ARCH.

MODIFICATION OF STIFFNESS ANALYSIS TO

ACCOUNT FOR SHEAR DEFORMATIONS

Ву

Anthony E. Goetz

MODIFICATION OF STIFFNESS ANALYSIS TO

ACCOUNT FOR SHEAR DEFORMATIONS

Ву

Anthony E. Goetz

Bachelor of Science in Architectural Studes

antroy Holy Oklahoma State University

Stillmater, Oklahoma

1977

Submitted to the Faculty of the Graduate College of Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF ARCHITECTURAL ENGINEERING

May 1980

ACKNOWLEDGMENTS

The author wishes to express his appreciation and gratitude to Professor Louis O. Bass, Professor Arlyn A. Orr, and Professor George W. Chamberlain for their instruction, guidance, and encouragement in the course of his study in Architectural Engineering. A special thanks goes to Profeesor Louis O. Bass for the permission to modify Space Frame, and for one long night preparing a readable disk copy of Space Frame for the use of the author. To Diana Huntington, Sam Whiten, and Earl Rollison, thanks for their encouragement, and support.

TABLE OF CONTENTS

Page; 1- Definition of Variables

2- Introduction

3- Shear Deformation

5- The Shear Form Factor

7- User Instructons

8- Example Problem

15- Appendix A

17- Appendix B

19- Appendix C

22- Bibliography

DEFINITION OF VARIABLES

A	AREA
E	MODULUS OF ELASTICITY
G	MODULUS OF RIGIDITY
I	MOMENT OF INERTIA
IX	MOMENT OF INERTIA ABOUT THE X AXIS
IY	MOMENT OF INERTIA ABOUT THE Y AXIS
IZ	MOMENT OF INERTIA ABOUT THE Z AXIS
$^{ exttt{M}}_{ exttt{L}}$	STRESS RESULTANT DUE TO REAL LOAD (FLEXURE)
M _U	STRESS RESULTANT DUE TO UNIT LOAD (FLEXURE)
Q	FIRST MOMENT OF AN AREA
$v_{ m L}$	STRESS RESULTANT DUE TO REAL LOAD (SHEAR)
$v_{\overline{U}}$	STRESS RESULTANT DUE TO UNIT LOAD (SHEAR)
fs	SHEAR FORM FACTOR

THE EFFECT OF SHEAR DEFORMATIONS IN STIFFNESS ANALYSIS

INTRODUCTION

The stiffness method of structural analysis assumes linear, elastic, prismatic, homogenous behavior. Within the frame work of these assumptions, the stiffness matrix normally used for analysis does not account for the effect of shear deformations. However within this frame work of linear, elastic, prismatic, homogenous behavior a stiffness matrix to account for the effect of shear deformations can be derived.

The stiffness analysis program, "Space Frame" written by Louis O. Bass and John O. Houston, was modified to account for the effect of shear deformations. The modification is now a users specified option in the modified version of "Space Frame".

SHEAR DEFORMATION

Shear deformations will be assumed not to be affected by member axial (Px) and torsional (Mx) forces, and to behave in a linearly elastic manner. These assumptions allow a simple modification to the basic stiffness matrix. Through the use of virtual work, the modifications are derived. By taking the internal work;

$$dW_{int} = (\sigma dy dz)(\varepsilon dx) + (\tau dy dz)(\tau dx)$$

substituting and integrating over the volume with the following terms.

$$\mathcal{T} = \frac{\text{Mu Y}}{\text{I}}$$

$$\mathcal{T} = \frac{\text{Vu Q}}{\text{I b}}$$

$$\epsilon = \frac{\text{Ml Y}}{\text{E I}} \qquad \qquad \gamma = \frac{\text{Vl Q}}{\text{G I b}}$$

Yielding

$$W_{int} = \int \frac{Mu \ Ml \ Y^2}{E \ I^2} \ dx \ dy \ dz + \int \frac{Vu \ Vl \ Q^2}{G \ I^2b^2} \ dx \ dy \ dz$$

Noting that at a given cross section the quantites Mu, Ml, Vu, Vl, E, G, and I are constant. Simplifying

$$W_{\text{int}} = \int_{A}^{Mu \text{ Ml}} \left[\int_{A}^{Y^2} dy dz \right] dx + \int_{C} \frac{vu vl}{G l^2} \left[\int_{A}^{Q^2} dy dz \right] dx$$

