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■ ABSTRACT

An analytical and experimental investigation was made of the flow 
instability threshold in a closed natural-circulation loop. The "density 
effect" model formulated by Boure was utilized to predict the instability 
threshold in terms of dimensionless parameters. Comparison with experi­
mental data showed that the model which is based on large density changes 
as the sole driving mechanism for the oscillations was sufficiently 
accurate to predict pressure and flow instabilities.

The various vibrational modes of the loop were calculated and com­
pared with the experimental oscillations. Results showed that the loop 
tended to vibrate at frequencies conçarable to the natural frequencies 
of the various modes of vibration of the loop.
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R - Fluid density, Ib^/ft^ P
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Defined by Equations (IV-7, IV-10, IV-13) 
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PLOW INSTABILITY THRESHOLDS IN A 
NATURAL-CIRCULATION LOOP

CHAPTER I 

INTRODUCTION

The onset of combined pressure and flow oscillations in natural- 

circulation loops and various other fluid flow systems under certain 
operating conditions are of importance to designers in various areas. 
Some of the areas where research has been and is now being carried on 
are: (a) regenerative heating of a rocket nozzle, (b) supercritical

conventional and nuclear powerplants, (c) seawater desalination plants,
(d) boiling water reactors, (e) emergency cooling of nuclear reactors, 
and (f) cool down of helium cryopanels. Since there are several areas 

where the problem of combined pressure and flow oscillations is of great 
importance, it is necessary that (i) the mechanism which causes these 
oscillations be understood, and (ii) the occurrence of these oscilla­
tions be predictable.

This study was carried on primarily in the critical and super­
critical thermodynamic regions. The purpose of this study was to pre­
dict an instability envelope which a designer can utilize in the 
development and operation of devices where these oscillations are 
in^ortant.

1



Oscillations occurring during heat transfer to a supercritical fluid
25were first mentioned hy Schmidt et ^  . They reported that pressure and

temperature fluctuated very much in time during a study made to determine 
apparent conductivity coefficients. Their study was made utilizing a 
natural convection loop employing ammonia as the heat transfer fluid. 
These oscillations occurred near the thermodynamic critical point and 
made their measurements difficult and in part impossible. They also 
found these oscillations quite severe since they noted that at approxi­
mately 118 atm = 112.1 atm), the pressure suddenly rose by about 
5 atm. Since this group was interested in apparent conductivity coeffi­
cients, they did not study these oscillations in any detail except to
note an increase in heat transfer near the critical state.

17 25 26Several investigators ’ ’ noted the occurrence of combined
pressure and flow oscillations but they were generally considered as a 
nuisance.

OTIn 1956 Wissler et al made the first important theoretical and 
experimental study of oscillations of the type mentioned above.
In this investigation a natural-circulation loop was built which utilized 
water as the heat transfer fluid. The loop was operated in the two- 
phase region and a study of the resulting periodic oscillations of flow 
rate and fluid temperature was made. The experimental results showed 
that stable operation was possible at both low power and at high power.

At low power stable operation was possible when the tençerature in the 
riser did not exceed the boiling point. At high power stable operation 
was possible when the entire riser contained a water-steam mixture. It 
was also found that intermediate power resulted in oscillatory modes of 
operation. The period of oscillations was found to be inversely



3
proportional to the mean velocity provided that some steam was in the 

riser at all times. When the presence of the steam was intermittent, 
the periods were found to be much longer.

The analytical results of Wissler et ^  showed that the product of 
the coefficient of expansion of the fluid ̂  and the vertical height 
of the riser must exceed a certain value if the flow perturbation is to 
be sustained. Their results also showed that the period of oscillations 
is approximately equal to the residence time of the fluid in the heater 
and vertical riser. In order to predict the period of oscillation, the 
basic equations, i.e. the conservation equations and an equation of state, 
were applied to the loop and were solved on an analog conq)uter. This 
analysis gave similar shaped oscillations but the periods were less than 
the experimentally observed values. The probable reason for the dis­
crepancies was the representation of the equation of state. However, 
the trends predicted by this study lent support to the general con­
clusions of the stability analysis.

12Garlid et aJ devised mathematical models of the transient be­
havior of two-phase natural-circulation loops. The initial portion of 
this work produced solutions from an analog computer which patterned the 
geometry and operating conditions after those of the University of 
Minnesota loop originally studied by Wissler as mentioned above. Since 
many simplifying assunçitions had to be made, more sophisticated models 
were formulated to be solved on a high speed digital con^uter.

The mathematical model utilized consisted of writing the con­
servation equations in finite difference form and applying a forward
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differencing technique* to solve the resulting set of partial differential 

equations. This study showed that it was difficult to establish rigor­

ously that the numerical procedure was stable to round off error and did 
not give spurious oscillations. Therefore, there is considerable doubt 
concerning the use of numerical methods in stability problems. This 
study also showed that slip (ratio of vapor velocity to liquid velocity) 
was a very important parameter in the analysis. Further, this study 
showed a significant deviation between the calculated and experimentally 
measured period of oscillations.

2kQuandt studied flow instabilities in a parallel flow channel both 
experimentally and analytically. This analysis starts from the four basic 
transient equations in two-phase flow in a heated channel. The equations 
are linearized and small perturbations are applied. The perturbed 
equations are integrated and the Laplace transforms of the integrated 
equations are taken. In order to apply this technique, several re­

strictive assumptions were made. Two of the most restrictive were:
(a) the period of oscillations is significantly (at least four times) 
longer than the residence time in the two-phase region, and (b) the mass 

flow rate varies linearly between the entrance and exit of the channel. 
Results from other studies show that the period of oscillations is 
approximately one and one-half times longer than the residence time.

This study emphasized the in^ortance of the term ^  . However, 
this term was arbitrarily adjusted to obtain agreement between analytical

This technique does not always permit convergence and recently a 
new differencing technique has been utilized in problems of this type, 
cf. Ref, 22.



prediction and experimental results. Another result from this study was 

that there is a certain minimum value of ^  which would make an oscil­
latory behavior impossible for a single-phase fluid. However, this con­
clusion was probably made without considering single-phase supercritical 
fluids. Another cause of flow oscillations discussed, but not studied, 
was non-uniform heating of the channel.

Wallis and Heasley^^ made an important contribution by mathematically 
studying three modes of oscillation of a two-phase flow natural-circulation 
loop. In addition to the mathematical study, attempts were made to explain 
the oscillations in physical terms, The qualitative descriptions were 
supported by their experimental observations of a glass natural-circula­
tion loop utilizing pentane as the heat transfer fluid.

Their approach was to consider the loop as a dynamic system of non­
linear time delays, storage elements (capacitors), and resistances. The 
equations were formulated in Lagrangian terms (i,e, following the particle), 
linearized, and then small perturbation techniques were applied. The 
utilization of Lagrangian variables results in eliminating the usual 
trouble experienced with mixed partial differential equations in time 
and space by expressing the position of a fluid particle in terms of a 
"residence time" in various parts of the loop and integrals over time.
They distinguished three possible mechanisms: (a) oscillations due to
changes in riser buoyancy, (b) oscillations excited by the heater section, 
and (c) oscillations caused by a restriction at the top of the riser.
The first two were investigated analytically and general conditions for 
stability were enumerated although the solutions were not applied to any 
particular physical problem.



Hines and Wolf*"̂  studied pressure oscillations occurring when RP-1 
(kerosene) and DECH (diethylcyclohexane) were circulated through a test 
section which was electrically heated at supercritical pressures and 
wall temperatures. The dominant frequencies varied from 1200 to 7500 cps 
with principal minor frequencies ranging from 600 to 15,000 cps. The 
amplitude of the oscillations varied from 55 to 380 psi. Sharp increases 
in the heat transfer coefficient were observed near the critical 
temperature. When the pressure was increased from 700 to 2000 psia, no 
increase in heat transfer was obtained. Audible noises which were des­
cribed as high-pitched screams accompanied the increased heat transfer 

and could be heard at distances of 200 yards from the test cell.
Assuming a sonic velocity, fundamental longitudinal acoustic 

resonance frequencies were calculated for the test section. These fre­
quencies were 320-350 cps for a closed pipe and 65O-7OO cps for an open 
pipe. Therefore, it was concluded that the pressure oscillations were 
not simple, resonant, acoustic oscillations similar to those reported 
by McCarthy and Wolf^^.

It was concluded from the experiments that the basic supercritical 

vibration phenomenon can arise in a liquid regardless of the damping 
placed on the tube wall but that resultant damage to the tube was a 
function of wall strength and damping.

The authors also suggested a hypothesis which utilizes a variable 
viscosity to account for the experimentally observed oscillations. It 
was suggested that a sudden moderate increase in wall tençerature causes 
an appreciable thinning of the laminar boundary layer. Thinning of the 
boundary layer results in a wall tençerature drop and a corresponding
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rise in viscosity with a resultant increase in the laminar boundary layer. 

This would produce a wall temperature rise and the cycle would be re­

peated. However, no measurements of heater wall temperature could be 
made with the recording equipment employed in their series of tests.

Grouse and Andrysiak built a closed, transparent forced and natural- 
circulation loop which was resistance heated with parallel, vertical 
test sections utilizing Freon-113 as the heat transfer fluid. Results 
from this study showed the following:

(a) The range of periods of measured flow oscillations were of the 
same order of magnitude as the range of natural periods calculated for 
the system.

(b) If the flow rate was large enough, there were no oscillations 
at any inlet temperatures.

(c) Subcooling was the most useful single independent variable in 
determining whether or not the flow would fluctuate.

(d) Boiling must be taking place in the test sections for flow 

oscillations to occur.
(e) For any particular heat flux, loop geometry, and liquid flow 

rate, there is a definite range of subcooling within which the flow would 
oscillate.

15Harden investigated pressure and flow transients in a natural- 
circulation loop operating in the critical and supercritical thermo­
dynamic regions which utilized Ffeon-ll4 as the heat transfer fluid. He 
concluded from other investigations in the field that the equation of 
state was very inport ant in the prediction of pressure and flow transients. 
Upon close examination of the experimental data, it was concluded that 
the oscillations seemed to occur when the fluid attained a maximum energy
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density (energy/unit volume). Therefore, on the basis of the experimental 

evidence it was concluded that pressure and flow oscillations occur near 

the density-enthalpy (ph) maximum as a function ofJbemperature, density, 
or enthalpy.

In the analytical portion of this investigation Harden attempted to 
obtain sustained pressure and flow oscillations by solving the flow 
equations on a digital computer utilizing a finite différence technique. 

Sustained oscillatory solutions were obtained by this technique but as 
mentioned previously, this method proves to be difficult in differen­
tiating between an actual instability and a machine-generated instability.
Therefore, some doubt is cast on the analytical results obtained.

29Walker and Harden constructed a natural-circulation loop and 
experimentally investigated the pressure and flow instabilities occur­
ring in the critical and supercritical thermodynamic regions. Since 
most researchers in the area had concluded either directly or indirectly 
that the equation of state was very instrumental in the behavior of 
oscillatory flows, four fluids were chosen to be investigated experi­

mentally. Three of the fluids were chosen on the basis that they had 
previously been observed to exhibit an oscillatory behavior when uti­
lized as the heat transfer fluid in a natural-circulation loop (H^O, 
Freon-12, and Freon-ll4). The other fluid, CO^, was chosen since no 
instabilities had been reported in the literature when it had been uti­
lized as the heat transfer fluid in a series of experiments with this

9 l8 20fluid in the critical region by Smith and co-workers ’ ’ . Results
from this investigation showed that pressure and flow oscillations did 
occur for each fluid near the ph(T) maximum for all four fluids. These



results also showed that instabilities did occur when utilizing COg as 
the heat transfer fluid in a natural-circulation loop. The instabilities 
proved to be easier to locate for the four fluids in the following order:

(l) Freon-ll4, (2) Freon-12, (3) HgO, (4) COg. The reason for this 
will be shown in Chapter V.

Cornelius and Parker^^ studied pressure and flow oscillations in 
both natural convection and forced flow in the critical and supercritical 
thermodynamic regions. It was concluded that there were two dominant 
types of oscillations that occur. One was of an acoustic nature which 
produced pressure and flow oscillations in the frequency range from 5 to 
30 cps. The second was termed a slow oscillation and exhibited fre­

quencies from 0.05 to 0.1 cps. It was concluded that the basic cause of 
both types of oscillatory behavior originated in the heated boundary 
layer. A behavior very similar to that of Hines and Wolf^^ was postu­
lated. A pressure wave passes the heated surface and compresses the 
boundary layer thereby improving the thermal conductivity. This results 
in an increased heat transfer rate from the wall to the fluid. A rare­
faction wave would have caused the boundary layer to expand and thermal 
conductivity to decrease and resulted in a decreased heat transfer rate 
to the fluid. This pressure-dependent heat transfer rate could have 
caused the resonant acoustic oscillation to be maintained.

A sudden improvement in the heat transfer coefficient which was 
attributed to a "boiling-like" behavior was also postulated. This be­
havior would result in an oscillatory wall temperature and an oscilla­
tory transfer of heat from the wall to the fluid.

An attenqpt was made to formulate a model which would exhibit a
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15sustained oscillation. A model quite similar to that of Harden was 

utilized. A numerical solution was attempted utilizing an implicit 

differencing technique. In order to simulate the observed "boiling-like" 
behavior, the heat transfer coefficient - mass flow ratio was given a 

step increase to approximate the experimentally observed wall temperature 
variation. It does not appear surprising that a sustained oscillation 
would result in view of the fact that a "forcing function" was incor­
porated in the model. This theory is somewhat in doubt since some in- 

15 2kvestigators ’ and this author found sustained pressure and flow oscil­
lations with no apparent cycling of wall temperature.

10The problems encountered by Cornelius concerning flow rate measure­
ment with a venturi were not experienced in this investigation and recent

19work in this area by Jain shows that a venturi gives a valid flow 
measurement even during an oscillatory flow. This subject will be dis­
cussed in more detail in Chapter II which deals with the experimental 
apparatus.

g
Boure made an excellent theoretical study of pressure and flow 

oscillations in a heated channel. Although this study is primarily 
theoretical, some comparisons were made with data from other studies 
which primarily include water at low pressures. The equation of state 
is predominant in the model utilized and the mechanism of oscillations 
is postulated to be the behavior of the equation of state or the "density 
effect". This model showed that the density effect, with its delay times, 
was sufficient to cause the system to oscillate and to explain the experi­
mentally observed oscillations.

This model utilized the simplifications afforded by the use of
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Lagrangian coordinates which were mentioned earlier to formulate the 

problem. The flow equations were formulated, linearized, and the method 
of small perturbations applied to the resulting equations. The methods 
of control theory were then utilized to predict stability. Physical 
interpretations of the parameters which resulted from the mathematics 
were given and the effect of each term was investigated.

A stability map was given in terms of the system parameters and 
some special flow effects were studied. The model utilized was a single­
phase model and these restrictions as applied to a two-phase model were 
discussed.

21Maulbetsch and Griffith presented a somewhat novel approach to the 
stability problem by introducing an energy storage mechanism assumed to 
be that of a compressible volume upstream of the heated test section.. 
Small perturbations were applied and a Laplace transform of the system 
of equations was obtained. Marginal stability was assumed and an ex­
pression for the oscillatory frequency obtained. A critical slope of 

the pressure drop - flow rate curve in the heated section was computed. 
Results showed that steady state measurements of pressure drop - flow 
rate curve may be used to describe the unsteady behavior with sufficient 
accuracy to draw meaningful conclusions concerning system stability.

All of the previous studies lead to the following conclusions:
(1) The equation of state is of fundamental importance in the 

study of combined pressure and flow oscillations.
(2) It should be possible to enumerate instability thresholds to 

include first order effects.
(3) Numerical techniques appear to be unreliable in the study of 

oscillatory flow.



CHAPTER II

EXPERIMENTAL APPARATUS

The natural-circulation loop utilized in this investigation had 
already been designed and built to accommodate the four heat transfer 
fluids used in this investigation. A description of this basic loop

28can be found in Walker . For this investigation, the loop was re­
designed somewhat to allow for transient instrumentation and to more 
closely approach the equation of state used in the analytical model 
while at the same time giving more control of the loop operating
parameters. Therefore, only a description of the additional apparatus
and the modifications of the basic loop will be included.

A. Description of the Added Equipment 
A hydraulic accumulator was the single piece of equipment added 

to the basic loop for this investigation. This accumulator consisted 

of a stainless steel cylinder which housed a rubber diaphram. The five 
gallon capacity accumulator kept pressure relatively constant by ab­
sorbing pressure surges. The accumulator was connected to the loop at a 
point just downstream of the second heat exchanger through a 0,25 inch 
O.D. stainless steel tube. The accumulator was pressurized to system 
pressure with nitrogen gas. Figure (l) shows a schematic of the accumu­
lator as it was integrated into the loop.

12
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lU
Addition of the accumulator to the system and the addition of 

transient instrumentation required that the circulation loop piping be 
extensively redesigned. The final design utilized in this investigation 

is shown in Figure (2). Notice in this figure that an alternate position 
is available to connect the differential pressure transducer to the 
venturi. This arrangement allows an evaluation of what effect line 
length has on the output of the transducer. Cornelius^® reported that 
oscillations of up to 120 psi amplitude were observed while using a 
venturi for flow measurement and the amplitude did not exceed 30 psi for 
the same type of oscillation after a Pottermeter (Potter Aeronautical 
Corporation) was installed. Jain^^ ran a series of tests where both a 
venturi and a Pottermeter were used to simultaneously measure the flow. 
These tests showed that the maximum flow rates using both devices 
matched quite well. Since there was some disagreement, the alternate 
piping was included in the redesign of the loop.

Several new valves were installed that were not included in the 
original design and a vacuum pun^ was utilized to make certain the loop 
was completely evacuated before starting a test series after fluid had 
been added to the system.

B. Instrumentation
The principal reason for the piping redesign mentioned in the above 

section was to accommodate the transient instrumentation added to the 
loop. Figure (3) shows the loop instrumentation schematic. Figure (2) 
shows the location of some steady state temperature instrumentation 
while transient instrumentation is shown in Figure (3)«
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1. Flow Measurement

The flow was measured with a calibrated venturi. Calibrations and
28specifications for this venturi can be found in Walker . A 5.0 psid 

differential pressure transducer was connected across the outlet taps 
of the venturi. Cornelius^^ found that during rapid pressure oscilla­
tions measurements indicated that differential pressure oscillations 
whose amplitude exceeded the average value (flow reversal) were present. 
He suspected that the large venturi pressure drop amplitudes were due 
to the phase relationship of the absolute pressure at the venturi taps 
although subsequent analysis indicated to him that this was not entirely 
the reason for the large amplitude oscillations encountered in his experi­
mental work.

19Jain showed the existence of a flow reversal in oscillatory flow 
was a reality. The problem was not one of instrumentation but was, in 
fact, a flow reversal. Several flow reversals were encountered in the 
present study and several were also encountered during the experimental 
investigations of Harden^^.

2. Pressure Measurement

In addition to the 1000 psig and 5000 psig bourdon-tube pressure 
gauges, a 1000 psig and a 5OOO psig pressure transducer were utilized.
The transducer circuit for both the absolute and differential type 
transducers are shown in Figure (4). Checking of the transducers can be 
accomplished without the use of a standard pressure source by utilizing 
the Honeywell carrier ançlifier. This checking is effected by electri­
cally shorting out one leg of the transducer bridge and is explained in
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detail in Appendix. VIII. This method can also be used for the differ­
ential pressure transducer.

3. Wall-Temperature Measurement

Wall temperatures were measured and recorded for the electrically 
heated section of the loop. The heater section temperature was monitored 
at the two locations shown in Figure (3). The exact placement varied 
slightly with the particular test series. Thirty gauge chromel-ralumel 
thermocouples were placed on a thin mica sheet and the mica sheet was 
placed on the heater section wall. Then a strip of Durabla asbestos was 
wrapped around the thermocouple bead which was lying on the mica sheet 
which in turn was lying on the heater section wall. The purpose of the 

mica sheet was to electrically insulate the heater section from the 
thermocouple in order to reduce noise pickup. Noise on the thermocouple 
channels proved to be quite a problem with a considerable effort going 
into reduction of this noise level. Various low pass LR and RC filter 
circuits were employed in an effort to reduce the noise level. In 
addition, extensive shielding was also ençloyed. Finally, these filters 
were discarded and a single 1500 y,-fd capacitor was installed in parallel 
with the thermocouple as shown in Figure (5)• The reason for the ex­
cessive noise problem in this particular test apparatus was due to the 
power supply. This power supply is a single phase, high ampereage, A.C. 
transformer. Because of this, there is essentially a 100# ripple factor. 
Most power supplies utilized in laboratories where it is necessary to 
record transient parameters that emanate from a very low voltage signal, 
such as that of a thermocouple, utilize B.C. current. Generally, these 
power supplies are three-phase transformers that rectify the A.C. current.
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This type power supply nominally has only a % ripple factor. Therefore, 

further noise reduction will probably necessitate acquisition of a D.C, 
power supply. Several other temperatures describing the loop operation 
were taken but not recorded since they were essentially steady state 
readings. Several of these were monitored so that the maximum tempera­
tures of the fluid entering the various instruments would not be exceeded. 
The location of these thermocouples is shown in Figure (2). All were 
attached to the stainless steel piping with a condenser discharge type 
thermocouple welder and then covered with an epoxy for maximum strength.

4. Stream Temperature Measurement
The bulk fluid temperatures were measured downstream of the heater 

section and upstream of the venturi as shown in Figure (3). The thermo­
couples were designed similar to those shown in Figure (5) of Walker^® 
which were purchased from Minneapolis-Honeywell (Part No. 2K1ML3E6-5)•
The thermocouples were fabricated in the shop utilizing 0.25 inch O.D. 
type 304 seamless stainless steel tubing having a wall thickness of
0.028 inch. A high temperature ceramic adhesive was used inside the 
tubing to separate the thermocouple wires and to separate the wires from 
the inside tubing wall. The thermocouple measuring junction was left 
exposed in the stream in order to improve the response time. The response 
time was estimated to be on the order of 0.1 to 0.2 sec. thereby elimi­
nating detection of temperature transients of frequency greater than 10 
cps. Thirty gauge chromel-alumel thermocouples were utilized. Noise was 
also a problem for these two thermocouple channels and a capacitor had 
to be utilized to suppress the noise to an acceptable level. An iso­
thermal thermocouple reference box was designed and built and is shown in
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Figure (5)- This reference junction box provided an isothermal point 
where the thermocouple wires could be replaced by copper wires going to 

the potentiometer and the amplifiers. Note that the potentiometer and 
the amplifiers are connected in parallel permitting simultaneous moni­
toring of the thermocouples utilizing the potentiometer for steady state 
readings and recording the transient signals on the oscillograph.

