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- ABSTRACT

An analytical and experimental investigation was made of the flow
instability threshold in a closed natural-circulation loop. The "density
effect" model formulated by Boure was utilized to predict the instability
threshold in terms of dimensionless parameters. Comparison with experi-
mental data showed that the model which is based on large density changes
as the sole driving mechanism for the oscillations was sufficiently
accurate to predict pressure and flow instabilities.

The various vibrational modes of the loop were calculated and com-
pared with the experimental oscillations. Results showed that the loop
tended to vibrate at frequencies comparable to the natural frequencies

of the various modes of vibration of the loop.
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NOMENCLATURE

Model Parameters

Corresponding

Dimensional Quantities Non-Dimensional Quantities
Friction factor, Dimensionless f
Acceleration of gravity, ft/sec2 g
Fluid enthalpy, Btu/lbm h

Pipe section length, ft 2
Fluid density, lbm/ft3 P
Time, sec t
Fluid velocity, ft/sec u
Transient velocity, ft/sec v
Volumetric heat flux, Btu/ft3sec W
Axial coordinate, ft z
Pressure drop, psid Ap

Time parameter, sec 0
Frequency, rad/sec w

(These quantities defined by
Equations (1 - 12), pp. 33-L45)

Defined by Equations (IV-7, IV-10, IV-13)
Defined by Equations (III-L45, III-sh; III-56)
Defined by Equations (IV-8, IV-11, IV-1k)
Complex constant

Hydraulic diasmeter, ft

Defined by Equation (III-1)

xi



E_ - Defined by Equation (III-23)

K - Defined by Equation (IV-3)

k - Defined by Equation (II-10)

M. - Defined by Equations (III-35) - (III-43)
m - Defined by Equation (II-10)

r - Real constant

S - Defined by Equation (IV-3)

s - Subcooling, defined by Equaticn (40)
Y -~ Defined by Equation (IV-3)

y - Defined by Equation (III-23)

{ - Defined by Equation (I-6)

N - Defined by Equation (I-6)

A - Defined by Equation (41)

Defined by Equation (I-6)

un
]

T - Defined by Equation (36)

Subscripts

8
1

Steady state stream properties

o =~ Refers to upstream properties and steady state values
¢ - Refers to heater section

ss - OSteady state values

1 - Refers to downstream properties

D.A.8. - Downstream adiabatic section
D.H.S. - Downstream heated section
H.S. - Heated section

U.A.S. - Upstream adiabatic section
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U.H,S. - Upstream heated section

Other Than Model Parameters

a - Sonic velocity, ft/sec
C, - Specific heat, Btu/lbmoF
f - Frequency, sec™t
g - Gravitational acceleration, ft/sec2
8 - Gravitational constant, EEE;EE_E
lbe sec
h - Enthalpy, Btu/lbm
h - Convective heat transfer coefficient, Btu/ftzsecoF

L - Length,ft

m - Mass, 1b
m
P - Pressure, psia
Q - Heat transfer rate, Btu/sec
T - Temperature, °F
t - Time, sec

W - Total heat transfer, Btu/sec
X - Axial coordinate, ft
o - Density, lbm/ft3

®w - Circular frequency, rad/sec

Subscripts

L - Liquid

max - Maximum

n - Natural frequency

s = Constant entropy

v - Vapor
xiii



FLOW INSTABILITY THRESHOLDS IN A

NATURAL-CIRCULATION LOOP
CHAPTER I
INTRODUCTION

The onset of combined pressure and flow oscillations in natural-
circulation loops and various other fluid flow systems under certain
operating conditions are of importance to designers in various areas.
Some of the areas where research has been and is now being carried on
are: (a) regenerative heating of & rocket nozzle, (b) supercritical
conventional and nuclear powerplants, (c) seawater desalination plants,
(d) boiling water reactors, (e) emergency cooling of nuclear reactors,
and (f) cool down of helium cryopanels. Since there are several areas
where the problem of combined pressure and flow oscillations is of great
importance, it is necessary that (i) the mechanism which causes these
oscillations be understood, and (ii) the occurrence of these oscilla-
tions be predictable.

This study was carried on primarily in the critical and super-
critical thermodynamic regions. The purpose of this study was to pre-
dict an instability envelope which a designer can utilize in the
development and operation of devices where these oscillations are

important.
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Oscillations occurring during heat transfer to a supercritical fluid
were first mentioned by Schmidt et 5;25. They reported that pressure and
temperature fluctuated very much in time during a study made to determine
apparent conductivity coefficients. Their study was made utilizing a
natural convection loop employing ammonia as the heat transfer fluid.
These oscillations occurred near the thermodynamic critical point and
made their measurements difficult and in part impossible. They also
found these oscillations quite severe since they noted that at approxi-
mately 118 atm (Pcr = 112.1 atm), the pressure suddenly rose by about
5 atm. Since this group was interested in apparent conductivity coeffi-
cients, they did not study these oscillations in ény detail except to
note an increase in heat transfer near the critical state.

17,25,26

Several investigators noted the occurrence of combined
pressure and flow oscillations but they were generally considered as a
nuisance.

In 1956 Wissler et g;3l

made the first important theoretical and
experimental study of oscillations of the type mentioned above.

In this investigation a natural-circulation loop was built which utilized
water as the heat transfer fluid. The loop was operated in the two-
phase region and a study of the resulting periodic oscillations of flow
rate and fluid temperature was made. The experimental results showed
that stable operation was possible at both low_power and at high power.
At low power stable operation was possible when the temperature in the
riser did not exceed the boiling point. At high power stable operation
was possible when the entire riser contained a water-steam mixture. It

was also found that intermediate power resulted in oscillatory modes of

operation. The period of oscillations was found to be inversely
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proportional to the mean velocity provided that some steam was in the
riser at all times. When the presence of the steam was intermittent,‘
the periods were found to be much longer.
The analytical results of Wissler et al showed that the product of

dp

the coefficient of expansion of the fluid T and the vertical height

of the riser must exceed a certain value if the flow perturbation is to
be sustained; Their results also showed that the period of oscillations
is approximately equal to the residence time of the fluid in the heater
and vertical riser. 1In order to predict the period of oscillation, the
basic equations, i.e. the conservation equations and an equation of state,
were applied to the loop aﬁd were solved on an analog computer. This
analysis gave similar shaped oscillations but the periods were less than
the experimentally observed values. The probable reason for the dis;
crepancies was the representation of the equation of state. However,
the trends predicted by this study lent support to the general con-
clusions of the stability analysis.

Garlid et g}}z devised mathematical models of the transient be-
havior of two-phase natural-circulation loops. The initial portion of
this work produced solutions from an analog computer which patterned the
geometry and operating conditions after those of the University of
Minnesota loop originally studied by Wissler as mentioned above. Since
meny simplifying assumptions had to be made, more sophisticated models
were formulated to be solved on a high speed digital computer.

The mathematical model utilized consisted of writing the con-

servation equations in finite difference form and applying a forward



N
differencing technique* to solve the resulting set of partial differential
equations. This study showed that it was difficult to establish rigor-
ously that the numerical procedure was stable to round off error and did
not give spurious oscillations. Therefore, there is considerable doubt
concerning the use of numerical methods in stability problems. This
study also showed that slip (ratio of vapor velocity to liquid velocity)
was a very important parameter in the analysis. Further, this study
showed a significant deviation between the calculated and experimentally
measured period of oscillations.

Quand.t2h studied flow instabilities in a parallel flow channel both
experimentally and analytically. This analysis starts from the four basic
transient equations in two-phase flow in a heated channel. The equations
are linearized and small perturbations are applied. The perturbed
equations are integrated and the Laplace transforms of the integrated
equations are taken. In order to apply this technique, several re-
strictive assumptions were made. Two of the most restrictive were:

(a) the period of oscillations is significantly (at least four times)
longer than the residence time in the two-phase region, and (b) the mass
flow rate varies linearly between the entrance and exit of the channel.
Results from other studies show that the period of oscillations is
approximately one and one-half times longer than the residence time.

This study emphasized the importance of the term g . However,

dh

this term was arbitrarily adjusted to obtain agreement between analytical

*
This technique does not always permit convergence and recently &
new differencing technique has been utilized in problems of this type.

cf. Ref, 22.
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prediction and experimental results. Another result from this study was

dp

that there is a certain minimum value of P which would make an oscil-
latory behavior impossible for a single-phase fluid. However, this con-
clusion was probably made without considering single-phase supercritical
fluids. Another cause of flow oscillations discussed, but not studied,
was non-uniform heating of the channel.

Wallis and Heasley30

made an important contribution by mathematically
studying three modes of oscillation of a two-phase flow natural-circulation
loop. In addition to the mathematical study, attempts were made to explain
the oscillations in physical terms. The qualitative descriptions were
supported by their experimental observations of a glass natural-circula-
tion loop utilizing pentane as the heat transfer fluid.

Their approach was to consider the loop as a dynamic system of non-
linear time delays, storage elements (capacitors), and resistances. The
equations were formulated in Lagrangian terms (i.e. following the particle),
linearized, and then small perturbation techniques were applied. The
utilization of Lagrangian variables results in eliminating the usual
trouble experiencéd with mixed partial differential equations in time
and space by expressing the position of a fluid particle in terms of a
"residence time" in various parts of the loop and integrals over time,

They distinguished three poséible mechanisms: (a) oscillations due to
changes in riser buoyancy, (b) oscillations excited by the heater section,
and (c¢) oscillations caused by a restriction at the top of the riser.

The first two were investigated analytically and general conditions for
stability were enumerated although the solutions were not applied to any

particular physical problem.
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Hires and Wolf16 studied pressure oscillations occurring when RP-1
(kerosene) and DECH (diethylcyclohexane) were circulated through a test
section which was electrically heated at supercritical pressures and
wall temperatures. The dominant frequencies varied from 1200 to 7500 cps
with principal minor frequencies ranging from 600 to 15,000 cps. The
amplitude of the oscillations varied from 55 to 380 psi. Sharp increases
in the heat transfer coefficient were observed near the critical
temperature. When the pressure was increased from 700 to 2000 psia, no
increase in heat transfer was obtained. Audible noises which were des-
cribed as high-pitched screams accompanied the increased heat transfer
and could be heard at distances of 200 yards from the test cell,

Assuming a sonic velocity, fundamentel longitudinal acoustic
resonance frequencies were calculated for the test section. These fre-
quencies were 320-350 cps for & closed pipe and 650-700 cps for an open
pipe. Therefore, it was concluded that the pressure oscillations were
not simple, resonant, acoustic oscillations similar to those reported
by McCarthy and Wolf2S,

It was concluded from the experiments that the basic supercritical
vibration'phenomenon can arise in & liquid regardless of the damping
placed on the tube wall but that resultant damage to the tube was &
function of wall strength and damping.

The authors also suggested a hypothesis which utilizes a variable
viscosity to account for the experimentally observed oscillations. It
was suggested that a sudden moderate increase in wall temperature causes
an appreciable thinning of the laminar boundary layer. Thinning of the

boundary layer results in a wall temperature drop and a corresponding



7
rise in viscosity with a resultant increase in the laminar boundary layer.
This would produce a wall temperature rise and the cycle would be re-
peated. However, no measurements of heater wall temperature could be
made with the recording equipment employed in their series of tests.,

Gouse and Andrysiaklh built a closed, transparent forced—and natural-
circulation loop which was resistance heated with parallel, vertical
test sections utilizing Freon-113 as the heat transfer fluid. Results
from this study showed the following:

(a) The range of periods of measured flow oscillations were of the
same order of magnitude as the range of natural periods calculated for
the system.

(b) If the flow rate was large encugh, there were no oscillations
at any inlet temperatures.

(c) Subcooling was the most useful single independent variable in
determining whether or not the flow would fluctuate.

(d) Boiling must be taking place in the test sections for flow
oscillations to_oqcurf'n

(e) TFor any particular heat flux, loop geometry, and liquid flow
rate, there is a definite range of subcooling within which the flow would
oscillate, |

15

Harden ~ investigated pressure and flow transients in a natural-
circulation loop operating in the critical and supercritical thermo-
dynamic regions which utilized Freon-114% as the heat transfer fluid. He
concluded from other investigations in the field that the equation of
state was very important in the predict%pn of pressure and flow transients.

Upon close examination of the experimental data, it was concluded that

the oscillations seemed to occur when the fluid attained a maximum energy
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density (energy/unit volume). Therefore, on the basis of the experimental
evidence it was concluded that pressure and flow oscillations occur near
the density-enthalpy (ph) meximum as a function of temperature, density,
or enthalpy.

In the analytical portion of this investigation Harden attempted to
obtain sustained pressure and flow oscillations by solving the flow
equations on a digital computer utilizing a finite difference technique.
Sustained oscillatory solutions were obtained by this technique but as
mentioned previously, this method proves to be difficult in differen-
tiating between an actual instability and a machine-generated instability.
Therefore, some doubt is cast on thé analytical results obtained.

Walker and Harden29 constructed a natural-circulation loop and
experimentally investigated the pressure and flow instabilities occur-
ring in the critical and supercritical thermodynamic regions. Since
most researchers in the area had concluded either directly or indirectly
that the equation of state was very instrumental in the behavior of
oscillatory flows, four fluids were chosen to be investigated experi-
mentally. Three of the fluids were chosen on the basis that they had
previously been observed to exhibit an oscillatory behavior when uti-
lized as the heat transfer fluid in a natﬁral-circulation loop (H20,
Freon-12, and Freon-1lk). The other fluid, 002, was chosen since no
instabilities had been reported in the liferature when it had been uti-
lized as the heat transfer fluid in a series of experiments with this

9’18’20. Results

fluid in the critical region by Smith and co-workers
from this investigation showed that pressure and flow oscillations did

occur for each fluid near the ph(T) maximum for all four fluids. These
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results also showed that instabilities did occur when utilizing CO, as

2
the heat transfer fluid in a natural-circulation loop. The instabilities
proved to be easier to locate for the four fluids in the following order:

(1) Freon-114, (2) Freon-12, (3) H,0, (4) co The reason for this ;

o
will be shown in Chapter V.

Cornelius and Parkerll studied pressure and flow oscillations in
both natural convection and forced flow in the critical and supercritical
thermodynamic regions. It was concluded that there were two dominant
types of oscillations that occur. One was of an acoustic nature which
produced pressure and flow oscillations in the frequency range from 5 to
30 cps. The second was termed a slow oscillation and exhibited fre-
quencies from 0.05 to 0.1 cps. It was concluded that the basic cause of
both types of oscillatory behavior originated in the heated boundary
layer. A behavior very similar to that of Hines and Wolf16 was postu-
lated. A pressure wave passes the heated surféce and compresses the
boundary layer thereby improving the thermal conductivity. This results
in an increased heat transfer rate from the wall to the fluid. A rare-
faction wave would have caused the boundary layer to expand and thermal
conductivity to decrease and resulted in a decreased heat transfer rate
to the fluid. This pressure-dependent heat transfer rate could have
caused the resonant acoustic oscillation to be maintained.

A sudden improvement in the heat transfer coefficient which was
attributed to a "boiling-like" behavior was also postulated. This be-
havior would result in an oscillatory wall temperature and an oscilla-
tory transfer of heat from the wall to the fluid.

An attempt was made to formﬁlate a model which would exhibit a
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sustained oscillation. A model quite similar to that of Harden15 was
utilized. A numerical solution was attempted utilizing an implicit
differencing technique. In order to simulate the observed "boiling-like"
behavior, the heat transfer coefficient - mass flow ratio was given a
step increase to approximate the experimentally observed wall temperature
variation. It does not appear surprising that a sustained oscillation
would result in view of the fact that a "forcing function" was incor-
porated in the model. This theorj is somewhat in doubt since some in-

vestigatorslS’ah

and this author found sustained pressure and flow oscil-
lations with no apparent cycling of wall temperature.

The problems encountered by Co;-neliuslo concerning flow rate measure-
ment with a venturi were not experienced in this investigation and recent

19

work in this area by Jain ~ shows that a venturi gives a valid flow
measurement even during an oscillatory flow. This subject will be dis-
cussed in more detail in Chapter II which deals with the experimental
apparatus.

Boure8 made an excellent theoretical study of pressure and flow
oscillations in a heated channel. Although this study is primarily
theoretical, some comparisons were made with data from other studies
which primarily include water at low pressures. The equation of state
is predominant in the model utilized and the mechanism of oscillations
is postulated to be the behavior of the equation of state or the "density
effect". This model showed that the density effect, with its delay fimes,
was sufficient to cause the system to oscillate and to exPlaiﬁ the experi-

mentally observed oscillations.

This model utilized the simplifications afforded by the use of
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Lagrangian coordinates which were mentioned earlier to formulate the
problem. The flow equations were formulated, linearized, and the method
of small perturbations applied to the resulting equations. The methods
of control theory were then utilized to predict stability. Physical
interpretations of the parameters which resulted from the mathematics
were given and the effect of each term was investigated.

A stability map was given in terms of the system parameters and
some special flow effects were studied. The model utilized was a single-
phase model and these restrictions as applied to a two-phase model were
discussed. )

Maulbetsch and Giiffithgl presented a somewhat novel approach to the
stability problem by introducing an energy storage mechanism assumed to
be that of a compressible volume upstream of the heated test éection”
Small perturbations were applied and a Laplace transform of the system
of equations was obtained. Marginal stability was assumed and an ex-
pression for the oscillatory frequency obtained. A critical slope of
the pressure drop - flow rate curve in the heated section was computed.
Results showed that steady state measurements of pressure drop - flow
rate curve may be used to describe the unsteady behavior with sufficient
accuracy to draw meaningful conclusions concerning system stability.

All of the previous studies lead to the foliowing conclusions:

(1) The equation of state is of fundamental importance in the
study of combined pressure and flow oscillations.

(2) It should be possible to enumerate instability thresholds to
include first order effects.

(3) Numerical techniques appear to be unreliable in the study of

oscillatory flow.



CHAPTER II
EXPERIMENTAL APPARATUS

The natural-circulation loop utilized in this investigation had
already been designed and built to accommodate the four heat transfer
fluids used in this investigation. A description of this basic loop
can be found in Walker28. For this investigation, the loop was re-
designed somewhat to allow for transient instrumentation and to more
closely approach the equation of state used in the analytical model
while at the same time giving more control of the loop operating
parameters. Therefore, only a description of the additional apparatus

and the modifications of the basic loop will be included.

A. Description of the Added Equipment

A hydraulic accumulator was the single piece of equipment added
to the basic loop for this investigation. This accumulator consisted
of a stainless steel cylinder which housed a rubber diaphram. The five
gallon capacity accumulator kept pressure relatively constant by ab-
sorbing pressure surges. The accumulator was connected to the loop at a
point just downstream of the second heat exchanger through a 0,25 inch
0.D. stainless steel tube. The accumulator was pressurized to system
pressure with nitrogen gas. Figure (1) shows a schematic of the accumu-

lator as it was integrated into the loop.
12
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Additiocn of the accumulator to the system and the addition of
transient instrumentation required that the circulation loop piping be
extensively redesigned. The final design utilized in this investigation
is shown in Figure (2). Notice in this figure that an alternate position
is available to connect the differential pressure transducer to the
venturi. This arrangement allows an evaluation of what effect line
length has on the output of the transducer. Corneliuslo reported that
oscillations of up to 120 psi amplitude were observed while using e
venturi for flow measurement and the amplitude did not exceed 30 psi for
the same type of oscillation after & Pottermeter (Potter Aeronautical

Corporation) was installed. Jain19

ran & series of tests where both a
venturi and a Pottermeter were used to simulteneously measure the flow.
These tests showed that the maximum flow rates using both devices
metched quite well. Since there was some disagreement, the alternate
piping was included in the redesign of the loop.

Several new valves were installed that were not inecluded in the
originel design and a vacuum pump was utilized to meke certain the loop
was completely evacuated before starting a test series after fluid had

been added to the system.

B. Instrumentation
The principal reason for the piping redesign mentioned in the above
section was to accommodate the transient instrumentetion added to the
loop. Figure (3) shows the loop instrumentation schematic. Figure (2)
shows the location of some steady state temperature instrumentation

while transient instrumentation is shown in Figure (3).
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1. Flow Measurement

The flow was measured with a calibrated venturi. Calibrations and
specifications for this venturi can be found in Walker28. A 5.0 psid
differential pressure transducer was connected across the outlet taps
of the venturi. CorneliuslO found that during rapid pressure oscilla-
tions measurements indicated that differential pressure oscillations
whose amplitude excegdgd the average value (flow reversal) were present.
He suspected that the large venturi pressure drop amplitudes were due
to the phase relationship of the absolute pressure at the venturi taps
although subsequent analysis indicated to him that this was not entirely
the reason for the large amplitude oscillations encountered in his experi-
mental work.

19

Jain™” showed the existence of a flow reversal in oscillatory flow

was a reality. The problem was not one of instrumentation but was, in

fact, a flow reversal. Several flow reversals were encountered in the

present study and several were also encountered during the experimental
15

investigations of Harden .

2. Pressure Messurement

In addition to the 1000 psig and 5000 psig bourdon-tube pressure
gauges, a 1000 psig and a 5000 psig pressure transducer were utilized.
The transducer circuit for both the absolute and differential type
transducers are shown in Figure (L). Checking of the transducers cen be
accomplished without the use of a standard pressure source by utilizing
the Honeywell carrier amplifier. This checking is effected by electri-

cally shorting out one leg of the transducer bridge and is explained in
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detail in Appendix VIII. This method can also be used for the differ-

ential pressure transducer.

3. Wall-Temperature Measurement

Wall temperatures were measured and recorded for the electrically
heated section of the loop. The heater section temperature was monitored
at the two locations shown in Figure (3). The exact placement varied
slightly with the particular test series. Thirty gauge chromel-alumel
thermocouples were placed on a thin mica sheet and the mica sheet was
placed on the heater section wall. Then a strip of Durabla asbestos was
wrapped around the thermocouple bead which was lying on the mica sheet
which in turn was lying on the heater section wall. The purpose of the
mica sheet was to electrically insulate the heater section from the
thermocouple in order to reduce noise pickup. Noise on the thermocouple
channels proved to be quite a problem with a considerable effort going
into reduction of this noise level. Various low pass LR and RC filter
circuits were employed in an effort to reduce the noise level. In
addition, extensive shielding was also employed. Finally, these filters
were discarded and a single 1500 u-fd capacitor was installed in parallel
with the thermocouple as shown in Figure (5). The reason for the ex-
cessive noise'problem in this particular test apparatus was due to the
power supp%y. This power suppl& is a single phase, high ampereage, A.C.
transformer. Because of this, there is essentially a 100% ripple factor.
Most power supplies utilizéd in laboratories where it is necessary to’
record transient parameters that emanate from a very low voltage signal,
such as that of a thermocouple, utilize D.C. current. Generally, these

power supplies are three-phase transformers thaet rectify the A.C. current.
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This type power supply nominally has only a 5% ripple factor. Therefore,
further noise reduction will probebly necessitate acquisition of & D.C.
power supply. Several other temperatures describing the loop operation
were taken but not recorded since they were essentially steady state
readings. Several of these were monitored so that the maximum tempera-
tures of the fluid entering the various instruments would not be exceeded.
The location of these thermocouples is shown in Figure (2). All were
attached to the stainless steel piping with a condenser discharge type

thermocouple welder and then covered with an epoxy for meximum strength.

4, Stream Temperature Measurement

The bulk fluid temperatures were measured downstream of the heater
section and upstream of the venturi as shown in Figure (3). The thermo-
couples were designed similar to those shown in Figure (5) of Walker28
which were purchased from Minneapolis-Honeywell (Part No. 2K1M13E6-5).

