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EFFECTS OF LARGE-SCALE SUBSIDENCE ON CELLULAR
CONVECTION IN THE ATMOSPHERE:

A NUMERICAL EXPERIMENT
CHAPTER 1
INTRODUCTION

The cellular nature of convective systems has been observed
for many decadels. Stratified fluids which attain a degree of bouyancy
through heating of their lower layers, or cooling their upper layers,will
initiate circulation modes in which warmer portions of the fluid rise
and cooler portions descend. This convective motion takes place with
varying degrees of organization. Under certain conditions,depending
on the molecular properties of the fluid, the temperature excess at the
bottom, and the depth of the fluid, the convection organizes into a dis-
tinct cellular pattern with regions of updraft and downdraft which are
essentially laminar flow (Rayleigh, 1916). Under other conditions, if
the heating occurs too rapidly or the molecular viscosity and conduc-
tivity are small, a turbulent regime of bouyant elements is manifested
with no organization to the flow, at least on the scale which we can
observe. In general, the atmosphere exhibits both turbulent and laminar
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convectﬁion superimposed in varying degrees (Sutton, 1953)., It is the
organized cellular convection which is of primary concern in this paper.

Because motions in the atmosphere can be organized on an
extremely wide range of scale lengths, the patterns observed are indeed
varied (see, for example, Ludlam and Scorer, 1953). They range in
appearance from singular bubbles (cumulus clouds) to jet-like plumes
(smoke-stack effluents) to honeycombed cells (altocumulus clouds). On
a larger scale, the thunderstorm cloud (cumulonimbus) exhibits both
bubble-like (Scorer and Ludlam, 1953) and plume-like (Squires and
Turner, 1962) characteristics. Even larger are the traveling cyclones
of the mid-latitudes which have an organized pattern of weak up-and
down-motions that are not the direct result of localized heating as in
simple cellulai- convective patterns. They are more associated with
latitudinal temperature gradients and are typified by horizontal convec-
tion in which the earth's rotation plays a large role (see, for example,
Haltiner and Martin, 1957).

During the past seven years, numerous examples of the honey-
comb cell pattern have been observed in meteorological satellite photo-
graphic data on a scale theretofore not anticipated. Prior to that dis-
covery (Krueger and Fritz, 1961), cellular convective patterns in which
the up and down motions took on the form of polygons had been observed
only in the laboratory (Bénard, 1901; Avsec, 1939) and in certain forms

of limited convective cloud layers such as altocumulus, stratocumulus,
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and cirrocumulus. The cellular patterns in those cloud forms are often
associated with strong radiative cooling.

The experimental work by Benard and the theoretical approadh
by Rayleigh and numerous later investigators revealed the cells to be of
a height-width ratio of order one. In the atmosphere, such a ratio is
approximated only on the scale of the individual elements in the cloud
layers mentioned previously. The cellular cloud patterns observed by
satellites occur in a layer 1 to 2 km deep and are from 10 to 100 km
across, giving a height-width ratio of order 1/10 to 1/100 (Fig. 1).

The reasons for that ratio are not yet completely understood.
In most other descriptive aspects, the atmospheric cells are similar
to those of the laboratory models and of the theoretical investigations.
When the fluid is heated slowly from below, convective currents begin
to rise through a neutrally stable environment and finally reach an upper
boundary (a conducting rigid surface in laboratory experiments; a tem-
perature inversion in the atmosphere). Because the system is closed, -
return circulations develop under the conditions of mass continuity.
(Laboratory fluids and the atmosphere may be considered incompress~
ible in these cases.) The effect of rotation about the vertical axis
(Coriolis in the atmosphere) is to elongate the cell in the vertical
(Chandrasekhar, 1953; Chandrasekhar and Elbert, 1955).

Only recently have any realistic results been obtained showing

a favorable flattening of the cells in the horizontal direction. Ray and
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Scorer (1963) were able to obtain flat cells by assuming a variation of
eddy viscosity and conductivity in space. Sasaki (1965) explained the
flattening of such cells by considering a mathematical model in which
the upward turbulent transports of heat and momentum from the surface
boundary layer play an important role. Between the surface boundary
layer and a stable layer which limits the upward turbulent transports,
a fully-turbulent region was assumed to exist. The resulting factors
which he found to govern the wave length of maximum amplification of
disturbances in the fully-turbulent layer were the rate of upward heat
flux from the surface boundary layer, the depth and eddy coefficients
of the turbulent layer, and the static stability in the upper boundary
layer. For reasonable values of those parameters associated with
cellular cloud patterns, the wave length most amplified was of order
10 km. In an independent numerical convection model, Lugt and
Schwiderski (1966) also found that the characteristic wave length is
dependent upon the intensity of the heat source.

In this paper we shall begin with the hypothesis that a flattened
cellular convective pattern exists in the atmosphere on the scale observed
in satellite photographs. As in Sasaki's treatment, we shall imply the
layer below the capping temperature inversion to be fully turbulent,
supplying heat to the base of the inversion at a rather steady rate by the
process of turbulent conduction. The region of interest will be the inver-

sion layer itself. With an assumed periodic variation in the horizontal
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temperature distribution throughout the inversion, we shall then observe
the flow by a numerical solution of the governing equations. The in-
fluence of a larger-scale downward motion (subsidence) upon that flow
is to be investigated. The model also includes the effect of Coriolis,

of radiation, and of turbulent transports of heat and momentum.



CHAPTER 1II

THE GOVERNING EQUATIONS

The set of equations which govern this convective model is
comprised of the Navier-Stokes equations of motion written in a
Cartesian (x, y, %, t) system, the equation of mass continuity under
the Boussinesq approximation (variations in density are neglected
except as they modify gravity to produce bouyancy), and the first law
of thermodynamics written for a diabatic process but neglecting con-
tributions due to phase changes of water substance. Molecular visco-
sity and thermometric conductivity are neglected in comparison to
their eddy counterparts which are also considered constant in space

and time.

The Perturbation Equations

The equations are linearized in regard to small perturbations
from the basic state. Normally, this would allow analytic solutions of
the set under an appropriate set of boundary conditions. However,
because the basic-state temperature is a function of height, one of the
coefficients in the thermodynamic equation is not constant. Although

approximate analytical solutions could be obtained in thin layers for
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which the change of basic-state temperature is considered constant with
height, it was felt that a more straight-forward solution by finite-
difference techniques would yield more information, particularly in
view of the unknown relationships between the other coefficients of the
terms in the equations.

The governing equations are derived in Appendix A using a
scale analysis similar to that developed by Ogura and Phillips (1962).
The equations are in nean-dimensional form with the notations as defined
in Table 1. Under the basic-state conditions u = v = 0, w = constant,
6 = E(z),v and neglecting variations in the y-direction, the following

equations are obtained.

ou' - ou' o' 94w .. 9%u
5 = - 3% - = + avl + Ky 5-22 + Kz 5z2° (1)
2 2
ov' — V! o~V 9%v!
Fre = - w—z— - au' + Kxaz + Kz 322 (2)
2
ow' - Ow' _ ! 92w o°w'
B e s b0t Ragp v Kygzo )
ou' ow!
pdad — =0, 4
ox 0z ()
89" 580" 190 : :9' + K ole + K a%g" (5)
ot . "3z " bz X 9x2 z 3g2’

The primes represent perturbation quantities; the overbars are for
basic-state quantities. Non-dimensional Coriolis parameter is

represented bya. In (5), -Af' is the radiation term represented to
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the same degree of approximation as the rest of the terms (see Appendix
A). 0 and ' are temperature deviations from that of an adiabatic atmo-
sphere.

In set (1) through (5), we have taken eddy viscosity and eddy
conductivity to be equal. The validity of that approximation is open f.;o
discussion. Sutton (1953) and Priestley (1959) have remarked about
the dependency of the vertical heat and momentum eddy coefficients
upon the stability of the atmosphere. Experimental results indicate
the ratio of the coefficients varies about one in the atmospheric boundary
layer, depending upon the Richardson number. More recently, Lilly
(1962) obtained numerical results in convective models which suggest
that the dependency of eddy viscosity upon the Richardson number is
small except in the initial stages of development and in stably-stratified
regions. However, lacking any quantitative information from either
experiment or theory, we have chosen to equate the processes of eddy
heat and eddy momentum exchange.

The reader will note the eddy coefficients have been written
in two-component form: K, the horizontal component, and K, the vertical
component. Priestley (1962) suggests that the two components are unequal
under stable stratification and with a ratio on the order of 100, Kx to K.
We shall make use of that suggestion later. However, the results indicate

that ratio is somewhat too small, at least for the convection modeled here.



The Basic State

The atmospheric environment in which flat cellular convection
occurs has been observed by Krueger and Fritz to be characterized by
a layer some 1 to 2 km deep having a neutral or slightly unstable strati-
fication in the lower portion and capped by a stable layer usually in the
form of an inversion of temperature. The layer is heated from below
and has little vertical shear of the wind throughout. The temperature
inversion is generally thought to be of the subsidence type. That is,
weak uniform downward motion maintains the inversion by adiabatic
warming against the destructive effects of eddy conduction and radiation.
Although there are no direct measurements of vertical motions on the
scale of concern (greater than 100 to 200 km), the subsidence is implied
because of the somewhat persistent nature of such inversions.

The basic state of the stable layer is‘, therefore, regarded as
having no horizontal motion, weak but uniform downward motion, and
a temperature distribution which is steady, resulting from a balance
between adiabatic warming and vertical eddy conduction. (The radiative
effects turn out to be negligible when considering the conditions applicable
to the present model. The conditions under which radiation would become
important, that is, the presence of a thick cloud layer or an extremely
sharp inversion (Mdller, 1951), are not relevant to the model.)

Since we are making the simplification that the eddy coefficients

are constants, the vertical basic temperature profile must therefore be
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such that the magnitude of its curvature is sufficient to balance the -
warming effect of subsidence. The equation governing the basic-state

temperature profile is derived in Appendix B. The result is noted here.

0 = 5’0 [:exp(v_v/Kz)z -_exp(;/Kz)] , 0sz¢< 1. (6)
1 - exp(W/K;)
Thus, the overall stability within the layer depends upon the choices of
w and K,. Once specified, relationship (6) will assure that the curva-
ture of the profile is sufficient to maintain the steady condition. In this
regard, we must be guided in our choices of w and K, so as not to require
too much of the curvature. As the ratio ;/Kz increases, the profile
approaches that of an infinitesimally thin temperature inversion. While
such layers are sometimes observed in the atmosphere (particularly in
strong subsidence regions), it is the purpose of this investigation to study
the details of the flow in the inversion. We must therefore chose Q/Kz
so that the portion of the model layer which has an inverted temperature
lapse is sufficiently thick. The actual values chosen will be discussed

in Chapter 1V,

Reformulation of the Perturbation Equations

It is common in numerical models of this nature to simplify the
governing equations by eliminating the perturbation pressure from the
equations. This is accomplished by cross-differentiating (1) and (3),

then subtracting to form the vorticity equation:
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o' _on' v _a_g_l Qin' ﬁnl
9t © "Wz - %9z Tk 'l'Kxi)xZ + Ky 372 - (7

In this case, the vorticity is about a horizontal axis normal to the x-z

plane and is defined by the expression

n oz = - =, (8)

Further, since the flow is esgentially incompressible, we may define

a streamfunction such that

@
<
g
n
®
<

(9)

-

@
»

and

n' = oy (10)
where the Laplacian is two-dimensional in x and z.
Now, sincz the perturbations with which we are concerned are
periodic in horizontal space (see Fig. 1), we shall assume a convenient

form for the dependent variables:

u' = U(z,t) sin kx; ' = -T(z,t) cos kx;
v' = -V(z, t) sin kx; n' = H(z,t) sin kx;

(11)
w' = -W(z,t) cos kx; w = II(z,t) cos kx;

' = -Y(z,t) sin kx .