Figure (5) also shows the design of the common reference junction 
for the four measuring junctions being recorded.

The thermocouples fabricated in the shop had to be replaced while 
operating with Freon-lli+ as the heat transfer fluid. The operating 

temperatures that the thermocouples were exposed to exceeded the value 
that the epoxy pressure sealant could withstand. Two similar thermo­
couples were purchased from Minneapolis-Honeywell (Part No. 2KUm15-e6-6) 
which would seal to temperatures up to 1000 F.

5. Recording Instrumentation
Transient recording Instrumentation is a necessity for the study of 

an oscillatory flow system. This type instrumentation was assembled and 
placed in a mobile cabinet in order that it could be utilized by more 
than one project and could be adapted to another system simply by the 
connection of the inlet signal and the 110 V. wall plug.

This system consists of a 12-channel recording oscillograph 
(Minneapolis-Honeywell visicorder), a two-channel carrier amplifier and 
power supply (Minneapolis-Honeywell), four differential D.C. amplifiers 
(Hewlett-Packard), and a D.C. bucking voltage system.

Figure (6) shows the complete instrumentation package. Figure (4)- 
shows the individual circuit diagram for both a pressure measuring
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channel and a temperature measuring channel. Shielding was utilized 
throughout this system (although not shown in the circuit diagram of 
Figure (4)), The shielding was tied to a common ground point - the 
ground plug of the 110 V. line.

A bucking voltage system was designed and built for the four tempera­
ture channels which are fed into the Hewlett-Packard differential ampli­
fiers. The controls for this system are shown in Figure (7) and the 
circuit diagram for one channel of the four-channel system is shown in 
Figure (8). This system was necessary to protect the optical galva­
nometers used in the visicorder. The galvanometers used in this investi­
gation were fluid damped galvanometers (Minneapolis-Ifoneywell Part 
No. M-1650) which were current limited to 100 ma for short time operation 
and 80 ma for continuous operation. This bucking voltage system is 
capable of bucking out a signal up to 4o mv, hence, its use insures 
that an overvoltage will not be applied to the optical galvanometers. 
Further, this system is convenient since it allows the galvanometer 
light image to be conveniently placed on the photographic paper.

A bucking voltage system is built into the carrier amplifier which 
provides the two pressure channels with the same ease of operation that 
the bucking voltage system provides for the four temperature channels 
except that the galvanometer light image cannot be placed on the photo­

graphic paper with this system without turning the optical galvanometers 
themselves.
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1. Recording Oscillograph, Minneapolis Honeywell 
Visicorder, Model 906C.

2-5. B.C. Differential Amplifier, Hewlett-Packard,
Model 8875A.

6. Zero Offset Voltage System, Described elsewhere 
in this chapter.

7. Carrier Anqplifier, Minneapolis Honeywell,
Model 131-2C (Power Supply and two D.C. Amplifiers 
a and b).

8. Voltmeter, Hewlett-Packard, Model 4lOB.
9-10. Attenuator*, Minneapolis Honeywell, Accudata VII.

*This equipment not utilized in this investigation.
The following instrumentation was used but not shown 
in this figure.

A. Ammeter, Weston, Model 370.

B. Current Transformer, Westinghouse, Model PC-137 «

FIGURE (6) MOBILE INSTRUMENTATION SYSTB1
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CHAPTER III

EXPERIMENTAL PROCEDURE

The loop was assembled and pressure checked for leaks at U5OO psig 
with water as the system fluid by utilizing a hydraulic pump to achieve 
that pressure. After all leaks had been stopped, the system was allowed 
to remain at that pressure. After 2h hours, the pressure had dropped 
approximately 6OO psi. This was judged as sufficiently leak free since 
the inlet bleed valve was known to leak slightly at that high pressure.

After leak checking, the loop was drained of water and a Freon-12 
cylinder was connected to the inlet process fluid line. The entire 
system was then evacuated utilizing a vacuum punç. After the system 
had been evacuated, Freon-12 was introduced into the system until the 
pressure in the loop and in the Freon-12 cylinder had equalized. The 
cooling water was then turned on and allowed to circulate through the 

heat exchangers. The pressure was lowered in the loop and additional 
fluid was allowed into the system. To further charge the system, the 
Freon-12 cylinder was heated in order that the fluid be distilled into 
the loop. This heating continued until the pressure in the loop reached 
180 psig (later the same technique was utilized for charging the system 
with Freon-ll4 and COg - Freon-ll4 was distilled in the loop until the 
pressure in the loop rose to 90 psig and COg was pressurized to 1250

27
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psig). These pressures assured that sufficient liquid was in the loop.

The accumulator was then charged with nitrogen gas to a pre-determined 
pressure for the particular test to he run. This pressure depended on 

the thermodynamic region in which the loop was operated in for that parti­
cular run. Subsequent operation with the accumulator in the system 
showed the following:

(1) The accumulator tended to damp the oscillations encountered; 
however, it was much more effective for the slower oscillations than for 
the acoustic-type oscillations.

(2) When trying to reach a certain thermodynamic operating region, 
the accumulator valve was sometimes kept closed. If the accumulator 

valve was left closed, very high ao^litude oscillations such as those 
shown in Figure (l?) were often encountered and attempts to get out of 
this region were very difficult. This situation often occurred just as 
the system was approaching a sustained oscillation. The power level for 
this condition was just high enough for the system to attain an oscil­
latory mode and then damp out.

(3) The accumulator was essential in the constant pressure runs.
For these runs, the loop was filled and the accumulator nitrogen side 
was pressurized to the desired operating pressure. The loop was then 

heated slowly and the thermodynamic operating region was reached as the 
fluid was bled from the system to the accumulator while maintaining a 
constant loop pressure.

After filling the loop and integrating the accumulator into the 
fluid circuit, the Barton differential pressure gauge was bled to insure 
that only liquid occupied the line.
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Various techniques were utilized to establish loop operation in a 

particular thermodynamic region. The most common method was to first 
establish a relatively high flow rate in the loop by turning on the power 
and operating with the heat exchangers at maximum cooling water flow.
This established a density head and a flow resulted. After the fluid had 
attained a sufficient flow rate, the danger of heater section burnout 
was reduced. After the establishment of this flow rate, the oscillations 
were approached by bracketing the ph(T) maximum with the bulk inlet and 
the bulk outlet (heater section) fluid temperatures. The cooling water 
flow rate and the power were then adjusted simultaneously until the 
ph(T) maximum was isolated between these two bulk tençeratures.

Various other techniques of locating these oscillations were 
utilized. One method was to slowly bring the loop pressure up by slowly 
heating the fluid. In this way the flow oscillations spontaneously re­
sulted without operating the loop in any specific manner.

Control of loop operation was possible by adjusting the amount of 
power into the heater section, adjusting the amount of cooling water 
flow, and utilization of the accumulator to control system pressure.

After each series of test runs, the system was taken apart and 
cleaned. During operation one had to be careful not to allow the heater 
section wall tençerature to achieve too high a value (approximately 600 
to 700 F for the Freons). If the loop was allowed to overheat, a 
chemical reaction would occur and a residue would be deposited on the 
heater section walls. This deposit would severely reduce fluid flow 
rates and the loop would have to be disassembled and cleaned thoroughly.



CHAPTER IV

.AMLYTICAL TREATMENT

A. Establishment of the General Equations
In order to be able to avert the oscillation problem which exists

in the type of fluid flow systems with heat addition encountered in this 
investigation, it becomes necessary to accurately predict the envelope 
of these instabilities. An accurate prediction depends on how closely 
the mathematical model describes the physical situation.

Figure (9) gives a schematic representation of the physical situation. 
The fluid flows in a cylindrical pipe due to a pressure difference be­
tween the entrance and exit of the pipe. This one-dimensional flow of 
fluid is considered as flowing through three separate regions. The 
regions considered are: "

(1) Upstream adiabatic section.
(2) Center heated section.
(3) Downstream adiabatic section.
This closely approximates the physical situation since the upstream

portion and the downstream portion are insulated. One could consider a 
fourth region following the downstream adiabatic section, the cooler 
section. However, it is not really necessary to consider this section 
as long as it is possible to specify the conditions entering the upstream

30



31

,W= CONSTANT

DRIVING HEAD 

A P = A P ( U o , ^ )

t

1

Z> 0

£<0

FLUID FLOW

FIGURE (9) FLOW MODEL SCHHATIC



32

adiacatic section and those leaving the downstream adiabatic section.

This section would become necessary, for exançle, if integration around 
the loop were employed in the mathematical model. As shown in Figure (9) 
Z has been considered as the coordinate direction along the length of 
the pipe with which the various properties (R, H, etc.) vary. are the 
various lengths of the three sections of the pipe. U^(T) is the entrance 
velocity into the upstream adiabatic section. W is the constant volu­
metric heat flux over the heated section of the pipe.

With these definitions and with the aid of Figure (9), the mathe­
matical model is formulated. As defined above, the problem consists of 
the determination of four functions of distance, Z, and time, I. These 
functions are:

(1) Density - R = R(Z,T)
(2) Enthalpy - H = H(z,T)
(3) Pressure - P = P(Z,T)
(4) Velocity - U = U(Z,T)
Determination of these four quantities as functions of distance and 

time would give a perfect definition of the fluid flow system. In order 

to determine these four unknown functions, four equations are necessary. 
The four equations that are applicable are:

(1) Conservation of mass
(2) Conservation of momentum
(3) Conservation of energy
(4) Equation of state
The conservation equations (l - 3 above) can be found derived in

2most fluid mechanics texts and in Bird, Stewart, and Lightfoot in
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particular. However, it is necessary to make several simplifying assump­
tions to reduce the complexity of the equations. In this analysis, the 
following assumptions were made:

(1) Radial variations of thermodynamic properties and velocity are 
neglected.

(2) Kinetic and potential energy terms are neglected.
(3) Heat transfer by conduction along the Z axis is neglected.
(4) Shear forces are neglected.
(5) The effect of pressure changes with time are neglected.
With these assumptions, the conservation equations can be written

as follows :
(1) Conservation of Mass

(1) ^

(2) Conservation of Energy

(3) Conservation of Momentum

= 0 (3)
Having developed the conservation equations, it becomes necessary 

to develop an equation of state. The installation of an accumulator in 
the physical system provides justification for using a simplified 

equation of state. The accumulator provides a relatively constant 
pressure throughout the system due to a discharge of fluid into the 
system when system pressure becomes less than a pre-set value and a 
removal of fluid when system pressure becomes greater than this pre-set 

value. The assumption of an absolutely constant pressure is valid
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strictly only for the low frequency oscillations. However, the accumu­
lator was able to keep the system pressure constant until the oscilla­
tions occur and the value of the system parameters just prior to the 
oscillations were the ones utilized in predicting the instability 
envelope. Therefore, an equation of state will be utilized in which the 
density is a function of the enthalpy only since a constant pressure 
system is assumed; i.e.

R = R(H) (4)
A typical plot of density as a function of enthalpy along an iso­

bar is shown in Figure (lO) for water at the critical pressure. Repre­
sentations for substances other than water and for other supercritical 
pressures are similar (cf. Figures (11 - l4)). In order to develop an 
analytical expression for R(H), it is convenient to move the enthalpy 
zero reference from saturated liquid at 32F to the zero point shown in 
Figure (15) • This is the point where the liquid becomes saturated for a 
sub-critical fluid. By changing this arbitrary reference point, the 
equation of state. can be approximated by a single function in each region 
(H ̂  0 and H ̂  O). The equation of state shown in Figure (lO) was approxi­
mated in the two regions by the following expressions:

where

R = R^ + (-4h )^/^ for H s 0

V c« = h T h for H ^ Oc

R = R @ H = 0 o

(5)

H = H @ R  = R/2 c o'
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Equations (l), (2), (3), and (5) should now allow for the solution 
of the four unknowns. Since these four equations must be solved simul­
taneously, an attempt to combine these equations gives the following. 

Since

R = R(H)

à? = àS
ÔT dH ÔT

=  É5 ÈSÔZ dH ÔZ

Substituting these relations into Equation (l), 

and
(6,

Substituting the energy equation (2) into (6) gives
dR r W 1 „ ÔU
5h L s J = 5z

and

H ' ” â  [ I  ]
Utilizing the equation of state (5), the derivative on the right 

side of (7) can be determined.
For H ̂  0

^  [ R ] " dH [p + (-4H)l/2]
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For H a 0

dH L R J “ R HG C

Simplifying the notation, let ̂  F  ̂J = f(H) where f(H) is given 
hy Equation (8). Therefore (7) becomes

H  = Wf(H) (9)

Finally, Equation (9) can be substituted into the conservation of 
momentum equation to obtain

2
II + R + RU Wf(H) + RG + ̂  = 0 (10)

Little simplification was obtained from this and the set of 
Equations (l), (2), (5), and (lO) must still be solved.

This set of equations is a set of mixed partial derivatives and 
cannot be solved analytically without further simplifications. There­
fore, it is necessary that a closer look at the physical aspects of the 
problem be taken in order to make some simplifying assanctions.

One method of solution of this problem based on the as sanction of 
an oscillatory flow would be a small perturbation technique. Various
investigators have employed this technique in two-phase instability

7studies with various degrees of success. Boure presents a very excel­
lent theoretical model in what he calls the "single-phase model". He 
utilizes this theoretical model to predict flow instabilities in the 
two-phase region.

The fundamental idea that this model stresses is what Boure calls
the "density effect". Since this effect is identical to the occurrence

29of a maximum in the density-enthalpy product in Walker and Harden 
(this effect occurs since the density decreases faster than the enthalpy
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increases in this region thereby giving rise to a maximum in the density- 
enthalpy product), the model is quite applicable to the present study 
with only slight modifications.

The fundamental idea in Boure's model is the representation of the 
equation of state which leads to the so-called density effect. Figure 

(16) shows the equation of state for water in the two-phase region at a 
constant pressure of 400 psia. This is a representative pressure that 
might be considered in applying this model to a two-phase flow problem. 
Figure (15) as well as Figure (16) shows the idealized equation of state 
to be used in this analysis. This equation is written as follows;

R = R H ̂  0
R H

c
Here it can be seen that the density in the compressed liquid region

has been idealized as a constant R .o
Comparison of the density-enthalpy relationships for water along an

isobar for a subcritical and a supercritical pressure shows that they
are quite similar under certain conditions. If slip and local boiling 

12(cf. Garlid et al ) are taken into account, the density-enthalpy re­
lationship is given as shown in Figure (16). This representation com­
pared to a supercritical isobar for water as shown in Figure (lO) shows 

a striking similarity. Therefore, utilization of the simplified equation 
of state should give results in the critical and supercritical thermo­
dynamic regions comparable to those obtained in the two-phase region. 

Utilizing the equation of state (ll) in Equation (8) gives
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o

i-F il = J:. dH L R J R Ho^c

H 3 0

H a 0
(12)

Substituting (12) into (7) gives

and
ÔU W
BZ - Rô 'c

H a 0
(13)

Checking the dimensions of Equation (l3) shows that this expression 
has units of the reciprocal of time, therefore, a dimensional time 
parameter is defined as

(14)

Note that in the adiabatic sections and in the heated sections for 
H 3 0, the time parameter just defined approaches «. In the heated
section for H ̂  0, this parameter becomes ® where 0 is defined as

H R
(15)

Therefore, with these definitions, the system of equations to be 
solved can be written as follows;

(i) Continuity

(ii) Energy

(iii) Momentum 
Exit

ÔU 1
az = 0 (16)

(2)

Exit
AP = -I  §1“  ° i^Entrance ^Entrance

ran + u
Ld l 0 + G + MJ

2D ]RdZ (17)
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(iv) State
R = R H ̂  0

c
along with the definition I = ̂  lî [ i ] (14)
and since the fluid enters the pipe in the compressed liquid region,

«entrance = ‘«o '̂ 8)

B. Dimensional Analysis 
The following dimensional parameters have been introduced in the 

preceding section.

(i) Geometric parameters
1) D - hydraulic diameter
2) F - friction coefficient

3) - lengths of the sections of the pipe
(ii) Physical properties

1) R^ - density
2) - enthalpy

(iii) Acceleration of gravity - G
(iv) Operating parameters

1) - Entrance velocity
2) - Entering enthalpy
3) W - Volumetric heat flux

Therefore, it can be seen that there are 11 parameters that were
utilized in the dimensional equations. The number of parameters could
be reduced by non-dimensionalizing. In order to non-dimensionalize,
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three basic independent parameters and their characteristic values were 
chosen. These quantities were chosen on the basis of their importance in 

the system of equations. Two quantities which are important are time 
with the characteristic value and length with the characteristic value

(length of the heated section). The third parameter is not easy to 
choose. Both enthalpy and density are very important parameters, but 
density was chosen with a characteristic value of since enthalpy can 
be eliminated between the continuity and energy equations for H ̂  0, i.e., 
from Equation (l)

Substituting from Equation (l6)

5 ° S  = ■ i
for H s 0, © = ©^ and

c

Therefore, the three independent quantities and their characteristic 
values are

(i) Length -
(ii) Density -

(iii) Time - ©^
Utilizing these quantities, the non-dimensional parameters become
(l) Reduced Length

L
where i = 0 or 1

c
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(2) Reduced Coordinate

(3) Reduced Time
c

, T TW
®o ■ V o

(4) Reduced Density
R
Ïo

(5) Reduced Velocity
U®

c
(6) Reduced Gravity „ „

<*0 ° ( V o )

(7) Reduced Friction
FL

(8) Reduced Pressure Difference

(9) Reduced Volumetric Heat Flux

w =
W © ^ R ^  ^ c _ o c
R L ^ ^o c c

(10) Reduced Enthalpy

1,2c c
(11) Reduced Time Parameter

e  =  l -
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(12) Reduced Frequency

(u = 00 c
With the aid of these non-dimensional parameters, the non-dimensional 

equations which determine the three unknowns u, p, and h can be written. 

Using these definitions, the non-dimensional form of Equation (ll*-) becomes

i = p]
From Equation (ll), the non-dimensional equation of state is deter­

mined as being

p = 1 for h ^ 0
h (21)

p = for h 2 0
c

Substituting Equation (2l) into (20) it can be seen that 0 takes on 

two values depending on the enthalpy:

for h ̂  0

5 ' " â  H  ' °
therefore, 9

for h s 0
(22)

h + h1 d r cl w
8 " ̂  dh L h J ' h  -c c

therefore, 0 = 1
Hence, it is seen that the non-dimensional model equations may be 

written for two non-dimensional times, 0 = 1 and 0 -» 00.
Therefore, the continuity equation can be written for the two zones 

(non-dimensional time). From Equation (16)

in i 
az = 0
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utilizing the non-dimensional quantities, (l6) becomes

ÔU 1
as -  e (23 )

for the two zones

0 = 1, ^  = 1 (2k)

6 Iz " ° (25)

The energy equation is easily deduced utilizing the non-dimensional 
quantities. Equation (2) becomesp H  ̂  p"" It =

In the zone where 0 is finite (0 = l), it is more convenient to 
utilize the alternative form of the energy equation given by Equation (19). 
In non-dimensional form, this equation becomes

p [It “ It] =
hence, for the two zones, it is found that

(27)® P It + P" It = *
Likewise, the momentum equation can be written in non-dimensional

form. Equation (17) becomes
1+^

Ap = r + § + 8 + (28)
%

From Equation (18) the non-dimensional entry condition becomes
h - -h^ (29)

Table 1, consisting of equations (20) through (29), was constructed 
in order that one could visualize more clearly the pertinent equations in 
the two zones.
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Zone Where 9 = 1 Zone Where 0 -• «
{ h >  o} fh< 0 (Compressed Liquid)!

1 h > 0 (w -* ») J

Continuity:

(24) (25)

Energy:

H i t  ^ ^ (27) ( 26)

State :
h ^  0 ^

0 c (21)P ■ h + hc
P
p " h + hĈ (21)

h ̂  0 Impossible in this 
zone

p = 1

Momentum:
r  ^Ap =
~^o

+ g + fû j- pdz (28)

Entrance Condition:
h = -h0 (29)

Table 1. System of Equations for the Two Zones

C. Partial Reduction of the System of Equations 
The system of equations for the upstream adiabatic zone are rela­

tively simple.

(l) Upstream Adiabatic Zone. For this zone, w = 0 and 0 -* ». 
From Equation (25)

r . - °
which gives

u = u(t) (30)
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and Equation (30) can be written
u = Ug(t) (31)

where the o index refers to z = 0.
From Equation (26), it is found by utilizing Lagrangian variables

that
dh , , Bh Dh w _
3t = Dt = p = 0

since an adiabatic section is being considered. Hence,
h = -ho

Equation (2l) gives p = 1 in this section.
Finally, for the upstream adiabatic section, the following 

equations are valid:

(32)

(29)

u = u (t)

(33)

(2) Heated Zone With h 3 0. In this section, w > 0 and 0 -♦ ». 

Integration of Equation (25) gives u = u^(t) as in the previous zone. 
Equation (26) gives

Utilizing Lagrangian variables (following the particle) in the 
integration gives

h = wt + constant (35)
Let T be defined as the instant when the particle attains zero 

enthalpy (becomes saturated). Then h = 0 @ t = t and the constant of 
integration in Equation (35) can be evaluated, i.e.,

h = w(t M t) (36)
Equation (36) immediately leads to the evaluation of t^ the instant the
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particle passes the origin z = 0 by substituting in the last expression,

-ho = w(to - t )
or

to = T - —  (37)

Utilizing Equation (37), a relation can be established between z,
t, and T ^

n
z = J Uq(x)dx

■̂o
t

z = J u^(x)dx (38)0
T- ^0

W
where x is a dummy variable of integration.