The thermocouples were fabricated in the shop utilizing 0.25 inch 0.D.
type 304 seamless stﬁinless steel tubing having a wall thickness of

0.028 inch. A high temperature ceramic adhesive was used inside the
tubing to separate the thermocouple wires and to separate the wires from
the inside tubing wall. The thermocouple measuring junction was left
exposed in the stream in order to improve the response time. The response
time was estimated to be on the order of 0.1 to 0.2 sec. thereby elimi-
nating detection of temperature transients of frequency greater than 10
cps. Thirty geuge chromel-alumel thermocouples were utilized. Noise was
also & problem for these two thermocouple channels and a capacitor had

to be utilized to suppress the noise to an acceptable level. An iso-

thermal thermocouple reference box was designed and built and is shown in
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Figure (5). This reference junction box provided an isothermal point
where the thermocouple wires could be replaced by copper wires going to
the potentiometer and the amplifiers. Note that the potentiometer and
the amplifiers are connected in parallel permitting simulteaneous moni-
toring of the thermocouples utilizing the potentiometer for steady state
readings and recording the transient signals on the oscillograph.

Figure (5) also shows the design of the common reference Jjunction
for the four measuring junctions being recorded.

The thermocouples fabricated in the shop had to be replaced while
operating with Freon-lll as the heat transfer fluid. The operating
temperatures that the thermocouples were exposed to exceeded the value
that the epoxy pressure sealant could withstand. Two similar thermo-
couples were purchased from Minneepolis-Honeywell (Part No. 2K4M15-E6-6)

which would seal to temperatures up to 1000 F.

5. Recording Instrumentation

Trensient recording instrumentation is a necessity for the study of
an oscillatory flow system. This type instrumentation was assembled and
placed in a mobile cabinet in order that it could be utilized by more
then one project and could be adapted to another system simply by the
connection of the inlet signal and the 110 V. wall plug.

This system consists of a l2-channel recording oscillograph
(Minneapolis-Honeywell visicorder), a two-channel carrier amplifier and
power supply (Minneapolis-Honeywell), four differential D.C. amplifiers
(Hewlett-Packard), and a D.C. bucking voltage system.

Figure (6) shows the complete instrumentation package. Figure (U4y

shows the individual circuit diagram for both a pressure measuring
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channel and a temperature measuring chemnel. Shielding was utilized
throughout this system (although not shown in the cireuit diagram of
Figure (4)). The shielding was tied to & common ground point - the
ground plug of the 110 V. line.

A bucking voltage system was designed and built for the four tempera-
ture channels which are fed into the Hewlett-Packard differential ampli-
fiers. The controls for this system are shown in Figure (7) and the
circuif diagrem for one channel of the four-chaﬁnel system is shown in
Figure (8). This system was necessary to protect the optical galva-
nometers used in the visicorder. The galvanometers used in this investi-
gation were fluid damped galvanometers (Minneapolis-Honeywell Part
No. M-1650) which were current limited to 100 me for short time operation
and 80 ma for continuous operation. This bucking voltage system is
capable of bucking out a signal up to 40 mv, hence, its use insures
that an overvoltage will not be applied to the optical galvenometers.
Further, this system is convenient since it allows the galvanometer
light image to be conveniently placed on the photographic paper.

A bucking voltage system is built into the carrier amplifier which
provides the two pressure channels with the same ease of operation that
the bucking voltage system provides for the four temperature channels
except that the galvanométer light image cannot be placed on the photo-
grephic peper with this system without turning the optical galvanometers

themselves.
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Zero Offset Voltage System, Described elsewhere
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The following instrumentation was used but not shown
in this figure.

Ammeter, Weston, Model 370.

Current Transformer, Westinghouse, Model PC-137.

- FIGUWRE (B) MOBILE INSTRUMENTATION SYSTEM
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CHAPTER III
EXPERIMENTAL PROCEDURE

The loop was assembled and pressure checked for leaks at 4500 psig
with water as the system fluid by utilizing a hydraulic pump to achieve
that pressure. After all leaks had been stopped, the system was allowed
to remain at that pressure. After 24 hours, the pressure had dropped
approximately 600 psi. This was judged as sufficiently leak free since
the inlet bleed valve was known to leak slightly at that high pressure.

After leak checking, the loop was drained of water and a Freon-12
cylinder was connected to the inlet process fluid line. The entire
system was then evacuated utilizing a vacuum pump. After the system
had been evacuated, Freon-12 was introduced into the system until the
pressure in the loop and in the Freon-12 cylinder had equalized. The
cooling water was then turned on and allowed to circulate through the
heat exchangers. The pressure was lowered in the loop and additional
fluid was allowed into the system. To further charge the system, the
Freon-12 cylinder was heated in order that the fluid be distilled into
the loop. This heating continued until the pressure in the loop reached
180 psig (later the same technique was utilized for charging the system

with Freon-11l4 and CO, - Freon-114 was distilled in the loop until the

2

pressure in the loop rose to 90 psig and 002 was pressurized to 1250

27



28

psig). These pressures assured that sufficient liquid was in the loop.

The accumulator was then charged with nitrogen gas to & pre-determined
pressure for the particular test to be run. This pressure depended on
the thermodynamic region in which the loop was operated in for that parti-
cular run., Subsequent operation with the accumulator in the system
showed the following:

(1) The accumulator tended to damp the oscillations encountered;‘
however, 1t was much more effective for the slower oscillations than for
the acoustic-type oscillations.

(2) When trying to reach a certain thermodynemic operating regioﬁ,
the accumulator valve was sometimes kept closed, If the accumulator
valve wee left closed, very high amplitude oscillations such as those
shown in Figure (17) were often encountered and attempts to get out of
this reglon were very difficult. This situation often occurred just as
the system was approaching a sustained oscillation. The power level for
this condition was Just high enough for the system to attain an oscil-
latory mode and then demp out.

(3) The accumulator wes essential in the constant pressure runs.
For these runs, the loop was filled and the accumulator nitrogen side
wes pressurized to the desired operating pressure. The loop was then
heated slowly and the thermodynamic operating region was reached as the
fluid was bled from the system to the accumulator while maintaining a
constant.loop pressure.

After filling the loop and integrating the accumulator into the
fluid circuit, the Barton differential pressure gauge was bled to insure

that only liquid occupied the line.
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Various techniques were utilized to establish loop operation in a
particular thermodynamic region. The most common method was to first
establish a relatively high flow rate in the loop by turning on the power
and operating with the heat exchangers at maximum cooling water flow.
This established a density head and s flow resulted. After the fluid had
attained a sufficient flow rate, the danger of heater section burnout
was reduced. Affter the establishment of this flow rate, the oscillations
were approached by bracketing the ph(T) maeximum ﬁith the bulk inlet and
the bulk outlet (heater section) fluid temperatures. The cooling water
flow rate and the power were then adjusted simultaneously until the
ph(T) maximum was isolated between these two bulk temperatures.

Various other techniques of locating these oscillations were
utilized. One method was to slowly bring the loop pressure up by slowly
heating the fluid. In this way the flow oscillationé spontaneously re-
sulted without operating the loop in any specific manner,

Control of loop operation was possible by adjusting the amount of
power into the heater section, adjusting the amount of cooling water
flow, and utilization of the accumulator to control system pressure.

After each series of test runs, the system was taken apart and
cleaned. During operation one had to be careful not to allow the heater
section wall temperature to achieve too high a value (approximately 600
to 700 F for the Freons). If the loop was allowed to overheat, a
chemical reaction would occur and a residue would be deposited on the
heater section walls. This deposit would severely reduce fluid flow

rates and the loop would have to be disassembled and cleaned thoroughly.



CHAPTER IV

ANATYTTCAL, TREATMENT

A. Establishment of the General Equations

In order to be able to avert the oscillation problem which exists
in the type of fluid flow systems with heat addition encountered in this
investigation, it becomes necessary to accurately predict the envelope
of these instabilities. An accurate prediction depends on how closely
the mathematical model describes the physical situation.

Figure (9) gives a schematic representation of the physical situation.
The fluid flows in a cylindrical pipe due to a pressure difference be-
tween the entrance and exit of the pipe. This one-dimensional flow of
fluid is considered as flowing through three separate regions. The
regions considered are: -

(1) Upstream adiabatic section.

(2) Center heated section.

(3) Downstream adiabatic section.

This closely approximates the physical situation since the upstream
portion and the downstream portion are insulated. One could consider a
fourth region following the downstream adiabatic section, the cooler

section. However, it is not really necessary to consider this section

as long as it is possible to specify the conditions entering the upstream
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adia:atic section and those leaving the downstream adiabaticisection.
| This section would become necessary, for example, if integration around
the loop were employed in the mathematical model. As shown in Figure (9)
Z has been considered as the coordinate direction along the length of
the pipe with which the various properties (R, H, etec.) vary. Li are the
varipus lengths of the three sections of the pipe. UO(T) is the entrance
velocity into the upstream adiabatic section. W is the constant volu-
metric heat flux over the heated section of the pipe.

With these definitions and with the aid of Figure (9), the mathe-
matical model is formulated. As defined above, the problem consists of
the determination of four funections of distance, Z, and time, T. These
functions are:

(1) Density - R = R(Z,T)

(2) Enthalpy - H = H(Z,T)

P(Z,T)

(3) Pressure - P

(4) vVeloeity - U = U(Z,T)

Determination of these four quantities as functions of distance and
time would give a perfect definition of the fluid flow system. In order
to determine these four unknown functions, four equatiogs are necessary.
The four equations that are applicable are:

(1) Conservation of mass

(2) Conservation of momentum

(3) Conservation of energy

(4) Equation of state

The conservation equations (1 - 3 above) can be found derived in

most fluid mechanics texts and in Bird, Stewart, and Lightfoot2 in

¢
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particular. However, it is necessary to make several simplifying assump-
tions to reduce the complexity of the equations. In this analysis, the
following assumptions were made:

(1) Radial variations of thermodynamic properties and velocity are
neglected.

(2) Kinetic and potentizl energy terms are neglected.

(3) Heat transfer by conduction along the Z axis is neglected.

(4) Shear forces are neglected.

(5) The effect of pressure changes with time are neglected.

With these assumptions, the conservation equations can be written
as follows:

(1) Conservation of Mass

3R  3(RU) _
ot + sz = © (1)

(2) Conservation of Energy

dH . .- ®H _
ST RSz =V (2)

R

(3) Conservation of Momentum

2
g%+Rg—g+RU§%+RG+£§%—=o (3)

Having developed the conservation equations, it becomes necessary
to develop an equation of state. The installation of an accumulator in
the physical system provides justification for using a simplifigd
equation of state. The accumulator provides a relatively constant
pressure throughout the system due to a discharge of fluid into the
system when system pressﬁre becomeé less than a pre-set value and a
removal of fluid when system pressure becomes greater than this pre-set

value. The assumption of an absolutely constant pressure is valid
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strictly only for the low frequency oscillations. However, the éccumu-
lator was able to keep the system pressure constant until the oscilla-
tions occur and the value of the system parameters just prior to the
oscillations were the ones utilized in predicting the instability
envelope. Therefore, an equation of state will be utilized in which the
density is a function of the enthalpy only since a constant pressure
system is assumed; i.e,

R = R(H) (4)

A typical plot of density as a function of enthalpy along an iso-
bar is shown in Figure (10) for water at the critical pressure. Repre-
sentations for substances other than water and for other supercritical
pressures are similar (cf. Figures (11 - 14)). In order to develop an
analytical expression for R(H), it is convenient to move the enthalpy
zero reference from saturated liquid at 32F to the zero point shown in
Figure (15). This is the point where the liquid becomes saturated for a
sub-critical fluid. By changing this arbitrary reference point, the
equation of state.can be approximated by a single function in each region
(H< 0 and H2 0). The equation of state shown in Figure (10) was approxi-

mated in the two regions by the following expressions:

R=Ro+(-hH)l/2 for HS 0O
R H (5)
o cC
R=77%5 for H2 0
o4
where
R =R@H=0
o]
H =H@R=R/2
C O
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Equations (1), (2), (3), and (5) should now allow for the solution
of the four unknowns. Since these four equations must be solved simul-

taneously, an attempt to combine these equations gives the following.

Since
R = R(H)
3B _ @& B
OT ~ aH 9dT
3R _ dR 3H
dZ ~ dH 9d%Z

Substituting these relations into Equation (1),-

dR oH oU dR oH

s TR tUamsz - O

i

and

B[Eo3- 3 ©

Substituting the energy equation (2) into (6) gives

L i]-=8

and _
U . d [ 1 ]
5z "EL R (7)
Utilizing the equation of state (5), the derivative on the right

side of (7) can be determined.

For H< O

1
%[ le] - & [Ro + <-uH)l/ZJ

1

" (-m)/2 [RO N (-1&1)1/2]2
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For H2 0
r

1
._RH (8)
oc

WII—‘

2
dH

r

Simplifying the notation, let é%l-'% ] = f(H) where f(H) is given
by Equation (8). Therefore (7) becomes

3 = we(H) (9)

Finally, Equation (9) can be substituted into the conservation of

momentum equation to obtain

2
dP dU FRUS _
57+ Ra—,_f+RUWf(H)+RG+ 5~ = O (10)

Little simplification was obtained from this and the set of
Equations (1), (2), (5), and (10) must still be solved.

This set of equations is a set of mixed partial derivatives and
cannot be solved analytically without further simplifications. There-
fore, it is necessary that a closer look at the physical aspects of the
problem be teken in order to make some simplifying assumptions.

One method of solution of this problem based on the assumption of
an oscillatory flow would be a small perturbation technique. Various
investigators have employed this technique in two-phase instability
7

studies with various degrees of success. Boure' presents a very excel-
lent theoretical model in what he calls the "single-phase model". He
utilizes this theoretical model to predict flow instebilities in the
two-phase region.

The fundamental idea that this model stresses is what Boure calls
the "density effect". Since this effect is identical to the occurrence
29

of a maximum in the density-enthalpy product in Walker and Harden

(this effect occurs since the density decreases faster than the enthalpy
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increases in this region thereby giving rise to a maximum in the density-
enthalpy product), the model is quite applicable to the present study
with only slight modifications. |

The fundamental idea in Boure's model is the representation of the
equation of state which leads to the so-called density effect. Figure
(16) shows the equation of state for water in the two-phase region at a
constant pressure of 400 psia. This is a representative pressure that
might be considered in applying this model to a two-phase flow problem.
Figure (15) as well as Figure (16) shows the idealized equation of state

to be used in this analysis. This equation is written as follows:

R=R Hs 0
R H (11)
o C

- 2

R T H= 0

Here it can be seen that the density in the compressed liquid region
has been idealized as.a constant Ro'

Comparison of the density-enthalpy relationships for water along an
isobar for a suberitical and a supercritical pressure shows that they
are quite similar under certain conditions. If slip and local boiling
(ef. Garlid et 2&12) are taken into account, the density-enthalpy re-
lationship is given as shown in Figure (16). This representation com-
pared to a supercritical isobar for water as shown in Figure (10) shows
a striking similarity. Therefore, utilization of the simplified equation
of state should give results in the critical and supercritical thermo-
dynamic regions comparable to those obtained in the two-phase region.

Utilizing the equation of state (11) in Equation (8) gives



" Ro

R=Ro/2

FIGURE (15) MODEL EQUATION OF STATE
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dH[R.J"d.HLRo =0 H=0
(12)
4 .1.]_ 1
d.H[R “%H H=z0
[o ]
Substituting (12) into (7) gives
oU
oU _ <
5 0 H (0]
and (13)
QU W
S = H=2 0
Z ROHc

Checking the dimensions of Equation (13) shows that this expression
has units of the reciprocal of time, therefore, a dimensional time
parameter is defined as

devd[ 3] )

Note that in the adiabatic sections and in the heated sections for
H < 0, the time parameter just defined approaches ». In the heated
section for H2 0, this parameter becomes @c where @c is defined as

HcRo
®c = W

(15)

Therefore, with these definitions, the system of equations to be
solved can be written as follows:

(1) Continuity

oU _ 1
YA (16)
(ii) Energy
) oH _
R ST * RU S7 =W (2)
(iii) Momentum
Exit rExit 5
oP oU U FU ]
AP = - =—ad7 = = +=~+ G+ =— | RAZ (17)
JEntrance oz JEntra.nce of @ 2D
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(iv) State
R=R H< 0
(o]
HR (11)
[o 3o
= >
R=v7rg H=0

along with the definition

F-v[ ] a»

and since the fluid enters the pipe in the compressed liquid region,

= -H (18)

H =
entrance o]

B. Dimensional Analysis

The following dimensional parameters have been introduced in the
preceding section.
(i) Geometric parameters
1) D - hydraulic diameter
2) F - friction coefficient
3) L; - lengths of the sections of the pipe
(ii) Physical properties
1) R - density
2) H, - enthalpy
(1iii) Acceleration of gravity - G
(iv) Operating parameters
1) U, - Entrance velocity
2) -H_ - Entering enthalpy
3) W - Volumetric heat flux
Therefore, it can be seen that there are 11 parameters that were
utilized in the dimensional equations. The number of parameters could

be reduced by non-dimensionalizing. In order to non-dimensionalize,
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three basic independent pérameters and their charscteristic values were
chosen. These quantities were chosen on the basis of their importance in
the system of equations. Two quantities which are important are time
with the characteristic value ®c and length with the characteristic value
L, (length of the heated section). The third parameter is not easy to
choose. Both enthalpy and density are very important parameters, but
density was chosen with a characteristic value of R0 since enthalpy can
be eliminated between the continuity and energy equations for H 2 0, i.e.,

from Equation (1)
3 ., 3R _ - U

st t Uz = B3z
1 [3R oR QU
RISTY U3zl = "3z

Substituting from Equation (16)

1 [3R dR 1
RLaT*V3zl =@
for H2 0, @ = @c and
1[eR oR] _ -1
Riar T U az] "8, H20 (19)

Therefore, the three independent quantities and their characteristic
values are
(i) Length - L,
(ii) Density - R,
(1i1) Time - e,
Utilizing these qpanﬁities, the non-dimensional parameters become

(1) Reduced Length

L—'Il-"t'

i, = where i =0 or 1

i

Q



{2) Reduced Coordinate

z = 2
L
c
(3) Reduced Time
= @T— N HT;I
¢ co
(4) Reduced Density
R
P =5
0
(5) Reduced Velocity
W
u = =
L
c
(6) Reduced Gravity 5 >
e G(HR )
g =t = ¢ o
Lc W2L
c
(7) Reduced Friction
FL,
=@

(8) Reduced Pressure Difference

2 2
AP @c _ AP RoHc

AP: =
R L ° WL 2
o cC [¢]

(9) Reduced Volumetric Heat Flux
wel> R®r%m3
c o ¢

=RL2 _W2L2
ocC c

w

" (10) Reduced Enthalpy

(8 R )
- H

L2 szce

(11) Reduced Time Parameter

9=@-
c
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(12) Reduced Frequency

w =00
c

With the aid of these non-dimensional parameters, the non-dimensional
equations which determine the three unknowns u, p, and h can be written.

Using these definitions, the non-dimensional form of Equation (14) becomes

pov &[] @)

From Equation (11), the non-dimensional equation of state is deter-
mined as being

p=1 for h<0
(21)

Substituting Equation (21) into (20) it can be seen that 6 takes on

two values depending on the enthalpy:

for h < 0
1 _[]_
T 11 =0
therefore, 8 - = (22)
for h 20
8 "dhlh “h T
c c
therefore, 0 =1

Hence, it is seen that the non-dimensional model equations may be
written for two non-dimensionsl times, © = 1 and 0 = «.

Therefore, the continuity equation can be written for the two zones
(non-dimensionel time). From Equation (i6)

3 _ 1

%0
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Utilizing the non-dimensional quantities, (16) becomes

u_1 :
9z  © (23)

for the two zones
6w, §—§=0 (25)

The energy equation is easily deduced utilizing the non-dimensional

quantities. Equation (2) becomes

3n, 3 _
Pt TP =Y (26)

In the zone where 6 is finite (8 = 1), it is more convenient to

utilize the alternative form of the energy equation given by Equation (19).

In non-dimensional form, this equation becomes
[—9-+u = =1

hence, for the two zones, it is found that

_ l éa .-
0 =1, u 3 -1 -
27

oh h

Likewise, the momentum equation cen be written in non-dimensional

form. Equetion (17) becomes
1+4,

Qu, u, g+ fu2] pdz (28)

_T
Ap = %79

'Lo
From Equation (18) the non-dimensional entry condition becomes
h - -h (29)
Table 1, consisting of equations (20) through (29), was constructed
in order that one could visualize more clearly the pertinent equations in

the two zones.
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R
Zone Where 6 = 1 Zone Where 6 = «
h< 0 (Compressed quuld)}
{h > 0} { n>0 (w- o)
Continuity:
ou du
Xy (24) | 55 =0 (25)
Energy:
l ap Bz} ' oh oh _
+u (27) Pyz rPug, =V (26)
State:
h=20 h h
¢
P =550 (21) P=%+n =
¢ ¢ (21)
h< 0 Impossible in this p =1
zone
Momentum: 144,
Ap = ¥ t ou E + g+ fu?} pdz (28)
J 3t T
Yo
Entrance Condition:
h=-h (29)

Table 1. System of Equations for the Two Zones

C. Partial Reduction of the System of Equations

The system of equations for the upstream adiabatic zone are rela-
tively simple.

(1) Upstream Adiabatic Zone., For this zone, w = O and 6 —» =,

From Equation (25)

ou
3z = ©

which gives

u = u(t) (30)
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and Equation (30) can be written
u = uo(t) (31)
vhere the o index refers to z = 0.
From Equation (26), it is found by utilizing Lagrangian variables

that

oh oh _Dh _w_
3t "9z Dt -p "0 (32)

since an adiabatic section is being considered. Hence,
h = ~ho (29)
Equation (21) gives p = 1 in this section.
Finally, for the upstream adigbatic section, the following

equations are valid:

u= uo(t)
p = 1 (33)
h = -ho

(2) Heated Zone With h < 0. In this section, w> O and § = =.

Integration of Equation (25) gives u = uo(t) as in the previous zone.
Equation (26) gives
| dh dh Dh _w (34)

® % R

Utilizing Lagrangien variables (following the particle) in the
integration gives
h = wt + constant (35)
Iet T be defined as the instant when the particle attains zero
enthalpy (becomes saturated). Then h = 0 @ t = T and the constant of
integration in Equation (35) can be evaluated, i.e.,
h=wte~r7) | (36)

Equation (36) immediately leads to the evaluation of t_ the instant the
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particle passes the origin z = O by substituting in the last expression,

~h = W('to - T)

o}
or n
t =T = '—o (37)
o} W
Utilizing Equation (37), a relation can be established between z,
t, and T %
Z = Jr uo(X)dX
t
o}
or +
7 = j‘ uo(x)dx (38)
r- Jo
W

vwhere x is a dummy variasble of integration.

