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DIFFERENTIAL CALCULUS IN HILBERT SPACES
INTRODUCTION

The purpose of this work is to introduce, from a geometric point
of view, a notion of differentiability for a function whose domain and
range lie in Hilbert spaces, and to investigate some of the conscquences
of this definition.

Chapter I is purely background material and is included in order
that the attention of the reader may be directed towards those results
which play an important part in the theory developed. None of the mete-
rial contained in this chapter is new. Proofs of the several theorems
stated there will be found in the work of either von Neumenn [1] or Riesz
and Sz.-Nagy [2]. Of special importance to the later work are the notions
of a projection, the Cartesian product of two Hilbert spaces, and the
graph of a function.

In Chapter II a definition of differentiability for a function
with domain and range contained in Hilbert spaces is offered gnd some
equivalent forms of the definition are found. We give some examples of
functions having the property required for differentiability and see that
all of the important linear operators are differentiable in the intro-

duced sense. In addition, all of the "intrinsic functions" of Hilbert
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space are differentiable. We then show that the "tangent", defined as the
intersection of certain closed linear manifolds associated with a differ-
entiable function at a point, is non-trivial in the presence of a very
mild restriction on the domain of the function. We next show that the
property of a function of being differentiable is preserved under both
translation and unitary {ransformations of its graph space. We close the
chepter by borrowing an idea of von Neumann's: we calculate the compo-

nents of the projection P )< X,y > of a vector < x,y > in the Cartesian

G(a
product X x Y on the graph G(A) of a closed linear operator in terms of
the operator A and its adjoint A*.

The calculation of PG(A

important case of a functional and leads to a theorem having to deal with

) is first applied in Chapter III to the

the approximability of a functional by a bounded linear functional. Then
follows a close parallel of the elementary formulas of calculus dealing
with the derivetive of a sum, differenee, product, and quotient with a
calculus of functionals. We then show'that for spaces with a real inner
product the non-~linear functional ||x Ilis differentiable.

The emphasis is next shifted to general functions. Using the
investigation in the case of a functional as a guide, we obtain a theorem
heving to deal with the equivalence of the notion of differentiability,
on the one hand, and the linear approximability of & function, on the
other hand (a generelization of our earlier theorem concerned with func-
tionals). This theorem is then used to show that differentiebility is

preserved under addition and to obtain &n analog of the elementary theo-
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rem relative to the differentiasbility of a "composite function".
In Chapter IV we obtain conditions under which our concept of
differentiability coincides with that due to Frechet, and draw a brief

comparison of the two concepts.



DIFFERENTIAL CALCULUS IN HILBERT SPACES

CHAPTER I

DEFINITION AND BASIC PROPERTIES OF HILBERT SPACES; NOTATION

The Representation Theorem

A great deal of work on Hilbert spaces has been done since the
importance of the concept to integral equation theory was first indicated
by D. Hilbert in 1912 in [3]. Since that time, steady development of
Hilbert spaces and their theory has greatly influenced other branches of
analysis and physics (particularly quantum mechanics); indeed, some of
the results have found such frequent application that we would be justi-
fied in labeling them "classical®. Nevertheless, for the sake of com-
pleteness those theorems which we need are stated precisely. Unless
otherwise indicated, proofs of these theorems can be found in [2]. In
this section we recall the definition of Hilbert space, follow with
some of the elementaery consequences of this definition, and close with a
representation theorem which emphasizes the transparency of Hilbert
spaces.

A Hilbert space H is & linear space over the complex number

field with a notion of an inner product which enables us to interpret H
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as a complete metric space. This interpretation is mede possible by de-
fining the distance ||x -y l[betweeh the pair of vectors x and y of H

as follows:

llx -y |l=/x=yx-7).
(We note the use of (x,y) for the inner product of x and y and recall
that a metric (distance function) is required to have the properties:
1) lfx-yll=1]ly -x Ilz 0, (ii) ||x - y || = 0 is equivelent to
x =y, (1ii) ||z -yl +|ly - = IIE [|x = 2z|]). In particular, we call
the distance between x and 0, written ||x IL the norm of x. Thus H be-
comes a topological space (even a topological group) and we define
lim xn = x for a sequence of vectors xn and a vector x in H to mean that
lim len - X ||= 0. Continuity of a function f(x) on H with range in
another such space is defined in the usual manner.

Some definitions and simple properties of H are now recalled
for later reference; for convenience in referring to the theorems later,
we number them.

We call a pair of vectors x,y orthogonal if (x,y) = 0. Ve say
that the vector x is normalized if llx ||= l. A set A of vectors of H
is called orthogonal if every two distinct elements of A are orthogonal.
A is normalized if each of its members is normalized. A is orthonormeal
if it is both orthogonal and normelized; A is complete in H if it is or-
thonormal and is not a proper subset of any orthonormal set in H.

I.1. The Pythagorean Theorem: |

2 2 2
(x,y) = 0 implies |[x+y |l = [Ix{|T+]ly|l".



I.2. Bessel's Inequality:

If Bl, Bz,..., Bn is an orthonormal set of vectors of H, then

n
PN I(X,Bj) |2 <||x ||2 for every x in H. More generally, if A is any or-
1

thonormal set in H, then (x,B) = O for all B in A except at most a coun-

table subset and §, I(x,B) 12 not only has sense but converges to =a
BeA

number < le ||2.
I.3. Parseval's Theorem:

If x,, B c A, is complete, then ¥ l(X,x ) |2 = le ||2.
B BeA 8

I.4. Riesz-Fischer Theorem:
If Bl’ Bz, ess is an orthonormal sequence in H, a necessary and
sufficient condition that T aiBi be convergent is that T Iai |2 be con-

vergent.

With the usual definitions of Cauchy sequence, complete space,
and separable space the following results:
I.6. Completion of Unitary Space:

A linear space S in which an inner product is defined (i.e., a
unitary space) can be completed to a space T such that S is dense in T.
The completion is unique (to within isomorphism) and the character of S
with regard to separability and cardinality of a complete orthonormal
set is preserved under the completion.

Let I be an arbitrary set of indices B. The space of all com-
plex-valued functions (xB), with domain I, B ¢ I, such that xs #£ 0 for

only a countable set of B's and T, | xg |2 is finite, and in which the
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operations ex, x + y, and (x,y) are defined by

a(xg) = (axy),

(xg) + (¥g) = (x5 + 75,

( (x5)5(yg) ) = Zxgyy
B 7 m e

is called a space of type HI.
I.7. The Representation Theorem:

Every Hilbert space H is isomorphic with a space of type HI for
some I.

In view of the result I.6. above, in the sequel we shall con-
sider only complete spaces, i.e., Hilbert spaces. Except where expli-

citly stated, we do not assume separability. We use the letter H to de-

note a Hilbert space.

Projections

The notion of a projection in a Hilbert space is an abstraction
of the femiliar concept of a projection as found in Euclidean geometry;
it is essential to our concept of differentiability introduced later.
In this section we define & projection and state some of the well-known
theorems relating to projections which we shall subsequently use.

We recall that a subset M of H is a linear manifold if it is

closed under addition and multiplication by scelars. If a linear mani-
fold is closed (in the topological sense, as a subset of H), we call M a

closed linear manifold (ce.leme).

I.8. The Unique Decomposition Theorem:
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If M is a c.lem. in H, every element x ¢ H has a unique decom~

position x = x, + Xy where x. ¢ M and (xl,x2) = 0.

1 1

We call Xy the projection of x on M and we write Phx =X Thus
a projection on a c.l.ms M is a function Py with domsin D(PM) e Hilbert
space and range R(Pﬁ) 8 c.lem.. Alternatively, we have the following
criteria for a projection:
I.9. Projection Criteria:

A function E is & projection PM if and only if:

(i) E is single-valued, linear, with D(E) = H,
(i1) (Ex,y) = (x,Ey) for all x end y in H,
and (iii) E2 = E, where E%x means E(Ex).

'It is easy to prove and ﬁseful to know the following facts:
I.10. If E = PM, then M is the set of all solutions of the equation
Ex = x. Ex = x as well as IlEx ||= lix llis characteristic for x ¢ M.
0 < (Ex,x) <||=x l|2 for all x ¢ He

The set of all projections is a subset of a class of operators
which plays an important role in the development of the theory of linear
operators on Hilbert space. This is the class defined by the property of
symetry (property (ii) in I.9. above). We say that the linear operator
A is bounded if there exists a constant C such that ||Ax Ilf C I‘x ||for
all x ¢ D(A); the infimm of the set of all such C's is the norm || A || of
A. A bounded linear operator A is called symmetric if (Ax,y) = (x,Ay) for
all x and y in D(A).

