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THE QUANTIFICATION OF NOCTURNAL ELECTROENCEPHALOGRAPHIC

PATTERNS IN MAN

CHAPTER I 

INTRODUCTION

Sleep is a basic state of physiological functioning. Across 

mammals from man to the Virginia Oppossum (Snyder, 1964) striking simi­

larities have been obtained in physiological sleep patterns. Much of 

the present knowledge about the functional anatomy of the brain has been 

discovered through a study of the sleeping state in man and in lower 

animals. The many articles by Jouvet and his associates on sleep mecha­

nisms in the cat and the work on the brain stem reticular formation by 

Moruzzi and Magoun are but cases in point. During sleep an individual 

is relatively free from influences generated by the surrounding environ­

ment as well as from transient psychological states resulting from the 

experimental situation. While the individual is asleep, physiological 

events like those associated with psychopathic disorders (Lester & Burch, 

1965) or those occurring as the result of the administration of drugs 

(Muzio, Roffwarg, & Kaufman, 1964 ; Rechtschaffen & Maron, 1964) can be 

studied in this environment comparatively free of external stimuli.

In addition to the study of physiological events taking place 

within the organism, sleep researchers have been interested in the be-
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havioral properties of sleep and drowsy states. As noted by Linds ley 

(1960) and others (Williams, Hammack, Daly, Dement, & Lubin, 1954), the 

behavioral efficiency of an individual is related in part to the position 

he occupies on a waking-sleeping continuum (Lindsley, 1960). In assessing 

this relationship between behavior and the depth of sleep (or its converse, 

degree of alertness) it is necessary to specify depth of sleep in some 

form which is independent of the behavioral measures themselves. The 

primary instrument which has been used to determine the level of alert­

ness of the organism is the electroencephalograph (EEC).

Berger (1930) first recorded brain potentials as the EEC, taking 

some of his recordings during sleep. Since that time many others have 

used the technique, among them Kleitman (1963) and Dement (1955; 1958). 

From the beginning, recurrent configurations of wave amplitude and fre­

quency have been used to classify EEC patterns into behaviorally relevant 

states. The first to do so for sleep were Davis, Harvey, Loomis, and 

their associates (Davis, Davis, Loomis, Harvey, & Hobart, 1937; Harvey, 

Loomis, & Hobart, 1937; Loomis, Harvey, & Hobart, 1937). They assigned 

the first five letters of the alphabet to the successive stages of sleep 

from wakefulness to deep sleep as follows (after Kleitman, 1963): A,

to the interrupted alpha rhythm pattern, 9-11/second at about 60 micro­

volts in amplitude, seen during relaxed wakefulness; B, to a low voltage, 

irregular pattern, seen during the passage into sleep; C, to a spindle 

pattern, with spindles of 14-15/second waves of from 20-40 microvolts 

in amplitude superimposed on an irregular pattern of slower waves; D, 

to a pattern much like C except for the appearance of delta waves of 

about 1-3/second frequency and of up to 300 microvolts in amplitude and;



3

E, to a random pattern made up primarily of very slow and large delta 

waves.

Although this system has found continuing usage, a classifica­

tion scheme devised more recently by Dement and Kleitman (1957) will be 

used throughout the remainder of this paper. A simplification of the 

earlier system, the Dement-Kleitman system proposed four stages of sleep : 

I, low voltage activity with irregular frequency; 2, sleep spindles of 

about 14/second frequency and high voltage, sharply diphasic K-complexes 

in a background of low voltage, fast activity; 3, random delta waves with 

some spindling and; 4, predominantly large, slow delta waves. As with 

the earlier classification, the successive stages correspond to deeper 

phases of sleep.

With the addition of a waking state, the pattern found in a per­

son who is relaxed with eyes closed, consisting primarily of alpha acti­

vity, five states may be clinically distinguished by reference to the 

oscillograph records. One further state may be distinguished on the basis 

of eye movements which occur during sleep. In the course of a night, 

the stages of sleep vary in a cyclic pattern (Kleitman, 1963). Every 

sixty to ninety minutes the subject emerges out of deeper sleep into a 

pattern resembling stage 1 sleep. During this emergent stage 1 sleep, 

there occur rapid eye movements which have led some authors to term this 

phase "REM sleep" (Luce, 1965). This eye movement phenomenon, first 

studied by Aserinsky and Kleitman (1953; 1955), was found related to 

dreaming. Subjects awakened during periods of REM activity indicated 

often that they had been dreaming whereas if awakened during other periods 

of sleep they rarely reported dreams. The question of the depth of REM
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sleep is open to controversy. The brain is highly active and both meta­

bolism and EEC activity may resemble the state found during periods cf 

intense waking concentration. Peripheral musculature, on the other hand, 

lacks tonus, although the eyes move in their characteristic spurts (Luce 

& Segal, 1966). Williams, Morlock, and Morlock (1966) found that their 

subjects responded to few auditory stimuli during REM sleep when simply 

instructed to respond but when failure to respond resulted in aversive 

stimulation they did as well as during "lighter" stages of sleep. In 

this paper no differentiation will be made between initial and emergent 

(REM) stage 1 classifications since the EEC patterns are so very similar 

and since the initial stage 1 period is usually short-lived and easily 

identified through its occurrence at the beginning of the night.

Accurate information as to the depth of sleep or classically 

defined stages of sleep is important not only in studies of the behavioral 

properties of sleep and drowsy states but also in studies of the effects 

of various drugs on sleep patterns throughout the night. Gresham, Webb, 

and Williams (1963), for instance, found that alcohol diminishes the 

duration of REM periods during the first hours of sleep. Rechtschaffen 

and Maron (1964) found that dexedrine can reduce the amount of the night 

spent in REM sleep. Other studies which have a need for accurate recog­

nition of EEG sleep stages are those in which the investigators attempt 

to deprive the subject of a specific stage of sleep for some portion of 

the night, usually by waking him as soon as he enters that particular 

stage. Dement (1960) pioneered the investigation of REM deprivation and 

produced evidence to indirate that this stage of sleep may be important 

to a person's psychological well-being. The important problem in studies
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of this sort is the identification of the exact moment of transition from 

some other stage of sleep into that stage of which the subject is to be 

deprived. Typically, studies of specific stage deprivation have involved 

a tremendous amount of work on the part of the investigators who must 

monitor the recordings continuously so as not to miss these transitions 

(Luce, 1965).

Work by Aserinsky (1965) indicates that during the REM stage 

of sleep measures of respiration show differing but consistent patterns 

between periods of ocular quiescence and those periods during which the 

eyes are making the movements typical of this stage of sleep. Studies 

of this sort also point up the need for accurate information about changes

in the state of a sleeping subject.

The classification of an EEG record into the stages of sleep and 

the identification of transitions from one state to another has been and 

remains primarily a job for a clinical encephalographer or some other 

person who has received the training necessary to reliably distinguish 

the patterns of activity. The degree and type of experience at classi­

fication which a person has often bears lieaVily on his reliability. The 

place at which he received his training, the person under whom he learned, 

and the use to which the records are put may all affect the amount of 

agreement which may be anticipated between a classifier and other persons 

classifying the same record (Burch, Vorderman, & Dossett, 1966; Kozhevnikov 

& Meshcherskiy, 196^0 . Monroe (1967) indicates that high variability can 

be expected between raters with respect to the total number of minutes a

subject spends in a particular stage of sleep. He obtained standard de­

viations ranging from 3.88 minutes to 18,45 minutes for the stages with
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data from 27 independent raters. Furthermore, as Burch et al. (1966) 

indicate, trained personnel have only a limited amount of time to study 

records or to classify and interpret the EEG as it occurs.

Personal communication with a number of researchers trained in 

the analysis of sleep records has indicated that the identification of 

transitions between stages of sleep is particularly difficult. Often the 

researcher must wait for several minutes before he is sure that a tran­

sition has taken place. Amplitude differences, since they are more 

readily apparent than are subtle frequency changes, also carry a dis­

proportionate weight in the judgment of whether or not the sleep has 

changed (Burch et al., 1966; Kozhevnikov & Meshcherskiy, 1964). Due to 

these difficulties, those investigators interested in REM deprivation 

have often employed measures other than those obtainable from the EEG, 

such as muscle relaxation, as indicators of entry into the REM stage 

(Dement, 1965; Kales, Hoedemaker, Jacobson, & Lichtenstein, 1964).

In light of the problems facing a person attempting to analyze 

EEG data visually, as outlined above, there has been an increasing use of 

objective means of characterizing EEG patterns during the past few years. 

Most of this work has used electronic means, notably digital computers 

(Burch, 1959; Burch, Nettleton, Sweeney, & Edwards, 1964; Farley, 1961; 

Kozhevnikov & Meshcherskiy, 1964; Shapiro & Fink, 1966). Some of the 

techniques have been applied to sleep data. Fink and Shapiro (1965) used 

several methods, notably period analysis, to classify sleep stages. Burch 

et al. (1966) have used period analysis to classify levels of consciousness 

in records of Gemini astronauts. Johnson, Nute, Austin, and Lubin (1966) 

used an auto-spectral analysis to investigate the changes which occur in
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the various spectra with changes in the depth of sleep.

Many of these techniques require the use of a high capacity 

digital computer in association with other complex digitizing and re­

cording equipment. An added disadvantage, particularly in the case of 

establishments with insufficient funding to 'imploy a computer on demand, 

is the fact that much of the analysis is thereby necessarily off site and 

the results of the treatment are available only after the raw data are 

transported to the facility for analysis and that analysis can be com­

pleted. In the case of some of the techniques the analysis itself is 

complex enough to prohibit its use with ongoing records unless samples 

are taken only at widely spaced intervals. It is the purpose of the 

present paper to develop and evaluate a technique suitable for on-site, 

continuous, real-time analysis of EEG sleep records and their classifi­

cation into the Dement-Kleitman sleep stages.

A system to aid or replace the clinician in the classification 

of sleep records should be convenient and reasonably inexpensive. In 

addition, it should meet three criteria: 1) The system should, within

limits, be as reliable as are several clinicians among themselves in 

classifying sleep stages ; 2) The system should show more responsiveness 

to changes than can the clinician and; 3) It should maintain its reliability 

not only within one night on one subject but across several nights on that 

subject and across several subjects.

Any system must first express the EEG record in some set of 

characteristic values and then proceed to classify sections of the record 

on the basis of those values. These two functions, analysis and classi­

fication, will be discussed separately.
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The most frequently encountered methods of analysis are analog 

bandpass filters, auto-spectral or power spectral density analysis, am­

plitude analysis, random shape analyses, and period analysis. Analog 

bandpass filters may be of several types. Walter (1943), one of the 

pioneers in automatic analysis of the EEG, used electro-mechanical reso­

nators for his analyzer. Other analyzers have since been built using 

both electro-mechanical and purely electronic resonant filters, including 

those using operational amplifiers in active filter designs. Kozhevnikov 

and Meshcherskiy (1964) review quite thoroughly the design of these sorts 

of filters. They point out that the principal advantage in this type of 

analysis is the very sharp cutoff characteristic of the filters, allowing 

maximal separation of the various frequencies of interest. They also re­

port, however, a difficulty in maintaining the exact frequency charac­

teristics from run to run, particularly in the case of narrow bandwidths. 

The output of the filters is typically integrated over time to yield an 

average power function for the frequency band under observation.