Wow the length of the zone for which h ^ 0 can be calculated. If 
this length is defined as X, it can be seen from this definition and 
the definition of t above that X is the value of the integral in 
Equation (38) for t = t. Hence,

t
X(t) = J  Uo(x)dx (39)

t- ^  
w

Looking at the quantity ̂  for a moment, it can be seen that if
w

the non-dimensional definitions of w and h are recalled, this quantity
in dimensional form is

H0
Hc

where represents the subcooling in two-phase flow.
By analogy with the definition of subcooling in two-phase flow.
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this ratio will be called the non-dimensional subcooling. Hence, for 
critical and supercritical flow it will be assumed that a quantity 
analogous to subcooling in two-phase flow exists and this quantity is
defined by ^

s = -2 w
Therefore, Equation (39) becomes

(40)

t
\(t) = j' u^(x)dx

T-S

and likewise Equation (38) becomes

(41)

z(t,T) = rJ u (x)dx o ' (42)
T-S

It is intuitively obvious and has been shown in Appendix V that 
for this region (p = l) the flow is always stable for \ ^ 1 since 
the fluid would be in the subcooled or saturated thermodynamic region 
at all points inside the pipe. For this reason, the limits on the 
analysis will be that for which X < 1.

The formulas relative to this zone (31), (36), (4l), and (42) are 
reiterated below.

u = u (t)

\(t) = (x)dx
t-s

u (x)dx
-s

(43)
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(3) Heated Zone With h s 0. In this zone 0 = 1 and w > 0. From 

Equation {2k)

e -
Integrating

u = z + f(t)
Since u = u(t) for z(0)

u = u(t) + z {kk)

Now, from Equation (43) at the instant t for which z = X(t)
u = u^(t)

Hence,

u ^X(t),tJ = u(t) + X(t) = u^(t)
where

u(t) = u^(t) - X(t) (45)

Substituting Equation (45) into (44) gives
u(z,t) = u^(t) + z - X(t) (46)

Integration of the energy equation (27) gives

and
-t + constantp = e

The constant of integration can be evaluated from the condition 
that p = 1 for t = T. Therefore,

p = for t ^ T (4t)
A relation between z, t, and t similar to Equation (38) can be 

found in this particular zone by the integration of Equation (46) where

“  = u(z,t) = u^(t) + z - \(t) (46)
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For the moment take t and t as the independent variables that define 

the Lagrangian particle. The presence of z in the right hand member of 

Equation (46) suggests putting

z(t,T) = y(t,T) e^ (47)

^  is the derivative according to the particle, given at constant x,

where

5y _ ^-t ^

From Equation (4?)
at = G Dt " y

at

Substituting for ^  from Equation (46)

#  = e-" [u,(t) - l(t)] (49)

Integrating Equation (49)
t

y = J  e"^ [u^(t) - X(t)] dt + f(x) (50)
T

f(x) is evaluated from the condition

z(t,x) = X(t) for t = T

Hence, X
e"*’’ \(x) = J  e"^ [u^(t) - \(t)J dt + f(x)

X
and

f(x) = e”’’’ \(x) (51)
Therefore, Equations (50) and (51) give

t
y(t,x) = X(x) e"'*’ + j*  e"^ [u^(x) - \(x)] dx (52)
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and utilizing Equation (4?)
U

z(t,T) = \ ( t ) J* - h(x)] dx- (53)
T

The time t^ when the particle is discharged from the heated zone 
into the adiahatic downstream zone is of interest in connection with 
this zone. This is given by Equation (53) for z = ‘l. Hence,

t t
1 = \(t ) e ^ + e ^ J  e *  [u^(x) - \(x)J dx ($4)

T

The equations pertinent to this particular zone, Equations (21), 
(46), (47), ($3), and (54), are reiterated below.

(t) - \(t) + z

[u q(x ) - \(x)]-X (55)

(4) Downstream Adiabatic Zone. In this zone w = 0 and 0
Integration of Equation (25) gives u = u(t) and since z = 1 at the exit 
of the heated section, (55) gives

u = u(t) = u^(t) - X(t) + 1 (56)
The energy equation (26) gives
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Again according to the particle, this expression gives h = constant. 
According to Equation (55)

P = p ( t ) = 6  = constant (57)
As before, the relation between t, z, and T can be determined for 

this zone by the integration of Equation (56):
^  = u = u^(t) - \(t) + 1 

= J  ^u^(t) - \(t) + ij dt + constant (58)

The constant of integration can be evaluated from the condition z = 1
for t = t.

therefore.
1 = j' ^Ug(t) - \(t) + ij dt + constant

and Equation (58) gives
z(t,T) = 1 + J  ^Ug(x) - X(x) + ij dx

constant = 1 

t

"tn
(59)

The formulas relative to this zone are (21), (56), (57), and (59)
u = u^(t) - X(t) + 1

h
P = h + h

(t,T) = 1 + J  [tAq(x) - X(x) + 1] dx

t^ ̂  t ̂  instant of discharge 
from pipe (60)

The sets of integrated equations (33), (43), (55), and (60) have 
replaced those of Equations (24 - 2$). The remaining equation to be 
considered is the momentum equation (28) which will provide a look at 
the dynamics of the problem. The above mentioned sets of equations have
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allowed the reduction of the number of unknowns from four (velocity, 
density, pressure, and enthalpy) to two (entrance velocity and density).

D. Establishment of the Oscillation Mechanism Equation
The mechanism is now examined for which the model will be susceptible 

to produce sustained oscillations. The mathematical model has been built 
around the so-called density effectj in fact, the regions other than the 
variable density part of the heated zone have been added only to bring., 

the mathematical model closer to physical reality since the fluid flow 
almost always behaves in these regions. Although these zones modify the 
characteristics of the model by their effect on damping and inertia for 
example, they do not modify the actual oscillation mechanism. Therefore, 
it is proper that this study is begun by studying the case of a single 
variable density heated zone. Following this, the upstream adiabatic 
and downstream adiabatic lengths will be added and finally a study will 
be made of the much more complicated case of the complete model as des­
cribed in section 0.

From the definition of a single, variable density, heated zone, 
the following is concluded:

tg = = 8 = 0 (6l)

Physically this corresponds to the entrance of the fluid into the 
pipe at the saturation temperature for two-phase flow and at an analo­
gous condition for a supercritical fluid. It is also evident that for 
this zone

8 = 1
and

X s 0 (62)
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For this region, the set of Equation (55) is valid and after 
taking Equation (62) into account becomes

e * u (x) dx

(63)

The dynamics of the problem are considered by looking at the momen­
tum equation (28). Taking Equation (6l) and (62) into account gives

Ap = J  [|^ + u + g + fu^j pdz (64)

Before substitution of Equation (63) into (64), it is convenient
to define the following quantities:

1
pdz s Ç(t)

0
1

J

rJ
J

pzdz = Tl(t)

pz^dz = G(t)

(65)

Utilizing Equation (65), the momentum equation becomes
21f-du' o (66)Ap = + u^ + g + fu^ J I + (1 + 2fu^) T) + fC

Since this investigation is concerned with periodic solutions, one 
is led to put

%o(t) = + v(t) (67)
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where is the steady state velocity at the entrance. For now, the 
only restriction placed on v(t) is that v(t) ^ . This condition
states that the flow cannot reverse itself. This condition is not 
restrictive since this investigation is concerned with the instability 
thresholds.

Now by defining as steady state quantities analogous to
I, 1), g, the steady state pressure drop can be obtained by letting 
u = u^ and substituting into Equation (64). Upon making this substi­
tution, the following expression is obtained:

Ap = (û  + g + fu^^) + (1 + 2fu^) Tl̂  + fC^ (68)

Since the steady state pressure drop is approximately equal to the 
transient pressure drop, Ap from Equation (66) is equated to Ap from 
Equation (68). Elimination of Ap between these two equations gives an 
equation in v:

[ ^  + V + fv(2u^ + v)^ § + + g + (5 - 5q)

+ 2fvT] + (1 + 2faJ{T\ - T)̂ ) + f(C - C^) = 0 
or by rearranging

- •—  = fv(2u^ + v) + V + 2fv I + (u^ + g + fu„^)— ^

% - G - Co
+ (1 + 2fu^) — ^ + (f) — ^ (69)

The problem is therefore reduced to the solution of Equation (69) 
taking into account Equations (63), (65), and (67).

An analytical solution to Equation (69) is, in general, impossible 
but inferences can be drawn from it. For exançle, one necessary con­
dition that (69) possess an oscillatory solution is that for some period
of time, V and ^  be of the same sign. This can be seen by looking at
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the quantity

if V and ̂  are of opposite sign

and

therefore, the absolute value of v can only decrease. In order to 
obtain an oscillatory solution, it is necessary (at least over certain 
time intervals) that this product increase. Therefore, it is necessary 
for V and ̂  to be of the same sign over some time interval. However, 
this condition is not sufficient and the number of important terms in 
Equation (69) preclude the possibility of finding a sing)le stability 
criteria. Therefore, the problem of studying numerically the set of 

equations mentioned above ^(63), (65), (67), and (69)) will be con­
sidered. A small perturbation analysis approach to the problem seems 
feasible in the light that the oscillatory mechanism is being studied. 
Although it should be realized that large perturbations are present in 
the physical system, it is valid to predict the instability thresholds 
on the basis of small perturbations since they eventually lead to the 
large perturbations.

Therefore, Equation (69) is linearized by suppressing the second
order terms. Upon doing this, the following expression is obtained;

T\ § • §
- ^  = 2fu^v + V + 2f V + (u^ + g + fu^^) g

o o
T\ G - G_

+ (1 + 2fu^) + (f) — (70)
o o
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Equation (70) is a first order linear differential equation and 

because of the nature of Ç, T], and C as functions of t, the solution of
this equation can be written as a linear form of particular solutions

ct . in e  ̂ i o e w g
c. tV  i 

i l  To. :

where is small compared with u^ and c is a complex number. Therefore, 
the system of equations with

To = + ^o (71)
will be studied.

The linearization above must be considered as a physical hypothesis 
and the eventual comparison of experimental results with the results of 
the solution of the linearized equations will indicate whether or not 
this hypothesis is valid.

Next, it is necessary to investigate the case of a pipe heated over 
part of its length for zero subcooling (s = O). This is identical to 
the case studied above with the upstream and downstream adiabatic 
sections added.

(i) Upstream Adiabatic Zone. For this zone, the set of Equations 
(33) are valid and substitution into the momentum Equation (28) gives

o
APO.A.8. = J [I# + # + S + ftf] pdz .

■*■0

(ii) Heated Section. The momentum equation for this zone has 
already been established. From Equation (66)
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r<îu

APH.S. ' Ldif + "o + S + J G + (1 + 2fuJ n + fî (66)

(iii) Downstream Adiabatic Zone. For this zone, the set of 
Equations (6o) are valid and substitution of (60) into the momentum 
equation (28) gives

1
-du

[â t^  + s  + f(Uo + if]  5^ (73)

where § (t) is defined as
^ 1+t,

ç.(t)5 pdz (74)

Now by assuming that the velocity consists of a steady state and 
a transient component, we utilize Equation (6?)

Ug(t) = + v(t) (67)
by substituting it Into Equation (72) where we obtain

'̂ Pu.A.S. = I i  + S + + fyZ] A, (75)

Substitution of Equation (67) into (73) gives

^Pd.a.s. = [af + : + + 2v + d ]  5^ (76)

At steady state. Equation (75) becomes

= [« + (77)U.A.S. °
and at steady state. Equation (76) becomes

APss = [s + + 1)] 5io (78)
D.A.S.

where is defined as the steady state value of |^(t).
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For the heated section the steady state value of Ap has already 

oeen determined and is given by Equation (68),

A'ss = [". + B + So + [l + \  * ^ 0
H.8.

The total steady state pressure drop across the pipe is equal to
the sum of the steady state pressure drops across the three sections
given by Equations (68), (77), and (78). Hence,

APss = (: + + So + + (1 + 21Ü.) T|„

+ + [f(2u„ + 1)J (79)

For the heated section Equation (67) is substituted into (66) to
obtain the transient pressure drop.

APH.8. = [at + + V + g + f(u, + v f ]  § + [1 + 2f(u^ + v)] T1

+ fC (80)
The total pressure drop across the pipe considering the transient 

portion is found by adding Equations (75), (76), and (80) to obtain

AP = [31 + 8 + + 2fû v + fv̂ ] 'f'o + [^ + 6 + +

2fu V + 2fu + fv^ + 2fv + fl + u + v +  g00 to J X LdU *

+ fu^^ + 2fu^v + fv^j Ç + [1 + 2fu^ + 2fv] T]

+ fî (81)
As before, Ap can be eliminated between Equations (79) and (81) to

give

[ ~  + fv(2u^ + v)](t^ + I + Iĵ ) + [g + + 5 + 5^) + vÇ
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4- + 2fvfl + (1 + 2fuJ T) + fC + 2fvÇ^ + [f(2u^ + l)]

= [g + fu.2](t^ + S, + h o >  + + b  + 2 4 .] \  + «(o

+ [f(2u„ + 1)] (82)

After simplification and rearrangement, Equation (82) becomes 

dv E % + §1
- dt ' 1 ,̂ + s

2 5 - 1„ T| - n„
+ 6 + %  ) ^ T T T ' T f ^  ^ ^ ^

^ 4^ + § + §1 + [s + + 1)^] l \  g (83)

After linearization of Equation (83) as was done for the simpler 
case of a heated section only, the following expression results:

A v  . 2fu V  + T  ■— ...i ” ....-, -  + 2fvlo + So+ SlO 'to+So + SlO
2 s - s, n - \

+ (u^ + g + fu^ ) ^ + s + S_n * I + 1  + |.*10 o o ^10

Equation (84) could now be solved as in the preceding exançle. 
However, the much more complicated case where a moving boundary is intro­

duced between the constant density heated zone and the variable density 
zone must be considered. Physically, this is the boiling boundary for 
two-phase flow.

Taking this into account, there are four zones to consider in the 
general case. The momentum equation for this general case has been
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derived in Appendix I. Equation (l-l4) gives

T] + §
—  = f(2u + v)v + V 5— 7 \ g ^ g—  + 2fv ^dt 00 4,̂  + X + § + + X + §

2 5 - - T| • ■
* (“» * ® + X. + Î + (1 2fu„) î ~ r r T T ~ T î ^

+ X + I +

+ [s " i. !\° + - (Ê) 4.

. 2 f v ^̂0 + k + § + §1 ^ + X + s + - (1 + 2fu^)

+ f (85)+ & + § + §2 &0 + & + § + §2

where it is noted in Equation (84) that
.1

§(t) = j*  pdz (65)
o

while in Equation (85) ^
§(t) = r pdz (86)

X(t)

Equation (85) can be simplified slightly by letting
4 = + X + § + §1 (87)

Taking Equation (87) into account, (85) can be rewritten:

■ ^  " ^ ( ^  + ^)v + (v - ■^)| ■■ ■^ §1 + 2fv - X|
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+ - >■)] + a„(l - ?q ) + (g + + >. - X^) + (1 + 2fu_)

[t| - XI - (Tl̂  - X^l^)] + f [(C - 2XTI + X^l) - (C^ - 2X^H^

+ >'o^5o)] + [« + - Sio) - 2f(“- + i)(kSi

-  ’̂ o h o ^ + - K \ o  ̂ (88)

The next step would logically be the linearization of Equation (88) 
as has been done in the two preceding simpler cases. However, it is 
necessary to look first at the general case shown above under steady 
state conditions.

E. Steady State Equations 
In the preceding section, the study of small perturbations around 

a steady state entrance velocity, u^, has been established. Since the 
model equations have been established in detail, it is possible to 
study the simple case of the steady state regime.

The momentum equation which has played a fundamental role in the 
preceding section is established in Appendix I (X-12) and is written:

Ap = (s  + + (u„ + e + 4 » ^ )  5^ +

(1 H- - x^l^) + f(C, - 2X̂ 11̂  + X^^^) +

g I^Q + f(u„ + 1 - l^g (89)

It is necessary to write \^, 5^, T]̂ , and as functions of 
the model parameters. This is accon^lished in Appendix II. Below are 
reiterated the most important equations from this appendix.

\ = u 8 with u_s < 1O  00 . CO
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k = -tn m

(90)
m = 1 - s + ̂  with m > 1, k > 1

SlO = ÜT
The form of Ap, which is linear in g and f, is established by- 

recalling (ll-l4) and (II-16) from Appendix II.
From (ll-l4)

\  ^  - V  (91)
and from (II-I6)

S  - [--r'—  - “-(1 - lo - So)] (92)
Substitution of Equations (91) and (92) into (89) gives, after 

rearrangement

Ap = + So + 5io) f

[ r  (1 - (1 + <-o) + (u . + 1 -  1 .)^  S J  (93)

The criterion that the channel cannot operate under steady state 
conditions when the slope of the pressure drop - flow rate is negative 
is now inçosed, i.e., the condition imposed is that

0 (94)

The calculation of has been made in Appendix II and ( 11-27)

gives, after a slight rearrangement

= g [s + k - ^  + 1 - 2&0 +

+ ‘t'l + ^ - 2X^(1 + + I (95)
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It can be seen that the condition > 0 implies the point of

00

operation must lie inside a certain range limited by a hypersurface (s) 

derived from the condition = Oy i.e.
00

00

1 + - 2X^(1 f -ù̂ ) + ̂  = 0 (96)

It follows that this equation is represented in terms of six inde­
pendent parameters (g, f, u^, s), i.e., in six-dimensional

space. This equation can be reduced to an equation representable in 
three-space by setting three parameters equal to a constant. Any three 
could be chosen; however, and s were chosen. Therefore, the
surface is given by u^(g,f), a single surface since Equation (96) is a 
linear form in g and f; the intersection of the surface with a plane 
u^ = constant is a straight line. Note that the study of this surface 
is limited to the region

0 < < ;

f a 0
These conditions have already been established (see especially 

Equation (90)).
Knowing the surface (S) for which = 0 in the (g, f, u^)

00

space will give the domain of possible operation.
Equation (96) can be rearranged in order to see that the generatrix 

of the function u^ has for its projection in the (g, f) plane an equa­
tion of a straight line, i.e.,
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I

- [s + k - EE" + (mu )2] 8 + - 1
f = T----------------=----- =----------------ô— ^  (97)

2 + + ^ 0 0 ■ * ■  1 ■’■ ■ 2UgS(l + -t̂ ) + 2 H» ®

Having established the condition > 0, it will he assumed
00

that this condition is fulfilled and the next section is devoted to a 
study of small perturbations about the steady state regime.

F. Small Perturbation Analysis 
Given the expression for the velocity defined by Equation (71)

*o = + To*^* (71)

where v^ is an infinitesimal of the first order conçared to u^ and c 
is a conqplex constant, an equation in c will be derived. After 
linearization and division by v^ which must appear as a factor because 
of this linearization, an equation in c will be obtained whose roots are 
given by Equation (71). This equation will give a determination of the 
transient behavior of the system.

For a group of parameters (g, f, u^, s) satisfying the
steady state criterion of the preceding section and the linearized 
equations of this section, there are many possible cases:

(i) If the equation in c possesses only roots with the real part 
negative, every general solution

u = u + ) V e o « ^  o.1 1
approaches u^ for t-* », i.e., the small perturbations are 

damped.
(ii) If the equation in c possesses only roots with the real part
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negative or zero, at least on being zero, every general solution 

tends toward a periodic solution when t -* ® .
(iii) If the equation in c possesses at least one root with the real 

part positive, every general solution presents an increasing 
anç)litude with time. When this amplitude is no longer small in 
comparison to u^, the linearization is no longer valid. The 
prediction of whether the an^litude increases indefinitely or 
whether it will be limited by the non-linear terms cannot be 
made. However, it is certain that the system is not stable.

If the possibility that at least one of the roots of the equation 
in c is a discontinuous function of the model parameters is ruled out, 
the passage from case (i) to case (iii) where the real part of the roots 
change from a negative to a positive sign can only occur by becoming zero.

If all the roots of the equation in c have a negative real part and 
a change in the system parameters causes one of the real parts to be­
come zero, two cases are possible;

(a) The system is passing from a stable domain where all the roots
have a negative real part to a domain where at least one root
has a positive real part, i.e., one is at an instability 
threshold defined in the six-dimensional (g, f, u^, s)
space.

(b) The trajectory of the root considered is tangent to the
imaginary axis. One is at a point where the system effectively
possesses a periodic solution, for its solution is stable at 
all neighboring points.

The possibility (b) above is a very special case with a small
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probability and therefore it will not be considered further except in 

very special cases. In these cases it is necessary to investigate the 

stability at neighboring points to determine whether or not all neighbor­
ing points are stable.

Therefore, an instability threshold can be defined as follows :
For the system represented by a point in the six-dimensional (g, f, 

0̂0’ space, there is a correspondence between the desired
instability thresholds and the roots of the equation in c with the real 
part zero, iff

(1) A domain can be found in the vicinity of that point where the 
system is stable, i.e., where it has roots of the equation
in c with the real part negative.

(2) The equation in c allows in the neighborhood of this point 
neither roots with the real part positive and infinitely 
large nor with discontinuous functions of the parameters.

With this definition of the instability threshold, it is necessary 
to return to the "equation in c" as it has been called above. This 
equation is (88).

+ X + § + §^) ^  + f(t^ + X + I + |^)(2u^ + v) V +

(v - S - 31 5i + 2fv [_T1 - X§ + § J l  - X)] + u^(| - 1^)

+ (g + fu^^)(Ç - + X - X^) + (1 + 2fu^) - X§ - (Tl̂  -

f [(c - a n  + x%) - + x ^ ) ]  + [s +

+ 1)̂ ] (§1 - §10) - 2f(u„ + i)(xsi - x^§^q) +

f(^^§i - = 0  (88)
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Looking at Equation (88) it can be seen that it is necessary to 
express X, §, 'Ï), and as functions of the model parameters 
plus and c. Equation (88) is linearized and then it is possible to 
proceed as before. This calculation is made in Appendix III for c / 0, 
c ^ 1, and c ^ 2. These restrictions do not affect the generality 
since c = 0 corresponds to the steady state solution in the previous 
section and c = 1 and c = 2 are particular cases which are not of great 
interest in this study (solution with the real part positive).

