URBAN TRANSPORTATION LAND USE PLANNING AND MODEL CONSTRUCTION BY USING MACHINE PROCESSED REMOTESENSOR DATA

PREPARED

BY

LOUIS YAU-KWONG CHAN

PREPARED

FOR

CIVIL ENGINEERING 5020

Dr. ROBERT L. JANES

MAY 20, 1980

I. PREFACE

The urban transportation phenomenon is a complex integrity in its space, time, and scope. The machine processed remote sensor data used in the classification of land use on the regional wide area has been extensive in recent years. A survey of these classification methods and their results is exposed on this paper. Main stress is placed on their suitability of the recognition and interpretation of the urban land use features. All of the findings indicate that works are continuing on methods of improving performance of each method. Results of these experiments to date demonstrate that producing land use maps of a large scale by machine processing of satellite scanner data is feasible by keeping land use classes fairly broad, a conspicuous level of accuracy is attained despite of the relatively coarse resolution and the inherent complexities of man made environment. Considering the urban growth as a dynamic and everlasting refinement process and its mass data-based characteristics, one might consider the use of machine processed remote sensor data as a convenient and efficient tool for handling these data and their problems associated with every phase of the urban transportation planning. Essential tool is the study of a temporal series of satellite passes for

the purpose of monitoring and detecting change. Important products would be precise measurement of incremental growth of subdivision housing, commercial, and transportation uses as a means to update the urban planning program and to path with the ever changing needs of our urban environment.

Urban transportation land use models can be classified into two broad categories: The casual model and the causal model. Models known as EMPIRIC model (ref. 1), ACTIVITY model (ref. 2) are casual models. Basically they are derived from observations and analyses of urban land use and activity phenomenons. They use many statistical inference equations to extend their study scope. Further, they made their predictions to the near future. Models known as GRAVITY model (ref. 3), LOWRY model (ref. 4) are derived from induction of the real world phenomenon. They use a set of mathematical formula and certain constraints and some characteristic parameters to make their predictions. On this report, a computer solution to the lowry model designed by me is attached. An analysis of the result is accompanied with it.

From the description of lowry model, it is seen that further works by Batty (1972) (ref. 5), Goldner (1971) (ref. 6), and Masser (1971) (ref. 7) are resulted in better forecasting to the future trends of urban land use development.

All of these models have a common characteristic. That

is, they need a up-to-date data as input to the forecasting requirement. As nowedays, all over the world, with growing populations and their associated effects on the environment, we are subject to more pressing needs of these data constantly than before.

II. URBAN TRANSPORTATION PLANNING AND INFORMATION SYSTEMS:

An urban transportation planning process begins with statement of transportation problems and problem domains. The remaining processes are identification of objects and constrains of the proposed transportation system, model construction, data collection, model prediction, setting of levels, use of models, decision among alternatives, implementation, and final operation and maintenance of system.

The information system is one of the great synthesizing concepts of our time. It denotes the purposeful organization of information. It may encompass both qualitative and quantitative data. Transportation information systems may involve information collection, handling, processing, storage, and retrieval for planning, construction, maintenance, and operation.

An information system is a collection of technical people, procedures, computer hardware, computer software, and a data

base organized to develop the information required to support the functions of the parent organization and/or allied organizations. It is important to note that information system and 'data processing system' have quite different denotations. data processing system refers specifically to the computer hardware and software (E.G. computer programs). Information systems includes not only a data processing system, but also the data base and complete personel organization for a particular information function. The focus here will be on the data base needed for urban transportation planning.

Data base plays a major role in transportation planning. Since urban transportation planning is based in parts on its demonstrated abilities to simulate urban systems in computer. Such demonstration require vast quantities of measurements of land use, human travel behavior, and other urban characteristics. These meansurements cost money.

III. URBAN LAND USE INVENTORY

(1) Objectives

Most of the transportation oriented land use surveys have tried to serve four basic objectives:

a. To provide a land use base from which trip distribution factors and trip generation factors can be derived. (

- reg. 1:dickey chapter 6).
- b. To provide necessary data for coordinating transportation facilities with their users (drivers, operators).
- c. To provide a 'universe' of dwelling units from which a sample can be drawn for the home interview phase of the travel survey.
- d. To provide data useful for the day-to-day planning activities of city, county, and state government.

A wide range of land use studies to acquire basic data on land characteristics and the activities that occupy land includes. (ref. 8:chapin):

- a. Land use survey.
- b. Vacant land use survey.
- c. Flood damage prevention survey.
- d. Environment survey.
- e. Cost-revenue survey.
- f. Land-value survey.
- g. Studies of the aesthetic features of the urban area.
- h. Studies of public attitudes and preferences regarding land use.
- i. Studies of activity systems.

(2) Classification of land uses

In 1971 a classification system for use with remote

sensor data has been prepared by interior-agency steering committee on land use information and classification of U.S.A.. Under leadership sponsored and provided by NASA and EROS program (ref. 10).

Governed by some guidelines, two levels of classifications are developed. They are:

Level I:

- 1. Urban and built up.
- 2. Transportation, communications, and utilities.
- 3. Farming (agriculture).
- 4. Grassland (grazing).
- 5. Forest land (forestry).
- 6. Extractive.
- 7. Water.
- 8. Marshland.
- 9. Tundra.
- 10. Barren land.
- 11. Permanent snow fields.

Level II:

- 1. Urban and built-up.
 - a. Residential.
 - b. Commercial (trade).
 - C. industrial (manufacturing).
 - d. Services

- e. Recreational.
- f. Transportation.
- g. Other.
- Transportation, communications, and utilities (no subcategories proposed).
- 3. Framing (agriculture).
 - a. Cropland.
 - b. Pasture.
 - c. Orchards, vine yards, horticultural areas.
- 4. Grassland (grazing, rangeland), (no subcategories).
- 5. Forest land (forestry), (no subcategories).
- 6. Extractive (mining and quarrying), (no subcategories).
- 7. Fishing (no subcategories).
- 8. Water.
 - a. Lakes.
 - b. Streams.
 - c. Ponds.
 - d. Reservoirs.
- 9. Low activity land.
 - a. Marshland.
 - b. Tundra.
 - c. Barren land.
 - d. Permanent snow fields.

In application area, several researchers have indicated

success at generating selected data for the III and IV level from satellite imagery. That will depends on the local users to move nearly fit their specific needs and is encouraging.

(3) Land Use Survey

Land use surveys are classified in two ways: Firstly, by whether or not dwellings and other places must be entered. Secondly, by whether or not data must be computer readable.

The second classification relates to the way the land use data are recorded in the field. The older method is to record the data directly on the maps or airphotos. It is best suited to a map storage system. During the last decades, especially in the large scale transportation land use studies, the method known as 'field listing' is undergone great usages. It is suited to a punch card storage system. Today, the machine processing satellite data transforms 'pixel' (resolution picture or element) into gray leveled imagery points. It can be obtained, handled, processed, storaged, and retrievaled periodically in an accurate and cost-effective manner.

(4) Presentation of Land Use Data

The results of the land use survey may be summarized in either map form or statistically. Traditionally, land use data have been presented in the form of land use map. This

shows land use by general category of use, that is, residential, commercial, industrial, institutional, parks and recreation, transportation and utilities, agriculture and water.

Recently, land use maps have increasingly been based upon print outs of data processed on a grid cell basis by computer. These require that a draftsman prepare an overlay of principle streets for orientation; hence, they eliminate the time comsuming task of transcribing from data base to the overlay. The amount of land given to urban uses is always summarized in terms of percentages for the developed part of the city, the fringe areas, and planning area of the survey.

The use of aerial photography or satellite is effective for updating and correcting information from maps. It can be used to discern new streets, street extension, and any other land developments that may have occured in the period between the print out of the map and the taking of the aerial photography. For more detailed discussion on land use presentation by the computer see ref. 1: Chapter 7.

IV. SATELLITE MISSION FOR LAND USE SURVEY

Since the launch of the Earth Resources Technology Satellite-#1 (ERTS-1) on 1972, our earth environments have been subject to the multispectral scanner periodically (exactly 18 days). The machine processing of satellite data has a resolution point of about 57 x 79M and a gray level radial, range from o to 127. Each satellite scence has been recorded when the satellite is passing over the ground and it covered an area of about 185 x 185KM.

For the land use mapping purpose, many of the satellite goal had been to attempt to delineate with maximum accuracy as many functional land use classes as possible. The term functional is emphasized as it pertain to the usage of land, and not to naturally occuring land cover. Further, these functional land uses are selected to correspond as closely as possible to classes which are widely accepted and used by those in the planning and land management community. In short, spectral characteristics must be transformed into meaningful, acceptable, land use classes.

One of the satellite objects has been to determine the limits of inferring land uses from spectral information alone. The objective was selected by relizing that some urban planners argue that intensive, accurate land use determination from remote-sensed imagery of any sort is impossible and that the plotting of such discrete uses as retail, office, and many multi-family residential units are possible only with parcelwise data secured from ground sources. Nevertheless, the

characteristics of machine processed satellite data as applied to urban planning is progressing with great strides. The combination of the satellite borne scanner and machine processing provides a different tool than either conventional air-photo interpretation or surface and statistical unit mapping.

The advantages are,

- 1. High speed processing.
- 2. Frequently obtained new data.
- 3. Unbiased and uniformly repetitive classification.
- 4. Production of large scale map at relatively low cost.
- 5. The inherent digitizing of land use data retrievable in any form or combinations of forms.

The disadvantages are,

- 1. The inability of the system to discriminate with consistent success between functionally dissimilar but spectrally similar land uses.
- 2. The impossibility of detecting parcel ownership.
- 3. Generalization by resolution element: At 80M resolution element the complexity of the urban landscape can not be shown fully.
- 4. Identifications depend on vegetation vary seasonally.
- 5. Uncontrollable incidence of cloud cover.

Studies of land use classification by Machine Processing of ERTS-1 Multispectral Data.

The land use classification by machine processing of ERTS-1 multispectral data had been applied at many study areas (regions). For example:

- 1. Sar Francisco Bay Area (1972).
- 2. Marion County, Indiana (Sept. 30, 1972).
- 3. Portions of the Lower Rio Grande Valley of Texas (July 26, 1972).
- 4. Chesapeare Bay, Washington D.C. Area (1972).
- 5. Great Lake Basin, Great Lake Area (April 15, 1972).

For briefly, I Discuss two of the most related study areas to my subject.

(1) San Francisco Bay Area Study (ref. 11, 2A-7)

The study area is a large segment of the San Francisco-Oakland and San Jose urbanized areas. Basically, it uses a photo-interpretation procedure to solve problems of the spectral similarity of functionally different land uses and land covers.

Classification was achieved by grouping 28 spectral classes into 11 functional classes. A reliability analysis was checked by comparing computer results to contemporaneous high-altitude color air photographs on a pixel-by pixel basis. The results have shown with high performance from among the grossness of the data and the complexity of the urban land-scape (fig.1).