Inserting (11) into (7), (2), and (5), we obtain the final form

of the governing differential equations:
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92H

oH — 0H A
’a'?=-w";+a'5;+kT -kZKxH+Kz‘é';2, (12)
- 2
LA/——_A + aU KPRV + K, 2Y, (13)
ot 9% X oz
BT ~ 8T 1 2 92T
TS " Wa, W3y - AT -KK,T + K, 575 - (14)
Vorticity equation (10) takes the form
2
- x2y - ¥
H = K2y - (15)

From a given set of initial conditions, we may compute new
values of H, V, and T using (12) through (14). Eq. (15) is then solved
under suitable boundary conditions to obtain a field of y which determines

U and W by the following relationships:

=
U =2, (16)
W = ki. (17)

The process is repeated for the next time step, and so on until the

termination of the calculation.



CHAPTER III
THE NUMERICAL MODEL

Equations (12) through (17) of Chapter II are applied to study
the effects of large-scale uniform subsidence upon cellular convection
which occurs in a stably-stratified layer to which heat is continually
added from the bottom by turbulent conduction. The depth of the stable
layer is taken to be 1 km. The layer is equally divided into forty sub-
layers by a system of forty-one grid points at 25-m intervals.

The governing equations are approximated in finite-difference
form using forward time differences and centered space differences to
evaluate the derivatives (except at the upper and lower boundary points

where uncentered space differences are used).

The Finite-Difference Equations

The forward-time-step method of solution is subject to comp-
utational instability if too large a time increment is used in comparison
to the space increment and other parameters (Dingle and Young, 1965),
In general, specific stability criteria have been developed only for simple

differential equations of the parabolic, elliptic, or hyperbolic types.
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Therefore, an analysis will be necessary in order to determine the
requirements for the stability of the more complicated set of equations
used in this model (see Appendix C).
Corresponding to (12), (13), and (14), the finite-difference
equations applicable to the mth grid point (exclusive of the boundary

points) and to the nt? time ste;; are as follows:

H(m,n+1) = [ 1 - k2K At - ZKzAt/(Az)Z"]H(m,n)
+ [ K, At/ (82)? - wat/242] H(m+1, 1)
+ [ K,At/(Az)2 + wAt/282) H(m-1, n)
+ kAt T(m,n)

+ (aAt/20z)[ V(m+1,n) - V(m-1,n)] ; (18)

Vim,n+1) = [ 1 - K%K At - 2K, At/ (Az)2] V(m, n)
+ [k At/ (82)% - wat/282] Vim+l, )
+ [ K,At/(Az)2 + wot/2A2] Vim-1, n)

+ aAt U(m,n); (19)

T(m,n+1) = [ 1 - k2K At - 2K,At/(Az)% - AAL] T (m, n)
+ [ K, At/ (82)2 - wAt/242] T(m+1,n)
+ [ K,at/(82)% + WwAt/282] T(m-1,n)

- B(m)At W(m, n); (20)

withm=2, 3, ..., M-1 andn=1, 2, 3, .. .. The static

stability aE/az is represented by B(m) in (20) and is expressed as
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6, (w/K,) _
- - 21
B(m) [ T exp(@/Ky) exp(w(m l)Az/Kz) (21)
withm=1, 2, 3, .. ., M. Itwill be noted that the coefficients in

(18), (19), and (20) have been chosen arbitrarily constant except for
B(m) which varies with height, Since those equations are all of the
same form and since the temperature perturbation is the driving force
for the model, we shall limit our discussion of the computational
stability to (20). That discussion is found in Appendix C.

Completing the set of finite-difference equations, we have a
recursion formula for the vorticity equation (15) which requires only

knowledge of H(m,n) and boundary values of y(1,n) and y(M, n).

Y(m,n) = [S(m-1) Y(m+1,n) + R(m)} /S(m) (22)
with
S(m) =[2 + (kAz)?] S(m-1) - S(m-2)
and
R(m) = S(m-1) H(m,n) (Az)* + R(m-1)
form=2,3,4 ..., M-1 and under the conditions S(0) = 0,

S(1) =1, and R(1l) = Yy(1,n). Formula (22) is derived in Appendix D.
The solution of (22) for the thirty-nine interior grid points is

accomplished by first evaluating S(m) and R(n;l) with m=2, 3, 4, . ..,

M-1 and then, with the upper boundary value of { specified as zero,

solving (22) for m = M-1, M-2, . . . , 3, 2. The lower boundary value
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of Y is determined from the condition on W (see (24) and the discussion
of the boundary conditions in the next section, specifically (27)).

With U so determined, we may then calculate (16) and (17) by

U(m,n) = [ $(m+1,n) - Y(m-1,n)]/2Az (23)
and

W(m,n) = k ¢(m,n). (24)

Boundary Conditions

The boundary conditions in this model are decidedly different
from those usually taken in such studies. In Rayleigh's initial theore-
tical approach, he confined the convective layer between free, conduct-
ing surfaces at the top and bottom. A '"free'' boundary is one which has
zero momentum flux between it and the fluid. Thus, no kinetic energy
generated by bouyancy is lost to the boundaries. Free boundary condi-
tions have been criticized by Jeffreys (1926) and by Pellew and Southwell
(1940) as being unrealistic (except in the atmosphere) and not applicable
for laboratory experimentation. Those investigators have required at
least one of the horizontal boundaries to be rigid and have found the
critical Rayleigh number to be a function of the boundary conditions.
More recently, Deardorff (1964) finds that the free boundary condition
produces considerably more upward heat flux than is obtainable in
laboratory models for which the boundary conditions are rigid. While

the rigid condition is adequate for the analytical study of laboratory
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models, it is not applicable to both boundaries in the meteorological
problem, particularly to the problem confronted in this paper.

Because we intend to study the flow in the stable layer which
caps the turbulent region below, we are not at liberty to close the lower
boundary, for it is through that boundary that the turbulent energy which
drives the cellular motions must enter. On the other hand, since the
top of the model is several hundred meters above the temperature
inversion, it was felt that a significant portion of the convective energy
would not reach that boundary. A rigid top boundary was chosen with
U=V =W =0 at that level. As the results later indicate, however,

a free upper boundary condition probably should have been chosen.

In addition to the kinematic boundary conditions, some con-
straints upon temperature must be specified. Generally speaking, we
may choose the boundaries to be either conducting or insulating. Only
the former is applicable to the study of quasi-steady convection cells,
for as Pellew and Southwell point out, '". . . unless the temperature at
each surface is kept constant at some cost in heat transmission, any
instability discovered in analysis must relate to some temporary dis-
tribution of temperaﬁure, and will be succeeded by some motion having
(ultimately) the nature of a damped oscillation . . . ." Thus, we shall
assume in the model that the temperature perturbation is zero at the
upper boundary and positive constant at the lower boundary for all time.

Because we have relaxed the constraint on W at the lower
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boundary in an attempt to approximate a physically real model, we must
now impose further constraint on the temperature distribution, T(z,t).
Upon setting the left-hand side of (14) equal zero for the lower boundary
| condition on T, we are left with the necessity of balancing the remaining
terms of the equation. In other words, the temperature changes by
advection from both the basic and perturbation vertical velocities, the
horizontal and vertical eddy conductions and the radiative changes must
all cancel.

Since the layer is warmer at the bottom than at the top, 8T/9z
will necessarily be negative at the lower boundary. Combined with a
subsiding basic flow (w< 0), the advective heat change due to the first
term on the right of (14) is a cooling effect. Similarly, with T positive
constant at the lower boundary, the horizontal eddy diffusion and the
radiation term (third and fourthterms)contribute to cooling. The only
terms in (14) which may contribute to Wa;t'ming at the lower boundary
are the advective change due to perturbatiﬁh motion (second term) and
the vertical eddy conduction by virtue of a positive curvature of the
T -profile (fifth term). We are tacitly assuming that K, and K, can
never be negative. Since we do not wish to restrict the .sign of W tobe
only negative at the outset, we must determine an initial T ~distribution
which allows sufficient warming to take place to counter the cooling
effects mentioned above. Thus, there must exist initially a divergence

of heat flux of the negative sense at the lower boundary.
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Normally, the heat flux is specified 8T/8z equals a constant
at the boundary. (See, for example, Jeffreys, 1926 ) However, use
of such a condition here would yield only W<0 at the boundary since the
vertical eddy condrnction term would drop out. We would then be left
with the physically unrealistic result of a warm temperature perturba-
tion producing a negative acceleration.

We may satisfy the upper and lower boundary conditions as
well as the constraint discussed above by choosing the following form

for initial T:
T(z,0) = T, exp(-yz); y>O0. (25)

Substitution of (25) into (14) while noting that W(0,0) = 0 yields a solution

for y:
vy =[ %t @2 + 4K, (K%K, + Y2172k, (26)

from which we extract the positive root in order to satisfy y>0. We
may now use (14) and (26) to solve for a boundary value of W at the nth

time step.
W(l,n) = [(sz2 - kZKx - A + W/A2)T, - (W/Az)T(2,n)] B(1). (27)

Eq. (27) with (24) serves to complete the boundary conditions.
While (27) does not guarantee W(1,n) >0 for all time, it will

allow upward motion to occur until the cooling effects become larger
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than the heating due to eddy conduction. That imbalance may occur as
a result of the changing T-profile.
Finally, opening the lower boundary introduces a new energy
s.ink not usually found in classical convective models. Non-hydrostatic
pressures at the lower boundary may now work against the convective

motions in the stable layer.

The Energy Integral

The equations expressing the rate of change of kinetic and
available potential energies are obtained from set (1) through (5). By

multiplying (1) by u', (2) by v', and (3) by w', then adding, one obtains

9(KE) _ = 9(KE) 8(u'r') a(w'r') ,(_32'4_ _a_\y'> + w'@
ot =V 0z ox oz o 9x 0z v
B 2.y 2 2 I_l
a%d' oev 04w
+ K L r | I
x_u %2 tv 9x2 * 9x2 _!
[ 2.4t 21 2.0
+ K_|u 85U, 8%V +w'3_Wj] 28
2l 9z 922 9z2 (28)

where KE = (u'2 +vetw 2)/2. Note that the fourth term on the right
of (28) is zero by virtue of (4), and the kinetic energy of the constant
basic flow is not considered. Since the system of equations is linear,
there can be no energy exchanges between the perturbation and the
basic flows.

Similarly, if we multiply (5) by §' and divide by B, we obtain

an expression for available potential energy:
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- 2 2 2| lZl
3(PE ag' Af' 6' 850 0'84h
o “'3‘6'5; W - tExpga tEagyz (29

where PE = ' 2/ 2B. The available potential energy is dependent only
upon the mass distribution or, in the case of an incompressible fluid,
the temperature distribution (Lorenz, 1955). Also, available potential
energy is always regarded as positive for temperature perturbations of
either sign, hence the 0'2 form.

Although energy is not conserved in this model, it will be use-
ful to look at the energy integral over a suitable volume of the model.
Since our model is composed of periodic horizontal variations and is
linear, integration over one wave length and then over the depth of the
layer is sufficient. (Variations in the y~direction are ignored; integra-
tion over a unit distance in y is implied.) Substituting u', v', etc. from

(11) into (28) and (29) and carrying out the volume integrations, we have

(Bt ) - W(KE),_o - W(0,n) II(0,n) + WT - 2k K_(KE)
92U B4V 32W]
t Ke [U 3z t Vg2t W52 (30)
and
2(PE) _ ?[l_BT"‘—I — [4_'52]
ot "~ T 2(poz | ° - LB
T 92

(31)

w
3

N
LH

- 2k*K(PE) + Kz[
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The double bar above a term indicates a vertically-averaged quantity.
In (30), kinetic energy is lost due to subsidence (w<0) advecting it
through the lower boundary (first term on the right), due to working
against the pressure forces acting along the lowsr boundary (second
term), and due to horizontal turbulent diffusion (fourth term). The
vertical diffusion (fifth term) may act as either a source or sink. The
principal source of kinetic energy appears in the WT term which links
the changes in kinetic energy to the changes in potential energy in (31).
Of course, kinetic energy may also be transformed into potential energy
in which case the third term in (30) acts as a sink.

In the potential energy equation (31), we again find sinks due
to subsidence (first term), horizontal diffusion (fourth term), and also
radiation (third term). The fifth term which is related to the vertical
diffusion of potential energy may again be either a source or sink,
depending upon the distribution of T in the layer.

