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PREFACE

A correlation model based on chemical reaction equili-
brium of an Ethanolamine~H25-C02~-Water mixture is devised to
predict the vapor 1iquid equilibrium behavior of this sys-
tem. Only two equilibrium constants are required to be
defined for each amines The wmcdel pertforms better than any
existing in the literature. Using this wmodel algorithms
were developed for the process design of major pieces of
egquipment in én éthanolanlne sweetening unit. A computer
program based on these algorlthns was written ard tested
with operating data. Several sets of literature and design
data were also examineds The agreement is satisfactory con-
sidering the several simplifying assuamptions that were
required to be made. The simulation model provides 2 poser-
ful tool for studying ethanolamine sweetening systems.
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CHAPTER 1
INTRODUCTION

The alkanolamines are the most generally accepted anc
widely used of the many available solvents for the removal
of hydrogen sulfide and carbon dioxide from natural ang
manufactured gas streams. Their 1ntroduction into the gas
sWeetening industry 1is credited to Bottoms (1) uho obtained
a patent ir 1930 covering their use for sweetening natural
gase. The main reason for the popularity of these solvents,
especially monoethanolamine (MEA) and diethanolasine (DEA),
1s their reactivity. Also, thesq solvents are available at a
comparatively low coste.

Several amine sueefenlnq processes have been described
in detail (11,29) but for improved equipment design, better
knowledge of the equilibriua betweer the acid gases and eth-
anolamine solutions is reyuired.

Several 1investigators have measured hydrogen sulfide
and carbon dioxide solubility in ethanolamine solutions.
Much of this experimental work, however, has limited utility
for design because the concentration and temperature ranges
of the data are too narrow, the data are not consistent with

other independent work and/or the data are for only hydrogen



sultide or only carbon dioxide, but not for mixtures of the
tuwo acid gases. The engineer 1s often at a loss as to a way
to proceed 1in estimating Ethanolamine-acid ¢as equilibrius
and required amine feed solution to be circulated to treat a
given feed gas. vSttingent limits on allouwable emissions of
hydrogen sulfide are now commcnlf enforced. The pollution
abatement equipment designer tinds only severely limited
information at the very low lcadings encountered at the top
of a contactor. |

The traditional approach of using mass transfer coeffi-
cients to design H2S-CO02-k£thanciamine absorption systems met
with limited Ssuccess. This 1s not surprising since amines
are known to react chemically with H2S and CO02. The equili-
brium solubility of either pcnd gas is a function of temper-
ature, hydrogen Sulfide and carbon dioxide partial pressures
in the vapor phase, anlne‘type, and amine concentration ir
the 1iquid phase. The 1interactive relationships between
these variables would be very difficult to describe through
a simple mass transfer coefticient.

In an effort to describe the vapor-ligquid equilibrius
of an Ethanolamine~-H2S-CO2-water system sSome models have
been proposed in the last five years (13,14,16). One of the
objectives of this work 1s to examine some of the models
which use chemical reaction equilibrium as a mears of pred-
icting vapor-iiquid equilibriuw data for ethanolawine solu-

tionse. AD alternate model w3as developed and tested for



selected amines viz. monoethanolamine(MEA), diethanolamine
(DEA), di-isopropanolamine(DILIPA), and diglycolamine(DGA).
The range of applicability of the Kent-Fisenberg wmodel (16)
Was 1ncreased to cover other amines and concentration ranges
than those covered by the original authors.

The design of most amine sSweetening systewms in use
today is based on "rules of thumb® and the experience of the
designer, otten resulting 1in gto$s cver design. The present
day price of ener gy and the 3ssocliated operating expenses
have put pressure on designers to improve the economics ot
acid-gas treatment plants. Improved design procedures are
seen as a big step toward alleviating these needs. To pro-
vide a step 1in this direction the reaction equilibrium cor-
relation models were used to develop a process design scheme
for conventional gas sweetening units shown in Figures 1 and
2. A versatile computer program was developed tc make the
necessary heat and material balances. The program provides a
quick methad to evaluate tne design and cperation of a gas
sweetening unit. The computer program uses a rigorous calcu-
lation technique and converges all trial and error calcula-
tion to within ' 0.0%5 percent or less.