Letting L and A denote the intergration carried out over the length and the cross-sectional area respectively. The first term in the square brackets

is the moment of inertia (I) and the second term is the shear form factor (f_S) . The shear form factor is defined as follows;

$$f_s = \frac{A}{I^2} \int_{A}^{Q^2} dA$$

Replacing the terms in the square brackets with I and f_s I^2/A respectively and equating the external and internal work, deformations are given by;

$$\Delta = \int \frac{\text{Mu Ml}}{\text{E I}} dx + \int \frac{f_s \text{ Vu Vl}}{G \text{ A}} dx$$

By evulating the above expression the modified stiffness matrix accounting for shear deformations is found. For these terms see Appendix A.

THE SHEAR FORM FACTOR

The shear form factor (f_s) in the modification of the stiffness matrix is defined as:

$$f_s = \frac{A}{I^2} \int \frac{Q^2}{b^2} dA$$

A = area of the cross section

I = moment of inertia of the cross section

Q = the first moment of area for the cross section

b = the thickness of the cross section

For some standard shapes the shear form factor is given. These are defined as follows;

Rectangle

Circle

Thin tube

Wide Flange or Box Section

$$f_s = 6/5 = 1.2$$

$$f_s = 10/9 = 1.11$$

$$f_{g} = 2.0$$

 $f_s = Area Total/Area of the Web$

or it may be calculated for the shape. To calculate the shear form factor Q and b need to be defined. For an example take a rectangle of width b and height h.

$$A = b h$$

$$I = \frac{b h^3}{12}$$

$$Q = \frac{b}{2} \left[\frac{h^2}{4} - y^2 \right]$$

$$b = b$$

Writing the equation for the shear form factor;

$$f_s = \frac{144}{b h^3} \int \frac{b^2}{4} \left[\frac{h^2}{4} - Y^2 \right]^2 \frac{1}{b^2}$$

$$f_s = \frac{144}{b h^5} \int_{-h/2}^{h/2} \frac{1}{4} \left[\frac{h^2}{4} - y^2 \right]^2$$
 b dy

Evaulating

$$f_s = \frac{6}{5} = 1.2$$

For other values of the first moment of area (Q) see Appendix B. If there is a question about which shear form factor to use it is desirable to calculate the shear form factor.

USER INSTRUCTIONS

When executing "Space Frame" with shear deformations, it is necessary for the user to have a copy of the user's manual for "Space Frame" by L. O. Bass. First you will be asked several questions about basic program parameters, after answering these, the user will be asked if they want to consider shear deformations. By inputing a one (1), the question is answered with a yes, and by inputing a zero (0), the question is answered with a set. If answered no, the program continues with "Space Frame" and no other questions concerning shear deformations will be asked. When shear deformations are being considered (a yes answer), the user will be asked to input the shear form factor (SFF). The SFF is inputed with the member properties, the display will read A,IX,IY,IZ,SFF? these values are inputed with commas separting them, and the shear form factor is last. Once the member properties have been inputed, the program will not ask the user any more questions dealing with shear deformations. From here the program follows the "Space Frame" manual. For flow charts see Appendix C.

It may be desirable to consider shear deformations on some members but not on others. By setting the shear form factor equal to zero (0). The modified stiffness matrix reverts back to the standard stiffness matrix, where SFF equal zero (0). Again it may be desirable to consider shear deformations on a frame, then run the same frame without shear deformations. To do this run the frame first with shear deformations; then rerun the frame without shear deformations, by setting all the SFF equal to zero(0) for all member types.

EXAMPLE PROBLEM

The PASSWORD for the modified version of "Space Frame" is

For an example problem, take a ten foot (10 ft) concrete beam with simple supports and an uniformed load of 1000 pounds per foot.