The equation in c is derived in Appendix III and is written
B^g + Bgfi^ + Bg = 0 (98)

where
E E m'° E E  (E + E

2 B E  m‘° E E  2
c(/. c) + 2,, , + u„c (1 - c)

E m"*̂  E r- u mu's ^s r « n “■>
cCl - c)(2 - c) - T-TE l 2 ^  + 1 - +

E mu E - mu
—  (l - û s + 21^)---2   (l - + 2-t̂) + -g- + 2{l̂  + 1 + l̂ )

(100)

+ (t + u s + u k  + ̂ —) c - —  - —  (lOl)m c m
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and from (II-IO), (lll-l), and (HI-23)
m = 1 - s + ——

(11-10)
k = tn m

Eg = e'Cs (III-I)

MU
( in -2 3 )

E = e-cy
y

For the instability thresholds, the equation in c is solved with
the real part equal to zero. Therefore, we take

c = r + iu) (102)
and examine the equation in c for r = 0.

This will give a hyper sur face (S) which is a function of the model
parameters and will be defined by the expression

^(Sj ^3 J *̂ 1’ r = O) = 0  (103)
Knowing the surface (S) and the stability domain (s),  it is possible 
to deduce the threshold surface.

Therefore, by taking c = iuu in the equation in c (98), two 
equations in u) are obtained by separating the real part from the imagi­
nary part. This is acconçlished in Appendix IV. u) is the frequency of 
a possible "pure oscillating" system, i.e., one that is neither danced
nor amplified. It. is assumed that u) > 0 to meet the physical require­
ments of the problem and this does not restrict the generality of the 
solution. The system of equations in u) is written:

aj_g + agU^f + a^ = 0

V  + + l>3 = 0



76

where
ai = - [cos(K + 8 + Y) - + 8 + Y) J _ _ _ 1 -----

1 + U) nu) ( l  + u) )

[cos(S + Y) + (1) sin(S + Y)] + P.os 8 + cos Y ̂  1 (105)
mu

b =  rcos(K + S + Y) + (U sin(K + S + Y)1 -
u)(l + U) ) *-

 Ï--5- FcosfS + Y) - i M S j j O ]  . sin S +_sin Y
m )(l + u)^) ^ u) J au)

r "1 2m |-
cos(S + Y) + tu sin(S + Y) ’+ ----- = 5- 3 cos(K + S)

(1 + w2)(4 + *2) L

+ {“ - |) sin(K + S)J - 225_§_ ̂
(2 -

1 + it- + tû
+ 1 - us

(Û  ■* ‘-(1 + 0)^)(U + (U*̂) 1 + tû  tu(l + U)̂ )
1 - u^s + 2t -, mu^

+  5S - -g- (1 - cos Y) + 2(tg + 1 + ^ 1) (107)

2
m u  ̂ r 1 “ 0̂0 r

b -  =  ^  cos(K + S + Y) + (U s in (K  + S + Y )   — = -  cos(S + Y)
tu ( l + (u ) cu(l + (U )

• ' (i Z ^ X 4 + m ^ )
r 5«u^ mu^ 1 - u^s + 2^1^

- cos a -----s----- ^  + ----- p-----------p- + ----    +
^(1 + (U )(U + tu ) 1 + tu t u ( l+ t u  ) -*
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s in  8 [ ( 2  -  mo» s in  Y 1 -  u^s +

r ,  2 . na_ = |^ ( l  -  0)^) cos(K + S) + 2u s in (K  + S)J + cos ^ -

^ (1 + uf)^ 1 +
2u (l - u) ) -t.-, ,-u u ku) 2u (1) -, t.

Q Q  ^ W i I A A  I I

2 m -J w c_
(1 + u)̂ ) ^ (1 + u)̂ ) (109)

r_ , 2 . n  rH»D_ = j â») cos(K + S) -  ( l  -  u)^) s in (K  + S)J -  cos s |^ ~  +
 ̂ (1 + *2)2 1 + *2 

2u„u) -, j-î k*2 u^d _ *2) t _,
+  - d  - 2 -------- —  + t J + (^o +
(1 + U) ) (1 + 0) )

+ ir )  * + E- (n o )

and from (lV-3)
K = (uk = * tn(l - s + ^—)

S = u)s (IV-3)
U)t,

Y - = 1 + (Ï - s)u

The equation of the surface (E) could now be obtained by elimi­
nating * between the two equations in (104). However, u) does not occur 
directly in (104) but occurs in the transcendental forms of

K + S + Y = u)(k + s + y)
S + Y = *(s + y)

K + S = u)(k + s)
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S = u)s
Y = (üy (111)

So it is seen that this elimination becomes impossible and it is 
necessary to define the surface (S) as defined parametrically by
Equation (104). Notice that this system is linear in g and f and this
will be useful when considering the numerical solution.

It is reiterated that for the small perturbations, the system can
be represented by a point in the six-dimensional (g, f, u^, s)
space of the model parameters and can be either stable or unstable.
The stability is determined by the position of the representative point 
in relation to a threshold surface about which the system oscillates 
indefinitely. This threshold surface is a portion of the more inçortant 
surface (S) defined by a system of equations acting as the frequency 
parameter w of a pure oscillatory solution. Knowing (S) and a domain 
where the system is stable, this domain can be extended until the 
surface (S) is reached or the surface (S), which marks off the impos­
sible domain studied in the previous section, is reached. In this way, 
the stability envelope can be determined for the physical system.



CHAPTER V 

EXPERIMENTAL RESULTS

The experimental portion of this investigation was carried out 
primarily to obtain data to compare with the theoretical predictions 
of the instability thresholds. However, various experimental results 
were obtained which did not relate directly to the theoretical pre­
dictions of the model.

The first experimental observation made concerned the varying
degree of difficulty of adjusting the loop operating parameters to a
position such that oscillations would occur. Loop tests utilizing

four different heat transfer fluids showed that instabilities were
most readily found for Freon-llU. Next came Freon-12 followed by H^O
and finally COg. This is verified in the literature by the fact that
although extensive critical region studies had been made utilizing COg,

29no oscillations had been reported before the work of Walker and Harden ,
The reason for these results can be seen in Figures (11 - l4).

Note that at critical pressure | is largest for Freon-ll4, next 
largest for Freon-12, followed by HgO and finally COg. Since the 
behavior of p(h) has been shown to be the fundamental cause of the 

oscillations, this observation provides agreement between theory and 
experiment.

79
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The utility of the (ph)^^^ concept for determining experimental 

instability points was again shown in this study. These experimental 
instability points were found much easier by making use of this con­

cept . This method was utilized to locate experimental instability 
points regardless of whether operation was at subcritical or super­
critical pressures.,

Previous i n ve s t i g a t o r s ^ h a v e  considered (one author pursued 
this line of thinking) the possibility that a time-varying transfer of 
heat to the fluid in the heater section was the triggering mechanism 
for the sustained oscillations encountered. Since it is known from 
previous investigations (cf. Holman ) that convective heat transfer 

coefficients increase greatly in the critical region, it may be neces­
sary to consider the heat capacity of the heater section walls. Con­
sidering this, it can be seen that the electrical power input into the 
heater section is divided into two parts,

^  ^ "^luid %&11
where

and
"̂ fluid " ^(^wall " ^fluid^

"p at
From these equations, it can be seen that if the wall tençerature 

of the heater section varied with time, it would be very important to 
account for this in the model since this mechanism would act as a 
"forcing function".

Since the model utilized in this study made no provision for a 

time-varying wall tenqperature, this was one of the first goals of the
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FIGURE (17 ) EXTREME PRESSURE OSCILLATION WHEN 
ACCUMULATOR WAS OUT OF THE CIRCUIT
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experimental part of this investigation.

Experimental results from this investigation showed that there was 
no appreciable oscillation of heater section wall temperature. Results 
did show that there was a significant wall temperature drop when the 
loop was operated near the critical region. However, this drop occurred 
as the critical region was approached and there was no ensuing oscil­
latory wall tençerature even though pressure and flow was oscillatory. 
These results can be seen in Figure (l7)- These results were in agree­
ment with Harden^^ and since flow oscillations were found without 
oscillatory wall temperatures, it was concluded that this was not the 
triggering mechanism for the oscillations. Confidence in the model was 
strengthened by this observation. Fluctuating wal%, temperatures were 
noted in this investigation but they occurred only under certain opera­
ting conditions and as stated above were not a necessary condition for 
an oscillatory behavior.

An investigation of the oscillatory frequencies measured experi­
mentally suggested that these frequencies were related to the natural 
frequencies of various modes of vibration of the loop. Therefore, the 
undamped natural frequencies for several of these modes were calculated 
and are found in Appendix VI,

Experimental results showed that the loop oscillation frequencies 
fell primarily into three frequency ranges:

(a) 0,2 - 0,3 cps
(b) 30,0 - 1+5.0 cps
(c) 5%.0 - 625.0 cps
Although the heating rate, pressure, and other operating parameters
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did affect the oscillation frequencies, it appears that the definite 
ranges found above indicate that the loop tends to operate at certain 
frequencies characteristic of the natural frequencies of certain of 
its vibrational modes. These three modes are as follows:

(a) Oscillating Manometer - When the loop was idealized as an
oscillating manometer, it was found that the calculated
natural frequency was not a function of the fluid density,
but only of the length of the loop (when p > > p ). ThisJj V
calculation showed the natural frequency to be 0.276 cps.
This corresponds closely to the experimental frequency range 
found in (a) above.

(b) Acoustic Oscillations - The second group of experimental fre­
quencies in (b) above were found to be related to a pressure 
wave traveling around the loop. The calculated frequency for
an acoustic oscillation was found from the relation f = r whereK
a is the velocity of sound in the fluid medium and X. is the
length of the loop. Acoustic velocities can be calculated for
supercritical fluids from the definition a^ =■ (|̂ ) , whenever

P s
thermodynamic data is available. The sonic velocity for water 
was determined in this manner and is shown in Figure (l8) for 
critical pressure (3206.2 psia). Similar data for Freon-ll4 can 
be found in Comelius^^. The calculated value for a typical 
Freon-ll4 run was kk.2 cps and the experimental value was 42.5 cps,

(c) Longitudinal Pipe Vibration - The third mode of vibration was 
apparently a longitudinal pipe vibration. Experimental values 
varied in the 575-625 cps range while the calculated value
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lies in the 376 < f^ < l4o4 cps range. It is logical to 
assume the natural frequency should more closely approach 
that of a cantilever rather than a circular ring. Hence, 
one would expect the calculated natural frequency to he 
closer to the 376 cps value.

Other frequencies were calculated for the various modes and some 
coupling could have occurred. For example, the calculation for the 
natural frequency of bending vibrations was in the 0.072 < 0.457
cps range. Therefore, it is possible that this mode could have affected 
the experimental values found in (a) above.

The natural frequency of one other mode was calculated in Appendix 
VI. This mode was the radial vibration in a pressurized pipe. The 
calculated natural frequency was 21,500 cps. No experimental values 
were found in this range since the instrumentation was limited to 1000 
cps.

One of the results of this study was found not to be in agreement
12with the results of Garlid et ̂  , Their results showed that the fre­

quency of oscillations at high pressure were approximately 30 times 
higher than those at low pressure which, according to them, was in 
agreement with experiment. In one series of tests with Freon-ll4 as 
the heat transfer fluid, the results of this series of tests in the 
present investigation revealed that as the system pressure varied from 
109 - 340 psig, the experimentally measured frequency varied from 
0.254 - 0.276 cps.

24Further, the conclusion by Quandt that flow oscillations become 
less prevalent at higher pressures for two-phase flow was not
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substantiated by this investigation.

Subcooling was found to be an inçortant parameter in this study. 
This parameter was important since it was utilized to describe the 
thermodynamic state of the fluid. Oscillations were found to occur at 
all values of subcooling that could be attained in the loop. Oscil­
lations were also found when both the heater section inlet and outlet 
bulk tençeratures corresponded to a fluid in the subcooled liquid state. 
However, local boiling was occurring even though the bulk temperature 
was in the subcooled liquid region.

The acoustic oscillations encountered during this investigation 
occurred primarily in the critical and supercritical thermodynamic 
regions. However, they were also observed at subcritical pressures. 
Figures (19 - 21) show an oscillation of this type at three different 
chart speeds.

Audible vibrations were also encountered in this investigation. 
Figure (22) shows a trace of one of these vibrations when audible 
noises were present. From this figure it can be seen that this is an 
example of a "beat frequency". This particular waveform occurs because 
two slightly different frequencies were impressed on the system. It 
also can be shown (cf. Wylie^) that the pressure function shown here 
is almost exactly the product of a sine and a cosine, i.e.,

P = ^ A  sin(gt)j" cos (Dt (115)
where

A = Amplitude of the wave 

If = 9.1 cps

If = 179.0 cps
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Notice in Equation (115) that the waveform contains a variable 
amplitude. This type waveform is said to be amplitude modulated there­
by giving rise to the noise heard.
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CHAPTER VI
COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

In order to conçare the instability envelope determined by solving 
the set of equations in u) (l04) numerically to obtain the hypersurface 
(S) = S(g, f, û 3 -6̂ 5 s) with the experimental results, it was 
necessary to represent the surface (S) in three space. This was 
accomplished by setting each of the parameters and f equal to
a constant. It was possible to set and equal to a constant since
the geometry of the experimental apparatus was not changed during the 
set of experimental runs. It was possible to set f equal to a constant 
since this was an inherent assumption in the derivation of the momen­
tum equation (3). Making these simplifications; the surface (E) is 
given by

(S) = (û , g, s) (116)

The surface (S) given by Equation (II6) was then solved for numeri­
cally over a range of u^, g, s, and the non-dimensional frequency u)
which was comparable to that observed in similar physical systems and
comparable to that noted in the experimental portion of this investi­
gation. That portion of the surface (S) where steady state operation 
is possible was then delineated by utilizing Equation (9 )̂ to give the 
instability threshold surface. The results of the numerical solution 
for the surface (s) where steady state operation is possible is shown

92
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in Figures (42 - 44).

It was determined that the best representation of the surface (2) 
would be in the plane with s as a parameter. The u^-g plane is
called the "plane of operation" and is used to represent the surface (2) 
since it is the most convenient representation to use during the opera­
tion of the experimental apparatus. In the two extreme cases, the 
instability threshold can be approached at a constant power level and a 
varying entrance velocity or vice versa. In the first case, g would be a 
constant while u^ varied. In the second case, the power W can be elimi­
nated between the definitions for u^ and g to give

u^^ = c^g (117)
where c^ is a constant.

Therefore, approaching the instability threshold at constant power,
W would be given on the operating plane by a vertical line parallel to 
the u^ axis. In the other extreme case, approaching the instability 
threshold at a constant entrance velocity would be given on the 
operating plane by a parabola given by Equation (ll7). This parabola 
changes with the value of the entrance velocity and approaches the 
u^ axis as increases.

In the operation of the natural-circulation loop, the instability 
threshold is approached along a path shown on the operating plane some­
where between these two limiting cases since the power W and entrance 
velocity change simultaneously. The approach to the instability 
threshold would appear as shown in Figure (23).

The results of the simultaneous numerical solution of the equations
in ou (l04) are shown in Figures (25 - 37) as s varies from 0.0 to 10.0

-  ̂for f and g as ^ varies from 10 to 3.5. The parameter p, is given
IQ««X ni8X

by
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u
Constant Power

Constant 
Entrance Velocity

/
g

Figure (23) Approach to the Instability Threshold 
Shown on the Operating Plane

cu(s + k + z) (118)*̂ max 2n
and would become useful when utilized to present a constant frequency 
representation of the threshold surface.

The value of f was then calculated for the range of parameters of 
interest in this investigation and found to be 0,973. Utilizing this 
value, these curves were transformed to a single representation of the 
threshold surface shown on the operating plane in Figure (24). This
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was accomplished by determining the value of g for the intersection of 
the line given by f = 0.973 and the = constant curves. This was 
carried out for each value of the subcooling from 0.0 to 10.0 as shown 
in Figure (24). Also shown on this figure are several instability 
points taken during various random runs made with Freon-12 and Freon-ll4 
as the heat transfer fluid. In this figure, the stable region for a 
constant subcooling s is above and to the left of that constant sub­
cooling line while the unstable region is to the right and below the 
line. The regions of stability and instability were in agreement with 
experimental runs made in this investigation and can also be shown 
analytically. The analytical study of this is made in Appendix X. It 
should be noted from Figure (24) that the higher the subcooling, the 
less area on the plane of operation which corresponds to the stability 
region.

Figures (39 - 4l) were obtained in the same manner as Figures (25 - 
37) except that the frequency range for these solutions was lower than 
that for Figures (25 - 37)- It should also be noted that the non- 
dimensional subcooling range is less (O.O to l.O). The results of 
these figures are shown on the operating plane in Figure (38). This 
shows that there are various "levels" of instability which can be 
represented on the operating plane depending on the frequency. The 
instability threshold represented in Figure (38) did not compare with 
any experimental instability points found in this investigation. It 
was not possible to reach u^ values shown in Figure (38) in the natural- 
circulation loop utilized in this investigation. "

A series of runs were made and the experimental instability points
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were determined for the natural-circulation loop from experimental data 
taken during constant pressure runs with Preon-llU as the heat transfer 
fluid. These runs were convenient to make since the hydraulic accumu­
lator was utilized to maintain a constant pressure until the instability 
point was reached. These experimental instability points are compared 
to the threshold surface given by Equation (ll6) by plotting u^ = i^(g) 
with s as a parameter for a constant pressure condition. Since the sub­
cooling s varies during a constant pressure run, the analytical repre­
sentation of the threshold surface is given at discrete values of s for 
which a numerical solution was obtained. This comparison was made for 
two subcritical pressures (310 and 400 psia) in Figures (4$) and (46), 
This comparison was also made for five supercritical pressures (480 to 
575 psia) in Figures (47 - 51). Note that the 48o and 495 psia runs 
are shown on the same Figure (47). This was necessary because of the 
relatively few data points taken at these pressures and since the theo­
retical curves are nearly coincident at these pressures, It should be 
noted from these figures that the agreement between experiment and 
theory at the higher pressures (575 psia) is not as good as at the 
lower pressures. This is due to the fact that the representation of 
the equation of state is not as accurate at the higher pressures. Also 
note that the agreement obtained for subcritical ?jid supercritical 
pressures is quite similar. Therefore, this model is quite applicable 
to critical and supercritical fluids as long as the pressure is low 
enough that the representation of the equation of state remains in 
good accord with the model equation of state,

A series of runs were also made and the experimental instability
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points were determined for the nat^ral-circulation loop from experi­
mental data taken during constant pressure runs with E^O as the heat 
transfer fluid. The results obtained utilizing this fluid were 
similar to those obtained utilizing Freon-114. A comparison of theo­
retical and experimental results for two subcritical pressures ( 174-0 
and 2215 psia) in Figures (52) and (53) shows good agreement.

Unfortunately, experimental data was not obtained for water at 
supercritical pressures. However, this author can see no reason why 
this data should not be in agreement with subcritical data just as the 
Freon-ll4 data was.

Originally, it was planned to take experimental data for one other 
fluid (COp). However, it was not possible to take this data since the 
desired subcooling could not be attained in the natural-circulation 
loop without extensive modification.
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CHAPTER VII 

CONCLUSIONS

The "density effect" model was utilized to predict pressure and 
flow oscillations in a natural-circulation loop at both subcritical 
and supercritical pressures. Three different fluids were successfully 
utilized as the heat transfer fluid in the experimental apparatus.

The following conclusions were reached on the basis of this 
investigation;

(1) The density effect model will accurately predict the insta­
bility threshold of a natural-circulation loop.

(2) Heater section wall temperature oscillations are not the 
triggering mechanism for the pressure and flow oscillations 
since these oscillations were observed without accompanying 
fluctuations of heater section wall temperature.

(3) The energy density maximum, (ph)^^^, theory of Harden is of 
great utility in determining experimentally the pressure 
and flow oscillations in a natural-circulation loop.

(4) The frequencies of oscillation of the natural-circulation 
loop are related to the natural frequency of the various 
modes of vibration of the loop.

(5) The density effect model applies to the critical region as

128
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well as to the subcritical thermodynamic region and gives 
comparable results for the two regions.
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APPENDIX I

THE GENERAL MOMENTUM EQUATION

This equation is given by (28)
1+t

= j ,  Ï W  ^  ̂ ( i - i )-t/o
and it will be utilized to calculate the pressure drop in each zone.