Now the length of the zone for which h £ 0 can be calculated. If
this length is defined as A, it can be seen from this definition and
the definition of T above that A is the value of the integral in

Equation (38) for t = 7. Hence,
t

M) = | dax (39)
t- Jo
W
Looking at the quantity Eg for a moment, it can be seen that if
w

the non-dimensionsl definitions of w and h are recalled, this quaqtity

in dimensional form is

H

=2

H
c

where HB represents the subcooling in two-phase flow. '

By analogy with the definition of subcooling in two-phase flow,
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this ratio will be called the non-diﬁensional subcooling. Hence, for
critical and supercritical flow it will be assumed that a quantity
analogous to subcooling in two-phase flow exists and this quantity is

defined by

h
s = ?? (ko)
Therefore, Equation (39) becomes
t
A6 = | u e (1)
T-8

and likewise Equation (38) becomes
t
z(t,T) = Jr uo(x)d.x ' (42)

T-8
It is intuitively obvious and has been shown in Appendix V that
for this region (p = 1) the flow is always stable for A 2 1 since
the fluid would be in the subcooled or saturated thermodynamic region
at all points inside the pipe. For this reason, the limits on the
analysis will be that for which A < 1.
The formulas relative to this zone (31), (36), (41), and (42) are

reiterated below.

u = uo(t)
p =1
h=w(t-1)
t

T -s<StST (43)
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(3) Heated Zone With h 2 0. In this zone 8 = 1 and w> 0. From

Equation (24)

R
Integrating
u=2z+ £(t)
Since u = u(t) for z(0)
u=u(t) +z (4h)

Now, from Equation (43) at the instant t for which z = A(t)

u = uo(t)
Hence,
u [A(6),5] = u(t) + A(e) = u_(t)
where
u(t) = u (t) - A(t) (45)

Substituting Equation (45) into (Lk) gives

w(z,t) = u () + 2 - A(t) | (46)
Integration of the energy equation (27) gives

1 éa + 1 3% _ﬁﬂlp_).

and

-t + constant
p=e
The constant of integration can be evaluated from the condition

that p = 1 for t = v. Therefore,
p = e'(t'T) for t 2 1 (k1)

A relation between z, t, and v similar to Equation (38) can be

found in this particular zone by the integration of Equation (46) where

22 = u(z,t) = u (t) + z - A(%) (46)
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For the moment take t and T as the independent variables that define
the Lagrangiasn particle. The presence of z in the right hand member of
Equation (46) suggests putting ‘
2(t,7) = y(t,7) € (47)

%% is the derivative according to the particle, given at constant T,

D23yt et

ot
where
oY _ -t Dz _
ot Dt
From Equation (47)
Tt [E.] (48)
Substituting for %% from Equation (46)
o et [u(6) - Ae)] (49)
Integrating Equation (L9)
t
y = JP et [uo(t) - x(t)] at + £(r) (50)

o
£(r) is evaluated from the condition

Z(t,T) = X(T) for t =

Hence,
T
TAlr) = E et [uo(t) - x(t)] at + £(r)
and '
£(r) = 7 A7) (51)
Therefore, Equations (50) and (51) give
t
y(,m) =2 e+ [ e [u ) - aw)] ax (52)
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and utilizing Equation (L47)
: t

z(t,r) = A(T) BT 4 &t j‘ e™* [uo(x) - A(x)] ax- (53)

T

The time tl when the particle is discharged from the heated zone

into the adiabatic downstream zone 1s of interegt in connection with

this zone. This is given by Equation (53) for z = 1. Hence »

t
t,-T t 1

1=2A(7) e L el ,Jr e X [uo(x) - k(x)] dx (54)

T

The equations pertinent to this particular zone, Equetions (21),

(46), (47), (53), and (54), are reiterated below.

u = uo(t) -A(t) + 2

hc
p B ese——
h + hc
> = o(t)

t
z2(t,r) = M) e T+ etj. e ¥ [uo(x) - x(x)] ax

)
T rsts tl('r)
'bl-'r t, rtl -x
L=A(r) e tet | e [uo(x) - l(x)] dx (55)
T

(4) Downstream Adiebetic Zone. In this zone w= O and 0 = =,

Integration of Equation (25) gives u = u(t) end since z = 1 at the exit
of the heated section, (55) gives

w=u(t) = u(t) - A(t) +1 (56)
The energy equation (26) gives
oh dh Dh _w

3% +u s; = EE = E =0
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Again according to the particle, this expression gives h = constant.
According to Equation (55)
-(tl-T)
p=p(r) =e = constant (57)

As before, the relation between t, 2z, and T can be determined for

this zone by the integration of Equation (56):

%% =w=u (t) - A(8) +1
z = j; [uo(t) - AM(t) + i] dt + constant (58)‘
1

The constant of integration can be evaluated from the condition z = 1

for t = t t
1 r 1
1= J [uo(t) - A (%) + i] dt + constant
t

therefore, 1

constant = 1

and Equation (58) gives "

z(t,7) = 1 + j‘ [uo(x) - A(x) + 1] dx (59)

t

1
The formulas relative to this zone are (21), (56), (57), and (59).
u = uo(t) -Aa(t) +1

B c
P=%+n
c
-(tl-T)
p =e
rt
a(er) =1+ | [u,60 - AG0) + 1] &
tl
tl < t =< instant of discharge
from pipe (60)

The sets of integrated equations (33), (43), (55), and (60) have
replaced those of Equations (24 - 29). The remaining equation to be
considered is the momentum equation (28) which will provide a look at

the dynamics of the problem. The above mentioned sets of equations have
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allowed the reduction of the number of unknowns from four (velocity,

density, pressure, and enthalpy) to two (entrance velocity and density).

D. Egtablishment of the Oscillation Mechanism Equation

The mechanism is now examined for which the model will be susceptible
to produce sustained oscillations. The mathematical model has been built
around the so-called density effect; in fact, the regions other than the
variable density part of the heated zone have been added only to bring .
the mathematical model closer to physical reality since the fluid flow
elmost always behaves in these regions. Although these zones modify the
characteristics of the model by thelr effect on damping and inertias for
example, they do not modify the actual oscillation mechanism., Therefore,
it is proper that this study is begun by studying the case of a single
variable density heated zone. Following this, the upstream adiabatic
end downstream adiabatic lengths will bg added and finally a study will
be made of the much more complicated case of the complete model as des~
eribed in section C.

From the definition of & single, varieble density, heated zone,
the following is concluded:

4o=l, =8=0 (61)

Physically this corresponds to the entrance of the fluid into the
pipe at the saturation temperature for two-phase flow and at an analo-
gous condition for a supercritical fluid. It is also evident that for

this zone

and
A= 0 (62)
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For this region, the set of Equation (55) is valid and after

taking Equation (62) into account becomes

u = uo(t) + 2
o = o (t-T)
t
z(t,r) = et j, e * uo(x) dx
T
tl
t
1=et j, e u (x) ax
o
)
TSt b () (63)

The dynamics of the problem are considered by looking at the momen-

tum equation (28). Taking Equation (61) and (62) into account gives

1
1
Ap = j‘ [g% +u+ g+ fuzj pdz (64)
o

Before substitution of Equation (63) into (64), it is convenient

to define the following quantities:
1

E pdz = g(t)
o
1 .
j‘ pzdz = () (65)
o)
1
5 pziaz = (t)
o
Utilizing Equation (65), the momentum equation becomes
rduo 21
bp=lgeu rermPler(1ram) N (66)

Since this investigation is concerned with periodic solutions, one

is led to put
uo(t) =u, + v(t) (67)
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where u  is the steady state velocity at the entrance. For now, the
only restriction placed on v(t) is that v(t) 2 -u_. This condition
states that the flow cannot reverse itself., This condition is not
restrictive since this investigation is concerned with the instability
thresholds.

Now by defining EO, ﬂog Co as steady state quantities analogous to
€, M, £, the steady state pressure drop can be obtained by letting
u = u_ and substituting into Equation (64). Upon making this substi-
tution, the following expression is obtained:

bp = (u, + g+ fgpz) €, + (1 + 2fu ) m, + €, (68)

Since the steady state pressure drop is approximately equal to the
transient pressure drop, Ap from Equation (66) is equated to Ap from
Equation (68). Elimination of Ap between these two equations gives an
equation in v:

Fav - i 27
LEE *v+tv(au, +v) §+ u g+ T (g - €,)

etV + (L +2fw )M -1 ) +£(C-¢) =0

or by rearranging

£ -§
- %% = fv(2u, +v) + v + 2fV‘% + (u, +g+ fq»e) 3 °
-1, o E-tC
+ (1 + 2fu) —— (£) 3 (69)

The problem is therefore reduced to the solution of Equation (69)
taking into account Equations (63), (65), and (67).

An analytical solution to Equation (69) is, in general, impossible
but inferences can be drawn from it. For example, one necessary con-
dition that (69) possess an oscillatory solution is that for some period

dv

of time, v and = be of the same sign. This can be seen by looking at
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the quantity

¢ v
at
v a dv £ it .
if v an Ty are of opposite sign
dv
_—<
v at 0
and
2
a(v7)
<
o °

therefore, the absolute value of v can only decrease. In order to
obtain an oscillatory solution, it is necessary (at least over certain
time intervals) that this product increase. Therefore, it is necessary
for v and %% to be of the same sign over some time interval. However,
this condition is not sufficient and the number of important terms in
Equation (69) preclude the possibility of finding a simple stability
criteria. Therefore, the problem of studying numerically the set of
equations mentioned sbove ((63), (65), (67), and (69)) will be con-
sidered. A small perturbation analysis approach to the problem seems
feasible in the light that the oscillatory mechanism is being studied.
Although it should be realized that large perturbstions are present in
the physical system, it is valid to predict the instability thresholds
on the basis of small perturbations since they eventually lead to the
large perturbations.

Therefore, Equation (639) is linearized by suppressing the second

order terms. Upon doing this, the following expression is obtained:

U £€-8
- %% =2fuv + v+ 2f Ei-v +(u, +g+ fqzz) -—E;-g
n-1 €-¢€

(o]

(70)

+(1+2i\1m)—-§——°+(f) ;
(¢] (o]
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Equation (70) is a first order linear differential equation and
tecause of the nature of §, N, and { as functions of t, the solution of
this equation can be written as a linear form of particular solutions

. ct |
ine ", i.e.,

where vy is small compared with u, 2 and ¢ is a complex number., Therefore,
the syst:m of equations with

u =u +Vv_e (71)
will be studied.

The linearization above must be considered as a physical hypothesis
and the eventual comparison of experimental results with the results of
the solution of the linearized equations will indicate whether or not
this hypothesis is wvalid.

Next, it is necessary to investigate the case of a pipe heated over
part of its length for zero subcooling (s = 0). This is identical to
the case studied above with the upstream and downstream adiabatic

sections added.

(i) Upstream Adisbatic Zone. For this zone, the set of Equations

(33) are valid and substitution into the momentum Equation (28) gives

o
[ ru,u 2 -
8Py 4.8, = J_& [Ss*gte” fu] pdz =
)
du, 21
- + g+ fuo | &O (72)

(ii) Heated Section. The momentum equation for this zone has

already been established. From Equation (66)
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du
®m&=[Eg+%+8+f%ﬂ§+(l+ﬁ%)n+ﬂ (66)

(iii) Downstream Adisbatic Zone. For this zone, the set of

Equations (60) are valid and substitution of (60) into the momentum

equation (28) gives
140
- du , u 2] -
APD.A.S.'J; st tgt et fujpdzs=

du
[+ e+ + 17, (73)
where §l(t) is defined as
1+
1
g, (t) = jl paz (7h)

Now by assuming that the velocity consists of a steady state and
& transient component, we utilize Equation (67)
uo(t) =u, + v(t) : (67)
by substituting it into Equetion (72) where we obtain
av 2
by a8, =Llag * & * T

Substitution of Equation (67) into (73) gives

sotuve L, . (75)

dv 2 2
APD.A.S. = [E‘E et f(ueo + EuQV + Zu” tVotavd l)] gJ_ (76)

At steady state, Equation (75) becomes

Apss = [8 + fqu] &o | (1)
U.A.S.

and at steady state, Equation (76) becomes

Ap = [g + f(um2 +2u + 1)] glo (78)

8s
D'A'S'

where §lo is defined as the steady state value of §l(t).
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For the heated section the steady state value of Ap has already

veen determined and is given by Equation (68),

Ap = [q» + g + fq»a] §o +-[l + 2fub] no + fco (68)

ss
H.S.

The total steady state pressure drop across the pipe is equal to
the sum of the steady state pressure drops across the three sections

given by Equations (68), (77), and (78). Hence,

8pg = (g + fgbz) [Lo 8t gld] t S, (1 + 2fu,) Mo

PR+ [ £y, + 1) €y, (79)
For the heated section Equation (67) is substituted into (66) to
obtzin the transient pressure drop.
Ap = [QX +u +v+g+ flu + v)g] € + [l + 2f(u + v)] L
H.S. dt © © ©

+ g (80)
The total pressure drop across the pipe considering the transient

portion is found by adding Equations (75), (76), and (80) to obtain

Ap = %% + g+ fqnz + 2fy v + fv2 Lo + %% + g + fgna +
2fu v + 2fu_ + :f‘v2 + 2fv + f] E_+ av +u + v+
o % 17La " Y% €

+ fqbz + 2fq”v + fv2] g + [1 + 2fu + afw] m

+ ¢ (81)
As before, Ap can be eliminated between Equations (79) and (81) to

give
[%% + fv(2u + v)](&o +8& + §l) + [g + fqpa](Lo +§& +-§1) + V&
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+u g+ 26V 4 (14 200 ) N+ £ + 20, + [f(eum * 1)] 51
= [g + fuazz’({,o +E + glo) g+ [1 + 2fum] N, + €,
+[ e, + 1)] € (82)

After simplification and rearrangement, Equstion (82) becomes

N+§
E'_“L"*
o+§+§l

-ﬂ=f(2um+v)v+(v){‘ +§
)

a% ———ETEI + 2fv

, 2 g-go . ’n-'no
(uw+g+fum)m+(l+2mm)m+

¢ - & . 51 %1 7 510
ft——_—-o-*'g+§l+[g*f(u°+l)]z—~—o+§+§l (83)

After linearization of Equation (83) as was done for the simpler

case of a heated section only, the following expression results:

g N +E8
dv o o] 10
-—=z=2fuv+v — + 2fv
dt ® L°+§o +_§10 Lo +§,o+§lo
€ -8 nm-17
2 0 o]
+(u + g+ fu ) g + (1 + 2fu,) 77—
: Lo+§o+§10 Lo+§o+§10
t-6 =1 51 - 510
+ f ol 4 | g 4+ P(u + 1) (84)
LO+§O+§10 [ © ]Lo+§o+§lo

Equation (84) could now be solw.red as in the preceding example.
However, the much more complicated case where a moving boundary is intro-
duced between the constant density heated zone and the variable density
zone must be considéred. Physically, this is the boiling boundary for
two-phase flow.

Taking this into account, there are four zones to consider in the

general case. The momentum equation for this general case has been
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derived in Appendix I. Equation (I-14) gives

2 0 0
+(uw+g+fuw)-€°+)\+_§ +§l+(l+2mm)LO+X+€+€;

N+§
§ + 2fy 1

£ -8 n-1

£-¢C

£ 20
LO+X+§+51

- %10 a\ §+§)

2
[g+f(u +l)]{, + A +E +§l'(ﬁ)&o+)\+ﬁ+§l

Lo+ +E+E, LO+A+E+EI

AE + € ) A=A
-2va +)\+€+§+(g+fu),c +;\+§+g“'(1+2f‘%)
A - & )\§-X§ m-xno
Lo+l+§+§ L+).+§+§ 2f‘€'o E q-Qf(uw+l)
My - 28 "251 - )‘oeglo (8
{’o+)‘+§+gl+f{’o+)‘+g+§1 5)
where it is noted in Equation (84) that
1
£(6) = | pas (65)
[o]
while in Equation (85) N
E(t) = j’ pdz (86)
A(t)

Equation (85) can be simplified slightly by letting

L=Lo+7\+§ +§l

Taking Equation (87) into aceount, (85) can be rewritten:

-4 =

dv
at

= (2 + Vv + (v - %"E)g -%’}Egl+2fv[n - AL

(87)
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2)

+§,(1 - h)] tu (8 -8)+(g+m )(E -8 +) - A) o+ (1 + 2fu)

(o]

[n-28 - -a8)]+ e[ -an+a%) - ¢ -2
+2 )] + e+ tla, + 1P, - €, 0) - 26(u, + DOAE,

" A Si0) * f(kggl - kozglo) (88)

The next step would logically be the linearization of Equation (88)
as has been done in the two preceding simpler cases. However, it is
necessary to look first at the general case shown above under steady

state conditions.

E. Steady State Equations

In the preceding section, the study of small perturbations around
a steady state entrance velocity, u_, has been established. Since the
model equations have been established in detail, it is possible to
study the simple case of the steady state regime,

The momentum equation which has played a fundamental role in the

preceding section is established in Appendix T (I-12) and is written:
Ap = (g + fu 2)({, +A )+ (u +g+ fu 2) E +
P =18 © o o o T8 ® o

(1+200)(M - AE) + £ - AN +1 5 ) +

2

g8+ £, +1 -2 )% 8, (89)

It is necessary to write ko, §o, ﬂo, Co’ and §lo as functions of
the model parameters. This is accomplished in Appendix II. Below are
reiterated the most important equations from this appendix.

)‘o = uws_‘ with u,s <1
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§o =y k with k=4nm
1 (90)
m=l-s+u— with m>1, k> 1
[--]
.4
10 m
The form of Ap, which is linear in g and f, is established by
recalling (II-14) and (II-16) from Appendix IT.
From (II-1k)
“0 - KOEO = q,(l - Xo - Eo) (91)
and from (II-16)
(1-1)°
¢, - AN +A %, mu [ -u - -8)] (92)
0 o'o 0% e 2 © 0 o
Substitution of Equations (91) and (92) into (89) gives, after
rearrangement
Ap = g(&o A+ E, + glo) +u (1 - ho) + f
[E: (1 -2 )2 rul L+t )+ (u +1 -2 )2 g ] (93)
2 0 © o © 0 10. ?

The criterion that the channel cannot operate under steady state
conditions when the slope of the pressure drop - flow rate is negative

is now imposed, i.e., the condition imposed is that

2{8p) 5 o (o

-}

The calculation of 9%%31 has been made in Appendix II and (1T-27)
’ @®

gives, after a slight rearrangement
L

——5—21 g [s th- gyt 1A

e[ty req@, +142) -2 @+t + 327 (95)
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It can be seen that the condition b(ﬁ ) > 0 implies the point of

-}
[++]
operation must lie inside a certain range limited by a hypersurface (S)
derived from the condition Béﬁ ) =0, i.e.
-}
l-s+k- 1 + Ll —I+1-2)\ +fr-]-'-+£ +2ﬁ
mu,_
. 3, 2] _
(Lo +1 + &l) - 2lo(1 + Ll) +3 XO =0 (96)

It follows that this equation is represented in terms of six inde-
pendent paremeters (g, f, u_, Lo, Ll, s), i.e., in six-dimensional
space. This equation can be reduced to an equation representable in
three-space by setting three parameters equal to a constant. Any three
could be chosen; however, Lo’ Ll’ and s were chosen. Therefore, the
surface is given by u_(g,f), a simple surface since Equation (96) is a
linear form in g and f; the intersection of the surface with a plane
u = constant is a straight line. Note that the study of this surface
is limited to the region

1
O<U.°°<E

fz0
These conditions have already been established (see especially
Equation (90)).
Knowing the surface (S) for which éé%El = 0 in the (g, £, u )
space will give the domain of possible qpézation,
Equation (96) can be rearranged in order to see that the generatrix
of the function u  has for its projection in the'(g, f) plane an equa-

tion of a straight line, i.e.,
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L,
1 1
- [s +k - —+ 2J g+lus -1
my o (mu) )
[}

S+l + 2@»(&0 +1l+47) -20s(L+4) +5u s

Having established the condition §§%213> 0, it will be assumed
-}

that this condition is fulfilled and the next section is devoted to a

study of small pérturbations about the steady state regime.

F., Small Perturbation Analysis

Given the expression for the velocity defined by Equation (71)

ct
u =, + v e (71)

where v, is an infinitesimal of the first order compared to u, and c

is a complex constant, an equation in ¢ will be derived. After
linearization and division by vy which must appear as a factor because
of this linearization, an equation in ¢ will be obtained whose roots are
given by Equation (71). This equation will give a determination of the
transient behavior of the systen.

For a group of parameters (g, f, u_, Lo’ Ll, s) satisfying the
steady state criterion of the preceding section and the lineariéed
equations of this section, there are many possible cases:

(i) If the equation in c possesses only roots with the real part

negative, every geﬁeral solution
cit
u, =, + }E v, e
i i
approaches u, for t = «, i.e., the small perturbations are
damped.

(ii) If the equation in c possesses only roots with the real part
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negative or ﬁero, at least on being zero, every general solution
tends toward a periodic solution when t = =,
If the equation in c¢ possesses at least one root with the real
part positive, every general solution presents an increasing
amplitude with time. When this amplitude is no longer small in
comparison to u , the linearization is no longer valid. The
prediction of whether the amplitude increases indefinitely or
whethei it will be limited by the non-linear terms cannot be

made. However, it is certain that the system is not stable.

If the possibility that at least one of the roots of the equation

in ¢ is a discontinuous function of the model parameters is ruled out,

the passage from case (i) to case (iii) where the real part of the roots

change from a negative to a positive sign can only occur by becoming zero.

If all the roots of the equation in c have a negative real part and

a change in the system parameters causes one of the real parts to be-

come zero, two cases are possible:

(a)

(b)

The system is passing from a stable domain where all the roots
have a negative real part to a domain where at least one root
has a positive real part, i.e., one is at an instability
threshold defined in the six-dimensional (g, f, w Lo, &1, s)
space.

The trajectory of the root considered is tangent to the
imaginary axis. One is at a point where the system effectively
possesses a periodic solution, for its solution is stable at

all neighboring points.

The possibility (b) above is a very special case with a small
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ﬁrobability and therefore it will not be considered further except in
very special cases. In these cases it is necessary to investigate the
stability at neighboring points to determine whether or not all neighbor-
ing points are stable.
Therefore, an instability threshold can be defined as follows:
For the system represented by a point in the six-dimensional (g, f,

u, 4

Lo Lo &l’ s) space, there is a correspondence between the desired

instebility thresholds and the roots of the equation in ¢ with the real
part zero,iff

(1) A domain can be found in the vicinity of that point where the
system is stable, i.e., where it has roots of the equation
in ¢ with the real part negative.

(2) The equation in ¢ allows in the neighborhood of this point
neither roots with the real part positive and infinitely
large nor with discontinuous funetions of the parameters.

With this definition of the instability threshold, it is necessary

to return to the "equation in ¢" as it has been called above. This

equation is (88).
(Lo *A+E+E) %% + f(&o + N +E + §)(2u, +v) v+

e Qe voanvn-ag g (-0)] ruE-g)

(v
2
P e+ 1€ -5 +h-a )+ @ran) [n-ag - -ng,)]
re[(c-amea%) - ¢ -an +2 %)) +[e+

2y, + 1)7] (8] - §,0) - 26(y, + DG, - A E10) +

2 2
£(AE, - A, §y) = 0 (88)
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Looking at Equation (88) it can be seen that it is necessary to
express A, g%, g€, N, £, and §l as functions of thg.model parameters
plus v_ and c. Equation (88) is linearized and then it is possible to
proceed as before. This calculation is made in Appendix III for c # o,
c #1, and ¢ # 2. These restrictions do not affect the generality
since ¢ = O corresponds to the steady state solution in the previous
section and ¢ = 1 and ¢ = 2 are particular cases which are not of great
interest in this study (solution with the real part positive).