I.1l. Hellinger-Toeplitz Theorem:



9

Every linear symmetric operator defined on a Hilbert space is
bounded.

In case the linear operator A is not bounded, we can still in-
troduce the notion of a symmetric operator. We proceed as follows: if A
is @ linear operator whose domain is dense in H and if y is an element of
H for which there exists an element y* of H such that (4x,y) = (x,y*) for
ell x ¢ D(A), it can be shown that y* is then uniquely determined by y.
This enables us to define an operator A* by writing A*y = y*. A* is
called the adjoint of A. We say that a linear operator A with domain
dense in H is symmetric if A* is an extension of A (A* is an extension of
A means that D(A) is a subset of D(A*) and A and A* coincide on D(4) ).
When A = A* we say that A is self-adjointe It is for this class of ope-

rators that success was achieved in arriving at a "spectral decomposition".

Construction of the Cartesian Product of iwo Hilbert Spaces

The construction of what is known as the Cartesian product of
two Hilbert spaces will pley a fundamental role in the motivation and de-
velopment of the theory to follow; it is suggested by the familiar con-
strusztion of the Euclidean-plane. Indeed, much of the terminology and
notation has been lifted from elementary analytic geometry and calculus.

We firat recall the construction of the Cartesian product of
two Hilbert spaces. Let X and Y be two Hilbert spaces (not necessarily

isomorphic). By the Cartesian product H = X x Y is meant the set of all

elements of the form < X,y > with x ¢ X, y ¢ Y and the following defi-

nitions:
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(1) < x Wy >+ <x >= <K+ Xy ¥ HT, >

1 295

(2) a< x,¥y > = < ax, ay > for all complex numbers e,

(3) (< 25y >< %,5¥,>) = (x15%,) + (v1,7,) -

It is easy to show that with these definitions X x Y is a Hilbert space.
Since the mepping which takes x ¢ X into < x,0 > ¢ H is obviously an iso-
morphism, we are justified in writing X = [< x,0 >] and shall do so when-
ever convenient. Of course, we may also write Y = [< 0,y >].

Another simple consequence of the construction of X x Y is the
orthogonality of X and Y. More precisely, if < x,y > is orthogonal to X,
then (< x50 >,< %,y >) =0 or (xl,x) + (0,y) = 0 for all X, ¢ X which
implies that x = O and hence < x,y > ¢ Y. This amounts to saying that the
orthogonal complement of X, denoted by ©X,; is contained in Y. On the
other hand, (< x,0 >,< 0,y >) = O and therefore 6X = Y.

We shall also avail ourselves of the notion of the greph of a
function. Let f£(x) be a function having domein D(f) < X and range R(f)
contained in Y where X and Y are Hilbert spaces. By the graph G(f) of f
we mean the set of all elements < x,f(x) > where x ¢ D(f). Thus the
graph G(f) < X x Y.

The notion of the graph of & function and the following results
whose proofs can be constructed conveniently in terms of this notion are
due to J. von Neumenn [4]. Proofs of the next three theorems can be found
in [2].

I.12. If A is a linear operator, the existence of A;l, A*, and (A_l)*

imply the existence of (1\."‘)"l and (.l*."')-1 = (A-l)*.



11

I.13. If the closed linear operator A (this means that the graph G(A) is
closed) has a domaein whiéh is dense in X, then the domain of A* is also
dense in X and A** = (A*)* exists; in addition A** = A,
I.14. The Closed Graph Theorem:

If the closed linear operator A is defined everywhere in H,

then A is bounded.

Functionals

Functions defined on Hilbert spaces but taking on only real or
complex numbers as values are especially important; they are called
functionals. Those functionals which are at the same time bounded have
a particularly simple structure, as is indicated in the following result:
I.15. Representation of a Bounded Linear Functional:

If £(x) is a bounded linear functional on H, there exists a
unique vector u ¢ H such that £(x) = (x,u) for all x ¢ H. Moreover,
lHell=1Hlull.

We shall need later the fact that for linear functionals the no-
tions of boundedness and closedness are equivalent. That boundedness im-
plies closedness is clear since boundedness implies continuity which in
turn implies closedness. On the other hand, suppose that the linear

functional f£(x) is not bounded. Then there exists a sequence X, ¢ D(f)

with len | =1 and If(xn) | increasing without bound. Consider the

sequence y xn/ If(xn) | . Here we have ¥, = O vhereas we may assume
that f(yn)-a 1 since there is a subsequence of y for which this is true.

Thus < 0,1 > is a limit point of the graph of f(x) but it does not belong
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to the graph since f£(x), being a linear functional, contains the roint
< 0,0 > . Consequently, f£{x) is not closed. This completes the proof

of the statement.

I.16. -For linear functionals the notions of boundedness and closedness

are equivalent.



CHAPTER II

THE NOTION OF DIFFERENTIABILITY

Motivation and Definition

We have seen that every closed linear manifold (c.l.m.) M con-
tained in a Hilbert space H affords a means of uniquely decomposing an
arbitrary vector x in H as follows:

X = X + X,

where x1 ¢ M and x2 ¢ ©M, the orthogonal complement of M. The uniqueness
of the decomposition enables us to define a single-valued operator Phx,
called the projection of x on M, by

Pﬁx =X .
Now a closed linear manifold must contain the additive identity and con-
‘seqﬁently cannot play the role of the "tangent line to the curve f£(x) at
X = xo“ or the tangent plane to the surface f(x,y) at (xo,yo), for the
tangent line or tangent plane need not contain the origin. It appears,
therefore, that we shall require slightly more general geometric entities
in order to subsume even these simples situations. The difficulty is su-
perficial, however, and is readily overcome. Thus the notion of a "gen-

eral line" (i.e., not not necessarily through the origin of coordinates)

and a general plane finds its analog in the nature of a closed affine

13
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subspace. We observe that M, being @ c.l.m. in H, and therefore a closed
gubgroup of the topological group H, induces a pertition of H into cosets.
The c¢losed affine subspace

M+ x*=[m+x*|me M
(i.e., the set of all points of the form m + x* with m variable but in M
and x* ¢ H fixed) is simply that coset of M which contains x*. Geomet-
rically, we may visualize the closed affine subspace M + x* as the "tan-
gent line" for a suitable x*. Actually, we need not adhere strictly to
the geometric situation and we will, in effect, use M as the "tangent
line", and for suitable x* the affine subspace M + x* would be the actual
"tangent".

Our definition of differentiebility is motivated by the follow-
ing simple geometrical observation: for a function of a single real vari-
able f(x), to say that f£(x) is differentiable at Xy is equivalent to say-
ing that there is a straight line M ("the tangent line") through the point
< xo,f(xo) > with the property that for any sequence X converging to Xys
the sequence of ratios of the lengths of the projections on M of the se-
cant-chords joining the points P=< xn,f(xn) > and Py= < xo,f(xo) > to
the lengths of the secant-chords ?;?g themselves (i.e., the cosine of the
angle between the segments 5;?; and PM(§;§E) ) tends to 1. It is easy to
establish this fact and we therefore omit the proof. The corresponding
observation for the case of a function of two real variables f(x,y) may
be carried out in the obvious menner.

There is yet another point which we must consider before offer-
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ing a definition: it is suggested by the situation which occurs when we

are concerned with the tangent line to & curve in three-~dimensional Eu-

|

clidean space E,. When the given curve does have a tangent line at a

p

iven point, there is only one such. On the other hand, any plane con-

|
i
|
i
i
i
!
|
|
|
1

teining this line is a proper c.l.m. (i.e., not all of E,) for which the

3

ratio considered in the preceding paragraph tends to 1. Note, however,

?
that the tangent line is determined by the intersection of all the plane;
described.

Guided by the heuristic considerations above, it is suggested
that we take the following supporting conditions for the notion of diffe-

rentiability:

Let £(x) be a single-valued function with domain D(f) < X, =
Hilbert space, and range R(f) < Y, a Hilbert space. Let G(f) be the graﬂh

of £, i.e., the set of all vectors of the form < x,f(x) >e¢ X x Y = H,

and suppose that < xo,f(xo) > ¢ G(f) and that X, is & limit point of D(fﬁ.

e then make the following

i
|
i
!