The method employed requires the preliminary step of delimiting the urbanized area; subsequent groupings of urban land uses lie inside the boundary line and rural groupings are outside the line. A procedure was followed which adapted the census bureau's rules for urbanized area delimitation to a one-quarter kilometer grid system. The example uses a one kilometer cell generation. Kilometer squares were given UTM (Universal Transverse Mercator) addresses (or projections) and the corresponding computer coordinates were then entered into the computer and delimited on the print out. Two seperate groupings of the 28 cluster classes, one urban one rural, were then printed out. Manual cut-and-paste techniques were then used to make a single map (fig. 2a, 2b).

Upon superimposing the photo (1E. aerial photograph) over the computer map on the Zoom Transfer Scope, the question was asked for each pixel if the real land use match that given by the classifier. Score was kept and the results presented in table 1.

The introduction of the kilometer grids also provide a basic for aggregating land uses by a standard aerial unit.

Table 2 illustrates for a typical few kilometers and for the average of 250 square kilometers the percentages of each land use for the area around San Jose. The figure of

62% for residental uses compares favorably with the 63.4% for the same area as measured by planimeter from air-photo interpreted uses in the work of the Geographic Applications Program's Census Cities Project.

Table 1. Reliability Test of Land Use Classification

Functional Land Use Class	% Correct
commercial-industrial	82.7
residential	84.6
parking lots	77.8
unimproved open space (bare)	94.2
improved open space (irrigated)	97.1
parking lots unimproved open space (bare)	77.8 94.2

Table 2. Land Use Aggregations by Kilometer Squares for a Segment of the San Jose, California Area

		% of land use							
UTM Grid Desig- nation	Com- mercial In- dustrial	Mobile Homes	Parking Lots	l Res.	Bare	Tree	2 Irrig	Water	Thresh Old
135-603	32.5	1.7	1.7	59.0	4.3	0.9	0.0	0.0	0.0
134-590	12.1	1.3	11.2	72.3	0.4	1.8	0.9	0.0	0.0
134-591	9.8	0.0	14.7	72.3	0.0	0.9	1.3	0.0	0.0
134-592	13.3	0.5	9.0	75.7	0.0	0.0	1.4	0.0	0.9
134-593	18.8	0.4	14.7	62.1	0.0	3.1	0.4	0.0	0.4
134-594	32.1	6.7	33.5	13.8	0.0	1.3	11.6	0.0	0.9
134-595	42.9	4.5	18.3	27.7	3.6	0.0	1.8	0.0	1.3
:	:	:	:	:	:	:	:	:	:
Average for 250KM ²	12.9	1.3	8.2	62.0	4.5	6.2	2.2	0.2	2 . 5

1. Residential.

2. Irrigation.

The precise determination of characteristics of land use obtained by using a pixel-to pixel basis were analyzed to determine the best grouping of the spectral classes into functional classes. A total of 11 categories (8 for urban, 3 for rural) were selected and presented in table 3.

Table 3. Functional Land Use Classes Employed on Computer Maps

	Functional Land Use	Spectral Classes Comprised
Urban	commercial	1,2,3,14
	mobil homes	5
	residential	6,9,10,13,15,16,17,18,19,20,21
	parking lots	8,22
	unimproved open space	11
	(bare)	
	improved open space	12
	(irrigated)	
	unimproved open space	23,24,25,26,28,29,30
	(with trees)	
	water	27
Rural	grazing and cropland	1,2,3,5,6,8,9,10,11,12,13,14, 15,16,17,18,19,20,21,22,23
	tree covered	24,25,26,28,29,30
	water	27

(2) Marion County Study (Ref. 11, 2A-23)

Figure 1. Computer-Classified Land-use Map of the Fremont Area, California. Map is derived from scanner digital tapes of ERTS-1 scene 1003-18175, 26 July 1972. It demonstrates use of separate classifications for Urban and Nonurban. Classification uses LARSYS pattern recognition algorithms, and was produced at Purdue University, Laboratory for Applications of Remote Sensing (LARS). Urban area is defined by one-kilometer UTM grid cell (zone 10) from USGS Census Cities ERTS experiment 1970 land-use map and NASA aircraft photography. Land use areas are aggregated by class and kilometer grid cell. Each pixel represent 0.465 hectares (1.1 acre). Urban classes: Commercial-Industrial (1); Mobile Homes (V); Residential (M); Parking Lots (·); Unimproved Open Space, Bare (-); Unimproved Open Space, Trees (/); Improved Open Space-Irrigated (+); Water (0). Nonurban: Grazing and Cropland ('); Trees (X); Water (0). Large unclassified areas (blank) are salt evaporation ponds.

Figure 6a. Portion of ERTS-1 RBV View, San Francisco Bay Region. View is from Band 3 (red), frame 1003-18175, 26 July 1972, three days after launch. This is same view for which digital data from the four-channel multispectral scanner (MSS) are used to classify land use by computer-aided techniques (Figure 6b). Twenty-kilometer UTM grid (zone 10) and thirty-minute geographic grid fitted by U.S. Geological Survey. Position of grids meet Federal map accuracy standards. Fog and San Francisco Bay at left (west); San Joaquin Valley and large irrigated fields at right; Hayward and Freemont areas at southeast side of San Francisco Bay.

Figure 6b. Portion of computer-classified land use map of San Francisco Bay Region. Map is derived from ERTS-1 scanner digital data, frame 1003-18175, 26 July 1972. Classification, by Purdue/LARS, uses eight Urban classes, and three Nonurban classes (Figures 4 and 5). Urban area, defined by one-kilometer UTM grid (Zone 10), is from USGS Census Cities ERTS experiment and NASA aircraft photography. The grid facilitates comparison with corresponding ERTS-1 RBV scene (Figure 6a). Map is produced at 1:48,000 by classifying every other pixel in every other scan line. About 6500 square kilometers (or just under one-tenth of one percent of U.S. land area) were classified on LARS IBM 360-67 in about thirty minutes' computer time. Aggregation of areas by land use class and kilometer grid square can also be generated. It may soon be operationally and economically feasible to compile manuscript land use maps for large areas by this method, using additional Nonurban classes. Then edit and adapt to more conventional functional classes. Perhaps, draw use boundaries by conventional cartography or computer graphic methods, and publish maps at 1:50,000 to 1:250,000. Area measurement and land use change data by grid cell, or user jurisdiction area, would be valuable by-products. (-Ellefsen, Swain, and Wray, Figure 6b)

While many urban land uses exhibit spectrally seperable characteristics, permitting. Accurate identification through application of classifier, other important land use do not. For example, some older residential area have been confused with grassy area or agricultural area. The objectives in this study were to investigate further the spectral characteristics of these 'problem' areas. The hypothesis tested was that whether areas of misclassification could be identified by numerical (spectral) characteristics other than single spectral class. Parameters such as mean, range, standard deviation, and correlation coefficients were they key components of the investigation.

The resulting cluster map of marion county gaue important dues to the spectral classes of urban land cover phenomenon. Samples were extracted by rectangular training form and were located for the following land uses:

- 1. Single family residential.
- 2. Multi-family residential.
- 3. Grassy (open) areas.
- 4. Trees.
- 5. Commercial/Industrial.
- 6. Cloud.
- 7. Cloud shadow
- 8. Water.

sequences of externally derived estimates of changes in population or economic activity on the spatial organization of a region or urban area.

The lowry model makes two basic assumptions about the factors governing the location of activities in regions and urban areas. First, it is assumed that an individual choice of residential location is directly influenced by the location of his place of work. Second, it is assumed that economic activities (like employments or trips) can be divided into two categories on the basis of their locational requirement. They are basic activities where their location within the area is determined by factors outside the scope of the model, or as service activities (derived activities) where their location is seen to be largely a function of the distribution of population.

		BASIC ACTIVITIES
SERVICE	ACTIVITIES	

On the basis of these assumptions, the distribution of population and service employment can be predicted from a given distribution of basic employment by means of an iterative process. In this process the distribution of resident workers is first chlculated from the distribution of basic employment by means of an atiraction constrained gravity model (a kind

of single constrained gravity model, see ref. 3). Then the estimetes of resident workers are multiplied by the activity rate to convert them into residential population. Given this estimate, the destination of service trips made by the residential population can be calculated by means of production constrained gravity model (a kind of single constrained gravity model too, see ref. 3), and converted into employment estimates by multiplying them by the ratio of service jobs to total population.

The second iteration begins using the distribution of service employments (or trips) calculated in the first cycle as the input to the attraction constrained gravity model instead of the distribution of basic employment. This essentially further distribute residential population and service employment for each iteration after iteration 2.

In this way a series of calculations is repeated until an equilibrium is reached which is generally after 4 or 5 iterations.

The general process of lowry model can be described by a series of equations beginning with the attraction constrained gravity model which is used to find the distribution of residences of workers:

$$T_{ij} = B_{j}D_{j}W_{id}_{ij}$$
 (1)

where
$$B_j=1/(\sum_{i}W_{i}d_{ij}^{-\alpha})$$
 (2)

and
$$\Sigma T_{ij} = D_{j}$$
 (3)

 $^{\mathrm{T}}\textsc{ij:}$ The number of trips made by residents in zone i to work in zone j.

D_j: The number of jobs in zine j. In the first iteration this will represent basic employment and in subsequent iterations it will represent progressively diminishing increments of service employment.

 W_i : Some measure of the attractiveness of zone i as a residential location.

 d_{ij} : The distance between zone i and zone j, expressed in terms of the predetermined function (or constant) α .

The number of resident workers living in zine i (C_i) can be calculate by summing up the distribution of trips:

$$C_{i} = \sum_{i} T_{i,j} \tag{4}$$

This can be converted to resident population (0_i) by reference to an activity rate:

$$O_{i} = C_{i} / AR \tag{5}$$

Where AR is the activity rate expressing total employment as a proportion of total population (IE. $E_{\rm T}/P)$

From the distribution of residential population, the distribution of service trips can be calculated by a production constrained gravity model:

$$T_{ij} = A_{i0} WW_{jd} \xrightarrow{-\alpha}$$
 (6)

where
$$A_i^{=1/(\sum_j WW_j d_{i,j}^{-\alpha})}$$
 (7)

and
$$\mathbf{z}_{i,j} = 0$$
; (8)

Tij: The number of service trips made by residents in zone i to services in zine j.

O: The residential population of zine i.

 $\mathtt{WW}_{\mathtt{j}} \colon$ Some measure of the attractiveness of zone j as a service center.

The total number of service trips made to zone $j(S_j)$ can be calculated by summing up the distribution of trips:

$$S_{j} = \sum_{i} T_{ij}$$
 (9)

This figure can be converted to an estimate of service employment ($D_{i,j}$) by reference to the population service ratio: $D_{i,j}=S_{i,j}(PSR) \tag{10}$

 $D_{\mbox{ij}}$: The estimate of service employment made to zone j at the first iteration.

PSR: The ratio which express service employment as a proportion of the total population (IE, $\rm E_s/P)$

The estimate of service employment forms the input to EQ.(1) in the first step of the second cycle of calculations.