Obviously, the objective here was also to provide an
adequate tool for studying other problems related to the gas
sWweeteniny area. Predicting steag consumption in regenera-
tors, hydrogen sulfide selectivity of various ethanolamines
and acid 9as retention in lean amines are some of the typi-

cal problemss that can be solved.
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CHAPTER II
LITERATURE REVIEW

Deterwination of the solubility of carbon dloxide and
hydrogen sulfide have been made by seVéral investigators
(2,4,5,7,12,33). However these do ndt cover the wide range
of temperatures and amine concentrations encountered 1ir
industrial process units, The data for low acid gas loadings
(less than 0.1 acle st/uole amine) and low acid gas partial
pressures {(less than 1 mm Hg, H2S) are meager. In order to
extrapolate outside the range ot existing data, =2 number of
workers have attempted to correlate and predict the partial
pressures of the acid gases above ethanolamine solutions;

Most of these attempts postulate that certain reactions
occur in solution and propose a thermodynamic model for the
reaction equiiibriuu. Atuood et al. (b6) attempted to model
the H2S-H20-e£hanolan1ne System while Danckuwerts and McNeil
(9) considered the equilibrium of the C02-H2S-ethanclamine
solutions. Danckwerts and McNeil (9) show that the vapor
pressure of the acid gas species 1s related to the free acid
gas concentration in the 11iquid phasé by a Henry's Law rela-
tionship, and the free acid gas concentration, 1in turn, 1is

determined by liquid phase l1onic equilibrium. However, there



is substantial lack of agreement between the predicted vapor
pressures and the experimental data. A possible rezson may
be the nonidealities introduced by the many ionic species in
solution, This approach was modified by Kiyamer (13) and
Klyamer 2and Koleshnikova (14) for the H2S-ethanolawmine solu-
tion and the C02~ethanolamine sclutions :espectively.
Recently, Klyamer et ale (15) extended their model tg
the C02-H2S-H20-ethanolarine systesm. They obtained egua-
tions relating the partial pressures of the acid gases tc
the composition of the soluticns 2and the tenperature. In
modifying the Danckwerts~McNeil approach, Xent and Eisenberg
(16) forced the amine equilibrium constants to fit publishec
partial pressure data for the H2S/Amine and CO02/Amine sys-
tem. They used these constants to predict the ecquilibrius
for the H2S-C02<-Amine-H20 systems. Both these models are
relatively inaccessible. Also, they represent a new area to
many process ehgineers because they involve several equili-
brium equations, usually non-liinear, which are tc be solved
simultaneously by algebraic reduction or some other numeri-

cal techniques These last two models will be briefly dis~-

cussed.
Klyamer et al. Model

Klyamer et al. (13,14) postulated that the following

reactions occur 1in sclution:

RRONH + H?20 s====2 R*RNH2+ <+ OH~- (2.1)



2RR*NH + CO2 F=== KR*NH2+ + RRUNCCO- (2.2)

H20 + CO2 s===2 H+ + HCO3-~- (2.3)

HCO3- F===2 He + co3= (2.4)
H2S g===2 H+ + HS=- (2.5)
H20 @&==== H+ + OH- (2.6)
HS- F===2 i+ + S= (2.7)

Here RR'NH represents an amine. The following charge
and mass balances can be written for the reacting species:

Charge balance:

LRR*NH2+] + (H+] =  (HCU3-1 + CRR'NCOO-]

+ 20C03=1 + LCH=-1 + [HS~-1 + 2CS=] (2.8)

Mass balances are written for each of the constituents
involved in the reacting system. ¥ass balances for the etha-

nolamine, hydrogen sSulfide ard carbon dioxide are as fol-

lows:

CRER*NH] + CRR*NCOO-1 + CKR'NH2+]

M (2.9)

CH2S] + [HS~-] +L5=1

BM (2.10)



LCO02] + CRR*NCQC-) + [HCO03=-1 + [C03=]1 =aM (2.11)

The partial pressure of C02 and H2S in the gas phase
can be related to the 1liquid phase composition through
Henry's Law: '

H"C02 = [£C021/pCO2 (2.12)

H"st

CH2S1/pH2S (2.13)

In concentration units, the following thermodynamic

equilibr ium constants can be detinec,

K1" = (v2/aY2)(CRR*NH2+1COH~1/LRR*NHI) (2.14)
K2# = (v%a?y? )(Léa-nmntawncoo-ll

CRRYNH12 pCO2 (2.15)
K3" = (Y / v, )CH+ILHCO3-3/CCO02] (2.16)
K4" = Y CH+1CCO3=1/CHCO3-] (2.17)
Ks® = Y2 :m:cns-ucuzsj (2.18)
K6" = Y2 CHeICOH=-27 7, (2.19)
K7® = v CHeILS=3/CHS=] (2.20)
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The equiliprium constants of the reactions, the inverse
Henry*s law constants and the average ion activity coeffi-
cient, which is dependent upon the fion concentration, must
be known in order to determine the concentration of the
thirteen species in solution.