DEFINITION II.1. f£(x) is differentiable at X, means thet there exists a |

|
|
1
i

c.leme M £ H such that if X Xy X € D(f), then
]
(< x - xo,f(xn) - f(xo) >, B X = X f(xn) - f(xo) >)

-1.

< x - xgof(x ) - f(xo) > ||Ph< x - % f(x)) - £(x5) > |l

The intersection T of all such c.l.m.'s is called the tangent of £ at 50.
It is clear from the definition that M need not be unique

whereas T must be.

. . cas 2
Since Pﬁ is a projection, (x,Phx) = Ilfhx ll, , and so we have
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the equivalent

DEFINITION II.2. #£(x) is differentiable at means that there exists a |

%5
c.l.me M £ H, such that if X = Xgs X € D(f), then

i
|
I
|
!
I

ll PM< xn- xo’f(xn) - f(xo) > Il

—‘1.

H<x - xp,0(x ) - £(x;) > ]

In order to shorten the notation, we shall frequently write Xn instead

Of X - X, and Y, instead of f(xn) - f(xo) and ssy X -0 implies

0

HPM< Xn,Yn>H
- 1.
| ll<x ¥ >l

Since
2] !P- v '
—— = M ||
v i vl

we conclude that our definition of differentiability can be put in the
|

|
form:

DEFINITION II.3. £(x) is differentiable at X, means that there existy a

c.l.me M # H, such that if X =0, x ¢ D(f), then

| [EXYRIEE®

where un denotes the unit vector in the direction of < Xn,Yn >, i.e.,
the vector

<X ¥ >
nn

[]< Xn,Yn > ]

Because llPﬁun lii ‘iun |i= 1, we have the slight variant of

i
%he above:

PEFINITION ITI.4. f(x) is differentiable at X, means that there exists a
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c.leme M £ H, such that every sequence kna xo contains a subsequence
KN(n) = Xy X, for which IIPMuN ||1ncreases monotonically to 1.

In the sequel, when we speak of a subsequence x

X of the sequencs

xk, it will be understood that, by definition, xK = xK(k) = ka. |

Associated with every c.l.m. M is its orthogonal complement oM.

Qur notion of differentiability may be framed in terms of &M insteed of !
|
M

e To do this, we first note that Pb

e = (1 - PM)uk (where 1 denotes th

identity mepping) and hence ]IPMuk || -1 implies

[fu, - B (17
g 112 - (B = (B su) + By [f2

e 112

w112 - 1B 112 0.

Conversely, if we have a c.l.m. N such that ilPNuk ||~ 0, then Ilﬁanuk H

'

=+ 1. Therefore, we may write

|
DEFINITION II.5. f£(x) is differentiable at X, means that there exists a

.l.m. N #£ H, such that if Xn~ 0, x e D(f), then llPhuk || = 0, where u,

—a—

is the unit vector in the direction of < XY, > .

l In addition, because ‘lPNuk IIE 0, we have

|
DEFINITION II.6. £(x) is differentisble at X, means that there exists a

c.l.m. N £ H, such that every sequence Xn~ 0, X, € D(f), contains a sub-.

‘ 0 h that || P d tonically to O.
?equence XK* suc a || Wi || decreases monotonically to

Our definition is essentially geometric in the sense that we |

{
|
i
!ave required the existence of a certain proper c.l.m. in the space of
|

h

%he graph G(f) of £ in order that f have the property of being differen-
|

L
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tieble. Now, if one defines (as in [1]) a linear operator to be a func-
! i

tion whose graph is a linear manifold and calls such an operator closed
|
f
if its graph is closed, then there will be a one-to-cne correspondence f

etween closed linear manifolds in X x Y and closed linear operators witﬁ
Eomain in X, range in Y. But all such linear operators will not be sin-g
lle-valued. As a matter of fact, it is not difficult to prove that the s
Lingle-valued linear operators A(x) are those with the property that A(Of
has the unique value O. In order to avoid ambiguity, however, we will

use the term linear operator to imply single-valuedness. We shall find
it convenient later on to limit ourselves to such operators and for these

our definition of differentiability specializes to

DEFINITION II.7. f£(x) is differentiable at x, means that there exists a

closed linear operator A(x) (single-valued) such that every sequence

x, =+ x. contains a subsequence x_- x. such that either IIP

k0 K “0 ] con- |

a(a)K

i . . . .
verges monotonically increasing to 1 or ||P Uy llconverges monotoni-

G(A)

cally decreasing to 0, where uK is the unit vector in the direction of
< >
Xyo Yy

Examples of Differentiable Functions

It is clear that every closed linear operator is differentiable

at every limit point of its domain; also every bounded linear operator i

—_— .

differentiable.

By the intrinsic functions of Hilbert space, we mean those needqd

n the postulational characterization of Hilbert space, namely: addition,

+ y3; scalar multiplication, ax; inner product, (X,y). We naow consider
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the differentiability of these functions. I o ]
Let £ < x,y >= X +y. Then f is a function on X x X with valués
in X; its graph is a subset of X5. It is easy to see that this graph is
a c.l.me and therefore x + y is a differentiable function of < x,y > .

Next write £ < a,x > = ax. The graph of f is then a subset of

x X x X, where C denotes the complex mumbers. If we fix either the scg-

. I
ar a or the vector x, the resulting graph G(f) = [< a,x,ax >] is easily
!

een (by virtue of the coﬂfinuity of £ in both variabies) to be a c.l.m.J

—a——— -

e therefore conclude that f is a differentiable function of each of its

i
|
|
i
I

ariables.

R

A similar argument proves that f < x,y > = (x,y) is, for any oné

of x,y erbitrary but fixed, a differentiable function of the other. Note,

|
however, that as in the case of the function immediately above, this is

hot a linear function of the pair < x,y > . Let us summarize these re- [
; :
sults by stating, somewhat inexactly, but nevertheless suggestively:

l
?HEOREM IT.1. The intrinsic functions of Hilbert space are differen-

Liable.

{ As another class of differentiable operators, we mention the

Eymmetric operators. To see this we take, for a given symmetric operator

!

A(x), the operator A*(x) as the required linear operator (recall that A*

is, for all A, closed). In particular, every self-adjoint operator is |
;
differentiable. Furthermore, from the fact that every closed linear ope#

!

rator A with a dense domaein gives rise to the self-adjoint operator A*4, !

)
J
Ye conclude that if A is closed, linear, with dense domain, then A*A is {
|
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differentiable. For exsmple, since the operator Ax(q) = ix'(q) with
!
x(0) = x(1) = 0, defined in L2(0,l) for all absolutely continuous func-

|
2 i
tions x(q) with x'(q) ¢ L°(0,1) is linear, closed, and has a dense domain

|
- {[2): it is also symmetric), it follows that it is differentiable. Fur- |
i

thermore, A*Ax(q) = -x''(q) is self-adjoint and hence differentiable. In

|

efined for all y(q) which are absolutely continuous with y'(q) ¢ 12 andf

I
this connection, we mention the interesting fact that A*y(q) = iy'(q) is!
|

ence is an extension of A; if A is modified to Ac by requiring thet
l
x(1) = cx(0) for some constant c, then it turns out that A: =4, i.eey

&c is self-adjoint and therefore differentiable.

Besides the operator just considered, another important operator

A

to quentum mechanics (see[5]) is defined for the set of all functions x{q

w w
ﬂ x(a) | %4q and ﬁ2 | x(q) | %dq.
- 00

~ 00

with finite

It is the operator

ax = q-x(q).
This operator is closed, and therefore differentiable. Thus we see that
the main operators of quantum mechanics are differentiable (actually, in
liew of our Ax(q) = ix'(q) discussed above, in quantum mechanics we are
concerned with the related operator

h

Dx(a) = 5oy x' ()

defined for all x(q) with finite
00

ﬁx(q) | %4q and ﬁX'(q) | %dq;
) oo -

this operator D is self-adjoint).
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Another class of differentiable functions are the functions of a
self-adjoint operator, as defined by von Neumann [4] and Stone [6]. It
can be shown [2] that for every real-valued continuous function w of the

real variable q, and for every self-adjoint operator A,
- -

w@) = [t

in the sense of convergence in the norm of sums of the Stieltjes type,

|
%ith Eq the spectral family associated with A. We may therefore write
o0
(w(wx,y) = [u(@)a(Ex.y)
o0 1
in the ordinary Stieltjes sense. This last relation may be taken as the

N — .

efinition of the functions w of A. Now, for separable Hilbert space,

a——

hese functions w of A are characterized by the properties of being

—ch— -

1) closed and linear with domain dense in a separable Hilbert

?pace, and

2) such that every bounded symmetric operator which commutes
%ith A also commutes with w(A). g
&n view of property 1) every function of the self-adjoint linear operator

A on a separable Hilbert space is differentiable.

| The Tangent T

We have called the intersection of all c.l.m.'s M associated

with the differentiebility of f(x) at Xy the tangent of f at Xy° Since |

the tangent T is the intersection of closed sets, it too must be closed.
|
It is not empty, for certainly it contains the additive identity. We

|

how raise the question as to the non-triviality of the tangent (i.e., we

Lant to know when T is neither the whole space nor the c.l.m. whose sole|
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element is 0).