The general principal underlying this model is illustrated by a five zone example for a region with a population of

10,000 and a labor force of 5,000 of whom one third are employed in jobs classified as basic in terms of their location. The example concerns a seaport (zone 1) which is the location of the 1,000 basic jobs in the region and four other zones representing areas for development at varying distances from the port.

It is assumed that the average distance traveled within each zone is 2 miles. An internal distance matrix can be derived from the above network.

			TO ZONE									
		1		2		3		4		5		
From	1	2Miles	10	Miles	15	Miles	5	Miles	10	Miles	=42	Miles
Zone	2	10	2		10		15		20		=57	
	3	15	10		2		20		25		=72	
	4	5	15		20		2		5		=47	
	5	10	20		25		5		2		=62	

The attractiveness of each of these zones for residential development (W_i) in this example is expressed by a measure of land area:

ZONE	LAND AREA (SQUARE MILES)
1	10
2	12
- 3	12
4	, 10
5	15

The attractiveness of each of these zones for service employment in this example (W_j) is expressed by a measure of existing service floor area:

ZONE	FLOOR AREA (1000 SQUARE FEET)
1	5
2	2
3	1
<u> </u>	10
5	2

The overall activity rate will be 0.3 (IE. 3000/10000) and the population service ratio 0.2 (IE.(3000-1000)/10000). With this information, together with the assumption of used in both gravity model is Z.

A computer program for this model is constructed to solve this problem. An analysis is also contained on the last few separate sheets. By using a new AR value, AR = 0.4, the last few separate sheets are compared by a

table list below.

	POPUI		STRIBUTION	SERVICE EMPLOYMENT DISTRIBUTION			
		<i>I</i>	AR=0.4	PSR=0.2			
ZONE	Others No Change	WW3=1→5		Others No Change	WW3=l→5 Others No	∝ =2→1 Others No	
		Change	Change		Change	Change	
1	2961	2940 1799		465	455	287	
2	281	269 615		56	50	87	
3	127	185 413		23	49	40	
4	1156	1138 1216		392	384	495	
5	475	468	957	64	62	91	
TOTAL	5000	5000	5000	1000	1000	1000	

Note: When AR = 0, PSR = 0, then total percentage of basic employment will be (0.4-0.2)(100%)=20%, so the total population will be (1000)/20%=5000

The results of these studies give some indication of how models of this type might respond to change situations. The impact of the five fold increase in floor space in zone 3 is reflected in a doubling of service employment and a fifty percent increase in the residential population in this zone. A change in the work trip (α from $2 \rightarrow 1$) benefits those residential zones whose travel distance is more far away. Zone 3 possesses the most far travel behavior. Its service

employment is nearly two fold increase. And its population is nearly 3.5 times increase.

VI. URBAN LAND USE PLANNING AND MODEL USAGE BY USING REMOTE SENSOR DATA

Traditionally, aerial photography had been used extensively on both reconnaissance phase and the final location survey phase of the transportation route survey processes (ref. 9, ch. 8).

For reconnaissance purpose, an air photo base map is produced, usually to a scale of 1 inch = 200 feet, with 2-5 feet counter intervals. For final location survey purpose, usually a scale of not less than 1 inch = 100 feet is used.

Today, with the advancement of satellite remotely sensed data processing technique, many reconnaissance work criginally made by air photograph can largely be substituted by satellite without loss of exactness. Sometimes, it can create better judgements than air photography owing to its large scale and unbiased repetitive classification abilities.

When used in regional planning, the satellite processed data (imagery or picture or digitized computer output) is used to devermine land uses such as cropland, pasture, lake, stream, baren land, marsh land, mountain area, urban area,

rural area, etc., without too much difficulty as we have mentioned on above already.

For planning purpose, given a region, we can further divide them into five kinds of developmental land uses as:

- l. Developed area (urban, fringe).
- 2. Underdevelope area (rural).
- 3. Undevelope area (cropland, pasture, property (both public or private), boundary area).
- 4. Waste land (barren land, floodway, marsh land).
- 5. Unreached area (mountain, highland).

From regional planning view point, the first three land uses: developed, underdevelope, and undeveloped area, will be considered for usage most frequently.

If a region planning is grouped into this classification category, we can construct the aerial constrints, like the zonal area, resources, water supply, etc., for each zone within this study region.

HYPOTHETIC STUDY REGION

zonal variables:
area, resources,
water supply, population,
employment,....

These aerial constraints (a spatial organization) can be used as a prediction of the growth factor(s) for each zone. The growth factors can be a reflection (function) of population, employment, resources, or optimal water supply, etc.

The model is subsequently used, by using the existing information regarding population, employment and a measure of some distance parameters (factors such as α), to evaluate the future growth of each zone within this region. If the eveluation will not conform to the aerial constraints of each zone, a revised evaluation, by changing some forecasting parameter values, is again put into the original model for a renew evaluation. The process is repeated over and over until an optimal solution is obtained.

A regional-wide problem is not easy to be handled by just evaluate its model results owing to the complexities of urban or regional phenomenon. But a model is as necessary an important and convenient tool as the social and economic considerations of some local activities. Otherwise, many model forecasting parameters are goodreflections of the social and economic phenomenon implicity! Model forecasting and model planning when adequately used, will always make good judgements.

VII CONCLUSION

Even for the advantages of satellite used in land use classification and urban planning reconnaisance purposes, the importance of aerial photography cannot be overlooked.

Aerial photography is a powerful tool used in the extensive and detailed location survey phase of transportation route decisions to produce. Base maps along the preliminary augment. alignment.

From the above discussion, several ways we can expect for the satellite application on land use classification will be:

- 1. Better resolution abilities.
- 2. Improve ability to seperate functional dissimilar but spectrally similar land uses.
- 3. Use infrared imagery scanner to elimate weather considerations. in order to create better recognition of our earth land cover from the planning viewpoint.

REFERENCES

- 1. Dickey John W. (1975) 'Metropolitan Transportation Planning'
- 2. Transportation research vol. 10, 105-110 (1976) 'An Activity Model: A Demand Model for Transportation'
- 3. Ian Masser (1972) 'Analytical Models for Urban and Regional Planning'
- 4. Lowry I.S. (1964) 'A Model of Metropolis', Santa Monica, California.
- 5. Batty M. (1972) 'Recent Developments in Land Use Modeling: A Review of British Research' urban studies 9, 155-177.
- 6. Goldner, W. (1971) 'The Lowry Model Heritage' Jour A.I.P. 37, 100-110.
- 7. Ian Masser (1971) 'Possible Applications of The Lowry Model' planning outlook 11, 46-59.
- 8. Chapin, S.F. 'Urban Land Use Planning' 2nd ED., Univ. of Illinois Press, champaign-urbana, Ill. (1970).
- 9. Ritter, paquette (1967) 'Highway Engineering' 3rd ED.
- 10. Geological survey 671, 'A Land Use Classification System for Use with Remote Sensor Data' (1971), Geological survey of the United States Department of Interior.

