPUT PAPRPAMETER, POINTER TO BE ASSOCIATED WITH
THE KEY AT THE BOTTOM LEVEL OF THE TREE.
LEV - LEVEL OF T:iE NODE '"CUR"™ IN THE TREE.
MAX_3RAMNCH - IlPUT PARAMETER, MAXIMUM BRANCHING FACTOPR
FOR THE TREE (ORDER).
MIN_XEY - MINTAUM NUMBEK OF XKEYS TiAT MAY BE IN A NODE.
PARPENT - AR24¢ CF THZ alli3E2PS GF ALL Tie PAPENT NCDES USED
[d SEARCHING FOR THZ CURRENT KEY.
PARPOS - ARRAY OF FOTNTIExS FOLLOWED IN THE PARENT HODES
USZD Ll SEAPCHING FOR THE CURRENT KeY.
P0S - POSITION OF THE K&Y IM THE NODE ®“CUR".
RESULT - OUTPUT «ESULT CODE.
ACOT = Tu2UT DhaPabalo?, RCOCT HCOb aUMBePR CF THE TRoZ e
STIPLING = w352 OF THe yQuT™ "sran,

ooy ™

STAT = CulUwlLuwo “Un ACTTudo Ui THE TAEo.



*/
DCL

KEY CHAR(*),

(KEYPOS, NEXT) FIXED BIN (31,0),

(KEYLENGTH, ROOT, MAX_BRANCH, ACTION, RESULT, STAT(*))
FIXED BIN,

1 CUR,

2 CURNOKeYS FIXED BIN INLT (0),

2 CURKEY(VAX_BRANCH) CHAR(KEYLENGTH) INIT ((MAX_BRANCH) (°

2 CUKPTR(MAX_BaANCh+1) FIXED BIW (31,0)
INIT C((MAX_3RANCU + 1) 0),

1 513,

2 SIBNOXEYS FIXED BIN,

2 SIsKeY

(HAX_3RANCH)Y CHAR(KcYLENGTH)

INIT ((YAX_BRANICH) (* *)).,
2 SIBPTR{MAN_BRANCH+L) FIXED BIN (31,0)

LNLT

1 PAR,
2 PARNUXK
2 PARKLY
INIT

((MaX_oRAKCHd + 1) 0),

EYs F€INED BIN,
(4aX_BRANCH) CHAR(KEYLZNGTH)
((YAX_2RANCH) (' 1)),

2 PARPIR(AAX_RRANCH+1) FIXED BInN (31,0)

INIT

((MAX_BRANCH + 1) 0),

DEBUG FIXED BLi INIT (U).,

FLOOR BUT

LTIN,
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(1, J, LEV, MIN_KEY, PARENT(S0), PARPCS(50), P0OS, CURRENT,

SI3LING)

FIXZD BIN,

INDEXIO EXTEKNAL ENTKY (FIXED BIN, 1, 2 FIXED BIN,
2 (*) CHAR (*), 2 (*) FIXED BIN (31,0), FIXED BIN,

FIXED BIN,

RESULT = 0
MIN_KEY =

/* ACTION
IF ACTION
ELss IF iC

RETURN;

SEA=RCH: PRuC
/k
THIS ©

oUCCE35 1

T &lY 1

IS wUZRrRE T

FIXED BIN, (*) FIXED BIN);

’
FLOOR((MAX_BRANCH-1) [/ 2);

= 1 I5 FOR IVMSERT, ACTION = 2 IS FOR
= 1 THeN CALL INSERT;
TION = 2 Tden CALL DEL;

((£t, PSS, oUCCESS);

FOR "KEY".

[

EJURE STARCHES THE 3+Tk
1]

dWlw, iF AT 1o FOUNL. «F IT 1S NOT

DELETE */

IF IT IS FOUND,

FOUND, "POS™

=T [0 UNE, OTHERWISE 7:RU. "POS"™ IS THE POSITIGN OF

'),



GLOBAL VARIAGLES:
LEV, ROOT, PARENT, PARPOS, P?AR, CUR, DEBUG.

PROCEDURES CALLED: GETNODE

*/

bcL

KEY CHAR(*),

(POS, SUCCESS, LWB, UPB) FIXED BIN;

IF DEBUG =1 TH
CUKRENT, Lz7 =
PCS = 1;
NEXT = RCOCT;
DO WHILZ (NEALT > 0);
LEV = LEY + 1;
PARFNT(LET) CUXREMNT;
PARDPOS(LEY) D03,
IF LaV > 1 TriZa PAR = CURy
CURRZINT = HEXT;
CALL G1uunE (CUxk, TUKKELT),

)
0;

/* FILiC Tue Kg't IN THE NODE  */
LdB = 1;
UP3 = cCUxiUXuYo;
DC WHILE (La3 <= UP3);
P0OS = (L48B + UPB) / 2;
IF KEY < CURKEY(POS) TuEds UPB = POS - 17
ELSE IF KeY > CURKEY(POS) THEN LAB = POS
ELSE GO TO 0UT;
END;
POS = LW3;
0UT:;

NEXT = CURPTk(POS);
END;

SUCCESS = ¥;
IF CURKENT > O THEN IF POS <= CURNOKEYS THEN

IF KeY = CURKEY (FOS) THEN SUCCESS = 1;
IF DEBUG = 1 THZN PUT SKIP LIST(SUCCESS, POS,
KRETURN;

END; /* SZazrcd *f

INSERT: PROC,

/%

THIS ?F0CCLDURL LUSEETS a KZY¥, "“KzY'", INTC THE TREL.
THZRE ARE SIVERA\L SLOJYAL VARIA3LZS.

*/

DCL

(J, 3UYCCL33) FEIAED 31N,
COWNPTK FIYED 2L (31,0);

4 PUT SKIP LIST(*SEARCH', KEY);

+ 1;

LEV);
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IF DEBUG = 1 TJdEN PUT SKIP LIST('INSERT', KEY);
DOWNPTR = -XEYPOS;

/* FIND THE XEY POSITION */
CALL SEARCH (KEY, POS, SUCCESS);
IF SUCCESS = 1 THEN DO;

RESULT = 1;

RETURN;

END;

/* INITIALIZS ROOT NODE FGR A NEW TREE */
IF LEV = 0 TJZH DCy
Lev = 15
CALL FeTCH (CURRENT);
RCOT = CU?RGcHT,
CURNOKEYS ]
CUKPTK
CURKLY
END;

n;
' o
;

LogPr:;
/* INSERT THE KiY INTC CURRENT NODZ AT POS */
IF DERUG = 1 TYEN PUT SXIP LIST(*LOOP', LEV);
CURNOYZYSs = CUnNOXEYS + 1
DO J = CURLOKEYS TO POS + 1 BY -1;
CURPTR(J+1) = CURPTR(J);
CURKEY(J) = CUxXEY(J-1);
END;
CURKEY(POS) = KEY;
CURPTR(PUS+1) = DONNPTK;

/* STORE THe NODE AND RETURN IF IT IS NOT CVERFULL
IF CURNOKEYS < MAX_BRANCH THEN DO;
CALL PTNODE (CUR, CURKENT);
IF DeBUG = 1 THEN PUT SKIP LIST (*NO REBALANCING');
RETURN; °
END ;

/* 1F AT THE TOP, THEWX MAKE A NEW ROOT */

IF PARENT(L=V) = 0 THEN DO;
I DESUG = 1 TUEN PUT SXIP LIST(*NEW ROOT');
CALL £aTCH (SI3LING),
CALL FLTCY (PARENT(LEV));
PARRKEY(L) = CURXEY(MIN_XLEY + 1);
IF CUPPTR(2) > 0 THEN CURNCKEYS = MIN_KEY;
ELSE CURNOKEYS = MIN_KEY + 1;

I =1,
/*  LLVEI TAal KoYS, PCIuTeRS d0kN X/
DO J = 2IM_TLV + 2 TO MAX_BRANCH,

STav2Y(T)
S1.P7(L)
1

=1+
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END ;
SIBPTR(I) = CURPTR(MAX_BRANCH+1);
SIBNOKEY5 = I - 1;
PARNUKEYS = 1;
PARPTR(1) = CURRENT;
PARPTR(2) = SIBLING;