Auto-spectral techniques are essentially a discrete form of 

Fourier analysis, the process of breaking down a complex, regular wave 

into the component waves which make it up. The principle involves the 

digital filtering of an autocorrelation function to uncover the periodi- 

cies it contains. Autocorrelation is the process of multiplying the 

record by a displaced copy of itself (Walter, 1963). Regular waves pro­

duce functions which oscillate in a regular fashion as the lag between 

the two correlated samples is increased while aperiodic waves produce 

functions which rapidly go to zero as the lag increases. Any regular 

wave with concomitant "noise" riding on it will result in a regular auto-
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correlation function of reduced amplitude relative to that of a purely 

regular wave. Thus, the autocorrelation function accentuates regular 

activity at the expense of random activity. Once the autocorrelation 

function has been obtained, it is then multiplied by other functions 

specifically weighted to yield synchrony with the autocorrelation function 

at a given frequency. In this way the output of the filters is taken as 

the sum of the products of the time (autocorrelation) function and the 

filtering function. This sum is a maximum when the activity is regular 

and at the exact center frequency of the filter. Frequencies above or 

below the center frequency result in lessened outputs. Spurious peaks 

may occur at frequencies other than the center frequency. These peaks 

can be smoothed by weighting the estimates for the filtering function 

through procedures known as "banning" and "hamming." The outputs of the 

filters may be expressed as a proportion of the total variance of the 

wave, given as the autocorrelation function of the wave at zero lag, or 

as values of the filters relative to each other. While the avito-spectral 

method does give its user a frequency-wise breakdown of an EEG signal, 

certain considerations must be taken into account as regard its useful­

ness in a sleep stage identification system.

Assuming on-line analysis as desirable, the technique requires 

the use of a reasonably large general-purpose digital computer. Even so, 

analysis time is sufficiently long to make the omission of a considerable 

portion of the record necessary during the time that the analysis is being 

carried out. Furthermore, as Walter (1963) points out, the autospectrogram 

does not respond to aperiodic activity nor does it take into account changes 

in parameters occurring within the analysis period.
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Some authors, notably Brazier (Brazier & Barlow, 1956; Brazier 

& Casby, 1952) have used analog computers for some of the calculations 

involved in auto-spectral analysis. Gauss (1964) and Whittlesey (1964) 

have developed methods of obtaining the power spectrum directly by means 

of digital filtering through a replacement of original data points with 

weighted sums of neighboring points but these methods involve more effort 

and correspondingly more analysis time than do the autospectral methods 

discussed above.

Amplitude measures of the EEG may be used to quantify the waves 

in a record. Perhaps the simplest method of doing this is simply to in­

tegrate the raw EEG over time. Drohocki (1948) has developed an integra­

tor which provides a continuous cumulative measure of the area under 

successive brain waves, irrespective of frequency. The output consists 

of a series of uniform pulses the rate of which is proportional to the 

total cumulated area under the EEG waves. Other methods of determining 

amplitude are possible, depending for the most part on the type of fre­

quency analysis to be performed. If one is performing a spectral analysis, 

the total variance of the wave may be taken as a measure of amplitude.

In a period analysis the time taken between successive baseline crossings 

may be used, however, as indicated by Shapiro and Fink (1966), this measure 

is dependent to a large extent upon the frequency of the primary wave.

One may also take a discrete sample of the record and produce a closed 

figure by joining the end points of the sample to a baseline taken as 

the greatest negative value in the sample wave. The area of the figure 

so produced may be considered as a measure, of amplitude. A considerable 

amount of time is required to arrive at this measure.
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A random shape analysis (Vanderplas, Sandison, & Vanderplas,

1965) involves the calculation of a number of attributes of a closed 

figure produced from a discrete sample of the EEG activity. For example, 

one second of EEG activity is taken from the record and an irregular poly­

gon made by joining the endpoints of the sample to an artificial baseline. 

This baseline is usually a value at or somewhat greater than the largest 

negative value which the wave assumes during that one second. Any measures 

appropriate to the irregular figure may then be calculated. Some common 

measures used in this sort of analysis are area, perimeter, area to peri­

meter ratio, number of angles in the figure, and the relationships between 

angles. The procedure can be applied to any number of samples and the 

resulting values compared to uncover similarities and differences. Shapiro 

and Fink (1966) report, however, that a random shape analysis is extremely 

time consuming and therefore not suited to on-line applications.

Period analysis was developed by Neil Burch and his associates 

(Burch, Nettleton, Sweeney, & Edwards, 1964). The analysis is based on 

a mathematical model of cortical functioning using a Gram-Charlier series, 

the parameters of which are evaluated through coding the analog EEG signal 

and its first and second derivatives into square-wave trains corresponding 

to the baseline crossings of the analog functions (Saltzberg & Burch, 1959). 

The square-wave trains are produced by a Schmidt trigger which is activated 

as the wave assumes a positive (or negative) value and turns off as the wave 

crosses the baseline again, yielding a square-wave whose duration is the 

time during which the signal is positive (or negative). In period-analytic 

parlance the square-wave trains resulting from the coding of the primary 

function, the first derivative, and the second derivative are called the
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major, intermediate, and minor periods, respectively. The intermediate 

and minor periods give indications of the "riding" activity, that is, 

activity of lower amplitude and differing in phase and/or frequency from 

that of the primary signal. It is clear that for a regular wave the 

time that the signal is above the baseline can be translated into fre­

quency since, for example, a wave of ten cycles per second would complete 

one cycle in a tenth of a second during which it would be positive in 

value for half of the time, or five one-hundredths of a second. This 

relationship between the period of a wave and its frequency can be used 

to design digital filters to indicate activity occurring within a certain 

band of frequencies. Any wave which can meet upper and lower limits with 

respect to its period is classified as activity within the band defined 

by those limits By setting the upper and lower limits the width of a 

band, the degree of overlap between bands, and the center frequency of 

the band can be made to correspond to classical patterns in the EEG or 

to any other criterion desired. Similar or differing sets of filters 

may be applied to the major, intermediate, and minor periods.

The result, then, is a form of analysis which is primarily fre­

quency sensitive, designed to be relatively insensitive to amplitude, 

which provides considerable flexibility and is extremely well suited to 

on-line analysis if special-purpose coding and filtering devices are used. 

In addition to special-purpose devices, the period analysis technique is 

applicable to the use of a general-purpose digital computer (Burch et al., 

1964). The most typical way of expressing the output of period analysis 

is as a total count of the number of waves meeting the frequency criteria 

for each band as accumulated during some time period (data epoch). It
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has been historically popular to use ten seconds as the epoch length 

(Burch et al., 1964; Shapiro & Fink, 1966). It is possible, however, 

either to increase or decrease the epoch length, making it convenient 

to view trends over longer periods of time or to look at very short-term 

changes associated with specific stimuli.

In choosing a system of analysis to quantify EEG records preceding 

their classification into sleep stages, several considerations must be 

made. These considerations were made in the present case with the goal 

in mind of arriving at an on-line, real-time classification system for 

a reasonable price. The first consideration is that of analysis time 

necessary to achieve resolution which will enable accurate classification. 

Although relatively simple to obtain, the usual amplitude measures in and 

of themselves are usually insufficient to allow unequivocal classification 

of EEG patterns following differing dosages of amobarbital. Agnew, Parker, 

Webb, and Williams (1967) report correlations (Eta) ranging from 0.72 to 

0.96 between scored stages of sleep and the output level of a Drohocki 

(1948) integrator. An examination of their results leads to the conclu­

sion, though, that this sort of analysis would allow only minimal differen­

tiation between the waking state, stage 1, and stage 2. Random shape 

analysis, as indicated earlier, requires a considerable amount of time 

to perform and hence is not well suited to real-time analyses. Analog 

filters, an auto-spectral analysis, or period analysis all fall within 

reasonable limits with respect to analysis time. Analog filters process 

the record continuously and the resolution is dependent upon the time 

base used for integration of the outputs. An auto-spectral analysis, as 

noted earlier, is sufficiently difficult so as to require the omission of



14

a portion of the ongoing record in the analysis. Period analysis can 

be a continuous process provided special-purpose equipment is used. T-Ihen 

a general-purpose digital computer is used for the analysis, the analysis 

time is sufficiently long so as to require the omission of a certain 

amount of the record. Shapiro and Fink (1966) find that they lose about 

,one second between epochs. With the special-purpose equipment available, 

all of the record is included in the analysis and the resolution available 

in terms of output is dependent upon the epoch length chosen.

A second consideration concerns the equipment necessary to com­

plete the analysis. In the case of analog filtering, considerable special 

equipment in the shape of separate filters for each band of frequencies 

is necessary. Auto-spectral analysis requires that a general-purpose 

digital computer be available continuously during the course of the night 

while period analysis may either be performed on relatively simple special- 

purpose equipment or on a general-purpose digital computer with an increase 

in analysis time.

A third consideration involves the accentuation or attenuation 

of certain portions of the EEG activity relative to the others. In this 

respect auto-spectral analysis, as mentioned earlier, emphasizes regular 

activity while period analysis codes and filters the wave without regard 

to regularity, that is, a wave of a certain period will register within 

the frequency band for that period regardless of the activity which pre­

cedes it. The output with period analysis is thus potentially more variable. 

Auto-spectral analysis also tends to emphasize low frequency components in 

the EEG since they are usually of greater amplitude and are thus more 

powerful. In contrast, period analysis gives equal valence to counts in
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any frequency range, regardless of amplitude. In light of the randomness 

usually found in fast activity and its lack of amplitude relative to 

slower activity, period analysis gives a better look at fast activity 

than does an auto-spectral analysis.

A fourth consideration concerns the ease of interpreting the 

output of the analysis. Auto-spectral analysis typically is expressed 

as a percentage or proportion of the total variance of the wave. Period 

analysis is expressed as the total count of waves within a band during 

the analysis epoch. Either output is easily amenable to further opera­

tions . Period analytic filters are more easily set with respect to band­

width, band overlap, and center frequency to correspond to the clinically 

recognized delta, alpha, beta, and other frequency bands than are those 

filters programmed into an auto-spectral analysis.

After consideration of all these factors involved in an analysis 

system, it was decided that a period analytic approach had the most to 

offer, particularly with respect to on-line capability and cost of ac­

quisition. An attempt was made to set up a special-purpose analyzer 

which would yield a maximum amount of clinically relevant information 

within six bands of output. Major period bands were calibrated to corres­

pond to delta, theta, and alpha activity and intermediate period bands 

to correspond to alphoid (riding or very regular alpha), spindle or sigma, 

and beta activity. This analysis system was used throughout the study 

to provide the data used in classification.

It is the goal of this study to develop a system of classifica­

tion using the period analytic data which will enable accurate assignment 

of sleep record epochs to the Dement-Kleitman sleep stages when compared
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to a group of trained human interpreters. Furthermore, the system should 

indicate a potential for development into an on-line analog special-purpose 

computer. A possible first step in classifying epochs into sleep stages 

is the calculation of a multiple discriminant function analysis (Cooley 

& Lohnes, 1962). This analysis uses the original scores on a number of 

measures (in this case the counts for each of the six bands) to determine 

scores along lines (discriminant functions) so placed in the score space 

as to maximally separate several predefined groups from each other. Or­

thogonal discriminants exist up to as many as there are measures or one 

less than the number of groups, whichever is the lesser number. A par­

ticular individual combination of original scores, then, yields a com­

bination of discriminant scores along lines on which the groups are over­

lapped as little as possible. As Cooley and Lohnes (1962) point out, the 

primary advantage in calculating a discriminant function analysis is that 

it often leads to a significant reduction in the dimension of the predictor 

space without a significant loss in information. There are approximate 

tests of the significance of discriminability of the analysis and indi­

cators of the relative contributions and significance of the contributions 

of the original variables to the analysis to enable the investigator to 

evaluate the usefulness both of the analysis itself and his original measures.