11. Conference proceedings 'Machine Processing of Remotely Sensed Data' (1973). The laboratory for applications of remote sensing, Purdue University, IEEE catalog No. 73 cho 834-2 GE.

```
00010 0
           MAIN PROGRAM
            DIMENSION A(5,5),DD(5),W(5),WW(5),TOT1(5),TOT2(5),TOT3(5,5),
00020
           1TOT4(5,5,5),0(5),P(5),P(5),R(5),R(5),S(5,5),T(5,5),OUT1(5,5),OUT2(5,5),
00030
           20073(5,5),0UT4(5),0UT5(5),0UT6(5,5),0UT7(5,5),0UT8(5),0UT9(5,5),
00040
           30UT10(5),0UT11(5),0UT12(5),0UT13(5),0UT14(5)
00050
            INTEGER Z
00040
00076
            WRITE(6,801)
            READ(5, #/ M, Z, SL, G, GG
00080
            WRITE(6,802)
00090
            NG 111 I=1:5
00100
            READ(5,x) A(1,1),A(1,2),A(1,3),A(1,4),A(1,5)
00110
00120 111
            CONTINUE
            WRITE(6,803)
00130
            READ(5,%) DD(1),DD(2),DD(3),DD(4),DD(5)
00140
00150
            URITE(6,804)
            READ(5,#) W(1),W(2),W(3),W(4),W(5)
00160
00170
            WRITE(6,805)
00180
            READ(5,x) WW(1),WW(2),WW(3),WW(4),WW(5)
00190
            CALL LOWRY (MyZySLyDDyWyWWyAyTOT1,TOT2,TOT3,TOT4,G,GG,O,P,Q,
           1R/S:T:TTL1:TTL2:OUT1:OUT2:OUT3:OUT4:OUT5:OUT6:OUT7:OUT8:OUT9:
00200
           20UT10,0UT11,0UT12,0UT13,0UT14)
00210
00220 C
            OUTPUT OF RESIDENTIAL POPULATION ON EACH ITERATION
00230
            DO 20 IX=1,2
            WRITE(6,30) IX
00240
00250
            WRITE(6,806)
            WRITE(8,807)
00260
00070
            DG 40 I=1 x M
00230
            WRITE(6,45) I, (TOTS(I,J,IX),J=1,H),OUT2(I,IX),OUT1(I,IX)
00270 40
            CONTINUE
00300
            WRITE(3,50) (OUT3(U,IX),J=1,M),OUT4(IX),OUT5(IX)
            WRITE(6,808)
00310
00320
            WRITE(6,810)
            DO 72 I-1 M
00330
            WRITE(6,300) I,(fOT4(I,J,IX),J=1,M),OUT6(I,IX)
00340
00350 72
            CONTINUE
00360
            WRITE(6,70) (OUT7(J,1X),J=1,M),OUT8(IX)
00370
            WRITE(6,75) (OUT9(J,IX),J=1,M),OUT10(IX)
00380 20
            CONTINUE
00390
            WRITE(6.814)
00400
            WRITE (6,80)
00416
            UNITE(6,811)
00420
            WRITE(6,812)
00430
            WRITE(6,810)
00440
            DO 10 I=1,M
00450
            WRITE(6,100) I, (OUT1(I,J), J=1,Z), OUT11(I)
            CONTINUE
00460 10
00470
            WRITE(3,200) (OUT12(I),I=1,Z),TTL1
            URITE(6,813)
00460
00490
            WRITE(6,812)
            WRITE(6,810)
0.0500
```

```
no 400 I=1,M
00510
            WRITE(6,100) I, (OUT7(I,J), J=1,Z), OUT13(I)
00570
00530 400
            CONTINUE
            WRITE(6,200) (OUT14(I),I=1,Z),TTL2
00340
            FORMAT( '0', 24H
00550 30
                                        ITERATION
                                                      y I 12/)
            FORMAT(5X, ENTER M Z SL G GG/)
00540 801
00570 802
            FORMAT(5X, 'ENTER A(I TO J)')
            FORMAT(SX, 'ENTER DD(I)')
00580 803
            FORMAT(5X, 'ENTER W(I)')
00090 804
            FORMAT(UX) (ENTER WW(I) ()
00800 805
            FURMATE
                       ITERATION OF RESIDENT POPULATION()
00610 806
                           ZONE
00020 002
            FURNATO
06656
                             REST
                     TOTAL
00640
                       ITERATION OF SERVICE EMPLOYMENT()
00650 808
            FORMAT(
            FORMAT(
                          ZONE
                                             1 / 9
00660 810
                     2
00670
                              3
                    TOTAL )
00680
            FORMATK
                       TOTAL BASIC EMPLOYMENT AT EACH ITERATION()
00890 011
            FORHAT(
00700 812
                                                ITERATION NUMBER ()
            FORMAT(
00710 813
                       TOTAL SERVICE EMPLOYMENT AT EACH ITERATION()
00720 45
            FORMAT("/",17,9X,7F8,2)
            FORMATION, 16HBASIC EMPLOYMENT, 7F8.2,//)
00730 50
00740 814
            FORMATI
00250 70
            FORMAT(101,19HTOTAL SERVICE TRIP,4F8,2)
00760 75
            FORMAT( 0 1,18HSERVICE EMPLOYMENT, 6F8,2//)
            FORMAT( 00 , 10X, 17, 6F6.2)
00770 100
            FORMAT( 0/,7H TOTAL ,6F8,2//)
00780 200
            FORMAT((0/,17,10X,6F8.2)
00790 300
            FORMAT('1')
00000 80
00810
            STOP
00820
            ENT
00025 C
000m4 D
            SUBROJTINE LOWRY (MS, ZS, SLL, DDS, WS, WWS, Y, TOS1, TOS2, TOS3, TOS4,
00030
           160,003,A.B.D.F.E.SLOPE.TTOL1.TTOL2.T1.T2.T3.T4.T5.T6.T7.T8.T7.
00040
00850
           2T10, T11, T12, T13, T14)
            DIMENSION Y(NS,MS),DDS(MS),WS(MS),WWS(MS),TOS1(MS),TOS2(MS),
00560
           itosz(iis,Nis,Me),toe4(Me,Me,Me),A(Me),B(Me),D(Me),F(Me),E(Me,Me),
00370
00880
           2SLOPE(MS, MS),T1(MS, MS),T2(MS, MS),T3(MS, MS),T4(MS),T5(MS),
00090
           3T4(MS,MS),T7(MS,MC),T3(MS),T9(MS,MS),T10(MS),T11(MS),T12(MS),
00900
           4T13(MS), T14(MS)
00910
            INTEGER Z5
00920
            DO 1 1=1 MS
00930
            DO IL JEIRMS
            SLOPE(I:J)=1./Y(I:J)**SLL
00940
00950 11
            CONTINUE
            CONTINUE
00230 1
            DO 31 J=1,MS
00970
00980
            B (J) = 0 € 0
            DO 36 I-1,MS
00290
            B(J) = B(J) + WS(I) \times SLOPE(I,J)
01000
```

```
CONTINUE
01010 36
01020
            - B(J)=1./B(J)
01030 31
            CONTINUE
01040
            no 37 J=1•MS
01050
            D(J) = DDS(J)
            CONTINUE
01060 37
             00-03/(05-068)
01070
            no isi IX=1,28
01080
01090
            DO 41 I=1,MS
            TJS1(I)=0.0
01100
            T052.12-0.0
01110
01120
            DO 42 J#1,MS
            TOSSKI,J,IX)=0.0
01130
            TGS4(I.J.IX)=0.0
01140
            CONTINUE
01150 42
            CONTIMUE
01160 41
01170
            - NO 60 J=1 vMS
01180
            IF(IX.EG.ZS) D(J)=D(J)*CC
01190
            -T0S2(J)=T0S2(J)+D(J)
01200 60
            CONTINUE
01210
            DO 61 I-17MS
01220
            F(I)=0.0
            D0 71 J=1.4MS
01230
            E(I:J)=B(J)*D(J)*D(J)*WS(I)*SLOPE(I:J)
01140
01206
            TOSS.I.J.IX)=TOSS(I.J.IX)+E\I.J.
            P(I)=P(I)+E(I,J)
01260
01270 71
            CONTINUE
01280 61
            CONTINUE
            SC SI I=1,MS
01290
            PRID-FRIDZGS
01300
            T031(I)=T081(I)+P(I)
01310
vi320
            TIKINIKD=TOSIKI)
            T2(I:IX)=T1(I;IX)#GS
0:330
01340 81
            CONTINUE
            DO 65 J=1:MS
0.350
            T3(J,IX)=0.0
01360
            DO 70 I=1,MS
64370
01380
            T3(J,IX)=T3(J,IX)+T0S3(I,J,IX)
            CONTINUE
01370 70
01400 65
            CONTINUE
01410
            T4(IX)=0.0
01420
            - DO 77 J=1,46
            T4(IX)=74(IX)+T3(J,IX)
01430
01440 77
            CONTINUE
01450
            T5(IX)-T4(IX)/68
01460 0
01470
            DO 86 I-avMS
            A(1)=0.0
01480
01490
            DO 92 JelyMS
01500
            A(I)=A(I)+WWS(J)#SLOPE(I,J)
```

```
01040 92
             CONTINUE
01520
             A(I)=1./A(I)
01530 86
             CONTINUE
01540 C
01550
             DO 91 I=1,MS
01560
             DO 101 J=1,MS
01570
             E(I,J)=A(I)*F(I)*WWS(J)*SLOPE(I,J)
01580
             TOS4(I,J,IX)=TOS4(I,J,IX)+E(I,J)
01590 101
             CONTINUE
01400 91
             CONTINUE
01610 0
             DO 111 J=17MS
01620
01630
             D(J)=0.0
01640
             DO 121 I=1,MS
01650
             D(J) = D(J) + E(I \times J)
01660
             TZ(J,IX)=D(J)
01670
             T9(J, IX)=T7(J, IX)*G65
01680 121
             CONTINUE
             D(J)=D(J)*GGS
01690
01700 111
             CONTINUE
01710 C
01220
             DO 120 I=1,MS
01730
             To(1:1X)=0:0
01740
             DO 130 J-1:MS
01750
             T&(I)IX)=T&(I,IX)+TOS4(1,J,IX)
01760 130
             CONTINUE
01770 120
             CONTINUE
01780
             T8(IX)+0.0
             DO 140 I=1,MS
01770
01800
             TS(IX)=TS(IX)+T6(I,IX)
01810 140
             CONTINUE
01020
             T10(IX)=T8(IX)*GGS
01830 131
             CONTINUE
01040 C
             DO 145 I=1,MS
01350
             T11(I)=0.0
01860
01870
             DC 155 J=1,ZS
01880
             T11(I) = T11(I) + T1(I, J)
01690 155
             CONTINUE
01900 145
             CONTINUE
             DO 160 J=1,ZS
01910
01920
             T12(J)=0.0
             DC 170 I=1,MS
01930
01940
             T12(J) = T12(J) + T1(I,J)
01950 170
             CONTINUE
01960 160
             CONTINUE
01970
             TTOL 1=0.0
             DO 180 J=1,ZS
01980
01296
             T70L1=T70L1+T12(J)
02000 180
             CONTINUE
```

```
CUM
C1 COMPILER ENTERED
COURCE ANALYZED
PROGRAM NAME = MAIN

* NO DIAGNOSTICS GENERATED
SOURCE ANALYZED
PROGRAM NAME = LOWRY

* NO DIAGNOSTICS GENERATED
#STATISTICS* NO DIAGNOSTICS THIS STEF :
```

DATA:

20NE NO. (2): 5

ITERATION NO. (M): 5

OX (5L): 2

AR (G): 0.3

PSR (GG): 0.2

5,2,1,10,2

ITERATION OF RES	1 1 775.57 37.23 13.55 124.10 13.54 1000.00	ULATION 2 0.0 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0	5 0.0 0.0 0.0 0.0 0.0	37.23 16.55 124.10 43.54	RES 2585.31 124.10 55.15 413.65 155.12 3503.33
ITERATION OF SEP ZONE 1 2 3 4 5 TOTAL SERVICE TRE SERVICE EMPLOYERS		2 30.52 101.81 3.44 1.52 0.81	3 6.78 2.04 43.03 0.37 0.24 52.48 10.50	4 610.30 7.05 4.30 370.47 64.86 1058.97	5 30.52 1.02 0.55 11.86 61.08 125.0	413.6; 155.1; 2 3333.;	
T TO THE A TALL THE A	TON		<u>~</u> &				
ITERATION OF RES	DENT POP 301.87 14.59 6.48 40.42 10.22 391.79	ULATION 2 0.84 20.04 1.00 0.37 0.31 27.50	3 0.15 0.37 7.00 0.08 0.08	4 23.64 5.15 1.77 147.77 35.46 211.80	5 0.58 0.17 0.11 2.33 21.81 25.00	TOTAL 327.07 43.36 17.17 197.16 75.70 666.67	RES 1096.91 144.54 63.89 663.86 202.79 2222.22
ITERATION OF SER ZONE 1 2 3 4 5 TOTAL SERVICE TRE SERVICE ENCLOSHER		110.95 110.55 3.99 0.11 1.32 133.95	3 2.88 2.37 49.85 0.59 0.42 54.12		5 12.95 1.19 0.64 17.03 132.23 166.0)) ; 22