/* IF NODE IS A LEAVE THEN SET HORIZONTAL POGINTERS */
IF CURPTR(2) <= 0 THEN DO;

SIBPTR(1) = CUKPTR(1);

CURPTR(1) = -SIBLIMNG;

END

/* INCREMENT oPLIT COUNTER */
STAT(3) = STAT(3) + 1;

J* STORE 48 NODES */

CALL PTNODE (SIB, STBLING)
CALL PTNODZ (24R, PAREINT(LEV));
CALL PTNODE (CUR, CURRENT);
®O0T = PARENT(LEV);

RETURYN;

END; /* d7WROOT  */

/* LEFT SIDE */
IF PARPOS(LEZV) > 1 THEN DO;
IF DEBUG = 1 THEN PUT SKIP LIST ('LEFT SID&');
SIBLING = PARPTR(PARPOS(LEV)-1);
CALL GTNOD& (S1B, SIBLLIHNG);
IF SIBNOKEYS < MAX_BRANCH - 1 THEN DO;

/* SHARE ON LEFT */
IF DEBUG = 1 THEN PUT SKIP LIST (*SHARE LEFT');
CALL OVERLEFT (PAR, SI3, CUR, PARPOS(LEV) - 1);

/* INCREHENT OVERFLOW SHARE COUNTER */
STAT(4) = STAT(4) + 1;

/* STURE THE NODES */

CALL PTNODE (SIB, SI3LING);
CALL Priode (PAR, PAKENT(LEV));
CALL PTNUDZ (CUR, CUKRENT):

RETURN;
END; /* S3HARE LEFT */
eidb;

/* RIGHT oIcs </

[F PARPOS(LEV) <= 2ARNCXEZYS THEM DO

I DESUS = 1 Thgw £UT 39IP LIST(!RIGAT SIDEY);
SLSLLNG = PARTTR(PLRPGI(LEV)+1);
CALL 6T400E (SI8, SIBLING);



IF SIBNOKEY3S < MAX_BrRANCH - 1 THEN DO;

/* SHARE ON RIGHT */
IF DEBUG = 1 THEN PUT SKIP LIST ('SHARE RIGHT®);
CALL OVERRIGHT (PAR, CUR, SIs, PARPGS(LEV));

/* INCREMENT THE OVERFLOW SHARE COUNTER */
STAT(4) = STAT(4) + 1;

/* STORE THE NOLES */

CALL PINODE (SIB, SI3LING);
CALL PINUDE (PAR, PARENT(LEV));
CALL PiNOD= (CUR, CURREKT);

RFTU&N;
END; /* OHARING RIGHT */

Z8D;

/*

SPLIT */

/* PUT UFPEZR ¥%LYS5, PTKS THTO SIB, SPLIT CUk */

~
q
I:

DezUG = 1 Tialh PUT SKIP LIST('SPLIT!');

CALL FuETCH (SI3LING);

KEY

= CURKEY(HALN_XEY + 1)

DOWNPTR = SIuLING;
[F CURPTR(2) > O TH=N CURNOKEYS = MIN_KEY;
cLSE CURNOKEYS = MIW_XEY + 1;

I =

l*

1;

MOVE THE X2ZYS, POINTERS OVER */

DO J = MIN_XZY + 2 TO MAX_BRANCH;
SIBKEY(I) = CURKEY(J);
SIBPTR(I) = CURPTR(J);
I =1+1;
END;
SIBPTR(I) = CURPTR(MAX_BRANCH + 1);
SIBNOKEYS = I - 1;

/*

IF NODZ IS A LEAVE THEN SET HORIZONTAL POINTERS */

IF CURPTR(2) <= 0 THEN DO;

SIBPTR(1) = CUKPTK(1);
CURPTR(1) = -SIBLING;
END;

/t

INCREMENT THE SPLIT COUNTEK */

STAT (3) = STAT(3) + 1;

STORE T I0U=S */
PTHUDE (CUx, CURRENT)
PTHCLDe (313, SI3LING);

<O

T QEA3L AND GO RANCX FOR INSERITION L[NTO THE PARENT
PAaPus(i=l)
Py

100
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CURRENT = PARENT(LEVY);
LEY = LEV - 17
IF PARENT(LEV) > 0 THEN
CALL GTNODEZ (PAR, PARENT(LEV));
GO TO LOGP;

END; /* INSERT */
DEL: PROC;

/* TEIS PxOCEDURE DELETES A KEY FROM THE TREE */
DCL (J, SUCCesS3) FIXED BIN;
I DE3uUCG = 1 THEN PUT SXIP LIST('DELETE*, KEY);

/* FIiN THE XY */ .
CALL SzZARCU(XZY, P0S, SUCCES5S);
IF SUCCESS = 0 THEN DOy

RESULT = 2;

RETURN;

END;

/* “AKe SURm CUR IS A LzAVE */

I[F CURPTR(Z2) > O THEN DO
PUT S5KXIP LIST ('ERROx I DELETE - NOT AT BUTTOM OF
PUT SKiP DATA (CURRENT, CUR, PARENT, PAR, KEY);
RETUKN;
END

LooP:;

/* DELETE THE KEY FROM THE NODE °'CUR' */
IF DEBUG = 1 THEN PUT SKIP LIST('LOOP', LEV);
DO J = POS + 1 TO CURNOKEYS;
CURKEY(J - 1) = CURKEY(J);
CURPTR(J) = CURPTR(J + 1);
END;
CURNOKzYS = CURNOKEYS - 1;

IF LEaV = 1 & CURNOKEYS = 0 THEN L[O;
/* NEAd kOUT */

ROOT = CUPPTR(1l);

CALL REL&ASZ (CURRENT);

RETURN;

END;

/J* IF NCT UJNJZRFULL THEN STORE TUE NODT AND RETURN
I[F LS7 = 1 | CURNCXEYS >= 4Ti_KEY THEN D03

CALL PTNGDS (CUR, CURAENT);

<TTURY

£8D;

101
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/* LEFT S1dw */
IF DEBUG = 1 THE{ PUT SKIP LIST('LEFT SIDE®);
1IF PARPOS(LEV) > 1 THEN DO;

SIBLING = PARPTR(PARPOS(LEV) - 1);

CALL GTNODE (SIB, SIBLING);

IF SIBNOKEYS > MIN_KEY THEN DO;

/* SHARE FROM LEFT */
IF DEBUG = 1 THEN PUT SKIP LIST (*SHARE LEFT®);
CALL OVERRIGHT (PAR, SIs, CUR, PARPOS(LEV)-1);

/* INCREMENT THE UNDEKFLOW SHARE COUNTER */
STAT(S) = STAT(S) + 1;

/* STORE THE NOLDES */

CALL PTNODE (5IB, SIBLING);
CALL PTNGDZ (PAP, PARENT(LEV))’
CALL PTNODE (CUR, CURRENT);
RETUnb;

ENU; /* SHARLING LEFT */

ELSE 00;
/* COMBINE ulN LEFT */
IF DE3US = 1 THEN PUT SK1P ULIST (*CCMBINE LEFT');
CALL ReLZASE (CURRENT);
CALL CuMBINE (PAK, SIB, CUK, PARPOS(LEV)-1);

/* ILHCR:ZMENT NCDE COM3INING COUNTER  */
STAT(6) = STAT(6) + 1;

/* STURE THE NODE */
CALL PTNODE (Si3, SIBLING);

/* GET READY AND GO BACK TO DELETE FROM PARENT */
CUKKENT = PARENT(LEV);

POS = PARPOS(LEV) - 1;
CUk = PAR;
LEV = LEVY - 1;

IF LEV > 1 THEN
CALL GTNODE (PAR, PARENT(LEV));
GO TU LJOP;
exD; /* COMBINING LEFT */
END; ys* LEIFT SIce  *x/

/* RIGHT 5IDE */

IF DEBUG = 1 THEN PUT SKIP LIST(*RIGHT SIDE®);
SIBLING = PARPTR(PARPOS(LEV) + 1);

CALL GTNulE (5IP, STIBLING):