The classification itself, whether carried out in the M-dimen­

sional space generated by the original measures or in the reduced space 

resulting from a multiple discriminant function analysis, may be based 

on one of two separate criteria. The first of these is a minimum distance 

criterion. To be classified as a member of a particular group, the sum 

of the squared deviations of the individual scores from that group's means
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on the measures (or that group's centroids on the discriminant functions) 

must be at a minimum for that group. Shapiro and Fink (1966) have had 

some success in using this criterion to classify responses to sodium 

pentothal. They used a learning technique whereby initial values of the 

group means were chosen and then modified by recalculating new means in­

cluding each new set of values once a particular epoch had been classified 

as belonging to the group.

The second criterion which may be used in classifying individual 

epochs into groups is the maximum likelihood criterion. Several decision 

functions may be applied to the data in meeting this criterion depending 

on the variables which one wishes to control. Cooley and Lohnes (1962) 

cite two basic functions. The first of these is based entirely on the 

centour (centile contour) concept. This concept may be likened to the 

ellipse enclosing the scores for a group from a normal bivariate popula­

tion. Similar ellipses can be generated enclosing any specified percen­

tage of the scores in the group. These ellipses are the centours. In 

a space of more than three dimensions, these centours become hyperellip­

soids. Any score vector (set of scores for an individual on the measures) 

to be classified falls on a centour for each group. The score vector is 

classified as belonging to that group where the centour on which it falls 

encloses the smallest percentage of the cases. This decision rule will 

result in the minimum number of miselassifications if the group disper­

sions are equal and the a priori probabilities of group membership (number 

of cases which can be expected to fall into each group ) are equal. If 

dispersions and/or a priori probabilities cannot be assumed equal, a second 

decision function will result in fewer misclassifications.
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The second decision rule offered by Cooley and Lohnes (1962) is 

based on Bayes's theorem and takes into account unequal dispersions and 

a priori probabilities. Application of this rule results in a probability 

statement for each score vector with respect to each group. The indivi­

dual is classified as belonging to the group for which the probability 

of group membership is highest. Burch et al. (1966) applied this decision 

rule to EEC data gathered during the flight of the Gemini 7 astronauts 

and analyzed through period analysis into thirty measures. They achieved 

considerable success in classifying the record into ten states of con­

sciousness. As with other Bayesian techniques, the choice of the a priori 

probabilities will affect the degree of misclassification. These proba­

bilities may be adjusted to reflect the relative importance of misclassi- 

fication of any one group at the expense, however, of overall success in 

classification. Although the decisions based on Bayes's theorem result 

in the fewest number of misclassifications overall, groups with low a 

priori probabilities will be underassigned by this method. Depending upon 

the relative importance of misclassifications in the groups, the proba­

bilities may be adjusted to correct for this tendency.

To summarize the rationale for the present study, it was proposed 

that through period analysis six variables could be measured in the EEGs 

of sleeping subjects which would allow the classification of those patterns 

which occurred into five states of consciousness corresponding to the 

Dement-Kleitman sleep stages. The goal of the study was to evaluate such 

a system as a potential model for on-line, real-time classification of 

EEG sleep patterns at a reasonable cost, relieving the human classifier 

of this task. It was hypothesized that the system would: 1) be, within
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limits, as reliable as are several clinicians among themselves in classi­

fying sleep stages; 2) be more sensitive to changes than the clinicians 

and; 3) maintain its reliability across several nights on one subject 

and across several subjects.



CHAPTER II

METHOD

Subjects. The subjects were four male students from the Univer­

sity of Oklahoma, ranging from 21 to 24 years of age.

Apparatus. The EEG was recorded on a Grass Model 6 electroen­

cephalograph, The electrodes were Grass E5G gold-plated cup, surface 

type, suspended in a bentonite paste and covered with a gauze patch 

saturated in collodion. The standard left parietal to left occipital 

and left central to left frontal bipolar arrangements were used for elec­

trode placements. For two of the subjects the anterior EEG signals were 

recorded on an Ampex FR-1300 F. M. analog tape recorder. In addition to 

writing out the EEG signals on paper, the posterior signals were subjected 

to an on-line period analysis and the frontal signals were reproduced 

from tape and analyzed the next day. The signals to be analyzed were 

fed to a Biophysical Model 102A analog to pulse width converter which 

produced square-wave trains corresponding to the baseline crossings of 

the analog signal (major period) and the baseline crossings of the analog 

first derivative (intermediate period). These square-wave trains were 

then fed to a Biophysical Model 909 digital data processor which employs 

six digital filters, three each for the major and intermediate periods, 

set as indicated in Table 1. The output pulses from the filters are

20
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accumulated during a ten-second epoch and are then fed to a digital to 

analog conversion circuit which varies its output voltage in relation 

to the number of pulses during the epoch. These voltages were used to 

drive three dual-channel Texas Instruments recti/riters and appeared as 

histograms of counts per ten-second epoch for each of the six bands.

The six output records were visually interpreted and punched on standard 

IBM cards for subsequent analysis by an IBM 1620 digital computer.

Table 1

Digital Filter Settings in the Biophysical Model 909

Period Band Activity

Frequency 

Low High

Total

Count

Ml Delta 0.5 2.5 20

Major M2 The ta 3.0 6.8 68

M3 Alpha 8.0 12.0 100

11 Alphoid 7.0 11.0 90

Intermediate 12 Spindle 11.0 15.0 110

13 Beta 18.0 30.0 230

Procedure. The subjects were instructed to appear at the 

laboratory at 8:30 p.m. and soon after they arrived electrode applica­

tion was begun. In addition to the four electrodes mentioned earlier, 

the subjects wore left and right eye electrodes, a forehead eye reference 

electrode, and a forehead grounding electrode. They further word EKG 

(electrocardiograph) disk electrodes at the back of the neck and on the
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left side, an elastic strain gauge around the lower thoracic region, and 

disk skin potential electrodes on the lower leg and palmar surface of the 

foot. When all electrodes were In place and had been checked, the sub­

ject was allowed to get Into bed, the eye leads were checked for correct 

polarity, the lights were turned out, the door was closed, and the sub­

ject was allowed to fall asleep. The sleep room was alr-condltloned 

with a moderate degree of soundproofing. The subjects slept from about 

10:00 p.m. for eight hours. They were then awakened, told to rest quietly 

for five minutes of waking baseline, the electrodes were removed, and 

the subjects were allowed to leave. During the night the equipment was 

constantly monitored to assure that It was functioning reliably. All 

records used In the present study were obtained from subjects who had 

slept under the same conditions for several nights previous to the analy­

sis and were not under the Influence of drugs or alcohol.

The EEG records from the Grass Model 6 were scored, minute by 

minute, by three staff members, one of them an assistant assigned to the 

scoring and the other two senior research staff members. The scoring 

was done Independently. The records for computer analysis were chosen 

by one of the senior staff members on the basis of the technical quality 

and lack of unusual patterns. Three records were chosen Initially where 

the period analysis was available only for the posterior record. Two of 

the records were from two different subjects while the third record was 

from a second night on one of the subjects. After viewing the results 

of the classification procedure with these records, two additional records 

from two different subjects on whom frontal analyses were available were 

chosen. For each of the chosen records, the same senior staff member
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went through the record and picked those minutes which he felt were "classic" 

examples of each of the five states of consciousness into which the record 

was to be classified, awake, stage 1 (emergent or REM), stage 2, stage 3, 

and stage 4. An attempt was made to choose as many of these "classic" 

minutes for each category as would correspond proportionally to the amounts 

of these states in the total record since the proportion of cases in each 

"classic" group formed the a priori probabilities for most of the subse­

quent classifications.

The cards containing the scores for the six frequency bands, one 

card for each ten-second epoch, were processed by the IBM 1620 computer 

to yield cards containing six means, one for each band, for each minute.

These minute cards were then used in all further analysis. The cards 

for those minutes defined as "classic" minutes were used as input to the 

discriminant function analysis program.

The multiple discriminant function analysis program used to re­

duce the test space and to examine the groups (states of consciousness) 

with respect to the six variables was based on the program given in 

Cooley and Lohnes (1962), modified to yield the F-ratios testing the 

significance of group differences on the six variables. Some reprogram­

ming was also necessary to adapt the original program to the 1620 computer. 

The results of the discriminant function analysis were used in computing 

the group centroids and dispersion matrices in the reduced discriminant 

space by means of the program ESPACE (Cooley & Lohnes, 1962). The re­

sulting centroids and dispersion matrices were then available for input 

to the classification program.

Classification of all available minutes of the record was accom-
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plished by means of the program CLASSIF (Cooley & Lohnes, 1962), modified 

so as to avoid output of the centour information in the form of Chi- 

squares as originally written. The listed output consisted of the minute

number, the titles of the three most likely groups, ordered from most

to least likely, and the probabilities associated with those groups.

As mentioned, the a priori probabilities given to the computer

for the classification were based on the number of minutes chosen as

"classic" for that record. In only one case was this not true, that where 

the classification of both of the frontal records was based on discrimi­

nants developed from the combined "classic" minutes for both records.

In this case only the numbers of minutes in each group for the first of

the two records were used since it was felt that the others were non­

representative of the night as a whole. The entire eight-hour record 

was classified for all three of the posterior records. Tape footage limi­

tations forced the classification of the records for the two subjects with 

anterior data only for the first 356 and 372 minutes.

The number of discriminants available for computation of the

group centroids and dispersions, that is, the dimensionality of the 

reduced space, was limited to four, one fewer than the number of groups.

An examination of the percentage each root (discriminant contribution) 

was of the trace (total discriminating power of the analysis) provided 

an indication of the number of discriminants necessary to account for 

most of the discriminability. In all of the analyses, the first three 

discriminants proved to contain all but a very minor portion of the total 

and therefore only the first three were used to compute the statistics 

relevant to the several spaces of reduced dimensionality.
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The first record to be subjected to a discriminant function 

analysis and classified was one of the three for which only posterior 

data was available. Upon assurance that the technique would classify 

this record, a similar procedure was carried out with one of the two 

records from the other subject with posterior data only. To investigate 

the generality of the procedure, all of the "classic" minutes for both 

records were then combined, a discriminant analysis performed, and all 

minutes for both records were classified on the basis of these combined 

discriminants. The second night for the one subject was then classified 

on both the discriminants developed from the data on that subject's first 

night and the discriminants resulting from the combination of the "classic" 

data for the two subjects to see if general properties existed both across 

nights and across subjects. In light of the potentially greater variabi­

lity in the intermediate bands with frontal records, evident from an exami­

nation of the band raw score means for the five groups, discriminant 

function analyses were run for frontal data from two additional subjects 

on whom such data was available. All available minutes for these two 

records were then classified on discriminants developed from combined 

"classic" data as well as on discriminants developed from each subject's 

own "classic" data.

Each minute for each record, then, was classified by three in­

dependent clinical scorers and by two sets of discriminants. The results 

were listed together, minute by minute, for each record and each classi­

fication compared to every other classification within each record. A 

k coefficient of nominal agreement (Cohen, 1960) was computed for each 

resulting contingency table. The k coefficient indicates the proportion
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of total agreement between any two judges after chance agreement has 

been removed. The statistic is designed for use in situations where no 

criterion of "correctness" exists and no restriction can be placed on 

the marginal distributions. Discrepancies between judges are considered 

equal to one another in that categories are not arranged in any particular 

order. Unlike the Chi-square contingency test, the k coefficient does 

not deal with the off-diagonal frequencies, that is, with the frequencies 

of disagreement. When chance agreement is equal to observed agreement 

the coefficient is zero. When perfect agreement occurs between judges 

the coefficient is a positive 1.00. This perfect agreement can occur 

only when all cases fall on the diagonal and this, in turn, requires that 

the marginal distributions for the two judges are identical. The maximum 

value which k can assume for a given set of marginals, k-max, indicates 

the limitations imposed by the judges' lack of agreement on the distribu­

tion of the cases into categories. The ratio of k to k-max serves to 

describe the proportion of marginally permitted agreement realized between 

the judges. In most cases, however, any disagreement has negative con­

sequences .