A =
$$30 \text{ in}^2$$

IX = $25,000 \text{ in}^4$
IY = $2,500 \text{ in}^4$
IZ = $22,500 \text{ in}^4$

```
GET "FRAME"
                                                                            9
RUN
DO NOT USE THIS SPACE FRAME !!
PASSWORD?
10B NAME, DATE, ETC?TONY GOETZ SIMPLE SUPPORTES
 OMMENTS-60 CHARACTERS MAX?30X10 CONCRETE BEAM (FC=4090 PSI)
                                                                  PAGE #
  DATA ECHO
  TONY GOETZ SIMPLE SUPPORTES
  30X10 CONCRETE BEAM (FC=4000 PSI)
  BASIC JOB PARAMETERS
JOINTS?11
 MEMBERS?10
 MEMBER PROPERTY TYPES?1
 SUPPORTS?2
 LOAD CONDITIONS?1
 FINITE ELEMENTS?0
CONSIDER SHEAR DEFORMATIONS?1
  #JOINTS
                      #M. TYPES
                                 #SUPPORTS
            #MEMBERS
                                            #LOAD COND'S
                                                            #ELEM'S
                  10
                             1
 · CONSIDERING EFFECTS OF SHEAR DEFORMATIONS
MY SUPPORT RELEASES?1
RE RELEASES IN GENERAL SYSTEM?1
  SUPPORT RELEASES OCCUR IN THE GENERAL SYSTEM
 TA OK?1
  JOINT CARTESIAN COORDINATES
COORDINATE LENGTH UNITS?12.0000FEET
                                            FT
  UNITS =FEET
UNITS OK?1
  JOINT
            -X-(FT)
                                             -Z-(FT)
                             -Y-(FT)
     Z --- AT 1
                    20,0,0
              0.0000
                              0.0000
                                              0.0000
                    21,0,0
     Z --- AT 2
                                              0.0000
              1.0000
                              0.0000
                    92,0,0
     Z --- AT 3
              2.0000
                              0.0000
                                              9.0000
                    23,0,0
     Z --- AT 4
              3.0000
                                              0.0000
                              0.0000
     Z --- AT 5
                    24,0,0
              4.0000
                                              0.0000
                              0.0000
     Z --- AT 6
                    25,0,0
              5.0000
                              0.0000
                                              0.0000
       --- AT 7
                    26,0,0
              6.0000
                                              0.0000
                              0.0000
     Z --- AT 8
                    27,0,0
              7.0000
                              0.0000
                                              0.0030
                    28,0,0
     Z --- AT 9
              8.0000
                                              0.0000
                              0.0000
                    29,0,9
     Z --- AT 10
              9.0000
                              0.0000
   10
                                              0.0000
```

210,0.0

0.9098

0.0000

Y, Z --- AT 11

ALL COORDINATES OK?!

10.0000

11

```
JOINT SUPPORT DATA
     NOTE: PX:PY---MZ RELEASE CODES >>---> 0=FIXED: 1=RELEASED
         REF PPPMMM ANGLES---UNITS=DEGREES
# XYZXYZ ALFA BETA GAMA J
                                               JOINT SUPPORTS
   SUPPORT LIST W/SAME CONSTANTS?1,11
   PX, PY---MZ RELEASE (KEY)?PZ3
   PX, PY---MZ RELEASE (KEY)?MX4
   pX,PY---MZ RELEASE (KEY)?MY5
   px,pY---MZ RELEASE (KEY)?MZ6
   PX, PY---MZ RELEASE (KEY)?0
    1 001111
                                     0 1,11
                      10
   SUPPORT LIST W/SAME CONSTANTS?0
   ALL SUPPORT DATA OK?1
    ENGTH UNITS, MEMBER PROPERTIES?1.00000INCHES IN
FORCE UNITS MEMBER PROPERTIES?1000.00KIPS
   ARE E & G CONSTANT?1
ONST'S E,G (K /IN+2)?3.64E3,1.46E3
-0345
     MEMBER PROPERTY CATALOG
1178
                          G = .1460
     CONSTANTS: E = 3640
UNITS INCHES KIPS
     MEMB AX IX IY IZ SFF DESCRIPTION TYPE (IN+2) (IN+4) (IN+4)
     MEMB
 BR 1 DESCRIPTION?30X10 BEAM
 BR 1 A, IX, IY, IZ, SF?30, 25000, 2500, 22500, 1.2
            30.00 25000.00 2500.00 22500.00 1.20 30X10 BEAM
  LL TYPES OK?1
    R ROTATION UNITS (DEG OR RAD)?.01745329252DEGREES
  BR LENGTH UNITS?12.0000FEET FT
  LL MBR PROPERTIES IDENTICAL?1
 NY MEMBER END RELEASES?0
NY GAMA ROTATIONS?0
```

111

TONY GOETZ SIMPLE SUPPORTES 30X10 CONCRETE BEAM (FC=4000 PSI)