IF SI3tCntdS > Y1IN_KEY Tdzi DOy

/¥  SHAkZ FR0M RIGHT  */
IT DofUGC = L ToZh PUT S¢TP LIST ('SHAKE nIGHT');
CaALL CVERLLET(PAR, CUR, Si3, 2aRPCS(LEV));
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/* INCREMENT UNDERFLOW SHAKE COUNTEK */
STAT(S) = STAT(S) + 1;

/* STORE THE NODES */

CALL PTNODE (SIB, SIBLING);
CALL PTNODE (PAR, PARENT(LEV));
CALL PTNODE (CUR, CURRENT);

RETURN;
END; /* SHAPING RIGHT */
ELST DO;

/* COMBINE KIGHT */

IF CL3UG = 1 THEN FUT SKIP LIST ('CCM3INE ON RIGHT');
CALL RELEAST (SIBLING);

CALL COMBINE (PAK, CUK, SIE, PARPOS(LEV));

/* LTUHCREMENT NCDE CGMBIMING CCUNTEPRP */
STAT(6) = STAT(6) + 1;

/* STuwE TiHi NCDLE %/
CALL PTNODm (CUR, CURRENT);

/*¥ GET RZADY AMND GO BACK TO DELETE FROM PARENT */
CUKRRENT = PARENT(LEV);

CUR = PAR;
POS = PARPOS(LEYV);
LEV = LEV - 17

IF LEV > 1 THEN

CALL GTNODE (PAR, PARENT(LEV));
GJ TU LOOP;
END; /* COMBLNING RIGHT */

END; /* DELETE */

,\‘&
v
OVERLEFT: PROC (PARENT, LEFT, RIGHT, POS);

/*
THIS PROCEDURE PERFORMS OVERFLOW OR UNDERFLOW SHARING

ON TWO NODES OF THE TREE. THE SHARING GOES FROM RIGHT TO
LEFT. "LEFTY 13 THE LEFT SIBLING NOUDE, AND “RIGHT"™ IS THE
RIGHT SI3LING. SHYARING IS DONE UNTIL THERE IS AN ECUAL
(OR NEARLY SyUAL) HUMBER OF XEYS IN EACH SIBLING. "POS"™

IS THE POSITION OF THE KeY IN THE PARENT NODE THAT

DIVIDES THE TWO SI3LINGS. '

INTERNAL VAQTAZLES:
HLeFT - wUM3ZR OF {ZYS TO &Nl UP In THE LEFT SIBLING
NRIGHT - JUVJHER OF KEY3 TO ZIND UP IN THE RIGHT SIBLING
Jro ¥ = TIMPURAKY YARIAZLES

*/



DCL
1 PARENT,
2 PARNOKEYS FIXED 3IN,
2 PARXEY(*) CHAR(*),
2 PARPTR(*) FIXED BIN(31,0).,

1 LEFT,
2 LNOKEYS FIXED 8IN,
2 LREY(*) CHAK(*),
2 LPTR(*) FIXED 3IN(31,0),

1 RIGHT,
2 RNOXEYs FIXED BIli,
2 RRKEY(*) CdAR(*),
2 RPTR(*) FLAED 2IN(31,0),

PC5  FIXED BIN,
(lIORZ_PTP, wLZFT, NRIGHT, J, K) FIXED BIN;

/* CHuCk ok VALID NODE SIZES */
J = RNUKeYs + LNUKEYS)
NLEFT = J / 2;
NKRIGHAT = J - NLZFT;
IF JdRIGHT »= RNCKEYS TiozZN DG
PUT SKIP(2) LIST
('2RKOR IN OVERLEFT - NO SHARING POSSIBLE.');
PUT SXIP DATA (PAPENT, LEFT, RIGHT, PCS);
RETU&N;
END;

/* 1F NODES ARE LEAVES, THEN STORE AWAY THE
RIGHT HORIZONTAL POINTER */
IF RPTR(2) <= 0 THEN HORZ_PTk = RPTR(1);

/*¥ FIX UP FIRST KEY */
J = LNOKEYS + 1;
IF L2T«(2) > 0 THEN DO;
/* 1F UPPZR LEVEL, THEN MOVE DOWN PARENT KEY

LXEY(J) = PARKEY(POS);
J=J + 13
LPTR(J) = RPTR(1);
ENU;

K =1,

/* MCVE KiYS & PCINTERS FRPOM RIGHT NODE TO LEFT
DO J = J TO HLEFT;

LELZVY(J) = «XEY(2)s

LPTR(J + 1) = RPTE(Y + 1),

£ = & + 1

R

/* STORE wiaw PARELT K&d ¥/

IF LPTR(Z)Y > 9 THEM 09,

*/

*/
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PARKEY(P0S) = RKEY(K);
K=K +1;
END;
ELSE PARKEY(PGS) = LKEY(NLEFT);

/* MOVE THE RIGHT NODE'S KEYS DOWN */
J =17
DC K = K TO RMNOKEYS;

RKEY(J) RLEY(K);

P TA(J) xPTR(X);

J=J + 1;

END;

KPTx(J) = RPTER(K);

Lol LI 1]

/* 17 IT 1S A LeAVE, THEN RESTCRE THE HORIZONTAL
THE wIGHT SI3LING */
IF XPTuw(2) <= 0 THEN RPTn(l) = HORZ_PTk;

/* SET THe MUMB&F 0OF KEYS IN THE NCDES */
LNOKZYS = NL&ETT;

aNOKEYS = WRIGAT;

END; /* GUERLEFT */

OVERRIGHT: PrOC (PARENT, LEFT, RIGHT, P0S);

/*
THIS PROCLDURE PERFOPMS OVERFLOw OR UNDERFLOW SHARING

ON TWO NODES OF THE TREE. THE SHARING GOES FROM LEFT TO

RIGHT. "LEFT" I> THE LEFT STELING NODE, AND "RIGHT" IS THE

RIGHT SIBLING. SHARING 1S DONE UNTIL THERE IS AN EQUAL

(Or NEARLY EQUAL) WNUMBER OF KEYS IN EACH SIBLING. "POS"

IS THE PUSITION OF THE KEY IN THE PARENT NODE THAT

DIVIDES THE TWO SIBLINGS.

INTERNAL VARIABLES:

NLEFT - NUMBEKR OF KEYS TO END UP IN THE LEFT SIBLING
NRIGHT - NUMBER CF KEYS TO END UP IN THE RIGHT SIBLING
J, K - TEZMPORARY VARIABLES

*/

CCL
1 PARENT,
2 PAKNOXEYS FIXEZD RIN,
2 PARKEY(*) CHaP(*),
2 PARPIR(*) FIAZC 31M(31,0),

1 Lot T,
2 LNCOKeYS “IlLel 314,
DOLEIV(Y) AR (%),
2 LPTR(*) FIXED BIN(31,0),
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1 RIGHT,
2 RMOXEYS FIXED BIN,
2 RKEY(*) CHAR(*),
2 RPTR(*) FIXED BIN(31,0),

POS FIXED BIN,
(HORZ_PTR, NLEFT, NRIGHT, J, K) FIXED BIN;

/* SET UP NEW NODE SIZES */
J = RNUOXEYS + LNUKEYS;

NRIGHT = J [/ 2;

NLEFT = J - NRIGHT;

/* CHLECK FOx VALIDITY OF NODES */
iF NLEFT >= LNOKEYS THEN DO;
PUT SXIP(2) LIST
('6&ROKk IN OVEKRIGHT - NO SHARING POSSIBLE.');
PUT SKIP DaTA (PARZNT, LEFT, RIGHT, POS);
REITURY;
END;

/* MOVES KEYS COwll TO MAKz ROOM IN RIGHT NODE */
RPTR(NRIGHT+1) = RPTR(RNOKEYS+1);

K = NRIGHAT;

U0 J = RNOKEYS TC 1 BY -1;

RKEY(K) = RKEY(J);
RPTR(K) = kPTw(J);
K=K - 17

END;

/* MOVE PAREUT KEY DOAN */
IF RPTR(2) > C THEN DO;

RKEY(K) = PARKEY(POS);
RPTk(X) = LPTR(LNOKEYS + 1);
K=K-1;

END;

/* IF LEAVE, THEN STORE AWAY HOKIZONTAL POINTER */
ELSE DO;

HORZ_PTR = R2TR(1);