The truncation error of the numerical solution of hydro-
dynamical models is not generally known, a priori, The total energy
integral is usually a means of estimating the truncation in the finite-
difference equations. The total energy integral is the sum of (30) and
(31). Although the energy is not conserved in the model, the terms of
the total energy integral may be evaluated and, ideally, should sum to
zero. Non-zero summation may be taken as a guide to the truncation

error. A discussion of the truncation errors is found in Chapter V.



CHAPTER IV
DESIGNATION OF THE EXPERIMENTAL PARAMETERS

For the simplicity of notation and for purposes of comparison
in this and the following chapters, we shall refer to the parameters
and variables in (18) through (24) by their dimensionless notation (i.e.,
without asterisks), but when dealing with their numerical values we
shall give the dimensional values except where noted. The character-
istic time, length and velocity scales are 34.7 sec, 1 km, and 29 m
sec , respectively.

After the initial choice of the parameters, the only ones which
were varied from case to case were horizontal wave number, k, and
the basic subsidence flow, w. Of course, as a result of varying k and
w, the initial temperature distributions varied from case to case and
hence the available potential energy. Also, variation of wcaused a
variation in the static stability, . As a caution against computational
instability and truncation error, the time increment was. decreased
for cases involving shorter horizontal wave lengths. A listing of the
constant parameters is found in Table 2, and in Table 3 are found the

various cases studied along with the parameters which varied.
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Six experiments were run for varying horizontal wave lengths:
1, 5, 10, .20, 50, and 100 kmn. Then, in an effort to better delineate
the effects of subsidence on the convection, the 5-, 10-, 20-, 50-, and
100-km cases were run again with w~0, making a total of eleven experi-
ments.

The vertical mesh length was 25 m in all cases. The time in-
crement varied from 12 sec for the longer wave lengths to 6 sec for
wave lengths 20 km or less, except 2 sec for the 1-km case. The maxi-
mum allowable time step depends upon the wave length and varied from
about 24 sec to 57 sec based on the analysis of computational stability
in Appendix C. The total running time for the experiments varied from
6 hr for wave lengths less than 50 km to 12 hr for the 50- and 100-km
cases, with two exceptions. The 20-km subsidence case was run for
12 hr and the 1-km case was run for 4 hr.

Large-scale vertical velocities in the subsidence layers of the
lower atmosphere are probably no greatef than -10 cm sec-l. Even
at that rate, an inversion layer would descend over 1 km in only 3 hr
in the absence of any heat sources or sinks. This degree of descent is
apparently excessive based on what is observed in soundings of temper-
ature in the atmosphere. Subsidence of 1 km in 24 hr is more nearly
what is observed. The value w = -1.5 cm sec-1 is chosen to reflect
that magnitude of subsidence.

In the experiments without subsidence, instead of taking w
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literally zero, we assigned a value of w=-1.5x 10-3 cm sec-l. The
effect is as though we had retained the radiation term in the exponential
governing the basic temperature profile (6). When whas a realistically
large value, the radiation effect is negligible in determining the basic
temperature profile.

Recall, also, -hat the basic-temperature distribution is main-
tained by a balance between compressional heating due to subsidence
and eddy conduction which cools the layer. In (6), once the ratio \;/Kz
has been established, the balance requirement governs the curvature of
the - profile. To obtain a rather gradual change of §with height for
the benefit of clarifying the results within the temperature inversion
and to control truncation errors, we do not wish to require the profile
curvature to make up order of magnitude differences in the ratio \TV/KZ
In other words, if ;/Kz is small (much less than 1), the 8-distribution
approaches that of an isothermal layer (Fig. 2). On the other hand,
if v—v/Kz is very large (much greater than 1), the ‘6-distribution approach-
es that of a zero-order discontinuity. The choice of K, is limited, then,
by the order of the magnitude of ;-v and the desire for a gradually chang-
ing temperature inversion as a basic state. Since the depth of the mo-
del is 105 cm, we choose K, =5 x 104 cm2 sec making the ratio
;/Kz = -3 with § as shown in Fig. 2.

The chosen value of K, is only slightly gréater than the mini-
mum effective value determined by Ogura (1963) in a numerical experi-

ment on cumulus convection, This is perhaps desirable in view of our
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incomplete knowledge of the eddy exchange processes on the scale of
motion dealt with in the model. We do not wish to overwhelm the rather
subtle effects which subsidence may impose upon convective motions.
Furthermore, we are somewhat limited in the choice of Kz because of
its appearance in the condition for computational stability (see Appendix
C). An increase in Kz by an order of ten would require a time step
less than 3 sec for the smaller wave lengths, While this is not economi-
cally impractical with present generation computers, a larger time
step was certainly more desirable.

For a choice of the horizontal eddy coefficient of diffusion, Ky»
we must again be guided more by intuition than by knowledge of the fﬁ;n-
damental physics of the process. Many investigators have taken K % and
K, to be the same for lack of any better estimate. On the other hand,
values as large as 1011 c:m2 sec-1 have been deduced as applicable
in stable layers based on the ability of gravity waves to disperse heat
and momentum at speeds on the order of 100 m sec-1 (Sasaki, 1964).
Simple scale considerations whereby Ky is estimated as proportional
to a representative length times a representative velocity yields a Kx
of order 108 cm2 sec_1 for this model. This latter value is also con~
sistent with Sasaki's estimate (1965) for the fully turbulent region below
the stable layer. Priestley (1962) suggests that a ratio Kx/Kz equal
to 100 is necessayry to produce the horizontal elongation of the cellular

cloud patterns through anisotropic turbulent transport. Since that
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estimategives the most conservative value for Kx different from Kz,
we shall adopt Kx =5x 106 cm2 sec_1 as the value in our model.

As discussed in Appendix A, the radiation effect which we are
modeling is a large-scale effect. That is, it is the result of tempera-
ture distributions whose variations occur over a much larger scale
than the perturbation scale in the model. While there is poésibly an
order of magnitude ambiguity in the estimation of the mean free path

of radiation, K, Goody's (1956) value of 2 x 1072 cm™!

applicable for
water vapor at S. T. P. may be considered an absolute maximum for
the atmosphere which usually contains only a few parts water vapor
in a thousand parts of air. Thus, the largest effect of large-scale
radiation on the perturbation temperature field may be estimated as
A= 16K6®3/s =4x 107® secl.

Designation of the other parameters in Table 2 is less uncer-
tain, The Coriolis parameter, a, is known to be of order 10-4 sec"1
in all but equatorial latitudes. The deviation of basic-state tempera-
ture O from ® at the base of the inversion is arbitrary within the limits
that AG/® is of order 0.1. Since ®~300K, our choice of 8(0) = -10C is
well within the requirement. The temperature perturbation at the
lower boundary is also arbitrary within the above requirement. T

(o]

= 3C is physically realistic to the convection modeled.



CHAPTER V

RESULTS AND DISCUSSION

The Physical Picture

Before viewing the results, let us elaborate the physical pic-
ture described by this convective model. Typically, cellular cloud
patterns are observed to occur above a heated portion of the earth's
surface where there exists a thermal cap or stable layer (tempera-
ture inversion) at an altitude of 1 to 2 k. As surface air is warmed
it rises in small convective elements through a layer having nearly
neutral stratification. Those convective elements have the forms of
bubbles, plumes, and columns which, because of the neutral environ-
ment, mix that layer thoroughly producing a fully-turbulent regime.
On top of that thermally-mixed layer is a stably-stratified layer which
prevents the convective elements from penetrating the atmosphere fur-
ther. (Occasionally, individual elements or groups of elements do
penetrate the stable layer if they possess sufficient bouyant energy
or if a larger-scale motion temporarily weakens the inversion. These
cases are not of direct concern in this study, although they are an im-

portant class of convection. We shall confine our discussion to the
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weaker, more gradual convective warming for which the rigid boundary
condition is more applicable.)

On the whole, there is a net itransport of heat upward from the
earth's surface to the base of the stable layer via the turbulent convec-
tive elements. (Turbulent elements are taken to mean those whichpro-
duce eddy-like exchanges on a scale below the smallest scale describ-
able by the model.) The magnitude and duration of the warming are
governed by the surface temperature excess and conditions in the surface
boundary layer (the first several hundred meters of air adjacent to the
earth's surface). Over land surfaces, this heating normally has diurnal
variation, although under some conditions in cold air masses it may
continue throughout the night. Over oceans, the heating may continue
for periods longer than 24 hr depending only on the sea-air temperature
difference. In any case, for the well~developed cellular convection of
the type considered here, the heating would continue in a more or less
steady manner over a period of at least 6 to 12 hr. In the model, the
effect of this steady upward heat flux is approximated by holding the
temperature at the lower boundary constant. However, large-scale
subsidence through the inversion tends to diminish temperature excess-
es. Therefore, a divergence of turbulent heat flux at the bottom of the
stable layer is necessary to satisfy the boundary condition.

The processes which establish a temperature excess through-

out the stable layer are not modeled. Supposedly, the accumulation of
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heat near the base of the stable layer would gradually spread upward
through the layer by processes of eddy exchange and radiation of a more
lpcalized type than that which is considered in the model. Probably, as
the excess temperature distribution becomes larger, a critical point is
reached whereby the eddy effects cannot maintain sufficient heat trans-
port through the layer, and a laminar convective flow will develop in a
manner analogous to the classical Rayleigh-type models. The present
model is not directly concerned with establishing the parametric rela-
tionships governing the onset of the convective flow. Rather we have
.assumed that the conditions producing such a flow have already been
satisfied, and we have undertaken to determine any preference of scale
for that flow and the effects of large-scale subsidence.

To accomplish that aim, we begin with an initial excess tem- -
perature distribution which is sinusoidal horizontally and diminishing
exponentially toward the top of the layer. The development of the con-
vective flow is then ''predicted' by a numerical solution of the géverning
equations. The top of the layer is held rigid and the bottom left open.

Both boundaries are conducting.

The Growth of the Convective Cell

The development of a typical convective cell under the influence
of subsidence is shown in Fig. 3 which depicts the streamfunction field
at hourly intervals for the first six hours over half the 20-km cell.

While the stage of growth at any particular time varies with the hori-
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zontal scale of the disturbance, the pattern of development is essentially
the same for the various wave lengths tested, with the exception of the
1- and 5-km cells.

We see in Fig., 3z that the cell fills the entire depth of the stable
layer at the end of the first hour of growth. (The horizontal scale of the
figure is 10 km giving a vertical distortion of 20to 1 in this case.) At
the lower boundary, negative vertical motion has developed in response
to the boundary condition on T. That was a general result in the cases
with subsidence. The weak downward flow at the lower boundary had
little apparent effect within the rest of the layer and never involved more
than the lower 50 m. Since there is no reason to believe that featgrg of
the flow represents a real atmospheric condition, we shall dispose of
it as simply an inconsequential boundary effect.

By the end of the second hour (Fig. 3b), the circulation center
descends from about 250 m to around 175 m, and the entire cell flattens.
The magnitude of the circulation diminishes also. Still, the single cell
fills the entire depth of the layer.

During the third hour, a secondary, reverse circulation cell
develops in the upper half of the layer (Fig. 3c). The lower cell sinks
further in the layer to about 150 m and begins to intensify again. The
intensification of the lower cell continues during the fourth, fifth, and
sixth hours (Fig. 3d, e, and f). The upper cell meanwhile decreases

intensity at first, then increases.
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In general, the development of the convective cells larger
than 5 km exhibited this oscillatory growth pattern. While the develop-
ment of the upper cell is probably due to the influence of the rigid upper
boundary, it is nonetheless considered to be a physically realistic
phenomenon. In the actual atmosphere, the ultimate upper boundary
is essentially the tropopause. Had it been used as the upper boundary,
the center of the upper cell likely would have been just displaced to
some higher level.

The experiments without subsidence exhibited similar growth
patterns except that the magnitiides of the circulations were greater

than in the corresponding subsidence cases.

Variations in the Growth Patterns with Horizontal Wave Length

As mentioned in the last section, the growth of convective
cells larger than 5 km is similar except for magnitude and growth rate.
This is evident in Fig. 4 which shows the variation with time of the
maximum W in the lower cell for each case. In Fig. 4a are the cases
with subsidence and in Fig. 4b the cases without.