The equation in ¢ is derived in Appendix TII and is written

Bg + Byfu + By =0 (98)
where
~-C -1
EE m EE m (E. +E )m
B Sy . Sy . y
1 c(l ) c2(l c2
-1
(L - c)m 1
pd-gu” 1 (99)
c
o EB, n ¢ EE, o
32='muwai-_cy+mm—2—_+2mum
¢ (1 - e)
E m -c E m_-
c(1-c)(2-c7 1-c[2-c+1'ums+:é‘1+
Es mquy
- (1 - us + 2&1) - c2 - = (l -us + 2 ) + c2 + 2(& +1+4 )
(100) |
-c
E nm u ke u 4
B,em > _4+p 2.2 ___= .1
3 ® (1 - c)2 s e 1-c (1 - c)2 m
L u '
1 ® 1
+ (Lo +us +uk+ E-) c - - = (101)
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and from (II-10), (III-1), and (III-23)

m=1-s+ L
u
[--]

(I1-10)
k=4nm
E =e " (III-1)
_h
Y= m
[« -]
(III-23)
E =e
v

For the instability thresholds, the equation in c is solved with

the real part equal to zero. Therefore, we take
c=r + iw (102)
and examine the equation in ¢ for r = 0.

This will give a hypersurface (Z) which is a function of the model

parameters and will be defined by the expression

%(g, £, u_, 54y, 8, = 0) =0 (103)
Knowing the surface (£) and the stability domain (S), it is possible
to deduce the threshold surface.

Therefore, by teking ¢ = iw in the equation in ¢ (98), two
equations in w are obtained by separating the real part from the imagi-
nary part. This is accomplished in Appendix IV. w is the frequency 6f
a possible "pure oscillating" system, i.e., one that is neither damped
nor amplified. It is assumed that w > O to meet the physical require-
ments of the problem and this does not restrict the generality of the
solution. The system of equations in w is written:

8,8 + azq”f + a3 =0

(104)

blg +buf+b,=0

2 3



76

where
a) = - 2[005(K+S+Y) Sln(KJS+Y) 1
l+w (l o )
[cos(s +Y) +w sin(S + Y)] + gos S + gos Yvo1 (105)
my
b= 1—2 [COS(K +8+Y) +w sin(K+ S + Y)] -
w(l + %) -
——"J"‘—é—l:cos(S+Y) -ﬂ%ﬁ.ﬁ _811'18;81DY
mo(l + w") "
'y [i - 1] (106)
wLm
m2 mu
Lro 0w (1 + 0%)
2m2u

I:cos(S +Y) +w sin(s + Y)] ¥ |:3 cos(K + S)

(1+m )(’++w)

' w)u
+ (w -—) sin(K + 8) cos S z +1-us
] l+w2[ Yo+ w2
(l-ums) mu
B, D
(l+w)(’++w) 1+w w(l + )
l-us+2{,:L
+ m ] 2 (1 - cos Y) + 2(&0 +1 +Ll) (107)
2
muw uco
b2=—-——2—[cos(K+ S+ 7Y) +w sin(K + 8 + Y)] —-———T[cos(s +Y)
w(1l + o) w(l +w%)

) 2
_ sin(s + Y)] 2n v,

[(w - —) cos(K + 8) - 3 sin(K + S)]
1 +w )(h + W )

Jou, w(1 - us) m, l1-us +2Ll
'°°ss[ ) 5. F 7 ot ]*
(1 +07)(4 + 0%) 1L+w w(l +n°)

w
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2 .
sinSl'(z-w)u°°+l_ my,_ mi, sin ¥ 1 -us+2b,
Liw2 © b+ o2 BT TR ' v
(108)
my 5 ucosz
a3=———-§[(1-w)cos(K+S)+an sin(K+S)]+cosS[ 5
(l . w2) 1+w
2
u (1 -w%) Ll W ouwkw 2u w Ll
--—-—-—+—]-sin{—+ + 2]-— B
2 2 m w 1+ w2 2 -
(1 + %) (1 +w%) (109)
my u u_kw
b3 = -—°°-§[2» cos(K + 8) - (1 - w2) sin(K + S)] - cos {% b= 5
(1 + u)2) l+w
2u w umkm2 u (1 - w2) L)
+—-——-§]-sin{ 5 - = +(Lo+ums+umk
(l +(.D2) 1l +w (l +(!)2)2
£ u
1 -]
rE ety (110)
and from (IV-3)
K=ok =w 4n(l - s +l—-)
u@
S =ws (IV'?))
le

R A N R T

The equation of the surface (£) could now be obtained by elimi-
nating w between the two equations in (104). However, w does not occur

directly in (104) but occurs in the transcendental forms of

K+s+Y=wlk+s+y)
S+Y=w(s+y)
K+ S =wk+ s)




Y = wy (111)

So it is seen that this elimination becomes impossible and it is
necessary to define the surface (£) as defined parametrically by |
Equation (104). Notice that this system is linear in g and f and this
will be useful when considering the numerical solution.

It is reiterated that for the small perturbations, the system can
be represented by a point in the six-dimensional (g, f, u, Lo’ &l’ s)
space of the model parameters and can be either stable or unstable.
The stebility is determined by the position of the representative point
in relation to a threshold surface about which the system oscillates
indefinitely. This threshold surface is a portion of the more important
surface (L) defined by a system of equations acting as the frequency
parameter ® of a pure oscillatory solution. Knowing () and a domain
where the system is stable, this domain can be extended until the
surface () is reached or the surface (S), which marks off the impos-
sible domain studied in the previous section, is reached. In this way,

the stability envelope can be determined for the physical system.



CHAPTER V
EXPERIMENTAL, RESULTS

The experimental portion of this investigation was carried out
primarily to obtain data to compare with the theoretical predictions
of the instability thresholds. However, various experimental results
were obtained which did not relate directly to the theoretical pre-
dictions of the model.

The first experimental observation made concerned the varying
degree of difficulty of adjusting the loop operating parameters to a
position such that oseillations would occur. Loop tests utilizing
four different heat transfer fluids showed that instabilities were

most readily found for Freon-114. Next came Freon-12 followed by H,.O

2
and finally 002. This is verified in the literature by the fact that
although extensive critical region studies had been made utilizing 002,
29

no oscillations had been reported before the work of Walker and Harden ~.
The reason for these results can be seen in Figures (11 - 1k4).
Note that at critical pressure I%%\ is largest for Freon-114, next

largest for Freon-12, followed by H,O and finally CO Since the

2 2°
behavior of p(h) has been shown to be the fundamental cause of the
oscillations, this observation provides agreement between theory and

experiment.

T
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The utility of the (ph)max concept for determining experimental
instability points was again shown in this study. These experimental
instability points were found much easier by making use of this con-
cept. This method was utilized to locate experimental instability
'points regardless of whether operation was at subcritical or super-
critical pressures..

8,10,24 have considered (one author pursued

Previéus investigators
this line of thinking) the possibility that a time-varying transfer of
heat to the fluid in the heater section was the triggering mechanism
for the sustained oscillations encountered. Since it is known from
previous investigations (ef. Holmanl7) that convective heat transfer
coefficients increasse greatly in the eritical region, it msy be neces-
sary to consider the heat capacity of the heater section walls. Con-
sidering this, it can be seen that the electrical power input into the

heater section is divided into two parts,

W=Quia ¥ Ya11 (112)
where
Urpia = P(Ta1n = Terpid) (113)
and
oT
Qua11 = me 3% (11k)

From these equations, it can be seen that if the wall temperature
of the heater section varied with time, it would be very important to
account for this in the model since this mechanism would act as a
"forcing function".

Since the model utilized in this study made no provision for a

time-varying wall temperature, this was one of the first goals of the
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experimental part of this investigation.

Experimental results from this investigation showed that there was
no appreciable oscillation of heater section wall temperature. Results
did show that there was a significant wall temperature drop when the
loop was operated near the critical region. However, this drop occurred
as the critical region was approached and there was no ensuing oscil-
latory wall temperature even though pressure and flow was oscillatory.
These results can be seen in Figure (17). These results were in agree-

15

ment with Harden™” and since flow oscillations were found without
oscillatory wall temperatures, it was concluded that this was not the
triggering mechanism for the oscillations. Confidence in the model was
strengthened by this observation. Fluctuating wall temperatures were
noted in this investigation but they occurred only under certain opera-
ting conditions and as stated above were not a necessary condition for
an oscillatory behavior.

An investigation of the oscillatory frequencies measured experi-
mentally suggested that these frequencies were related to the natural
frequencies of various modes of vibration of the loop. Therefore, the
undamped natural frequencies for several of these modes were calculated
and are found in Appendix VI.

Experimental results showed that the loop oscillation frequencies
fell primarily into three frequency ranges:

(a) 0.2 - 0.3 cps

(b) 30.0 - 45.0 cps

(¢) 5%5.0 - 625.0 cps

Although the heating rate, pressure, and other operating parameters
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did affect the oscillation frequencies, it appears that the definite

ranges found above indicate that the loop tends to operate at certain

frequencics characteristic of the natural frequencies of certain of

its vibrational modes. These three modes are as follows:

(a)

()

(c)

Oscillating Manometer - When the loop was idealized as an
oscillating manometer, it was found that the calculated

ngtural frequency was not & function of the fluid density,

but only of the length of the loop (when pI'> > pv). This
calculation showed the natural frequency to be 0.276 cps.

This corresponds closely to the experimental freguency range
found in (a) above.

Acoustic Oscillations - The second group of experimental fre-
quencies in (b) above were found to be related to a pressure
wave traveling around the loop. The calculated freguency for

an acoustic oscillation was found from the relation f = % where
a is the velocity of sound in the fluid medigm~and A is the
length of the loop. Acoustic velocities can‘be calculated for
supereritical fluids from the definitioﬁ”azl;“(%g) , whenever
thermodynamic date is available. The sonic velociiy for water
was determined in this manner and is shown in Figure (18) for
critical pressure (3206.2 psia). Similar data for Freon-11ll can
be found in Corneliuslo. The calculated value for a typical
Freon-11k run was 44.2 cps and the experimental value was 42.5 cps.
Longitudinal Pipe Vibration - The third mode of vibration was

apparently a longitudinal pipe vibration. Experimental values

varied in the 575-625 cps range while the calculated value
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lies in the 376 < f < 140k cps range. It is logical to
assume the natural frequency should more closely approach
that of a cantilever rather than a circular ring. Hence,
one would expect the calculated natural frequency to be |
closer to the 376 cps value.

Other frequencies were calculated for the various modes and some
coupling could have occurred. For example, the calculation for the
natural frequency of bending vibrations was in the 0,672 < fn‘< 0.457
cps range. Therefore, it is possible that this mode could have affected
the experimental values found in (a) above.

The natural frequency of one other mode was calculsted in Appendix
VI. This mode was the radial vibration in a pressurized pipe. The
calculated natural frequency was 21,500 cps. No experimental values
were found in this range since the instrumentation was limited to 1000
cps.

One of the results of this study was found not to be in agreement
with the results of Garlid et glla. Their results showed that the fre-
quency of oscillations at high pressure were approximately 30 times
higher then those at low pressure which, according to them, was in
egreement with experiment. In one series of tests with Freon-11l as
the heat transfer fluid, the rgsults of this series of tests in the
present investigation revealed that as the system pressure varied from
109 - 340 psig, the experimentally measured frequency varied from
0.254 - 0,276 cps.

2k

Further, the conclusion by Quandt  that flow oscillations become

less prevalent at higher pressures for two-phase flow wes not
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substantiated by this investigstion.

Subcooling was found to be an important parameter in this study.
This parameter was important since it was utilized to describe the
thermodynamic state of the fluid. Oscillations were found to occur at
all values of subcooling that could be attained in the loop. Oscil-
lations were also found when both the heater section inlet and outlet
bulk temperatures corresponded to a fluid in the subcooled liquid state.
However, local boiling was occurring even though the bulk temperature
was in the subcooled liquid region.

The acoustic oscillations encountered during this investigetion
occurred primarily in the criticel and supercritical thermodynemic
regions. However, they were also observed at subcritical pressures.
Figures (19 - 21) show an oscillation of this type at three different
chert speeds.

Audible vibrations were also encountered in this investigation.
Figure (22) shows & trace of one of these vibrations when audible
noises were present. From this figure it cen be seen that this is an
example of & "beat frequency". This particular waveform occurs because
two slightly different frequencies were impressed on the system. It
also can be shown (cf. Wylie6) that the pressure function shown here
is almost exactly the product of & sine and & cosine, i.e.,

P= {A sin(et)} cos wt (115)
where
A = Amplitude of the wave
.- 9.1 cps |

2n
w —-—
57 = 179.0 cps
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Notice ir Equation (115) that the waveform contains a variable
amplitude. This type waveform is said to be amplitude modulated there-

by giving rise to the noise heard.,
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CHAPTER VI

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

In order to compare the instability epvelope determined by solving
the set of equations in w (104) numerically to obtain the hypersurface
(Z) =Z(g, £, u,» L5 4y s) with the experimental results, it was
necessary to represent the surface (L) in three space. This was
accomplished by setting each of the parameters Lo’ Ll’ and f equal to
a constant. It was possible to set LO and Ll equal to a constant since
the gecometry of the experimental apparatus was not changed during the
set of experimental runs. It was possible to set f equal to & constant
since this was an inherent assumption in the derivafion of the momen-
tum equation (3). Making these simplifications; the surface (Z) is
given by

() = (u,, &5 s) (116)

The surface (L) given by Equation (116) was then solved for numeri-
cally over a range of u_, g, s, and the non-dimensional freguency w
which was comparable to that observed in simiiar physical systems and
comparable to that noted in the experimental portion of this investi-
gation. That portion of the surface (£) where steady state operation
is possible was then delineated by utilizing Equation (94) to give the
instability threshold surface. The results of the numerical solution

for the surface (S) where steady state operation is possible is shown

9z
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in Figures (L2 - hh),

It was determined that the best representation of the surface (T)
would be in the u -g plane with s as a parameter. The u -8 pl;ne is
called the "plane of operation" and is used to represent the surface (T)
since it is the most convenient representation to use during the opera-
tion of the experimental apparatus. In the two extreme cases, the
instability threshold can be approached a? a constant power level and a
varying entrance velocity or vice versa. In the first case, g would be &
constant while u  varied. In the second case, the power W can be elimi-
nated between the definitions for u_ and g to give
w®=cg . (117)

1
where ¢y is a constant.

Therefore, approaching the instability threshold at constant power,
W would be given on the operating plane by a vertical line parallel to
the u, axis. In the other extreme case, approaching the instability
threshold at a constant entrance velocity U, would be given on the
operating plane by a parabola given by Equation (117). This parabola
changes with the value of the entrance velocity U and approaches the
u,  axis as U  increases.

In the operation of the natural-circulation loop, the instability
threshold is approached along a path shown on the operating plane some-
where between these two limiting cases since the power W and entrance
velocity U  change simultaneously.. The approach to the instability
threshold would appear as shown in Figure (23).

The results of the simultaneous numerical solution of the equations
in w (104) are shown in Figures (25 - 37) as s varies from 0.0 to 10.0

3

for f and g as B rax varies from 10 ° to 3.5. The parameter M nax is given

by
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Constant Power

- Constant
- Entrance Velocity

Figure (23) Approach to the Instability Threshold
Shown on the Operating Plane

_w(s + k + 2)
max o (118)

n

and would become useful when utilized to present a constant frequency
representation of the threshold surface.

The value of f was then calculated for the range of parameters of
interest in this investigation and found to be 0.973. Utilizing this
value, these curves were transformed to a single representation of the

threshold surface shown on the operating plane in Figure (2L). This
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was accomplished by determining the value of g for the intersection of
the line given by f = 0.973 and the u_ = constent curves. This was
carried out for each value of the subcooling from 0.0 to 10.0 as shown
in Figure (24). Also shown on this figure are several instability
points taken during various random runs mede with Freon-12 and Freon-114
as the heat transfer fluid, In this figure, the stable region for a
constant subcooling s is above and to the left of that cqnstant sub-
cooling line while the unstable region is to the right and below the
line. The regions of stability and instability were in agreement with
experimental runs made in this investigation and can also be shown
analytically. The analytical study of this is made in Appendix X. It
should be noted from Figure (24) that the higher the subcooling, the
less area on the plane of operation which corresponds to the stability
region.

Figures (39 - 41) were obtained in the same manner as Figures (25 -
37) except that the frequency range for these solutions was lower than
that for Figures (25 - 37). It should also be noted that the non-
dimensional subcooling range is less (0.0 to 1.0). The results of
these figures are shown on the operating plene in Figure (38). This
shows that there are various "levels" of instability which can be
represented on the operating plane depending on the frequency. The
instability threshold represented in Figure (38) did not compare with
any experimental instability points found in this investigation. It
was not possible to reach u, values shown in Figure (38) in the natural-
circulation loop utilized in this investigation. -

A series of runs were made and the experimental instability points
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were determined for the natural-circulatior loop from experimental data
taken during constant pressure runs with Freon-114 as the heat transfer
fluid, These runs were convenient to make since the hydraulic accumu-
lator was utilized to maintain a constant pressure until the instability
point was reached. These experimental instability points are compared
to the threshold surface given by Equation (11€) by plotting u_ = u (g)
with s as a parameter for a constant pressure condition. Since the sub-
cooling ¢ varies during a constant pressure run, the analytical repre-
sentation of the threshold surface is given at discrete values of s for
which a numerical solution was obtained. This compsrison was made for
two suberitical pressures (310 and 400 psis) in Figures (45) and (46).
This comparison was also made for five supercritical pressures (480 to
575 psia) in Figures (47 - 51). Note that the 480 and 495 psia runs
are shown on the same Figure (47). This was necessary because of the
relatively few data points taken at these pressures and since the theo-
retical curves are nearly coincident at these pressures. It should be
noted from these figures that the agreement between experiment and
theory at the higher pressures (575 psia) is not as good as at the
lower pressures. This is due to the fact that the rerresentation of
the equation of state is not as accurzte at the higher pressures. Also
note that the agreement obtained Iocr subcritical and supercritical
pressures 1s gquite similar. Therefore, this model is aquite applicable
to critical and supercritical fiuids as long as the pressure is low
enough that the representation of the equation of state remains in
good accord with the model equation of‘state,

A series of runs were also made and the experimental instebility
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points were determined for the natural-circulation loop from experi-
mentel data taken during constant pressure runs with H20 as the heat
transfer fluid., The results obtained utilizing this fluid were
similar to those obtained utilizing Freon-1l4. A comparison of theo-
retical and experimental results for two subcritical pressures (1740
and 2215 psia) in Figures (52) and (53) shows good agreement.

Unfortunately, experimental‘data was not obtained for water at
supercritical pressures. However, this author can see no reason why
this data should not be in agreement with subcritical data just as the
Freon-11L data was.

Originally, it was planned to take experimental data for one other
fluid (cog). However, it was not possible to take this data since the
desired subcooling could not be attained in the nstural-circulation

loop without extensive modification.
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CHAPTER VII

CONCLUSIONS

The "density effect" model was utilized to predict pressure and

flow oscillations in & naturesl-circulation loop at both subcritical

and supercritical pressures. Three different fluids were successfully

utilized as the heat transfer fluid in the experimental apparatus.

The following conclusions were reached on the basis of this

investigation:

(1)

(2)

(3)

()

(5)

The density effect model will accurately predict the insta-
bility threshold of a natural-circulation loop.

Heater section wall temperature oscillations are not the
triggering mechanism for the pressure and flow oscillations
since these oscillations were observed without accompanying
fluctuations of heater section wall temperature.

The energy density meximum, (ph)méx, theory of Harden is of
great utility in determining experimentally the pressure
and flow oscillations in a natural-~-cireculation loop.

The frequencies of oscillation of the natursl~circuletion
loop are related to the natural freguency of the variocus
modes of vibration of the loop.

The density effect model applies to the critical region as

128
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well as to the subcritical thermodynamic region and gives

comparable results for the two regions.
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APPENDIX I
THE GENERAL MOMENTUM EQUATION

This equation is given by (28)

1+

_ r du . u 2]
Ap = ng StTrg et fu ] pdz (1-1)
o

and it will be utilized to calculate the pressure drop in each zone.

(1) Upstream Adiebatic Zone. This equation has already been

established in (72).
&uo >
bPy.a.s. = [Et— v+t ] 2 (1-2)

(2) Constant Density Heated Zone. For this zone, the set of

equations (43) are valid and

u = uo(%) p =1
rt (1-3)
A(t) = Jt-s uo(x)dx 0~ w

Applying these relations to the heated section where the density is

constant, i.e., from O to A(t), substitution of (I-3) into (I-1) gives

rl duo o
by p.g. = J, L& TE&* fuo] az
Integrating
duo 21 Px
= 5.-1:— + g + fU.OJ Jo dz
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and

VR
fo} 2
bey g5, = [EE_ te+fu ] A (T-4)

(3) Variable Density Heated Zone. For this zone, the set of

equations (55) are valid and

p =p(z,t) =1
(1-5)
u = uo(t) - A(t) + 2

Substituting (I-5) into (I-1) gives

du
_r [o ar 2
A(t

duo 2 2
{[F+uo+g+f‘u] [ +)\(l+2fuo)-f}\:l}
1 1 1

‘E\(t) pdz +{(l + 2fuo) - Zﬂ} j\(t) pzdz + f Jr;(t) pzadz

App 1.8,

The following quantities are defined:

rl
Jx(t) pdz = E(t)

Pl
IR (1-6)

- 224z = (%)
ey 17

Utilizing these definitions (I-6)

A % +u +g+f‘u2]§ [—+Al+2fu)-f)\2]§
Pp.y.g, dt 0 o

+ [1 + aqu] M - [m] N+ [f] ¢ (1-7)

(4) Downstream Adisbatic Zone. For this zone, the set of equations

(60) are valid and
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u=u - +1 o =p(z,t)

(1-8)
= o
Substituting (I-8) into (I-1) gives
A - [51+L1' Po_a, ., flu_ - A+ 1)2] a
Pp.a.s. T dt " et - paz
By defining
1+
A
J pdz = El(t) (1-9)

1

the following expression is obtained

d
Ap =[—ug+g+f(u +l)2]§ - d—>‘-+2f(u +l))\-ﬂ2]§
D.A.S. dt o) 1 dt (o} 1

(1-10)
Now by utilizing a steady state and a transient component of the
velocity uo(t)
uo(t) =u, + v(t) (67)
as was given in (67), the total pressure drop throughout the four

sections is obtained by adding (I-2), (I-4), (I-7), and (I-10).

Ap = %+g+f(um+v)2]{,o+ %;—r+g+f(um+v)2]k+[%%+um

dr

+v+g+f(u°°+v)2]§- E+h(l+2f{u@+v})-f’)\2]§+

[l+2f(uw+v):|'n-2f)\n+fg+[%¥+g+f(um+v+l)2:|§l

- [&enn(y, v ve1) - 87 g (1-11)

At steady state, v- 0 in the above equation and A — }\o, g - §o,

mn- T\O, [ Co, and §l-* '510' With these substitutions, the following
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expression results:
A =[:g4-f1.12]('£ +)\)+ru +g+fu21§ +[l+2f‘u]'ﬂ
Pes C e o} o l_m w | 5 ®] o

r o 3 2
g+ e+ £y, + 108 gy - [1 +ofy |AE + 155

- 2f)\o'ﬂo - Zf(um + 1) )\Oglo + ﬂo?'glo (1-12)
The pressure drops (I-11) and (I-12) are eguated to obtain
%%+ fv(2u + v)] (L, +2 +E +E,) +|:g+ fumgj A+ VE +|:u°° g+ fu‘nz]g
+ 2fvl) + [1 + 2f‘u¥]’n + ff + :2fv’§l + [g + f(um + 1)2] El - %)% (E + gl)
-2t - (1+ 2m) A8 + [ 2] A% - 20 - 2eag, - 2f(u, + 1) AE, +
RS N LI E N R S A E T N L -

:g + f(u + 1)2] 510.' [1 - zmm] AE, * [f] xozgo - [2f] A, -

:Zf(ua + 1)] MSi0 ¥ [f] "02510 (1-13)

By rearranging (I-13), the follcwing expression is obtained:

n+E,

dv
- - +
‘LO + A +§ -rgl

T at

= fv(2y + v) + + 2fv

v
L°+)\+§ ».«gl

§-8%, -1
(u, + &+ fu, )4, +>\+ng +(1+’fu)1; +x+g+g

¢-¢, | 8 -850 a 5t
L"+'x+g' +"§ *Lg+f(u+l)it+x+§+gl'ELO+)\'+"§'+§l
>"(§+§l) 2 )\-)\O N
-va{‘o+h+§+§1+(g+mm)Lo+>‘+§+§l-(l+2m°°)
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2 2
‘Xg.-)‘ogo 47 ME - AE, - g M- AT, )
L0+)\+§+§1 Lo+)\+§+§l éo+7x+§+§l

_ 2
)‘gl B )\oglo 5 A gl

2
. _)\oglo__
'&O+>\+§ +§1

Lo+)\+§+§l

(I-1h)



APPENZIX II
STEADY STATZ REGIME

(1) Expression For ko. Frem the set of eguations (43)

t

A(t) = Jr i (x)as (1I-1)
t~s

At steady ctate, u o= therefore, (II-1) gives
+

ho(t) = J[:: u_dx

and

XO = 18 (11-2)
This imposes an important condition on u  since (43) requires
A< 1
therefore, (II-2) imposes the condition

uws< 1l (11-3)

gince it is necessary that ko < 1. If this is not the casze, the density
will be constant throughout the heated section and an oscillaztory
solution is impossible as shown in Appendix V.