Suppose thet s is a sequence of graph-secants at x0 which con-

verges to < 0,0 > (this means that s = < xn’Yn > + < 0,0 > where we use

the notation introduced immediately after Definition II.2), and further-

more, that lim un exists (un is the unit vector in the direction of

< xn,Yn >, as usual). If M is any c.l.m. such that an.o implies

Ilfhun ||~ 1, then M must contain 1lim u, if it exists; this can be proved

1
;
|
{
i
|
i

i
i
|

by recalling that llfhv l|= !lv Ilis characteristic for v ¢ M, and then
noting that continuity and linearity of PM and continuity of llv Ilyield‘
|lPh(1im u ) [1=1]1im P [|= 1im IIEMun [l=1 = 1im Hun |l =
Illim u l o Thus the tangent of f at Xy = vwhen it exists - is a non-

empty c.l.m. which contains all elements of the form lim u . Since every
!

vector of this form is clearly a unit vector, the tangent will be =& non—%

trivial c.l.m. whenever there exists a convergent sequence u . We now

digress to prove a theorem which we shall need shortly.

A vector is determined by a magnitude and a direction. We ask:

Is there, in Hilbert space, an analog for this statement? More precisely,
|
suppose that it is known that the sequence of norms ||xn ||converges, ani
|
that the sequence of vectors x converges weekly to x: (xn,y) - (x,y) for

all y (this last condition is our precise rendering of a "“direction").
Does it follow that x converges (strongly)? Indeed it does, and to the

‘3
vector x, for if we take in the statement of the weak converzence y = X, |

|
ve have (xn,x) -+ (x,x), from which we obtain |

(x,x ) = (xn,x§ - (x,x) = (x,x).
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Hence

lim llxn- x ||2

i

lim [ —(xn,x) - (x,xn) + (xn,xn) + (x,x) ], 1

]

. 2
m [ [x_ {2 - 2R(x %) + |2 [ ],

a1 112 - 10x 112 1.

But since for any complete orthonormal sequence Bi we have (xn,Bi) -

(x,Bi) for all i, it follows that

. |
Hx 112=slx.8) 12216 2=]1x]l2 |
n . nj . J
J J :
Thus

lim llxn— X ||2 = 0.

This proves

THEOREM II.2. If the sequence of norms len Ilconverges and if x  con-
verges weakly to x, then x  converges (strongly) to x.

One of our equivalent forms of the definition of differentia-

bility (Definition II.4) is to the effect thet from every sequence xn-a-x0

one cen extract a subsequence Xy such thet the sequence of norms ll%MuNl
converges: lim IIBMuN ||= 1. Applying the above theorem, we obtain

THEOREM II.3. If £(x) is differentiable at x_ and if wy and M are a cor-

0

responding sequence of unit graph-secants and 2 c.l.m., respectively,

such that IIPMuN ||converges monotonicaelly increasing to 1, end if Uy

converges weekly, then Uy converges strongly (since lim !luN ||= 1) and

hence the tangent to f at X5 is non-trivial.

If we restrict ourselves to functions whose domains contain ‘

one-dimensional linear manifolds, then we may omit the hypothesis as to

i
weak convergence of u . More precisely, we select an arbitrary but fixe?
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yector h £ 0, and let t; denote a sequence of real numbers with limit 0,
| |
and we assume that f(x) is defined at Xy + t he Then

< tnh, f(xo+ tnh) - f(xo) >

u

T ll< gy £(xgr th) <£(xg) >

[+ cen be shown [9] that existence of the derivative of f(x) (i.e., dif-

ferentiability of f(x) ) implies existence of the directional derivative:

£(xy+ 4. B) - (x,)

lim
t -0 t
n n
and so it is clear that whenever the domain of f(x) contains a sequence

of points of the form x_ + tnh, then the tangent is non-trivial. In order

0

to pave the way for stating our result in simple form, we call a sequence

of points of the form x_+ tnh a sequence of collinear points. Then we

0

have
THEOREM II.4. Every function f(x) defined on a sequence of collinear

points x_+ tnh which converges to X, and differentiable there has & non-|

0
trivial tangent.
The condition that the function be defined on a sequence of

collinear poiiits is not a necessary condition for the non-triviality of 5

the tangent as the simple exemple of the twisted cubic (i.e., the curve

in Euclidean 3-space defined by the function f< t,t2 > = t5 ) shows.

Inveriance of Differentiability under Translation

and Unitary Transformations

We now raise the question: If f£(x) is differentiable at X, and
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gvifahéiatiéh T”ofbfhe'gféph é(f) of f is carried out, iz the function
whose graph is the set of all points T < x,f(x) > = < x + a,f(x) + b >

(where a,b are fixed vectors in X,Y, respectively) differentiable at

?
x0+ al .

Let us first determine how the function whose graph is

T < x,f(x) >=<x + 8,f(x) + b > is defined. We denote this function by

%(w). Now since T < x,f(x) > =< x + a,f(x) + b > is in the graph G(F),

it follows that F(x+a) = £(x) + b or F(w) = f(w - &) + b. Consequently,
the domain of F is D(F) = D(f) + a and the range of F is R(F) = R(f) + b,

In particular, since x.+ a, with x. ¢ D(f), is an element of D(F), it

0 0

Fakes sense to inquire about the differentiability of F at Xyt a. As a

ﬁatter of fact, let x; - Xo+ 85 then
!
||Ph< x;-(xo+a), F(xh)—F(xo+a) > ||— IIE&S X} -8=X s f(x;fa)-f(xo) > |
[ < x}-(xg+a), F(x})-F(xg+a) >||  [|<xj-a-xj, £(x-a)-£(x;) > ||

which has limit 1 by virtue of the differentiability of f(x) at X5 This

proves

THEOREM II.5. If f£(x) is differentiable at x = X5 and if < a,b > is =a
|

éixed vector, then the function F(x) = f(x-a) + b with D(F) = D(f) + a

and range R(F) = R(f) + b, if differentiable at x = Xo+ 8+ In short: .

bifferentiability is preserved under translation.

4s a special case, we take a = -xo, b = -f(xo), and get the ‘

Corollary: If f(x) is differentiable at Xq then F(x) = f(x+xo)-f(xo) is
i

differentiable at x = 0. (We note also that F(0) = 0).

|
|

For any two vectors u and v of the Hilbert space H there is a
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topological mapping t of H ontc itself which carries u into v, nemely
t(x) = v - x + u. This means that as far as topological properties of H
are concerned, any two vectors are equivalent. Thus, for example, to
Prove that a Hilbert space is not locally compact at any point, it is
sufficient to show that the identity O has no compact neighborhoods.
This remark, together with the theorem ebove and its corollary, allow us
to conclude that in studying the topological properties of differentia-

bility of a function at a point, we may replace the function by one which

is differentiable at the origin and study its topological properties. I
particular, in studying continuity properties of a differentiable function,
we may work with a function differentiable at the origin.

We now turn to the question of the behavior of a differentiable

function under a unitary transformation of the space of its graph. More

%recisely, the question at hand is the following: If f(x) is differen-
kiable at X, and the unitary transformation Uon X x Y is carried out (a‘

unitary transformation is a transformetion of H onto itself which pre-
perves addition, scalar multiplication, and inner products), is the func-

E.
I
I

tion whose graph is the set of all points U < x,f(x) > differentiable at
U < xo,f(xo) > 1

By hypothesis then, there exists a c.l.m. M such that if Xﬂﬂ o,

then |

I B< %Y > |

- 1.