The oscillatory growth pattern is evident in all cases except
the two shortest wave lengths. In the 1- and 5-km cells, the vertical
motion quickly reache.s a maximum and then remains steady. In the
10- and 20-km cells, the vertical velocities are still increasing at the
end of six hours and even at the end of twelve hours in the 20-km non-

subsidence case shown in Fig. 4b.



(83}

3

The vertical motions in the 50- and 100-km cells reach an
early maximum and slowly diminish in an oscillatory mode. The
differences in magnitudes of the vertical velocities between the sub-
sidence and non-subsidence cases can be attributed to two factors.

The initial potential energy is greater in each of the non-subsidence
cases (see Fig. 5), and the basic-state static stability in those cases
is much less in the lower portion of the layer (see Fig. 2). The non-
subsidence basic state is nearly isothermal while a temperature in-
version of nearly 3.5C in 500 m occurs with the subsidence case.

The amplification preference for the wave lengths 10 to 20 km
is even more graphically demonstrated when viewed as the rate of
increase of total energy. Because the initial available potential energy
varied from case to case, we have represented in Fig. 6 the growth
curves for the ratio of total energy to initial energy. Fig. 6a is for
the subsidence cases. In the early stages, the 10-km growth rate
exceeds that of any other wave length, although att = 6 hr it is beginning
to level off. The 20-km curves show a greater amplification at t = 6 hr
than any other wave length. The stability of the growth of the 1- and
5-km cells is quite evident.

The appearance of a preferred scale of amplification was
predicted in theoretical approaches by Sasaki (1964 and 1965), In the
first paper he found the preferred growth scale to lie between 5 and

400 km. The second paper yielded maximum growth at 10 km increas:ag
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to infinity as K, in the turbulent region below the stable layer was

2 1

increased to a value of 108 cm? sec-l.
That we have obtained an identical scale of preferred wave
length but with Ky =5 x 106 cm? sec! may be attributed to any or all
of the following: the horizontal eddy conductivity decreases more than
an order of ter in passing from the fully turbulent region into the stable
layer; or the models are sufficiently different in the amount of heat
energy supplied (Sasaki found a dependency of increasing wave length
with increasing upward heat flux); or the choice of a small Ky in this
model was offset by a larger than normal turbulent heat transport to
the lower boundary. Sasaki's latest model neglects the effects of
Coriolis and vertical momentum flux. However, it is felt that these
factors cannot explain the discrepancy. As we shall point out in later
discussion, there is sufficient evidence from the evaluation of the terms
of the energy integral to suggest that our choice of K was of insufficient
magnitude. It is also likely that we have required too large a turbulent
heat flux through the lower boundary (the fact that a downward pertur-
bation flow was required to maintain the constant temperature is in-
dicative of that possibility). It would seem, therefore, that the third
of the above mentioned alternatives is the most likely reason for the
coincidence between our results and Sasaki's.

Another comparison between this and earlier models is in

order. Observation and experimentation have shown that when cumulus
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or other bubble-type convective cells of size 1 to 5 km reach a stable
layer, they are quickly damped out. Yet in the present model, those
scales of disturbance reach a stzady state. The difference is that the
cumulus give a transient warming at the base of the stable layer whereas
our model is governed by a steady heat source. Thus, the 1- and 5-km
scales of convection in this model are more nearly analogous to plume
or columnar convection such as the hot gases from a large conflagration
at the surface. In still air, such convection rises vertically over the
source and mechanical mixing is minimal as it is in our model.

The steadiness of the 1-km cellular flow is evident in Fig. 7a.
which shows the streamfunction pattern for the subsidence case. The
pattern shown developed after only 10 min and continued unchanged to
the end of the run, 4 hr later. A 1-km non-subsidence case was not
run because of the extreme steadiness of this result.

The other patterns in Fig. 7 show the circulation cells at
t = 6 hr for the other wave lengths. As indicated before, all the cases
from 10 to 100 km went through similar growth patterns, differing only
in magnitude and timing. The 5-km cell in Fig. 7b does not exhibit the
oscillatory behavior. It has retained the indicated pattern and magni-
tude of circulation through the previous 3 hr. The 50-km case in Fig.
7f appears to be less developed at t = 6 hr than the other amplifying
cases. It is, however, simply passing at that time through a minimum

in its oscillatory growth which is comparable to the 20-km case at t=2 hr.
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Fig. 8a through 8e indicate the t = 6 hr streamfunctions for
the cases without subsidence. Comparing these with the subsidence
cases in Fig. 7, it appears that the cells are further along in their
development. For example, in the 50-km case (Fig. 8d), the reverse
cell has appeared in the upper part of the layer, whereas in the sub-
sidence case (Fig. 7e) it has yet to appear. Also, the maximum value
of the streamfunction is generally larger in the non-subsidence cases.
However, the non-subsidence cases all started with larger initial avail-
able potential energies (see Fig. 5). If we look again at the growth
rates for total energy in Fig. 6 2 and 6b, we note that the total enzrgy
in the 50-km subsidence case has increased e-fold in 4.5 hr while a
corresponding increase in the non-subsidence 50-km case takes over
6 hr. A similar relationship holds for all the other wave lengths. The
reason for such behavior becomes apparent when we look at the individ-

ual terms in the energy integrals (30) and (31) in Chapter III.

Energy Relationships

For purposes of discussion we shall designate the following

- notation for the terms on the right of (30) and (31):

ADKE = W(KE)__; PRES = W(0, n) II(0, n);

— — 2 2
HDIF = 2k’K4(KE +PE); ADPE = "E"[%g_;f J; RAD = [%1 :l;
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In Fig. 9 we have separated the total energy changes for the
50-km cases into available potential energy and kinetic energy parts.
Again, because the initial energies in the two cases were different, we
present the results as fractions of 'their initial energies. In the kinetic
energy curves we again note that the subsidence case has amplified
e-fold quicker than the non-subsidence‘ case. We may conclude that
the amplification of the total energy (Fig. 6) reflects in the same sense
the growth of kinetic energy of the convection. That is to say, by t = 6
hr, the 50-km cell with subsidence has utilized its available potential
energy in a more efficient manner. This observation is substantiated
in the potential energy curves of Fig. 9. The 50-km subsidence case
has experienced less depletion of available potential energy at t = 6 hf
than has the non-subsidence case.

The explanation may be found by a closer analysis of the period
betweent = 2 hr and t = 4 hr in Fig. 9, when the kinetic energy growth
rate diminished considerably in the non-subsidence case compared to
the subsidence case. Coincidentally, the available potential energy
increased during this same period in both cases, altho;J.gh the phasing
is slightly different. This would suggest that kinetic energy was being
transformed directly into potential energy during this time period.

Indeed, such was the case, as the plot of WT verifies in Fig. 10.
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After a 2-hr period during which potential energy was being converted
into kinetic, WT changes sign and the energy transformation is reversed
in both cases. The outstanding question is why the kinetic energy
growth rate dropped off significantly in the non-subsidence case.

The time change in the various terms of the total energy
integral are shown in Fig. 11d and 12d for the two 50-km cases. The
difference in the kinetic energy behavior cannot be attributed to the
sinks ADKE, ADPE, PRES, RAD, or HDIF. All but the last were
ineffective in the non-subsidence case, and HDIF was essentially the
same in the two cases. The answer must lie within the remaining
term in ti_le' energy integral, VDIF .

Unfortunately, the compute'r was not programmed to display
separately the vertical diffusion of kinetic and potential energies.
However, we can obtain a qualitative appraisal of the two effects by
looking at the vertical profiles of U, V, W, and T for the two 50-km
cases. Fig. 13 indicates the U and V profilc'as for t = 3 hr. Except

‘for a small region near the lower boundal;y on the U-curves, the
profiles indicate positive curvature throughout and of similar order

of magnitude along both curves. Likewise, the V-curves have similar
curvature. Since the positive and negative values of U and V are
nearly equally distributed in both cases, it is considered doubtful that
these components, averaged vertically? would contribute significantly

to the difference in energy changes between the two cases.



39

The profiles of W and T are found in Fig. 14 and 15 for all
cases and at 3-hr intervals. Attention is first directed to the 50-km
W -profiles in both Fig. 14 and 15. In both cases the profiles exhibit
negative curvature at t = 3 hr, and as W is positive (except for a thin
layer near the lower boundary in the subsidence case), the average of
this component to the vertical kinetic energy diffusion is definite nega-
tive in both cases.

Now consider the “rertical potential energy diffusion in the
non-subsidence case (Fig. 15). Att = 3 hr, the T-profile has positive
curvature throughout and is greatest where T is maximum negative.
Thus, averaged vertically, this contribution is most likely a sink for
potential energy. A hand calculation based on the output values of
T at 25-m increments ind‘icated the diffusion term is only slightly
negative in this case.

The T-profile for the subsidence 50-km case (Fig. 14) has
a decidedly different shape at t = 3 hr. In the region of negative T,
the curvature goes negative in the upper levels which contributes to
an increase in potential energy through diffusion. A hand calculation
based on the output dat:.a shows the velltically-averaged diffusion term
is definite positive by a considerable magnitude.

Thus, the marked differences which were noted in the kinetic
energy growth rates during the period t = 2 to 4 hr for the 50-km cases

probably can be attributed to the different contributions from the vertical
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diffusion of potential energy which occurred during that time. In the
non-subsidence case, the noted increase in available potential energy
was obtained by a decrease in the kinetic energy. In the subsidence
case, since the averaged vertical diffusion of potential energy was
acting as a source at that time, the average available potential energy
was able to increase without as much decrease in the average kinetic

energy.

The Physical Role of Subsidence in the Growth Process

In view of the results discussed in the last section, we may
now attempt to draw conclusions regarding the physical role of subsi-
dence and vertical diffusion of energy in the model.

As the convective motion initially develops from the lower
boundary, it rises upward due to its positive bouyancy. Since the
environment is stably stratified, the convective motion will eventually
reach a level of neutral bouyancy and, because of its momentum, over-
shoot that level creating a pool of colder air at a higher elevation. In
a bubble-type convective situation where the only excess heat in the
layer is that initially designated, the cold pool of air would then begin
to descend in response to its negative bouyancy. It would eventually
overshoot the neutral bouyancy level traveling downward where it would
again be warmer than its environment. And so on until the bouyancy of
the convective cell was destroyed by turbulent exchanges with its en-

vironment. This description is based on the theoretical considerations
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of the parcel method wherein the frequency of oscillation of the bubble
about the neutral-bouyancy level is the Brunt-Vaisala frequency.

In this model, however, heat is continually added at the lower
boundary. Thus, the air at higher levels with a deficit temperature
(negative bouyancy) cannot sink back to the neutral level because of
the rising air coming up from the lower boundary. The only recourse
for the cold air "trapped' in the upper levels is to begin a reverse
circulation which must be maintained at the expense of the energy in
the lower cell, Since no direct interactions between the upper and lower
cells are possible in this linearized model, the energy transport must
take place through eddy diffusion, mainly that of eddy momentum
transport.

After the two cells are well developed, there seems to be no
problem in maintaining sufficient edc‘ly momentum transport to drive
the upper cell. This is apparent in Fig. 11d and 12d which show VDIF
actually becoming a source of total energy after about 9 hr. However,
in the early stages of development while the eddy momentum transport
is still small, the kinetic energy distribution apparently gets out of
balance with the available potential energy distribution and must diminish
periodically while the potential energy becomes adjusted. This is the
most likely cause of the oscillatory character of the results.

Large-scale subsidence reduces the temperature variance,

particularly in the upper levels away from the source of heat. This has
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two effects on the upper cell. By reducing the amount of negative
bouyancy of that air, it diminishes the tendency for the upper cell to
form in the first place. Secondly, it concentrates the available poten-
tial energy in the lower levels. This allows the eddy heat transport
to become large enough to supply the upper cell with potential energy
instead of making the eddy momentum transport the major supplier at
the expense of the kinetic energy of the lower cell.