(2) Expression For go. From the definition (I-6)
r..'L
E(t) = J)\ pdz (II-4)
(t)

For the region between A(t) and 1, the set of eguations (55) are valid

136
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and

0= et -T)

together with
t
z(t,r) = )\('r)et-T + et Jr e * [uo(x) - ?\(x)] dx

T

For the steady state regime,

z(t,r) = e [um - )\o] ax

}
>
[4)]
+
(0]
C

it
>
(¢}
*

t
T (w - Yot [-e_x-‘
(o] @ o] . T

and
t-T
z(t,7) = u_ e -u A
Substizuting from (II-2)
z(t,t) = uw(et—'r + g - 1)

Taking into account the expressior. for p from (II-5),
L =1-8 + =
p w
From (II-4), the following expression is deduced,
r1.
€ ='A pdz

(¢]

therefore, from (II-2), (II-7), and (II-8) it is found that

rl
dz
g =
° Jusl-s*-z—
@ u
(-~
2 1
=uin(l - s +u—)
-] u s

and

(II-5)

(II-5)

(II-6)

(II-7)

(I1-8)
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This cxprescion can be simplified by letting

k=4inm
According to (II-3),
s < L
u
[--3
therefore, (II-10) shows
m>1
k>0

Finally, with the definitions (II-10), Equation (II-9) gives

§O = umk

(3) Expression For T]o. From the definitior of T (I-6),

o = J)\ pzdz

o
therefore, 1
zdz
n, = F
° 'J)\ l-s+ z
o u
Integrating
5 1
=u? .- - s+ X
My=u, |1-s+~-(1-s)4n(l-s+3 )]
[ © u,s

=u, [l -)\o - (1 - S){um{’n(l -8 +%1_)}]
and

M. o=y, [l*— }\0 - (1 - &) §O]

o
Solving for the expression given in Eguation (91),

M, - A8, =u(l-A_ -E)

(11-10)

(I1-11)

(TI-12)

(11-13)

(TT-14)
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girce N = U_S.
o

-]

(L) Expression For o+ From the definition of { (1-6),

1
2
£ = P pz dz
o]
Jko
therefore,
1 5
C = F z dz
° JK l-5s+ .
o] u
(=]

1 1

= ¥ u zdz + u (s - 1) X 2dz

JK JK l -5+ —
o]
[--]
and N 1 Fl
2
€O=§'Z -uco(l-s)bk—id_z_.z—
A l-5s+ —
o o) u

[--]

where the second integral is equal %o ﬂo as seen in section (3); there-

fore, . h 5

=y, {(—=) - (1 -5) nof (11-15)

Solving for the expression given in Equation (92),

(e}

2
€ - N N I T Xo(no - hogo)
Expanding the right side by substitution for QO from (II-15) gives

1-7\02
=, (2 - w0 - A (N - AE)

Substituting from (II-1k)
- [(

=uw[:%(1->\02-2}\o+2>\02)- o-xé)J

1- l
)-ﬂ]-%%ﬂ-ko-é)

o



142
Again by substituting from (II-14),

c (1-1,)°

0

-2 + xozgo =u [-——-2?——- - g, (1 -2 - go)]. (11-16)

(5) Expression For €0+ From the definition of §; (1-9),

$10 = | pdz

The density for this region can be found by substituting z = 1 into

(II-7) to give

l+£1 i
10 © T
1 l-S+u—
[--}
and
e 1
10 l-s+ i
u
[- -]
From (II-10) it can be seen that
Z
e -l
10 ™ m

(6) Steady State Criterion Calculations.

is given by Equation (93):

(I1-17)

(11-18)

The expression for Ap

u
Ap = g(l,o + ko + §o + glo) + ua(l - )\O) + f[_é: <l - }‘0)2

ru? @)+ (g +1-0)%8 ) (11-19)

Multiplying (II-10) by u_,

u, o+ 1 - xo = mu

(11-20)

Utilizing (II-18) and (II-20) in (II-19), the following expression is

obtained:
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2
= g(&o + xo + §O + §lo) +u (1 - xo) + fu_ (Lo + 1)

Y 2 2
+ L= (1 - xo) = f&lmum (11-21)
Differentiating
ax b§ o€ oA
8(ap) _ T + lo]%—u (- +=2) + (1 -1)
au Lau ub u © Bq” o)
aho 2, T
+({,O+l)2uwf-fu°°(l-7\o)a—%:+(l->\o)§
om_
+ 2fL 1M, + U f/(,l au (11-22)

The first derivatives appearing in (II-22) are calculated as follows:

from (II-2)
A =us
O =]
axo .
55 =S (11-23)

from (II-10)

1
So- ="~ 3 (11-24)

from (II-10) and (II-12)

and from (II-24)

3
s = k- g (11-25)
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From (II-18)

1
a%o=L a%)=& 3 ,__ 1
ou 190u, 10y, 11 - s + if
u@
1
-4, (- —=5)

1.2
(l-S+'l-l—)

[--]

and
aglO - Ll

au& (m%»)z

(11-26)

Substitution of the derivatives (II-23) through (II-26) into (II-22)

gives, after simplification,
4

d(ap) _ T 1 11
S5 - 8 Ls +k - =+ 5 | * (1 - 2%0) + 2fu
o ®  (mu)

=<}

[Lo + 1 + Ll(l - s)] + g (1 - xo)(l - 3ko) + f&l (11-27)



APPENDIX IIT
THE GENERAL EQUATION IN C

The equation in ¢ is the form taken by Equation (88),

dv

(LO + )N +E + §l) 3

+ f(&o +A +E + gl)(ZQn +v)v + (v - g%) g

- g% g, +2fv [n - A + §l(l - k)] +u (€ - §o) + (g + fqne)
r 1

(€ +\ - €, - A,) + (1 +2fy) [ - 2E - (no - E )|+ f

(6 -am+2%) - ¢, -an, 1% )] +[e+ 20y, + 17, -
- 2f(y, + 1)) - A E,0) + £ (0% -2 ) =0 (88)

when the transient component of the velocity is taken as v = V'oeCt

deduced from

ct
uo=u, +ve (71)

by neglecting second order terms.

It will be assumed that ¢ # 0, ¢ # 1, ¢ # 2 so that a general
equation can be developed. Otherwise some terms in the equation would
approach zero thereby giving a special case of the generai problem.

g% . From Equation (43)
rt
A(t) = Jt-s uo(x)dx

(1) Expressions For A and

145
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Substituting for uo(x) from Equation (71)

t
A(t) = j; [um + voecx] dx

-5

and

Adopting the notation

the following expression is obtained

ct
voe
A(t) =A = (1 - E)

Differentiating (III-2)

Q:veCt

dt o (1 - E's)

(2) Expression For €. By definition

r1
= a
€ Jh(t) pdz

p is a function of z and t and (55) gives
o = e-(t-'r)
t
z(t,7) = k('r)et"r £ et
T

5 e [uo(x) - }\(x)] ax

(ITI-1)

(I1I-2)

(I11-3)

(1-6)

(55)

Evaluating the integral in Equation (55) by substituting for u, from

Equation (71) and A from (III-2) gives
t

T

t
5 e X [uo(x) - )\(x)] ax = 5 e * [um + voecx - A
L



1h7

. v X -
S — (1-E)| &
5]
and
o y o
- - -X __©o _ (e-1)x
= ] (u, xo) e dx +v - < (1 ES) J e ax
T T
finally,
v, (1 - E )
-T _-t 2 h]
=u (1 - s)(e —11 _—f

{e(c-l)t ) e(c-l)T}

Substituting this into the expression for z (55)

CT

tT)-[x+ (1-8) )" +u (2 - (T - 1)

[l ) (1-E )] {e—t(l-c) ot T(1-e) e%}

After algebraic manipulation, the following is obtained

t-r ct Ese(l-C)(t-T)
z(t,7) = u (e +8 - 1) + v e [ TS +

1 Es B
c cfl-csj

(TII-4)
Now the desired expression p(z,t) could be obtained by elimination

of T between the expression for the density

o = o (tT) (55)

and (III-k),

However, this elimination would not give p explicitly because of
the different exponents. An approximate expression for p(z,t) can be
found by considering the following. Since the second member of the
right side of (III-4) is an infinitesimal of the first order, the

following expression can be written:
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-, s - 1)

z(t,7) ~ u (e
Solving for et-T,

et-T =1-38+ E— + first order terms

-]

Substituting for et-T in the second member of the right side of (III-U4)

gives
bt E 1-c
z(ty,r) =u (e +s-1)+ vy e° Li—s (1 -5+ j:)
1 Es
+35- Eri?ESJ + second order terms (111-5)

Discounting the second order terms in (III-5), et-T can be elimi-

nated between Equations (55) and (III-5) to obtain

1 z o8 s [ z e 1 Es 1
a=<a;-s+l>'—u;—[17cil-s+a;f * 2T 1o

Dividing both sides by (1 - s + 1"‘;—) and raising both sides to the -1

power gives

p(l-s+-z—-)={l-

(-~} «© <

HT_T

C
2
-8 4+ —
u

13

= OIH

'
Expanding the term in the 1 I brackets in a series and neglecting higher
order terms,

(1 - x)-l =1 +xX+ ...

therefore,
v et B -¢
Z 0 s Z
p(1 - s + 3 ) = 5 e (1 - s+ = ) o+

<« 0 «©



E
1l _ 5 .
¢ c(l-c)
zZ
l-s8+—
u
@©
whereby
v ¥ Bs_ 15
0 = 1 + 0 [ 1-c c__ c(i-c) ]
l1-s+=— Y% (L -5+ E—)l+c (1 -5+ E---)2
u u
[--] [ -] ©
(11I-6)
Upon knowing p(z,t), £ can be calculated. From (I-6)
r pdz = u Ln(l -5+ -—) + v ech [ (1L -5+ E—)-c -
gk - c(i-c) U,
-1 1
S AT T
¢ c(l-c u A(t)
Utilizing the series approximation that
Ln(l + x) » x
the following expression is obtained after simplification
-c -1
Em E
ct [ s .5 g;] )
§=§ +ve s temey e T e (ITI-7)
Utilizing the identity
.E_S_.l___-.(_l_js_)_l(m'l_l)
c em c c

gives the following expression for §

e _aly (1-E) Ll 1)] (111-8)

-E , -
_ et [7s (m
S=uk+ Vo® [l-c c c c

(3) Expression For . 1 is defined as

1
A pzdz ' (1-6)
h(t)
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Utilizing the expression developed for p(III-6), the integral becomes

B
rl v eCt rl = zdz
1= zdz + 0 [ 1l-c
J)\ 2z u, J)\ 1+c
(t) l - S + u— (t) (l -5 + L)
[- ) u
E -

1 1
" c cii-cd 2dz
(t) u (1-s+ —1‘2—)2

(-]

+

The first integral on the right side of the preceding equation

can be broken into two integrals:

1 1 1
zdz dz

7 A S (R S
Ay 1-ss 2 = dew " W1 S)Jm,)l-“g.

1
Z
=u, [z - uw(l -s)4n(l - s + ;1:)]
A(t)
The second integral is evaluated as
l-c
rl (1-s+ E—-) -c_ 1
d: 2 1l -
J)\ zzz l+c=u=>[ l-c‘=° * cs<l-s+ﬁ_)_]
(¢) (1-s+=) ® A(t)
-]
The third integral is evaluated as
1 1
r - 1
J[;\ zdz zz=um2|_4t,n(l-s+-lzl—)+-----——--—l sz
(¢) (L -s+=) ® 1-8+>
Y% ® At)

Limiting the evaluation of the integrals to the first order terms,
simplification and addition of the three integrals above give, according
to (I-6):

ct
n = 'ﬂo + voe u,

Em Esm-c (1 - s) Esm-l (1 - s)
[ 2 c(1l-c) h c(1-c)



Esk + E 5 1 k + 1 _l(l ) 1 ’
" c(1-c) s le ~ (l_c)ZI M R B
(111-9)
(III-9) can be written in a slightly different form so that
E l-c -c -1
N ct s m -1, (L-8)m -m7) 1;}
n= no Ve % LT 1T * c
s(1 -E) . .
s 1 -1 1
-t Skt (1L -5s)m ™ - 1); ] (111-10)

(4) Expression For N - AE. This is the expression that appears

in Equation (88) and N does not appear directly. Therefore, this

expression will be evaluated utilizing those individual terms found
above., From (III-2) and (III-7):

v eCt (-E m ¢
s

A = [)‘o * oc (2 - Es)] [go + voeCt = *

E ot E
s

S
e(1l-c) e T

Jeglecting second order terms

ct k(L -E) sEm sE m
AE = '
s logo TV % c e(l-c) = e(l-e)
sE
S _ 5
c cm

N -2AE = 'ﬂo - )\050 *ve [(1-c)2 + )

E m-l E k E (m-1)"
z S .8 AR/ (III-11)

T e(Te) T 1-e (l_c)e cm
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This expression can be rearranged to give a slightly different form,

-1 m¢.-nmt
N -2AE = ﬂo “AE * v et [l - l- + S
. k(1L -E)
Ry st L1 -1 ]
. . * 3 (k +m~ - 1) (I11-12)
(5) Expression For {. { is defined by
1
C(t) = ji 0224z (1-6)
(t)
Utilizing the expression for p (III-6)
1 ct 1
z2dz Mo rEs K zzdz

¢® - ‘k(t) 1-s+ é— " LT-c Jk(t) (1-s+ é—)l+c

1
z2dz

E
B 2
oY de) (1 -5+ 2

(ITI-13)

The first integral in (III-13) can be simplified.

zgdz 24z

—_—— zdz - u, l -5 ———
J)\(t)l-s+u— ‘X\(t) ( )‘Jx(t)l-s+—

The second integral above has already been determined in the process
of deriving the expression for N - A (III-11).

Therefore, the first integral in (III-13) gives

2
= Y% [%? - (1 - 8)2 q,e -(1-s)yz+ q»z(l - s)2Ln(1 -5+ 5_)]

A(t)

and the second integral in (III-13) gives

1
2d 3 1 2-c 2(1 -
i(t) (1 - : +z.z_)l+c = Y% ['.—c (L -s+ 3:) SEps ) s)
u

[ -]
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l-c 2 -Cq 1
(1-s+2y -8 .2y
u c w
A(t)
The third integral in (III-13) gives
1l .
2
z dzz 5 = qb3 r(l -5+ %—) -2(1-5s)4n(1 - s + é—
(1 - s+ =) - ® ®
A(t) u
1
(1-9)° 7
1-s+2-
um
A(t)

Again, by eliminating second order terms in the evaluation of the limits,

€ is found to be

C-C +vety Bl rnf™C .1 2(1 - s)(m' ¢ - 1)
“ P o ® |Ll-c 2-c l1-c¢
S0-0® @ o why | Bt roen - o Bl el
c J l-c c J c(l - ¢)
2
(1 -E)us .
s’ 1r 2 -1 1
- St ys -2kl -s) - (1-8)" u(mT - 1)) |

(III-1L)

2
(6) Expression For { - 2\ + \E. ( does not appear directly in

Equation (88), but the expression above does. Therefore, 2\T and
ng are calculated utilizing Equations (II-2), (II-12), (II-13), (III-2),

(III-7), and (III-9).

ct 1l-c
f Mo , [ ct {Esm
-2\ = -2 o+ 5 (1 - Es)f ﬂo ey, 5
(1-c)
(1-s)Em® (1-s)Em’ Exk
‘ s s s

+

c(1-c) - c(l-c) T e(1-¢) *
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+ ES(§ - EE%ASE ) + % (k - 1+ (1 - s)mfl)} ]
~-C

After simplification

Eu l-c
_ ct s ® {-2s(m -1)
AT = 'ao’no TV Y% [T-e 1-c B

2s(1 - s)(x::'c - . 28 k} 12“ K(1-58)-2+

2 1 -
2u°°s +2us” o+ E«L-Quask - 2u°s(l - s)(m 1. l)} -!

(II1-15)
The expression for ng is given by
ct 2 -c
2 _{ Voe ‘ { Ct ['Esm
A€ = )\o+ S (l-Es)} §o+voe 6Ol +
Em?’ E
N 3
c(l-c c ecm
After simplification
Eu 32 c 1l l-E
e _ 4 2 ct 5w [m' -m':l s
ng-ko §°+voe Y 1l-c c * ¢
[ays - ws®] + 20 @™ - )] } (111-16)

By adding (III-14), (III-15), and (III-16), it is found that
Esum m2-c -1

2 2 ct
Q-2)\T|+)\§_Co-2)\oﬂo+)\ogo+voe Y% 1Te 5o
_2@C 1) @ -ahy 2] B (L0,
l-c c c 1l-c c

oF 5
—=£ (1 - w5 - wk) - %l:l -us + um(m-l - l)]}
(III-17)
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By combining two terms, (III-17) becomes

et (Bl rn?C . 1

3% - 2
C-am A% =g - A e x vy {22 [ B

- 2(m1-c -1) (€ - m
l-c c

-l)] 2Esq”k ES 1- u s

1-¢  1-c ( c )

2E

+ 'TS' (L-us) - %[1 -us + um(m'l - 1)] } (I11-18)
(7) Expression For €, 51 is defined by
Fl+&l
§,(t) = J pdz (1-9)
1

As in section (2) above, it is necessary to express p as p(z,t).

The expression for p in this zone can be found by putting z = 1 and

t=t, in (III-6), hence
v ectl Es 1 - Es
o = 1 .0 [ 1-c L c(1l-¢)
L-s+2 W L g lylve (g 41,2
u@ -] uw

and from the definition of m,

cty
v e E E
_1 0 [ s =(1l+c) ‘{l _ s } -2 ]

P=gt u T-c ™ HR Y ey B (II1-19)

For this region, the set of equations (60) are valid and

t
z(t,7) = 1 + j;l [uo(x) - A(x) + l] dx (60)
Integrating
£ ' t v X t
z(t,tl) =1+ j; [Wm + vbec%] dx - jl [ko + oc (1 - ES)] dx +j; dx

1 1 1
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Evaluating this integral

VOGCt (l - E ) -C(t-t )
2(t,6)) = 1+ (u, - A+ 1)(e-t) + 2—[1 - ] [1 - eo(t%)]

(I11-20)
By neglecting the higher order terms, (III-20) can be approximated by

z(t,tl) ~1 + (um - }‘o + 1)(t-tl)

Utilizing this epproximation, t. can be evaluated as

1
b= 4 - 2-1) (TTI-21)
1 my

Substituting (III-21) into (III-19) eliminates t, and gives p = p(z,t).

v

ct
€ {_Ei_ m—(l+c) +[l _ Es ]
l-c c 'cil-'c'i

o
u@
_c(z-1)

-2 mum :
m } e (11I-22)

p(Z,t) = :—L' +
m

This expression for p will now allow the calculation of §1.

Substituting (III-22) into (I-9),

f’l%l az voect Es -(1+e) 1 Es -
5. = J m o {ETE " ¥ [E i c(l-cS] " ?}
14, - c(z-1)
1l ma
J e dz
1

Making a variable change by letting
X =2 -1

the second integral above becomes



e
m, U
= =11 « ¢ i
c . |
Introducing the notation
£
yE..l'._
my,
and
E = %

by analogy with the definition of Es.'

With this notetion it is found that

ct
v,

81 =510 *

(8) Expression For xgl.

and the expression for §l (ITI-24),

ct

Utilizing the expression for

v e ct
o
LX + - B )f {510 c
-1
- Esm 1 r-l E :
c(i-c)J L™ I
Simplifying
ct
v e (L-EW
o) r s’71
xgl-xoglo+ = | — +(1-E)us1
-1

Esm 1

-9
" e(i-o) F )

(9) Expression For ngl.

are utilized to obtain (neglecting second order terms)

2u ot

Il t—— s Ve (1 - Es)j {glo +

(III-23)

E E
{1 -c o+ [% - gziégy m j (1-E) (III-24)

A (III-2)

(11I-25)

The equations found in section (8) above
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Em

[ls- s * (% - cEi-c ) m-l] (1 - Eyi}

simplifying
ct
ve u 28t (1-E)
o 2. Yt % [ 1 s i 2
A §l = lo glO + S o + (1 Ey) u_ s
Esm'c Esm'l 1
{ 1-¢  c(l-¢) * cé} ] (T11-26)

(10) Linearization of the Equation in C. The expressions have

now been obtained for all terms in the equation in c (88). Note that
all these terms contain vbeCt, thereby allowing us to divide through by
this factor.

Before continuing on to the equation in ¢, it is convenient to
introduce some new notation. The following is defined:

Mb = &o * xo * go * glO

MIQw = no - xogo * glO(l - ko)

MévbeCt =65 - Ed
v e =g 4 h - (g, + )
M v et =M oA - (0 -4 E) (111-27)
M5W»VbeCt =7 -2\ + ng - <Co - 2xono + Aozgo)
Mgv,e®’ = 81 - 8
qnvbect = xgl - koglo
Mg%,vbGCt = ngi _ X02§lo

Now writing Equation (88) in the form

Aq”f + Bg +C=0
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gives

~

vl +h+§ B )(2u, +v) + 2v{ﬂ - \§ + §l(l-X); + qbz(g +A -8 -1)

+ 211@{71 -8 - (Mg - A+ {(C’ - 20 +2%) - (€g- AN, * }\0250)3
5 2 2
(g, + 1)7 (8 - Byp) - 20y, + DJ(ABy - X 810) +ATE) - A TRy I F

) a
P16 -8 ) (Brh -8 -a )]+ (& +A+E+E)

By g-Be +u(E-8)+(N-26-( -1E) | =0

(I1I-28)

+ (v -

Equation (III-28) can now be linearized by neglecting terms of the
second order. In order to do this, the following relationships which

were developed earlier are utilized:

ct
v=ve
o
av ct
EE = voce
v et (I1I-29)
A=A+ =2 (L -E)
o c s
d\ ct
;T = Ve (1 - Es)

The following terms are non-linear in (III-28) and must be
linearized utilizing the equations (III-29):

(i) Coefficients of f.