å time et til de	- 775 t Z						
ITERATION OF RESI			Z	A	5	TOTAL	RES
ZONE	1	2		4			
1 2	137,48 6,60	0.84 25.25	0.16 0.42	21.76 2.90	0.77 0.23	161.01 35.40	536.70 118.00
				1.60			
	2.73	1.01	10.48		0.15	16.20	54.01
4) 	22.00	0.37	0.07	136.02	3.09	161.57	535.57
ω	8.25 177.26	0.32	0.00	72.65	28.96	70.26	254.17
DAGIC EMPLOYMENT	The state of the health of	27.77	11.22	124.97	33.21	44,44	4 44 Co. 4 44 Co.
ITERATION OF SECU	TOE EMPL	NYMENT					
ZONE	1	2	3	* 4	5	TOTAL	
-i	375.93	6.33	1.441	126.70	6.35	536.70	
	9,49	93.81	1.54	8.61	0.97		
dis my Nat	3.75	- 3,37	42.14	4.21	0.54	34.01	
4	30,09	1.72	0.48	402.35	15.44		
r:	12.24	1.22	0.39	97.93	122.41	234.19	
TOTAL SERVICE TRIF	. Armam		46.35		145.69		ž.
SERVICE EMPLOYMENT		21.89	9,27		29.14		
And faced for the state of the	7 a v V 1	X V C) /	7 * X 7	3. 4 G & 2 G	X 7 V .L	1 A 7 C.7 4 A	•
ITERATI	on:		\hat{A}_{q}^{\dagger}				
	on Dent for	ULATION	Ą				
		ULATION 2	4 3	á.	ij	T0T4L	RES
ITERATION OF RESI	DENT FOF	,,		4 16.07	J 0.58	TOTAL 80.72	RES 296.41
ITERATION OF REGI ZONE 1	DENT FOF	2 0.66	3 0.13	16.07	0.68	88.72	296.41
ITERATION OF REGI ZONE 1	DENT FOF i 71.30	<u>~</u>	3 0.13 0.35	16.07 2.14	0.38 0.20	88.72 26.01	
ITERATION OF REGI ZONE 1 2 2 3	DENT FOF 1 71.30 3.43 1.52	2 0.66 19.89 0.80	3 0.13 0.35 6.66	16.07 2.14 1.21	0.38 0.20 0.13	88.92 26.01 12.31	296.41 86.69 41.03
ITERATION OF REGI ZONE 1 2	DENT FOF 1 71.30 3.43	2 0.46 17.89	3 0.13 0.35 6.44 0.07	16.07 2.14	0.38 0.20	88.72 26.01	296.41 88.69
ITERATION OF REGI ZONE 1 2 3 4	DENT FOF 1 71.30 3.40 1.52 11.42	2 0.66 17.89 0.30 0.29	3 0.13 0.35 6.44 0.07	16.07 1.14 1.21 100.44	0.48 0.20 0.13 2.71	88.72 26.01 12.31 114.94	296.41 86.69 41.03 383.12
ITERATION OF REGI ZONE 1 2 3 5 EASIC EMPLOYMENT	DENT FOF 1 71.30 3.40 1.52 11.42 4.28 72.04	2 0.66 17.89 0.30 0.29 0.25 21.09	3 0.13 0.25 6.66 0.07	16.07 2.14 1.21 100.44 24.10	0.38 0.20 0.13 2.71 25.42	88.72 26.01 12.31 114.74 54.12	296.41 88.39 41.03 383.12 180.40
ITERATION OF REGI ZONE : : : : : : : : : : : : : : : : : : :	DENT FOF 1.30 3.43 1.52 11.42 4.28 70.04	2 0.66 17.89 0.30 0.29 0.25 21.09	3 0.13 0.35 6.66 0.07 0.07 9.27	16.07 2.14 1.21 106.44 24.10 143.96	0.38 0.20 0.13 2.71 25.42 27.14	88.72 26.01 12.31 114.94 54.12 292.29	296.41 88.39 41.03 383.12 180.40
ITERATION OF REGI ZONE 1 2 3 4 5 DASIC EMPLOYMENT ITERATION OF SERV ZONE	DENT FOF 1 71.30 3.40 1.52 11.42 4.28 70.04	2 0.66 17.89 0.30 0.29 0.25 21.09	3 0.13 0.35 6.66 0.07 0.07 9.27	16.07 2.14 1.21 100.44 24.10 143.96	0.38 0.20 0.13 2.71 20.42 29.14	88.72 26.01 12.31 114.74 54.12 296.29	296.41 88.39 41.03 383.12 180.40
ITERATION OF REGI ZONE 1 2 3 4 5 PASIC EMPLOYMENT ITERATION OF SERV ZONE 1	DENT FOF 1 71.30 3.40 1.52 11.42 4.28 70.04	2 0.66 17.89 0.30 0.29 0.25 21.89 0YMENT 2 3.50	3 0.13 0.35 6.66 0.07 0.07 9.27	16.07 2.14 1.21 106.44 24.10 143.96	0.38 0.20 0.13 2.71 20.42 29.14	88.92 26.01 12.31 114.94 54.12 296.29 TOTAL 296.41	296.41 88.39 41.03 383.12 180.40
ITERATION OF REGI ZONE 1 2 3 5 DASIC EMPLOYMENT ITERATION OF SERV ZONE 1 2	DENT FOF 1 71.30 3.40 1.52 11.42 4.28 72.04 TCE EMPL 1 210.44 7.11	2 0.66 17.89 0.30 0.25 21.09 0YMENT 2 3.50 71.13	3 0.13 0.35 6.66 0.07 0.07 9.27	16.07 2.14 1.21 106.44 24.10 143.96	0.38 0.20 0.13 2.71 20.42 29.14 5 3.50 0.71	88.72 26.01 12.31 114.94 54.12 293.29 TOTAL 293.41 86.49	296.41 88.39 41.03 383.12 180.40
ITERATION OF REGI ZONE 3 5 DASIC EMPLOYMENT ITERATION OF SERV ZONE 1 2 3	DENT FOF 1.30 3.43 1.52 11.42 4.28 70.04 TOE EMPL 1 210.66 7.11 2.85	2 0.66 17.89 0.30 0.29 0.25 21.09 0YMENT 2 3.50 71.13 2.56	3 0.13 0.35 6.33 0.07 0.07 9.27	16.07 2.14 1.21 106.44 24.10 143.96	0.38 0.20 0.13 2.71 25.42 29.14 5 3.50 0.71 0.41	88.72 26.01 12.31 114.94 54.12 292.29 TOTAL 296.41 86.69 41.03	296.41 88.39 41.03 383.12 180.40
ITERATION OF REGI ZONE 3 3 5 DASIC EMPLOYMENT ITERATION OF SERV ZONE 1 2 3	DENT FOF 1.70 7.40 1.52 11.42 4.28 70.04 TOE EMPL 1 2.85 27.45	2 0.66 17.89 0.30 0.29 0.25 21.09 0YMENT 2 3.50 71.13 2.54 1.22	3 0.13 0.35 6.44 0.07 0.07 9.27	16.07 2.14 1.21 106.44 24.10 143.96 4 69.97 6.32 3.20 343.12	0.38 0.20 0.13 2.71 25.42 27.14 5. 3.50 0.71 0.41 10.98	88.72 26.01 12.31 114.94 54.12 296.29 TOTAL 296.41 86.69 41.03 383.12	296.41 88.39 41.03 383.12 180.40
ITERATION OF REGI ZONE 3 3 5 EASIC EMPLOYMENT ITERATION OF SERV ZONE 1 2 3 4 5	DENT FOF 1.30 3.40 1.52 11.42 4.28 70.04 TOE EMPL 1 218.45 7.41 2.85 27.45 9.43	2 0.66 17.89 0.30 0.29 0.25 21.09 0YMENT 2 3.50 71.13 2.56 1.22 0.94	3 0.13 0.35 8.66 0.07 0.07 9.27 3 0.76 1.42 32.01 0.34 0.34	16.07 2.14 1.21 106.44 24.10 143.96 4 59.97 6.32 3.20 343.12 75.40	0.38 0.20 0.13 2.71 20.42 29.14 5 3.50 0.71 0.41 10.98 74.27	88.92 26.01 12.31 114.94 54.12 296.29 TOTAL 296.41 86.69 41.03 383.12 180.40	296.41 66.69 41.03 383.12 180.40 987.65
ITERATION OF REGI ZONE 3 3 5 DASIC EMPLOYMENT ITERATION OF SERV ZONE 1 2 3	DENT FOF 1.70 7.40 1.52 11.42 4.28 70.04 TOE EMPL 1 2.85 27.45	2 0.66 17.89 0.30 0.29 0.25 21.09 0YMENT 2 3.50 71.13 2.54 1.22	3 0.13 0.35 6.44 0.07 0.07 9.27	16.07 1.14 1.21 100.44 24.10 143.96 4 69.97 6.32 3.20 343.12 75.43 420.05	0.38 0.20 0.13 2.71 25.42 27.14 5. 3.50 0.71 0.41 10.98	88.92 26.01 12.31 114.94 54.12 296.29 TOTAL 296.41 86.69 41.03 383.12 180.40	296.41 66.69 41.03 383.12 180.40 987.65

ITERATION

ITERATION OF RES	IDENT POPU	JLATION					
ZOME	1	€*) A	3	^ **	5	TOTAL RE	S
-1	123,55	1.44	0.29	33.36	1.53	160.17 53	3.91
2	5.93	43.26	0.76	4.45	0.46	54.87 18	2.91
3	2.64	1.73	19.52	2.50	0.29	26.69 8	8.96
4		0.64	0.16	208.49	6.13	235.19 78	3,98
ਦਾ ਪੰ	7.41	0.54	0.16	50.04	57.51	115.66 38	5.53
BAGIC ENPLOYMENT	159.30	47.61	20,51	278.83	65.94	592.59 197	5.29
ITERATION OF SER	VICE EMPL	DYMENT					
ZONE	i.	Z	ä	Δγ	Ü	TOTAL	
	373.07	6.30	1.40	126.04	6.50	533.91	
2	15.01	130.07	5.00	15.34	1.50	182.51	
J	6.17	5.55	69.41	6.94	0.59	85.76	
A	56.17	2.50	0.70	702.14	22.47	783.98	
5	20.15	2.02	0.64	161.21	201.51	385.53	
TOTAL SERVICE TRI	T 491.37	166.43	75.15	1009.67	232.67	1975.29	
SERVICE EMPLOYMEN	7 75.27	33.29	15.03	201.93	46.53	395.06	

		ITERATIO	N NUMBER			
ZONE	.: .i.	<u>-</u>	 	÷	Ç.	TOTAL
- !	2585	.31 1096.9	1 536.70	276.41	533.91	5049.25
, 	4 57 5 4 54 77 4	.10 144.5	34 118.00	86.69	182.71	656.25
	55,		54.01	41.03	88.96	303.04
4	415,			383.12	783.98	2783.20
Ü	a pylon A salan s	.12 252.9	9 234,19	180.40	385,53	1208.14
	The SSS.	many manager of	small and and	987.65	1975.29	9999,90
TAL SERVI	CE EMPLOYME			ON		
**** *** * * ****	CE EMPLOYME	INT AT EAC ITERATIC 2		OK 4	 U	TOTAL
ZONE		ITERATIO Z	N NUMBER 3	4		
ZONE i		ITERATIO 2 .75 886.2)N NUMBER 3 :8 460.18	4 245.50	5 491.37 166.43	TOTAL 312.40 126.43
ZONE		ITERATIO 2 .95 866.2 .90 130.9	NUMBER 3 18 460.18 15 107.46	4 245.50 79.35	491.37	812.40 126.41
ZONE 1 2	: 1755. 157.	ITERATIO 2 .75 886.2 .70 133.9 .48 56.1	0N NUMBER 3 36 440.18 5 107.46 2 46.35	4 265.50 79.35	491.37 166.43	312.40
ZONE 1 2 3	: 1755, 157, 52,	TTERATIO 2 .75 886.2 .70 133.9 .48 56.1	N NUMBER 3 8 460.18 5 107.46 2 46.35 4 719.79	4 265.50 79.35 34.86 498.03	491.37 166.43 75.15	812.4 126.4 52.9

RUK
G1 COMPILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = MAIN
* NG DIAGNOSTICS GENERATED
SOURCE ANALYZED
PROGRAM NAME = LOWRY
* NG DIAGNOSTICS GENERATED
#STATISTICS* NO DIAGNOST#CS THIS STEF :

SENSITIVITY AVALYSIS:

WHEN AR CHANGE FROM 0.3 -> 0.4

```
ENTER A I SL G GG
T
T
5,5,2,.4,.2
ENTER A(I TO J)
T
2,10,10,5,10
T
10,2,10,15,20
T
15,10,2,20,25
T
5,15,20,2,5
T
10,20,25,5,2
ENTER DD(I)
T
10,12,12,10,15
ENTER W(I)
T
5,2,1,16,2
```