< x,v >l

> = . =:' >
Let < Xn,Yn> PM< Xn,Yn> + 38M< Xn,Yn> Then U < Xn,Yn> UPM< Xn,Yn +
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VP Xpp¥,> » by linearity of U (PMv,PeMv) 0 implies (UPM< X ,Y > '

UP,< X.s¥ >) = 0, so thet PU <X ,Y > = UR< X,Y > e UM) (we observe

|
Fhat we are justified in speaking of P since M is a cilem. and U pre-

UM

%erves linearity and closedness). Therefore,

I Pl < X,0Y,> I ) | VRS X Y > |1 Py XY > |

|
_
| [u<x 7> Hu<x x>l [ll<x,v>|

!since U is norm-preserving. This proves

THEOREM II.6. If f(x) is differentiable at X and U is a unitary trans-
formation of X x Y, then the function whose graph is the set of all vec-

tors U < x,f(x) > is differentiable at U < xo,f(xo) > . In short:

Differentiability is preserved under a unitary transformation.

Representation of the Projection PG(A)

In this section we obtain a formulae for computing the projection
i

)< X,y > of < x,y > on the graph G(A) of a linear operator A; later j

Faa

(Chapter III) we shall apply this to functionals and then use the result%
for functionals in investigating differentieble functions. ;
Let A(x) be a closed linear operator with domain D(A) dense in i

, |

X, range R(A) contained in Y, and hence graph G(A) < X x Y. If we defin;

U< X,y > =< -y,x >, then because the adjoint A*(y) hes the character-
izing property

(Ax,y) = (x,A*y) for all x,
or ( < x,4x >,<y,A-y> ) = 0,

we see that G(A) and UG(A*) are complementary orthogonal subspaces. We
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therefore have the unique decompositions:
(1) <x,0> = <x',Ax'> + <-A%y',y'> ; <0,y> = <x",Ax"> + <=bryt,yl> {

|
|
%alid for arbitrary x ¢ X, y ¢ Y. These imply unique solutions of the

corresponding systems of equations:

= x'= Axy! 0 = x"- Axy"
= Ax'+ y! y=Axu+ yll.
If we define
— t — n
P X = X - Pyoy =X
- v! ]
PoX =¥ Pog¥ = V7

it is clear that all the Pij are linear operators, and the system of

squations above can be written:

- A% - A%
P11 A P21 0 P12 A P22

AP11+ P21 1 AP12+ P22 ’

0

1]
"

vhere 1 and O denote the identity and zero trensformetions,respectively.

Returning to our decomposition (1) above, we have, because of orthogon-

Llity of the terms in the right members: ;

Hx 112 = H<x,0 > 112 = 1=t {12 1] axt [0 [ Jany' [P (|3 []2
= 1e x| 2 [ ae x| 2 [ aweyx 124 ] Byx 115
and
iy 1% = <00y > 112 = [ 112 (i (15 [Tyt (124 [0 12
< 11y [ 2 [apy 112 |1 aepy (124 (1 By 112,
from which we conclude that all of Pll’ APll, A21, A*P21, P12, AP12, P22;

A*P22 are bounded by unity.

If we add the decompositions (1) and take into account the lin-

parity of A and A¥*, we get for arbitrary < x,y > ¢ X x Y:




29

; < X,y >=< x4 x",A(xT;“x")mS_¥”< “A*¥(y'+ y),yT ¥y >
|
it follows that
< >=<
PG(A) X,y Pllx + Plzy, A(Pllx + Play) >

and

< X,y > =< -A*(P X + P 2y), P X + Py >

Foa(a) 21

ye collect these results in a
I'HEOREM II.7. If we define

A*P

= (L +a) 5, Py 22

P, = (1 + A*A)_l, P,. = -AP

then the following relations hold:

l

< X,y > =< Pllx + P ¥, A(Pllx + P12Y) >

Fa(a)

-p%*
< X,y > A (P21x + P22y), Py x + P22y >,

RSG(A)

where A(x) is a closed linear operator with domain dense in X and range

contained in Y. Furthermore, IIPij l|<1 for 1,3 = 1,2.

i
t




CHAPTER III
SOME PROPERTIES OF DIFFERENTIABLE FUNCTIONS

Throughout this chapter, differentiability shall be understood
in the sense of Definition II1.7. That is, when we say that a function

is differentiable at xo we shall mean that there exists a closed linear

operator A(x) (single-valued) such that every sequence X X, contains

such that || P

a subsequence xKﬂ X (A)uK llis monotonic increasing with

0 G

limit 1, where Uy is the unit vector in the direction of <« XK,YK>. The
chapter is divided into two parts: in part one we consider the notion of
differentiebility as applied to functionals, and in part two we study
some properties of functions with domain and range both in arbitrary

Hilbert spaces.

Part One: Functionals

Application of the Notion of Differentiability to a Functional
Let A be a bounded linear functional:
AX =y, x ¢ Hy, y & complex number.
According to the theorem on the representation of a bounded linear func-
tional (I.14), there exists a unique vector u ¢ H such that

Ax = (x,u) for all x ¢ H.

20
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We now determine A*. Since its defining property is (Ax,z) = (x,A*z), it
is evident that A* must operate on complex numbers and produce abstract
vectors:

A*Z = V.
Then since the inner product of two complex numbers (z,w) = i;, we easily

calculate

A%z = zZu.
We next compute P11 = (A*A+1)-1. P11 operates on vectors and produces
vectors, say
(A*A+l)-lx =Y,
x = (y,u)u + y.

In order to solve this equation for y, we form the inner product of both

members with u and find that

(x’uz

(Y)u)= 2 °
1+ {full
Therefore,
(x,u)u
y‘=x— 2.
1+ ull
Consequently

(A*A*l)-lx =X - _(xpu)u

2.
1+ ]full
Next we find that

Plzz = A*(AA*+1)-lz = ———EB;————a .
1+ ull

Evidently if we definem = 1 + ||u ||2 and A = (x,u) - z, we may write

in accordance with Theorem II.7:
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1 .

and

2« u,-1 >.
m

PeG(A)< Xy,2 >

An eassy calculation shows that the inner product of PG(A)< X,2 > and

PGG(A)< X,2 > vanishes, thereby justifying the notation. It is easy to
see that
2
[ Py y< %02 > 1] =
g =l 2 2,°
H< %52 1] m( [[x]]€+]z]%)

A necessary and sufficient condition thet this ratio tend to 1 is that

aa
2 2
= (1% +]z]

- 0.

This shows that a functional £(x) = z is differentiable at x = Xy if end

only if there exists a bounded linear functional A(x) = (x,u) such thet

X - 0 implies
n 2
I (xnsu) - Zn l

2
Hx 1% +l2

-+ 0,

l 2
vwhere we have put Z = f‘(xn) - f(xo). If we divide nmumerator and denom-

inator by || X [| , we obtain

2
(Xn,u) ) Z,
Hx T T
- 0.
|z |2
n
1+ >
Hx

:By the Schwarz inequality, | (Xn,u) < flull- len || « Now consider the



33

sequence lZn |/ ilxn || « It is bounded; for otherwise there would be a
subsequence of this sequence such that the ratio above would tend tc 1
instead of 0. Consequently,

I (xn’u) - Zn I

%]

= 0.

With this, we have proved a generalization of an elementary theorem hav-
to deal with the characterization of the tangent plane to a surface. Ve
state this result as

THEOREM III.l. A functional f£(x) = z is differ;ntiable at x = X, if and
only if there exists a bounded linear functional L(x) = (x,u) such that
the difference [L(x) - L(xo)] - | £(x) - f(xo)] for x - x, is a quantity

of higher order than the distance ||x - X Ilbetween x and X5e

The Galculus of Functionals

We have just seen that a functional f(x) = z is differentiable

at x = X if and only if there exists a bounded linear functional

(x,u) such that Xn~ 0 implies

A(x)
I (Xn’u) - Zn l
%11

where X =X =Xy 2 = f(xn) - f(xo). The role of u suggests that it

-0,

‘be called the derivative of f(x) at and thet we write f'(xo) = u. Now

X,

consider the bounded linear functional

(Al + Az)x

Alx + Aex,

]

(x’ul) + (x:uz),'

n

(x, u, + uz).