(1) Upstream Adiabatic Zone. This equation has already been
established in (72).

r  2~l

'̂ï’u.A.S. (1-2)
(2) Constant Density Heated Zone. For this zone, the set of

equations (43) are valid and
u = u^(?) p = 1

t (1-3)
X(t) = I u (x)dx 6 -♦ oo

•Jt-s °
Applying these relations to the heated section where the density is 
constant, i.e., from 0 to X(t), substitution of (l-3) into (l-l) gives

H.H.S. = 4  LdT 8  ̂ J
Integrating .

pdu -,

= L d T  ^ S J J dz
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and

^Pu.H.s. = L d F  + g + %  J  ̂ (1-4)

(3) Variable Density Heated Zone. For this zone, the set of 
equations (55) are valid and

p = p(z,t) 9 = 1
(1-5)

u = Ug(t) - X(t) + z

Substituting (l-5) into (l-l) gives 
pi _du „

^Pp.H.S. = J - dt + ""o -  ̂ + 6 + f(*o - k + z) J Paz
x(t)

= {[dT + *0 + G + + 1(1 + 2fh^) - f\2]}

1 1 1  P r I P P ? ̂pdz +|(l + 2fu^) - 2f\j- ^  pzdz + f pz dz

The following quantities are defined;
pi'■ pdz = g(t)
4(t) 
,1

4i(t)
p''■ pzdz s tl(t) (l-6)

P ̂  2 ̂pz^dz s C(t)

Utilizing these definitions (1-6) 
•du

^Pd .H.S. = [ d f  + '"o + ^ 5 - [ §  + 1(1 + 2fu^) - S
+ [l + 2fuJ T\ - [2f%] T1 + [f] C (1-7)

(4) Downstream Adiabatic Zone. For this zone, the set of equations 

(60) are valid and
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u = u - X + 1  p = p ( z , t )

° (1-8)0 -• oo

Substituting (l-8) into (l-l) gives
du

A^D.A.S. = J [ d f  - &  B + f(%o ■ ^1
Ely defining

14̂ .
r ^J pdz 5 5^(t) (1-9)

the following expression is obtained

''Pd .a .s . = " e " + 1)"] Si - [#E + + 1) k - ?1

(I-IO)
Now by utilizing a steady state and a transient component of the 

velocity u^(t)
u^(t) = u^ + v(t) (67)

as was given in (67), the total pressure drop throughout the four 
sections is obtained by adding (l-2), (l-4), (l-7), and (l-lO).

u
00Ap = + S + + [ai + 8 + f(%. + v)^] \ +

+ V + g + f(u^ + v)^] § - + 1(1 + 2f |u^ + vj-) - fl^j § +

[1 + 2f(i^ + v)J T| - 2flTl + fÇ + + g + f(u^ + V + l)^J 2̂

- + 2fl(u^ + V + 1) - fl^] (l-ll)

At steady state, v -» 0 in the above equation and 1 -* 1^, | -*
T] -* C "* CqJ and -* With these substitutions, the following
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expression results :

âp,3 = [ s  -  + )̂ o) -  + B + 4 .^ ]  So + + ^ 4 . ]  "c

+ 1)"] lio - b  + V o  + % \

(1-12)

The pressure drops (l-ll) and (l-12) are equated to obtain 

[ S  ^ (^o + k + 5 + §i) + [g + t ^ J ]  \ + v§ + [u^ + g + fu^^]ç

+ 2fvTl + [l + 2fujn + fC + 2fv?ĵ  + [g + t(u„ + 1)^] ^  (I + {^)

- 2fvX| - (1 T 2fu„) X5 + If] X‘Ç - 2fXT| - 2fvX| - 2f(u^ + 1) X| +

[f] X^^ . [g . fu„^] X^ + [u. + S . Sa f [l + 2fuJ \  f fCo f

[g f f(u„ + i f ]  - [l + 21mJ X^I^ + [f] x/l^ - [2f] X^H^ -

+ 1)] >'0̂ 10 + b ]  ^ o \ o (1-13)

dv
dt

By rearranging (1-13), the following expression is obtained;

T1 +§,
= fv(2a„ + t ) + 2fv

2 5 -
(u„ + g + + \ + Ç + + (1 + 2fu^)  ̂+ I +

C - C, §T -® r 3l 3 m  b ^ bn
^ r + T T T T I ^  + [_g + f(H»+ 1) J \ + Ç + ■ dt X + S +

x(§ + §3_)- 2fv
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XS -  ̂ ^'5 - x X  '’I -

T  I  a  ~  p. ' " ^ —  “  C.1
+ X + S + §1 f  X f  § + %! " + X f  § +

"  ^O^IO - f - ^o'SlO



A P w m n :  ii

STEADY STATE PEGIME

(l) Expression For From the set of equations (43)

X.(t) - 'j u (x)dx (ll-l)
Jt-8

At steady state, - u^j therefore. (lT-1) gives

and

X (t) - 'i u dx 
Jt-B "

This inçoses. an important condition on since (43) requires
X < 1

therefore, (lI-2) imposes the condition
u^s < 1 (II-3)

since it is necessary that X^ < 1. If this is not the case, the density 
will be constant throughout the heated section and an oscillatory 
solution is impossible as shown in Appendix V.

(2) Expression For From the definition (l-6)

§(t) - pdz (XI-4)

For the region between X(t) and 1, the set of equations (55) are valid
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p = e

139 

-(t - t) (H-5)
gether with

X
z(t/r) = \(T)e^ **" + J e ^ ^Ug(x) - X(x)J dx (H-5)

For the steady state regime.

z(t,T) = + e^ J  e'^ [Hx. - ^o] dx

•- X ê  -f (u - X O CO o

and

z(t,T) = u,et-T - + X^

Substituting from (lI-2)
z(t,x) = (ê ""̂  f s - 1)

Taking into account the expression for p fr-m (II-5),
- = 1 - s + —
P

From (II-4). the following expression is deduced,
1

(o = _[ Plz
o

therefore, from (lI-2), (II-7), and (II-8) it is found that
1

(II-6)

= r   dz
° 4 i s l - s +  —

= u -tn(l - s + — ) CO u
00 ^8

and
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This oxpreseion can be simplified by letting

1m = 1 - s +

According to (II-3),

therefore, (11-10) shows

u

k = &n m
(11-10)

m > 1 
k > 0

(11-11)

Finally, with the definitions (II-IO), Equation (II-9) gives
(11-12)

(3) Expression For From the definition of T| (l-6).

'“ ' I
=  '| pzdz

'"o
therefore.

P zdz
4  1 - 8 4

Integrating

T]̂  — î l - s + —— - (l - s) tn(l - s +u f - ) ] 0̂=3

= - ^o " (1 " {h» tn(l - s + ̂ )} ]

and

[l'' - (I - (11-13)

Solving for the expression given in Equation (91),

\  - >̂ 0 - s.)



l4l

since \ u s.0 “
(4) Expression For From the definition of Ç (l-6),

2

therefore,

^o =
0

1

s
H»

p z^dz
4. 1

P'l u zdz + u (s - l) 
o o

zdz
I ■1 - s + u

and
u

- (1 - S) zdz
s + u

where the second integral is equal to T|̂  as seen in section (3); there­
fore,

(11-15)

Solving for the expression given in Equation (92),

(o - So = Co - K \  -

Expanding the right side by substitution for C from ( 11-15) giveso

= (

Substituting from (ll-l4)
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Again by substituting from (II-l4),

(. - + \ \  = Û  - “.(1 - - s.)]

(5) Expression For Ç^q. From the definition of (1-9),

lio = J pdz

The density for this region can be found by substituting z = 1 into 
(11-7) to give

^10

and

(10 = ■ ^ , 1  (11-17)1 - s + —

From (II-IO) it can be seen that

h o ‘ T  (11-18)

(6) steady State Criterion Calculations. The expression for Ap 
is given by Equation (93) :

ip  = « ( t j ,  + ^0 + So *  ^10) *  “»(1  -  lo )  + 1 [ t  (1 -  Ip )^

+ (1 + to) + (%L + 1 - lo)^ s j  (11-19)
Multiplying ( 11-10) by

û  + 1 - = mu^ (11-20)

Utilizing (II-18) and (11-20) in (II-I9), the following expression is 
obtained:
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Ap = gCÔQ + + 5io) + ^.(1 - &o) + + 1)

+ f (l - (ll-2l)

Differentiating

(- â^-) + (1 -
w  w  go w  00

t + 1) 2u.f - m  (1 - X^) Jj2 + (1 - x/) I

' + 2ai“". + H , X  1 ^  (11-22)00

The first derivatives appearing in (11-22) are calculated as follows: 
from (II-2)

\ = u so CO

= s (11-23)

from (11-10)
m = 1 - s + —

00 u

from (II-IO) and (11-12)

and from (11-24)

I = u k = u tn mO  CO 00

ô T  = 53^ + m00 GO

5 r  = ^ - g r  (11-25)00 00
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From (11-18)

a X
ÔU 1 ÔU 1 ÔU i , 1tl - s + — /

Hn

" V "

(1 - s +
00

and

^  = 7- ^  ("-2G)(mu )00

Substitution of the derivatives (11-23) through (11-26) into (11-22) 
gives, after simplification,

= g [s + k - ^  + — ^  ] + (1 - 2\ ) + 2f\
“ » (mû ,)

[to + 1 + t^(l - s)] + I (1 - \^)(1 - 3X̂ ) + (11-27)



APEEMDIX III

THE GENERA! EQUATION IN C

The equation in c is the form taken by Equation (88),

+ \ + § + 1̂ ) —  + + \ + g + g^)(2u^ + v)v + (v - §

- ^  + 2fv [n - X.5 + 5^(1 - X)] + U„{5 - 5^) + (g + fu„̂ )

(; + k - So - + (1 + 2f%) [d - XI - (Tl̂  - x^l^)] + f

[(C - 2XTI + x^l) - (c^ - + x/l^)] + [g  + f(u„ + - V

- + l)(X|i - X^l^g) + f (X^l^ - = 0 (88)

when the transient component of the velocity is taken as v = v^e^^
deduced from

by neglecting second order terms.
It will be assumed that c ̂  0, c ^ 1, c 2 so that a general 

equation can be developed. Otherwise some terms in the equation would 
approach zero thereby giving a special case of the general problem.

(l) Expressions For \ and ̂  . From Equation (43)

X(t) = u^(x)dx 
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Substituting for u^(x) from Equation (71)

\(t) = r Fu + V dx
4-s ^ °

= U X
t V

+ -O e ™
t-s

t
t-s

and

Adopting the notation
Es - e •cs

the following expression is obtained

V e=t
X(t) = + - 2 _  (1 . Eg)

Differentiating (III-2)

(ni-3)

(2) Expression For g . By definition

1 = 1  pdz 
'%(t)

p is a function of z and t and (55) gives

p = e-(t-T) 

t p"

(1-6)

(55)
(t,T) = X(t)6^ ’’’ + e^ J e"^ l^u^(x) - X(x)j dx

Evaluating the integral in Equation (55) by substituting for u^ from 
Equation (71) and \ from (III-2) gives

J e"^ [u.Q(x) - X(x)J dx = j e"^ [F e ^ 1 u + V e*̂  ̂- X - 00 o o
T



\
V, V e o

cx
. 1(1 - Eg)j dx 

and
t t

= r (u - \ ) e ^ d x  + v    (l - E ) r g(c-l)x ^J “ o' 0 c s J

finally,
= u^(l - s)(e"'̂  - e't) + ̂  . - --

{e(c-l)t _ g(c-l)T^

Substituting this into the expression for % (55)
V ê T

z(t,T) = [\^ + (l - + u^(l - s)(ef"T _ 1)

+ ̂  [l . {e-t(l-c) e* - e-T(l-c) e*}

After algebraic manipulation, the following is obtained

, , pE e(l"c)(t-T) E - ,

s(t,T) . u.(e - + s - 1) + ' 3[Ï:ZT_

(III-4)
Now the desired, expression p(z,t) could be obtained by elimination 

of T between the expression for the density

P = (55)
and (III-4).

However, this elimination would not give p explicitly because of 
the different exponents. An approximate expression for p(z,t) can be 
found by considering the following. Since the second member of the 
right side of (III-4) is an infinitesimal of the first order, the 
following expression can be written:
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z(t,T) «  + s - l)
Solving for ^,

ê "'" = 1 -  s +  —  + first order terms

Substituting for ê  in the second member of the right side of (lIX-4)
gives

(t,T) = u (e^ + s - l) + V e*̂  ̂ (l - s + — )

E

•E.. , 1-c
Ll-c u

c ” c(l-c)l ^ second order terms (lH-5)

Discounting the second order terms in (lU-5), ê  ̂  can be elimi­
nated between Equations (55) and (XII-5) to obtain

1 7 V eft E r . E -,
- = - s + 1) - |i . s + |-J- + - -

Dividing both sides by (l - s + — ) and raising both sides to the -1
Ho

power gives
r V e°* pE "C

p(l - s + — ) = -ĵl - ^ (1 . s + ̂ )  +
00 CO CO

Es
c c
1 - s + —  

Ho
rExpanding the term in the ̂  j" brackets in a series and neglecting higher

order terms,

therefore,
(l - x) = 1 + X +

p(l - s + 2_) = 1 + (1 . s + ^ )  +
00 00 00



1^9

1 _ . 
c c(l-c)
1 - s + —

H»
J

whereby

P = V
%

et

-[■
Es
1-0

1
c

Es
ç(l-c)

(1 - (1
00

( i n - 6 )

Upon knowing p(z,t), § can be calculated. From (l-6) 
1

‘l(t)
-Gs

-c(l-c) (1 - 8 + 2_)
-c

fl
iz -

1

\(t)
Utilizing the series approximation that

tn(l + x) fts X
the following expression is obtained after simplification

P _ ,  ,  , _ c t  r  " s "  ^  "s" ^ s  i_i
o o Lc(l-c) c(l-cy c cmJ

Utilizing the identity

gives the following expression for |

(m-7)

® 0 Ll-c c c
(3) Expression For "H. T| is defined as

T) 5 pzdz
4(t)

- y (m"l - 1)] (III-8)

(1-6)
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Utilizing the expression developed for p(III-6), the integral becomes

E
zdz

" '  L )  r r ;

ot 1r [ r zdz
^  ^  4i(t) l+c

(1 - 8 + 00

r" [-0 -

U ( t ) "„(1 - s + ̂ -)
CO

The first integral on the right side of the preceding equation 
can be broken into two integrals:

1 1 1  
r ------   = u_ f* d z - u ( l - s )  ^
'i.(t) 1 - s + —  4i(t) 4{t)

dz
1 - s + —

= [z - ^(1 - s) tn(l - 8 + ̂ )]

The second integral is evaluated as

(1 - s 
= [---- ÏT

\(t)

1-C

r zdz______
4 (t) (1 - s + — )l+c

(1 - S + — )

— + 4 ^ ( i - s  + r )  JCO

The third integral is evaluated as

I ( t )  T T T n ?  ° " r i t z Ju \{t)

\(t)

Limiting the evaluation of the integrals to the first order terms, 
simplification and addition of the three integrals above give, according 
to (l-6):

% = H. [77^  --- ZTIZZT
E^m (1 - s) E^m" (l - s)

(1-c)' :(l-c)
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E k

■ F i k y  + B g l #  - - s) - 1; J
(III-9)

(III-9) can be -written in a slightly different form so that

H=T1 + v e = * u  - 1 ^ (1 - s)(m~'= - m'^) _ kl0 0  “ Ll-c L 1-c c cJ

s(l - E ) , . 1 -,
 + (1 - s)(m - 1); J (III-IO)

(4) Expression For T) - \g. This is the expression that appears 
in Equation (88) and T] does not appear directly. Therefore, this 
expression will be evaluated utilizing those indi-vldual terms found 
above. From (III-2) and (lU-7):

ct „ -cr V e -, r- ,-Em
'  L^o ♦ - V  [«o V  I z i W  +

V '  / =  1 . 1
^(iiTy + 3- - '

Neglecting second order terms

. - k(l - E ) sE m"^ sE
= X § + V e U -   r -T- —r| r0 0 0 00 . c c(l-c) c(l-c)

sE
+ — i :c cm .

Utilizing the expression for T1 (III-9),

_ V . _ A _ . lEii'i
c(l-c) 1-c (i_c)^ " cm J (Ill-ll)
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This expression can be rearranged to give a slightly different form,

 ̂ [A  ( 4 ^ +

■ f ^ (k + m"^ - 1)] ( m - 12)

(5) Expression For Ç . Q is defined by
1

c(t) = r pz^dz (1-6)
'^(t)

utilizing the expression for p (III-6)

eft) = Z^dz . v ' y ^ s  r" z^dz
4(t) 1 . s + ̂  4 (t) (1 - s + — )̂ +"=

The first integral in (HI-13) can be simplified.
1 2 1 1

r — -■ ■ = u r zdz - u (i - s) r —
'^(t) 1 - s + |- '^(t) 4(t) 1 - s + ̂

00 00

The second integral above has already been determined in the process 
of deriving the expression for Tl - (lll-ll).

Therefore, the first integral in (lH-13) gives

= U* []T- (1 - s)^ - (1 - s)u^z + u^^(l - s)^Cn(l - s + ̂ )]

and the second integral in (lXI-13) gives
^ 2, ^ , 2-c

x(t)

z vl+c “ L2-C u 1-c



(1 - s + — )z (1 _ g)
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2

H»
(1 -  s + f - )  “j

x(t)
The third integral in (lH-13) gives 
1

J
2z dz

Mt) '
= u r(l - s + — ) - 2(1 - s) 't<n(l - s + —“ L. u u00

(1 - s)^ ] 
1 - s H- —  "

\(t)
Again, by eliminating second order terms in the evaluation of the limits, 
C is found to be

(1 - s)^ (m  ̂- m ^)\  ̂^s^p r2k(l - s)\ ^s^^
c J 1-c I c J c(l - c)

(  ̂ 2
------- 1 ^ {1 - H»® - 2u„k(l - s) - (1 - s)'̂  - l)j- ]

(III-14)
(6) Expression For Ç - 2X7] + X~g. Q does not appear directly in 

Equation (88), but the expression above does. Therefore, 2\T) and
are calculated utilizing Equations (lI-2), (11-12), (11-13), (lIX-2), 

(III-7), and (III-9).

- a n  = -2 {x^ - ̂  (1 - [t|„ 4. v^e=‘ u. {

(1 - s) E m"^ (1 - s) E m“  ̂ E k' S ' ' 8 8

ct E m 8
1-c

(1-c)'

:(l-c) c(l-c) c(l-c)



154

+ E (f - — ^  ) + i (k - 1 + (1 - 1
®  ̂ (1-c) ^

After simplification

2.(1 - - m-^) ^ g|k| ^ ̂ { V ( l  - s) - 2 .

S + 2u^s^ j- + ̂ -^-2u^sk - 2u^s(l - s)(m~^ - l)j- 12u
00

(III-15)
2The expression for X § is given by
ct p _ -c

o f V e \ r , r» "E m
 ̂5 = - - V  - *.)} {5o ' "o' [ z r W  "

^ * - - - 1 1c(l-c) c cm J J

After simplification

[21“«s - + F [-UL82(m-l - 1)] } (III-16)

By adding (lll-l4), (lH-15), and (III-16), it is found that

c - a i  . 1^  = C„ - a . %  + x X  ^ V ° ‘ "« [ 4 ^

_ 2(m^~° - 1) _ (m~° - m~^) 2k 1 _ :J3_ /  " ^
1-C c c J 1-c c ^

2E
(1 - u^s - u^k) - •̂ [l - u^s + u^fm'l - 1)] }

(HI-17)
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By combining two terms (III-I7) becomes

C - a n  . + v^a=* u„

. - 1) . (m-° - m-bl + 22,*.% _ ^  1 -
1-C C J 1-c 1-c c

2E
+ (1 - n^s) - § [l - \,s + u^(m ^ - 1)] } (lH-18)

(7) Expression For g^ is defined by

g^(t) s j pdz (1-9)

As in section (2) above, it is necessary to express p as p(z,t). 
The expression for p in this zone can be found by putting z = 1 and 
t = t^ in (III-6), hence

P = _1___  + _o___  r 1-c . c ' c(l-c) 1.1 U_ L/, ,1 xl+c %  ’ 1 \2J1 - S + ^  -(I. (1 - S + i-)

and from the definition of m,

 ̂= m + 4 ^  [ i h  + {ïï “ ÏÏTÏI^} ] (III-19)

For this region, the set of equations (6o) are valid and
t

z(t,r) = 1 + J  ^u^(x) - \(x) + ij dx (6o)
*1

Integrating

r V  T p‘ r T T r*z(t,ti) . 1 + [u. + y^e“ J dx - (1 - E^)J dx dx
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Evaluating this integral 

z(t,t^) = 1 + (u* - + l)(t-t^) + [ l -----

(III-20)
%  neglecting the higher order terms, (III-20) can be approximated by

z(tjtĵ ) «  1 + (û  - + l)(t-t^)

Utilizing this approximation, t^ can be evaluated as

t, = t - ( m - 21)

Substituting (lU-21) into (XII-19) eliminates t^ and gives p = p(z,t).

- c(z-l)
mum"^} e (III-22)

This expression for p will now allow the calculation of 
Substituting (lH-22) into (l-9)j

1+6 - 
n 1 e dz

Making a variable change by letting
X = z - 1 

the second integral above becomes

= I
h -  ^ ® ae dx



Introducing the notation
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r J

mu.CO
and (lH-23)

E = e-cyy
by analogy with the definition of E^.

With this notation it is found that

^1 "  ^10 + “ V "  I l k  ™ ̂  + [c  - c (lk )_ i “  k  - V

(8) Expression For Utilizing the expression for \ (lU-2)

and the expression for (111-24),
ct ct „ -cr V e . V e ^E m _-l

^^1 = 1^0 ^ ~ T “ ■ ®s^/ O l o  “k “  [ " t r  ~

c
Simplifying

fn^TJ - \ j  I

V r(l - E )t ,E
« 1  ' ̂ 5,0 . ^  + (1 - ŷ) {îTT-

V '  1 .1
ZTIZZT + ; J ("1-25)

(9) Expression For The equations found in section (8) above

are utilized to obtain (neglecting second order terms)
o ct2. r, 2 2b, ct, ' V *
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[ î ^  + - îT b r >:(l-c)' J ■ y 
simplifying

-c -1,E m E m t i -i{—  - + J ]
(lO) Linearization of the Equation in C. The expressions have

now been obtained for all terms in the equation in c (88). Note that 
all these terms contain v^e^^, thereby allowing us to divide through by 
this factor.

Before continuing on to the equation in c, it is convenient to 
introduce some new notation. The following is defined:

ho

“iH. ' \  - \ h  + Siod - 

” 5 - So 

V o s " *  ' s + k - (So +

' C - 2X11 + - (C^ - + x/5„)

Vo®°* • Si - Sio

• ''Si - ^oSio 

= k'Si - X^Ssio

Now writing Equation (88) in the form
Au^f + Bg + C = 0
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gives

1 + § + §2^)(2u^ + v ) + 2v|̂ Tl - \| + §^(l-\)j + (5 + 1

+ 2a.l% - kS - CHo - kofo), + {(G - 2 ^  + - (Go- 2ko%o + ̂ o^ScAl

+ (u, + 1)2 (Si _ Sio) - 2(u, + l)(XSi - Xcfio) + k̂ Si - Xô Sio 1 f

+ [(S i ■ Sic,) + (S + k - So - ^o )j ® ■" [(^0  ^ S + ^ i)  S

+ (^ - 1&) S - Si + ^ (5  - 5q) + - ^S - ('R̂  - X^Sg); ]  = 0

(III-28)
Equation (111-28) can now be linearized by neglecting terras of the 

second order. In order to do this, the following relationships which 
were developed earlier are utilized;

ctV = V e o
dv ct
dt " ^o°®

^ gCt (lH-29)
X = X + — --  (1 - E )

i  =

The following terms are non-linear in (lIX-28) and must be 
linearized utilizing the equations (III-29):

(i) Coefficients of f.