ITERAT	ION		1.				
ITERATION OF RES ZONE 1 2 3 4 5 BASIC EMPLOYMENT	1 775.59 37.23 16.55 124.10 46.54	2 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0	4 0.0 0.0 0.0 0.0 0.0		TOTAL 775.59 37.23 16.55 124.10 46.54 1000.00	
ITERATION OF SER ZONE 1 2 3 4 5 TOTAL SERVICE TRI SERVICE EMPLOYMEN	1 1430.40 7.64 2.87 22.23 6.08 F 1469.21	2 22.89 76.36 2.58 0.99 0.61 103.42	3 5.09 1.53 32.27 0.28 0.19 39.34 7.87	277.85 48.65 794.24	93.7	41.37 310.24 116.34	, , } } } }
ITERAT	ION		2				
ITERATION OF RES ZONE 1 2 3 4 5 BASIC EMPLOYMENT	1 227.90 10.94 4.86 36.46 13.67 293.84	2 0.63 18.79 0.75 0.28 0.23	7.35 0.06	4 17.73 2.36 1.33 110.82 26.60 158.85	0.08 1.74	TOTAL 246.81 32.52 14.38 149.37 56.92 500.00	RES 617.01 81.30 35.74 373.43 142.31 1250.00
ITERATION OF SER ZONE 1 2 3 4 5 TOTAL SERVICE TRI SERVICE EMPLOYMEN	1 455.18 6.67 2.49 26.76 7.44 P 498.53	2 7.28 66.76 2.24 1.19 0.74 78.16	1.33 28.04 0.33 0.24	2.80 334.45 59.51 546.34	0.36 10.70 74.38	81.30 35.94 373.43 142.31 9 1250.0) ; ; , 00

ITERATION 3

ITERATION OF RESIDENCE TO THE PROPERTY OF T	1 77.33 3.71 1.45 12.37	2 0.47 14.20 0.57 0.21	0.09 0.24 5.89 0.05 6.05	4 12.24 1.63 0.92 76.51 18.36	0.13 0.08 1.74	90.57 19.91 9.11 90.88	RES 226.42 49.78 22.76 227.21 98.80 625.00
ITERATION OF SERVE IONE 1 2 3 4 5 TOTAL SERVICE TRIP SERVICE EMPLOYMENT	1 167.03 4.08 1.59 16.23 5.16	2 2.67 40.84 1.42 0.72 0.52 46.18	19.56	4 53.45 3.63 1.78 203.47 41.31 303.66 60.73	6.51 51.64 61.42	TOTAL 226.42 49.78 22.78 227.21 98.80 625.00	
ITERATION OF RESIDENCE TO THE STATE OF THE S	DENT POPU 1 30.11 1.45 0.44 4.82	2 0.26 8.39 0.34 0.12	0.05 0.15 3.45 0.03 0.03			TOTAL 37.51 10.97 5.19 48.49 22.83 125.00	RES 93.77 27.43 12.76 121.22 57.03 312.50
ITERATION OF SERVE ZONE 1 2 3 5 TOTAL SERVICE TRIP SERVICE EMPLOYMENT	1 69.19 2.25	2 1.11 22.50 0.31 0.32 0.33	3 0.25 0.45 10.13 0.11 0.10 11.03 2.21		5 1.11 0.23 0.13 3.47 29.84 34.77 4.95		

10,00

ITERATION OF RESIDENT POPULATION 3 RES 1 TOTAL ZONE 7.04 0.32 0.06 33.79 1. 26.06 0.30 84.47 1.25 9.12 0.94 0.16 0.10 11.58 28.94 0.58 0.36 4.12 0.53 0.06 5.63 14.07 49.61 4,17 0.03 0.14 1.29 43.98 124.03 0.03 10.55 12.13 24.40 60.99 1.56 0.11 BASIC EMPLOYMENT 33.60 10.04 4.41 63.03 13.91 125.00 312.50 ITERATION OF SERVICE EMPLOYMENT ZONE 1. 5 TOTAL 62.31 0.22 84.47 1 1.00 19.94 1.00 2.37 23,74 0.47 2.11 0.24 28,94 0.98 0.88 10.98 1.10 0.14 14.07 0.09 0.39 0.11 111.08 3.55 124.03 3.19 0.32 0.10 25.50 31.88 60.99 TOTAL SERVICE TRIP 77,74 26,33 11.89 159.73 36.81 312.50

2.38 31.95

7.36

62,50

UIAL DAG	SIC EMPLO	OYMENT AT	T EACH I	TERATION			
		1.	TERATION				
ZONE.		il.	2	3	4	5	TOTAL
ä.		1938.97	617.01	226.42	93.79	84.47	2960.67
,		73.07	81.30	49.78	27.43	20.94	280.53
3		41.37	35.94	22.78	12.98	14.07	127.14
4		310.24	373,43	227.21	121.22	124.03	1156.13
5		116.34	142.31	98.80	57.08	60.97	475.52
	TOTAL	2500.00	1250.00	625.00	312.50	312.50	4999.98
OTAL SER	VICE EM	PLOYMENT IT	AT EACH MEATION	ITERATIO NUMBER	IN		
OTAL SER ZOWE	WICE EM				IN A	5	TOTAL
ZONE i	WICE EM	.i.	MOITEARE	NUMBER		5 77.74	TOTAL 464.73
ZONE 1 2	WICE EM	1	TERATION 2	NUMBER 3	Ą		
ZONE i	VICE EM	1 1 1469.21	TERATION 2 498.53	NUMBER 3 194.14	4 94.01	77.74	464.73
ZONE 1 2	(VICE E M	1 1 1469.21 103.42	FERATION 2 498.53 78.16	NUMBER 3 194.14 46.18	4 94.01 25.11	77.74 26.33	464.73 55.84
ZONE 1 2 5	(VICE EM	1 1 1469.21 103.42 39.36	TERATION 2 498.53 78.16 31.57	NUMBER 3 194.14 46.18 19.56	4 84.01 25.11 11.03	77.74 26.33 11.89	464.73 55.84 22.68

5.27

SERVICE EMPLOYMENT

RUN
G1 COMPILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = MAIN
* NO DIAGNOSTICS GENERATED
SOURCE ANALYZED
PROGRAM NAME = LOWRY
* NO DIAGNOSTICS GENERATED
**STATISTICS* NO DIAGNOSTICS THIS STEF :

SENSITIVITY ANALYSIS:

WHEN AR CHANGE FROM 0.3 → 0.4

AND WW3: 1→S

```
ENTER M Z SL 6 00
\mathcal{P}
   5,5,2,,4,,2
   ENTER A(I TO J)
Ŧ
   2,10,15,5,10
   10,2,10,15,20
   15,10,2,20,25
   5,15,20,2,5
   10,20,25,5,2
   ENTER DD(I)
   1000,0,0,0,0
   ENTER W(I)
   10,12,12,10,15
   ENTER WW(I)
   5,2,5,10,2
```

TERATION OF SERVICE EMPLOYMENT 1	ITERATION OF RESEZONE 1 2 3 4 5 LASIC EMPLOYMENT	1 775.59 37.23 16.55 124.10 46.54	2 0.0 0.0 0.0 0.0	3 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	37.23 16.55 124.10 46.54	RES 1938.99 93.07 41.37 310.24 116.34 2500.00
ZONE	TTERATION OF SER	VICE EMPL	DYMENT					
TITERATION OF RESIDENT FORULATION ZONE	ZONE 1 2 3 4 5 TOTAL SERVICE TRI	1 1415.55 7.17 0.70 22.15 6.04 F 1451.60	2 22.65 71.65 0.63 0.98 0.60 96.52	25.17 7.17 39.16 1.38 0.97 73.84	452.98 6.37 0.78 276.86 48.32 785.31	22.65 0.72 0.10 8.86 60.40 92.73	1938.99 93.07 41.37 310.24 116.34	7 7 1 100
TITERATION OF RESIDENT POPULATION ZONE								
ZONE	ITERAT	ION		2				
ZONE 1 2 3 4 5 TOTAL RES 1 225.17 0.58 0.20 17.53 0.43 243.92 609.81 2 10.31 17.54 0.55 2.34 0.13 31.37 78.41 3 4.80 0.70 13.77 1.31 0.08 20.69 51.73 4 33.03 0.26 0.11 109.56 1.73 147.71 369.26 5 13.51 0.22 0.11 26.30 16.18 56.32 140.79 BADIC EMPLOYMENT 290.32 19.30 14.77 157.06 18.55 500.00 1250.00 ITERATION OF SERVICE EMPLOYMENT ZONE 1 2 3 4 5 TOTAL 1 445.19 7.12 7.91 142.46 7.12 609.81 2 6.04 60.37 6.04 5.37 0.60 78.41 3 0.87 0.78 48.97 0.98 0.13 51.73 4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79	grand propriet and section of the propriet and the section of	ar was made a ma re of the constraint	The Alexander 2000 to					
1 225.17				77.	A	m;	TOTAL	RES
2 10.81 17.54 0.55 2.34 0.13 31.37 78.41 3 4.80 0.70 13.77 1.31 0.08 20.69 51.73 4 33.03 0.26 0.11 109.58 1.73 147.71 369.26 5 13.51 0.22 0.11 26.30 16.18 56.32 140.79 BABIC EMPLOYMENT 290.32 19.30 14.77 157.06 18.55 500.00 1250.00 ITERATION OF SERVICE EMPLOYMENT ZONE 1 2 3 4 5 TOTAL 1 445.19 7.12 7.91 142.46 7.12 609.81 2 4.04 60.37 6.04 5.37 0.60 78.41 3 0.87 0.78 48.97 0.98 0.13 51.73 4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79				ŏ.20				
3 4.90 0.70 13.79 1.31 0.08 20.69 51.73 4 30.03 0.26 0.11 109.58 1.73 147.71 369.26 5 13.51 0.22 0.11 26.30 16.18 56.32 140.79 BASIC EMPLOYMENT 290.32 19.30 14.77 157.06 18.55 500.00 1250.00 170.00							31.37	78.41
4 33.03 0.26 0.11 109.58 1.73 147.71 369.26 5 13.51 0.22 0.11 26.30 16.18 56.32 140.79 BABIC EMPLOYMENT 290.32 19.30 14.77 157.06 18.55 500.00 1250.00 ITERATION OF SERVICE EMPLOYMENT ZONE 1 2 3 4 5 TOTAL 1 445.19 7.12 7.91 142.46 7.12 609.81 2 6.04 60.37 6.04 5.37 0.60 78.41 3 0.87 0.78 48.97 0.98 0.13 51.73 4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79					1.31	0.08	20.69	51.73
BASIC EMPLOYMENT 290.32 19.30 14.77 157.06 18.55 500.00 1250.00 ITERATION OF SERVICE EMPLOYMENT ZONE 1 2 3 4 5 TOTAL 1 445.19 7.12 7.91 142.46 7.12 609.81 2 6.04 60.37 6.04 5.37 0.60 78.41 3 0.87 0.78 48.97 0.98 0.13 51.73 4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79						1.73	147.71	369.26
ITERATION OF SERVICE EMPLOYMENT ZONE 1 2 3 4 5 TOTAL 1 445.19 7.12 7.91 142.46 7.12 609.81 2 6.04 60.37 6.04 5.37 0.60 78.41 3 0.87 0.78 48.97 0.98 0.13 51.73 4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79					26.30	16.18	56.32	140.75
ZONE 1 2 3 4 5 TOTAL 1 445.19 7.12 7.91 142.46 7.12 609.81 2 6.04 60.37 6.04 5.37 0.60 78.41 3 0.87 0.78 48.97 0.98 0.13 51.73 4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79	BASIC EMPLOYMENT	290.32	19.30	14.77	157.06	18.55	500.00	1250.00
1 445.19 7.12 7.91 142.46 7.12 609.81 2 6.04 60.37 6.04 5.37 0.60 78.41 3 0.87 0.78 48.97 0.98 0.13 51.73 4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79								
2 6.04 60.37 6.04 5.37 0.60 78.41 3 0.87 0.78 48.97 0.98 0.13 51.73 4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79	ITERATION OF SER	VICE EMPL						
3 0.87 0.78 48.97 0.98 0.13 51.73 4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79	ZONE	<u>.</u>	2		•			
4 26.36 1.17 1.65 329.54 10.55 369.26 5 7.31 0.73 1.17 58.48 73.10 140.79	ZONE 1	1 445.19	2 7.12	7.91	142.46	7.12	609.81	
5 7.31 0.73 1.17 58.48 73.10 140.79	ZONE 1	1 445.19 6.04	2 7.12 60.37	7.91 6.04	142.46 5.37	7.12 0.60	609.81 78.41	i.
	ZONE 1 2 3	1 445.19 6.04 0.87	2 7.12 60.37 0.78	7.91 6.04 48.97	142.46 5.37 0.98	7.12 0.60 0.13	609.81 78.41 51.73	I. 3
	ZONE 1 2 3 4	1 445.19 6.04 0.87 26.36	2 7.12 60.37 0.78 1.17	7.91 6.04 48.97 1.65	142.46 5.37 0.98 329.54	7.12 0.60 0.13 10.55	609.81 78.41 51.73 369.20	i. 3 5
SERVICE EMPLOYMENT 97.15 14.04 13.15 107.36 18.30 250.00	ZONE 1 2 3 4 5	1 445.19 6.04 0.87 26.36 7.31	2 7.12 60.37 0.78 1.17 0.73	7.91 6.04 48.97 1.65 1.17	142.46 5.37 0.98 329.54 58.48	7.12 0.60 0.13 10.55 73.10	609.81 78.41 51.73 369.20 140.73	i. 3 5