1
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We calculete
l(Xn’ Yt u2) - (zln+ Z2n) | = |(Xn,u1) - zln+ (Xn’uz) - ZZn‘
<l u) -2 1+l & u) -2, |,
and each of these terms divided by Ian Iltends to O with Xn. This proves
THEOREM III.2. If the functionals fl(x) and fz(x) are differentieble at
X = X5 then so is their sum (fl + fz)x = fl(x) + f2(x). Furthermore, if
1 - 1 - 1 - £ 21 -
fl(xo) = u, and fa(xo) = u,, then (f1+ f2) (xo) = fl(xo) + xz(xo) = uj+u,.
As an immediate consequence, we have the
Corollary: If the functionals fl(x) and fa(x) are differentiesble at X9
then so is their difference and the operations of differentiation and
subtraction may be interchanged:
_ 1 = Pt . Pt - _ .
(£)= £5)"(xgs = £(xg) = (xg) = u -,
We now consider the functional P(x) = fl(x)'fz(x), and ask if
differentiability of the factors implies differertiability of the pro-

duct. As suggested by the classical thevrem of which this may serve as

a generalization, we consider

fl(xo)u2 + fz(xo)u1
as a cendidate for the role of u in Theorem III.l (the expression above
is considered instead of fl(xo)u2 + f2(xo)ul because of the property of
the innsr product: (x,ay) = a(x,y); it is understood that the u, here
have the same meaning as in the above theorem). Then differentiability

of P(x) is intimetely connected with the behavior, as X = Xy of

I(xnf Xg fl(xo)u2+ f2(xo)ul) - fl(xn)fz(xn) + fl(xo)fz(xo) | =

[fl(xo)(xnf Xg u2) - fl(xo)fz(xn) + fl(xo)fz(xo) + fl(xo)fz(xn) +
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)+ £y(xg) (= xgpu) = (%) (x )+ £(x)F (x ) -
S (x)E (x)) = £ (x )£, (x ) | <

ey Geg) o G xgomp) = £50x) + £p0mg) [+ 1 5(x0) |+ | (e xgauy) -

£(x )+ £ () |+ 18 () | [ o,0x)

|
Now, by virtue of the differentiability of fl(x) and fa(x) at x,, the

first two terms divided by len- X5 ||tend to O as X ™ Xy. Furthermore,

ﬁf we assume that one of the Ifi(xn) - fi(xo) |is of len- X5 [1) (vy

b, R .
which we mean that the ratio Ifi(xn) - fi(xo) |/ len- Xy || -0 with

X = Xy = 0) and the other is bounded (i.e., the other fi(x) is bounded),

I
then the last two terms divided by |lxn- X |ialso tend to O as X = Xge

The explanetion of the permissibility of flexibility in the assumptions

lies in the fact that the last two terms in the inequality could have

ébeen written: Ifz(xo) |« | fl(xn) - fl(xo) |+ fz(xn) | Ifl(xo) - f’l(xn)“ .
&his proves ‘
@HEOREM III.3. If the functionals f, (x) and f (x) are differentisble at|

xo, if f‘(xo) =u and f'(x ) = U, and if one of |f (x ) - f (x ) |is

|
l
|
i
o( |lx - X, {]) while the other £ (x) is bounded, then P(x) = £, (x)-f (x)
!

! 1 =
515 differentiasble at x with P (xo) = fl(xo u, + fa(xo) u, .

J
é .
i We now turn to the analog of the classical theorem concerned
with differentiability of a quotient. Some aid is afforded by the

following

|
Lemma. If If(xn) - f(xo) |is of llxnf Xy [}) and if £(x) is differentiaLle
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at X, with f(xo) # 0 and f'(xo) = u, then 1/f(x) is differentiable at x

with derivative there = - f'(x)/ If(xo) Y, lf(xo) | 2.

0

Proof: We consider

| (x50 = u/ 1 £0x0) 1%) = 1/8(x ) + 1/2(x,) | =

11/ 180x0) 12 Gopm g =) = 20 )/ 1 £0x0) 12+ 2(x,)/ 1 £(xg) |2 +
£(x )/ | £(xg) | % = £x)/ | £(x) |2 = 1/8(x ) + 1/2(x,) | <
[1/1£0xg) 121+ 1 (= xgs =u) + £x ) = £x) |+ [1/ ] £(x0) |21 -

|-£(x) + £(xg) [+ ] £(x) = £(x;) |/ | £(x )£ (x,)

Since £(x) is differentiable at x , the first term divided by lenf %, |l
tends to O , and the second and third terms tend to O because of the
assumed condition that If(xn) - f(xo) | is of len— Xy || )e This proves
the lemma.

We now apply the lemma to prove
THEOREM III.4. If f(x) is differentiable at Xy With f(xo) #0 and
fi(xo) = u, and if Ifl(xn) - fl(xo) | is of ]Ixnf X [|) and if fa(x) is

differentiable at Xy end bounded with fé(xO) = u, , then

exists where Q(x) = f2(x)/fl(x).
Proof: Theorem III.3 yields differentiability of the product Q(x) =
fz(x)/fl(x) = fa(x)'[l/fl(x)]. In particular,

@ (xg) = BT/ W |, + /ATy,

= f23x05f-u1/ |f1(xo) ]2] + [l/flfxo) u, ,
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fl(xo)u2 - fz(xo)u1

2
| £, (xy) |
Differentiability of ||x ||
A very important non-linear functional defined on H is ||x II.
We ask if it is differentiable at X, # 0 (an obvious restriction). 4n

examination of this function for Euclidean spaces suggests that we consi-

der the functional

(xyx) x
A(x) = __jijil__ = (x,u), where u = —° ,
T 11 [T 11

which is obviously linear and bounded. According to Theorem III.l, it is

sufficient to prove that X, X implies

| (x oxg) = Hx 1= [l
r = - 0.

[xg 1= Flx, - %) 1]

We do this as follows. Since Xy = ]Ixo l|u, it follows that

2 | Gepu) = 1l 1112
g 112 - 2 (g R u) + lxg 112

where R(xn,u) = real part of (xn,u). Since x - X, we have len [| =
leo | | and (xn,y) -»(xo,y) for all y. From the first condition, we may
write

I 11= 1%, 11+ 72T T o

where 8@ -+ O as n becomes infinite. Thus

| (xow) =[x (- 72 TT%g 110 | 2
“ 2 |Ixg [ [-RGxsw) + [y [+ 72 Ty TT0] + 2 |[x, |]6®

2
r
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Next, using the fact that (xn,u) - (xo,u) = leo [], we write (xn,u) =

]Ixo ||+ 8(n) +iy(n) where B,y = O as n becomes infinite. Then

2
5 | +diy -+ 2 Hx0 To |
r

2 [lx, |11~ + /7 2TTx, 1T @) + 2 |Ix, |]0°

If we are dealing with a space with a real inner product, we have, on
. . 2 2 . 2
putting vy = 0 and & = v 2 Xy 8-8, r"=[6]%2 f|xo (5 + &%) <

| & ,2/2 leo ||® - 0 as n becomes infinite. This proves
THEOREM III.5. In a real Hilbert space, the norm || x ||is & differen-

tiable function of x except at the origin.

\

Part Two: Functions in General

Approximebility of Differentiable Functions by Linear Operators
The theorem proved above regarding the differentiability of
functionals (Theorem III.1l) cen be generalized. We have, since PM +ﬁaM

and M and @M are orthogonel,

=1

2

2 2 2
”PG(A)< Xn’Yn>” +||P@G’(A)< xn’Yn>H =I|<xn’Yn>H
2 2
= Hx 1%+ 1y [l
So
2 2
2 ~ - T 2 2
H<x,t >l Hx 15+ 1y 1]
Hall? M Fag(a) Koo Ty |
2 ife 112 2
Hx 112 11y, 1] lall
2
o1 all

2 2,
nC |12 112 1Y |13
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where we have put X =%~ X Y = f(xn) - f(xo), 4= AX - Y and

2
||ax - Y ||
2
IlgaG(A)< X,Y > ||

To be precise, m as defined above is a function of both X and Y whereas
in the preceding statement in which it occurs, m is used to denote this
function evaluated at Xn’ Yn. The fact which concerns us most at present,
however, is that 1/m is bounded. To prove this, we first observe that
since G(4) is a c.l.m., we can decompose < Xn,Yn> into its unique repre-
sentation as an element of G(A) and 8G(A), and similarly for < 0,AX ~Y >

then by addition end because < Xn, AXn> belongs to G(A), it follows that

<X ,Y>=- <0, A X =Y > .
nn nn

Foa(a) Foe(a)

Hence we may write
2
< 0,4X -Y > [

m = .