Subsidence has yet another effect on the convective system
as a whole. Note in Fig. 9 that after about 8 hr the kinetic energy in
the non-subsidence case begins to exceed that of the subsidence case.
This was a general result for the amplifying wave lengths as a compari-
son of Fig. 6a with 6b demonstrates. The reason is found in Fig. 11
and 12. In the non-subsidence cases, the only important energy sinks
were the horizontal and vertical diffusions. In the subsidence cases,
not only was energy removed through the lower boundary by the large-
scale vertical motion, but the convective system lost energy by working
against the pressure forces along the lower iooundary. As time pro-
gressed, first the pressure sink and then the advective sink became
dominant, creating a somewhat continuous brake on the development.

Thus, subsidence plays a rather incongruous dual role: it
aids the early development of the convection only to damp the develop-
ment at a later time.

The effect of subsidence on the cells less than 10-km wave
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length appears to be more simple. In both of the 5-km cases the
steadiness of the flow after about 3 hr (Fig. 6) is apparently due to
the predominant effect of horizontal eddy diffusion (Fig. lla and 12a).
Indeed, in the subsidence case after t = 1 hr when WT goes negative
and remains steady (Fig. 16), the circulation is maintained entirely
through vertical eddy diffusion (Fig. 1lla).

The analysis of the energy transformations in the 20-km
cases is similar to that.of the 50-km cases, except that WT remains
at a greater negative value over a longer period of time (Fig. 17).
Since the vertical eddy diffusion of total energy was a net sink in
the 20-km cases (Fig. llc and l2c), we must conclude that the vertical
eddy diffusion of available potential energy was a large source in both

cases according to the argument developed previously.

Comments on the Eddy Exchange Coefficients

Considering the energy transformations for all the wave lengths
tested, it is apparent from Fig. 11 and 12 that the relative importance
of horizontal diffusion in the model is scale dependent, being very large
for small-scale circulations and negligible for scales of order 100 km.
However, this is not necessarily representative of the atmosphere
under the conditions described by the model.

We can be fairly certain that the turbulent diffusion of energy
in a stably-stratified region is not isotropic. Nor would we expect the

energy diffused vertically to be an order of magnitude larger than the
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horizontal component. The model results seem to indicate that we have
chosen K, too small relative to K, by at least an order of magnitude.
K, was assigned its value mainly on the basis of empirical considerations.
We balanced subsidence heating with eddy cooling in maintaining a con-
stant basic-state temperature. Large-scale subsidence is limited to
order 1 cm sec™!., Our choice of K, produced a temperature profile
close to that of a ""mean'' stable layer rather than an =xtremely sharp
inversion or an isothermal layer. There does not appear to be any
justification for choosing a larger K,, at least in the context of the

present model.

It appears we have chosen K, numerically too small. An

2 1

increase in Ky from 5 x 106 cm? sec™! to 5x 107 cm® sec”! would
have made HDIF the predominant sink in all cases and may have stabi-
lized the growth rates of the wave lengths greater than 10 km. Such
a result would have been more in line with what one might intuitively

deduce as the effect of a substantial stable layer upon weak, mesoscale

convective systems. The apparent necessity of the iarger magnitude

2 1

for K, lends support to the value 108 cm? sec” suggested by Sasaki.
And if our restriction on K, has any real physical significancé, then it
appears that Priestley's ratio of KX/Kz = 100 is too small under these
circumstances.

In several previous investigations into the problem of determin-

ing why atmospheric cellular convection has a width-height ratio on the
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order of 10 to 1 or 100 to 1, mention has been made of the differences
in horizontal and vertical coefficients of eddy exchange (Priestley, 1962;
Ray and Scorer, 1963). The latter authors treated the eddy conduction
coefficient as a function of temperature which varied horizontally. They
also considered the horizontal eddy exchange of momentum to be negli-
gible in cellular patterns, and obtained results from a classical-type
model which indicated a flattening of the convective cell. While we do
not intend to present here a discussion of their approach, we are able
to demonstrate how subsidence may enhance the flattening of the cells
through its effect on the horizontal momentum exchanges.

In a simple dimensional approach to the exchange coefficients,
they are usually equated to the product of a characteristic length times

a characteristic velocity. Thus, for example,

K, = wmax d (32)

';n our model. Our comparison here will apply to characteristic lengths
which are the same, case by case, so we shall ignore the length and
regard the exchange coefficients to be proportional to the velocities.
Also, we shall consider a two-dimensional horizontal coefficient, K.

In view of the above, we have

2
(Umax *+ Vlgnax)l/ 2

(W

K
Z z°< (33)

max I
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as a measure of the ratio of horizontal to vertical eddy exchange
coefficients. We have calculated ratio (33) for the various cases
discussed in the model and compared the subsidence cases with the
non-subsidence cases. The result is shown in Fig. 18. Subsidence
effectively flattens the kinetic energy distribution in the convective
cells. However, the distribution of kinetic energy is only about 20
per cent flatter in the subsidence cases. Therefore, subsidence alone
cannot account for the flattened appearance of the atmospheric convec-
tive cells, but it is probably a contributing factor of significant value.

No attempt has been made here to use (33) as a definition of
the ratio K/ K,. Such simple relationships have little general applica-
tion to the atmosphere. In fact, it is easy to demonstrate that the
mixing-length hypothesis is .of little use in defining the eddy exchange
processes in a model even as simple as this linearized one.

Deardorff (1966) has approached the problem of explaining
counter-gradient heat fluxes in the atmosphere on the basis of a thermal
variance equation which is similar to (31), but which includes nonlinear -
effects. While our results do not bear directly upon Deardorff's analy-
sis, we are in a position to comment upon the generality of his defini-

tion of a modified coefficient of eddy conduction:
Ky = - WT/(86/0z - T) (34)

where
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Ie = (ae/az)upper limit = (35)

The single overbar denotes here a horizontally-averaged value. Of
course, horizontally-averaged @ is the same as our basic-state
temperature.

From the mixing-length hypothesis, the usual definition of Ky
is

Ky = - WT/(86/82) (36)
which has no meaning if WT and 35/ 9z are of the same sign. Hence
the definition (34). In this model, 8-9-/ 9z is always positive and WT
may take on either positive or negative values. For example, note
the distribution of WT in Fig. 14 for the 20-km subsidence case at
t = 6 hr. The mixing-length definition (36) is obviously insufficient if
we require Ky to be positive.

Now let us consider Deardorff's definition (34) which we are
admittedly applying outside the context of his analysis just to see how
general the relationship might be. We calculated the parameter Wt
for the 20-km subsidence case and obtained the distribution shown in
Fig. 19. Above z = 0.5 km, 3(WT?2/2)/8z <0. Although WT is only
small positive in that region, it is apparent that I, will be much less
than 89/8z (about 3C km'l), and Kyy is in danger of evaluating negative.

On the other hand, our evaluation of I'; is obtained from
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distributions of W and T which do not include the effect of eddy transport
of heat by the eddies themselves. (the nonlinear or triple-correlation

terms in the temperature variance equation). Clearly, a more elaborate
nonlinear model should be investigated before drawing any conclusions as
to the quantitative accuracy of (34). However, on the basis of the results

at hand, we suspect that (34) will not prove to be a general relationship.

The Pressure, Advective, and Radiative Sinks

The work done by the convective cell against the pressure for-
ces at the lower boundary is a continual sink of energy for all wave
lengths, but it is larger for the longer wave lengths (Fig. 11). Likewise,
the advective transports of kinetic and potential energies through the low-
er boundary by ware also sinks. Naturally those sinks are absent in
the non-subsidence cases (Fig. 12).

Fig. 11 and 12 also indicate the negligible role which large-
scale radiative effects have on this type of convection. Even with an
increase in the order of magnitude of A (equivalent to 25C cooling per
day), RAD would have a significant effect only on the 50~ and 100-km

cells.

Truncation Errors

In regard to the use of the total energy integral as a guide for
estimating the truncation error involved in the differencing scheme, it

failed. The changes in kinetic and potential energies were calculated,
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added to the sources and sinks, and equated to a residual called the
"truncation error.' The magnitude of the "error' was found to be as
large as some of the source-sink terms. Yet, the smoothness of the
numerical results suggests a very small truncation error.

The causes of the large residuals are obscure, although two
are suggestive. The finite-difference form of (30) and (31) summed
was used to calculate the "error!' The energy integral formed from
the finite ~difference set (18) through (24) would perhaps have been
more appropriate. Deardorff (1964) notes a similar problem with the
finite ~difference formulation of the energy integral.

Also, application of the lower boundary condition (T = constant)
to (31) does not produce a constant available potential energy at the
boundary. Since no direct use was made of the energy integrals in the .
time solutions of the governing set, this fact does not affect the results
obtained, but it does influence the residual to the total energy integral.

If we assume the real truncation error is some smaller part of
the calculated residual, we may consider our results valid provided
the cumulative residual (error) does not approach the magnitude of the
total energy in the system at any given time. Fig. 20 shows the cumu-
lative error expressed as a fraction of the total energy for the subsi-
dence cases. Att = 6 hr, the influence of the cumulétive errors appears
to be leveling off at a value less than 0.1 Since the governing set of

equations allows a maximum perturbation (real plus error) of 10 per
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cent (A§/®~0. 1), it is apparent that we have not exceeded the limits of
usefulness of the numerical model. Similar cumulative errors were

obtained in the non-subsidence cases.

Influence of Coriolis

The Coriolis effect is the primary source of v-motion in (2),
whereas u-motion (1) is driven by both pressure gradient and Coriolis
forces. An indication of the effectiveness of Coriolis in the cellular
convective motions modeled is presented in Fig. 21 which shows the

ratio |v u | at t = 6 hr for the various wave lengths.
max

max! / |
The results are similar in both the subsidence and non-sub-
sidence cases. For wave lengths 5 km and less, the earth's rotation
has negligible effect on the convective motions and may justifiably be
omitted from the equations. For wave lengths 20 km and greater,
however, the motions produced by Coriolis are at least as large as
those produced by pressure forces. It is apparent that any study of the
horizontal flow in mesoscale disturbances should include the Coriolis
effect.

The falling off of the profiles in Fig. 21 between 50 to 100 km
is apparently the result of the oscillatory growth behavior of the cells.

A check of the ratio for 100 km at t = 12 hr yields values of 3. 50 in the

subsidence case and 6. 35 in the non-subsidence case.
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Contribution of Subsidence to the Cellular Cloud Patterns

A principal characteristic of the cellular cloud patterns shown
in Fig. 1 is their periodicity in space. The periodic nature on the scale
ten to a few hundred kilometers has been explained at least partially
by Sasaki as a natural consequence of the turbulent structure and up-
ward heat flux found in the atmosphere between the earth's surface and
the base of the stable layer capping the convective motions.

Also note in Fig. 1, the variation in the ratio of cloudy to clear

! in the overall pattern. The smaller the scale of the convective

air
cells, the more nearly the ratio of cloudy to clear air is equal to one.
Some of the larger-scale convective cells generally have much greater
clear area than cloudy. These are the "hollow'" or "doughnut'" cloud
patterns first reported by Krueger and Fritz.

Fig. 22 shows how the model results may account for such a
distribution. In that figure we have presented one and one-half cycles -
of the assumed x-variation in w' (returning to our original notation)
for typical results in the 50-100 km and 10-20 km scales. Superposed,

;ris represented for the subsidence case, and the ordinate is labeled

for the net or total vertical motion w = w+ w' in cm sec-l. If we

IThe dark portions of the satellite photographs are taken to
be clear skies. However, scattered cloud elements too small to be
resolved by the camera may be present there.
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equate w > 0 as indicative of a cloudy region and w < 0 for a clear region,
we see on the 50-100 km scale (which exhibits relatively small values
of w') that the ratio of cloudy to clear is significantly less than one.

On the 10-20 km scale (for which w' reaches much higher values
than on the larger scale), the ratio of cloudy to clear is very nearly one.
Of course, the magnitude of subsidence varies in space and time, but
the effect is notably the same sense as indicated. The smaller, more
vigorous cells will have a larger cloudy to clear ratio than the larger
cells which have weaker perturbation vertical velocities. The non-sub-
sidence cases would show a cloudy to clear ratio nearly equal to one

for any scale.

Naturally, the spatially periodic variations of temperature
which are associated with such cellular patterns in the atmosphere are
not pure harmonics which probably accounts in some part for the wide
variety of cell sizes seen in Fig., 1. This idea is similar to that of
Frenzen (1962) who views the cellular cloud pattern as the result of a
kind of "beat-frequency'" mechanism caused by interactions between
the various scales of motion.