» m
v(&o +A +E + gl)(zqn + V) +2v Lﬂ - \E + §l(l - x)j
After linearization this expression becomes

VoeCt [('{’o + XO + gO + g:I_O) aum +e {T'O - }‘ogo + glO(l - ko)} .‘.lJ
(III-30)
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(ii) Constant Coefficients.

dv ~ d\ d\
E(&o+)‘+§+§l)+(v‘ﬁ)§'d_t§l

After linearization this expression becomes
ct
Vo [({’o Fhot 8, * §10) &+ EE, + glo) - g10] (T11-31)
Substitution of the linearized equations (III-30) and (III-31) into the
equation in ¢ (III-28) gives the linearized equation in ¢ in the

following form:

ct ct . 2
[voe (JLO + 7\0 + go + §lo) 2u + 2voe {T]O - xogo + §lo(1 - Ao)} + U

(8 +n -8 -2 +agf{n-ag - -r g} +{(c-2n+2%) -
(CO = 2)\0710 + )"oggo)} + (uw + 1)2 (gl - glo) - 2(ua + l)(kgl - Aoglo):] f+
[(gl - §lo) + (€ +\ - §° - )\0)1 g + [voeCt(Lo + ko + go + glo) e+

VoeCt {Es(go * g'10) - glo} * uw(g - 50) * {T\ -\ - (no - }‘ogo)} ] =0
(II1-32)

Utilizing the notation defined in (III-27), the linearized equation

(III-32) becomes, after dividing by voeCt:

[ZMO% + 2M1u°° + usz3 + 21;1(“,2M,+ + ust + (um + 1)‘2 M6 - 2(uﬂ° + l)uany

+ ucoM8] T+ [M6 + M3] g + [Moc + Es(go + glo) - §lo UM,

+ qu;] =0 (I1I-33)
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Rearranging (III-33), the following is obtained:

(u, +1)?
I:M3+M6] g+[2MO+2M1+umM3+2umMu+M5+—-—ﬁ—-—-M6

- z(qn + 1) M7 + MB] u f o+ [Msc + Es(§o + glo) - glo

+ %»MZ + gth ] =0 (III-34)

(11) Expressions For The M. The M; have been defined in (III-27)

in terms of parameters which have been calculated in this Appendix.
Therefore, equations from this Appendix and Appendix II will be utilized
to calculate the expressions for the Mi’

A)
MO=LO+)\O+§O+§10

Substituting for XO, §O, and §

10°
Ll
Mo = LO +us+uk+ = (111-35)
B)
=17 !
M=t Mo = ASs +810(t - 2,

Utilizing (II-14)

M o= 1-us-uk+ (l-ys) = (111-36)
@
c)
ct _
M2v e =E - §O
Utilizing (III-7) e
“Egm B m m
M=y te Gt - (111-37)

D)

M3voeCt =ZE + A\ - (§o + XO)

Substituting for €& and A from (III-7) and (III-2),
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-Esm'c Esm'l @l - 1)
M3 Y (o) MY Gy M c (T11-38)
E)
t
Muuwvoec =1 - AE - (T\o - )‘ogo)
Utilizing (III-11)
-C
Em E -1 -1
s B LLy_ s om” 1y,m -1
My, = 33 (l-c + c) 1-c ( s Tk l-c) * ¢ (T1I-39)
F)
et 2 2
Mgu,vee " =€ - 2N +A7E - (¢ - AN +AE )
Utilizing (III-18)
Em E
M - S e m®  om I , 5w {-1
5 l-c izc 1-¢c o-c -
-1 : E (1 - us) 1 1 .
PEmvag s St (- 20) - 21 g e - 1))
(ITI-40)
G)
ct
MoVl 51 - 510
Utilizing (III-24)
EEm® EEmT Emc EmT
M = S Y + §
6 c(1-c) c2(l-'c) c(l c) c2(l-c)
E m-l !
-+ (III-b1)
c (o]
H)
ct _
UV = A8 - A B,
Utilizing (III-25)
EEmS EEms
- _SY¥ + 5 {
M7 c(l-c) ca(l_c) c(l c) m,
E m l =1 i

c(l-c7} * o2 +cmu.‘=° (111-h2)
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I) et - .2 4 8
M8qmvbe = A §l ko glO
Utilizing (III-26)

EEmCys® EE — £ E n~%u s°
Sy @ Sy © s ©

Mg = + +
8 c(l-e) cg(l-c) c(l-c)
E _20.s mius . Emntus® mlus® as
- —5-{ 1, ——t - s > .1
c m c(1l-c) } c2 c2 cm

(III-43)

In these Mi groupings ¢ appears in four different ways: through

¢, B, E, and m C.

In calculating the coefficients of the equation in c, the coeffi-

cients will be grougped in relagtion to E E m-c, EE , E m-c, E , and E_.
sy sy s s ¥

(12) Coefficient of g in the Equation in ¢. Utilizing (III-34)

and introducing the notation

Bl = M3 + M6 (ITI-kk)

Adding (III-38) and (III-L41)

-EsEym'c EsEym'l Esm'l Eym-l L 1 :
B. = + - - = — ITI-L45)
1 C(l'“C) c2(1_c) C2 c2 C mc2

(13) Coefficient of f in the Equation in ¢. The coefficient of f

is much more complicated than the coefficient of g; therefore, use is
made of the grouping mentioned above. Utilizing (III-34) and the nota-

tion above, B, becomes

2
M, .
B, = a(Mb + Ml) + sz3 + 20 M + M5 + (qn + 1)2 ﬁf - 2(u, + 1) M7 + Mg

(III-46)

. -c -c .
(A) Terms in EsEym . The term ESEym appears in M, M7, and Mg

as



-‘EGEym"c Ay, + 1)2 5
— - 2(u .
Sy | 0 2(y, + 1)s + us i

Simplifying, this term becomeg
EEm -¢
-y, oy (II1-47)

(B) Terms in EsEy' This term is calculuted as in (A),

(u +
[

c (l-c) ®

EE m )2

- 2
-2(u, +1) +us ]

This coefficient is identical to that calculated in (A); therefore,

this term becomes

E E
my_ —;—Y—-— (1II-48)
¢ (1-c)
(C) Terms in Em °. This term is included in M, through Mg.
-C
Em -u 2
8 © m 1 m 2m 1l
[ (B ru G -2 LY
(w +1)°
A e
cu
[--]

The term in the { } brackets is the same term as above except for
the factor %; therefore, this term becomes
" _=C
2 Esm

2n c(1-c)(2-¢c) (III-49)

(D) Terms in E,. This term is included in M through Mg

3
E by ou m b 2u u 2u
] { -2 _ -] - 2u k - - -] _ -] + -3
l-c c c ® 1l-c 2-c l-c
. . B} -1 2
U m Es(l - u s)(1 - 2c) E_m (u, + 1)
+ + Bqng} + I EE) -5 { 5
c“(1-¢) ®
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2(u +1)Ll 2&151

- 2(u, +l)s+us2}+—-—[ - —
m

Agein noting the second term in the { } brackets has already been

evaluated, the following expression is obteined:

muw] \ E(1-us) 2LE

1 s
[_-_+ 1-us+ = +— (III-50)

(E) Terms in Ey. These terms are included in M6, M7, and M8

-E 1
2 {(u i ) - 2(u, + 1)s + uasz}

As before, this term reduces to

E

- my, % (II1-51)
c

(F) Terms in % These terms are included in M3 through M8.
-1 (u, + 1)?
-@—-E-:-—l (-u, +2u -u) -%(l u_s) +E§-{-———u———-
c ®
2L
-2(u +1)s + uesz} - = (u, +1 - us)
This term reduces to
1 mu, 2&1

ry (l - ums) + 5 e (III'SQ)

c

(@) Terms Independent of ¢c. These terms occur in M, and M,.

&l Ll
2M°+2Ml=2({«°+u“s+uwk+m—) +2{l -8 -uk+ (l-uas)E
This term reduces to

2(4, + 1+ Ll) (III-53)

Adding Equations (III~-47) through (III-53) gives
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EEm° EE Esm‘c

_ 2 s sy 2
By = - mu, c(1-¢) o, ce(l-c) tay, c(1-c)(2-¢)

E u mi. E(1-us)
- s {i-+l-us+ 2 =2 —
(1-c) l2<¢ ® c2J c

E mu P
_1s_ J.31 . .1
S m, c2 5 (1 ums) +c2 =+

+2(0 41 +4) (I1I-54)

(14) Constant Coefficient. Utilizing (III-34) and the notation

B3 = Moc * Es(go + glo) - g10 * quz * ucth (111-55)
From (II-12) and (II-18)
Y
So B0 %k Ty

Utilizing Equations (III-35), (III-37), (III-39), (III-27), and the

above equation

Ll Ll Ll
B3 = (LO +us+uk+ -m—) + Es(uwk + rT) - =
-Em"° -1 -1 Em®

I s s (m
ol T Tt eI

E -1 -1
m 1 s (m 1 mo -1
T e e ey =
This expression reduces to
-C
Esm u,  uke u Ll-,
B=mu—-——-+E[—-- - o
3 @ (1_0)2 sLe 1l-c (1-0)2 m .
{'1 u Ll
+ (LO tus+uk+ m—)c - (I11-56) -

Therefore, the coefficients of the equation in ¢ as given in
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' Equation (98) have been determined,

B,g + Byfu, + By =0 (98)

in Equations (III-45), (III-54), and (III-56) respectively.



APPENDIX IV
THE GENERAL EQUATIONS IN w

The system of equations in w of the surface (Z) is the system
deduced from the equation in c (98)

B.g+ B

4 ﬁ1°°+B =0 (98)

2 3
when ¢ is taken as
c = iw
end when the real and the pure imaginary terms are separated.
The following definitions are made:
Bl(iw) =a + ibl

B2(1m) =a, + ib2 (IV-1)

B3(im) = 8g + ib3

Assuming w # 0, two equations occur as a result of the separation
of the real and the imaginary parts, i.e.,

a,8 + aquf + a3 =0
(1v-2)
blg + beq”f + b3 =0

(1) Preliminary Calculations. From the equations (II-10)

k=4nnm

therefore,



since ¢ = iw

also

169

n ¢ = Wk cos(wk) - i sin(wk)
E = e % = ™% - cos(ws) - i sin(ws)
E = e %W - ™ - cos(uy) - i sin(wy)

wk = K
wy =Y
ws = S

With this notation the following calculations are made:

ESEym.'c = e'l(K*S+Y) =cos{K+ S8 +7Y)-1isin(K+ 8 +7Y)
EsEy = e-l(s+Y) = cos(S + Y) - i sin(S + Y)
Esm-c = e'l(K+S) = cos(K + 8) - i sin(X + 8)
-is . . .
ES =e = cos(8) - i sin(8)
-iY . .
Ey =e = cos(Y) - i sin(Y)
also

1__1

c W

P

2 " 2

c w

1 - 1+ iw

e 54 w2

2
1 (1 -w%) +2iw

(l-c)2 (1 + w2)2

12+ iw

2-c 2

(Iv-3)

(Tv-4)
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1 - 1. _ i
c(1-¢) 1+ 02 w(l + u)2) .
R S
c2(l-c) w2(1 + wz) w(l + w2)

(1V-5)

2 -l 3

l ——
(1-c)(2-c) = (1 + we)(h + wz) i (1 + w2)(h +w2)

} 3 L i(® - 2)
c{1-c){2-c) (1 + wg)(h + w2) w(l + wa)(h + %)

A1l of the complex terms of B, B,, and B, are given in (IV-4) and

12 3
(IV-5). Therefore, it is possible to write the equation in ¢ in terms
of the equation inw.

(2) Expression for B,. B, is given by (III-kL5)

1 1
EEmC¢ EEml Eml Eml
5y sy s Yy 1l  1l-c
B, = + - - + =+ (ITI-L5)
1 c(l-c) c2(l-c) c2 c2 ¢ mcé

Utilizing (IV-4) and (IV-5)

r 9
=L-cos(K+S+Y)+isin(K+S+Y)_]r L 5 - iT]
F1 o+ 0 w(l + w%)

+cosLS+Y\-181n(§+Y)[ i _!+
n 2 (1 +w ) w(l +w )
cos(8) + cos (Y) - i(sin S +sin¥) 1 -iw i (IV-6)
2 2 W
m m

Separating the real and imaginary parts of (IV-6) and recalling (IV-2),

sin(K + 8 + Y)7 _ 1
w nwz(l + w2)

a [cos(K+ S +Y) -
1 l+w2

[cos(s +Y) +w sin(S + Y)] + cos(S) + SOS(Y) -1 (TVv-7)

my
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A
b =__}___.[cos(K+S+Y) + W sin(K+S+Y)J -

1 w(l + w2)

1
mo(1 +w2)

sin(8 + Y)] _ sin(s) + sin(Y) L1 (l

w i

[cos(S +Y) - 5 = (=

mo
(1v-8)

(3) Expression for B,. B, is given by (ITI-54)

5 EsE m ¢ EsE B 5 Esm-c
B. = -mu + mu —L+2mu

¢?(1-c) © cil-cii2-c§

2~ ® c(l-c o 2

_E?._ ui+l_ +mum +Es(l—uas)+ZLlEs
l-c (2-¢ Yo c2J c c

mumEy 1 mu,_ 2&1
5~ - 3 (1 - u s) + c—e- -+ 2(18,0 +1 +Ll) (III-54)

Utilizing (IV-4) and (IV-5)

s 1 i }
=m2um L-cos(K+S+Y)+isin(K+S+Y)'_9 = - =

B '
-1+ w2 w(l + wz)']

2

+ mu [cos(s +Y) - i sin(S + Y)] [ 2(;1 2) ) - i 2)]
w +w w(l +w

2, [ o 3 i® - 2)
2m K - K S
+2n"u, | cos(K + 8) - i sin(K + )] [(l 0 (k + 0d) ¥ o1 + o) (h + wz)]

(2 - (Dz)ueo N 31wl

 aifa) ]
+[ cos(8) + 1 Sln(S)J [(l + wz)(’-t + w2) (1+ 11)2)(’4 + ‘”2)

+

(1 - uys)(1+ iw) my,, imy (1 - u s + 2&1)1 ]

5 +

1+w w2(1 + m2) w(l + w2) w

mu o (1-us+20)i m
® [ .. l © 1 )
+.;§— .:. cos(Y) - i s1n(Y)J + m . = + 2({,o +1 + {,l)

(1v-9)
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Separating the real and imaginary parts of (IV-9) and recalling (IV-2),

2
nu ./ my
8, = - °°2 [cos(K +8+7Y) - sin(K +wS hi Y)] -3 2 5 [cos( S +7Y) +
(L+0%) w (1) '
1 2m2um r w2-2 -
w sin(S+Y)J +—s—p=!3 cos(K + 8) + m sin(K + 8):
(1+0%) (4+w) © -
2
~(2-w%)u _ my Iy w(l - us)
_cosés)l_ 2°°+1-ums-—2—°°-]-sin(s){- 2°° 5+ 2°°
1+ bw (140°) (b0%) 14w
mu_ 1- us + 28 7,
- + , - [l-cos(Y)]+2(& +1+4.)
(1) m 12 o 1
(1Iv-10)
mzuw r my_
b, =—-—2—Lcos(K+ S+Y)+w sin{K + S + Y)] -—-é—[cos(s +Y) -
w (1) w(1+w")
2
. 2m u 2
s1n(us) + Y)] + 5 d 5 [ww-z cos(K + 8) - 3 sin(K + S)] - cos(8)
(L4w7) (44w )
3y w(l - us) mu l1-us+ 24 . ~
[ s+ - = ﬂ *SHK?
(1+0°) (4+w°) 1+ w(1+w ") 1+
(2-(1)2)11& , mu,, my_ 1-us+20,
[—l:ﬂ—ne——+l-ums—;—2——]-;2—sm('r)+ m
: (Iv-11)
(4) Expression for 133. From (III-56)
-c
Em u u ke u £
By =my, —— +% [J: -1 - 5 * E}]
‘ (1-e)= 5% 7% (1)
£ u, &1
+ (&o tus +uk+ 5—)c - T (I11-56)

Utilizing (IV-4) and (IV-5),
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1-w2 + 21(.0

( = | + rcos(S) - i s1n(S)-]
l+w

B, = muy_ Lcos(K +8) - i sin(K + S)t

Pl G lwi(l +iw) oy (1 - o? ¥ 21) 4
! - - +—=1+ {4 +us
mdJ o] S

- 1+0° (l+w2)2
L u i {'l
+uk+—)1w+T-a—- (1v-12)

Separating the real and imaginary parts of (IV-12) and recalling (IV-2)

e u, kll)2
a3 = ————-2 5 L(l -W )cos(K + 8) + 2 sin(K + s)-| + cos(8) r 5
(1 +o 1+ w
‘ 2
u (1 ) u_law 2u L
_—_-____+——]-s1n(S)[—+ 5+ 2;]_51_
(1+w ) + W (1 + %)
(1v-13)
mu a o
b3 = - °2.§ ran cos(K + 8) - (1 - w2) sin(K + s)] - cos(s) [ﬁ? L e ,
(1 +0%) - 1+
u® umkm2 w (1 - 0?) )
+ x-sin(S)[ - s 2l (4 +us+uk
(1 + w2)2_| 1 +° (1 + w2)2 m J 0 ©
2 u
1 ©
rRlety (1V-14)

Therefore, with these calculations the equation in ¢ has been
replaced by the set of equations in w (IV-2) with the defining
relations (IV-7) and (IV-8), (IV-10) and (IV-11), plus (IV-13) and

(IV-14).



AFPENITX

CONSTANT IENIT™ #lw

For constant density flow, <ne . .=t . n..
(16) for @ - =,
Hence,
a:’. i
E 3
Therefore, U is a function of T oniy.
Applying the momentum equation .~

exit

g
1
]

1

AP = re.
entrance

and
au I
sper[Feo s

This equation can be written in the fore

9’.U_ :Y‘QP
at = - % °
where a and b are positive constants.
By putting
U-L."‘t
o]
where

Uo = steady state velucity

17«

- 3.
51-
= - e b -

P

[ 1
oy



APPENDIX V
CONSTANT DENSITY FLOW

For constant density flow, the continuity equation is given by
(16) for @ - =,
Hence,
QU

3z =0

Therefore, U is a function of T only.
U =Uu(T)

Applying the momentum equation (17),

exit
oU FU
AP=J ﬁ+G+§D_ Rodz
entrance
and
du FU
AP=RO Tt 6+ (L0+Lc+Ll) (v-1)

This equation can be written in the form

au 2
FF=-8U +b (v-2)

where a and b are positive constants.

By putting
U=U +V (v-3)
whére

Uo = steady state velocity

17k
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V = transient component of velocity
then
av

2
T an +b - a(2U° + V)V = - a(2U° + V)V (v-4)

Teking an initial perturbation such that

| v(o) < u,

since the right hand member of (V-4) is of opposite sign to V, this
equation gives
av

V<0 (v-5)

which says

a(v2
<o (v-6)

This says that V can only decrease in absolute value, therefore,
the flow becomes stable in the sense that stability has been defined

earlier in this investigation.



APPENDIX VI

UNDAMPED NATURAL FREQUENCIES OF THE LOOP

In order to determine what vibrating frequencies are important

Vapor

AAANNAANSN NN NDS

Figure (54) Loop Idealized as a U-Tube Manometer

in the operation of a natural-circulation loop, it is necessary to
investigate the various modes of vibration that can occur and to
compare these calculated natural frequencies with those found experi-

mentally.
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Since the loop is operated in a thermodynamic region where the
density of the fluid in the portion of the loop from the heater section
to the heat exchanger is mucﬁ greater than the density of the fluid in
the rest of the loop, the loop can be treated as a vertical U-tube
manometer and the natural frequency of the manometer can be calculated.
This will give, as a first approximation, the longitudinal natural
frequency of the loop considering the loop fluid to be a solid body.

If, referring to Figure (54), the liquid is displaced a distance
x from equilibrium, the potential energy of the system is changed
(assuming no mixing of the liquid and the vapor) as follows:

(ppAx)ex  (p Ax)ex

(VI-l).

P.E. =
&e &c
The kinetic energy of the system is given by
2
1 L TP ax
K.E. = 2, =] &5 (vI-2)
where
p; = Liquid density, lbm/ft3
p, = Vapor density, lbm/ft3
A = Cross-sectional area of loop, ft2
4 = One-half loop circumference, ft

In a conservative field,

P.E. + K.E. = Constant

Hence,
d
E(P.E. +K.E.) =0
Therefore, .
2 P 2
d Max"g 1 'L 7Py ax ]
dt L g (pL B pv) teg \T 2 AL(dt) ; =0
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Differentiating and simplifying,

d2x+g§(pL_pv)x=
a2 v (o +p)

0 (VI-3)

From the solution of (VI-3), it is found that the natural frequency is

2g(py - p)
Oy = ‘ {.ZpL + pv5

and
2g(p, - 0.)
1 L v
n an ' pL + pV
Ifpy > > 0,

1 2
=5 ‘V'Ig (VI-5)

Utilizing (VI-5), the natural frequency assuming P> >0, 1s

£ = 0.276 cps

Another mode of vibration would be the radial mode in a pressurized
pipe as shown in Figure (55) . The natural frequency for this mode is

given by

w_ = g | (VI-6)

Figure (55) Radial Mode of Vibration
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Now
K=§
and
8 =
Reh
R
=z (ch - vo )
- B (PR _, BR
=5 & -V
2
PR (.Y
6 Et (1 2
Therefore,
K = g - ZHSELEt
v
pr (1- §)
K..2"EtLV
R(1- 5)
and
m=2nRth
€.

Substituting (VI-7) and (VI-8) into (VI-6) gives

Egc

"o =/\1 BY(1- 3)

and
f =
n
where
Y = Density, lbm/ft3
p = Pressure, psi
R = Pipe radius, in.

(VI-7)

(vI-8)

(vI-9)

(vI-10)



180

E = Young's modulus, psi
v = Poisson's ratio

oy = Hoop stress

o, Axial stress

Utilizing the properties of the loop, the radial natural frequency
is found to be

£ = 21,500 cps

In order to investigate bending vibrations, the two limiting cases
of hinged ends and fixed ends are considered.

For hinged ends, it is foundh

BL =1 (VI-11)
where 1
B = [%— i (vI-12)
p = Specific weight, %
A = Material cross-section, in?
I = Moment of inertia, %E (Do,+ - ﬁiu)
L = One-half total length, in.

E

Young's modulus, psi

Utilizing the formulas (VI-11) and (VI-12) and the material

properties,
fn = 0.457 cps
Now for fixed ends,
8 - hf,73 (VI-13)

Utilizing (VI-12) and (VI-13) and the material properties, it is

found that
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£ = 0.0722 cps

The circulation loop would fall soméwhere between these two
limiting cases. Therefore, the natural frequency for the bending
mode is

0.0722< f < 0.457 cps

The next mode to consider is the longitudinal vibration of the
loop. To approximate this hode, it will first be assumed that the
loop is a cantilever. Therefore, the longitudinal vibration of a uni-

3

form cantilever is given by

(-5 @ (-

One-~half total loop length

where

4

w

Weight per unit length
Utilizing (VI-14), the longitudinal frequency is

£ = 376 cps

Now if the loop is considered as a circular ring, this case and
the previous case will give the limiting cases for the longitudinal
mode. Hence, the natural frequency of a pure radial vibration of the
pipe is given byy

1.

f = e

n 2n'

‘T“?l

Now if the entire loop is considered as a circular ring, the equivalent

redius is
L

R=—=—

ar

where L is the circumference of the loop. Therefore,



182

(VI-15)

L)
i
]
<

Utilizing (VI-15)
£ = 1404 cps

Therefore, it can be seen that the actual frequency would lie

between

376 < £ < 14Ok cps



APPENDIX VIT

CALIBRATION OF THE 1000 PSIG STATHAM

ABSOLUTE PRESSURE TRANSDUCER

In order to determine the calibration factor, F, for the 1000
psig absolute pressure transducer used in this investigation, it was
necessary to calibrate the transducer.witﬂ a dead weight tester.
This was done and the results are shown in Figure (56).