CHAPTER III

RESULTS

The results of the discriminant analysis. In as much as the 

purpose of the multiple discriminant function analysis was to create 

vectors on which the five groups were maximally separated, it is of in­

terest to see how well the analysis fulfilled this purpose. The first 

step was to explore the total set of raw score differences for discrimi­

nability between the groups. Table 2 lists the F-ratios for each of the 

six analyses performed. For this table and all succeeding tables in this 

chapter, the following abbreviations will be used: Posterior 1 (PI),

Posterior 2 (P2), Combined Posterior (Comb. P), Anterior 1 (Al), Anterior 

2 (A2), Combined Anterior (Comb. A), First Night (Nl), Second Night (N2),

In every case, the hypothesis, that group differences as large as those 

obtained would result from drawing five random groups from a six-dimensional 

multivariate swarm, could be rejected at much better than the one-percent 

level. The groups could not be regarded as having similar profiles on the 

six bands. It was also of interest to examine the significance of the 

differences between group means for each variable individually to see if 

all variables were contributing significantly to the discriminability.

Table 3 gives these individual F-ratios for each of the six analyses. All 

six of the variables in each analysis are significant at greater than the

27
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one-percent level. Appendix A contains the group means and standard 

deviations for the six variables for each analysis.

Table 2

F Tests for the Total Discriminability of the Measures

Degrees of Freedom

Analysis F-ratio Between Within

PI 79.16 24 647

P2 64.02 24 797

Comb. P 113.91 24 1477

Al 123.85 24 859

A2 75.45 24 455

Comb. A 143.74 24 1348

It was contended earlier that an anterior electrode placement 

would yield greater variance in the measures than would posterior place­

ment. To test this contention. F-ratios were calculated between the 

total variances for the combined posterior "classic" minutes and the 

combined anterior "classic" minutes for each of the six bands. Table 4 

displays the variances and F-ratios. All of the F-ratios were significant 

at better than the one-percent level. The anterior variances for all 

bands except M3, the alpha band, were larger in the anterior minutes than 

in the posterior minutes. The greater variance in alpha with a posterior 

placement is not surprising in light of the fact that waking alpha is 

severely attenuated in anterior records.
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Table 3

Individual F-Ratios for the Six Bands

Analysis Band Among Mean Square Within Mean Square F-ratio

PI

P2

Comb. P

Ml 4697.22 26.16 179.52

M2 1373.27 8.69 158.03

M3 2370.46 7.72 307.15

11 981.43 16.51 5 9.45

12 215.74 4.29 50.25

13 939.77 7.95 118.23

degrees of freedom = 4 & 190

Ml 3988.89 13.30 299.87

M2 686.36 7.06 97.28

M3 1300.63 14.53 89.53

11 851.47 14.80 57.54

12 307.60 11.86 25.94

13 639.96 9.41 68.00

degrees of freedom = 4 & 233

Ml 8796.07 20.59 427.28

M2 1904.23 9.82 193.97

M3 3575.65 16.41 217.85

11 1911.36 35.53 53.78

12 553.66 10.21 54.24

13 1593.55 9.42 169.07

degrees of freedom = 4 & 428
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Table 3 (continued)

Analysis Band Among Mean Square Within Mean Square F-ratio

Al Ml 11475.29 23.79 482.27

M2 1801.30 12.08 149.08

M3 1039.86 9.02 115.31

11 2157.17 6.77 318.80

12 2509.95 20.96 119.77

13 6866.69 25.55 268.78

degrees of freedom = 4 & 251

A2 Ml 2109.32 14.18 148.74

M2 427.82 9.37 45.65

M3 221.31 6.19 35.73

11 5502.55 13.72 400.98

12 1513.25 8.24 183.70

13 3476.09 9.19 378.16

degrees of freedom = 4 & 135

Comb. A Ml 12741.94 28.81 442.29

M2 2053.23 14.79 138.84

M3 1055.70 12.06 87.55

11 7051.26 42.33 166.55

12 4003.76 25.89 154.62

13 10448.28 38.26 273.06

degrees of freedom = 4 & 391

Each analysis resulted in four orthogonal discriminants. To
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determine how many of these discriminants to use as a basis for classi­

fication, it was necessary to examine the percentage of the total dis­

criminating power contained in each discriminant. These percentages are 

listed by the program as "Percentage which each root is of trace" and 

appear as Table 5. It is clear that consideration of more than the three 

discriminants with the highest percentages would add little to the 

classification since in every case the first three account for more than 

ninety-nine percent of the total discriminability.

Table 4

Standard Deviations, Variances, and F-Ratios for the Six 

Bands on Combined Posterior and Combined 

Anterior "Classic" Minutes

Band

Variance

Posterior Anterior F-ratio £

Ml 101.81 157.50 1.55 <.01

M2 27.35 35 .40 1.29 <.01

M3 49.42 22.66 2.18 <.01

11 52.85 113.21 2.14 <.01

12 15.21 66.10 4.35 <.01

13 24.11 143.52 5.95 <.01

degrees of freedom = 432 posterior and 395 anterior
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Table 5

Percentage Which Each Root is of Trace

Analysis

Discrimi.nants

1 2 3 4

PI 54.09 33.84 11.76 .29

P2 73.94 18.79 7.10 .15

Comb. P 59.99 32.27 7.58 .14

Al 65.46 27.44 6.81 .27

A2 74.57 20.39 4.32 .69

Comb. A 74.55 17.80 7.22 .41

Often a discriminant function analysis is performed primarily 

to explore the differences which may arise. In such a case it is of 

greatest interest to examine the relative contributions of the measures 

to each of the discriminants. These relative contributions appear as 

scaled vectors and are exhibited as Table 6. While it is not the purpose 

of this paper to examine these differences in detail, some of the infor­

mation contained in the scaled vectors may help to shed light on certain 

of the classification difficulties which were encountered.

An examination of the group centroids in the three-dimensional 

discriminant space (Table 7) is especially important in explaining any 

lack of success in classification. In the posterior analyses, for example, 

the stage 3 and stage 4 centroids are not particularly different from 

each other while in the anterior analyses the centroids are well separated. 

One could thus expect difficulty in differentiating the two stages on 

posterior classifications and not on anterior classifications.
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Table 6

Scaled Vectors Showing the Relative Contributions of the Bands to 

the Three Chosen Discriminants for the Six Analyses

Analysis Discriminant

Band

Ml M2 M3 11 12 13

PI 1 - 2.14 .59 35.09 7.23 -10.66 2.05

2 - 9.02 28.38 0.00 4.99 3.11 26.80

3 8.66 - 5.70 2.12 .17 -23.49 20.76

P2 1 28.84 -16.50 -36.78 19.84 11.10 - 3.95

2 - 3.87 -26.22 15.09 19.88 -31.36 9.21

3 2.75 22.14 4.00 27.40 -35.01 8.46

Comb. P 1 -42.03 26.35 45.77 12.50 -16.24 32.70

2 3.95 45.56 -30.71 -35.18 34.16 - 9.22

3 -31.45 -10.89 -18.33 - 3.39 45.26 -37.13

Al 1 -16.74 17.81 20.38 -28.84 26.09 17.07

2 9.46 11.27 -18.06 12.67 49.35 39.31

3 .94 11.67 19.84 -25.79 22.53 -43.31

A2 1 22.39 7.85 - 7.37 26.51 10.19 -13.70

2 - 1.19 10.16 5.41 -17.84 25.49 -12.51

3 - 4.03 - 8.00 11.23 -17.99 -12.94 -24.00

Comb. A. 1 29.92 -35.01 -41.01 71.37 -19.57 - 9.59

2 2.87 - .15 -31.43 26.28 73.67 56.29

3 13.72 13.11 -38.18 62.83 16.57 75.25
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Table 7

Centroids of the Five Groups in Reduced Discriminant 

Space for the Six Analyses

Analysis Discriminant

Groups

Awake Stage 2 Stage 3 Stage 4 REM

PI 1 35.69 8.77 3.57 2.12 9.12

2 28.56 40.94 28.27 24.47 45,52

3 - 5.65 - 9.11 - 5.98 - 3.51 - 2,27

P2 1 -17.85 - 8.03 11.35 19.08 -15.93

2 - 4.31 -20.86 -17.82 -15.71 -17,77

3 5.96 11.17 13.80 14.03 - 16.07

Comb. P 1 34.19 22.90 5.45 .37 29.58

2 - 3.21 20.07 15,96 14.21 18.71

3 - 9.88 -10.78 -13.62 -15.00 -16.72

Al 1 22.56 18.34 6.88 -10.03 23,51

2 18.99 37.62 38.24 34.19 36.29

3 - 5.32 - 5.18 - 5.53 - 9.97 -13.79

A2 1 .46 25.26 42.54 50.16 7.50

2 4.06 18.48 11.43 5.21 9.04

3 -32.94 -37.02 -37.70 -37.45 -40.75

Comb. A 1 -22.37 -16.26 - 2.84 11.66 -21.67

2 15.00 28.58 28.21 24.88 26.63

3 17.51 18.81 20.23 23.74 28.91
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The classification results were examined to shed light on the 

three major hypotheses concerning the system: 1) that it would, within

limits, be as reliable as would the three clinical scorers in classifying 

sleep stages; 2) that it would be more sensitive to changes than the 

clinicians and; 3) that it would maintain its reliability across nights 

on a subject and across subjects.

The first hypothesis. The first of these hypotheses would be 

supported if agreement as to the classification of the minutes was as 

great between the clinicians and the computer as among the clinicians 

themselves. The first results which were examined were those indicating 

the computer classification of the "classic" minutes for each record.

The percentages of correct classification (correct, that is, on the 

assumption that all "classic" minutes are actually members of the group 

to which the clinician assigned them) are given in Table 8. The number 

of minutes in each group and the associated a priori probabilities are 

given in Table 9. Seven of the ten overall percentages are above 90.

The other three are above 80 percent. On certain of the minutes where 

the two classifications did not agree, furthermore, the clinician felt 

compelled to admit, upon reexamination of the record, that the computer 

classification was probably more representative than his own. For the 

anterior records, individual stage percentages are all greater than 75, 

with all but one greater than 80. For the posterior records, on the 

other hand, disregarding the second night, four percentages were less 

than 65. These low percentages occur within the slow-wave stages 3 and 

4. The anterior data seems to provide a better basis for classification 

of this slow-wave sleep than does the posterior data.
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Table 8

Percent of Computer Agreement with "Classic" Assignation 

for the Ten Classifications Carried Out

Minutes Discriminants

States

OverallAwake Stage 2 Stage 3 Stage 4 REM

PI PI 100.0 95.0 82.8 63.6 88.9 90.3

Comb. P 100.0 93.0 58.6 63.6 82.2 84.6

P2 P2 85.7 99.4 87.5 91.7 91.8 96.2

Comb. P 100.0 95.5 100.0 58.3 87.8 92.4

P2 (N2) P2 (Nl) 90.0 96.0 100.0 57.1 92.8 92.1

Comb. P 80.0 85.5 100.0 15.0 91.3 81.9

Al Al 100.0 85.6 90.5 100.0 91.4 90.2

Comb. A 100.0 79.2 81.0 100.0 93.1 86.7

A2 A2 91.7 96.9 88.2 95.2 96.0 95.0

Comb. A 83.3 95.4 88.2 90.5 84.0 90.7

Turning to the results of the classifications for all of the 

minutes in a record, the k coefficients, k-max coefficients, and the 

ratios between the two coefficients are given in Tables 10-14. The 

contingency tables from which the statistics were derived appear in 

Appendix B.
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Table 9

Number of Minutes in the "Classic" Groups and A Priori Probabilities*

Record Awake Stage 2 Stage 3 Stage 4 REM Total

PI 10(.Q5) 100 (.51) 29(.15) 11(.06) 45(.23) 195(1.00)

P2 7 (.03) 154 (.65) 16(.07) 12(.05) 49(.20) 238(1.00)

Comb. P 17(.04) 254 (.65) 45 (.10) 23(.05) 94(.22) 433(1.00)

P2(N2) 10 173 5 21 69 278

Al 16(.06) 125 (.49) 21(.08) 36(.14) 58(.23) 256(1.00)

A2 12 (.09) 65 (.46) 17 (.12) 21(.15) 25(.18) 140(1.00)

*Anterior 1 a priori probabilities used in combined anterior classification.