+ \ + S + l2_)(^œ v) + 2v îTl - X§ + §i(l “ l)j 

After linearization this expression becomes

[<*o + + s. + ho) 4 .  + 2 (%0 - h h  + Sio'l - J
(III-30)
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(ii) Constant Coefficients.

g  ^ X + § + + (v - 5 ^

After linearization this expression becomes

+ So + Sio) ■= + BgfSo + ^lo’ ‘

Substitution of the linearized equations (lH-30) and (HI-31) into the 
equation in c (III-28) gives the linearized equation in c in the 
following form:

2
" Sio) 4. + { %  - V o -  ̂Sio'l - ^0>} +

(S + k - So -  V  + 2'̂ {'n - >‘5 - (\ - K h ' > ) + {(( - 2X71 + X^s) -

((. - } + (u. + (5i - Sio) - 2(4. + 1)(«1 - ^Ao>]

[«1 - 5io) + (5 + X - 5o ■ *-0>l 8 + , + ̂ 0 + h * 5io> "

{s/S,) 1̂0̂ - 5iJ + “.(5 - 5o> + {'" - - (% - ̂ 5,)} ] - 0
(III-32)

Utilizing the notation defined in (lXI-27), the linearized equation 
(ill-32) becomes, after dividing by v^e^^:

+ (̂00 + %  - 2(û  + l)u^M^

+ Ho“8l! f + [wg + M3] S + [WoC + Eg(Sg + - 5^0 + u.Mg

+ = ° (III-33)
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Rearranging (lU-33), the following is obtained:

[ M j  +  M g ]  g  +  +  2M ^  +  +  a u ^ M ^  +  M j  +  — j -   M g

- 2(u„ + 1) My + Mg] + [m^o + + Sio) - ?io

+ >\.“2 + ] = ° (III-34)

(ll) Expressions For The M^. The have been defined in (111-2?) 
in terms of parameters which have been calculated in this Appendix. 
Therefore, equations from this Appendix and Appendix II will be utilized 
to calculate the expressions for the

A)
ho

Substituting for and

h
+ u.k + IT (III-35)

“I ' r " \  + V !
Utilizing (II-1À)

^1Ml = 1 - ^.8 - u,k + (1 . u^s) ̂  (111-36)
GO

c)
- I - C„

Utilizing (III-7)
-E m E -1 -1

“a = H ( f c T " r  - V

V o ® " *  ' S + k - (So + k.)
Substituting for § and X from (ill-?) and (III-2),
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-E m"° E / -1 ^,»  s ^ s  (m - 1)
3 c(l-c) c(l-c) c (III-38)

E)

Utilizing (lll-ll) 
-c

(III-39)

F)

Utilizing (III-I8)
-c

=
E u^  Tm" 2m II , "8 « /-I 2

ÎFT" t e  - ïTF - Zf + —  t e  + Ï:E

-1 E ( l - u s )
+ 2 _  + 2kj- + - " (1 - 2c) - i {1 - u^s + u^(m-1

G)

Utilizing (UI-24)

M. = T + - 4 ^

'1 =10

E E m”° E E  m"^ E m"° E m"^s s
6 = c(l-c) + ■" c(l-c) ■ 2̂(1-c)

1);
(III-I+O)

H)
c c

ct
10

Utilizing (III-25)
-E E, E E mT^s E m”''s E ft.

(III-41)

(111-42)
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utilizing (XII-26)
-c 2 - 1 2  -c 2- E E m u s  E E m u s  E m u s

^8 = - - f e c T "  "

E 2̂-t̂ s m  ̂ E m s^ m 2t̂  s
-  _ S _  + _ 1_

,2
S r i  “ 1 y “

■ r  ^ ïïTT-’ïïT' J — 12—  +
(111-43)

In these groupings c appears in four different ways: through
c, E , E , and m ^ . s y

In calculating the coefficients of the equation in c, the coeffi­
cients will he grouped in relation t o E E m ^ . E E  , E m ° ,  E , and E .s y ’ s y ’ s ’ s’ y

(12) Coefficient of g in the Equation in c. Utilizing (111-34)
and introducing the notation

+ Mg (III-44)

Adding (111-38) and (III-41)

-E E m'*̂  E E m ̂  E m ^ E m ^ - _

(13) Coefficient of f in the Equation in c. The coefficient of f
is much more complicated than the coefficient of g; therefore, use is 
made of the grouping mentioned above. Utilizing (111-34) and the nota­
tion above, B„ becomes

? ^  -®2 - 2(^0 + Ml) + + (u^ + 1) ^  - 2(u^ + l) + Mg
( in - 4 6 )

(a) Terms in E^E^m ^ . The term E^E^m'^ appears in Mg, M^, and Mg
as
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v2-E E m“ ,(u + 1)‘
- # T  i-=ïï + V 7

Simplifying, this term becomes
E E m*^

-  " u. 3Tï^rr (III-47)
(b) Terms in E E . This term is calculated as in (A),s y

This coefficient is identical to that calculated in (A); therefore, 
this term becomes

E E
mu --  (III-48)

c (1-c)
(C) Terms in Ejm This term is included in through Mg.

- t r  [ - f  + 4.  - 1:^ -

The term in the j" brackets is the same term as above except for
the factor therefore, this term becomes

2 Em'C
2» "b (1:1-49)

(D) Terms in E .̂ This term is included in Mg through Mg

! a | !
1 - C  I

-1 -1E ^m u 2u m 2u u 2uCC CO CO CO CO
1 ------ 5---- 2ujk - - gZE + 1;:

. E (1 - u*s)(l - 2c) E m*: ,(u„ + l)^
— . 2u^k} + -------- -gTT-ri— —c (1-c)
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Again noting the second term in the | j- brackets has already been 
evaluated, the following expression is obtained:

( - 5 0 ,
c

(e ) Terms in E^. These terms are included in Mg, M^, and M̂ .

c »
As before, this term reduces to

E
- mu^ (III-51)

c
(P) Terms in These terms are included in through Mg, 
_-l . , T -1 + 1)̂
— f ~  + 2u^ - - c (1 - + ~ T -{— Û----

21 ^ 1- 2(u^ + 1)8 + UL8 ; - SÜÜT ("k + 1 - TtsS)

This term reduces to
1 mu 21

’ Q (1 " + -g —  (III-52)
c

(G) Terms Independent of c. These terms occur in and Mg.

2M^ + 2M^ = 2{l^ + u^s + u^k + ~ )  + 2 {1 - u^s - u^k + (l - u^s) } 

This term reduces to

2(tg + 1 + (III-53)

Adding Equations (111-4?) through (ill-53) gives
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P E E  E E  p E
=  -  * "b ^  3Tï!é)-2Jc)

\  f“» , B;(l . n^B)
' ^ * ̂ J  + ----- 5----- +

2^.E^ E_ T mu 21^
- rau_ -^ - — (l - us) + —s- — —  +0» 2 c « ' 2c c

+ 2(1 ^ + 1 + <t̂ ) (111-54)

(l4) Constant Coefficient. Utilizing (111-34) and the notation 

B3 . M^C + E^(5^ + Siq) - ?10 * “. “2 + “A  (III-55)
From (11-12) and (II-I8)

«0 + SlO = 'Lk + :T

utilizing Equations (lH-35), (UI-37), (lU-39), (III-27), and the 
above equation

®3 = (■‘■o + + u.k + ̂ )  + Eg(ujt + g-) - g-

--E m"° E -1 - I E  m”°
" isîfiïT * - V  - - n r

This expression reduces to

« y  r>i„ «.EC ty,
^ (l-c)2 * ® -̂'= (l-c)2 *

+ ('t'o + ~  ■ m“ (111-56)

Therefore, the coefficients of the equation in c as given in



i6r
Equation (98) have been determined,

B^g + Bgfu^ + - 0 (98)

in Equations (111-54), and (III-56) respectively.



APPENDIX IV

THE GENERAL EQUATIONS IN (B

The system of equations in u> of the surface (Z) is the system 
deduced from the equation in c (98)

B^g + Bgf\ + Bg = 0 (98)

when c is taken as
c = iuj

and when the real and the pure imaginary terms are separated.
The following definitions are made:

B̂ (iU)) 5 a^ + ib^

I^/im) = ag + ibg (lV-1)

Bg(iU)) = »3 + ibg

Assuming w ̂  0, two equations occur as a result of the separation 
of the real and the imaginary parts, i.e.,

a^g + agU^f + ag = 0 

+ bg = 0

(1) Preliminary Calculations. From the equations (II-IO)
k = tn m

therefore,
-c -kc m = e

168
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m  ̂= e = cos(iuk) - 1 sin(u)k)
also

_ -cs -iüusEg = e = e = cos(u)s) - i sin(uus)

Ey = e = cos(u)y) - i sin(üuy)

It is convenient to introduce the notation
u)k = K
wy 5 Y (IV-3)
u)s — S

With this notation the following calculations are made:

EgEyin'̂  = ^ cos(K + S + Y) - i sin(K + S + Y)

E E = = cos(S + Y) - i sin(S + Y)S y

Egm"^ = = cos(K + S) - i sin(K + S) (lV-4)

Eg = e = cds(S) - i sin(s)

Ey = e"^^ = cos(Y) - i sin(Y)

also
i = - i
C  ~  (JU

1 1
2 "  ■  2 C  (I)

1 1 + iu)

(1 - (B̂ ) + 2im
(l-c)2 (1 +
1 2 + iuu
2-c = 4 +
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+ tu tu(l + U) )

-1
c^(l-c) (U^(l+üü^) tü(l+tu^) (lV-5)

1 ^ 2 - 3iw_______
(l-c)(2-c) (1 + + ̂ 2) (i + (û )(lt + (û )

1 ^ 3_______  i(u)̂  - 2)
c(l-c)(2-c) (1 + w2)(4 +(u^) u)(l + tû )(l++ tû )

Ail of the complex terms of B^, and B^ are given in (lV-4) and
(lV-5). Therefore, it is possible to write the equation in c in terms 
of the equation in <u.

(2) Expression for B̂ . B^ is given hy (111-45)

c (1-c) c c me
Utilizing (lV-4) and (lV-5)

B^ = [-cos(K + S + Y) + i sin(K + S + Y)j [ 2 2 J
1 + tu tu(l + U) )

^ cos(S + Y) - i sin(S + Y) P -1_________ i 1
“ + (D̂ ) tu(l + (Û )-*

cos(S) + cos (Y) - i(sin S + sin Y) _ 1 - itu _ i (iv-6)
nu)̂  raû  ^

Separating the real and imaginary parts of (lV-6) and recalling (lV-2),

1 + tu'̂ '■ "* raû (l + (û )

[cos(S + Y) + tu sin(S + Y)] + t_59s{Y) _^1 (iv-7)
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= --- -— ^  ̂ cos(K + S + Y) + cu sin(K + S + Y)j -
uj(l + üû ) ^ raj)(l + cû )

[costs + Y) - sin(S_M01 _ sinXsj. +_sin(Y) + 1 (1 . i)
L ' (I) J 2 w /mu

(lV-8)
(3) Expression for Bg. Bg is given by (111-54)

E E E E  ■ E
^  c(i-c7Tâ-c)

E_ rU. mu E (l - u s) 2/Ù̂ E“I s' ” 1 s
c cc

mu E T mu 21" y 1 2--- -- (l - ii,s) + -g ^  + 2(1^ + 1 + (111-54)
c c

Utilizing (IV-4) and (IV-5)

B„ = m \  j -cos(K + S + Y) + i sin(K + 8 + Y)' I ^ „ -----
^ ^  " "1 + (Û  (u(l + wf)J

+ mu [costs + Y) - i sin(S + Y)1 [^ -■■-- s-------
■* Su^ti + (Û ) u)(l + m )-'

2
+ 2 m \  [cos(K + S) - i sin(K + 8)1 [----- ^ ^  ---=-l

J L(i + w2)(4 + *2) (u(l + (û )(4 + t u V

+ [-oos(S) + i sin(S)] [ 2 f ---- ^ ---- 5-
^ ( l + œ ) ( 4 + c u )  ( l + u ) ) (4 +(u)

(l - qms)(l+ itu) mitto (l - + 2t )i
+     _   -   +   --

1 + (U (U^(l + tu^) (u (l + cu )̂ “ ]
muu  ̂ P -, ( l  -  u^s + 26 ) i  mû

+ ~p“  ' cos(Y) -  i  s in (Y ) ; + ------------ ------------------------5-  + 2 (6  + 1 + 6 , )
(U (U

(lV-9)
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Separating the real and imaginary parts of (lV-9) and recalling (lV-2);

2 m u
^2 = cos(K + 8 + Y) sin(K + S + Y

(U
mu

^cos( S + Y) +

U)
21 2m u r 2 p -,

sin(S + Y) I + --- ^ -- 5- I 3 cos(K + S) + sin(K + S)
(l-Ki) )(U-Ku ) U)

- sin(S) r U)(l - u s)

mu 1 - u s + 2t̂ -i
(ü(l4<Û ) U)'

mu
U)

[l - cos(Y)] + 2(1^ + 1 +

(lV-10)
2 m u

^2 =
P -, mu^ P

^  |_cos(K + S + Y) + U) sin(K + S + Y)J------g- [cos(S + Y) -
U)(l-KU ) 

sin(S + Y)J
22m u

U) cos(K + S) - 3 sin(K + S)] - cos(S)

- Ho") 1 - u^s + 2t̂ _| gin(g)

.(2-U)̂ )u
4-HU

r\^-^ mH»-| ,
[---- —  + 1 - u»8 - -^J - —  sin(Y) +

'..  UD ÜU

1 - u s + 2t ̂_______ CO__________1

(Ü
(IV-11)

(4) Expression for From (ill-56)

E m
®3 ■ (i_c)2 ^8

u u kc ur 00 CO
Lc“ ■ Ï7 (l-c)

"̂ 1+ (•£/ + u s + u k  + — )c - —  - —o CO 00 m

Utilizing (lV-4) and (lV-5),
c m (111-56)
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B_ = mu 3 “ cos(K + S) -  i  sin(K + 8)j— — - p- A^}1 + FcosCs) - i s in (S )11(1 + *2)2 JJ L

p-u^i u^hui(l +iiu) u^(l - uj + 2iai) -t,-,
■ - + —  I + (& + u sU) 1 + U) (1 + m J o “

”̂1\ . ^1+ u k + — ) id) + —  - —» m u) m (lV-12)

Separating the real and imaginary parts of (lV-12) and recalling (lV-2)

^3 =
“ Ho r  2 1 r

 |^ (l -  Ü) )cos(K + S) + 2u) s in (K  + S)J + cos(s) r
u hi) 00

(1 + U) ) 1 + U)

U^(l . U) ) pU^ U^hD 2Û U) -,

(lV-13)

“ Ho r  ? ”! rHo ^  hi)
b_ =  5-5 I 21) cos(K + S) -  (1 - (1) ) s in (K  + S) I -  cos(S) I — + — — 5̂
 ̂ (1+0)2)^" ^ i+u)2

2ûti)

(1 +
1 , , rHo^ Hod - U)̂ )
 ̂ L7 7 7  - j T T T f  " °

”̂1 Ho
+ E-) “ + ( lv -1 4 )

Therefore, with these calculations the equation in c has been 
replaced by the set of equations in u) (lV-2) with the defining 
relations (lV-7) and (lV-8), (IV-10) and (iV-ll), plus (lV-13) and 
(lV-14).
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For constemt density flow, r:-, r4*. ■
(16) for 0 -* « .

Hence,

Therefore, U is a function of T cxily

Applying the momentum equation 1' ,
exitr ra ' r---

*  J L 5 t ■ ' ■ j r .  '  “entrance
and

AF = Bo [a? + G " 2F:, “ • ' *

This equation can be written in the for*
dU
dT = - *

where a and b are positive constants.
Hy putting

U  =  U  *  V 
o

where
= steady state veloci' 

17U



APPENDIX V

CONSTANT DENSITY FLOW

For constant density flow, the continuity equation is given by 
(16) for 0 -♦ eo.

Hence,

11 = °
Therefore, U is a function of T only.

U = U(T)
Applying the momentum equation (17),

exit

entrance
and

This equation can be written in the form

^  = - aU^ + b (V-2)

where a and b are positive constants. 
Bif putting

U = + V (V-3)
where

= steady state velocity

174
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V = transient conç)onent of velocity

then

^  = - + b - a(2U^ + V)V = - a(2U^ + V)V (V-4)

Taking an initial perturbation such that

1 V(0)| <

since the right hand member of (V-4) is of opposite sign to V, this 
equation gives

V ^ < 0  (V-5)

which says

0 (v-6)

This says that V can only decrease in absolute value, therefore, 
the flow becomes stable in the sense that stability has been defined 
earlier in this investigation.



APPENDIX VI 

UNDAMPED NATURAL FREQUENCIES OF THE LOOP 

In order to determine what vibrating frequencies are important

Vapor

Figure ($4) Loop Idealized as a U-Tube Manometer

in the operation of a natural-circulation loop, it is necessary to 
investigate the various modes of vibration that can occur and to 
compare these calculated natural frequencies with those found experi- 
mentally.
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Since the loop is operated in a thermodynamic region where the

density of the fluid in the portion of the loop from the heater section

to the heat exchanger is much greater than the density of the fluid in
the rest of the loop, the loop can be treated as a vertical U-tube
manometer and the natural frequency of the manometer can be calculated.
This will give, as a first approximation, the longitudinal natural
frequency of the loop considering the loop fluid to be a solid body.

If, referring to Figure ($4), the liquid is displaced a distance
X from equilibrium, the potential energy of the system is changed
(assuming no mixing of the liquid and the vapor) as follows :

(p Ax)gx (p̂ Âx)gx 
P.E. = - J L ----------   (Vl-l)

®C ®C
The kinetic energy of the system is given by

21 r^L Pv1
K-B- = 2E"L 2 J (VI-2)

where
p_ = Liquid density, lb /ft^

m'
2

'L   m
Op^ = Vapor density, Ib^/ft 

A = Cross-sectional area of loop, ft 
t = One-half loop circumference, ft 

In a conservative field,

P.E. + K.E. = Constant
Hence,

^  (P.E. + K.E.) = 0
Therefore,
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Differentiating and simplifying,

^
From the solution of (VI-3), it is found that the natural frequency is

J ”

and

If Pl > >  Pv»

1 / 2g(p - p )
^n = âîA/i(p,.p^)

^n = l r V f

Utilizing (VI-5)j the natural frequency assuming p_ > > p isij V

f^ = 0.276 cps

Another mode of vibration would be the radial mode in a pressurized 
pipe as shown in Figure (55). The natural frequency for this mode is 
given by

% = 4^  ( ^ - 6 )

Figure (55) Radial Mode of Vibration



Now

and

K

179

= f

Therefore,

Ô = Ee^

R , s
= ; ('h - ” a> 

6 = Et" (1 "

K = S S Î ^  (VI-7)
R(l- g)

and
m = (vi-8)

&C
Substituting (VI-7) and (VI-8) into (VI-6) gives

%

e\(1- |)

and

where
R^(l- %)

Y = Density, Ib^/ft^ 

p = Pressure, psi 
R = Pipe radius, in.

(VI-9)

„ (VI-10)
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E = Young's modulus, psi
V = Poisson's ratio

= Hoop stress
a = Axial stress a

Utilizing the properties of the loop, the radial natural frequency 
is found to be

f^ = 21,500 cps

In order to investigate bending vibrations, the two limiting cases 
of hinged ends and fixed ends are considered.

liFor hinged ends, it is found

PL = TT ( VI-11)
where

(VI-12)

p = Specific weight, Ŝ
2A = Material cross-section, in 

I = Ifoment of inertia, ^  - Lu^)

L = One-half total length, in.
E = Young's modulus, psi 

Utilizing the formulas (VI-ll) and (VI-12) and the material 
properties,

Now for fixed ends.
fn = 0.457 cps

P = ^  (VI-13)

Utilizing (VI-12) and (VI-13) and the material properties, it is 
found that



I8l 

= 0.0722 cps

The circulation loop would fall somewhere between these two 

limiting cases. Therefore, the natural frequency for the bending 
mode is

0.0722 < f^< 0.457 cps

The next mode to consider is the longitudinal vibration of the 
loop. To approximate this mode, it will first be assumed that the
loop is a cantilever. Therefore, the longitudinal vibration of a uni-

3form cantilever is given by

= h  & )  ' f W

where

I = One-half total loop length 
w = Weight per unit length 

Utilizing (VI-l4), the longitudinal frequency is

^n " cps

Now if the loop is considered as a circular ring, this case and
the previous case will give the limiting cases for the longitudinal
mode. Hence, the natural frequency of a pure radial vibration of the 

4pipe is given by

Now if the entire loop is considered as a circular ring, the equivalent 
radius Is

where L Is the circumference of the loop. Therefore,



utilizing (VI-15)
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= iHoU cps

Therefore, it can be seen that the actual frequency would lie 
between

376 < f^< l404 cps



APPENDIX VII

CALIBRATION OF THE 1000 PSIG STATHAM 
ABSOLUTE PRESSURE TRANSDUCER

In order to determine the calibration factor, F, for the 1000 
psig absolute pressure transducer used in this investigation, it was 
necessary to calibrate the transducer with a dead weight tester.
This was done and the results are shown in Figure (56).

From the curve shown in Figure (56) the slope was found to be
20.4 |i-volts/psi

Utilizing the formula
Eg = FNE (VII-1)

where
Eg = Transducer output voltage, mv
E = Excitation voltage, volts
N = Pressure signal, psi
F = Calibration factor,’ volt psi

Equation (VII-l) gives E as a function of the pressure signal, N,s
where FE is the slope AE /AN. Therefore,8

FE = 20.4 |j,-volts/psi 
and since the excitation voltage used in the calibration run was E = 5 
volts, the calibration factor is

P = 4.08 n-volts/volt psi
183
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FIGURE (56) 1000 PSIG TRANSDUCER CALIBWTION CURVE



APPENDIX VIII 

PRESSURE TRANSDUCER CHECKING AND CALIBRATION

Calibration of the pressure instrumentation was acconqplished in 
two different ways. The first method was to calibrate the transducer 
with a dead weight tester as mentioned in the previous appendix. The 
second method was to calibrate the transducer with the bourdon tube 
pressure gauges.

The method of checking the transducer consisted of electrically 
simulating a pressure by keying a resistor across one arm of the 
transducer bridge. This causes a deflection in the output circuit 
which simulates the effect of resistance changes of the active bridge 
arms due to a pressure change in the loop. In this manner checking 
the output circuit can be made without the necessity of applying 
standardizing input pressures.

The effect of adding a calibrating resistor in parallel with an 
active bridge arm is shown in Figure (57)-

The Honeywell carrier amplifier has the calibrating circuit shown 
in Figure (57) built into it. It contains five shunt resistors (300K, 
I5OK, 75K, 3OK, and 15K) which serve as calibrating resistors. These 
calibrating resistors can be shunted across R̂ ĵ  (- calibration positions) 
or across R̂ ^̂  (+ calibration positions). The five calibrating resistors

185
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will give five convenient calibration positions for the transducers.