2
I Pog(ay< O AX Y2 [

We see immediately that
1 2
;S”PGG(A)H <1,

because IIRBG(A) Ilis, by definition, the supremum of the ratio of
llPéG(A)< x,y > || to |l<x,y >||. This proves that the function f£(x)

is differentiable at x. if and only if there exists an operator A with

0
G(A) a c.l.m. such that as xna»o,

2 2
all lax - ||
= 2 _’00
¥

2 2 2
Hx 115+l 1 Hx 115+ 11y,
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If we divide numerator and denominator by IIXn ||2, we obtain as numera-
tor
(Axn’ Yn: Axn" Yn) (AxnsAXn) - (Yn’Axn) - (Axn:Yn) + (Yn’Yn)

2 = 2
x| 1

2
Ilax | (YA ) + (ax ,¥ ) ||y

B 2
x|

Since (AXn,Yn) + (Yn,AXn) is real,

. 2
(AX - Y ,AX - Y ) N HYnII (Y .AX ) + (AX ,Y )
2 s 2 2
[1x_ I x|l Hx
e 112 20ax |-l ||
> n - n n
- 2
x| e 1= 1% 1]

(this last inequality following from the Schwarz inequality). If we
write s instead of IIYn [/ lan ||, then

|lax - v ||2 1- (2 lax [1)/s 11x 1l

> .
2 2
l 14 l/sn

NI
Let us now assume that A is defined everywhere; then, by the closed graph
theorem, A is bounded. Therefore, if for some sequence Xn» 0 the corres-
ponding sequence ||Yn ll/ IIXn Ilwere unbounded, there would be a subse-
quence XN such that the last term of the inequality immediately above

would tend to 1, which is impossible. Thus 5. is bounded and

[|ax - ¥ ||
n n -‘0-

[1x 1]
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This completes the p.oof of

THEOREM III.6. The function £(x) is differentiable at x = X, if and only

;

if there exists a closed linear operator A such that
lax - ¥ ||
2 2
x5y 1

rs Xnﬂ 0. If A is defined everywhere, then in addition

-0

lax - v ]

=z 1l

- 0.

This theorem is the analog of a well-known classical theorem. It speci-
fies the sense in which the linear operator A approximates the differen-

tiable function f£(x).

As an easy application of this result, we prove the differentia-

bility of f< &a,x > = ax considered as a function of two variables. Now |
f< a,x > is defined on C x X, where C denotes the system of complex num-%
bers and X denotes a Hilbert space; its values lie in X. It is not a

linear function of both variables simultaneously. In investigating the
differentiability of f< a,x > at < 8y1%q >, we are led to consider the

operator

A< a,x > = agX + 8Xy |

which is linear and continuous in both variables collectively. We next

0

consider the ratio (for 8 ey, xnﬂ-xo) :
2 2 2
||A< an,xn> - &< ao,xo> - e X +agX, || ) Ian- ay I . llxn- X Il j
2 B 2 2
l|< an,xn> - < ao,xo> II Ian— 8, I + lenf X5 I[ ’
1
2 2 |
< lan- a l.+ len— X5 []€ = 0.




42

We therefore conclude that ax is a differentiable function of < a,x > .

4ds another application of this result, we ask if a differen- |
tiable function is continuous. Now, if xna-o, then for n sufficiently

large, len ||< ¢ and

' 2
|lax - v []

2
(

<8-

|2

Hx 15 1y,

uppose that Yn does not tend to O. Then we may assume that ||Yn Ilis

ounded away from O (for we could find a subsequence with this property)

nd
AX Y 2
n _ n
e (0 1y ]
<e
2
Hx 1l
— 1
Hy
from which it follows that
2
(1) IlAXn-YnH

<eg
2 1
Hr I

where ¢, = 0O as n becomes infinite. Now either ||Yn ||is bounded above

1
or it isn't. If HYn |{< B, then

2 2
||Axn-YnH <Be

but AXn4-0 and so we have a contradiction. On the other hand, if IIYn Ih

|
i

i
|
!

is unbounded, we might as well assume that IlYn |l> n, for a subsequence

can be selected with this property. From (1) above é
2 t

2
RSN

e, 1T~ e 17|

AX Y
n

e~ ITE.TI

cl >

L
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EEEmKX;;fOHEhdréo'dééiﬁ'ﬁérhAQék}eééﬁéd'a contradiction. Thus
Y = f(xn) - f(xo) - 0. We have proved

THEOREM III.7. Every differentiable function is continuous.

Differentiebility of the Sum of Differentiable Functions

We now prove an analog of the fact that differentiation is a 1

linear operetor in the simple case of several real (or complex) variables.

Theorem III.6 will be used in realizing this goal.

Suppose that f(x) is differentiable at X, and thet A is a linear

operator defined everywhere which serves to establish this. Then Xnﬂ 0 i
implies IIAXn— T I/ Hxn || - 0. Similarly, suppose that g(x) is dif-

ferentiable at X, with associated linear operator B. Thus Xn~ 0 implies

llBXn- v I/ jlxnl|- 0, where V= g(xn) - g(xo) and the range R(g)<Y.

Now consider the linear manifold L = [< x,(A+B)x >]. Let v, be a Cauchy%
sequence of elements of L with limit v put vn= < xn,(A+B)xn> « Then

each of the sequences xn and (A+B)xn is a Cauchy sequence. Let Xy= limxA,

o= lim(A+B)xn. Then v = < xo,yo> and since we are assuming that A and B

are defined everywhere (end therefore by the closed graph theorem are |

continuous), we find that Yo" lim(A+B)xn= lim(Axn+ an) = A(xo) + B(xo)

and v ¢ L, meaning that L is a cel.m.. But

|lax - v [ . Hex - v |l N [ (asB)X - (¥ + V) |

%] %11 1% 1]

i
)
i

and we therefore have proved i

THEOREM II1.8. If f£(x) end g(x) are differentiable at X, with associated

linear operators A and B, respectively, and if A and B are defined every-
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where, then f(x) + g(x) is differentiable at xo'with associated linear

operator A+B. In short: Differentiability is preserved under addition.

The Composite Function Rule ,

Let f£(x) be differentiable at x_. with associated linear operatof

0

r(x). Suppose that g(y) is differentiable at Vo= f(xo) with associated

linear operator B(y). If the operators A and B are defined everywhere, I

Fhen it is easy to verify that the operator BAx is also linear and bounded
%nd its greph is a ce.lem.. By virtue of the differentiability hypothe51s,
x =Xy implies
(1) llA(xn) - A(xo) - f(xn) + f(xo) Il
-0
1, = % |1
and M A implies
|1B(y,) - B(yy) - &ly,) + &lyy) |l |
Suppose that X Xge Then (1) holds and since B is bounded, |
|
[ BlA(x )-A(xy)-f(x )+£(x )] || |1 B | F]AGx )-Alxy)-£(x )+2(xg) [ |
(3) < - 0.
% - % || % - x, ] |
Now put f(xn) =y o Then f(xo) = ¥, and from (2) we get |
|1 BE(x )-Bf(x,)-gf(x )+gf(xy) ||
(4) - 0.
I 2x )-£(xy) |

If the secant-slopes are bounded (i.e., if f(x) satisfies the Lipschitz

condition: [ ||f(x ) - £(x ) [/ le - X, []] < k), then from (4) we may

rrite {
|
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g BBl et [
- %, ||

Adding (3) and (5) end then using the triangle inequality for the norm,

Wwe get

| BA(x_)-BA(x)-gf(x )+ef(xy) || o

[, 7 1]
This completes the proof of

THEOREM III.9. If f£(x) is differentiable at X, with associated linear
operator A(x) defined everywhere and if f(x) satisfies the Lipschitz con-
dition | Ilf(xn)—f(xo) [/ ||xnf Xy 1] < X, and if g(y) is differen-
tiable at y,= f(xo) with associated linesr operator B(y) defined every-

where, then the composite function gf(x) is differentiable at X with

associated linear operator BA(x).