Some of the cellular patterns in Fig. 1 exhibit a more cloudy
or solid cell center. It is tempting to speculate whether or not this
is simply the mirror image of the case shown in the upper part of Fig.
21 with w> 0. Although the results of his synoptic data studies were

somewhat inconclusive, Mitchell (1967) found some cases of these
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solid, cloud-filled cells associated with apparent, larger-scale up-
ward motion.

The aspects of cellular convection in a field of large-scale
slow ascent is an entirely different modeling problem, necessarily
nonlinear in nature. - There is no physical mechanism for maintaining
a steady basic-temperature distribution in an ascending stable layer.
In addition, it then becomes necessary to include in some manner the
release of latent heat energy, not only in the perturbation but also in
the basic flow. In view of the complexities of a ""basic ascent flow"

model, we can do little more than speculate on the solid-center cel-

lular patterns.



CHAPTER VI

CONCLUSIONS

The numerical model developed in this investigation has dealt
with the rather weak, thermal convection associated with cellular
(honeycombed) cloud patterns observed by meteorological satellites.
Those cloud patterns are typically driven by surface heating and cap-
ped by a stable layer of air some 1 to 2 km above the surface. If
convective heat transport is large enough or persists for a long period
beneath a stable layer, it may eventually destroy the layer and pene-
trate upward. In order to maintain such a stable layer under such
conditions over a period of several hours, a rather gradual, general
sinking of the air is required to furnish the necessary heat to offset
the eroding effects of the convective elements. The numerical model
has been concerned with the effects which general subsidence has on
the forced convection entering the base of the stable layer.

For such a study involving slow, rather shallow convection,
perturbation solutions of the equations of motion, continuity, and the
first law of thermodynamics, modified to eliminate acoustic frequencies,

have proven adequate. The formulation of the model differs from

54
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previous numerical studies of Rayleigh-type convection in the bound-
ary conditions, in the treatment of the eddy coefficients for heat and
momuntum transport, and in the large-scale subsidence of the basic
flow. A large-scale radiation factor was also included.

Although the convective cloud elements which make up the
observed cellular patterns are governed by the moist-adiabatic pro-
cess, the larger-scale flow which organizes the cloud pattern is es-
sentially a dry-adiabatic process, especially in view of the subsidence
effect. -We have, therefore, neglected the contribution of latent heat.

The model was made two-dimensional in x-z space for sim-
plicity only. The effect of the earth's rotation was retained, however,
by allowing development of motion perpendicular to the x-z plane.

The upper boundary was rigid and a perfect conductor, al-
though Fig. 13 suggests a free or '"'slip" condition would have been
more appropriate. The lateral boundaries were cyclical, and the
lower boundary was open and held at constant temperature, mainly
by a balance between advective cooling due to large-scale subsidence
and heating due to a dive:igence of vertical turbulent heat flux. The
basic-state temperature was held constant and was stably stratified.
The initial temperature excess at the base diminished exponentially
with height. Wave lengths of the assumed horizontally-periodic tem-
perature perturbation ranged from 1 to 100 km. Cases with and with~

out subsidence were investigated for comparison purposes.
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The significant results were these:

1) The circulation of the growing convective cell first fills the
entire layer then forms into two cells, one thermally-driven in the
lower part of the layer and the other a reverse circulation which forms
in the upper part. The upper cell is driven mainly at the expense of
the kinetic energy of the lower cell which transfers upward through the
vertical ¢ddy diffusion process (but see paragraph 4 below). The growth
process behaves in a damped oscillatory manner, but with the total
energy in the system increasing in time (except for the cumulus-scale
wave lengths). '

2) Convective perturbations of 10 to 20 km horizontal scale
were most amplified, with or without subsidence. This supports Sasaki's
conclusion (1965) that the scale of the amplified disturbance is mainly
a function of the magnitude of heat flux from the surface boundary layer
and the horizontal eddy conductivity in the turbulent region below the
stable layer.

3) Perturbations less than 10 km were amplified at first, but
soon reached a steady state in velocity and temperature distribution.

In effect, these waves were damped which is also consistent with earlier
investigations.

4) Subsidence aids the development of the growing perturbation
in the early stages, but it has an inhibiting effect a few hours later. In

regard to the early growth, the vertical diffusion of available potential
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energy plays an important role in creating an additional source of energy
for the circulation in the upper part of the layer, thus diminishing the
necessity for a large eddy transport of kinetic energy vertically.

5) Numerical computation of the relationship between the
various sources and sinks in the energy integral indicate that the hori-
zontal exchange coefficient was chosen too small (5 x 106 cmz sec'l).

It is suggested, though not proven by numerical example, that a value
closer to Sasaki's 108 cm? sec~! applicable for gravitational dispersion
of energy in a stable layer would have stabilized the growth rates and
perhaps damped the oscillatory growth character of the cells.

6) Subsidence tends to flatten the distribution of kinetic energy
in the cells, although it cannot be regarded as the primary cause of the
large width to height ratio observed in cellular cloud patterns.

7) The mixing-length definition of eddy conductivity is not
valid even for this simplified linear model. Heat flux counter to the
gradient of basic-state temperature persisted in portions of the staBle
layer for every case tested.

8) Large-scale radiation is ineffective as a heat sink over all
wave lengths tested.

9) Coriolis is unimportant for horizontal scales much less
than 10 km, but becomes significant for disturbances greater than
about 20 km for which the motions produced by Coriolis force are at

least as large as the motions due to horizontal pressure~-gradient force.
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10) Subsidence may contribute importantly to the ratio of -
cloudy to clear air within the observed cellular cloud patterns.

A logical extension of this study is the development of a non-
linear model and further testing of the relationships between horizontal
and vertical eddy exchange coefficients. Also, the explicit eddy energy
transformations need further clarification which only a nonlinear model
can supply. Then, perhaps with a grossly-simplified treatment of the
moist-adiabatic process, the model may be applied to the study of the
process by which moist convection penetrates a stable layer in an at-

mosphere which is at rest and in one which has a basic ascent flow.
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APPENDIX A
DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATIONS

The derivation of the set of differential equations governing this
model of a shallow, cellular convective system follows the steps of a
scale analysis first performed for atmospheric convection by Ogura and
Phillips (1963). The coordinate system is a relative Cartesian system,
tangent at the orgin to the earth's surface (i.e., a level surface along
which gravity has no component). The positive x-axis is eastward along
the local parallel, the positive y-axis is northward along the local meri-
dion, and the positive z-axis is perpendicular to a level surface (along
the local plumb line).

For the scale of motions considered in the model (1 to 100 km),
the effects of tidal forces and the deviations of the tangent-plane system
from a spherical earth are completely negligible (Haltiner and Martin,
1957). Furthermore, we shall neglect molecular viscosity and thermo-

metric conductivity of air in comparison to their eddy counterparts.

2 1

The former are of order 10"1 cm”® sec” * while the latter are of order
104 cm? sec~! or larger (Sutton, 1953).
Although the eddy coefficients of viscosity, conductivity, and
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diffusivity may vary significantly in space and time, there exists little
conclusive information, either theoretical or experimental, as to what
governs their values. For simplicity, we shall consider the eddy coef-
ficients as absolute constants. However, since the cellular convection
to be studied has a characteristic width much greater than its height,
we shall consider the horizontal and vertical components of the eddy
coefficients to be different in value.

Because the cellular convection which we are studying is
essentially symmetrical about the vertical axis, we might have chosen
a cylindrical coordinate system. However, we can simplify the equations
somewhat by neglecting all variations in the y-direction, thereby making
the description of the model two-dimensional without any great loss in
generality. We shall, however, retain the Coriolis effect even though
the scale of motion is relatively small.

Under the conditions and simplifications stated above, the

Navier-Stokes equations of motion are written

du*  R*T* dp* . 92ux 9oy i

dc T T pr oxx T TV O+ Kigmo v Kfgmao (A-1)
2 2

dv* - w 0°VE vk -

a..t_* - - fruk 4 mez + K”é 5—;—;2 , (A 2)

2
dw*  R*T* 9p* 98wk 9wk
dex = " Tpr sz - 8t Kigme t Kigna (A-3)

The equation of mass continuity is expressed
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1 dp¥  Buk - Bwk
T date T Bxx T Bax

(A-4)

From the first law of thermodynamics with radiation and eddy conduc-

tion as sinks or sources,

ag* % 92g% . 920%
_—_ = = + KX ——, + K¥_-
dex S X Pxxl Z Jgxl (A-5)

where potential temperature, 6%, is defined

% [ o
R /cp .

g% = T*(1000/p*) ; (A-6)

p* being in millibars. A list of symbols used in (A-1) through (A-6) is
found in Table 1. The asterisks indicate the parameters have their
usual dimensions. The radiation term in (A-5) is expressed in the

manner used by Goody (1956):
B = - arrorTHt, (A-T)

Relationship (A-7) holds for cases in which the radiation does
not vary much over distances comparable to the cell dimensions. By
applying (A-7), we are then looking only at the large-scale aspects of
the radiation influence. By virtue of this simplification, we cannot
expect to learn anything concerning radiative influences within the
convective cells themselves.

Equations (A-1) through (A-5) contain solutions expressing the

motions for a large spectrum of waves, from very short acoustic waves
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to ultra-long planetary waves. For thé problem at hand, acoustic waves
are of no concern and may be considered noise. There are several pro-
cedures available for filtering acoustic frequencies from the solutions.
One method is performing a scale analysis on the equations. In order
to accomplish that, we first write (A-1) through (A-5) in a non-dimensional

form using the following definitions:

% *
T = (p*/P*)R /cP ; T* = @nf;
u¥ = u(d/7); x* = xd;
v = v(d/T); z% = zd;
(A-8)

wk = w(df); t = t7;
Ky = Ky(d?/7); ‘ g* = gld/r%);

x x 2 ?
K = K,(d%/1); £ =a /T3

where P* is a reference pressure, d is the depth of the model layer,
and T is a representative time scale to be defined later.
Substitution of (A-8) into (A-1) through (A-5) yields the non-

dimensional set

2 2 2
du _ _ ®0c T _31 8__u 9%u (A
at - dzfS x T OVt Bxgpa + K2 (A-9)
2 2
dv o v 0°v
Fra - au + Kyg=p 4 K, 322 ° (A-10)
dw ®90p"‘72 om _G_EW 52w (A-11)
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d du ow ,

T (1-c/R¥)Inm + Infl=5-+ 3,7 (A-12)
@ 92 920
at = s t Kgpge t Kza_zz’ (A-13)

where now only the parameters ®, cg, R*, 7, and d have dimensions.
In the lower atmosphere the variation of potential temperature

from a constant value is generally small, usually no more than 30K.