Table (2) gives the value of the simulated psi signal for the 

three transducers used in this investigation. These values were calcu­

lated utilizing Equation (VIII-l) below. The values of R and F come 
from the transducer manufacturer for the differential pressure trans­
ducer and the 5000 psi transducer. These values for the 1000 psi 
transducer come from a calibration of the transducer, the results of 
which are contained in Appendix VII.

When the output resistance of the bridge is much less than the 
resistance of the calibrating resistor (R< < R^), the output change 
from the transducer is given by

H = (VIII-1)
a c

where
N = Transducer output signal, psi

= Number of active strain gauge arms (4)

R = Transducer output resistance, ohms (R^^)
R^ = Calibrating resistor, ohms
P = Transducer calibration factor,̂ volt psi
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Calibration
Position

Calibrating
Resistor
(ohms)

PRESSURE TRANSDUCER OUTPUT

Pressure Transducer’*’

AP = 5 psid 
R = 357.6 
F = 4o6.9

P = 1000 psig 
R = 350.0 
F = 4.08

P = 5000 psig 
R = 353.2 
F = 0.8376

± 1 300,000 0.732 71.6 351.4
± 2 150,000 i M k 143.2 702.8
± 3 75,000 2.929 286.4 i405.6
± k 30,000 *7.323 716.0 3514.0

± 5 15,000 14.647* 1432.0* 7028.0*

R in ohms, F in p,-volt s/volt psi

Calibration positions which exceed the pressure rating of the transducer

Table (2) Carrier Amplifier Calibration Values
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Figure (57) Pressure Transducer Checking Circuit



APPENDIX IX

COMPUTER PROGRAMS

The following gives the relationship of the Computer Program 
variable notation to the model parameter.

Model Parameter Corresponding 
Program Notation

XLO, XL02, XLO3

'*'1 XLl, XLll, XL2, XLI3
s S
u Uee
m XM

k XK
N XN

u XMUMAX^max
(U W

^1 U1

g G

f F
r R

189
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c PROGRAM SIGMA

READ II, XL02,XL03,XL11,XL12,XL13

11 FORMAT (5EI2.3)
302 READ 12,S
12 F0RMAT(E12.3)

MC=0
U=.001

300 DOlOO J=l,31 
MC=MC+1 
NC=0
XMUMAX=.01

IF(MC-1)75,75,76
76 IF(MC-2)84,84,85
84 U=.01 

GO TO 75
85 IF(MC-21)77,77,78
77 U=U+.01 

GO TO 75
78 IF(MC-27)79,79,8o
79 U=U+.05 

GO TO 75
80 IP(MC-28)81,81,82
81 ü=.6
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GO TO 75

82 IF(MC-30)83,83,200
83 U»U+.2
75 XM=1.-S+1./U 

XK=L0GF(XM)
U1=XM*U
Y11=XL11/U1
Y12=XL12/U1

Y13=XL13/U1
IF(Y11-Y12)1,1,2

2 IF(Y11-Y13)7,3,4
4 Z=YI1
GO TO 10 

1 IF(Y12-Y13)7,5,6
6 Z=Y12
GO TO 10

7 Z=Y13
GO TO 10

5 PRINT 8
8 F0RMAT(2X,1H , 1IHY11=Y12=Y13//)
GO TO 7

3 PRINT 9
9 F0RMAT(2X, IE , 7HY11=Y13//)
10 XN=S+XK-%

DOlOO 1=1,61 
IF(NC-1)$0,51,52
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51 XMÜMAX=.25 

GO TO 50

52 IF(NC-2)53,53,54
53 XMÜMAX=.5 

GO TO 50
lF(NC-k)55,55,56

55 XMÜMAX=XMüMAX+.05 
GO TO 50

56 IF(NG-26)5T,57,58
57 XMüMAX=XMÜMAX+.025 

GO TO 50

58 IF(NC-lf7)59,59,60

59 XMüMAX=XM(JMAX+.05 
GO TO 50

60 if(NC-6o)6i,6i,300
61 XMÜMAX=XMÜMAX+.1
50 W=2. *3. l4l64%MUMAX/XN 

R11=W*(S+XK+Y11)
R12=W*(8+XK+Y12)
R21=W*(S+Y11)
R22=¥*(S+Y12)
R3=W*(8+XK)
R4^*8
Y21=W*Y11

Y22=W*Y12
D1=1.+W*W
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D4=4.+W'5«W
E2I=U/D1*(uM * ( 2. -W^)+l. -U*S-Ul/(W*W) )

E22=U*( 3. # ^ / (  D1*D4 ) +W/D1*( 1. -U*S ) -Ul/( W*D1 ) +( 1. -U*S+2. *XL12 ) /W ) 
E31=U*XK-î<Ŵ fW/Dl-U/(DI*Dl)*( I. -W*ff)+XL13/XM 
E32=U/W+U*XK^/D1+2 . -xÛ fW/C D1*D1 )
Al=- COSF( RIl ) /D1+SINF( RIl ) /(W*D1 ) - C0SF( R21 )/(XM#mf*Dl ) -SINF( R21 ) / 
1(XM#*D1 ) +( C0SF( Ri)-) +COSF( Y21 )-1. )/ ( X M # # )
A20=-U1*U1*C0SF( R12 ) /D1+U1*U1*3INF( R12 ) /( W*D1 ) -Um*COSF( R22 ) / 

l(W*W*Dl)-U*ül*8INF(R22)/(W*Dl)+2. *Ul*ül*(3.*C08F(R3)+(W-2./w)*8IRF 
2(R3))/(D1*D4)
A21=-E21*C08F( Rl̂ ) -E22*8HïF( Bh ) -Um*( 1. -C08F( Y22 ) )/(W-*W)+2. 
I(XL02+1.+XLI2)
A2=A20+A2I
A3=U1*( (I.-W^)*C08F(R3)+2. •><W*8INF(R3) )/(Dl*Dl)+E31*C08F(Rif)- 
1E32*8INF( R4 ) -XL13/XM
B1=C08F( RIl ) / ( W*D1 ) +8INF( RIl ) /DI- C0SF( R21 ) /(XM̂ <W*D1 ) +SINF( R21 ) / 
1(XM##*D1)-(8INF(R4)+SINF(Y21) )/(XM̂ «Ŵ <W)+1./W*( 1./XM-1. ) 

B20=U1*U1*C08F( R12 ) /(W*DI ) +Uim*SINF( R12 ) /Dl-Um*COSF( R22 ) / 
I(¥*D1)+U*U1*SINF(R22)/

2(W#*D1 ) +2. (W-2. /W ) *COSF( R3 ) - 3 • '^INF( R3 ) ) /( D1*D4 )
B21=-E22*C0SF( R4 ) +E2I*SINF( Bk ) -U'*U1*8INF( Y22)/(W*W)+(l. -U*S42. 
L^L12)̂ «U/W 
B2=B20+B21
B3=U1*( 2. ̂<W*COSP( R3 ) - ( 1. -Ŵ <W ) 4*8INF( R3 ) ) /( D1*D1 ) -E32*C0SF( Rî  ) - 
1E31*SINF( R4 ) 4¥*( XL03+U*S+U*XK+XL13/XM) +U/W 
G=(A2*B3-A3*B2)/( A1*B2-A2*B1)
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F=(A3*B1-A1*B3)/(A1*B2-A2*B1)

WC=UC+1

lF(mc-l)l3,i3,l4
13 ERHÎTI5
15 F0RMAT(10X,I9HDESCEEPTI0N of case///)
16 FRINT17,XL02,XL03,XLI1,XL12,XL13
17 P0RMAT(2X,p6.3,5X,f6.3,5X,p6.3,5X,f6.3,5X,p6.3//)
18 PRINT19,S,U
19 P0RMAT(2X,2HS=P10.3,5X,2HU=PI0.3///)
20 PRINT21
21 PORMAT( 5X, 5HMUMAX, lll-X,lHW, UX, IHG, 15X, IHP/// )
14 ERINT22,XMÜMAX,W,G,P-
22 P0RMAT(2X,E12.5,4X,E12.5 ,4X,E12.5,4X,E12.5/ ) 

IP(U-1./8)100,100,302
100 CONTINUE 

200 STOP 
END
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C PROGRAM ROOT 
READ11,XL0,XL1

11 F0RMAT(2E12.3)
1 READ12; S

12 F0RMAT(E12.3)
R=-10.
KC=0
DOlOO K=I,7

U=.l
KC=KC+1
IP(KC-3)105,105A06

105 R=R*.01 
GO TO 300

106 IF(KC-J+)107,107A08

107 R=0.
GO TO 300

108 IF(KC-5)109,109,110
109 R=.00001 

GO TO 300
110 R=R*l.E+2 

300 XM=1.-S+1./U
XK=LOGF(XM)
U1=XM*U
Yl=XLl/Ul
XN=S+XK+Y1
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XMumx=.oi 

75 BOlOO 1=1,6i 
IF(WC-1)50,51,52

51 XMUMAX=.25 
GO TO 50

52 IF(NC-2)53,53,54
53 XMUMAX=.5 

GO TO 50

54 IF(N0-4)55,55,56
55 XMÜMAX=XMUMAX+.05 

GO TO 50
56 IF(NC-26)57,57,58
57 XMUMAX=XMUMAX+.025 

GO TO 50
58 IF(nc-47)59,59,6o
59 XMÜMAX=XMÜMAX+.05 

GO TO 50
60 if(nc-6o)6i,6i,300
61 XMÜMAX=XMÜMAX+A
50 ¥=2.*3-i4i6*xmumax/xit

Dl=(l.-R)*(l.-R)f¥*W
D2=2.*R#i«W
D3=R*(1.-R) •+¥•>«¥
D4=(2.-R)*(2.-R)+W-«W
D5=R*R-Ŵ <W
D6=R*R-W*W
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D7=3.*R*E-2.*R-W*W
D8=1.-R
D9=2.*R-1.
D10=2.-R
Dll=W*W-2.
D12=1.-U*S

D13=(1.-R)*(I.-R)-WW
Dl4=R*(l.-R)-W*W
Rl=W*(S+XK-f-Yl)
R2=W*(S+Y1)
R3=W*(S+XK)
Rl̂ =¥*S
Y2=W*Y1

E1=EXPF( -R*( S+XK+Yl ) )

E2=EXPF(-R*(S+YI))
E3=EXPP(-R*(S+XK))
E1̂ =EXPF(-R^)
E5=EXPF(-R*Y1)
A1=-EI*( D3*C0SF(Rl)+W*D9*SIKF(Rl))/(D5*D1)+E2/XM*((D6*D8+D2) 
1*C0SF(R2)+W*D7*SINF(R2) )/(D5*D5*DI)-EVXM*(d6*C0SF(R4)-2. * 
2R^<W*SINF(r 1̂) )/(D5*D5)-E5/XM*(D6*C0SF(Y2)-2.*R^<W*SINF(Ri|-) )

3/( D5*I»5 ) +R/D5+I. /XM*( d6*D8-D2 ) /( D5*D5 )
A2=U1-*U1*E1*( -D3*C0SF( Rl ) -W*D9*SINF( R1 ) ) /( D5*D1 ) +U*U1*E2 
1*( (d6*D8+D2)*C0SF(R2)-W*DT*SIKF(R2) )/(D5*D5*D1)-̂ 2.'«ü 1̂<ü1*

2E3*( ( R*D8*D10+3 . ■»<W«W*D8 ) *C0SF( R3 ) -W*( 3 • *R*DI0+D11 ) *SINF( R3 ) ) 
3/( D5*Dl*Dlf) -Û «U*Eî *( D10*( D6̂ «C!0SF( Ri)-) -W*SINF( Ri)-) )-W*D8*SINF( Ri)-)
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4-W^^0SF( Rî  ) )/( )-U*E4*D12*( D8^0SF( Ril-) 4W*SHTP( Rit-) ) /
5DI-U-><ÜI*Ei|-*( D6*( D8*C0SF( R4 ) -W*SIIF( R4))+2. *R^*(W^^0SF( Rit- ) 
6-D8-*8INF( R4 ) ) / ( CI*D5*D5 ) -Um*E5*( d6*C0SF( Y2 ) -2. *R̂ «W*SINF( Y2 
7) ) /(D5*35 ) +U*Eil-*D12*(R*C0SF(r4) -W*SIITF(H k) ) /D5+2 . ̂ l^J*Eit-*
8( R*COSF( Rit- ) -W^INF( Rit-) ) /D5-R*D12^/D5-KJ^1*D6/( D5*D5 ) -2. * 
9XL1*R*U/D5+2 . ■î<ü*(XLO+l. +XL1)

A 3=UI*E3*( D13*C0SF( R3 ) +2. #*D8*SHŒ( R3 ) ) /(D1*I)1 ) +U*Elt-*( R* 
ICOSP(Rll-)-Ŵ INF(Ri|-) )/D5-Ei^^*XK*(Dlit-*COSF(Ri|-)-W*SIWF(R4) ) /DI-U*E 
24*( D13*C0SF( Rî ) +2. #*D8i«SINF( Rit-))/( D1*DI ) +Ei|-^L1*C0SF( Bk ) /XM+ 
3R*( XLO+U*S+U*XK+XLl/XM) -R*ü/D5-XLl/XM 
B1=-E1*( -D3*SINF( RI ) -W*D9*C0SF( RI ) ) /( D5*D1 ) +E2/XM*( -D6*D8 
1*SINF(R2)+W*DT*C0SF(R2) )/(D5*D5*D1)-EVxM*( -D6*SINF(Rit.)-2.*R*W 

2*C0SF( Rit-) ) /( D5*D5 ) -E5/XM*( -D6*SINF(Y2 ) -2. *R^<W*C0SF(Y2 ) ) / ^
3( D5*D5 ) -W/D5-L. /XM*(W*D6+2 . *R^*D8) /(D5*D5 )
B2=Uim*El*( D3*SHiP( Rl ) -¥*D9*C0SF( Rl ) ) /( D5*D1 ) +U*U1*E2* 
l(-l.*( D6*D8+D2 ) *SINF( R2 ) +W*D7*C0SF( R2 ) ) /( D5*D5*D1 ) +2. m *  

2U1*E3*( -1. *( R*D8*D10+3 . # # * D 8 ) *SINP( R3 ) #*( 3 • *R*D10+D11 ) 
3*C0SF(R3) )/(D5*Dl*Dî )-U*U*Eî *(D10*(WC0SF(Rl̂ )-D8̂ «SINP(Rit-) ) 

l+-W*(DS*COSP(Rî )-W*SINF(Rl̂ ) ) )/(Dl*Dl|.)-U*D12*Eif*(W*C0SP(RU)-D8* 
5SIHF( Bk) ) /Dl-Û <Ul*Eiv*( D6*(¥*C0SP( Rit-) -D8*SINF( R1̂ ) ) -2. *R̂ «W* 
6(D8*C0SF(Rif)-W*SINP(Rl^) ) )/(Dl*D5*D5)-U*El^*D12*(R*SINF(Rif) 
7”W*C0SP(Rlf) )/D5-2.-»<XLl̂ «U*Elf*(R*SINF(Rif)+W*C0SP(Rl+) )/D5+Um 

8*E5*( D6*SINF( Y2) +2. *R̂ «W*C0SF( Y2 ))/( D5*D5 ) +U^W*D12/D5-2 .

D5*D5 ) 42. m J L ^ W / T ) 5  
B3»U1*B3*( -D13*SINF( R3 ) 42. <«Ŵ q)8*C0SF( R3 ) ) /( D1*D1 ) *
l(R*SINF(Rl^)4¥*C0SF(Rif) )/D5-U<QCK̂ «EU#( .DlH*SINF(Rlf)4W*C0SF(Rlf) )/



199
2Dl-U*Ei)-*( -D13*SIÏÏF( R4 ) 42. ̂ *D8*C0SF( E4 ) ) /( D1*D1 ) -El<-*XL1* 
3SINF( Rit- ) /XM+W*( XL0+U*S-KJ*XK4-XLl/XM) +U*W/D5 
G=(A2*B3-A3*B2)/(A1*B2-A2*B1)

F=(A3*B1-A1*B3)/( A1*B2-A2*B1)
NC=NC+1
IF(EC-1)13,13,14

13 PRINT 15
15 F0RMAT(I0X, I9HDESCRIPTION OF CASE///)
16 PRINT 1T,XL0,XLI

IT F0RMAT(2X,3HL0=F5.3,5X,3HL1=F5.3//)
18 PRINT19,S,U,R
19 F0RMAT(2X, 2HS=F10.3;,5X,2HU=F10.3,5X,2HR=F10.3///)
20 PRINT 21
21 F0RMAT(5X, 5HMUMAX,lil-X,lHW,UX,lHG,15X,lHF///)
14 PRINT 22,XMUMAX,W,G,F

22 P0RMAT(2X,E12.5,4X,E12.5,4X,E12.5,4X,E12.5/)
100 CONTINUE

GO TO 1 
200 STOP 

END
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C PROGRAM STEADY STATE 

READ1,XL02,XL11,XL12

1 F0RMAT(3E12.3)
5 READ2, S

2 F0RMAT(E12.3)
N=0
DO 11 1=1,32 
IF(N-1)U,6,12 

k U=.001 
GO TO 10

6 U=.01 
GO TO 10

12 IF(N-20)l3,13,lk
13 U=U+.01 

GO TO 10
U  IF(N-26)15,15,16

15 U-U+.05 
GO TO 10

16 U=U+.l

10 XM=1.-S+1./U 
XK=LOGF(XM) •
Yll=XLll/(XM^«U)
El=S+XK+(Yil-l. )/(XM*ü)

E2=. 5+XL12+2.*U*(X]L02+l.+XL12)-2.*U*8*(l.+XL12)+l. 5*Ü*U*8*8
E3=l.-2.*ü*8
G0=-E3/E1
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G1=-(E3+E2)/e1 

G5=-(5.*E2+E3)/EI 

PRINTS,GO,G1,G5 
3 F0RMAT(2X,3HG0=E12.5,4X,3HG1=B12.5,^X,3HG5=E12. 5/) 
N=N+I 

11 CONTINUE 

GO TO 5 
STOP 
END



APPENDIX X

EXAMINATION OF POINTS NEAR THE 
INSTABILITY THRESHOLDS

In this derivation, the instability thresholds have been defined 

utilizing the condition that r be equal to zero. However, it is also 
necessary to be able to locate on the threshold map the regions for 
which r = - (damped oscillations) and r = + (amplified oscillations) 
in order to show which of the regions are stable and which are un­
stable. From the experimental portion of this investigation, it was 
found that the regions of higher entrance velocity were the stable 
regions. However, this can also be shown analytically for the region 
of interest in this investigation.

This requires a look at the equations for which r = 0. If the 
possibility of solutions going to infinity is discounted, the 
"equation in c" gives solutions which go from r = - through r = 0, 
then to r = + as an instability threshold is passed through. It can 
be seen that r = - corresponds to a danped oscillation and r = + 
corresponds to an anplified oscillation in Equation (71)

u = u + V e^^ (71)o « o
where

c = r + iuu (l02)
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In order to investigate the regions near the instability thresholds, 

it is necessary to consider the equation in c and to proceed as in 
Appendix IV with

c = r -i- iw (102)
It is necessary to develop the following expressions in order to 

proceed from the equation in c to the equations in o).
From (II-IO)

k = -tn m
therefore,

-c -kc -k( r+iu) )m = e = e *

and
m  ̂= e ' cos(u)k) - i sin(u)k) (X-l)

Also,
-cs -rs -iu)s E = e = e e s

From the definitions (lll-l) and (III-23)
Eg = e"^® fcosCs) - i sin(S) (X-2)

Likewise,
E = e-cy = e-'y e"^y y

Ey = e"^ ! cos(Y) - i sin(Y)j (X-3)

Combinations of (X-l), (X-2), and (X-3) give

E E m"^ = [cosCS + K + Y) - i sin(S + K + Y)"" (X-4)s y '

EgEy = Fcos(S + Y) - i sin(S + Y)^ (X-5)

EgOT^ = fcosCS + K) - i sin(S + K)^ (X-6)
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The following identities appear in the equation in c and are useful 
in simplifying this equation. Utilizing the definition of c, it is 
found that

1 r - itu
 ̂ + u)̂

1___ (r^ - u)̂ ) - 2ia)r
(r^ +

1 _ (l - r) + iu)
(1 - r)^ + u)̂

[(l - r)^ - u)̂ ] + (l - r) 2iu)
(1 - r)^ + u)̂

1 ^ (g - r) + iu)
2"® (2 - v f  + U)̂

^ [r(l - r) + u)̂ ] + iw(2r - l) 
(r^ + w^) [(1 - r)^ + (I)'

(X-7)

^ [(r^ - u)̂ )(l - r) + âü^r] + iuu(3r̂  - 2r - O)̂ )
(r^ + w2)2 1̂ (1 _ j.)