KRPTR(X+1) = LPTR(LMNOKEYS+1);

chD;

/* TRANSFER XCYS FROM LEFT TO RIGHT */
IF K > 0 THEN RPTR(K) = LPTR(LNOKEYS+1);
J = LNOKEYS;

00 « = K T0 1 3Y -1;

aKEV(Y) = WXav(d);
RPT?(K) = L2T"(J);
J=J - 1i;

ON I K

/* STO%z Ncw PARENT KEY */
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IF LPTk(2Z) > 0 THEN DG;
PARKZY (P0O3) = LKEY(J);
RPTR(1) = LPTR(J + 1);
END;

ELSE PAPKE{Z(POS) = LKEY(NLEFT);

/* SET NUMBER OF KEYS IN LEFT AND RIGHT NODES */
LNOREYS = WJLEFT;
RNOKEYS = NRIGHT;

/* IF LEAVS, THEN RESTORE HORIZONTAL POINTER */
IF RPTn(2) <= 0 THEN RPTR(1) = HORZ_PTR;

END; /* OVIRRIGHT */

COMBINE: PnOC (PARENT, LEFT, FIGHT, POS);
bCL
1 PARENT,
2 PAnNOGKEYS FIXED BIN,
2 PARKzY (*) CHAR(*),
2 PARFTIR(*) FIKED 2IN(31,9),

1 LEFT,
2 LNOKoYS FiXxeD 31N,
2 LKEY(*) CHAR(*),
2 LPTR(*) FIXED BIM(31,0),

1 RIGHT,
2 RNOKEYS FIXED BIN,
2 RKEY(*) CHAK(*),
2 RPTR(*) FIXED BIN(31,0),

POS FIXED BIN,
(J, I) FIXED BIN;

/* CHECK FOR VALID NODE SIZES */
IF LNOKEYS + RNOKEYS >= MAX_BRANCH-1 & LPTR(2) > 0 |
LNOKEYS + RNOKEYS >= MAX_BRANCH THEN DO;
PUT SKIP LIST
('*ERROR IN COVMBINE - COMBINATION NOT POSSIBLE');
PUT SKIP DATA (PAR, LZFT, KIGHT, POS);
FETURK;

END ;

J = LNUXEYs + 1
/* IF NCT Lo AVE THEN MOVE PARENT KEY AND LEFTMOST
POINTER OF RIGHT */
IF LPTn(2) > 3 THEN DO;
LKEY(LLCKZYS5+1) PARKzY (P03);
LOTR(LNOXKEYS+2) RPTR(1);
Jo= 7 +« 13

R
Lau

/* I% NOCES ART LEAVES, THEN SET HORIZONTAL POINTERS */



eL3E ULPTR(1) = PPTR(1);

/* MOVE THE KEYS AND POINTERS OVER */
DC I =1 TU RNOKEYS;

LKEY(J) = RKEY(I);

LPTR(J+1) = RPTR(I+1);

J=J + 1;
END;

/* SET NUMBER OF XSYS IN LEFT */

LNOKEYs = J - 17

END; /* COMBINE *x/

PTNODE: PROC (NODE,

RECORD&#);

/* THIS P«OCEDURE CALLS INDEXIO TO WRITE

AN LINDEX NODE

DCL
fECOKRDY %IXED BI
1 NOGDE,

*/

Y

2 NO_KEYS FIXED BIN,
2 XEYS(*) <CHAx(*),
2 2TRS(*) FaXeD 31N(31,0),

1 PNODE,

2 PNU_KEYS FIXED BIWN,
2 PKeYS(MAX_SRANCH-1) CHAR(KEYLENGTH),
2 PPTRS(MAX_3RANCY) FIXED BIY (31,0);

IF DEBUG = 1 THEN

/* ASSIGN NODE T

PUT SXIP LIST (*PTNODE:?*,

O PARAMETER NCDE */

PNO_KEYS = MNO_KEYS;

DC J =1 TO MAX_B

PPTRS(J) = PTRS
PKEYS(J) = KEY3
END;

PPTRS (MAX_BRANCH)

CALL TINDEXIO (2,
STAT);

cND; /* PNODE
GTNODE: PROC (NODE,
/* Tals PrCCzinUPL

5CL
aECoaD; FIVZD -1

1 &6oe,

RANCH - 1;

J):

J);

= PTRS(MAX_BRANCH);

PNODE, RECORDf#, KEYLENGTH,

*/
RECORDH) ;

GETS A& NCDcE USING INDEXIQ

;‘0,

NODE);

MAX_BRANCH,

*/

108
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2 NO_K&Y5 FIXED BIN,
2 KEYS(*) CHAR(*),
2 PTRS(*) FIXED BIN(31,0),

1 PNODE,
2 PNO_KEYS FIXED BIN,
2 PKEYS(MAX_BRANCH-1) CHAR(KEYLENGTH),
2 PPTRS(MAX_BRANCH) FIXED BIN (31,0);

CALL INDrX10 (i, PNOLDE, RECGRD#, KEYLENGTH, MAX_BRANCH,

/* AS3TGH PARKAHETER TO NODE */
NO_XEYS = PNO_KEYS;
bC J =1 TO MAX_BRANCH - 1;
PTa3(J) = PPTwro(J);
Ka{S(J) = PKEYS(J);
£ND;
PTARS(MAX_CwrANCiH) = PPTRS(MAX_BRAHNCH),

IF DE3U6 = 1 TdEx PUT LIST ('GTNCDE:', NODE);
END; /* GTNODE */
FETCHd: PROC (RECORDH#);

/* THIS PrROCZUURE USES INDEXIO TO GET AN INDEX NODE FROM
THE AVAILABLE LIST. */

bcL

RECORDF FIXED BIN,

1 PNODE,
2 NO_KEYS FIXED BIN,
2 KEYS(MAX_BRANCH-1) CHAR(KEYLENGTH),
2 PTRS(MAX_BRANCH) FIXED BIN (31,0);

CALL INDEXIO (3, PNODE, RECORD#, KEYLENGTH, MAX_BRANCH,

END; /* FETCY */
RELEASE: PnOC (wxeECUKDH#);

/* THIS PROCEDURE USES INDEXIO TO PLACE AN INDEX NODE
BACK ONTO THZ AVAILABLE LIST */ '

DCL

RECORD¢ FiXel BiN,

1 PNODE,

dJI_XEYs FICED BIL,

NSt S(HAX_3RAaCiH=-1) CHAR(KEYLaNGTH),
PTRS(¥AX_3RANCY) FIXED BIM (31,0);

NN
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CALL INDEXIO (4, PNODE, RECORD#, KEYLENGTH, MAX_BRANCH,
STAT);
END; /* RELEASE */

END; /* BTREE */
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/* I.IDEXIO */
INDEXIO: PnOC (FUNCTION, NUDE, RECORD#, KEYLENGTH, MAX_BKANCH,
STAT);

/*

AUTHOR: ROBERT WEBSTEK
DePARTMLNT OF COMPUTER SCIENCE
OKLAYOMA STATE UNIVERSITY
1979
THIS PROCEUURE DOES INPUT ANC GUTPUT ON INDEX NODES, USING
THE "LEAST ReECENTLY UScD REPLACEMENT' METHOD. THE MNUMBER CF
NODES KEPT IN MEMORY IS "NC_PAGES™. THE INDEX FILE MUST BE
PREVIOUSLY SETUP «ITY A LINKED LIST OF AVAILABLE NOD&ES. THE
LINKS APPEAR Tiv WNU_KEYS'" OF THE UNUSED RECORDs. RECORD ZERO
CONTALYNS THE HEAD OF THE AVALLASLE LiST. IT IS NOT USED.
THERE ARE SEVERAL CONSTANTS 1IN THE DECLARATIONS THAT HAVE THE
SAME VALUE A5 "UHO_PACES". TuESE SHOULD BE AT LEAST AS BIG AS
THE VALY- OF NUG_?AGES. ALZO, THe SIZE OF '"NCDES™ AND “TMPLCDE™
MUST CORREZSP0NuU TO THE RECORD SIZT OF THE INDEX FILE.

PAKAAETERS:

FUNCTIUN - OME OF THe FIVZ FUNCTLIONS PERFORMED BY "IWDEX1C®

NCDE - TINDEX NODZ PASSED TO OR FROM "INDEXIO".