MEMBER DATA, NO MBR END R		ET ALL MBR G	DEGREES AMA'S=0		PROPERTIES	=TYPE #1	
MBR LE# RE#	TYPE F	ILFA	вета	GAMA	LENGTH	LE CODE	RE CODE
pATA OK?1 -END#, +END#; M 1 1 2	1 0	0.000	0.000	0.000	1.000	000000	000000
2 2 3		0.000	0.000	0.000	1.000	000000	000000
3 3 4		0.000	0.000	0.000	1.000	000000	000000
4 4 5		3.000	0.000	0.000	1.000	000000	800000
5 . 5 6		.000	0.000	0.000	1.000	000000	000000
6 6 7		0.000	0.000	0.000	1.000	000000	.000000
7 7 8		0.000	0.000	0.000	1.000	000000	000000
8 8 9		0.000	0.000	0.000	1.000	900000	000000
-END#, +END#; M 9 9 10	1 0	1.000	0.000	0.000	1.000	000000	000000
10 10 11	1 6	0,11 1.000	0.000	0.000	1.000	000000	000000
CHANGE MEMBER DENGTH UNITS FOR CRCE UNITS FOR LOAD UNITS FOR TEMPERATURE ANY FOUNDATION UNITS OK?1 ANY SELF WEIGHT IS LOAD TEMPLAT	R MOMENT LO LOADS (KEY EET CENTIGRADES UNITS = DEG SETTLEMENTS LOADINGSSE	/)?1000.0 KIPS /0 GREES FAH S?0	ØKIPS .	FT K			
LOAD CONDITI	ON # 1		•				
JT&MBR LOAD SETTLEMENTS	DIM	PX DX	PY DY	PZ DZ	MX ØX	MY ØY	MZ ØZ
MEMBER OR JOINT MBR LIST?1-10 MBR LIST 1-1 LIST OK?1		3-1					

TONY GOETZ SIMPLE SUPPORTES 30X10 CONCRETE BEAM (FC=4000 PSI)

OUTPUT UNITS SPECIFICATIONS

UTPUT LENGTH UNITS FOR MOMENT?1.00000INCHES IN UTPUT UNITS FOR FORCE?1000.00KIFS K
UTPUT LENGTH UNITS, REACTIONS?1.00000INCHES IN UTPUT FORCE UNITS, REACTIONS?1000.00KIPS K
ENGTH UNITS FOR DEFORMATIONS?1.00000INCHES IN
/O ROTATION UNITS, DEFORMATIONS?.01745329252DEGREES MEMBER FORCES & MOMENTS = INCHES KIPS REACTIONS = INCHES DEGREES

DEFORMATIONS = INCHES DEGREES

NITS OK?1 DNSIDER REBAND OR REPACK?0

END OF DATA INPUT

PROGRAMS AVAILABLE FOR CONTINUED PROCESSING

PLOT-----REPRINT DATA
PLOT-----PLOT PERSPECTIVE OF THE FRAME
ISOMET----PLOT ISOMETRIC OF THE FRAME
FRAME----TO MAKE DATA CHANGES
BANDER----SOLUTION INITIALIZATION--REQ'D BEFORE SOLVE OF REBAND
REBAND----RENUMBER JOINTS FOR NEW SOLUTION SEQUENCE

ET"BANDER"

1 47

11134

THE

LH3:

192

LADA

133-

1143

1/19-

THRE

Hitar

の制造

IR

0

祖老今 宋

210 05

19

THE

PAGE #

0.000

0.000

0.000

0.000

0.000

0.009

0.000

0.000

0.000

0.000

0.000

0.000

150.00

-144.00

144.00

-126.00

126.00

-96.00

3 13

TONY GOETZ SIMPLE SUPPORTES 30X10 CONCRETE BEAM (FC=4000 PSI)