A summary of Tables 10-14 is given in Table 15 where the mean 

k coefficients, k-max coefficients, and ratios for each record and over 

all records are displayed. All of the k coefficients are significant at 

greatly beyond the chance level, as might be expected. It can be seen 

that the overall k mean between raters (.783) is somewhat higher than 

that between the raters and the computer classifying on the basis of 

discriminants developed from the "classic" minutes for the same record 

(own discriminants, .711). The two means are closer, however, than one 

might expect. If one omits the means for the Posterior 2, second night, 

the overall means become .779 between raters and .719 between raters and 

the computer; the computer-rater agreement approaches even more closely 

the between-rater agreement. The values of marginal agreement, k-max, 

are even more nearly the same (.896 and .892). If the second night for 

Posterior 2 is again omitted, the values become .895 between raters and
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Table 10

The k and k-max Coefficients and Ratios for Posterior I Minutes

Statistic Judge Rater 2 Rater 3

Discriminants 

PI Comb. P

k Rater 1 .806 .730 .708 .632

Rater 2 .769 .728 .678

Rater 3 .678 .676

Pi Discrim. .810

k-max Rater 1 .954 .938 .940 .963

Rater 2 .955 .954 .924

Rater 3 .935 .918

PI Discrim. .903

Ratio Rater 1 .845 .778 .753 .656

Rater 2 .805 .763 .734

- Rater 3 .725 .736

PI Discrim. .897

.894 for the computer-rater mean, equal for all intents and purposes.

The ratios, as might be expected, differ in favor of the raters as do 

the k coefficients. Again, omitting the second night, the means become 

.870 between raters and .804 between raters and the computer own dis­

criminants .

Agreement between the raters and the computer own classification 

is greater for the two anterior records than for the posterior records.
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Table 11 

Coefficients and Ratios 

2 Minutes, First Night

for

Discriminants

Statistic Judge Rater 2 Rater 3 P2 Comb. P

k Rater 1 .948 .668 .588 .511

Rater 2 .696 .608 .534

Rater 3 .730 .707

P2 Discrim. .830

k-max Rater 1 .955 .796 .799 .721

Rater 2 .839 .842 .764

Rater 3 .942 .895

P2 Discrim. .906

Ratio Rater 1 .993 .839 .736 .709

Rater 2 .830 .722 .699

Rater 3 .775 .790

P2 Discrim. .916

Two variables may account for this difference. It may be that the greater 

variability in the measures with the anterior placement leads to better 

classification by the computer. It is also likely, however, that a 

technical artifact of some importance can account for at least part of 

the difference. Synchronization of the analog record with the epochs 

and minutes which appear as output from the period analyzer was enhanced
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Table 12 

: Coefficients and Ratios 

2 Minutes, Second Night

for

Statistic Judge Rater 2 Rater 3

Discriminants 

P2 Comb. P

k Rater 1 .774 .812 .662 .540

Rater 2 .818 .712 .621

Rater 3 .672 .598

P2 .677

k-max Rater 1 .864 .886 .873 .676

Rater 2 .954 .887 .804

Rater 3 .888 .778

P2 .726

Ratio Rater 1 .896 .916 .758 .799

Rater 2 .857 .803 .772

Rater 3 .757 .769

P2 .932

through an automatic record marker just prior to the gathering of the 

anterior data.

The second hypothesis. The second hypothesis, that the system 

would be more sensitive to changes than would the clinicians, was evalua­

ted by counting the changes within each record, both for the raters and 

for the two computer classifications. These numbers are displayed in
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Table 13

The k and k-max Coefficients and Ratios for Anterior 1 Minutes

Discriminants

Statistic Judge Rater 2 Rater 3 Al Comb. A

k Rater 1 .833 .862 .738 .710

Rater 2 .724 .804 .755

Rater 3 .693 .683

Al .886

k-max Rater 1 .871 .939 .863 .842

Rater 2 .820 .948 .894

Rater 3 .804 .790

Al .938

Ratio Rater 1 .956 . 918 .855 .843

Rater 2 .883 .848 .845

Rater 3 .862 .871

Al .945

Table 16. For each of the records and on the means for all the records

the number of computer changes is greater. It is interesting to note 

that rater 1, the less experienced assistant, showed the fewest changes, 

both on the individual records and overall. Perhaps the experienced 

rater is more willing or able to look at the separate minutes apart 

from their surroundings.

The third hypothesis. The third hypothesis, that the system
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Table 14

The k and k-max Coefficients and Ratios for Anterior 2 Minutes

Discriminants

Statistic Judge Rater 2 Rater 3 A2 Comb. A

k Rater 1 .764 .733 .702 .596

Rater 2 .814 .845 . 686

Rater 3 .803 .700

A2 .770

k-max Rater 1 .888 .862 .829 .875

Rater 2 .919 .940 .875

Rater 3 .936 . 866

A2 .845

Ratio Rater 1 .860 .850 .847 .681

Rater 2 .886 .899 .784

Rater 3 .858 .808

A2 .911

would maintain its reliability across nights and across subjects, was 

examined separately across nights and across subjects. Support for the 

contention that generalization across nights was possible would be in­

dicated if the classification of minutes for the second night could be 

accomplished as accurately from discriminants developed on data from the 

first night as could minutes for the first night. The overall percentage 

of computer agreement with the "classic" assignation for the posterior 2
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Table 15

Mean k and k-max Coefficients and Ratios Between Raters and Between

Raters and Discriminant Ratings for Each Record and Over All Records

Statistic Record Raters

Discriminants 

Between Rat- Between Raters 

ers and Own and Combined

k PI .768 .705 .662

P2 (Nl) .771 .642 .584

P2 (N2) .801 .682 .586

Â1 .806 .745 .718

A2 .770 .783 .661

Overall .783 .711 .642

k-max PI .949 .943 .935

P2(Nl) .863 .861 .793

P2(N2) .901 .883 .753

A1 .877 .872 .842

A2 .890 .902 .872

Overall .896 .892 .839

Ratio PI .809 .747 .709

P2 (Nl) .887 .744 .733

P2(N2) .890 .773 .780

A1 .919 .855 .853

A2 .865 .868 .758

Overall .874 .797 .767
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Table 16

The Number of Changes Within Each Record for the Three Raters 

and for the Two Computer Classifications

Record Rater 1 Rater 2 Rater 3 Computer 1 Computer 2

PI 55 73 74 98 105

P2 (Nl) 57 60 91 119 128

P2(N2) 43 73 60 114 151

A1 34 45 35 66 66

A2 37 56 59 62 94

Mean 45.2 61.4 63.8 91.8 108.8

second night (Table 8) is 92.1, an acceptable degree of accuracy. The 

accuracy of classification of stage 4 sleep on these discriminants is 

relatively low, however, only 57.1 percent. Partial explanation for this 

low percentage may come from an examination of the relative number of 

cases in the stage 4 group for the first night's "classics" when compared 

to the second night (Table 9). Over 7.5 percent of the cases for the 

second night fall in the stage 4 category while only 5 percent fall in 

the stage 4 category for the first night. Since groups with low a priori 

probabilities tend to be underassigned in the first place, it is likely 

that some of the minutes in the "classic" stage 4 group for the second 

night had classification probabilities which were greater for another 

stage of sleep when classified on the basis of the a priori probabili­

ties for the first night. When classified on the combined posterior 

discriminants, the second night exhibited 81.9 percent correct overall
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classification. When it is considered that this record was classified 

on discriminants from two other nights, this percentage is quite res­

pectable. Again, the correct classification of stage 4 sleep is low, an 

unacceptable 15.0 percent. The comments regarding a priori probabilities 

made earlier also apply here. The difficulty appears to be in differen­

tiating stage 3 from stage 4. If these two categories are grouped to­

gether as "slow-wave sleep" for this classification the percentage of 

correct classifications within this new group jumps to 100.0 and the 

overall percentage to 88.1.

Turning to the k and k-max coefficients and the ratios, it is 

clear, with regard to reliability across nights, that the agreement be­

tween the raters and the two computer classifications (.682, .586) is 

considerably less than the agreement between the raters (.801) (Table 15). 

It is interesting to note, however, that both in the case of the k co­

efficients and in the case of the ratios the agreement between the raters 

and the computer classification on the first night's discriminants is 

greater than the corresponding value for the first night's minutes, as 

it is for the agreement between the raters and computer classification 

on combined posterior discriminants. It would appear, then, that agree­

ment on the second night was at least as good as on the first night. 

Between-rater agreement for the second night was higher than for the 

first night, however.

The contention that general discriminants could be developed 

across subjects would be supported if classification were as accurate 

on combined discriminants as on the record's own discriminants. The 

percentages of correct classification on the "classic" minutes (Table 8)
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indicate that while no set of "classic" minutes was classified as 

accurately with the combined discriminants as with the record's own 

discriminants, all of the combined classifications were better than 

80.0 percent and with the exception of the second night on posterior 2, 

none are further than ten percentage points away from those for the 

record's own classification.

The agreement coefficients are all lower between raters and 

combined classifications than between the raters themselves. The com­

bined classifications also agree less with the raters than do classifi­

cations based on the record's own discriminants. Figures 1 and 2 illus­

trate the best and the worst rater-computer agreement achieved within 

the study. Figure 1 presents the sleep stage profiles, smoothed over 

five-minute blocks, for rater 2 and for the computer own classification 

on anterior 2. Figure 2 presents similar profiles for rater 1 and com­

bined classification on posterior 2, first night.

Agreement between the two computer classifications ranges from 

.677 to .886, the lowest value resulting from the two classifications 

of the second night on the second posterior subject. The mean agreement 

between the two computer classifications is .795, better than the mean 

between-rater agreement. The mean k to k-max ratio between the two 

computer classifications is .920, perhaps indicating that much of the 

disagreement is in the marginal distributions.
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CHAPTER IV

DISCUSSION

The results of the discriminant output indicate that sufficient 

differences exist between the five sleep stages on the six measures to 

generate significant separation. Each of the measures taken added sig­

nificantly to the total effectiveness of the analysis, a fact which argues 

strongly for retention of all six bands. The question of whether or not 

six bands alone are sufficient to accurately classify the record remains 

open. The classification achieved with the system, while surprisingly 

good, would be improved in reliability somewhat with the addition of 

parameters such as total counts of baseline crossings for the major, inter­

mediate, and minor periods. There is some doubt, however, as to whether 

the addition of other measures would produce an increase in reliability 

commensurate with the added expense of obtaining and analyzing such measures, 

Both the increased variability and the increased reliability 

gained by using the anterior electrode placement raises a question con­

cerning the usual procedure of analyzing posterior EEC. In light of 

the findings, it is suggested that anterior EEGs should be used as a basis 

for classification, particularly when period analysis is employed. If 

possible, the posterior record can be filtered separately to obtain the 

alpha frequency information and this posterior alpha count used in place

49
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of that resulting from anterior placement. This posterior information 

would be of particular importance where the detection of waking in the 

subject is a primary consideration such as studies which stimulate 

sleeping subjects.