ITERATI	UN		చ				
ITERATION OF RESI	DENT POP						
ZONE	1	2			5		RES
1				11.98		88.37	220.91
en Au				1.60			
I	1 . 61	0.51	12.27	0.90	0.08	15.37	38.43
4		0.19		74.91			222.39
₩ ₩	v + √m zny	0.16	0.10	17.98	15.96	38.72	90.79
BASIC EMPLOYMENT	97.15	14.04	13.15	107.36	18.30	250.00	625.00
ITERATION OF SERV	TOP PART	DYMENT					
ZONE	1	0	3		157	TOTAL	
i.	161.28	- <u>*</u> 空,呵耍		51.61			
75 X	3.58		Z.50			46,46	
Ku. My V.J				0.73	0.09		
	V • UU H m i m m	0.58 0.71	0.99	198.46		222,39	
my em					0+3U	ALALAL & D.7	
STATE OF THE STATE	0.00	0.00	V.80	40.21	50.26		n.
TOTAL SERVICE TRIP SERVICE EMPLOYMENT	150.41	40.14	44.62	274.17	37.64	625.00	
SERVICE EMPLOYMENT	47.4 MM	8.03	8 * 7 %	58.84	11.93	1 LED. O	2
ITERATI	DN		4				
ITERATION OF RESI	DENT POPU	JLATION					
ZONI	.a .a.	#1) #2.	Z .	\mathcal{L}_{q}	5	TOTAL	RES
	.5.	A	And the	****	·/	1 (.) 1 1711	
			0.12	8.57	0.28		
a a m	28.72	0.24	0.12	6.57	0.28	36.13	90.32
<u></u>	28.72 1.37	0.24 7.29	0.12 0.33	4.57 0.88	0.28 0.08	36.13 9.97	90.32 24.94
	28.92 1.39 0.42	0.24 7.29 0.29	0.12 0.33 8.35	6.57 0.88 0.49	0.28 0.08 0.05	36.13 9.97 9.79	70.32 24.94 24.46
<u></u>	28.72 1.37 0.42 4.63	0.24 7.29 0.29 0.11	0.12 0.33 8.35 0.07	6.57 0.88 0.49 41.05	0.28 0.08 0.05 1.11	36.13 9.97 9.79 46.96	90.31 24.94 24.46 117.41
2 3 4 5	28.92 1.39 0.62 4.63 1.73	0.24 7.29 0.29 0.11 0.09	0.12 0.33 8.33 0.07 0.07	6.57 0.88 0.49 41.05 9.85	0.25 0.08 0.05 1.11 10.40	36.13 9.97 9.79 46.96 22.15	90.31 24.94 24.46 117.41 55.37
2 3 4 5	28.92 1.39 0.62 4.63 1.73	0.24 7.29 0.29 0.11 0.09	0.12 0.33 8.33 0.07 0.07	6.57 0.88 0.49 41.05	0.25 0.08 0.05 1.11 10.40	36.13 9.92 2.79 46.96 22.15	90.31 24.94 24.46 117.41
E S DASIC EMPLOYMENT ITERATION OF SERV	28.72 1.39 0.42 4.43 1.73 37.28	0.24 7.29 0.29 0.11 0.09 8.02	0.12 0.33 8.33 0.07 0.07 5.92	6.57 0.88 0.49 41.05 9.85 58.84	0.25 0.08 0.05 1.11 10.40 11.93	36.13 9.97 9.79 46.96 22.15 125.00	90.31 24.94 24.46 117.41 55.37
2 3 4 5 DASIC ENPLOYMENT	1.39 0.60 4.63 1.73 37.28 ICE EMPLO	0.24 7.29 0.29 0.11 0.09 8.03	0.12 0.33 8.33 0.07 0.07 5.92	6.57 0.88 0.49 41.05 9.85 58.64	0.28 0.08 0.05 1.11 10.40 11.93	36.13 9.97 9.79 46.96 22.15 125.00	90.31 24.94 24.46 117.41 55.37
E 5 BASIC ENFLOYMENT ITERATION OF SERV. ZONE 1	28.72 1.37 0.42 4.63 1.73 37.28 ICE EMPLO	0.24 7.29 0.29 0.11 0.09 8.02 3YMENT 2 1.05	0.12 0.33 8.33 0.07 0.07 0.07 5.92	6.57 0.88 0.49 41.05 9.85 58.84	0.28 0.08 0.05 1.11 10.40 11.93	36.13 9.97 9.79 46.96 22.15 125.00 TOTAL 90.32	90.31 24.94 24.46 117.41 55.37
DASIC ENFLOYMENT ITERATION OF SERV. ZONE 1 2	28.92 1.39 0.60 4.63 1.73 37.28 ICE EMPLO 1 65.94 1.92	0.24 7.29 0.29 0.11 0.09 8.02 3.02 1.05 19.20	0.12 0.33 8.33 0.07 0.07 0.07 5.92	4.57 0.88 0.49 41.05 9.85 58.84	0.25 0.06 0.05 1.11 10.40 11.93	36.13 9.97 9.79 46.96 22.15 125.00 TOTAL 90.32 24.94	90.31 24.94 24.46 117.41 55.37
E S S DASIC ENPLOYMENT ITERATION OF SERV ZONE 1 2 5	28.92 1.39 0.40 4.63 1.73 37.20 ICE EMPLO 1 65.94 1.92 0.41	0.24 7.29 0.29 0.11 0.09 8.02 3YMENT 2 1.05 19.20 0.37	0.12 0.33 8.33 0.07 0.07 0.92 3 1.17 1.92 03.16	6.57 0.88 0.49 41.05 9.85 58.64	0.28 0.08 0.05 1.11 10.40 11.93 5 1.03 0.19 0.06	36.13 9.97 9.79 46.96 22.15 125.00 TOTAL 90.32 24.94 24.46	90.31 24.94 24.46 117.41 55.37
E S BASIC ENPLOYMENT ITERATION OF SERV ZONE 1 2 3 4	1.39 0.40 4.43 1.73 37.28 ICE EMPLO 1 45.94 1.92 0.41 0.30	0.24 7.29 0.29 0.11 0.09 8.02 0.03 1.05 19.20 0.37 0.37	0.12 0.33 8.33 0.07 0.07 0.02 5.92 3 1.17 1.92 0.52	6.57 0.89 0.49 41.05 9.85 58.84 4 21.10 1.71 0.46 104.78	0.28 0.08 0.05 1.11 10.40 11.93 5 1.05 0.19 0.04 3.35	36.13 9.97 9.79 46.96 22.15 125.00 TOTAL 90.32 24.94 24.46 117.41	90.31 24.94 24.46 117.41 55.37
DAGIC EMPLOYMENT ITERATION OF SERV. ZONE 1 2 3 4 5	1.39 0.40 4.43 1.73 37.28 ICE EMPLO 1 65.94 1.92 0.41 8.36 2.87	0.24 7.29 0.29 0.11 0.09 8.03 9.03 1.05 19.20 0.37 0.37 0.29	0.12 0.33 8.33 0.07 0.07 0.02 5.92 1.17 1.92 0.46 0.46	6.57 0.88 0.49 41.05 9.85 58.84 4 21.10 1.71 0.46 104.78 23.00	0.28 0.08 0.05 1.11 10.40 11.93 5 1.05 0.19 0.06 3.35 28.75	36.13 9.97 9.79 46.96 22.15 125.00 TOTAL 90.32 24.94 24.46 117.41 55.37	70.52 24.94 24.45 117.41 50.37 312.50
E S BASIC ENPLOYMENT ITERATION OF SERV ZONE 1 2 3 4	1.39 0.40 4.43 1.73 37.28 ICE EMPLO 1 45.94 1.92 0.41 0.30	0.24 7.29 0.29 0.11 0.09 8.02 0.03 1.05 19.20 0.37 0.37	0.12 0.33 8.33 0.07 0.07 0.02 5.92 3 1.17 1.92 0.52	6.57 0.88 0.49 41.05 9.85 58.84 21.10 1.71 0.46 104.78 23.00	0.28 0.08 0.05 1.11 10.40 11.93 5 1.05 0.19 0.04 3.35	36.13 9.97 9.79 46.96 22.15 125.00 TOTAL 90.32 24.94 24.46 117.41 55.37	70.52 24.94 24.45 117.41 50.37 312.50