^ [(l - r)(2 - r) - (1)̂ ] + iu)(3 - 2r)
Il-c)(2-cr [(i.r)2.u,2][(2.r)2,^“̂

^ [r(l - r)(2 - r) + 3w^(l - r)] + lo) [3r(2 - r) + (u>‘
c(l-c)(2-c) “

- 2
(r® + I»®) [(1 - r)^ + (0^ [(2 - r)^ +

)]

c
1-c

[r(l - r) - + iu)

(1 - r)^ +
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Utilizing the Equation (X-l) through (X-7), it is possible to 

determine the expression for Substituting into (111-45) gives:

= _e-r(8+k+y)|^^^g^g + K + Y)- i sin(S + K + Y)]

pfr(l - r) + u)̂ i + i|u)(2r - l)}-, -r(s+y) ^ -,

p|(r^ - U)̂ )(l - r) + ajĵ rj- + i |uu(3r^ - 2r - u)̂)j"-| ^-rs
“ (r̂  + u)̂ }̂ -[(l - r)^ + (û j “

[cos(S) - i sin(S)1 F— — -■ ~ Fcos(Y) - i sin(Y)](r^ + wf)2 J m u J

2 2xF - 2iiu)~l r - iu) (l - r) - iu) F(r^ - cû ) - 2iru3~| 
(r^+u)^)^ r^ + u)̂  ® ^ (r^+(u^)^

( x - 8 )
Separating into its real and imaginary parts,

B^ = ai + ib^

it is found that

^1
_g-r(s+k+y)pCos(S-+ K + Y)|r(l - r) + + tu(2r - l)sin(S + K + Y)-i

(r^ + cû ) |(1 - r)2 + (û l ^

-r(s+y) pCos(S + Y)|(r^ - u)̂ )(l - r) + ar̂ rj-+ w(3r^- 2r - u)^)sin(S + Y)-i
(r^ + 0^)2 |(i _ r)^ + 03̂ 1 ^
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!”cos(S)(r^- cû ) - 2iu) sin(s)“] e ^rcos(Y)(r^- tû ) - 2iu) sin(S)1
■ “ I- ( ,2  + *2 ,2  J - m L ( ,2  + *2 ,2  J

rr<5+ic+vr"f^^^ - r) + sin(S + K + Y) + u)(2r - l)cos(S + K + Y )-,
■ ■• P  ----------------]

^-r(s+y)p-|(r^ - u)̂ )(l - r)sin(S + Y) + U)(3r̂  - 2r - u)^)cos(S + Y)j"-,
(r^ + u)̂ )̂  |(l - r)^ +

e r~(r^ - cû ) sin(S) - 2iu) cosCs)"]
I- ( r ^ m Y

e ^  sin(Y) - 2ru) cos(Y)1 u)
" - ( /  H- «=2)2 J ■ r-2 . «2

- i r +-2g» (1-: ')] (x-10)
“ (r^ + *2)2 J

Again Equations (X-l) through (X-7) are utilized to determine the 
expression for B^. Substituting into (111-54) gives

Bg = [-cos(S + K + Y) + i sin(S + K + Y)]

(r^ + u)̂ ) |(1 - r)2 + u)2|-
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2 1 . . j'.../, 2- cû )(l - r) + auSj + i ĵ(u(3r'= - 2r - ^ g -r(s+k)L / 2 . ...2,2 f/, __\2 . 2: J  ̂ "(r^ + (Û )̂  j(l - r)^ + u)̂j-
+ 2m u e

CO

[cos(S + K) - 1 sin(S + K)]

p|r(l - r)(2 - r) + 3o^(l - r)j + i |u) [sr(2 - r) +((ŵ  - 2)J k  

(r̂  + u)̂ ) -[(1 - r)̂  + tûj- {(2 - r)^ + cû }

+ 1 - U S + mu {— — 2 FcosCs) - i sin(S)]
 ̂ (r + (Û ) J J I- J

[l - u„s] [ V J i y  4- 2 t ^ e -  [cos(s) - i sin(s)]
r + u) r + u)

2 2,
™x.e-^ [co.(Y) - i sin(Y)] ' d  '

r + U)

2 2,

r + u) (X-11)

Separating into its real and imaginary parts

Bg = ag + ibg

it is found that
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2 -rfs+k+v) r"C08(S + K + Y);r(l - r)+ tŵj - w(2r - l)sin(S + K + Y)-,
*2 " * " (r̂  +m^) : (1 - r)^ + J j

r(s+ w^)(l-r)+2w^^cos(8 + Y)+u)(3r^- 2r - u)̂ )sin(S + Y)-i
* (if + w2)2 _ r)2 + ̂ 2j

2+ 2m
rrc+tlr[r(l-r)(2-r)+ 3u^(l-r)j-cos(S+K)+ u)(3r(2-r)+(u)̂ -2)rsin(S+K)-|

p(2 - r)|(l - r)cos(S)+u) sin(S)j- + tu(l - r)sin(S) - u)̂ cos(S)-i 
|(l - r)^ + u)^ I(2 - r)^ + lûj-

rl(l - r)cos(s) + u) sin(S)f-,

(rf- (û )|(l - r)cos(S) + (u 8in(8)j" + 2nu|cu cos(8)-(l - r)sin(8)j’-| 
|(l - r)^ + U)̂ | (r^ + (jû)‘

-rsP .__   , ,  , ,mu^e J—  "2 2\ , 2 272 J

+ e-^^(l-u^s)[^ 9os[8): w sin(s)J ^ cq^8)_ ^ m ^ n (8)l
r + tu r + œ

2-t r
— + 2(t^ + 1 + (X-12)
r + U)

2 -r bg = m u^e
(s+k+y)r{^(^ - r)+ (D̂ j sin(8 + K + Y)- u)(2r - l)cos(S + K + Yk

L (r^ + (1)̂) |(l - r)^ + (û j
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/ ^ (r̂ -̂ w^)(l - r)f Suû ri sin(s + Y)+ cu(3r̂ - 2r - uĵ )cosCS-fY)-,
^  :

2 3u^(l-r)j sin(S+K)+tu[3r(2-r)+U)^-2jcos(S+K)-
(r^ + w^) |(l - r)^ + u)̂ j |(2 - r)^ + tû j

p(2-r)|tu cos(S)-(l - r) sin(S)j- + w ĵ (l-r) cos(S) + tu sin(s)j-|■ ® ^00 L r r  72 2 ~ T 7 I  72 2[ '

e

i^(l-r) +tuj|(2-r) +(Uj-

-rs/̂  \ cos S - (l - r) sin Sl
— J

r̂ -tû )-̂ tu cos(s)-(l-r) sin(S)j- - 2iw |(l-r) cos(S)+ m sin(S)j-j 
{(1 - v f  + (U^ (r^ +(U^)^

-TSf^ \ rr sin(S) + tu cos(S)1 -rs Fr sin(S) + tu cos(S)“!- ^ ^  ^ 2  J  - L  , 2  +  -I

+ mu^e-'T cosfYTl + (l - u„s) ”
/ c . c . \ c .  _) " 2 2(r + tu ) r + tu

2mû rtu 2-t tu
T 2 272 "2 2 (X-13)(r + tu ) r + tu

Bg is determined as above utilizing (X-l) through (X-7)• Substi-

-rfs+k^ r 1 rf(l-r) - tu | + (l-r)2itu-,
B_ = mi e cos(S + K) - i sin(S + K) I ^ ------ 5--- ^ ----1
3  ̂^ {(1 - r)^ + tû }̂
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+ e-rs [cos(S)- i sln(S)j [u„  ' o— ~̂ g--- ]
r + u) (1 - r) + tu

r f (1 - r f -  - (u l̂ + (1 - r)2itu. I  I  '

(r  + il») - ^  (X-llt)
r + tu

Separating into real and imaginary parts,

»3 = ®3 * "‘’S

it is found that

rfs+k) r{(^ - cos(S + K) + 2u(l - r) sin(S + K)-,
L------------------------------  j

. -rs rr cos(s)-1» sin(S)1 r(r(l-r)-i»^; oos(S) + ». sln(S)-
“” L — J - '  “"’̂ L--------------------— .

p|(l - r)^- I»J- cos(S) + a»(l - r)sin(S)-j cos(S)
■ L ( d  - r)^ . . y  J " -

"̂1
+ + UgS + u^k + - )  ---2 ------ 2 - -  (X-15)

r + tu

y(ĉ +̂ r'\ r-{(l - - tûj- sin(S + K) + 2u(l - r) cos(S + K)-,
: • ' • ---------  I , . . . , i . . y --------------- ]
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r

- e

-rs rr sin(S)t m m s (sP  -rs “I' ""=(3)+ m cos(S);
' "-^— 7 7 ;:— J - '  -------- 7 7 7 7 7 -------

p-^l - r)^- sin(S)+ (1 - r)2m cos(s)-j sinCs)
"" L [ ( T T T T T p  J =

-Ù uja
+ w(tg + u^s + u^k + — ) + — 2 (x-16)

r -t- cu

Hence, the coefficients of the equations in lu have been found for 
r ̂  0, These equations were then solved utilizing the computer as was 
done for r = 0. Therefore^ by solving them for r -* 0 allows the 
determination of the behavior between the levels of the instability 
threshold. This computer program is found in Appendix IX. Figure (58) 
shows the results of this investigation for f > 0 (which corresponds 
to physical reality), where g increases as r goes from negative to 
zero to positive values. Hence, plotting the same curve for a range 
of values, it is found that as shown in Figure (58) the region of 
stability (r > O) and the region of instability (r< O) is given as 
in Figure (59)-
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r=0.0
r= +0.1

r=-0.1
5

0

-5

-5 0
g/ DIMENSIONLESS GRAVITY PARAMETER 

FIGURE (58) f = f(g) FOR S = 0.5 WITH = 0.1 AS 
r VARIES FROM NEGATIVE TO POSITIVE VALUES
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uGO

Stable
Region

Unstable
Region

g
Figure (59) Stable and Unstable Regions of the 

Threshold Surface



APPENDIX XI

EXPERIMENTAL INSTABILITY POINT DATA

The following tables give the experimental instability point 
data which was shown in Figures - 53).
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TABLE 3a

EXPERIMENTAL INSTABILITY POINTS FOR CONSTANT PRESSURE TESTS
UTILIZING FREON-114 AS THE HEAT TRANSFER FLUID

F-114 Experimental Instability Points

?8 %i P H0 AP
Inlet Inlet Inlet Flow
Temp Enthalpy Density %s-Hi In. HgO
°F Btu/lb ' m lb /ft^ m'

*P = 310 psia Hg = 73 Btu/lb^ R^ = 70 = 6 Btu/lb^

194 56.51 76.11 16.49 4.00
196 57.07 75.79 15.93 4.00
198 57.62 75.47 - 15.38 4.1
173 50.78 79.25 22.22 4.4
162 47.82 80.78 25.18 4.1
148 44.11 82.64 28.89 4.2
147 43.57 82.90 29.43 4.3
195 57.29 75.95 15.71 3.4
192 55.96 76.42 17.04 4.25
184 53.76 77.64 19.24 3.4
183 53.49 78.29 19.51 3.75
173 50.78 79.25 22.22 4.10

157 46.49 81.46 26.51 4.25
153 45.42 81.93 27.58 4.30
152 45.16 82.12 27.84 4.75
189 55.13 76.88 17.87 3.1
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185 54.04 77.49 18.96 3.6

P = 400 psia H = 83 Btu/lb R = 60 Ib /ft^ H = 10 Btu/lb ^ s ' m o  m' c m

216 62.69 72.40 20.31 3.85
200 58.18 75.14 24.72 5.45
196 57-07 75.79 25.93 6.25
173 50.78 79.25 32.22 5.85
168 49.43 79.96 33.57 6.05
170 49.97 79.68 33.03 5.85
170 49.97 79.68 33.03 6.10
218 63.26 72.04 19.74 4.40
220 63.83 71.67 19.17 5.95
223 64.70 71.11 18.30 3.80
214 62.12 72.76 20.88 4.0
214 62.12 72.76 20.88 4.5
217 62.98 72.22 20.02 4.4
216 62.69 72.40 20.31 5.8
219 63.50 71.86 19.50 6.0
225 65.27 70.73 17.73 6.0
200 58.18 75.14 24.82 6.1
209 60.70 73.64 22.30 7.0
225 65.27 70.73 17.73 6.5
197 57.34 75.62 25.66 5.9
198 57.62 75.47 25.38 6.6
193 56.24 76.26 26.76 6.1
186 54.31 77.34 28.69 6.4
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177 51.82 78.68 31.18 5.9
175 51.32 78.97 31.68 6.6
170 49.97 79.68 33.03 6.25
220 63.83 71.67 19.17 3.60
225 65.27 70.73 17.73 4.75
213 61.90 72.94 21.10 4.25

p = 480 psia H = 80 Btu/lb R = 70 Ib /ft^ H = l6 Btu/lb  ̂ s ' m 0 m' c m

260 75.96 62.61 4.04 2.40

255 74.34 64.0 5.66 2.50
210 60.98 73.46 19.02 3.75
262 76 62 62.03 3.38 2.20

P = 495 psia H =80 Btu/lb R = 70 Ib /ft^ H = I6 Btu/lb s ' m 0 m' c ' m

245 71.20 66.49 8.80 2.40

218 63.26 72.04 16.70 3.40

203 58.46 74.65 21.50 3.40
198 57.62 75.47 22.40 4.20

191 55.68 76.57 24.30 4.00

P = 520 psia H = 80 Btu/lb R = 70 Ib /ft^ H = I6 Btu/lb ^ s ' m o  m c m

228 66.15 70.14 13.85 2.00
228 66 15 70.14 13.85 2.25
214 62.12 72.76 17.88 2.75
205 59.58 74.30 20.42 2.75
169 49.69 79.81 30.31 2.25



163 48.09 80.92 31.91 2.25
195 56.79 75.95 23.21 2.50
162 47.82 80.78 32.18 2.10
162 47.82 80.78 32.18 2.10
230 66.73 69.74 13.27 1.85

F = 525 psia = 80 Btu/lb R = 70 Ib /ft^ H = l6 Btu/lb s ' m o  m' c ' m

254 74.02 64.26 5.98 2.00
252 73.39 64.78 6.61 2.10
264 77.30 61.42 2.70 2.00
257 75.00 63.45 5.00 2.00
270 79.39 59.43 0.61 2.10
211 61.25 73.28 18.75 2.00
267 78.33 ■ 60.43 1.67 2.55
206 59.86 74.15 20.14 2.25
206 59.86 74.15 20.14 2.25
220 63.83 71.67 16.16 2.50
196 57.07 75.79 22.93 2.45
195 56.79 75.95 23.21 2.50
198 57.62 75.47 22.38 2.55
197 57.34 75.63 22.66 2.55
257 74.98 63.45 5.02 2.40

P = 555 psia = 85 Btu/lb^ R^ = 70 Ib^ft^ = 16 Btu/lb^

178 52.13 78.53 27.87 2.40
262 76.63 62.03 3.37 1.95
246 71.52 66.26 8.48 2.20
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232 67.32 69.33 12.68 2.00
202 58.74 74.82 21.26 2.40

203 59.01 74.65 20.99 2.50
197 57.34 75.94 22.66 2.25
170 49.97 79.68 30.03 2.00
165 48.61 80.37 31.39 1.90

P = 575 psia H = 85 Btu/lb R = 70 lb /ft^ H = 16 Btu/lb s ' m o  m' c ' m

153 45.42 81.99 34.58 1.60
151 44.89 82.25 35.11 1.75
233 67.61 69.13 12.39 2.00

252 73.39 64.78 6.61 2.20
238 69.10 68.07 10.90 2.00
249 72.44 65.53 7.56 2.25
250 72.76 65.29 7.24 2.60
263 76.96 61.72 3.04 2.65
210 60.98 73.46 19.02 ' 2.70
180 52.67 78.24 27.33 2.25
169 49.70 79.82 30.30 2.20

157 46.49 81.46 33.51 1.75
153 45.43 ; 81.99 34.57 1.80

*P = System Pressure = Enthalpy Zero Point
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TABLE 3%

EXPERIMENTAL INSTABILITY POINTS FOR CONSTANT PRESSURE TESTS
UTILIZING FREON-114 AS THE HEAT TRANSFER FLUID

F-114 Experimental Instability Points

W
Power
KW

u00
Entrance
Velocity

g
Gravity
Parameter

s

Subcooling

*P = 310 psia Hg = 73 Btu/lb^ R = 70 lb /ft^ H = 6 Btu/lb 0 m' c m

• 713 .240 20.7 2.76
.675 .253 23.2 2.66
.720 .240 20.3 2.56

1.24 .142 6.85 3.70
1.44 .117 5.07 4.19
1.74 .096 3,48 4.82
1.65 .103 3.87 4.91
.705 .224 21.2 2.62
.874 .201 13.8 2.84
.98 •159 10.95 3.21

1.13 .144 8.25 3.26
1.28 .132 6.42 3.70
1.63 .104 3.96 4.42
1.74 .098 3.48 4.60
1.95 .092 2.77 4.64

.905 .166 12.85 2.98
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I. Il .145 8.54 3.16

p = 400 psia H = 83 Btu/lb R s ' m e = 60 Ib /ft^ H = 10 Btu/lb ) m' c ' m

1.07 .229 18.8 2.03
1.63 .176 8.1 2.47
1.96 .156 5.6 2.59
2.43 .119 3.64 3-22
2.58 .114 3.24 3.36
2.52 .115 3.39 3-30
2.63 .112 3.11 3-30 .

1.13 •233 16.9 1.97
1.40 .219 10.97 1-92
.91 .271 26.0 1.83

1.06 .236 19.15 2.09
1.24 .214 l4.o 2.09
1.39 .189 11.25 2.00

1.55 .194 8.95 2.03
1.58 .195 8.6 1-95
1-57 .197 8.73 1.77
1.82 .167 6.5 2.48
1.84 .178 6.35 2.23
1.64 .198 8.0 1-77
1.77 .168 6.87 2.57
2.01 .157 5.32 2.54
2.03 .148 5.22 2.68

2.27 .135 4.17 2.87
2.40 .122 3.73 3-12
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2 .6k .117 3.09 3.17 ,

2.66 .112 3-04 3.30
0.91 .262 26.0 1.92
1.15 .240 16.3 1.77
1.15 .223 16.3 2.11

P = 4-80 psia = 80 = 70 lb /ft^ H = 16 Btu/lb m' c ' m

1.81 .216 24.50 .252
2.80 .140 9.55 •354
4.62 .097 3.51 1.190
2.56 .147 11.40 .385

P = 495 psia = 80 Btu/l-b R s m o = 70 lb /f%3 H = 16 Btu/lb m' c ra

1.80 .209 23.1 •55
3.23 .134 7.18 1.04
3.58 .118 5.84 1.34
4.45 .105 3.78 1.40

5.17 .088 2.80 1.52

P = 520 psia H ^ = 80Btu/l\ = 70 lb /ft^ H = Btu/lb m' c ' m

1.33 .252 42.40 .865
1.3k .266 41.70 .865
1.90 .204 20.70 1.12
2.06 .186 17.60 1.28
2.50 .134 12.0 1.89
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2.87 .115 9.1 1.99
2.32 .155 13.9 1.45
2.70 .119 10.3 2.01
2.63 .122 10.8 2.01
1.24 .262 48.8 .828

p = 525 psia = 80 Btu/lb R s ' m a = 70 Ib /ft^ H = 16 Btu/lb m' c ' m

1.28 .275 45.70 .374
1.37 .262 39.9 .413
1.33 .270 42.3 .169
1.80 .197 23.1 .312
1.98 .189 19.1 .038
1.99 .166 18.9 1,170
2.02 .203 18.4 .104
2.34 .149 13.7 1.26
2.49 .140 12.1 1.26
2.49 .150 12.1 1.01
3.22 .112 7.24 1.43
3.36 .112 6.64 1.45
3.84 .096 5.08 1.40
3.64 .101 5.66 1.42
1.81 .214 22.90 .313

P = 555 psia H = 85 Btu/lb R s ' m 0 = 70 Ib /ft^ H = 16 Btu/lb m c m

2.81 .124 9.50 2.06
1.31 .269 43.7 .523
1.33 .272 42.4 .842
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1.34 .253 41.7 1.10
2.00 .170 18.7 1.64
2.10 .173 17.0 1.62
2.10 .163 17.0 1.73
2.36 .134 13.5 2.19
2.47 .12^ 12.3 2.28

P = 575 psia Hg = 85 Btu/lh^ R  ̂= 70 lt„/ft^ H = 16 Btu/lh 3 m' c m

1.82 •153 22.6 2.48
1.98 .146 19.1 2.50
1.34 .252 41.7 1.09
1.34 .274 41.7 .725
1.28 .266 45.7 .994
1.25 .295 48.0 .784
1.50 .265 33.3 .765
1.52 .271 32.4 .502
2.06 .185 17.7 1.50
2.36 .143 13.5 2.02
2.58 .128 11.2 2.21
1.76 .166 24.2 2.40
1.86 .159 21.6 2.47

*P = System Pressure = Enthalpy Zero Point
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TABLE 4a

E3CPERIMENTAL INSTABILITY POINTS FOR CONSTANT PRESSURE TESTS
UTILIZING HgO AS THE HEAT TRANSFER FLUID

HgO Experimental Instability Points

?8 %i P H0 AP
Inlet Inlet Inlet Flow
Temp Enthalpy Density %s-%i In. HgO
°F Btu/lb ' m

*P = 1740 psia H = 640 Btu/lb R = 45 lb /ft^ H = 6o Btu/lb s ' m o  m c ' m

424 401 52.6 239 1.90
534 529 46.9 111 1.20
534 529 46.9 111 1.20
518 510 47.8 130 1.20
521 513 47.8 133 1.20

503 492 48.8 148 i.4o

499 487 49.0 153 1.45
487 473 49.8 167 1.50
478 462 50.0 178 1.60
462 444 51.0 196 1.75
451 431 50.3 209 1.80

P = 2215 psia Hg = 705 Btu/lbĵ  R^ = 4o Ib^/ft^ H^ = 90 Btu/lb^

579 588 43.9 117 1.20

559 561 45.2 144 1.30 I
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563 566 45.0 139 1.30

543 46.4 162 1.45
5IT 508 48.1 197 1.60
508 497 48.3 208 1.75
496 483 49.3 222 1.85
506 495 48.8 210 1.75
481 466 50.0 239 2.0

*P = System Pressure = Enthalpy Zero Point
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TABLE 4b

EXPERIMENTAL INSTABILITY POINTS FOR CONSTANT PRESSURE TESTS

UTILIZING HgO AS TEE EEAT TRANSFER FLUID

HgO Experimental Instability Points

W g s
Power Entrance Gravity
KW Velocity Parameter Subcooling

*P = 1740 psia = 640 Btu/lb G m E, = h  = 60 Btu/lb^

16.9 .054 1.51 3.98
4.47 .172 21.8 1.85
5.63 .137 13.7 1.85
6.85 .111 9.3 2.17
7.54 .101 7.65 2.22

8.77 .092 5.66 2.47
9.62 .086 4.7 2.55
10.80 .077 3.73 2.78
11.60 .074 3.03 2.97
12.60 .071 2.74 3.27
14.10 .064 2.19 3.48

P = 2215 psia Hg = 705 Btu/lb^ R^ = 40 Ib^ft^ = 90 Btu/lb^

5-79 .183 23.1 1.30
6.62 .162 17.7 1.60
7.89 .137 12.4 1-55
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9.04 •125 9.49 1.80
10.32 .113 7.28 2.19
11.50 .106 5.87 2.31
12.65 .098 4.84 2.46

13.35 .091 4.35 2.34
14.92 .086 

___ ____ 3.43 2.66 
--------z— 7-

*P = System Pressure = Enthalpy Zero Point