CHAPTER 1V

CONNECTION WITH DIFFERENTIABILITY IN THE SENSE OF FRECHET

The Definition of Frechet

Perhaps the earliest concept of differentiation to be introduced

in Functional Analysis was the Gateaux differential Df(x,h): }

P(x+th) - £(x)
.t 3

Df(x,h) = lim
t~0

which is the same thing as the "variation" of the function f employed in

the Calculus of Variamtions or the "directional differential of f in the

direction h". Without concerning ourselves with the question as to the
kost general setting in which this definition of the Gateaux differentiai
i
makes sense, let us note that it is meaningful if f is a function whose %
domain lies in a normed linear space X and whose range lies in another f
|

Euch space Y; note also how the transition of f from a vector~valued %
function of a vector x to a vector-valued function of a real number t is?
accomplished. The Gateaux differential is not satisfactory, however. Aj

hint at its shortcomings is furnished by the simple example (see[7] also)

of the surface

s
£(x,y) = —3 , if x°+ 2 £ 0,
/X +y

§
!
f(x,y) = 0, if X2+ y2 = O’ _J

46
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which hes the property that it has a directional derivative at the origin
in every direction yet it has no tangent plane at the origin, i.e., it %
1
cannot be approximated by a linear function in the suitable_way in the
neighborhood of the ofigin. More generally, it is easy to see that every
function f(x) homogeneous of the first degree and having £(0) = O has a
Gateaux differential at the origin. This led mathematicians to impose |
further restrictions on a generalized derivative in an attempt to secure
a more classic-approximating theory. In particular, the standard defini-
tion of a differential is due to Frechet [8]:
DEFINITION IV.l. A function f(x) on E to E', where E and E' are normed

linear spaces, is said to be Frechet differentiable or F-differentiable

Ft the point X5 with the differential df(xo,h), if df(xo,h) is a linear

continuous function of h on E to E' such that

|| £(xy+ ) - £(xy) - daf(xy,h) ||
[In ]

Bs h -+ 0. If we set df(xo,h) = f'(xo)h where f'(xo) denotes the linear

-0

continuous operator, we call f'(xo) the derivative of f at Xye
|
!

It is not difficult to see that every function which is Frechet;
differentiable at a point also has a Gateaux differential at that point ;
!
in every direction (see [9]). On the other hand, it can be proved [9]

that if the Gateaux differential exists in a sphere llx - X, Ilg r and ié

uniformly continuous in x and continuous in h, then the Frechet differen{

tial df(x,h) exists in this sphere and df(x,h) = Df{x,h). Furthermore,

|
;
: |
the following desirable properties for a differential [10] are implied bx
|
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P-differentiability of f:

(i) continuity of f,

(ii) validity of the composite function rule: if k(x) = f£(g(x)) |
and dg and df exist, then dk exists and dk(x,h) = df(y,dy) where y = g(x)
and dy = dg(x,h),

(iii) linearity and continuity of df(x,h) in h (this is assumed |
in the definition above),

(iv) df(x,h) is a first order epproximation to the difference

f(x+h) - f£(x) when h is Yclose" to O (the sense in which this loosely fon-

mulated condition is made precise in the case of the Frechet differential
1

is evident).

Comparison with F-Differentiability

In order to investigate the connection between F-differentiabil-

il
I

ity and the present concept, we must generate conditions under which thef
i

two definitions may be applied simultaneously. Now normed linear spaces}

|
include Hilbert spaces and so the definition of Frechet applies in a mor%
i
ceneral space. Some normed linear spaces, however, may be considered asi
1
|

being imbedded in Hilbert spaces and to these our definition applies (ac’

tually, some of our equivalent forms of the definition for Hilbert spaceé

are meaningful in more general spaces). The problem of selecting the f
ilbert spaces from among the normed linear spaces was solved by J. von
Neumann and P. Jordan in [11]:

!

|
THEOREM IV.l. In a normed linear space S, a necessary and sufficient co?-

|

{

Lition that en inner product (x,y) may be defined in such a way that
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[Tx [T« 7T, 1o that the parallelogren 1av hola:
HX-I-YH +“x-yH =2HXH +2HYH2-

|
Furthermore, if (x,y) can be defined, this can be done in only one way. }
|

Thus, of all the normed linear spaces, the validity of the parae-
|

llelogram lew characterizes the Hilbert spaces. Now suppose that £(x) i%

r function defined on a normed linear space X with values in another sucﬁ

Y and that f£(x) is F-differentiable at x ¢ X; in addition, suppose that

0
the parallelogram law holds in X and Y. We raise the question: Is f(x)
differentiable in the sense introduced in this paper? Since f£(x) is P-
differentiable, there exists a linear continuous function A(x) on X to Y

such that

[ £(xg+ B) - £(x;) - Ah) |]
li.m = 0.
h -0 [[n ]

Then, according to Theorem III.6, f(x) is differentiable in our sense. %
Conversely, if f£(x) is differentiable in the sense of Definition II.8 ané
if the closed linear operator A is defined everywhere, then on invoking |
Theorem III.6 again, we conclude that f£(x) is F~differentiable provided

f(x) is defined everywhere (as required by F-differentiability). [Actually,

this requirement that f£(x) have all of the space as its domein could be |
|
relaxed somewhat]. Summarizing:
|
|

THEOREM IV.2. For Hilbert spaces, every function which is differentiable

]

pccording to Frechet is differentiable in the present sense. Conversely;

if a function is differentiable in the present sense, with an associatedé

closed linear operator which is defined everywhere, then that function i?
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also F-differentiable. In short: If we limit ourselves to functions and .

continuous linear operators defined everywhere, then Frechet differentisa-

bility and differentiability in the present sense are equivalent notions.
|
Our definition of differentiability could be broadly described

gas being geometric in nature, whereas the definition given by Frechet is

linear operator is a consequence of our definition, whereas it is the es=

fn analytic one. The approximability of a differentiable function by a {

sence of the Frechet definition.
Another point of comparison of the two definitions centers around
%he problem of justifying the casting, in Hilbert spaces, of a theory of
differentiability. In particular, in view of the fact that normed linean
spaces are more general than Hilbert gpaces, what does one have to gain
by restricting the theory to Hilbert spaces? 1In partial answer to this
question, we cite the simple example of the definition of a norm for vec-
tors in the plane given by

(W) <zy>ll=l=xl+lyl;

ccording to the result of von Neumann and Jordan given above (Theorem
V.1), this normed linear space is not a Hilbert space since we know
at the definition

(@) l<xy>11%=1x1%4]y]°

yields a space in which the parsllelogrem law is valid and therefore this

is the only definition which will give aHilbert space. Now, it is readily

verified that the function defined by (1), nemely f(x,y) = |[x |+ ]|y |had

fany points of non-differentiability other than the origin, for example,
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it is not differentiable at points of the form < O,y >. This example,

together with Theorem III.5, proves
THEOREM IV.3. For normed linear spaces, it is not true that llx Ilis a
differentiable function of x except at the origin; this statement is

true, however, for real Hilbert spaces.




52

2]

3]

[4]

[5]

[6]

Fe

M.

L.

BIBLIOGRAPHY

von Neumann, Functional Operators II: The Geometry of Orthogonal
Spaces. Princeton: Princeton University Press, 1951.

Riesz and B. Sz-Nagy, Functional Analysis, Second Edition.
New York: Frederick Ungar Publishing Co.,1955.

Hilbert, Grundzige einer Allgemeinen Theorie der Linearen Inte-
gralgleichungen. Leipzig: Teubner-Verlag, 1912.

von Neumann, "Uber adjungierte Funktionaloperatoren", Annals of
Mathematics, 32 (1932), pp. 294-310.

von Neumann, Mathemetical PFoundations of Quantum Mechanics.
Princeton: Princeton University Press, 1955.

He Stone, Linear Transformations in Hilbert Space. New York:
American Mathematical Society Colloquium Publications, 1932.

Courant, Differential and Integral Calculus: Vol. II. New York:
Interscience Publishers, Inc., 1937.

Frechet, "La Differentielle dans 1'Analyse Générale", Annales de
1'fcole Normele Supérieur, 42 (1925), pp. 293-323.

Ljusternik and W. Sobolew, Elemente der Funktionalanalysis.
Berlin: Akademie-Verlag, 1955.

[10] D. H. Hyers, "Linear Topological Spaces", American Mathematical

Society Bulletin, 51 (1945), pp. 1-21.

[11] J. von Neumann and P. Jordan, "On Inner Products in Linear Metric

Spaces", Annals of Mathematics, 36 (1935), pp. 719-723.