REZCORDjt - RECO/D NUMBER QF THE INDEX NODE.

KEYLENGTH - LZINGTH OF THe KzYS In "HODE"™

MAX_BRANCH - ORDER OF TH& TREE.

STAT - YhrRAY FOK STATISTICS. STAT(S) IS5 THE NUMBER OF KEADS,
ALD ARRAY(6) IS THE NUMBER OF KRITES.

THERE ARE FIVS FUNCTIONS IN THIS PROCEDUKE:
GETNODE, PUTNODE, FETCH, FREE, AND DUMPLAST.

1. GETNOLE GET5 A RECORD FROM "NODES"™, IF IT IS THERE, OR
FROM THE FILE ITSELF, IF THE KECORD IS NOT IN "“NODES™,
AND PUTS IT INTO THE INPUT STRUCTURE "NCDE". G&TNCDE
IS PSRFORIMED A BEN THE INPUT PARAMETER "FUNCTION" IS
ZeUAL TO 1.

2. PUTNOLE RECIEVES THE INPUT STRUCTUPE ™HNCDE"™ AND PLACES
IT INTO "HODES". IF THE RECORD IS NOT ALREADY PRESENT
Td "NODES", THEN ANOTHER RECGCrD IS kEPLACED. PUTNODE
IS5 eXeCUTuD WAEN "FUNCTLCN"™ IS TWG.

3. FITC! SCTS A RECORD OFF THE AVAILABLE LIST AND PUTS
IT INTO "“LODEs'"™. Tul «dEAD OF THE AVAILABLE LIST IS
UPDATeD Iw McidCRY. FETCY IS oXoCUTED WHEN WFUNCTICN" IS

B Aol ARN
Lt RL -

4. RELcALE PUT> A KECOnD BACK INTO THE LINKED LIST OF
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AVAILABLE RuCURDS. THE RECCRL IS ONLY PLACED INTO
"NODES", HOWEVER. #HEN IT IS REPLACED, IT IS WRITTEN
TO THE FILE. ELEASE IS EXECUTED WHEN "FUNCTION" IS 4.

5« DUMPLAST WRITu ALL THE NODES CURRENTLY IN MEMORY OUT
TO THE INDEX FILE, AND UPDATES THE HEADER RECORD. THIS
IS TO BE USZD AT THE ENC OF THE PKOGRAM. DUMPLAST IS
EXECUTED WHEN "FUNCTICON'"™ IS FIVa.

*/

DCL
NO_PAGLS FIKED JIN STATIC INIT(20),
NODES(20) CHAR(100G0) STATIC,
(ADDR, CSTG, SUBS5TK) BUILTIN,
1 NODE CGNNECTED,
2 NO_KEYS FIXED BIN,
2 KEYS(*) CdAKk(*),
2 PTRS(*) FIXLD BIN(31,9),

THMPNODe CHAR(1009) BASED (ADPCR(NODE.NO_KEYS)),
(FUNCTICMN,ECOuD§ FEYLENGTH,4AX_BKANCH,STAT(*)) FIXED BIN,
(LENGTiH,1,J,K,RECNUA(20),IX(20),HEAD) FIXED 3IN STATIC,
(ALTERED(20), DEsUG) BIT(l) STATIC,

TRUE BIT(1) STATIC INIT ('1°'3),

FALSE BIT(l) STATIC INIT ('0'B),

FIRST BIT(l) STATIC INIT (*'1°'B),

BINDEX FILE ENV(REGIONAL(L));

/* INITIALIZATICN */
DEBUG = FALSE;
IF DEBUG THEN PUT SXIP LIST (*RECOKD#:*, RECORD#);

IF FIRST THEN DO;

/¥ GET THE HEAD OF THE AVAILABLE LIST */
KEAD FILEZ (BINDEX) INTO (NODES(1l)) XeY (0);
SU3STR(TMPiiODE, 1,2) = SUBSTR(NCDES(1),1,2);
HEAD = NO_KEYS;

FIST = FALS
ALTERZD = FA
RECNUM = 0;
o J =1

com
U3 N
[
~e

- O
C
=
C
J
p=J
(3]
cr
w
e

Loy /* IRITIALTTAITON */
SELEZCT (FUNCTION)

Ao (1) CALL GZTYNODE;
WHEN (2) CALu PUTNCDE;
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WHEN (3) CALL FEICH;
¥HZIN (4) CALL RELTASE;
AHEN (5) CALL DUMPLASI;

OTHERWISE
PUT EDIT (*INVALID FUNCTION IN INDEXIO: *, FUNCTION)
( sKIP(3), A, F(9));

END; /* SELECT */
RETURN;
GETNODE: PkGC;

/*

THIS PROCEDURE GETS AN INDEX NODE SPECIFIED BY "RECORDH".
FIRST, ALL TdE NODES TN MEMOnY ARE SEARCH. IF THE KEQUESTEL
NODE IS IN NCT I MEMORY, THiN IT IS READ IN, REPLACING THE
LEAST RECENTLY USED NODE. EITHER WAY, ITS PLACE IN "IK" IS
UPDATED TG REFLECT ITS REFEEANCE. "IX'" IS A POINTEK ARKAY
THAT KZEPS ALL Tde NCOLES IN LOGICAL ORDER OF TIME SIiCi LAST
REFERENCE .

*/

/* SEAPCH FUR TAE REQUESTLD NCDE */
DO J =1 TO NO_PAGES WHILE (KECNUM(IX(J)) += RECORD#);
END;

/* REQUESTZD NODE NOT FOUND */
IF J > NG_PAGES THEN DO;
J = NC_PAGES;
IF ALTERED(IX(J)) TEEN DO;
WRITE FILE (BINCEX) FROM (NODES(IX(J)))
KEYFROM (RECNUM(IX(J))):;
/* INCREMENT WRITE COUNTER */
STAT(2) = STAT(2) + 1;
END;
READ FILE (BINDEX) INTO (NODES(IX(J))) KEY (RECORD#);
/* INCREMENT READ COUNTEx */
STAT(1) = STAT(1l) + 1;
RECNUM(IX(J)) = RECORD#;
ALTExED(IX(J)) = FALSE;

cMD; :

/* PUT THE HODE AT TUEZ TOP OF THE LIST */
T = IX(J);
bC Jd = J TC 2z 3¢¥ =-1;
IX(J) = [X(J-1);
END
IX(1) = I;

/* ASSIGN THE PHYSICAL RECORD TO THE INPUT STRUCTURE.
TMPHODE IS BASED ON "NODE"™ */
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/* CSTG 1S A BUILTIN FUNCTION THAT GIVES THE LENGTH OF
ITS ARGUMENT IN BYTES */

LENGTH = CSTG(NODE);

SUBSTR(TMPNODE, 1, LENGTH) = NODES(IX(1));

IF DEBUG THEN PUT SKIP LIST (*GETNODE:*, RECORD#, NODE);

RETURN;
END; /* GETINODE */

PUTNODE: PROC;

/* '

THIS PRCCsDURE PUTS AN INDEX NODE INTO THe LIST OF NODES
IN VPEVMORY. IF THE NODE IS ALREADY PRESENT IN MEMORY, THEN
THE NODE AND ITS POSITION IN "IX" ARE UPDATED. IF TH&
NCDE I3 NCT 1N MEMORY, THEN THE LEAST RECENTLY USED NODE IS
REPLACED, WwPRITING IT THE FILE FIRST IF ITS "ALTERED" FLAG
IS SET. THE "ALTEKED'™ FLAG ON THE INPUT NODE IS SET.