The classification results indicate that the computer can duplicate 

the clinical process of scoring sleep records to a large extent. Not 

only were the obtained reliabilities much better than a random agreement, 

but they closely approached the reliabilities to be expected from clini­

cians themselves. It must also be remembered that the clinical raters 

employed in the study were working in the same laboratory and that their 

agreement is probably greater, therefore, than it would be for raters 

employed in diverse settings. The results lend considerable support to 

the hypotheses concerning the reliability and usefulness of the data 

reduction and classification system.

While the raters and the computer disagree to a certain extent 

on a minute-to-minute basis, so do the raters themselves. The problem of 

reliability is tied up in the question of whether or not the automatic 

classification ought to exactly match the clinical classification. It is 

possible, particularly when the computer seems more willing to change 

stages than does the human scorer, that the computer classification more 

closely mirrors the state of the subject. The greater number of minute- 

to-minute changes in the computer classification, when compared to clinical 

classifications, leads to the conclusion that the computer system is sen­

sitive to changes in the data which are not detected by the human scorers. 

While some computer changes may result from the introduction of artifact 

such as subject movement into the record, changes of the sort occurring
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between stages 3 and 4 or even between stages 2 and 3 are not likely to 

be the result of such artifact.

The classification procedures used by the computer judge each 

minute as a separate entity, apart from the surrounding record. The 

minute cards could be presented for classification in any random order 

with the same resulting classifications. Such a procedure, however, when 

applied to the human interpreter, would result in somewhat different 

classifications for the minutes than those which would be produced from 

a continuous record. Such a study should be undertaken to evaluate the 

degree to which the surrounding record influences the clinician's judg­

ments regarding sleep staging.

It is entirely possible to program into the system a probability 

based on a form of the Markov process in which the system would take into 

account the classification of the minute, or several minutes, preceding 

the one being classified. In order to fully duplicate the clinical process, 

however, it would be desirable to have the weighting of such a probability 

reduced by a factor corresponding to the duration of the stage. Such a 

procedure would increase reliability at the expense of computer sensiti­

vity to minor changes in the record. The decision regarding such an 

addition would depend to a large extent on the relative importance of 

detecting change.

The number of stage changes may itself serve as a measure in 

sleep research. Williams and Williams (1966), in a study of the relation­

ship between EEG profiles and performance, counted transitions from stage 

to stage. Defining quiet and restless sleepers on the basis of differing 

transitional probability matrices, they found a significant difference be-
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tween the two groups on this measure and found it related to performance 

under conditions of sleep deprivation. An automatic analysis of sleep 

data could lead to a finer discrimination between the groups and perhaps 

enable investigators to more thoroughly study the nature of sleep dis­

turbances .

The selection of the "classic" minutes largely determines the 

reliability realized between a computer classification and that of a 

human scorer. The computer classification is no better than the degree 

to which the data on which the discriminants are developed is representa­

tive of the record one wishes to classify. While agreement between raters 

on the "classic" minutes was excellent overall, certain discrepancies 

occurred as the result of the clinician's choosing some minutes within 

each group which were "marginal" to increase the group dispersions slightly 

for the sake of generality across subjects. This increase in the group 

dispersions may have led to certain misclassifications as the product of 

overlapping group boundaries. It is clear that the percentages of correct 

classification of "classic" minutes show that a number of the minutes 

chosen were not representative of the groups into which the clinician 

placed them. To refine the group parameters, then, and reduce overlap 

between groups, these incorrectly classified minutes should be discarded. 

The method of comparing "classic" minutes to the groups from which they 

came is admittedly "bootstrapping." In any developmental context, however, 

such a procedure yields the information necessary for refinement of the 

classification. Ideally, of course, all minutes could be correctly placed 

in their "classic" groups. In a general system designed to accept data 

from any subject and classify it into stages, it is a good idea either to
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arrive at the parameters for a particular group from data on minutes 

agreed upon by a number of diverse clinical scorers and from a large 

number of subjects or, alternatively, to modify, the parameters as the 

result of computer experience with classification after the manner of 

Shapiro and Fink (1966) .

The a priori probabilities of group membership also influenced 

the agreement reached between automatic and human classifiers. The 

differing distributions of the minutes into the five states by the 

classifying parties, human and machine, indicate that this problem is 

as great as that posed by a minute-by-minute classification. Differing 

distributions force disagreement on a minute-to-minute basis. Especially 

where the automatic classification is designed to yield information as to 

the percentages of the total night spent in the various stages of sleep, 

such as in drug studies, differences in the distributions can become a 

central factor. An adjustment of the a priori probabilities can over­

come differences between the computer classification and a clinical 

classification but radical adjustment would lead not only to a loss of 

generalizability but also to a loss in minute-by-minute agreement. It 

is probably true that a general set of a priori probabilities based on 

an average over several subjects and several nights would lead to optimal 

long-term classification accuracy.

The special problems encountered in research on sleep deprivation 

or drug effects, where distributions differing from baseline probabilities 

are to be expected, could call for another set of probabilities for use 

on these occasions. This, in essence, is probably what the clinician, 

consciously or unconsciously, does when confronted with a sleep record
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that he knows resulted from some experimental manipulation. He forms an 

hypothesis about the changes in the record which he expects to see and 

he is likely to err in his scoring of this hypothesis. The solution in 

clinical settings has been to use a blind scoring technique. An auto­

matic analysis using altered probabilities would only lend human biases 

to a system. A conservative approach to the problem would suggest that 

significant changes in stage distributions observed while using baseline 

probabilities would constitute a powerful argument in favor of an hypo­

thesis of change.

The problem of the generalizability of any set of discriminants 

used for classification of EEG patterns, either across subjects or across 

nights, is tied not only to within-night reliability but to the between- 

record reliability of the human classifiers and their scoring strategies 

as well. There is some evidence, both anecdotal and empirical, to indi­

cate that two types of individual scoring strategies may exist. One type 

of individual has an internalized concept of how a particular stage of 

sleep should appear and classifies epochs as that stage only to the extent 

that they meet this internal criterion. The other type cf individual uses 

a "rubber ruler" in that he has a preconceived idea of the stages that 

should occur and when they should occur and classifies the most likely 

epochs as members of the respective groups. Monroe's (1967) findings lend 

support to the contention that two strategies exist. For the twenty-seven 

raters employed in that study, the number of minutes classified as stage 

4 sleep ranged from none to 83.0. Some raters, in other words, saw little 

or no stage 4 sleep while others saw as many as 83.0 minutes. Similar, 

though less striking, differences occurred for other categories.
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It may be desirable to standardize criteria for sleep record 

scoring to a much greater extent than has so far been accomplished. It 

is sometimes difficult to interpret the results of studies using sleep 

profiles without a clear statement of the particular set of criteria used 

in scoring. It would appear that if an exact and standard procedure could 

be applied to all sleep records, a considerable gain in clarity and a 

corresponding reduction in the amount of supplementary information in 

reports could be realized. One approach to such a standardization would 

be to apply precise period analytic procedures to the EEG record and sub­

mit the results to computer analysis and classification based on a set of 

universally available discriminants. The classification would then be 

regarded as the "true" profile for that record. There are several diffi­

culties apparent in such a procedure. The first difficulty is the assump­

tion that analytic facilities are universally available. A second and 

perhaps more important difficulty concerns the equivalence of patterns 

across subjects. The basic question is whether or not the slow, regular, 

and rolling delta activity of classic stage 4 sleep in one subject is the 

same, physiologically and behaviora1ly, as is a much more broken, random 

pattern resembling stage 3 for another subject for whom this state is his 

deepest. A computer system would classify the first instance as stage 4 

and the second stage 3. In effect, then, the computer classification 

would indicate that the second subject showed no stage 4 sleep. What is 

needed before such a question can be resolved is a series of carefully 

done studies exploring the physiological and behavioral concomitants of 

specific EEG patterns. That this problem is far from simple is pointed 

up in the Williams et al. (1966) study on instrumental behavior during
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REM sleep. It may be that the currently employed Dement-Kleitman classi­

fication scheme contains too few categories and that a greater number of 

behaviorally relevant states could be found. It may also be, on the other 

hand, that reducing classification to two sleeping states, slow-wave or 

low voltage, fast activity, will serve to differentiate all possible be­

haviors with the other stages simply gradations within these categories.

The system developed within this paper is capable of conversion 

into an on-line, real-time classification system. There are a number of 

ways in which this might be accomplished. The various approaches to the 

problem differ at the point of interface between digital and analog com­

ponents of the system. Since period analysis is essentially a digital 

filtering system, the primary interface occurs at the point where the 

analog EEG signal is converted to square-wave trains. The next point at 

which a decision must be made is at the output of the digital counters.

Here the digital output may be left in its BCD (Binary Coded Decimal) 

format or converted to an analog voltage through a resistance ladder. The 

digital data can either be analyzed with a special-purpose digital computer 

(an expensive proposition) or an on-line analysis could be performed by 

a general-purpose digital computer on a time-sharing arrangement with a 

remote data input connection. A better solution would seem to be the 

use of an analog computer programmed to weight the output voltages of the 

period analyzer to yield discriminant scores. These scores would then be 

further weighted by functions corresponding to group dispersions, a priori 

probabilities, and other factors such as transitional probabilities. At 

this point a graphic representation of the probabilities of each group 

could be recorded and interpreted visually or digital decision logic 

could be employed to identify the most likely group or groups.



CHAPTER V

SUMMARY

The study of sleep has become one of the principal fields of 

study in the last decade. Numerous researchers are using sleep as a tool 

to study psychological and physiological problems such as mental illness, 

drug effects, and performance. Although less than forty years old as a 

clinical technique, the electroencephalograph (EEG) has become a standard 

criterion for states of consciousness. Several schema for the labeling 

of EEG patterns during sleep have been developed, notably that of Dement 

and Kleitman. The classification of sleep records into categories has 

long been a job for persons with the necessary training to interpret the 

nocturnal patterns. Such classifications are less than perfect, not en­

tirely reliable, and consume a great deal of time on the part of the in­

dividual. Th'ire has been a great deal of effort in recent years directed 

toward the development of automatic systems of analysis and classification 

of nocturnal EEGs. The majority of these techniques employ a general- 

purpose digital computer for all or a part of the data-reduction process. 

In light of the expense and delay inherent in the use of such a computer, 

this study sought to develop and evaluate a technique suitable for on­

site, real-time analysis and classification of EEG sleep records into the 

Dement-Kleitman sleep stages. It was felt that the technique should be:
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1) as reliable as are several clinicians among themselves in classifying 

records; 2) more responsive to change than is the clinician, and; 3) 

maintain reliability across subjects and across nights.

Several quantification procedures for expressing the EEG were 

discussed, among them analog filters, auto-spectral analysis, amplitude 

analysis, and period analysis. Due to considerations of analysis time, 

expense, and the greater responsiveness of period analysis to random, 

high-frequency activity, this method was chosen to quantify the EEG. The 

method consists, essentially, of a set of on-line, special-purpose digi­

tal filters and associated digital and analog circuitry.