This is only about one~tenth the mean value of potential temperature

in that region. We make use of that fact by defining

6 =1 + Ole) (A-14)
where

€ = A9*/@ ~ 1/10. (A-15)

It will be convenient to have the radiation term also expressed in
potential temperature. Let us determine how much error is introduced
if we substitute 0% for T in the first term of (A-5). From (A-8) we
may estimate the value of v for this model which is applied to motions
in a layer 1 km thick near the bottom of the atmosphere, say, between

900 and 800 mb. For such a layer, m = 0.97 = 1 + O(6). Thus,

T* = ®0(1 + O(8)), (A-16)
or non-dimensional temperature is

T = T*/® 6( 1 + O(6)). (A-17)

Since 6§ ~1/100, we see that non-dimensional temperature is equal to
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0 to a closer degree of accuracy than is § equal to one. This equivalence
of temperature and potential temperature in shallow layers will be dis-
cussed later on in connection with the entire set of equations. Upon
making the substitution of 8 for T in (A-7) and inserting the result in

(A-13), we have

2
0°0 929 (A-18)

d6
= - 4K0’®394/s t Kygaz T Kz 322

dt
Ogura and Phillips, along with other investigators, have shown
that high-frequency acoustic waves are effectively eliminated from the
solutions of the governing equations by the proper choice of time scale,
7. That choice is determined by the Brunt-Vaisala frequency which is
the rate at which a disturbed parcel of air will oscillate vertically about
its mean position in a stably-stratified environment. The expression of

that frequency is

2 g
N ='9—*

[1]

—ailg ~

9z

(A-19)

~
-~

E3 A 9:'.: g*e
d d

el

Since the depth of our model is d = 1 km, the time scale necessary to

eliminate acoustic waves is

/2

-1 1
T = N = (d/g*e) =~ 35 sec. (A-20)
We define for convenience

Moo= g*d/ciz;oa = d/ (A-21)
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where h = c%‘;@/g* is the depth of an isentropic atmosphere of potential
temperature ®. For typical ® in the troposphere, h is approximately
30 km.
With substitutions (A-20) and (A-21), we may now write (A-9)

through (A-11) as

du om 8%u 9%u A-22)
GHE?:— = -035% + €pav + e“KxE{'Z + epK; 5z2 "’ (
2 2
dv 0"v 9°v
el - €pau + €pKy 372 + €pK, 372 ¢ (A-23)
2 2
dw om 0 "w 9w
€hgr = 035, - B+ €BKgjz2 * EpKz 57 (A-24)

We now expand the dependent variables as power series in €:

u=uo+€u1+€2uz+

v=v0+€vl+€2v2'+

w o= wy o+ ew) + €Pw, ... (A-25)
_ 2

1r—1r0+€'n'1+€11'2+

6 =6 o 29
= 0+€1+€ 2 t

By inserting (A-25) into (A-22) through (A-24), we get a set of zero-
order equations which is identical to that derived by Ogyra and Phillips.
That is, the zero-order terms express the pressure distribution in a

hydrostatic atmosphere of uniform potential temperature ®:

mol(z) = wg(0) - Rz, (A-26)
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where m(0) is a constant pressure taken, for convenience, to be equal

to one at the lower boundary. Also,

¥/R*) -1
Py = (P*/R*@)-no(cp/ ) . (A-27)

With (A-26) and (A-27), the zero-order terms of the equation of con-

tinuity (A-12) may be written

9({pquq) 8(pqwqa) _ '
ox t "8z - O (A-28)

The first-order terms of € in (A-22) through (A-24) yield

2
du om 2 u 9%u -2
e dto = -'a—x'1 + pavg + pKy &20 + MK, —20’ (A-29)
2 2
dv 9%v v
HEO = - Maug + pKy 5;20 + BK, -5-270, (A-30)
dwo _ _8m1 ug 82wy 82w (A-31)
HEC T cBg ML+ BKe gD b RK, G0 -

where

d _ 3 9 5 . (A-32)
at “ 8t T Wk t Y075y
In the thermodynamic equation (A-18), the zero-order terms
of € are identically equal to zero. Upon expanding the fourth power of
f in a series and collecting the first-order terms in , we have

_4x0®>  16x0®%9, 829

—1 = A-33
dt €s s * Kx %2 t Ky 2 ( )
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Inclusion of the first term on the right in (A-33) is cautionary. It may

2 cm'l

have the same magnitude as €. Goody has estimated K = 2 x 10~
for water vapor at S. T. P. while admitting an order of magnitude un-
certainty. Since water vapor is the principal absorber of radiation
within the lower atmosphere, we may apply that value of ¢ to estimate
the maximum value of the first term. Upon inserting the known values
of 0, s, and ®, we find the first term equals 0.16 which is comparable
to €. Therefore, we shall carry that term until we can find better
justification for neglecting it.

Equations (A-28) through (A-31) and (A-33) form what is known
as an ""anelastic'' or soundproof sét by virtue of the fact that the energy
integral formed from them is devoid of elastic energy.

The nature of the problem being attacked allows further simpli-
fication of the governing equations. Because the convection is confined
to a shallow layer in the atmosphere (d = 1 km), we may make use of

the fact that p = d/h << 1. We expand the dependent variables in a

series in p:

-

Uy = uyg + Hug, + ... (A-34)
with similar expressions for Y WO, 91, Tor T2 and Py Upon the

substitution of those expansions into (A-26) and then (A-27), we obtain

T = 1 i = -2z
£ 0 1 ?
and 00 (A-35)

Poo - (P*/R*®) = constant.
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The zero-order terms of (A-29) through (A-31) give 10 equal to a

constant which we shall take as zero for convenience.

terms of (A-29) through (A-31) form the set

du ow

82u

The first-order

9°u,
—00 - zr 00 00
I 0 = -ax11+av00 t Ky3300 + Ky 5299,
2 2
dv 9°v ocv
—00 . - —_—
dto = G.U.Oo + Kx a—)zzoo + KZ 32200 ’
2 2
dw om 0"w o0%w
Voo - _am 0 —00
£ 5z T 010 * Bxpxz t Kagg2

Because of (A-35), the continuity equation (A-28) reduces to

ou ow
—00 2700 -
Ox ¥ oz 9
and (A-33) becomes
2 2
df 19 2”0 )
% = -B -A910+Kx5;210+K2527
where
B = 4K0'®3/€s
and
A = 16ko®3/s = 4eB.

The operator d/dt is now defined

4.
at

9

= Bt 005 ™ Y0035z °

10,

(A-36)

(A-37)

(A-38)

(A-39)

(A -40)

(A-41)

(A-42)
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Ogura and Phillips point out that in the resultant set of governing
equations, T is the deviation of pressure from that of an adiabatic atmo-
sphere, and §,( is the deviation of temperature from that of an adiabatic
atmosphere. This is easily verified by expanding the definitions of w and
T* given in (A-8) along with (A-14) and the equation of state, p = pRT, in
terms of € and .

The set of equations (A-36) through (A-38) are similar in form
to those of the incompressible Boussinesq system used in many .studies
of small-scale convection in which density variations are neglected except
as they modify the influence of gravity in producing bouyancy. Also,
because we have not considered the release of latent heat in the thermo-
dynamic equation, solutions for T may be obtained. When moisture is
included in a convective model, an implicit relationship exists between
91, and 7), and the rate of release of latent heat. For shallow, moist
convection, the equations may be solved because g (actual temperature)
is independent of T (the dynamic pressure). However, inclusion of
moisture in the present model, while eventually desirable would only
serve to complicate the effects of large-scale subsidence on the convec-
tion.

We now linearize the set of governing equations by the usual
perturbation technique. That is, we assume the total variation of the
dependent variables can be represented by a mean or basic value plus

some small deviation from that mean. By this we may neglect products
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of perturbation quantities on the basis of their magnitudes. To lessen
complication of the notation, we shall drop all the subscripts in writing

(A-36) through (A-40) in perturbation form, so that

u=u+ u,
v=;+v',
w = w+w, (A-43)
T=T + o,
6 =0 + 6

- ™

Furthermore, to fit the model being studied, we shall specify

0,

<3|
1

0,

<l
i

w = constant, (A-44)

= w(z),

A

9(z).

@]
I

Using the expansions in (A-42) and (A-43) under the conditions (A-44),
the governing set (A-36) through (A-40) reduce to equations (1) through

(5) in Chapter II.



APPENDIX B

DERIVATION OF BASIC-STATE TEMPERATURE

The condition imposed upon the temperature distribution in the
basic state is that it remain constant in time. Physically, in a layer
throughout which adiabatic warming is taking place due to uniform sub-
sidence of air, sufficient cooling must occur via turbulent exchanges of
heat and by radiation. Under these conditions we may obtain an equation

specifying the basic temperature distribution from (A-40), (A-42), and

(A-43):
2-— —
d-o —~ déf -
Kza-;Z - W3 - Af = B. (B-1)

Since (B-1) is an ordinary second-order differential equation with con-

stant coefficients, it has a general solution

= B _"+(—2+4AK)1/2
_ _B -% + (W 2 .
6 Y + C, expL 2K, zjl
~ 2 1/2
-w - (W + 4AK))
. . B-2
+ C, exp- 2K, z z:| (B-2)

Under dry atmospheric conditions, the usual radiative cooling
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rate in the lower atmosphere is of the order 1 to 5C day'l (Mdller,
1951). Recalling that § is a deviation temperature, we estimate its

magnitude in the layer to be 3C. For a cooling rate of 2.5C day-l,

6

B = 10-5C sec™!. Then by (A-41), A =4x 10" sec1,

An estimate of the heating effect due to subsidence in the layer
is obtained by noting that the usual magnitudes of w are of order 1 to
5 cm sec-1 while typical temperature inversions have gradients of
1 to 10C km™ L. This is an order of magnitude larger than the radiation
effect and indicates that the major cooling comes from the eddy conduc-
tion term. Therefore, instead of using the complete solution (B-2) to

determine 9, we may justifiably neglect the radiation effect and choose

a simpler form: that is,
ebz eb
4 =8 - < < -
9-90{—1—_;‘5-], 0 z & 1, (B-3)

with b = v_v/Kz and w< 0. Eq. (B-3) is the solution of (B-1) with A =

B = 0 and under ’the boundary conditions that 9 = -0-0 atz=0;0 =0 at

z = 1. Numerically, withw = - 1.5 cm sec”! and K,=5x 10% cm?
sec'l, the distributions of 8 calculated from (B-2) and (B-3) are nearly
identical save for the constant B/A. Since 50 is an arbitrary choice,

no generality is lost by neglecting B and A here.



APPENDIX C

INVESTIGATION OF COMPUTATIONAL STABILITY

Since excess temperature is the driving force for the convec-
tive model, we shall use (20) to investigate the requirements for com-
putational stability. The other governing equations are of similar form,
so the results of the investigation should be applicable to the entire set.

We assume that

T(m,n+l) = G T(m,n) (C-1)
where G is an unknown amplification factor which must be less than or
equal to one for computational stability. We further assume solutions

to (20) of the form

T(m,n) = E(t) eJ™A2 (C-2)
and
.
Wim,n) = F(t) e o (C-3)
_ . 1/2 ..
form=0,1, 2, ..., M. In(C-2) and (C-3), i=(-1) and jis a

vertical integer wave number.

By use of the above relationships, we may write (20) as

G =a+b(ell2 4 o-iidzy _ (HAZ _ -ijfz (C-4)

76



77

where
a=l-(kKPK At + 2b + AAt + PALF/E)

=1-¢, <1, (C-5)

b = K,At/(A2)?, (C-6)

c = wat/2ne . (C-7)

Reverting to the trigonometric forms,
G = a + 2bcos jAz - i2c sin jAz . (C-8)
We see that G is an imaginary number whose magnitude must be less

than or equal to one. Thus, we require

2 sin? jaz S 1. (C-9)

G = (a + 2b cos jAz)Z + 4c
Consider those solution for which cos jAz = t1. Then, sin jAz
= 0, and
t 21)2 <
(a*2b)* -1 = 0, (C-10)
By substituting for a from (C-5), expanding, and rewriting, (C-10)
becomes

(£5120)2 S 2(¢ - 2b). (C-11)

Extracting the time increment, At, from both sides yields

< 2
At = ( - b ) . (C"].Z)
At
Since both£ and b are positive, (C-12) has a smallest value when the

positive sign is taken in the parentheses. Hence, an estimate of the

requirement for the computational stability of (20) is obtained from

At S 2/(kPKy + 4Kg/(A2)% +A + BF/E) (C-13)
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by using the values of the bracketed parameters assigned in Table 2

with B determined from (6):

max

1

~ 30 x 107°C em~L. (C-14)

Pmax
For 100-km wave length, k% = 40 x 10°1% cm=2 and F/E ~
w'/0'~10. Thus, the requirement for At is estimated as
At S 57 sec. (C-15)
Since the stability requirement is wave-length dependent, we should
be guided by the smallest expected value of the right side of (C-13) in
the model application. Evaluating (C-14) for the 1-km wave length with
k2 = 40 x 10710 cm™? and F/E~w'/0'~ 100 gives a
At £ 24 sec. (C-16)
As an additional check, we may look atthose solutions of (C-9)
for which sin jAz = ¥ 1 and cos jAz = 0. Then
22 4 a2 £ o1, (C-17)
or, using (C-5),
(1-£)2 $ 1-4c2, (C-18)
By making use of the binomial expansion of the left side of (C-18), we
may write
1 -28 £ 1-4c?, (C-19)
or
2 S g/ (C-20)
Thus,

Z(Az)2

< 2 2K, | BEF -
a = 2= [ka+ (Az_)72 +A+E]. (C-21)
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For the largest scale (100 km), the right side of (C-21) has its smallest
magnitude, and the stability requirement is
At S 1.1 x10° sec; (C-22)
a condition easily satisfied.