The tinal expressions used for prediction of the par-
tial pressures of the acid ga2ses above ethanolamire solu-

tions are given by

pCO2 = (1/K2")C Y2 7(a2", )

(Z(AY + §")/(m=-2-A"-p%)2) (2.21)

pH2S = (K6"/(KL"™KS"H"H2S)3( Y2/Ca¥ )}

(RU(A"™ + BM))/(m~z-A%"-B") (2.22)
and,
A" = @=-2-B"-(K1"KI"H"C02/(K2"K6"))2(z/(a(B"-2)))
(z/(a(B"-2))) (2.23)
where,
B" = mao - H®"C02 ppCO2
A" = B -  H"H2S ppH2S
and,
zZ = LRR*NCOO0O-1]

Equatfons (2.21) tc (2.23), which contain three unk-
nowns, pH2S, pC02, and z were solved by a numerical proce-

dure lLike the Newton Raphson methaod.
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Kent and £isenberg Model

Kent and Eisenberg (16,17) described the H25-C02-Amine

System equilibrium with the following equations:
RR* NH2+ F==== H+ + RR'NH (2.24)

RReNCOC- + H20

A
"
"
"

= FER*NH + HCC3- (2.25)

HCO03- (2.26)

H20 + CO2 s==== He +
H20 s===2  H+ + OH- (2.27)
HCO3-  &===2 He + CO3= (2.28)
H2s === H+ + HS- (2.29)
HS~- g====2 H+ + S= (2.30)

Again, the equilibrium partial pressures of C02 and H2S
waere related to the free concentrations of C02 and HZ2S in

solution by the Henry's Lawd relationship as follows:

pCO2 HeC02CC02) (2.31)

pH2S

H*H2SCH2S) (2.32)
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The mass and charge balance equations are identical to
those used by Klyamer et al. (13). Instead of using ionic
characterization factors as recommended by Danckwerts, Kent
and Eisenberg used the following expressions tor pseudc-e-

quilibrium constants:

K1® = CH+ICRR*NHI/LRR*NH2+3 | (2.33)
K2* = CLHCO3-JCRR*NHI/ECRR*NCOO-] | (2.34)
K3¢ =v£H+][HC03-]ILCOZJ (2.35)
K4* = CH+ICOH-] (2.36)
KS* = CH+1LCO02=)/CHCUI-] (2.37)
K6* = [H+ JCHS-1/CLH25] (2.38)
K7* = [H+]ES=]/EHS-j | (2.39)

The thirteen equations, including the four balance
equations are solved to obtain the partial pressures of H2S
and CO2 over solutfions at a inen composition and a particu-
lar temperature. Any standard computational technique may be
used to solve the resulting set of non-linear equations. A

simpler method 13 to reduce the equations through suitable
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algebraic manipulation. The set of three expressions which

result are as followus:

pH2S = CH*H2S /(K6'KTY )} (ACH+12/

(1 + CH+1/K74)) (2.40)
pCO2 = (HCO2/(K3'K5¢))(BLH+1?/
(1 + CH*1/KS + MCHe1/(K29K5°C)) (2.41)
and, ’
CH+#Y = ACL + K7/(K7 + CH+3))/€1 + M/(X1°C))
+ Bl + K29KS9/(K2*KS5® + K2°LH+] + MCH+1/C)}/
(1 ¢ M/(K1°C)) + K4/ (CH+3(1 + M/(K1°C))} (2.42)
where,
A = MB - pH2S/H'H2S
B = Mo - pCO2/ HeCO2
and,

(@]
H

1 + (H+1/K1* + pCO2K3I*/(K2*H*CO2(H+1])

Equations (2.40) to (2.42) are easier to solve because
they contain only 3 unknowns.

Kent and Eisenberg (17) report that they tested the
model by using published cohstants. They failed to get a
gocd match of the published data.

Consequently, they deciced to accept all the published

constants (other than K1 and K2) and determined K1 and K2 by
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forcing a fit with the experimental data. The values of K1
and K2 were obtained tor the simple systems
C02-H20-Ethanolamine and H2S-H20-¢thanolamine and were usec
to predict the partial pressures for the aixed system
H25-C02-H20-Ethanolarine. AS reported by Moshteghian et al.
(18) and Kent and Eisenberg (16) the data comparisons sere
satistactory. However, botn Moshfeghian (18) and the origi-
nal authors tested the performance of the model for only the
basic amines (MEA and DEA). The range of carbon dioxide and
hydrogen sultide loadings for which the cosparisons were
made were limited ( 0.1 to 0.9 moles CO2 or H2S/mole amine).
Also, Kent and Eiserberg discovered that the fitted pseudo-
equilibriume constants showed an Arrhenius dependence on
temperature.

Subsequent saections of this thesis give details of a
new acid gas-ethanolamine correlation model which 1is based
on the correct set of equilibrium reactions and includes

comparisons for naw low pressure datae.