*/

I¥ DEBUG THEW PUT SKIF LIST (*PUTNODE:*, RECORDY, NODE);

/* FIND THE NODE */
bc J =1 TO NO_PAGES WHILE (RECNUM(IX(J)) ~= RECORD#);
END;

/* NODE NOT FOUND */
IF J > NO_PAGES THEN DO;
J = NO_PAGES;
IF ALTERED(IX(J)) THEN DO;
ARITE FILZ (3INDEX) FROM (NOLES(IX(J)))
KEYFROM (RECNUM(IX(J)));
/* INCREMENT WRITE COUNTER */
STAT(2) = STAT(2) + 1;
END ;
RECNUM(IX(J)) = RECORD#;
END;

/* MGVE THE OTHER MEMBErS OF THE LIST DUWN */
I = IX(J);
DCJ =J TO 2 BY -1;
IX(J) = I%X(J-1);
END;
IX(1) = I;
ALTERED(IX(1)) = TRUE};

/* STCFE I'lic LINPUT STRUCTURE 1IN THE PECORC.
THUPNOULE IS BASEZL ON "NOuE'" */

/* COTG IS5 A BUILTTN FUNCTION THAT GIVES THE LENGTH OF
i1TS ARGUMuNT It 3¥TeS */

LENGTH = C3TGQIODE);
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NGDES(IX(1)) = SUSSTR(TMPNODEZ, 1, LENGTH);

RETURN;
END; /* PUTNODE */

FETCH: PROC;

/* THIS PROCEDURFE GETS A NODE FROM THE AVAILABLE LIST
AND ADDS IT TO THE LIST OF NODES IN MEMORY. */

IF HEAD <= 0 THEMN DOCj;
PUT EDIT (*D2UT OF NODE SPACE. HEAD: *, HEAD)
(3KIP(3), A, F(9));
STOP; ’
END;

RECORD# = HEAD;
CALL GuTAMCUE;
HEAD = NO_KFYS;

IF DxRUG T:dEN PUT SKIP LIST ('FETCd:', RECORDH);

RETURN;
EMD; /* FETCER */

RELEASE: Pn0OC;

/* THiS PROCEDURE PUTS A NCDE BACK ON THE AVAILA3LE
LIST USING THE PAGING ROUTINES GETNODE AND PUTNODE */

NO_KEYs = HEAD;
HEAD = RECORDY;
CALL PUTNODE;

IF DEBUG THEN PUT SKIP LIST (*RELEASE:', RECORDY#);

RETURN;
END; /* RELEASE */

DUMPLAST: PROC;

/*
THIS PROCEDURE IS USED TO DUMP INDEX NODES IN MEMORY
WHICH HAVE BEEN ALTEKED BACK ONTO THE FILE. IT SHOULD BE

USED AT THE END OF THE PROGRAH.

*/

DG J = 1 TO JO_PAGES;
iT ALTEPED(J) TUEN DC;
WRLITE FILZ(3INDEX) FROM (MCDES(J)) KEYFROM (RECNUM(J));
STAT(2) = STAT(2) + 1;
LuD;
END;
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/* OUTPUT THE HEAD OF THE AVAILABLE LIST */
NO_KEYS = HEAD;

SUBSTR(NODES(1),1,2) = SUBSTR(TMPNODE,1,2);
ARITE FILE (BINDEX) FROM (NODES(l)) KEYFROM (0);

ALTERED = FALSE;
FIRST = TRUE;

RETURN;
END; /* DUMPLAST */

END; /* INDEXIO */
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/* GUFIND */
GOFIND: PROC (KZY, ROCT, KEYLENGTH, MAX_BRANCH, RECORD{,
KEY#, POINTSR, FOUND, STAT);

/*

AUTHOR: ROBERT WEBSTER
DEPARTMENT OF COMPUTER SCIENCE
OKLAHOMA STATE UNIVERSITY
1979

THIS PROCZDURE SEARCHED THE B-TREE STRUCTURE FOR A GIVEN
KEY. THE RECORD NUMBER («ECORD#) AND THE POSITION UF THE
KEY WITHIN TH& RECORD (KeYj) ARE RETURNED, I1IF THE KLY IS
FOUND. IF THZ KEY IS NOT FOUND, THE RECORD NUMBER AND KEY
NUMBER ARE RETURNED FOR THE NEXT GREATER KEY IN THE TKEE.
THE FLAG "FOULD"™ INDICATES A SUCCESSFUL SEARCH WITH A VALUE
OF *1°2.

INPUT PAAHETERS:

KEY = KEY TO 3Z SEARCHED FOUR

ROOT - ROOT NODE OF THE TREE TO BE SEARCHED
KEYLENGTH - LzZNGTH OF KcYS5S IN THE TREE
MAX_BRANCH - MAXIMUM BRANCHING FACTOR IN THE TREEZ

OUTPUT PARAMETERS:

RECORDY# - RECOxD NUMBER OF THE DESIRED (OR NEXT HIGHER)
KEY .

KEYf# - NUVBER OF THE DESIRED (OR NEXT HIGHER) KEY WITHIN

STAT - STAT(1) IS5 A COUNTER FOR THE NUMBER OF NODES READ.

INTERNAL VARIABLES:

1 NODE - INDEX NODE
2 NO_KEYS - NUMBER OF KEYS
2 KEYS - Ke¥S IN THE NODE
2 PTRS - POINTERS IN THE NODE

LEVEL - CURKENT LEVEL IN THE TREE
L#B - LCWER SsOUND FOR BINARY SEARCH
NEXT - NEXT NOUE TO 3E SEARCHED

UPB - UPPEX BOUND FOx BINARY SEAKRCH

*/

bcL

KEY CHAR(*),

POINTER FIX<D 31N (31,0),

NEXT FIXED 3In (31,0) STATIC,

(ROOT, XEYLEL4GTH, MAX_BRANCH, RECORD#, XEY#, STAT(*))
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FIXeD BIN,
FOUND BIT(*),
(LEVEL, Lw8, UP3) FIXED BIN STATIC,
1 NODE,
2 NO_KEYS FIXED BIN,
2 KEYS(MAX_BRANCH-1) CHAR(KEYLENGTH),
2 PTRS(MAX_BRANCH) FIXED BIN (31,0),

TRUE BIT(1) STATIC INIT('1°'B),
FALSE BIT(1) STATIC INIT(*'0'3),

INDEXIO EXTERNAL ENTRY (FIXED BIN, 1, 2 FIXED BIN,
2 (*) CdarR (*), 2 (*) FIXED BIN (31,0), FIXED BIN,
FIXED BIN, FIXED BIN, (*) FIXELU BIN);

RECOrD#, LEVEL = 0;
KEY# = 1;
NEXT ROOT;

(1]

/* LOJP UNTIL THE BOTTOd LEVEL */
DO WHILE (NEXT > 0);
LEVEL = LEVEL + 1;
KECORD} = NEXT;
/* READ INDEX NODE */
CALL TINDEXIO (1, NODE, RECORD§, KEYLENGTH, MAX_BRANCH,
STAT);

/* DC BINARY SEARCH IN NODE TC FIND KEY'S POSITION */
L"B = 1;
UPB = NO_KEYS;
DO WHILE (L48 <= UPB);
KZYH# = (LWB + UPB) [/ 2;
IF KEY < KEYS(KEY#) THEN UPB = KEY{# - 1;
ELSE IF KEY > KEYS(KEY#) THEN LWB = KEY# + 1;
ELSE GO TO 0UT;

END;
KEY# = LWB;
oUT:;
NEXT = PTRS(XEYH#);
END;

/* SET THE FOUND FLAG */

FOUND = FALSE;

IF RECCRD# > 0 THEN IF KLY# <= NC_KEYS THEN
THEN IF XKEY = K=ZYS(XKEY4) THEN FOUND = TRUE;

/* IF THE K=Y NUMBER 15 TOO 381G, THEN REFER IT TO THE
NEXT NODE */
IF FKZYi > NO_XEYS THEN DO;
KEYE = 1;
RECORDy = =2TRsS(1);
CALL TINDEXIO (1, NODE, RECORD#, KEYLENGTH, MAX_BRANCH,
STAT);
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END;
POINTER = -PTRS(XEY# + 1);

RETURN;
END; /* GOFIND */



/* TXAVEL */
TRAVEL: PRCC (RZCORD#, Kit¥g, POINTER, KEY, KEYLENGTH,
MAX_BRANCH, STAT, EOF);

/*

AUTHOR: ROBERT WEBSTER
DEPARTVMENT OF COMPUTER SCIENCE
OKLAHOMA STATE UNIVERSITY
1979

THIS PROCEDURE RETURNS THE NIXT POINTER OF A TREE AND
INCREMENTS THE XKzZT# AWD POsSIBLY THE RECORD#. EOF IS SET
AFTER THE RIGHTMOST °POINTER HAS JEEN RETURWNED AND ANOTHER IS
RECUESTED .