While (C-13) is only an estimate of the stability requirements
for the numerical solutions, it is only slightly more restrictive than the
requirement for a classical diffusion equation (see Dingle and Young,
1965); that is,

A (A2)P/ 2K, (C-23)
A conservative assignment of At less than half that required by (C-13)

should insure stable solutions with small truncation errors.



APPENDIX D
RECURSION FORMULA FOR Y(z, t)

The solution of (10) usually requires two-dimensional relaxation
techniques under suitable boundary conditions. However, because of the
horizontal periodicity of our model, (10) reduces to (15) which is solved
by a simple set of algebraic recursion formulas.

For simplicity, we shall consider here a one-dimensional form
of (15) denoted by

d?y(z)

'd_zz_ . (D'l)

H(z) = kiy(z) -

A centered-difference scheme is used for the finite-difference form of
(D-1):

H(m) = K%4(m) - [Y(m+l) + $(m-1) - 2¢(m)]/(az)? (D-2)
where m=2, 3, . . ., M-1; the total number of grid points being M.
Rearranging (D-2),

ay(m) = Y(m+l) + tb'(m-l) + bH(m) (D-3)

with a =2 + bk® and b = (Az)2 .

Consider now that m is fixed at its smallest value such that
P(m-1) in (D-3) is the known lower boundary value. The H(m) have been
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previously determined by the step-wise integration of (18), (19), and
(20). The only unknowns in (D-3) are Y(m) and y(m+1).

We now write (D-3) for the m+1th

grid point:
ay(m+1) = ¢(m+2) + P(m) + bH(m+1). (D-4)
Upon eliminating J(m) between (D-3) and (D-4), we get
(2% - 1) Y(m+1) = aP(m+2) + abH(m+1) + bH(m) + Y(m-1).  (D-5)
Let us now for convenience designate the coefficient of y(m+1) as
S(m+l) = (a® - 1). Further, we will designate R(m) = bH(m) + U(m+1).
Then (D-5) may be written

S(m+1) Y(m+1) = S(m) $(m+2) +.S(m)bH(m+1) + R(m). (D-6)

Since the last two terms of (D-6) contain only known parameters, we

shall symbolize them by R(m+1). We now write (D-3) for the m+2™
grid point,
ap(m+2) = Y(m+3) + Y(m+1) + bH(m+2), (D-17)
and eliminate Y(m+1) between (D-6) and (D-7) with the result
(aS(m+1) - S(m)) Y(m+2) = S(m+1) Y(m+3)
+ S(m+1)bH(m+2) + R(m+1), (D-8)
or
S(m+2) y(m+2) = S{m+l) Y(m+3) + R(m+2). (D-9)

By continuing the process, one can see that the coefficients of
the left-hand side of (D-9) for any given m will always be of the form
S(m) = aS(m-1) - S(m-2), (D-10)

and the terms on the right which depend on H(m) for their value can be
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written in the general form
R(m) = S(m-1)bH(m) + R(m-1). (D-11)
Equations (D-10) and (D-11) are general provided we make
allowances for the case when m = 2. From (D-3), it is evident that
the set of equations will be satisfied provided we take §(1) = 1, S(0) = 0,
and R(1) = (1), the lower boundary value. Under those conditions,
(D-9) may be put in the general form
$(m) = (S(m-1) Y(m+1) + R(m))/S(m), (D-12)
m=2, 3, 4, . . ., M-1.
The solution of (D-12) is conveniently begun at m = M-1 with
Y(m+1) = y(M), the upper boundary value which is taken as zero in this
model. Prior to that calculation, however, it is necessary to determine

the values of S and R by starting with m = 2 and proceeding upward.
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Table 1

Nomenclature

Note: An asterisk means the parameter has its usual dimensions. All
other parameters are non-dimensional unless stated contrariwise.
Also, an overbar designates the basic-state parameters and a prime
the perturbation parameters.

A

ADKE

ADFE

cx, c}

£

g%, g

HDIF

Coefficient of radiative cooling due to temperature deviation
from that of an atmosphere of constant potential temperature.

The change in volume-averaged kinetic energy by advection
through the lower boundary.

The change in volume-averaged available potential energy by
advection through the lower boundary.

Radiative temperature change for atmosphere with constant
potential temperature.

Degrees Celsius.

Specific heat capacities of air at constant pressure and volume,
respectively.

Dimensional depth of the convective layer modeled.

Coriolis parameter equal to twice the angular velocity of the
earth times the sine of the latitude.

Acceleration due to gravity.

Amplitude of horizontal vorticity perturbation.

Height of an atmosphere with constant potential temperature.
Volume-averaged horizontal diffusion of total energy.

Degrees Kelvin; general horizontal eddy coefficient for
turbulent exchanges.



K, Ky

K#z" Kz

P, p*

PRES

s¥*, s

T
th, t
At

uk, u
u, U
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Table 1 (continued)
Horizontal eddy coefficient for turbulent heat and momentum
exchange.

Vertical eddy coefficient for turbulent heat and momentum
exchange.

Horizontal wave number.

Horizontal wave length.

Number of grid points in the vertical direction.
Brunt-Vaisili frequency.

Reference pressure and actual pressure of atmosphere,
respectively.

Work done by the perturbation motion against pressure
forces along the lower boundary.

Summation parameter in recursion formula for solution of
Y(z,t); non-dimensional gas constant for dry air,

Gas constant for dry air.
Volume-averaged radiative depletion of energy.

Summation parameter in recursion formula for solution of

Y(z, t).

Heat content of air per unit volume per degree (=p*cy}).
Amplitude of horizontal temperature perturbation.
Absolute air temperature.

Time.

Time increment for numerical solutions.

Eastward (x) component of wind velocity. U is amplitude of
horizontal perturbation.



v, v
v, v, V
VDIF
wWE, W
w, w', W
x¥, x
v, ¥
z¥,
Az

a

B

€

.rll

(2]

6%, 8
9, 0
K*, K
j

T, T
w, I

p*, p
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Table 1 (continued)
Northward (y) component of wind velocity. V is amplitude of
horizontal perturbation.
Volume-averaged vertical diffusion of total energy.

Vertical (z) component of wind velocity. W is amplitude of
horizontal perturbation.

Coordinate axes along eastward, northward, and vertical
directions, respectively.

Vertical mesh size for numerical solutions.
Non-dimensional Coriolis parameter.

Static stability of basic state (= 96/92).

The order of allowable deviations of the dependent variables
from their values in an atmosphere with constant potential
temperature (=A6/®).

Vorticity perturbation about the negative y-axis.

Constant dimensional potential temperature representative
of the model layer.

Potential temperature.

Temperature deviation from that in an atmosphere of constant
potential temperature.

Coefficient of absorption per unit volume.

Ratio of depth of model layer, d, to height, h, of atmosphere
with constant potential temperature.

Pressure deviation from that in an atmosphere with constant
potential temperature. II is amplitude of horizontal pertur-

bation.

Air density.



g%, O

o, O
W, g
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Table 1 (continued)

Stefan's constant.

Dimensional scale time necessary for the elimination of
acoustic frequencies from solutions of the governing
differential equations.

Radiative cooling rate of air per unit volume.

Streamfunction in the x-z plane and amplitude of horizontal
perturbation, respectively.

Table 2

Constant Parameters

A= 4x100gec!

d = 1l km

K, = 5x 108 cm? sec”!
K, = 5x 104 cm? sec™?
To = 3C

Az = 25 m

a = 1074 sec™!

® = 300K

9, = - 10C

T = 34.7 sec



Parameters Varied for Individual Cases
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Table 3

L (km) 1 5 10 20 | 50 100
W -1.5 -1.5 -1.5 -1.5 -1.5 -1.5

(cm1

sec ) -1.5 -1.5 -1.5 -1.5 -1.5

x107> | x1073 | x1073 %1072 <1073

At

(sec) 2 6 6 6 12 12

Total 6

run 4 6 6 12 12

time

(hr) 12




88

120 W 1S W

e e
1900 GMT

Fig. 1. Examples of cellular convective cloud patterns photographed
from NIMBUS 1 satellite.
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-0 -8 -6 -4 -2 0
— 6 (C)

Fig. 2, Basic-state temperature distributions for subsidence and non-
subsidence cases. Abscissa is deviation of basic state from
the temperature in a layer with constant potential temperature
®. Dashed lines show orientation of absolute isotherms.
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Fig. 3. Growth of streamfunction field during first six hours for wave
length L = 20 km with subsidence. Units are 105 cm? sec-l.
Number in upper right of each diagram indicates time in hours.
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Fig. 4. Variation of Wy,ax with time for different cases a) with sub-
sidence and b) without subsidence.
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Fig. 5. Initial available potential energy in arbitrary units for cases
with and without subsidence.
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Fig. 6. Ratio of total energy to initial energy as a function of time for
a) subsidence cases and b) non-subsidence cases.



94

L0 (a) (b) (c)
Tl w<o | Km w<O0 5 Km w<0 10Km
b - -3 - - .
0.8} 1 F 17 :
- - E-—_O »- - :
|
06 1 F 1 F U
< oal I 1t 0—=
i 1 L _ - L 2x10°—"1
xi0% ~ 4=
0.2} _—" i / 2/’: | 6 8/..
0.2x10° / /3/ :|o"
I 0 06—; [ \\ \\_: [ -‘
ol L L~ Lo —===4 |

— Y — ]
e——- L/2 —»i — L/2—¥

X—> X—>

Fig. 7. Streamfunction at t = 6 hr for subsidence cases. Units are
105 cm? sec~l.
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Fig. 8. Streamfunction at t = 6 hr for non-subsidence cases. Units
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Fig. 9. Time variation of a) available potential energy and b) kinetic

energy expressed as a fraction of the initial energy for the
50-km cases. Solid lines are for subsidence case; dashed
lines for non-subsidence case.
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Fig. 10. Vertically-averaged convective heat transport for the 50 -km
cases. Solid line for subsidence case; dashed line for non-
subsidence case. Positive values indicate potential energy
is converting to kinetic energy.
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Fig. 11. Sources and sinks of total energy for subsidence cases expressed

as a fraction of the total energy: 2) 5 km, b) 10 km, c) 20 km,
d) 50 km, and e) 100 km. Negative values indicate sinks. See
text for explanation of abbreviations.
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Fig. 12, Sources and sinks of total energy for non-subsidence cases.

See Fig. 11,
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Horizontal velocities U and V as a function of height for 50~km

cases at t = 3 hr: a) subsidence case; b) non-subsidence case.
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Fig. 16. Vertically-averaged convective heat transport for the 5-km
cases. See Fig. 10 for explanation,
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Fig. 17. Vertically-averaged convective heat transport for the 20-km
cases. See Fig. 10 for explanation.
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Fig. 18, Ratio of horizontal to vertical velocity maxima at t = 6 hr for
subsidence and non-subsidence cases.

100



0.2

106

PR S WA

1 [ — ]

-12 -8

Fig., 19. Vertical distribution of WTZ at t = 6 hr for the 20~km subsidence

case.

-4

0 4q 8
WT2 (em C2sec™!) —»

20



107

|0-| T { v 1 ] ) 1 1 1 1 1 1 L{
10 Km
5Km

-21 20 Km

10 50 Km

100 Km

0 I 2 3 4 5 6
TIME (hr) ~»

Fig. 20. Ratio of cumulative error in evaluation of total energy integral
to total energy for subsidence cases.



108

w<O0
| 5 | 10 20 50 100
WAVE LENGTH (Km) —»
T T | T T
w~O0
1 | | ]
| 5 10 20 50 100

WAVE LENGTH (Km) —»

Fig. 21, Effect of Coriolis for subsidence and non-subsidence cases.
Curves show ratio |vyaxl/ |umax| att=6hr.
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Fig. 22. Subsidence effect on ratio of cloudy to clear air in small-scale
(10 to 20 km) and large-scale (50 to 100 km) perturbations.