From the curve shown in Figurev(56) the slope was found to be

20.4 y-volts/psi R

Utilizing the formula

Eg = FNE (vII-1)
where
Eg = Transducer output voltage, mv
E = Excitation voltage, volts
N = Pressure signal, psi
F = Calibration factor, %é%%%%gf

Equation (VII-1) gives E_ as a function of the pressure signal, N,

g
where FE is the slope AEg/AN. Therefore,

| FE = 20.4 p-volts/psi
and since the excitation voltage used in the calibration run was E = 5
volts, the calibration factor is

F = 4,08 p-volts/volt psi
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APPENDIX VIII
PRESSURE TRANSDUCER CHECKING AND CALIBRATION

Calibration of the pressure instrumentation was accomplished in
two different ways. The first method was to calibrate the transducer
with a dead weight tester as mentioned in the previous appendix., The
second method was to calibrate the transducer with the bourdon tube
pressure gauges.

The method of checking the transducer consisted of electrically
simuleting a pressure by keying & resistor across one arm of the
trensducer bridge. This causes a deflection in the output ecircuit
which simulates the effect of resistance changes of the active bridge
arms due to a pressure change in the loop. In this manner checking
the output circuit can be made without the necessity of applying
standardizing input pressures.

The effect of adding & calibrating resistor in parallel with an
active bridge arm is shown in Figure (57).

The Honeywell carrier amplifier has the calibrating circuit shown
in Figure (57) built into it. It contains five shunt resistors (300K,
150K, 75K, 30K, and 15K) which serve as calibrating resistors. These
calibrating resistors can be shunted across R3h (- calibration positions)

or across R,. (+ calibration positions). The five calibrating resistors

31
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will give five convenient calibration positions for the transducers.

Table (2) gives the value oérfhe simulated psi signal for the
three transducers used in this investigation. These values were calcu-
lated utilizing Equation (VIII-1) below. The values of R and F come
from the transducer manufacturer for the differential pressure trans-
ducer and the 5000 psi transducer. These velues for the 1000 psi
transducer come from & calibration of the transducer, the results of
which are conteined in Appendix VII.

When the output resistance of the bridge is much less than the
resistance of the calibrating resistor (R< < Rc), the output change

from the transducer is given by

N = %g;& (vIiII-1)
where
‘N = Transducer output signal, psi
N, = Number of active strain gauge arms (k4)
R = Transducer output resistance, ohms (R23)
Rc = Calibrating resistor, ohms
F = Transducer .calibration factor, -volts

volt psi
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PRESSURE TRANSDUCER OUTFUT
Calibration | Calibrating .
Position Resistor Pressure Transducer
(ohms )
AP = 5 psid | P = 1000 psig | P = 5000 psig
R = 357.6 R = 350.0 R = 353.2
F = L406.9 F=»L4o08 F = 0.8376
+ 1 300,000 0.732 71.6 351.4
t 2 150,000 1.464 143.2 702.8
+ 3 75,000 2.929 286.4 1405.6
+ 4 30,000 7.323* 716.0 3514.0
+ 5 15,000 1&.6&7* 1h32,o* 7028.0*

" R in ohms, F in p-volts/volt psi

*
Calibration positions which exceed the pressure rating of the transducer

Table (2) Carrier Amplifier Calibration Values



o Transducer
Excitation
Voltage
(5v)
(e

|

Checking
Circuit

"Amplifier

Figure (57) Pressure Transducer Checking Circuit
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‘I‘he.following glves the relstionship of the Computer Progrsm

APPENDIX IX

COMPUTER PROGRAMS

verisble notetion to the model peresmeter.

Model Psresmeter

Corresponding
Progrem Notetion

X10, X102, XLO3

XL1, XL1l, XL2, XL13

5 § B ¢ @

XMUMAX

=
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C  PROGRAM SIGMA
READ 11, XLO2,XL03,XL11,XL12,XL13
11 FORMAT (5El2.3)
302 READ 12,S
12 FORMAT(E12.3)
MC=0
U=.001
300 DOL00 J=1,31
MC=MC+1
NC=0
XMUMAX=. 0L
IF(MC-1)T75,75,76
76 IF(MC-2)84,84,85
8l U=.0L
GO IO T5
85 IF(MC-21)77,77,78
TT U=U+.0L1
GO TO 75
78 IF(MC-27)79,79,80
T9 U=U+.05
GO TO 75
8o 1F(Mc-28)81,81,82

8L U=.6
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GO TO T5

82 Ir(MC-30)83,83,200

83 U=U+.2

75 XM=1.-S+L./U
XK=LOGF(XM)
YL=XM*J

 Y11=XL11/Ul
Y12=X112/U1
Y13=X113/U1
IF(Y1l-Y12)1,1,2

2 IF(Y11-Y13)7,3,k

4 z=Y11
GO TO 10

1 IF(Y12-Y13)7,5,6

6 Z=Y12 _
GO TO 10

T 2=Y13
GO TO 10

5 PRINT 8

8 FORMAT(2X,1H , L1HY11=Y12=Y13//)
GO TO T

'3 PRINT 9

9 FORMAT(2X, 1H , THY1l=Y13//)

10 XN=S+XK+Z
DO100 I=1,61

- 1P(NC-1)50,51,52



51 XMUMAX=.25
GO TO 50
52 IF(NC-2)53,53,54
53 XMUMAX=.5
GO TO 50
54 IF(NC-U4)55,55,56
55 XMUMAX=XMUMAX+.05
GO TO 50
56 IF(NC-26)5T7,57,58
57 XMUMAX=XMUMAX+.025
GO TO 50
58 IF(NC-47)59,59,60
59 XMUMAX=XMUMAX+.05
GO TO 50
60 IF(NC-60)61,61,300

61 XMUMAX=XMUMAX+.1

50 W=2.%3.1416¥XMUMAX /XN

RLL=W*(S+XK+Y1l)
R12=W¥*( S+XK+Y12)
R21=W*(S+Y1l)
R22=W*(S+Y12)
R3=W*( S+XK)
RlU=W*S

Y21=W¥Yll
Yoo=W*Y12

Dl=L1.+W*W

192
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Dh=k . +W*H

E21=U/DL*¥(U/Dh*(2. -W*)+1. -U*S-Ui/ (wew))

E22=U%( 3. %% /( DL*¥Dk )+W /D1*¥( 1. -U*S)-UL/(W*DL)+( 1. -U*S+2. ¥XL12) /W)

E31=U*XK*¥W*W /DL-U/(DL*DL)*( L. -W* )+XL13/XM

E32=U/W+U*XK*W /DL+2. ¥U* /(DL *DL)

Al=-COSF(RL11)/D1+SINF(R11l)/(W*D1)-COSF(R21) /(XMW *W*DL)-SINF(R21)/
1(x0a*D1 ) +( COSF(RY ) +COSF(Y21)-1. ) /(XM*)

A20=-UL*¥UL*COSF(R12) /DL+UL*¥UL*SINF(RL2)/(W*DL)-U*UL*COSF(R22) /
L(W¥i*DL)-UUL*SINF(R22) /(W¥DL)+2. ¥UL*¥UL*( 3. ¥COSF(R3)+(W-2. /W) ¥SINF
2(R3))/(DL*D) |

A21=-E21*COSF(RL ) -E22*SINF( Rl ) -UXUL*( 1. -COSF(Y22) ) /(WHi ) +2. ¥U*
1(XL02+1.+XL12) |

A2=A20+A21

A3=UL*( (1. -W*W ) *COSF(R3)+2. ¥*SINF(R3) ) /( D1*D1)+E3L*COSF( ﬁh)-
1E32*SINF(Rl)-XL13/XM

B1=COSF(RL1)/(W*D1)+SINF(RL1)/D1-COSF(R21)/(XM*®/*DL)+SINF(R21)/
1( XMy ¥ *DL ) - ( SINF( R4 ) +SINF(Y21) )k(xm«ww)a. Jo*(L. /XM-1.)

Bzo=Ui*U1*COSF( R12)/(W#D1)+UL*¥UL*SINF(RL2)/DL-U*UL*COSF(R22)/
L(W¥DL )+U*UL*¥SINF(R22) /
2(WHI*DL ) +2, #UL*UL*( (W-2. /W) *COSF(R3)-3. *SINF(R3) ) /(DL*Dk)

B21=-E22*COSF( Rl ) +E2L ¥SINF( Rk ) -UUL*SINF(Y22) /(W) +(1. -U*s+2.
L¥XL12 ) %0 /W

B2=B20+E21

B3=UL*(2. ¥*COSF(R3)~ (1, -W#) *SINF(R3) ) /(D1 ¥D1)-E32%COSF(Rk ) -
LE3L*SINF(RY ) +WH( XLOZ+U*S+UXK+XLL3/XM) +U/W

G=(A2%B3-A3%B2) /(AL¥B2-A2¥BL)
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F=(A3¥31-A1*B3) /(AL%B2-A2%B1)
NC=NC+1
IF(NC-1)13,13,14
13 PRINTLS
15 FORMAT(10%X,19HDESCRIPTION OF CASE///)
16 PRINTL7,XL02,XL03,XL11,XL12,XL13
17 FORMAT(2X,F6.3,5X,F6.3,5X,F6.3,5X,F6.3,5X,F6.3//)
18 PRINT19,S,U
19 FORMAT(2X,2HS=F10.3,5X,2HU=F10.3///)
20 PRINT2L
21 FORMAT(5X,SHMUMAX, 14X ,1HW,14X,1HG,15X,1HF///)
14 PRINT22,XMUMAX,W,G,F-
22 mRMAT(ex,.Elz.s,ux,me.s,hx,Ele.s,ux,Ela.s/)
1F(U-1./8)100,100,302
100 CONTINUE
200 STOP
END
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C  PROGRAM ROOT
READLL,XLO,XL1
11 FORMAT(2El2.3)
1 READ12, S
12 FORMAT(E12.3)
R=-10.
KC=0
DO100 K=1,T
U=.1
KG=KC+1
IF(KC-3)105,105,106
105 R=R¥.0L
GO TO 300
106 IF(KC-4)107,107,108
107 R=0. '
GO TO 300
108 IF(KC-5)109,109,110
109 R=.0000L
GO TO 300
110 R=R¥1.E+2
300 XM=L.-S+1./U
XK=LOGF(XM)
UL=XM*U
Y1=XT1/U1
XN=S-+HK+Y1

NG=0



XMUMAX=. 01

75 D0100 I=1,61
IF(NC-1)50,51,52

51 XMUMAX=.25
GO TO 50

52 IF(NC-2)53,53,5k4

53 XMUMAX=.5
GO TO 50

5k IF(NC-4)55,55,56

55 XMUMAX=XMUMAX+.05
GO TO 50

56 IF(NC-26)57,57,58

57 XMUMAX=XMUMAX+.025
GO TO 50

58 IF(NC-47)59,59,60

59 XMUMAX=XMUMAX+.05
GO TO 50

60 IF(NC-60)61,61,300

61 XMUMAX=XMUMAX+, 1

50 W=2.%*3.1lL16¥XMUMAX /XN
D1=(1.-R)*(1.-R)+WH
D=2, ¥R
D3=R¥(1.-R)+W*
Dh=(2.-R)*¥(2. -R)+W*W
DS=R¥RAWAH

D6=R*¥R-W¥W
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D7=3. ¥R¥R-2. ¥R-WHY

D8=1.-R

D9=2.#R-1.

D10=2.-R

DLL=W¥W-2.

D12=1.-U*S

D13=(1.-R)*(l.-R)-WH

D14=R*(1.-R)-W*q

RL=W*( 8+XK+Y1)

R2=W¥(S+YL)

R3=W#( S+XK)

RU=W*S

Y2=*YL

EL=EXPF( -R¥( s+xic+n) )

E2=EXPF(-R¥(S+Y1))

E3=EXPF( -R*( S+XK) )

EL=EXPF( -R*S)

E5=EXPF(-R¥Y1)

Al=-EL*( D3*COSF(RL)+W*D9*SINF(RL) )/(D5%D1) +E2/XM*( ( D6*D8+D2)
1¥%COSF(R2 )+W*DT*SINF(R2) ) /(D5%D5*DL ) -El /XM¥*( DE*COSF(RL ) -2. %
SRMI¥SINF(RY) ) /(D5%D5) -E5/XM*( DE*COSF(Y2) -2. ¥R¥W*SINF(RL ) )
3/(D5%D5) +R/D5+1. /xM*( D6#D8-D2) /(D5*D5)

A2=UL*JL¥EL*( ~-D3*COSF(RL ) -W*D9*SINF(RL) ) /( D5*DL ) +U*UL¥ER
1%( (D6*DB+D2) ¥COSF(R2 ) +W*DT*SINF(R2) ) /(D5¥*D5*DL ) +2., ¥UL¥UL*
2E3%( (R¥DBXDLO+3. S #¥*DB)*COSF(R3)+W*( 3. R¥DLO+DLL) *SINF(R3) )
3/(D5*D1*Dl ) -U*U*EL*( DLO*( DB*COSF( Rls ) HW*SINF( R4 ) ) +W*DB*SINF( Rk )
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L-WXWHCOSF(RY ) ) /( DL*DY ) ~-UXEL*DL2*( DB*COSF(RY ) +W*SINF(RL ) ) /
SDL-UXUL*EL*( D6%( D8*COSF( Rl ) +W*SINF(RY ) ) +2. ¥R¥W*(W*COSF(RY )
6-DB*SINF(RL) ) /(DL¥D5*D5 ) -UXULX¥E5*( 56*COSF( Y2)-2. ¥R¥W*SINF( Y2
7))/ (D5%D5 ) +UXEL*¥DL2*( R¥COSF(RY ) ~-W*SINF(RL ) ) /D5+2 . ¥XL.1 ¥IXEL *
8( R*COSF(RY ) -W*SINF( Rk ) ) /D5-R¥D12%U/D5+U*UL¥D6/(D5%D5)-2. *
9XLL¥R¥U/D5+2. ¥J*(XLO+L.+XL1)

A3=UL¥E3%( DL3*COSF(R3)+2. ¥W*DB*SINF(R3) ) /(DL¥DL ) +UXEL*( R*
© 1COSF(Rl)-W*SINF( R4 ) ) /D5-EU*U*XK*( DL4*COSF(RL ) m*smf( R4))/D1-U*E
24%( DL3¥COSF( Ry )+2. ¥W¥DB*SINF(RL ) ) /(D1 *DL ) +EL*XL1¥COSF( Rk ) /XM+
3R¥( XLO+U*S+U*XK+XL1/XM) -R¥U/D5-XL.1/XM

Bl=-EL¥( -D3*SINF(RL )+W*D9*COSF(RL) ) /(D5*DL) +E2/XM*( -D6*D8
1*SINF(R2 )+W*DT*COSF(R2) ) /(D5*D5*DL ) -Els /XM*( - DE*SINF(RY ) -2 . ¥R¥W
2*COSF(RY4 ) ) /(D5%D5) -E5 /XM*( -DE*SINF(Y2) -2. ¥R¥W*COSF(Y2))/ l'-
3(D5%D5)-W/D5-1. /XM*¥(W¥D6+2 . ¥R¥*D8) /(D5%D5)

B2=UL*UL*EL*( D3*SINF(RL )-W*D9*COSF(RL) ) /(D5*DL) +U*UL*ER2*
1(-1. *(D6*D8+D2) *SINF(R2)+W*DT*COSF(R2) ) /( DS¥D5*DL ) +2. ¥JL*
PUL¥E3*( -1, ¥ R¥D8*¥DL0+3. W ¥y ¥D8 ) ¥SINF(R3 ) +W*( 3. ¥R*¥D10+D11)
3*%COSF(R3) ) /( D5*DL*Dk ) -U*U*EL*( DLO*(WCOSF(RY ) -D8*SINF(RL ) )
L+#*( DB*COSF( RY ) H*SINF(RL ) ) ) /(DL¥*DL ) -UXDL2¥EL *#(W*COSF(RY ) -DB*
SSINF(RL) ) /DL-UXUL¥EL*( DE*(W*COSF(RY ) -DB*SINF( Ri))-2. ¥R¥*
6( DB*COSF(RY) H*SINF(RY ) ) ) /(DL¥D5*D5 ) ~UXEL¥D12%( R¥SINF(RL )
T+W¥COSF(RY ) ) /D5-2., ¥XLL¥UXEY*( R¥SINF( RY ) +W*COSF(RY) ) /DS+U*UL
B*E5%( DEXSINF(Y2)+2, #RWW*COSF(Y2) ) /(D5S*D5 ) +UMW*D12/D5-2., ¥U*UL
Q*R#W/(D5%D5 ) +2. ¥XLL ¥R /D5

B3=ULAE3#( ~DL3*SINF(R3)+2. ¥¥DB#COSF(R3) ) /(DL¥DL)-UXEL *
1 RHSINF( Rl ) WHCOSF(RY) ) /D5-UNKENEN#( ~DLLHSINF(RY ) H*COSF(R4) )/
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2DL1-U*El*( ~-DL3I*¥SINF(RY ) +2. ¥W*¥DB*COSF(RY ) ) /(DL*D1)-EU*XT1*

3SINF(RY ) /XM+W*( XLO+U*S+UXKK+XLL /XM) +U*W /D5
G=(A2%B3-A3%B2) /( Ai*Ba-Az*Bl)
F=(A3%B1-A1%*B3)/(AL*B2-A2%B1)
NC=NC+L
IF(NC-1)13,13,1k
13 PRINT 15
15 FORMAT(10X, 19HDESCRIPTION OF CASE///)
16 PRINT 17,XLO,XL1
17 FORMAT(2X,3HLO=F5.3,5X,3HL1=F5.3//)
18 PRINTL9,S,U,R
19 FORMAT(2X, 2HS=F10.3,5X,2HU=F10.3,5X,2HR=F10.3///)
20 PRINT 21
21 FORMAT(5X, SHMUMAX,1kX,1HW,1LX,1HG,15X,1HF///)
L4 PRINT 22,XMUMAX,W,G,F
22 FORMAT(2X,E12.5,4X,E12.5,4%,E12.5,4%,E12.5/)
100 CONTINUE
GO TO 1
200 STOP
END
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C  PROGRAM STEADY STATE
READ1,XL02,XL11,XL12
1 FORMAT( 3E12.3)
5 READ2, S
2 FORMAT(E12.3)
N=0
DO 11 I=1,32
IF(N-1)4,6,12
4 U=.001
G0 TO 10
6 U=.01
GO TO 10
12 IF(N-20)13,13,1k4
13 U=U+.01
G0 TO 10
14 IF(N-26)15,15,16
15 UsU+.05
GO TO 10
16 U=U+.1
10 XM=1.-8+1./U
XK=LOGF(XM) -
Yll=XL11/(XM*U)
EL=S+XK+(Yil-1.)/(XM*U)
E2=. 5+XL12+2., ¥U¥(XLO2+L . +XL12)-2. ¥y*S#( 1. +XL12)+1, S¥UKI*S*S
E3=1.-2, %3
GO=-E3/El
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Gl=-(E3+E2)/El
G5=-(5. ¥E2+E3) [EL
PRINT3,G0,G1,G5
3 FORMAT(2X, 3HGO=E12. 5,4X ,3HG1=E12. 5,4X, 3HG5=EL2. 5/)
N=N+1
11 CONTINE
GO TO 5
STOP

END



APPENDIX X

EXAMINATION OF POINTS NEAR THE

INSTABILITY THRESHOLDS

In this dérivation, the instability thresholds have been defined
utilizing the condition that r be equal to zero. However, it is also
necessary to be able to locate on the threshold map the regions for
which r = - (damped oscillations) and r = + (amplified oscillations)
in order to show which of the regions are stable and which are un-
stable. From the experimental portion of this investigation, it was
found that the regions of higher entrance velocity were the stable
regions. However, this can also be shown analytically for the region
of interest in this investigation.

This requires a look at the equations for which r = 0, If the
possibility of solutions going to infinity is discounted, the
"equation in c¢" gives solutions which go from r = - through r = 0,
then to r = + as an instability threshold is passed through. It can
be seen that r = - corresponds to a damped oscillation and r = +
corresponds to an amplified oscillation in Equation (71)

u =y, + voeCt (71)

where

c =71+ iw (102)
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In order to investigate the regions near the instability thresholds,
it is necessary to consider the equation in ¢ and to proceed as in
Appendix IV with
c =r + iw (102)
It is necessary to develop the following expressions in order to
proceed from the equation in ¢ to the equations inw.