The use of multiple discriminant function analysis can signi­

ficantly reduce the dimensionality of the raw score space and provide 

weights for the measures which produce maximal separation between cri­

terion groups. Based on the discriminant functions, classification can 

use a minimum-distance criterion or a maximum-likelihood criterion. The 

maximum-likelihood criterion, when a decision rule based on Bayes's theo­

rem is employed, results in optimal classification if group dispersions 

and a priori probabilities cannot be assumed equal.

The subjects were four male students from the University of 

Oklahoma. They were run on separate nights with standard left parietal 

to left occipital and left central to left frontal electrode placements. 

For two subjects the anterior signals were recorded and analyzed the next 

day. The signals were analyzed by an on-line special-purpose period ana­

lyzer set to yield information about frequencies corresponding to the 

clinical waveforms of delta, theta, alpha, regular alpha, sleep spindles, 

and beta activity.
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The EEG records were scored, minute by minute, by three indepen­

dent raters. One rater chose "classic" minutes of each of the five stages 

used. These minutes formed the basis for the multiple discriminant 

function analysis which was performed on an IBM 1620 computer. All 

minutes for a night were classified both on discriminants developed for 

that night and on combined discriminants. A second night's record was 

classified on discriminants developed from the first night for one of 

the subjects. Contingency tables resulting from a comparison of each 

classification with every other classification for each record were tested 

for agreement by a coefficient designed for use with nominal scale data.

The results indicated significant separation between groups on 

each of the variables and overall. Anterior electrode placement was found 

to give greater variance in all measures except alpha activity.

The results further indicated that considerable agreement between 

clinicians and the computer classifications was possible. In all cases, 

greater than 80 percent of the "classic" minutes were correctly classified 

into their respective groups. Computer-rater agreement on the coefficients 

approached closely the agreement found among the clinicians themselves.

A count of the number of changes in classification for each of the raters, 

human and computer, showed that the computer classification was probably 

more sensitive to change than were human raters. Generalization across 

nights and across subjects, while possible, did not result in reliability 

as high as that achieved within a night or subject. In general, however, 

the results indicate that the technique has sufficient potential to 

warrant further refinement.

The results were discussed in terms of increasing the reliability
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achieved in the study and adding to the generalizability across subjects 

and across nights, including non-baseline nights. Possible refinements 

included additional measures, the use of anterior electrode placements, 

the addition of transitional probabilities, and more representative 

methods of selecting "classic" minutes and a priori probabilities of 

group membership. Consideration was given to the use of the number of 

stage changes as a measure of sleep. It was suggested that two scoring 

strategies may exist for clinicians classifying sleep records. One type 

of individual uses invariant criteria for stage patterns while the other 

adjusts his criteria for each subject according to expectations based on 

previous experience and experimental treatment. The feasibility of stan­

dardizing record scoring through automatic analysis and classification of 

sleep records according to a standard procedure was considered. The 

principal drawback was held to be the lack of sufficient knowledge con­

cerning the physiological and behavioral concomitants of sleep stages.

The system was then discussed as a model for an on-line, real-time system 

of automatic sleep stage classification with consideration of the digital- 

analog interface problem.
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POSTERIOR I ANALYSIS 

Means

Group

Variable

Ml M2 M3 11 12 13

Awake 3.09 14.63 41.59 31.84 20.63 19.80

Stage 2 14.70 32.36 14.36 24.25 23.40 22.47

Stage 3 35.63 23.93 7.80 28.64 19.87 16.52

Stage 4 39.96 20.40 5.79 26.84 17.62 15.98

REM 12.92 33.34 13.63 16.37 19.13 29.48

Overall 18.23 29.75 14.13 23.62 21.42 22.70

Standard Deviations

Variable

Group Ml M2 M3 !u:.Il 12 13

Awake 1.58 5.29 5.86 9.03 1.49 3.70

Stage 2 4.71 2.79 2.32 3.73 2.19 2.66

Stage 3 7.59 3.04 2.22 3.12 2.18 2.70

Stage 4 5.54 2.91 1.04 2.42 1.78 1.28

REM 4.32 2.53 3.27 3.96 1.85 3.23

Overall 11.06 6.07 7.51 6.03 2.94 5.21
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POSTERIOR 2 ANALYSIS

Means

Group

Variable

Ml M2 M3 11 12 13

Awake 4.58 14.15 38.54 18.64 26.34 23.22

Stage 2 13.76 28.73 18.01 13.46 25.77 24.55

Stage 3 32.20 24.15 10.90 23.30 23.78 17.83

Stage 4 40.60 21.01 8.49 25.50 22.40 16.46

REM 8.06 31.20 20.74 11.54 20.21 29.16

Overall 14.91 28.11 18.22 14.48 24.34 24.60

Standard Deviations

Variable

Group Ml M2 M3 11 12 13

Awake 1.84 7.68 18.46 17.04 10.58 11.43

Stage 2 3.86 2.27 2.52 2.84 3.05 2.59

Stage 3 5.05 2.50 1.83 2,30 2.61 1.11

Stage 4 3.79 1.95 1.06 1.22 2.42 .97

REM 2.28 2.75 2.50 2.77 3.21 2.69

Overall 8.97 4.30 6.02 5.38 4.10 4.48
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COMBINED POSTERIOR ANALYSIS

Means

Group

Variable

Ml M2 M3 11 12 13

Awake 3.70 14.43 40.33 26.40 22.98 21.21

Stage 2 14.13 30.16 16.57 17.70 24.84 23.73

Stage 3 34.41 24.01 8.90 26.74 21.26 16.99

Stage 4 40.30 20.72 7.20 26.14 20.11 16.23

REM 10.39 32.22 17.34 13.85 19.69 29.31

Overall 16.41 24.85 16.38 18.60 23.03 23.74

Standard Deviations

Variable

Group Ml M2 M3 11 12 13

Awake 1.80 6.15 12.22 14.12 7.18 7.73

Stage 2 4.23 3.05 3.02 6.18 2.98 2.80

Stage 3 6.94 2.83 2.55 3.83 2.98 2.34

Stage 4 4.61 2.42 1.72 1.97 3.21 1.13

REM 4.18 2.85 4.59 4.15 2.69 2.95

Overall 10.09 5.23 7.03 7.27 3.90 4.91
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ANTERIOR 1 ANALYSIS

Means

Group

Variable

Ml M2 M3 11 12 13

Awake 4.97 21.20 18.82 1.00 5.56 34.80

Stage 2 17.76 27.08 41.81 11.84 23.78 31.97

Stage 3 29.81 22.43 11.48 18.52 26.14 22.12

Stage 4 50.49 15.53 3.73 21.97 18.65 13.82

REM 9.58 32.53 11.46 5.80 11.52 47.21

Overall 20.70 25.94 12.47 11.77 19.34 32.24

Standard Deviations

Variable

Group Ml M2 M3 11 12 13

Awake 2.78 2.61 2.02 .78 1.53 3.07

Stage 2 5.72 4.05 3.85 3.17 6.05 6.14

Stage 3 6.68 3.10 2.04 2.86 3.35 3.01

Stage 4 3.70 1.76 .95 1.57 2.51 1.80

REM 2.68 3.20 2.07 1.81 1.99 4.77

Overall 14.26 6.34 5.02 6.36 7.74 11.52
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ANTERIOR 2 ANALYSIS

Means

Group

Variable

Ml M2 M3 11 12 13

Awake 12.55 28.23 15.20 3.42 10,85 37.69

Stage 2 17.51 29.34 17.85 21.47 31.11 21.53

Stage 3 25.73 27.10 15.31 37.98 28.26 12.21

Stage 4 36.93 22.54 12.38 42.10 24.14 9.98

REM 14.28 34.52 11.92 7.75 18.38 38.02

Overall 20.42 28.88 15.43 22.57 25.71 23.00

Standard Deviations

Variable

Group Ml M2 M3 11 12 13

Awake 3.52 3.66 1.51 .74 2.74 3.46

Stage 2 3.70 3.28 3.05 4.82 3.46 3.66

Stage 3 4.23 2.14 1.93 3.24 2.20 1.89

Stage 4 4.14 2.10 2.13 2.59 1.90 1.47

REM 3.33 3.32 1.58 1.52 2.13 2.48

Overall 8.63 4.63 3.52 13.10 7.18 10.43
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COMBINED ANTERIOR ANALYSIS

Means

Group

Variable

Ml M2 M3 11 12 13

Awake 8.22 24.21 17.27 2.04 7.83 36.03

Stage 2 17.67 27.85 15.85 15.14 26.29 28.40

Stage 3 27.98 24.52 13.19 27.22 27.09 17.69

Stage 4 45.49 18.11 6.92 29.38 20.68 12.41

REM 10.99 33.13 11.60 6.38 13.58 44.44

Overall 20.60 26.98 13.52 15.5 9 21.59 28.97

Standard Deviations

Variable

Group Ml M2 M3 11 12 13

Awake 4.89 4.67 2.55 1.43 3.38 3.50

Stage 2 5.11 3.95 3.87 5.95 6.34 7.34

Stage 3 6.01 3.56 2.75 10.25 3.05 5.60

Stage 4 7.63 3.89 4.46 9.99 3.51 2.51

REM 3.60 3.34 1.94 1.94 3.75 5.97

Overall 12.55 5.95 4.76 10.64 8.13 11.98
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POSTERIOR 1 CLASSIFICATIONS

Rater 2

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 42 0 0 0 2 44

Stage 2 1 235 12 0 3 251

Stage 3 0 14 34 4 0 52

Stage 4 0 0 6 12 0 18

REM 1 16 0 0 97 114

Total 44 265 52 16 102 479

Rater 3

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 36 2 0 0 1 39

Stage 2 0 230 9 0 12 251

Stage 3 0 25 28 3 0 56

Stage 4 0 0 15 13 0 28

REM 8 8 0 0 89 105

Total 44 265 52 16 102 479
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Computer Own

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 34 3 0 0 0 37

Stage 2 2 230 7 1 19 259

Stage 3 0 10 37 8 0 55

Stage 4 0 0 4 7 0 11

REM 8 22 4 0 83 117

Total 44 265 52 16 102 479

Computer
Combined

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 33 8 2 0 1 44

Stage 2 4 228 9 1 29 271

Stage 3 0 15 28 7 0 50

Stage 4 0 0 13 8 0 21

REM 7 14 0 0 72 93

Total 44 265 52 16 102 479
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Rater 3

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 36 I G 0 2 39

Stage 2 0 225 6 G . 2G 251

Stage 3 0 20 36 G G 56

Stage 4 0 G IG 18 G 28

REM 8 5 G G 92 1G5

Total 44 251 52 18 114 479

Computer Own

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 34 3 G G G 37

Stage 2 3 224 IG G 22 259

Stage 3 G 7 38 IG G 55

Stage 4 G 0 3 8 G 11

REM 7 17 1 G 92 117

Total 44 251 52 18 114 479
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Computer
Combined

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 33 6 1 0 4 44

Stage 2 5 224 8 0 34 271

Stage 3 0 10 35 5 0 50

Stage 4 0 0 8 13 0 21

REM 6 11 0 0 76 93

Total 44 251 52 18 114 479

Computer Own

Rater 3

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 33 3 0 0 1 37

Stage 2 2 219 17 1 20 259

Stage 3 0 4 34 17 0 55

Stage 4 0 0 1 10 0 11

REM 4 25 4 0 84 117

Total 39 251 56 28 105 479
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Computer
Combined