RUN
G1 COMFILER ENTERED
SOURCE ANALYZED
PROGRAM NAME = MAIN
NO DIAGNOSTICS GENERATED
SOURCE ANALYZED
PROGRAM NAME = LOWRY
NO DIAGNOSTICS GENERATED
#STATISTICS# NO DIAGNOSTICS THIS STEP :

SENSITIVITY ANALYSIS:

WHEN AR: $0.3 \rightarrow 0.4$ AND α : $2 \rightarrow 1$

126.78 1250.00

25,36 250,00

1

ITERATION

TOTAL SERVICE TRIP

SERVICE EMPLOYMENT

314.61

62.92

112.00

22,40

51.69 644.91

10.34 128.98

ITERATION OF RESIZONE 1 2 5 4 5 BASIC EMPLOYMENT	1 29.96 7.19 4.79 11.99	2 2.33 13.98 2.80 1.55	0.77 1.38 6.92 0.58 0.69	4 22.63 9.03 6.79 56.57 53.94 128.28	1.31 1.05 4.36 16.42	57.88 32.92 22.35 73.07	RES 144.70 82.29 55.87 187.63 134.48 623.00
ITERATION OF SERV			ü	áş.	5	TOTAL	
Zin Mali Mani Ai	72.83	5.83	1.94	58.27	5.83	144.70	
* T	17.38	34.77	3.48	23.18	3,48	82,29	
		5.93	17.31	17.31	2,77	55.87	
4	28,51	3.80	1.43	142.53		167.66	
	71 77	4.24	1.70	84.88		154.48	
TOTAL SERVICE TRIF	151.49	35,57	25.86			625.0	
SERVICE EMPLOYMENT	30.30	11.11	5.17	65.23	351	125.0	J
ITERATI:	014		Ą				
ITERATION OF RESI							
ITERATION OF RESI	j.	or.	 5	AÀ S. A. A. S.	5		RES
	1 14.43	2 1.16	0.38	11.44	1.414	28.55	71.435
	1 14.43 3.46	2 1.16 6.93	0.38 0.69	11.44 4.58	1.14 0.68	28.55 16.35	71.36 40.67
	1 14.43 5.46 2.31	2 1.10 6.93 1.39	0.38 0.69 3.46	11.44 4.58 3.43	1.14 0.58 0.55	28.55 16.35 11.14	71.56 40.67 27.64
TO PER SUIT	1 14.43 5.46 2.31 5.77	2 1.16 6.93 1.39 0.77	0.38 0.69 3.46 0.29	11.44 4.58 3.43 20.01	1.14 0.58 0.55 2.28	28.55 16.35 11.14 37.72	71.36 40.67 27.65 94.36
TO PER SUIT	1 14.43 5.46 2.31 5.77 4.33	2 1.16 6.95 1.39 0.77 0.87	0.38 0.69 3.46 0.29 0.35	11.44 4.58 3.43 26.61 17.17	1.14 0.58 0.55 2.28 5.54	28.50 16.36 11.14 37.72 31.20	74.36 40.67 27.64 74.36 76.12
IONE 2 3 4 5 BASIC EMPLOYMENT	1 14.43 3.46 2.31 5.77 4.33 30.30	2 1.16 6.93 1.39 6.77 0.87	0.38 0.69 3.46 0.29 0.35	11.44 4.58 3.43 20.01	1.14 0.58 0.55 2.28 5.54	28.55 16.35 11.14 37.72	71.36 40.67 27.65 94.36
IONE 1 2 5 4 5 BASIC EMPLOYMENT ITERATION OF SERV	1 14.43 3.46 2.31 5.77 4.33 30.30	2 1.16 6.93 1.39 6.77 0.87	0.38 0.69 3.46 0.29 0.35 5.17	11.44 4.58 3.43 26.61 17.17	1.14 0.08 0.55 2.28 5.54 13.18	28.50 16.36 11.14 37.72 31.20	74.36 40.67 27.64 74.36 76.12
ZONE 1 2 5 5 BASIC EMPLOYMENT ITERATION OF SERV ZONE	1 14.43 3.46 2.31 5.77 4.33 30.30	2 1.16 6.93 1.37 0.77 0.87 11.11	0.38 0.69 3.46 0.29 0.35	11.44 4.58 3.43 26.61 17.17 65.23	1.14 0.58 0.55 2.28 5.54	28.55 16.35 11.14 37.72 31.25 125.00	74.36 40.67 27.64 74.36 76.12
IONE 1 2 5 4 5 BASIC EMPLOYMENT ITERATION OF SERV	14.43 3.46 2.31 5.77 4.33 30.30	2 1.16 6.93 1.39 0.77 0.87 11.11	0.38 0.69 3.46 0.29 0.35 5.17	11.44 4.58 3.43 26.61 17.17 65.23	1.14 0.08 0.55 2.28 5.54 13.18	28.55 16.35 11.14 37.72 31.25 123.00	74.36 40.67 27.64 74.36 76.12
IONE 1 2 5 4 5 EASIC EMPLOYMENT ITERATION OF SERV IONE 1	14.43 3.46 2.31 5.77 4.33 30.30 ICE EMFL: 1 35.93 8.64 5.75	2 1.16 6.93 1.39 0.77 0.87 11.11 0YMENT 2	0.38 0.69 3.46 0.29 0.35 5.17 3 0.96 1.73 8.63	11.44 4.08 3.43 26.61 17.17 65.23	1.14 0.08 0.05 2.28 5.54 13.18	28.55 16.35 11.14 37.72 31.25 125.00 TOTAL 71.38 40.87 27.84	74.36 40.67 27.64 74.36 76.12
ZONE 1 2 5 BASIC EMPLOYMENT ITERATION OF SERV ZONE 1 2 3	14.43 3.46 2.31 5.77 4.33 30.30 ICE EMFL: 1 35.93 8.64 5.75 14.32	2 1.16 6.93 1.39 0.77 0.07 11.11 0YMENT 2 2.87 17.27 3.45 1.91	0.38 0.69 3.46 0.29 0.35 5.17 3 0.96 1.73 8.63 0.72	11.44 4.58 3.43 26.61 17.17 65.23 4 28.74 11.51 8.63 71.62	1.14 0.08 0.55 2.28 6.54 13.18 5.28 1.73 1.73 1.38	28.55 16.35 11.14 37.72 31.25 123.00 TOTAL 71.38 40.87 27.84 94.30	74.36 40.67 27.64 74.36 76.12
ZONE 1 2 5 A 5 BASIC EMPLOYMENT ITERATION OF SERV ZONE 1 2 3 5 5	1 14.43 3.46 2.31 5.77 4.33 30.30 ICE EMFL: 1 35.93 8.64 5.75 14.32 10.73	2 1.16 6.95 1.39 0.77 0.87 11.11 0YMENT 2 17.27 17.27 1.91 2.15	0.38 0.46 3.46 0.27 0.35 5.17 3 0.96 1.73 8.63 0.72 0.66	11.44 4.58 3.43 26.61 17.17 45.23 4 28.74 11.51 8.63 71.62 42.92	1.14 0.08 0.55 2.28 6.54 13.18 5.18 5.73 21.46	28.55 16.35 11.14 37.72 31.25 123.00 TOTAL 71.38 40.87 27.84 94.30 78.12	71.36 40.67 27.64 94.36 76.12 312.30
ZONE 1 2 5 BASIC EMPLOYMENT ITERATION OF SERV ZONE 1 2 3	14.43 3.46 2.31 5.77 4.33 30.30 ICE EMFL: 1 35.93 8.64 5.75 14.32	2 1.16 6.93 1.39 0.77 0.07 11.11 0YMENT 2 2.87 17.27 3.45 1.91	0.38 0.69 3.46 0.29 0.35 5.17 3 0.96 1.73 8.63 0.72	11.44 4.58 3.43 26.61 17.17 65.23 4 28.74 11.51 8.63 71.62 42.92 163.42	1.14 0.08 0.55 2.28 6.54 13.18 5.28 1.73 1.73 1.38	28.55 16.35 11.14 37.72 31.25 123.00 TOTAL 71.38 40.87 27.84 94.30 78.12 312.50	71.36 40.67 27.64 94.36 76.11 312.30

ITERATION OF RESI	DENT FOR	JLATION					
ZONE	1.	2	3	4	5	TOTAL	RES
1	14.36	1.15	0.38	11.47	1.15	28.50	71.26
2	3.45	6.90	0.69	4.59	0.69	16.31	40.78
3	2.30	3.38	3.45	3.44	0.55	11.12	27.79
4	5.74	0.77	0.29	28.67	2.29	37.76	94.40
S.	4.31	0.84	0.34	17.20	8.59	31.31	78,27
DASIC EMPLOYMENT	30:15	11.06	5.15	65.37	13.27	125.00	312,50
	ICE EMPL		 .5	Ĺ,	5	TOTAL	
ZONE	-f -1-	20. X.	<u></u>	4	5	TOTAL	
1.	35.67	2.87	०.१८	28.69	2.87	71.26	
2	8.61	17.23	1.72	11.49	1.72	40.78	
3	5.74	3.45	8.61	8.61	1.38	27.79	
4	14.34	1.91	0.72	71.69	5.74	94.40	
5	10.75	2.15	0.86	43.01	21.50	78 . 27	
TOTAL SERVICE TRIF		27.61	12.87	163.50	33.21	312.50	,
SERVICE EMPLOYMENT	15.06	5.52	2.57	32.70	6.64	62.50	,

		.i.	TERATION	NUMBER			
MONE		.) .1.	2	3	4	5	TOTAL
.i.		1190.48	321.56	144.70	71.38	71.26	1799,36
<u> </u>		285.71	165.64	62.29	40.87	40.78	615.29
3		190.48	111.15	55.67	27.84	27.79	413,13
4		476.19	363,14	187.66	94.30	94.40	1215.69
F		ZE7,14	206.49	154.48	78.12	78.27	954.51
	TOTAL	2500.00	1250.00	525.00	312.50		4999.98
DTAL SEF			AT EACH	ITERATIO	N		
OTAL SEF		FLOYMENT			14		
DYAL SEF		FLOYMENT	AT EACH TERATION 2	ITERATIO NUMBER 3	N 4	5	TOTAL
ZCKI		FLOYMENT I	TERATION 2	NUMBER 3	±°g.		70TAL 287.42
my ang patan		FLOYMENT I 1 820.34	TERATION 2 314.61	NUMBER 3 151.49	4 75.37	75.32	267.42
ZCKI 1		FLOYMENT I	TERATION 2	NUMBER 3 151.49 55.57	4 75.37 27.45	75.32 27.61	287.42 84.91
ZORU 1 C		FLOYMENT 1 1 020.34 211.73 94.63	TERATION 2 314.61 112.00 51.69	NUMBER 3 151.49 55.57 25.86	4 75.37	75.32 27.61 12.87	287.42 86.91 39.59
ZONE 1		FLOYMENT 1 1 020.34 211.73	TERATION 2 314.61 112.00	NUMBER 3 151.49 55.57	4 75.37 27.65 12.89	75.32 27.61	267.42