)	DEFORM	ATIONS		UNITS: 1	CHCHES	DEGREES		
	JOINT I	LC	DX	DY	DZ	9X	0Y	02
	1	1	0.0000	0.0000	0.0000	0.00000	0.00000	0.00420
	2	1	0.0000	0,0023	0.0000	0.00000	9.00000	0.00396
	3	1	0.0000	0.0043	0.0000	0.00000	0.00000	0.0033
	4	1	0.0000	0.0057	0.0000	0.00000	0.00000	0.00238
	5	1	0.0000	0.0066	0.0000	0.00000	0.00000	0.0012
	6	1	0.0000	0.0069	0.0000	0.00000	0,00000	0.00000
	7	1	0.0000	0,0065	0.0000	0.00000	0.00000	-0.0012
	8	1	0.0000	0.0057	0.0000	0.00000	0.00000	-0.00238
	9	1	0.0000	0.0043	0.0000	0.00000	0.00000	-0.00332
	10	1	0.0000	0.0023	0.0000	0.00000.	0.00000.	-0.00396
	. 11	1	0.0000	0.0000	0.0000	0.00000	0.00000	-0.00420
	ИЕМВЕR	FORCE	S AND MOM	IEMTS UN	ITS: INCHES	LIPS		
	MEMBER	LC	END	PX	PY	PZ MX	MY	MZ
	1	. 1	1 2	0.000 0.000	-5.000 4.000	0.000 0.000 0.000 0.000		-0.000 -54.000
	2	1	2	0.000 0.000	-4.000 3.000	0.000 0.000 0.000 0.000		54.000 -96.000
	3	1	3	0.000	-3.000 2.000	9.000 9.000 9.000 9.000		96.000 -126.000
	4	. 1	4 5	0.000 0.000	-2.000 1.000	0.900 0.690 0.900 0.800		126.00
	5	1	5 6	0.000 0.000	-1.000 0.000	0.000 0.000 0.000 0.000		144.000 -150.000

0,000

0.000

0.000

0.000

0.000

0.000

6

7

7

8

89

1

6

7

-0.000

-1.000

1.000

-2.000

2.000

-3.000

0.000

0.000

0.900

0.000

0.000

0.000

OUTPUT					PAGE #	4 .
TONY GOETZ SIMPL 30X10 CONCRETE E						14
MEMBER FORCES AN	ND MOMENTS	UNITS: IN	CHES K	IPS		
MEMBER LC END	PX	PY	PZ	MX	MY	MZ
9 1 9 10	0.00 0.00		0.000	0.000 0.000	0.000 0.000	96.00 -54.00
10 1 10	୭.୭ମ ଡ.୭୫		0.000 0.000	0.000 0.000	0.000 0.000	54.000 0.000
REACTIONS AT SUF	PPORTS UN	ITS: INCHES	KIPS			
JOINT LC	PX	PY	PZ	MX	MY	MZ
1 1	0.000,	-5.000	0.000	0.000	0.000	-0.00
11 1	0.000	-5,000	0.000	0.000	0.000	0.00
SUM OF ALL REACT	TIONS					
1	0.000	-10.000	0.000	0.000	0.000	9.00

APPENDIX A

MODIFICATIONS TO THE STIFFNESS MATRIX

MODIFICATIONS TO THE STIFFNESS MATRIX

 $K_{i,j}$ denotes the Stiffness Matrix and the position of the term.

$$K_{2,2}$$
 and $K_{3,3}$

$$\frac{4(GAL^{2} + 3 f_{s}EI)(EI)^{2}}{GAEIL^{3} + 12 f_{s}L(EI)^{2}}$$

APPENDIX B

THE FIRST MOMENT OF AREA (Q) FOR SELECTED SHAPES

THE FIRST MOMENT OF AREA FOR SELECTED SHAPES

Rectangle

$$Q = \frac{b}{2} \left[\frac{h^2}{4} - y^2 \right]$$

Wide Flange

$$Q = \frac{b}{2} \left[\frac{h^2}{4} - \frac{h_1^2}{4} \right] + \frac{t}{2} \left[\frac{h_1^2}{4} - y^2 \right]$$

Circular (Solid)

$$Q = \frac{2}{3} (r^2 - y^2)^{3/2}$$

APPENDIX C

FLOW CHARTS

FLOW CHART FOR INPUT SEQUENCE

FLOW CHART FOR SOLUTION

BIBLIOGRAPHY

- Ketter, Robert L., George C. Lee, and Sherwood P. Prawel, Jr. Structural

 Analysis and Design. New York: McGraw-Hill book Company, 1979.
- Przemieniecki, J. S. <u>Theory of Matrix Structural Analysis</u>. New York: McGraw-Hill Book Company, 1968.
- Timoshenko, S. P. <u>Strength of Materials Part 1</u>. Huntington, New York:

 Robert E. Krieger Publishing Company, 1955.
- Timoshenko, S. P., and James M. Gere. <u>Mechanics of Materials</u>. New York:

 D. Van Nostrand Company, 1972.