INPUT PARAM4ETERS:

RECORD# - CURRzZNT RZCORD HUMBER

KEY# - NUMBEIR OF THE KEY WITHIN THE RECORD

STAT - NGDi «2ZAD COUNTEK Is STAT(1)

KEYLENGTH - LEJGIH OF KEYS IN TREE

MAX_BRANCH - VAXIMUY BRANCHING FACTOR IN THE TREE

UUTPUT PARBMETERS:

RECORDj# - RECORD NUMBER IS ScuT WaicN THE LAST KEY OF THe
RECORD IS PROCESSED.

KEY# - KEY# IS INCKEMENTED BY ONE, OR SET TO ZERO FOR A

New RECORD.

POINTER - POINTER AT THE BOTTOM OF THE TREE ASSOCIATED
AITHd THE CURKENT XeY.

KEY - THE KEY SPLCIFIED BY KEY#.

STAT - NODE KEAD COUNTER IS STAT(1l).

EOF - END OF FILE FLAG.

INTERNAL VARIABLES:

1 NODE - INDEX NODE
2 NO_KEY> - NUMBER OF KEYS IN THE NODE
2 KEYS KEYS IN THE «CDe
2 PTRS - POILIUTERS ASSOCIATED WITH THE XEYS. PTRS(0) .
POIAT> TO THE NEXT KRECOxD. ALL PTRS ARE NEGATIVE
CR -ZEPC.

*/

DCL

(KEYLENGT, MAX_cRAMNCH, RECOFRDii, KiYH, STAT(*)) FIXLD BIN,
POINTER FIX:D 314 (31,0),

KEY Cala(*x),

cCGF  os17(*),

1 NODE,



2 NO_XEYS FIXED BIN,
2 XKEYS(MAX_3RANC-1) CHAR(KEYLENGTH),
2 PTRS(MAX_RBRANCH) FIXED BIN (31,0),

TRUE BIT(1) STATIC INIT('1°'B),
FALSE BIT(1) STATIC INIT(*0°'B),

INDEXIO EXTERNAL ENTRY (FIXED BIN, 1, 2 FIXED BIN,
2 (*) CHAR (*), 2 (*) FIXED BIN (31,0), FIXED BIN,
FIXED 3IN, “IXeED 8IN, (*) FIXED BIN);

/* CHZCX FOwr END %/

IF RECORDY <= U THeN DG
EQOF = TRUE;
KRETURN;
END;

EOF = FALSE;

/* GET NODE */
CALL INDeXIO (1, NGDE, RECCRDY#, KEYLENGTH, MAX_BRANCH,
STAT);

/*¥ GET XEY AND POINTER FROM NODE */
KEY = KEYS(KceYi);
POINTER = =-DIRS(KEY: + 1);

/* INCREMENT KEYH# */
KEYH# = KoY§ + 1
/* 1IF DONE WITH THIS NODE, RESET KEYH AND RECORD#§ */
IF XEY# > NO_KEYS THEN DO}
RECORD# = -PTRS(1);
KEYH# = 1;
END;

RETURN ;
END; /* TRAVIL */
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/* RANF */
(NOFIXEDOVERFLOW) =

RANF: PROC(YNARG) RuTURNS (FLOAT BINARY);

/%

THIS PROCEDURE GENEKATES PSEUDU-KANDOM NUMBERS, UNIFORMILY
DISTRIBUTED ON (0,1). THIS VERSION IS FCR THE IBM 360.
J.P. CHANDLER, COMPUTZR SCIENCE DEPARTMENT.,

OXLAHOMA STATE UNTIVERSITY.

METH0D: COMPOSITL GCF THREE MULTIPLICATIVE CONGRUENTIAL
GENERATORS,
C. 4AKSAGLIA AND T. BkAY, COMM. ACM 11 (1968) 757.
IF RANE IS CALLED WwITH NARG = 0O, THE NEXT RANDOM NUMBER IS
RETURNED.
IF RANF IS CALLED WJITH NARG = 0, THEE GENERATOR IS
RE-INITIAULZED USING IABS(2*NARG+1) AND THE FIRST RANDOM
NUMBER FROM THI NEA SZJUENCE IS RETURNED.

*/

DCL WARG FLXzD 31K (31,0),
J FIXED 3IN (15,0) STATIC,
(LM, ~(128), wDIV, N)R) FIXED BIN (31,0) STATIC,
(Ral, RDiV) FLCAT BIN STaTI1C,
JRAN FIX=D BIUW (31,0) BASED(ACDR(RAN)),
NFIRST BIT(1l) STATIC INIT('1°'B),
K FIXED 3IN (31,0) STATIC INIT(7054321),
L FIXEL 3IN (31,0) STATIC INIT(7654321),
M FIXED BIN (31,0) STATIC INIT(7654321),
MK FIXED 814 (31,0) STATIC INIT(282629),
ML FIXED 3IN (31,0) STATIC INIT(34821),
MM FIXED BIW (31,0) STATIC INIT(65541);

IF NARG ~= 0 THEX DO;
/* RE-INITIALIZE THE GENERATOR */
KLM = ABS(2 * NARG + 1);
K, L, M = KLM;
END;
ELSE IF -~ NFIRST THEN GO TOJ SKIP;

/* INITIALIZE THE ROUTINE */
NFIRST = '0'3;
NDIV = 156777215
RDIV = 32768 * 65536,
/* FILL THE TABLE */
DO J =1 Tu 128;
K =K * MK;

N(J) = ¥,
PDREY
/* COdPUTZ Tda NEXT RANDOM NUMBLER */
SKIP:;
L =L * XL,
J =1+ aBs(L) / LDIV;



M= M* MM,
NR = ABS(N(J) + L + M);
RAN = FLOAT(NR) / RDIV;

/* FIX UP THE LEAST SIGNIFICANT BIT */
IF J > 64 & RAN < 1 THEN JxkAN = JkKAN + 1;

/* REFILL THE PLACE IN THE TABLE */
K = K * MK;

N(J) = K;

RETURN (ABS(RAN));

END; /* RANF */
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APPENDIX D

PROCEDURES FOR RSLATIONAL DATABASE

STORAGE AND ACCESS

This appendix contains psuedo-code, or program design
language descriptions for the procedures STORE, DEFINE, and
ACCESS presented in chapter 1IV. These descriptions are not
detailed. They are meant to aid the reader in undérstanding

the use of the procedures.
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STORE: PRCC (TUPLL, RELATION, TID, OPERATICN);
/* "TID"™ {5 & TUPLE IDEMTIFIER */
GET CATALUG INFURMATIGN UN RELATION;

SELECT OPERATICN;

WHEN INSTRT CALL INSERT TUPLE (TUPLE, TID);
AHEN DELETE CALL DELETE TUPLE (TUPLE, TID):;
WHEN UPDATE CALL UPDATE TUPLE (TUPLE, TID);
END SELEZT;

INSERT TUPLE: PrGC (TUPLE, TID);

IF CLUSTEZRING ATTRIBUTE 1S NULL THEN DG;
SEARCH PAGE INDEX FOR PARTIALLY FULL PAGE;
IF ALL PAGES AKE FULL Tdzh DO;

GeT PAGE FROM PAGE INDEX;

UPDATe PAGEZ INDEX;

END;
IdSeRT TJ2LL 1HTO PAGE;
IF PAGR 1JIECOVES FULL THEN UPDATE PAGE INDEX;
ElLD;

ELSs DG, /* CLUSTER=D RELATICk */

EXTKACT ATTX_VALUE FR0M TUPLE;

SEArRCH PAGE INDEX FOR FIxRST ATTRIBUTE VALUE
LESS THal CR EZGQUAL TO ATTR_VALUE;

IF PAGE IS NCT FULL THEN INSERT TUPLE INTO PAGE;

ELSE DO;
SOGRT TUYPLaS IN PAvE ON CLUSTERING ATTRIBUTE;
PLACZ UPPER 1/2 OF THE TUPLES INTO NEA4 PAGE;
UPLDATZ TIDs OF RELOCATED TUPLES Id BINARY LINKS