From (II-10)

k=4nm
therefore,
-c ~kc -k(r+iw)

m =e = e

and
- - r a
n® = KT ‘ cos(wk) - i sin(wk) (X-1)

Also,

E = e CS _ TS -iws

S
From the definitions (III-1) and (III-23)

E =e " [cos(s) - 1 sin(s) (X-2)
Likewise,
E =e W =TV Y
¥
-ry r .. 1
Ey =e | cos(Y) - 4 Sln(Y)J (x-3)

Combinations of (X-1), (X-2), and (X-3) give

- - =
oy ¢ _ or(s+hiy) lcos(S + K + ¥) - i sin(S + K + Y) (X-1)

EE = e-r(s+y) ?cos(s +Y) - isin(s + Y)j (X-5)

- - r o 1
Em ¢ _ e(stk) Toois + K) - i sin(S + K)

(X-6)
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The following identities appear in the equation in ¢ and are useful
in simplifying this equation. Utilizing the definition of ¢, it is

found that

1l _r-iw
c

2 2
r +w

(r2 - u)e) - 2iwr
2)2

1
2 2
c (r" +w

1 (l-r)+1w
l-c = (l-r) )

2

1 =[(l-r) -w2:|+(1-r)2iw
(1-c)2 [(l - r) + 0 J

1 H(Z-r)+iw
w=a (2-r)§ﬁ~i~wE

[r(l - 1)+ wﬂ + dw(2r -~ 1)

L. (x-7)
c{1-c) (r + w—[(l - r)2 * wE]-_

1 [(r2 - wa)(l -r) + a»gr] + :lm(3r2 -2r -w
:?(l-c) - ' (:5 * wz)z I (1 - r)2 + wzj
[(l - r)(2 - - w2] + 1w(3 - 2r)

W T(l +wé]T(2 :c-)2 +;E]_

1 [r(l-r)(2-r)+3.u l-r)]+iw[3r(2-r)+(w-2)]
e{T-e)(2-¢) (rI + wﬂ(l - r) + W (2 - r)'2 F]

[r(l - ) -wa:l + iw
2

2

c =
l-c

(1 - r)2+w
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Utilizing the Equation (X-1) through (X-7), it is possible to

determine the expression for B ' Substituting into (III-45) gives:

1

B, = _e-r(s+k+y)[cos(s + K+ Y)-1isin(S+K+ Y)]

( 2
[1:‘(1 ;:))+t(:l]+1{w(2r - l)}] S+Y) [cos(s +Y) - i sin(S + Y)]

2-0))(1-r)+21)rj‘+11(.0(3r -2r-w)j-| oIS

L(r
r (r +w2)2{(l- r) +u)2} 1™ "m

2 2 . -
[cos(s) - i sin(S)] [(r - 07) ; glm:l - £ ry'—cos(Y) - i sin(Y)-l
(r o ) m L J

[(r - w2) - 2i1w:|, N r2- iw2 . (1 - rzl - jw [(r2 - w2) - 2imw

(r +w) r +w (r2+cu2)2
(x-8)
Separating Bl into its real and imaginary parts,
Bl =8 + 1bl

it is found that

_e-r(s+k+y)[cos(s--+ K + Y){r(l -r) + wz} +w(2r - 1)sin(S + K + Y)]
(r2 + w2) {(1 - r)2 + wa}

2
+

e’-r(s+y) I:cos(S + Y){(r2 - w2_)(1 -r) + W

T+ w(3r2- er - we)sin(s + Y)]
n (r2 + w2)2 {(1 - r)2 + wz}
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e I:cos(S)(re- ©2) - 2mw sin(s) e [COS(Y)(ra- w?) - 2w sin(S)j
= 5 B.D m 5 5.2
(r® + &%) (r° + %)

—_r .1 [(l - r)(r2 - wzg - 21wLJ (X-9)

2+ w° (r2+<n2

_r(s+k+y)[-{r(1 - 1)+ wZ} sin(S + K + Y) +w(2r - 1)cos(S + K +y)]
by =~ )
17 (% + 0?) {(1 - )+ wzj

e-r(s+y)r—{(r2 - wg)(l - r)sin(8 + Y) + w(3r2 - 2r - wz)cos(s + Y)J‘]
* m L

(r2 +w2)2{(1 - r)2 +w2}

) e TS [-(r -w ) sm(S) - 2w cos(8)

(r + w2)2
- e M- (r - o ) s:.n(Y) - 21w cos(Y)] ®
5 (r + w?)? & 02

1 w(rz-w2)+21w (L -1r)

= 2)2 (x-10)

(r2+w

Agein Equations (X-1) through (X-7) are utilized to determine the

expression for B Substituting into (III-SL) gives

o -

B, = mzuwe'r(s+k+y) ['—cos(s +K+7Y) +isin(s +XK + Y)]

[{ r(l -+r(i ;—E(];- + 1){wi2rj- 1)}] —_— r(s+y) [cos(s +7Y) - 1isin(s + Y)]
(r r w
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[{u? - B2 - 1) + 2P v 1“’(31‘ "o ’f] + ouPy o 7(5%)
(% + 0°)® 1<1-r) +wj

[cos(s + K) - i sin(s + K)]

[{r(l-r)(2-r)+3ﬂ(l-r)j’+1{ [3r(2-r) +(o® ‘z)h]
r.+w){(l-r) +‘”I{<2' }

-.° (1 - 1) r (2 - r) Y
_ T [cos(s) - i 51n(S)] [ z) ++Tz Ly, i r) ++i§2]

+1-us+m (r r— (: (32;2211‘1)) ] + e T8 [cos(s) - i sin(S)]

[1 - ums] [r - 1‘”2] +2,e mrs [cos(s) -i Sln(S)] [r - 1w2:|

r" +w r +w

- mye ™ [cos(y) - i sin(Y)] [(rz '2(”2) -2l | (q . u s) !’r - lwz-\

2 2 . . '
+m [(r -®) - 2im 2’L1 [rz- 10)2] + 2(4,0 + 1+ Ll)

2 2.2 B
(r" + 0%) r+w (X-11)
Separating B2 into its real and imsginary parts
32 i) + 1b2

it is found that
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(

-cos(S + K +_Y)Ekr(l - )+ wzj- w(2r - 1)sin(S + K + Y)'l
i

2 2 4

2. -r(s+k+y) T
€ ' N 2
(r" +w") . (1 - 1) + 0y
<

=mu
a2 © [

(r2- uog)(:l.-zz')+2m2rJ cos(8 + Y)+ m(3r2- 2r - wz)sin(s + Y),
(<022 ‘

r(s+y) 1
' r o+ W (1L - v
L

+ m e 5 5 :
1" +w |

r(l-r)(2-r)+ 3»2(1-1-)} cos(S+K)+ m{ 3r(2-r) +(w2-2)} sin( S+K)]

2 -r(s+k) {
+2mu e TAS [ (r2 . u)2) {(l - r)2 + wg} {(2 - I‘)2 + wz}

, (2 - r){(l - r)cos(8S)+ w sin(S)} +w(1l - r)sin(8) - wecos(S)
. e-rsum [ ]

{(l - r)2 +w2f {(2 - r)2 +w2}

-e (1-us 5

—rs ) |:{(l - r)cos(S) +w sin(S)}]
(1 - r)2 + W

-~

(re- wz){(l - r)cos(S) +w sin(S)} + Zmy{w cos(8)-(1 - r)sin(S)‘h

{(l - r)2 + w2} (r2 + w2)2

-rs[
- mu_e
[~}

. e-rs(l-ums)[r cos(8)- w sin(8) N 2Lle-rs[r cos(8) - w sin(S)}

2 2 2 2
r o+w ‘ r o+w

- (r2— wg)cos(Y) - 2rw sin(Y) (1 - u,8)r - @l
'm“wery[ 2 2.2 ]’ 2 2 +mum[2 )
(r° + ") r +w (r= + o)
2&lr
-3 5+ 2(&0 + 1+ &l) (X-12)
" +w

o _r(s+k+y)[{r(l - )+ mz} sin(8 + K + Y)- w(2r - 1)cos(s + K + Y):l
Y (r2 + (.u2) {(l - r)2 +-w2}
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R C (P 0B) (L - o)+ fJSin(S + 1)+ 0(3r%- 2r - wg)cos(S¥Y)ﬁ

2)2 )2 . ng p

+ mu
m l_

(r + W L(l-r

2m2u e
2]

+

_r(s+k)[-{r(l-r)(2-r)+ 3.!)2(].--1‘))> sin(S+K)+ w{3r(2-r)+ w2-2}COS(S+K)-|
(r% + 0°) {(l - n)F w2} ‘FZ - )2+ mzj'

rs (2 r)‘Lw cos(s)-(1 - r) sm(S)f + W 1(1—r) cos(S) +w s1n(S)h

- e uml_

_J

I(l-r) +wI<L(2-r) +wj

- - - s )
e TS(1 - ums) [w cos S-(1-r) sin 8

(l-r)2+m2 ]

_rs[(re-we){w cos(8)-(1-r) 51n(S)j - 21!1){ (1-r) cos(8)+ w sin S)J‘-‘
T - Tl-r +u)jr+w2)2

- r i -rs [ i q
e rs(l_uws) l“r sn.n(S; + w2COS(S):} _ 2{’1e rs Lr s1n(S% + wgcos(s)
r +w ™ +w
e e [(r - ) 31n(Y) + 2m) cos(Y) s (1 - us) w
o _J - 2 2
(r + W ) r~ +w
2mum1w 2{,103
"t 33t 7 3 (x-13)
(r" + %) r- o+ w

B3 is determined as above utilizing (X-1) through (X-7). Substi-

tuting into (III-56) gives

(lr)-w}+(lr21w-,

1(1 2+wj .

-r(s+k) [

B =m e

3 Lcos(S+K)—1s1nS+K)_[ [{
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-
A r(l-r) - wej + dw,

-rs [ 1F fr - iw L
+ e cos(8)- i sin(S) | lu {—5——57- vk
L Il 12 3 "1 1-02r02
2l
({(l— ﬂz-w%§+(l- r)2iw £ L

17
+ == + + -
J+(&o u s uwk+m)

"% 1 [O»—ﬂ2+wﬂ2 J

Sh__f“

. r - iw,
(r +iw) - u {-2—_— -
r o+

(x-1h)

Separating B3 into real and imaginary parts,

B3 = a.3 + ib3

it is found that

-r(s+k) r{(l - r)2 - u)z} cos(S + K) + aw(1l - r) sin(S + K)-]
mu e

83 = M (- n2- e ]

. 1 {r(l-r)— wz} cos(8) +w sin(s)
s e-rsuw [r cosés)- ué s1n(S)-| } e'rsumk[ )2 5 ]

T+ w (1-r)+w

) r(l - r)2- e cos(8) + aw(l - r)sin(8) e 7% 4. cos(s)
- eTTS, [1 . '] 1

3 +
{(1 RN w?je 4 m
{’l ru {'l
# g F gtk ) - - (x-15)
r +w

%-r(s+k) ["{(l - r)2 - w2} sin(S + K) + 2w(1 - r) cos(s + K)]

b, = mu :
® {(1 - r)‘2 + wz}z

3
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_{r(l-r)- wz} sin(8)+ w cos(8)

5 ]

- il -l -
rs, [T sin(S)+ w cos(S)J - e rsuml{

- e
o L r2+w2 (l-r)a-rw

I: {l - r) - u)} sin(8)+ (1 - r)aw cos(S)] e 'S L sin(s)
1(1 r) + w} n
Ll u_w
+ UJ('LO + u s + uwk + E—) + ‘—2—'———2- (X-l6)
r~ 4w

Hence, the coefficients of the equations in w have been found for
r# 0. These equations were then solved utilizing the computer as was
done for r = 0. Therefore, by solving them for r— O allows the
determination of the behavior between the levels of the instability
threshold. This computer program is found in Appendix IX. Figure (58)
shows the results of this investigation for £ > O (which corresponds
to physical reality), where g increases as r goes from negative to
zero to posiﬁive values., Hence, plotting the same curve for a range
of values, it is found that as shown in Figure (58) the region of
stability (r > 0) and ﬁhe region of instability (r < 0) is given as

in Figure (59).



£ , DIMENSIONLESS FRICTION PARAMETER
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r=0.0
5 Y=a
)/
//
| —
——
-5
— / .
-5 o

. & DIMENSIONLESS GRAVITY PARAVETER
~ FIGWE (38) £ = £(g) FORS = 0.5 WITH u, = 0.1 AS

r VARIES FROM NEGATIVE TO POSITIVE VALUES




Unstable

Figure (59) Stable and Unstable Regions of the
Threshold Surface



APPENDIX XTI

EXPERIMENTAL INSTABILITY POINT DATA

The following tebles give the experimentsl instsbility point

dets which wes shown in Figuree (45 - 53).
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EXPERIMENTAL INSTABILITY POINTS FOR CONSTANT PRESSURE TESTS

UTILIZING FREON-11k AS THE HEAT TRANSFER FLUID
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TABLE 3a

F-11L Experimental Instebility Points

T8 H, p H AP
L [o]
Inlet Inlet Inlet Flow
Temp Enthalpy Density H-H, In. H q
3 i 2
Op Btu/1b 1b /Tt
m m
¥P = 310 psi - - 3 g =6
= psis H, = T3 Btu/lbm R, =70 lbm/ft H, = Btu/lbm
194 56.51 76.11 16.49 4.00
196 57.07 75.79 15.93 k.00
198 57.62 T75.47 - 15.38 h.,1
173 50.78 79.25 22.22 L L
162 L7.82 80.78 25.18 .1
148 Lh. 11 82.64 28.89 L.o
147 43.57 82.90 29.43 4.3
195 57.29 75.95 15.71 3.k
192 55.96 76.42 17.0k  L.25
184 53.76 T7.64 19.24 3.k
183 53.49 78.29 19.51 3.75
173 50.78 79.25 22,22 4.10
157 L6.49 81.46 26.51 k.25
153 45,42 81.93 27.58 k.30
152 45.16 82.12 27.84 k.75
189 55,13 76.88 17.87 3.1
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185 5k. ok TT.49 18.96 3.6

P = k0O psie H = 83 Btu/lbm R, = €0 lbm/ft3 H, =10 Btu/lbm

216 62.69 T2.40 20.31 3.85
200 58.18 75.1h 2k. 72 5.45
196 57.07 7579 25.93 6.25
173 50.78 79.25 32.22 5.85
168 49.43 79.96 33.57 6.05
170 49.97 79.68 33.03 5.85
170 49.97 79.68 33.03 6.10
218 63.26 72.0k 19.74 L.40
220 63.83 TL.67 19.17 5.95
223 64.70 TL.11 18.30 3.80
21k 62.12 T2.76 20.88 L.0

214 62.12 T2.76 20.88 4.5

AN 62.98 T2.22 20.02 L.h

216 62.69 T2.40 20.31 5.8

219 63.50 71.86 19.50 6.0

225 65.27 T0.73 17.73 6.0

200 58.18 75.14% ok.82 6.1

209 60.70 73.64 22.30 7.0

225 65.27 70.73 17.73 6.5

197 57.34 75.62 . 25.66 5.9

198 57.62 75.47 25.38 6.6

193 56.24 76.26 26.76 6.1

186 54.31 77.3& 28.69 6.4




177 51.82 78.68 31.18 5.9
175 51.32 78.97 31.68 6.6
170 49.97 79.68 33.03 6.25
220 63.83 TL.67 19.17 3.60
225 65.27 70.73 17.73 L. 75
213 61.90 72.94 21.10 h.25

P = 480 psis H_ = 80 Btu/lbm R, = T0 Ibm/ft3 H, =16 Btu/lbm

260 - 75.96 62.61 L.ok 2.40
255 Th. 34 64.0 5.66 2.50
210 60.98 73.46 19.02 3.75
262 76 62 62.03 3.38 2.20
- . - - 3 -

P =495 psie H_ = 80 Btu/lbm R, = T0 lbm/ft H, = }6 Btu/lbm

olis 71.20 66.49 8.80 2.4%0
218 63.26 72.04 16.70 3.40
203 58.46 Th.65 21.50 3.40
198 57.62 75.47 22.40 k.20
191 55.68 76.57 2L.30 4.00

P = 520 psis H_= 80 Btu/lb_ R =70 lbm/ft3 H_ = 16 Btu/lb

228 66.15 70.14 13.85 2.00
228 66 15 70.14 13.85 2.25
214 62.12 T72.76 17.88 - 2.75
205 59.58 T4.30 20.42 2.75
169 49.69 79.81 30.31 2.25




163 L8.09 80.92 31.91 2.25
195 56.79 75.95 23.21 2.50
162 LT7.82 80.78 32.18 2.10
162 LT7.82 80.78 32.18 2.10
230 66.73 69.74 13.27 1.85
F = 525 psis H_ = 80 Btu/lb R = T0 lbm/ft3 H, =16 Btu/lbm
25k Th.02 6. 26 - 5.98 2.00
252 73.39 64.78 6.61 2.10
26L TT7.30 6L.h2 2.70 2.00
257 75.00 63.45 5.00 2.00
270 79.39 59.43 0.61 2.10
211 61.25 73.28 18.75 2.00
267 78.33 60.43 1.67 2.55
206 59.86 Th.15 20.1L 2.25
206 59.86 Th.15 20.14 2.25
220 63.83 TL.67 16.16 2.50
196 >T.07 75.79 22.93 2.45
195 56.79 75.95 23.21 2.50
198 57.62 T5. 4T 22.38 2.55
197 5T. 3k 75.63 ' 22.66 2.55
257 T4.98 63.45 5.02 2.k0
P = 555 psia H_ =85 Btu/lbm R, = 70 Ibm/ft3 B, = 16 Btu/lbm
178 52.13 78.53 27.87 2.40
262 76.63 62.03 3.37 1.95
246 T1.52 66.26 8.48 2.20
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232 67.32 69.33 12.68 2.00
202 58. 7k Th.82 21.26 2.40
203 59.01 Th.65 - 20.99 2.50
197 57.3k 75.94 22.66 2.25
170 49.97 79.68 30.03 2.00
165 48.61 -80.37 31.39 1.90
P = 575 psis H_ = 85 Btu/lb_ R =70 lbm/ft3 H, = 16'Btu/1bm

153 hs. ko 81.99 3&.58 1.60
151 4h.89 82.25 35.11 1.75
233 67.61 69.13 12.39 2.00
252 73.39 6L.78 6.61 2.20
238 69.10 68.07 10.90 2.00
2k9g T72. 4k 65.53 7.56 2.25
250 72.76 65.29 T.24 2.60
263 76.96 61.72 3.0k 2.65
210 60.98 73.46 19.02 2.70
180 52.67 78.24 27.33 2.25
169 49.70 79.82 30.30 2.20
157 46.49 8L.46 33.51 1.75
153 45,43 81L.99 34.57 1.80

¥P = System Pressure Hs = Enthelpy Zero Point
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TABLE 3D

EXPERIMENTAL INSTABILITY POINTS FOR CONSTANT PRESSURE TESTS

UTILIZING FREQN-ll’-I- AS THE HEAT TRANSFER FLUID

F-11h4 Experimentsl Instsbility Points

W u’m g s
Power Entrance Gravity
KW Velocity Parasmeter Subc ooliné

. 3
- 1 = =
¥P = 310 psis Hs = T3 Btu/lb R TO0 1b /ft Hc 6 Btu/1b

.TL3 .2ko 20.7 2.76
.675 .253 23.2 2.66
.T20 .2k0 20.3 2.56
1.24 142 6.85 3.70
1.k 117 5.07 k.19
1.74 .096 3.48 4.82
1.65 .103 3.87 4.91
. 705 =P 21.2 2.62
.87k .201 13.8 2.8k
98 | .159 10.95 3.21
1.13 . 1hl 8.25 3.26
1.28 132 6.42 3.70
1.63 .104 3.96' ) L.Lh2
1.7k .098 3.48 ‘ k.60
1.95 .092 2.7 L.64
.905 .166 12.85 2.98
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1.11

.1ks5

8.54

3.16

- ; - - 3
P = 400 psia H_ = 83 Btu/lbm R, 60 lbm/ft

H = 10 Btu/lb
C m

1.07
1.63
1.96
2.43
2.58
2.52
2.63
1.13
1.0

.91
1.06
1.2k
1.39
1.55
1.58
1.57
1.82
1.8k
1.6k
.77
2.01
2.03

2.27
2.40

.229
.176
.156
.119
.11k
.115

L1l
-233
.219
271
.236
.21k
.189
.19k
-195
-197
167
.178
.198
.168
<157
.148

-135
.122

18.8
8.1
5.6
3.6L
3.24
3.39
3.11

16.9

10.97

26.0

19.15

14.0

11.25
8.95
8.6
8.73
6.5
6.35
8.0
6.87
5.32
5.22
417
3.73
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2.6k
2.66
0.91
1.15

1.15

117
112
.262
.24o

.223

3.09

3.04
26.0
16.3
16.3

3.30
1.92

1.7

= ; - - 3
P = 480 peie H_ = 80 Btu/lbm Ry = T0 lbm/ft

H ‘= 16 Btu/lb
e m

1.8L .216 2k.50 .252
2.80 .140 9.55 .354
L.62 .097 3.51 1.190
2.56 L1h7 11.40 .385
P =195 psis H_ =80 Btu/lbm R, = TO lbm/ft3 H, = 16 B‘tu/lbm
1.80 .209 23.1 .55
3.23 J134 7.18 1.0k
3.58 .118 5.84 1.34
L.L4s5 .105 3.78 1.40
5.17 .088 2.80 1.52
P = 520 psie H, = 80 Btu/lbm R, = TO lbm/ft3 B, = Btu/lbm

1.33 .252 L2.40 .865
1.34 .266 41.70 .865
1.90 .20h 20.70 1.12
2.06 .186 17.60 1.28
2.50 134 12.0 1.89
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2.87 .115 9.1 1.99
2.32 .155 13.9 1.45
2.70 .119 10.3 2.01
2.63 .122 10.8 2.01
1.2k .262 18.8 .828

- : - - 3 -
P = 525 psis H_ = 80 Btu/lbm R, =T0 lbm/ft H, =16 131:11/1‘:;m

1.28 ' .275 45.70 o .37k
1.37 .262 39.9 413
1.33 .270 k2.3 .169
1.80 197 23.1 .312
1.98 .189 19.1 .038
1.99 .166 18.9 | 1.170
2.02 .203 18.4 .10k
2.3k .149 13.7 1.26
2.49 .1ho 12.1 1.26
2.49 .150 12.1 1.01
3.22 112 7.2k 1.43
3.36 112 6.64 1.45
3.84 .096 5.08 1.k0
3.64 .101 5.66 l.h2
1.81 214 22.90 .313
P = 555 psis H_= 85 Btu/lb_ R_ =170 1b /£t3 H_ = 16 Btu/lb_
2.81 .12k 9.50 2.06
1.31 269 k3.7 -523
1.33 272 ho,h .82




o2l

1.34
2.00
2.10
2.10
2.36
2.47

253
.170
173
.163
.13k

12k

1.7

18.7

17.0
17.0
13.5
12.3

1.10
1.64
1.62
1.73
2.19

2.28

P = 575 psia H_ = 85 Btu/Ib_ R_ = 70 lbm/ft3 H_ = 16 Btu/lb_

1.8
1.98
1.3k
1.3k
1.28
1.25
1.50
1.52
2.06
2.36
2.58
1.76
1.86

153
146
.252
2Th
.266
.295
.265
271
.185
143
.128
.166

-159

22.6
19.1
Li.7
4i.7
45.7
48.0
33.3
32.4
17.7
13.5
11.2
2.2

21.6

2.48
2.50
1.09
-T25
99k
. 784
. 765
.502
1.50
2.02
2.21
2.40

2.47

¥P = System Pressure Hs = Enthelpy Zero Point
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TABLE ks

EXPERTMENTAL INSTABILITY POINTS FOR CONSTANT PRESSURE TESTS

UTILIZING H20 AS THE HEAT TRANSFER FLUID

H,0 Experimentel Instebility Points

T8 H, p H AP
i o
Inlet Inlet Inlet Flow
Temp Enthslpy Density HS-Hi In. H20
OF Btu/l'bm lbm/ £t

*P = 1740 psis H_ = 640 Btu/lbm R, =45 lbm/ft3 H, = 60 Btu/lbm

Lol Lol 52.6 239 1.90
53k 529 L6.9 111 1.20
534 529 46.9 111 1.20
518 510 47.8 130 1.20
521 513 47.8 133 1.20
503 ko2 48.8 148 1.40
k99 487 49.0 153 1.45
et | s 9.8 167 L0
L8 L62 50.0 178 1.60
462 bl 51.0 196 1.75
451 431 50.3 209 1.80
P = 2215 psie H_ = 705 Btu/lb R = k0 lbm/ft3 H, =90 Btu/l‘bm
579 588 43.9 117 | 1.20

559 561 Ls5.2 14k 1.30
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563
5k45
517
| 508
196
506
481

566
543
508
k9T
483

495
L66

k5.0
L6.4
48.1
48.3
49.3
48.8

50.0

139
162
197
208

222

210

239

1.30
1.45
1.60
1.75
1.85
1.75
2.0

¥P = System Pressure Hs = Enthelpy Zero Point
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TABLE Lb

EXPERIMENTAL INSTABILITY POINTS FOR CONSTANT PRESSURE TESTS

UTILIZING H,O AS THE HEAT TRANSFER FLUID

2

H,.O Experimental Instsbility Points

2

Power
Kw

u..
©

Entrence
Velocity

g
Grsvity

Parameter

Subcooling

#P = 1740 psie H_ = 640 Btu/Ib_ R = U5 Ib /ft> E_ = 60 Btu/Ib_

16.9 054 1.51: 3.98
L. 47 172 21.8 1.85
5.63 .137 13.7 1.85
6.85 111 9.3 2.17
T.54 101 T.65 2.22
8.77 .092 5.66 2.47
9.62 .086 b7 2.55

10.80 Noigd 3.73 2.78

11.60 .07l 3.03 2.97

12.60 .0TL 2.7h 3.27

14.10 .06k 2.19 3.48

“|P = 2215 psie H_ = T05 Btu/lbm R, = Lo lbm/ft3 H, = 90 Btu/lbm
5.79 .183 23.1 1.30
6.62 162 17.7 1.60
7.89 .137 12.4 1.55
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9.0k
10.32
11.50
12.65
13.35
14.92

.125
.113
106
.098
.091
.086

9.49
7.28
5.87
L.8k
k.35
3.43

1.80
2.19
2.31
2.46
2.3k
2.66

¥P = System Pressure HS = Enthelpy Zero Point