Rater 3

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 33 7 2 0 2 44

Stage 2 3 220 17 1 30 271

Stage 3 0 7 35 8 0 50

Stage 4 0 0 2 19 0 21

REM 3 17 0 0 73 93

Total 39 251 56 28 105 479

Computer
Combined

Computer Own

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 35 3 0 0 6 44

Stage 2 1 248 1 0 21 271

Stage 3 0 6 41 3 0 50

Stage 4 0 0 13 8 0 21

REM 1 2 0 0 90 93

Total 37 259 55 11 117 479
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POSTERIOR 2 CLASSIFICATIONS, FIRST NIGHT

Rater 2

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 3 0 0 0 0 3

Stage 2 0 258 1 0 0 25 9

Stage 3 0 5 29 0 0 34

Stage 4 0 0 0 49 0 49

REM 0 9 0 0 126 135

Total 3 272 30 49 126 480

Rater I

Rater 3 Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 3 14 0 1 12 30

Stage 2 0 203 4 0 3 210

Stage 3 0 14 19 8 0 41

Stage 4 0 0 7 40 0 47

REM 0 41 0 0 111 152

Total 3 272 30 49 126 480



79

Computer Own

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 3 15 0 1 15 34

Stage 2 0 203 6 0 16 225

Stage 3 0 3 21 17 0 41

Stage 4 0 0 3 31 0 34

REM 0 51 0 0 95 146

Total 3 272 30 49 126 480

Computer
Combined

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 3 29 0 1 21 54

Stage 2 0 184 7 0 16 207

Stage 3 0 6 23 23 0 52

Stage 4 0 0 0 25 0 25

REM 0 53 0 0 89 142

Total 3 272 30 49 126 480



80

Rater 3

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 3 13 G 1 13 3G

Stage 2 G 2G1 3 G 6 21G

Stage 3 G 9 24 8 G 41

Stage 4 G G 7 4G G 47

REM G 36 G G 116 152

Total 3 259 34 49 135 48G

Computer Own

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 3 15 G 1 15 34

Stage 2 G 199 9 0 17 225

Stage 3 G 2 22 17 G 41

Stage 4 0 0 3 31 G 34

REM G 43 0 G 1G3 146

Total 3 259 34 49 135 48G



81

Rater 2
Computer
Combined Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 3 28 G 1 22 54

Stage 2 0 181 IG G 16 2G7

Stage 3 G 5 24 23 G 52

Stage 4 G G G 25 G 25

REM G 45 G G 97 142

Total 3 259 34 49 135 48G

Rater 3

Computer Own Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 24 5 G G 5 34

Stage 2 3 187 13 G 22 225

Stage 3 G G 25 16 G 41

Stage 4 G G 3 31 G 34

REM 3 18 0 G 125 146

Total 3G 21G 41 47 152 48G
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Computer
Combined

Rater 3

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 27 10 0 0 17 54

Stage 2 3 176 12 0 16 207

Stage 3 0 1 27 24 0 52

Stage 4 0 0 2 23 0 25

REM 0 23 0 0 119 142

Total 30 210 41 47 152 480

Computer Own
Computer
Combined Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 33 5 0 0 16 54

Stage 2 0 202 1 0 4 207

Stage 3 0 3 39 10 0 52

Stage 4 0 0 1 24 0 25

REM 1 15 0 0 126 142

Total 34 225 41 34 146 480
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POSTERIOR 2 CLASSIFICATIONS, SECOND NIGHT

Rater 1
Rater 2 Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 5 3 0 0 3 11

Stage 2 2 255 0 0 4 261

Stage 3 0 11 15 18 0 44

Stage 4 0 0 4 10 0 14

REM 2 16 0 0 132 150

Total 9 285 19 28 139 480

Rater 1
Rater 3 Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 7 3 0 0 0 10

Stage 2 0 265 2 0 7 274

Stage 3 0 2 17 20 0 39

Stage 4 0 0 0 8 0 8

REM 2 15 0 0 132 149

Total 9 285 19 28 139 480
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Computer 
First Night

Rater 1
Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 6 6 0 G 6 18

Stage 2 2 250 G G 31 283

Stage 3 0 14 16 15 G 45

Stage 4 0 G 3 13 G 16

REM 1 15 G G 1G2 118

Total 9 285 19 . 28 139 48G

Computer
Combined

Rater 1
Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 7 14 G G 19 4G

Stage 2 2 2G1 G G 9 212

Stage 3 G 13 19 25 G 57

Stage 4 G G G 3 G 3

REM G 57 G G 111 168

Total 9 285 19 28 139 48G
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Rater 3

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 5 4 0 0 1 IG

Stage 2 0 251 11 1 11 274

Stage 3 0 1 30 8 G 39

Stage 4 0 0 3 5 G 8

REM 6 5 G G 138 149

Total 11 261 44 14 15G 48G

Computer 
First Night

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 8 4 G G 6 18

Stage 2 1 238 4 G 4G 283

Stage 3 G 7 36 2 G 45

Stage 4- G G 4 12 G 16

REM 2 12 G G 1G4 118

Total 11 261 44 14 15G 48G
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Computer
Combined

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 9 11 0 0 20 40

Stage 2 0 196 4 0 12 212

Stage 3 0 6 39 12 0 57

Stage 4 0 0 1 2 0 3

REM 2 48 0 0 118 168

Total 11 261 44 14 150 480

Rater 3
Computer
First Night Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 7 1 0 0 10 18

Stage 2 3 244 0 0 36 283

Stage 3 0 14 29 2 0 45

Stage 4 0 0 10 6 . 0 16

REM 0 15 0 0 103 118

Total 10 274 39 8 149 480
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Rater 3

Combined Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 7 5 0 0 28 40

Stage 2 3 201 0 0 8 212

Stage 3 0 13 37 7 0 57

Stage 4 0 0 2 1 0 3

REM 0 55 0 0 113 168

Total 10 274 39 8 149 480

Computer
Computer First Night

Combined Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 18 11 0 0 11 40

Stage 2 0 210 2 0 0 212

Stage 3 0 1 43 13 0 57

Stage 4 0 0 0 3 0 3

REM 0 61 0 0 107 168

Total 18 283 45 16 118 480
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ANTERIOR I CLASSIFICATIONS

Rater I

Rater 2 Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 21 0 0 0 0 21

Stage 2 0 143 0 0 4 147 .

Stage 3 0 34 25 0 0 59

Stage 4 0 0 6 40 0 46

REM 0 0 0 0 99 99

Total 21 177 31 40 103 372

Rater 1

Rater 3 Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 19 1 0 0 3 23

Stage 2 1 172 13 0 4 190

Stage 3 0 0 15 4 0 19

Stage 4 0 0 3 36 0 39

REM 1 4 0 0 96 101

Total 21 177 31 40 103 372
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Computer
Own

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 18 0 0 0 1 19

Stage 2 0 133 3 0 7 143

Stage 3 0 32 18 1 0 51

Stage 4 0 0 10 39 0 49

REM 3 12 0 0 •95 110

Total 21 177 31 40 103 372

Rater 1

Computer
Combined Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 19 2 0 0 8 29

Stage 2 0 128 4 0 3 135

Stage 3 0 26 16 0 0 42

Stage 4 0 0 11 40 0 51

RFM 2 21 0 0 92 115

Total 21 177 31 40 103 372
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Rater 2

Rater 3 Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 19 1 0 0 3 23

Stage 2 1 138 47 0 4 190

Stage 3 0 0 12 7 0 19

Stage 4 0 0 0 39 0 39

REM 1 8 0 0 92 101

Total 21 147 59 46 99 372

Rater 2

Computer
Own Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 18 0 0 0 1 19

Stage 2 0 124 13 0 6 143

Stage 3 0 8 41 2 0 51

Stage 4 0 0 5 44 0 49

REM 3 15 0 0 92 110

Total 21 147 59 46 99 372
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Computer
Combined

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 19 2 0 0 8 29

Stage 2 0 116 17 0 2 135

Stage 3 0 5 36 1 0 42

Stâge 4 0 0 6 45 0 51

REM 2 24 .0 0 89 115

Total 21 147 59 46 99 372

Computer
Own

Rater 3

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 18 0 0 0 1 19

Stage 2 0 135 0 0 8 143

Stage 3 1 40 9 1 0 51

Stage 4 0 1 10 38 0 49

REM 4 14 0 0 92 110

Total 23 190 19 39 101 372
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Computer
Combined

Rater 3

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 22 2 0 0 5 29

Stage 2 0 130 0 0 5 135

Stage 3 0 34 8 0 0 42

Stage 4 0 1 11 39 0 51

REM 1 23 0 0 91 115

Total 23 190 19 39 101 372

Computer Own

Computer
Combined Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 19 1 1 0 8 29

Stage 2 0 129 6 0 0 135

Stage 3 0 0 42 0 0 42

Stage 4 0 0 2 49 0 51

REM 0 13 0 0 102 115

Total 19 143 51 49 110 372
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ANTERIOR 2 CLASSIFICATIONS

Rater 1

Rater 2 Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 25 9 0 0 2 36

Stage 2 1 152 8 0 0 161

Stage 3 0 16 28 0 0 44

Stage 4 0 1 13 10 0 24

REM 2 5 0 0 84 91

Total 28 183 49 10 86 356

Rater 1

Rater 3 Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 24 0 0 0 2 26

Stage 2 1 158 6 0 2 167

Stage 3 0 16 ; 18 0 0 34

Stage 4 0 0 25 10 0 35

REM 3 9 0 0 82 94

Total 28 183 49 10 86 356
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Computer
Own

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 26 7 0 0 3 36

Stage 2 1 145 7 0 0 153

Stage 3 0 18 19 0 0 37

Stage 4 0 0 23 10 0 33

REM I 13 0 0 83 97

Total 28 183 49 10 86 356

Computer
Combined

Rater 1

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 24 5 0 0 2 31

Stage 2 1 144 6 0 23 174

Stage 3 0 33 21 1 0 55

Stage 4 0 0 22 9 0 31

REM 3 1 0 0 61 65

Total 28 183 49 10 86 356
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Rater 3

Rater 2

Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 23 G G G 3 26

Stage 2 3 154 4 G 6 167

Stage 3 0 5 28 1 G 34

Stage 4 0 G 12 23 G 35

REM 10 2 G G 82 94

Total 36 161 44 24 91 356

Rater 2

Computer
Own Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 31 1 G G 4 36

Stage 2 G 148 3 1 1 153

Stage 3 G 6 3G 1 G 37

Stage 4 G G 11 22 G 33

REM . 5 6 G G 86 97

Total 36 161 44 24 91 356
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Rater 2

Combined Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 28 1 0 0 2 31

Stage 2 4 139 3 0 28 174

Stage 3 0 21 30 4 0 55

Stage 4 0 0 11 20 0 31

REM 4 0 0 0 61 65

Total 36 161 44 24 91 356

Computer
Rater 3

Own Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 25 1 0 0 10 36

Stage 2 0 146 7 0 0 153

Stage 3 0 8 23 6 0 37

Stage 4 0 0 4 29 0 33

REM 1 12 0 0 84 97

Total 26 167 34 35 94 356
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Rater 3

Computer
Combined Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 23 0 G G 8 31

Stage 2 0 145 3 G 26 174

Stage 3 0 20 27 8 G 55

Stage 4 0 0 4 27 0 31

REM 3 2 G G 60 65

Total 26 167 34 35 94 356

Computer Own

Computer
Combined Awake Stage 2 Stage 3 Stage 4 REM Total

Awake 31 G G G G 31

Stage 2 2 137 G G 35 174

Stage 3 0 16 37 2 G 55

Stage 4 0 G G 31 G 31

REML: 3 G G G 62 65

TotmL 36 153 37 33 97 356