AND TUPLE INDEXES;

UPDATES PAGE INDEX;
INSERT THE TUPLE INTO THE APPROPRIATE PAGE;
END;

END; /* CLUSTERED RELATION */

/* TINSERT INTO TUPLE INDEXES */
DO J = 1 TC NUMBER GF TUPLE INDEXES)
CALL TUPLE [NDEX (TUPLE, TID, RELATION,
TUPLE INDEX INFO(J), LASERT);
END;

/* ULCELETE THYE BINARY LINKS */
DO J =1 TJ NUMBER OF SETS OF BINARY LINKS;
CALL oINARY LINKS (TUPLz, TID, RELATION,
RINARY LIJX [NFO(J), LNSERT);
EnD;
2D ISaRT TUPLE;

DELETZ TUPLE: ?x0C (TUPLZ, TIw);
REMOVE TUPLZ FrOM PAGE;



IF THE PAGE SECOMZS EIMPTY THEN DO,
DELETE THc PAGE F«OM THE PAGE INDEX;
PLACE THt PaGE ONTO THE AVALILABLE LIST;
END;

DO J =1 T0 NUMBER OF TUPLE IWNDEXES;
CALL TUPLE INDEX (TUPLE, TID, RELATION,
TUPLEZ INDEX INFO(J), DELETE);
END;

DO J =1 TO MUMBER CF SETS QOF RINARY LINKS;
CALL 3INARY LINKS (TUPLE, TID, RFLATION,
BINARY LIuK INFO(J), DELEIL);
END; ’
END DELETE TUPLE;

UPDATE TUPLE: PnOC (TUPLEZ, TID);

GET CLD TUPLE FRCY PAGE;

IF CLUSTIRING ATTRIBUTE IS NCT WULL AND
OLC ATTL_YALUGE ~= 4EW ATTn_VALUE THEN DG;
CALL DELETEZ TUPLE (GLD TUPLE, TID);
CALL iNSERT TUPLE (NEw TUPLE, TIC);
RETURN}
END;

REPLACE OLD TUPLT IN PAGE WITH NEW TUPLE;
DO J =1 TO NUMBEx UF TUPLE INDEXES;
IF OLL AWND NEAX ATTR_VALUES FOR INDEX&D ATTRI3UTE
ARE NOT EQUAL THEN DO;
CALL TUPLE INDEX (OLD TUPLE, TID, RELATION,
TUPLE INDEX INFO(J), DELETE);
CALL TUPLE INDEX (NEW TUPLE, TID, RELATION,
TUPLE TINDEY INFO(J), INSERT);
END;
END;

DO J =1 TO NUMBEK QOF SETS OF BINARY LINKS;
IF OLUo AWD NEW ATTR_VALUES FOR LINKED ATTRIBUTES
ARE NOT EGUAL THEN DO;
CALL BINAKRY LINKS (OLD TUPLE, TID, RELATION,
SBINARY LINK INFO(J), DELZTE);
CALL BIMNARY LINKS (MEXx TUPLE, TID, RELATIOM,
RIHARY LILX INFO(J), INSEKT);
SANC;
END;

END UPDATE 7TUPLE;

ZND STORAGE;
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DEFINE: PROC (RELATION, RELATION INFO, TUPLE INDEX ANPUT,
BINARY LINXKX I[NPUT, OPZRATION);

SELECT OPERATIOu;

WHEN DEFINc RELATION DO;
STORE RELATION INFO IN CATALOG;
END;

WHEN DELETSE RELATION DO;

GET CATALOG INFORMATIOM ON RELATION;

TKAVERSE PAGE INDEX, DELETING PAGES AND INDEX NODES;

DG J = 1 TO NUMBEF CF TUPLE INDEXES;

CALL DELETE TUPLE INDEX(TUPLE INDEX(J));
END;

DO J =1 TO NUMBER OF SLTS GF BINARY LINKS;
CALL DELETZT BINARY LINKS(BINARY LINK INDEX(J)),
END;

EnND DELuTe RELATION;

WHEN DEFINT IUDEX DO;
UPCATE CATALCG INFORMATION CGH RELATION;
IF RELATION IS HCGT EMPTY THEN DO;
DO UNTIL N0 OF RELATION IS REACHED;
CALL LEXT TO GET NEXT TUPLE)
CALL FETCH TO GeT TdE TUPLE;
CALL TUPLE INLEX(TUPLE, TID, RELATION,
TUPLE THDEY INDPUT, INSERT);
END;
END;
END DEFINE TINDEYX;
WHEN DEFIwE BINARY LINKS DC;
UPDATE CATALOG INFORMATION ON RELATION;
IF RELATION IS NOT EMPTY THEM DO;
DO UNTIL £ND OF RELATION IS REACHED;
CALL NEXT TO GET NEXT TUPLE;
CALL FETCE TO GET THE TUPLE;
CALL BINARY LINKS (1UPLo, TID, RELATIGN,
BINARY LINK INDEX INPUT, INSERT);
EnD;
END;
END DESINE 3 INARY LINKS;
WHEN DELETE TUPLE INDEX
CALL DEZLZTE TUPLE INDeEX(TUPLE TINDeX INPUT);
WHEN DELEZTZ 3IMNARY LINKS
CALL DELETE PRINAKY LINKS (PINAKY LINY INDEX INPUT);
END SELEZCT)

DELETZ TUPLE INUZIX: PROC (INDEX)’
PERFOxM PUSTO«DBER TKAVERSAL ON INDEX,
DELETLNG LNDEX NODES;
END DELZTE TUPLE INDEX;
DELETE BIwA«? LINK TNLEX: PkOC (LaDEX);
PERFORM PGSTCRDER TRAVERGSAL Of '"FRCM" INDEX,
DELETING =ZACH NODE;



PERFORM POSTORDER TRAVERSAL On
DELETING EACH NODE;
END DELETE BINARY LINK INDEX;
END DEFINE;

“"TO" INDEX,
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ACCESS: PkOC (TUPLE, TID, ATTKIBUTE, ATTR_VALUE, OPERATOR,
LINK RELATION, OPEPATiIOWN);
/* ATTR_VALYE [S THI VALUL OF AN INPUT ATTRIBUTE */
/* OPERATOx IS5 A RELATIONAL CPERATOR TU BE USED FOR
RESTRICTIONS WITH ATTR_VALU& */

GET CATALOG INFORMATION ON RELATION;
SELECT OPERATION;

WHEN FETCH CALL FETCH (TUPLE, TID);
WHEN RESTRICTION DO;
CALL RESTRICT (ATTR_VALUC, OPERATOR);
END PESTRICTIGN;
WHEN NEXT TID GO
CALL TRAJERSE TO GET NEXT TID ON TUPLE INDEX;
END;
NHEN NEXT TUPLE DO;
CALL ®“EXT TO GET NEXT TID;
CALL FETCA TC GET THE TUPLE;
END NEXT TUPLE;
WHEN LINX DO
/* GZ1 TIDS I& "LINK R=LATIGN"™ THAT MATCH "TUPLE"™ */
IF TYE CORRECT SET OF 3INARY LINKS DOES NOT EXIST
TuEn DOy
CALL FETCd TC GET TUPLE REFZRReD TO BY TID;
EXTRACT ATTP_VALUE FRCM TUPLE;
CALL KESTKRICT (ATTR_VALUE, EQUAL);
END;
ELSE D0, /* USE THE BINAKY LINK INDEX */
CALL SEARCH TO FIND TID IN BINARY LINK INDEX;
DC UNTIL TIDs DO NOT MATCH GR END OF RELATION;
ACD TID FROM LINK RELATION TO LIST;
CALL TRAVERSE TO GET THE NEXT TID;
END;
END;
END LIMNK;
END SELECT;

RESTRICT: PROC (ATTR_VALUE, OPERATOR);
IF TUPLE IWDEX EXISTS ON ATTRIBUTE THE DO;
CALL SEARCH TC GET A KEY AND TID;
DO UNTIL XEYS CON'T MATCH OR END OF RRELATION;
ADD TID TU LIST;
CALL TRavVotSe TO GZT THE wEXT KEY AND TID;
END;
END;
EwD ReSTRICT;

END ACCESS;
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