CHAPTER 111
THE ACID GAS-AMINE EQUILIBRIUM MODEL

Although aqueous ethanolamine sclutions have been
extensively used for many years for removing H2S and CO02
from natural and wmanufactured gas streams, the relevant
cheslistry 1is poorly wunderstood. The models proposed by
Klyamer et al. (13) and Kent-Eisenberg (16) as described ir
the preceding sections postulate several chemical equili-
brium equations. These reactions betwWeen amine and hydrogen
Sulfide and carbon dioxlide were first presented by Danck-
Wwerts and McNell (9). Conclusive laboratory evidence that
the reactions occur as inaicated 1in the foregoing models 1is
not available. Most authors seem to implicitly zssume that
water is necessary for the removal process. Vidaurri ang
Kahre (50) sugyested recently that the quantity of C02 that
ifs absorbed is primarily due to, and limited by, physical
absorption 1nto the water that 1s present.

Ascertaining whether or not water 1is involved 1in the
chemistry of an aqueous system woulc be extremely difficult.
Recently, Batt et al. (19) realizing the aforesaid shortcom-
ings conducted several experiments to determine the dominant

processes in the MEA-C02 ana MEA-H2S systems. Their investi-
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gations are based on studying the Proton Nuclear Magnetic
resonance (NMR) spectra and C13 NMR spectra of the reacting
systems. Théir laboratory studies indicate that water is not
necessary for the reactions of ' H2S and C02 with ethanola-
mines. A brief literature survey 1ndicates that several
other lnvestigators concur with their flndings. Hikita et
ale (27) determined the kinetic rate constants and based or
these studies proposed identical reaction mechaniswes for the
C02-ethanolamine system. Further support to these conclu-
sions is provided by Alberty and Daniels (61) who report
that only a small fraction of the CC2 dissolved is hydrated.

Sada, Kuwazawa et al. (60) used the same overall reac-
tions to obtain fila theory solutions of gas‘absorption with
instantaneocus and non-instantaneous parallel reactions.
Their predicted absorption rates compared satisfactorily
with the measured absorption rates of carbon dioxide and
hydrogen sultide intc aqueous monoethanolamine sclutions in
a continuous stirred tank apscorber. As confirmed by Batt et
al.e (19), when carbon aloxide and hydrogen sulfide react

with ethanolamine sclutions, the following overall reactions

oCCure.
CO2 + 2RR*NH s=====2 ERINH2+ + RR'NCOO- (3.1)

H2S5 + RR*NH s=====2 RR*NH2+ + HS- (3.2)
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where RR*NH represents tne awine (MEA,DEA etc). The rate

controlling step of reaction (3.1) a2bove is (19)
C02 + RR'*NH w======2 RR*NCOOH (3.3)

Reaction (2.2) 1s a simple protonation reaction (19).

To date the reactions as proposed above have not been
used to predict partial pressures of acid gases over alkano-
lamine via an equilibrium model. Since these reactions
represent the dowminating process in the C02-H2S-H20-Amine
gystem an equilibr;um model basad on these reactions should
be more tractable and is expected to be at least comparable
to any presently available model.

The model for the equilibrium in the alkanolamine solu-
tions presented here, uses the 1deas of Kent and Eisenberg
for calculation of the pseudo-equilibrium constants. This
model avoids the major deficiercy of the previous models.
Based on pure tnermodynamic considerations of chemical equi-

librium, that {s the principle of minimum Gibbs free energy,
(aGt)1,F = 0

one would expect the neu model to give the same results as
the Kent-Eisenberg model since both systems of reactions
have the same set of key components(:r) Houwever, depending

upon the method used to generate sclutions of the thermody-~-
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namic equations and the manner 1in which the equations are
uritten, the possibility exists that the sclutions might not
be unique. That is, such sclutions could be either global
minima or else they might merely be local winiwa of the
Gibbs free enerdy. Thermodynamically the local miniwma cor-
respond to the so called wetastabtle states while global
minima correspond to true equilibrium states. Such a ques-
tion , while 1important, cannot be givenr a genetral ansser
because the answer depends upon the shape of the Gibbs free
energy surface tor the system under consideration(éé). Only
the salient teatures of the wodel will be presented here.
The main reactions occurring in a C02-H2S-H20-Amine systen

are as follows:

Protonation of the amine

H2S ¢ RRSNH &=s===2 RRONH2+ + HS~ (3.4)

Formation of carbamate 10n

2RR*NH + C02 s=====2 RR*NH2+ + RRONCCO- (3.5)

Dissocliation of carbon dioxide

H20 4+ C02 s==3==== H+ + HCO3- (3.6)

Ionization of water

AThe chemical species 1involved 1n these reactions are
usually called key components in order to distinquish then

from other species which are present 1in the system, but
neglected.
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H20 &s====== H+ + QK- (3.7)

HCO03- s====== H+ + C(CO13= (3.8)
Dissociation ot hydrogen sulphide
H2S s====== H+ + HS~- (3.9)
Dissociation of bisulfide 10n
HS~ F====== H+ + S= (3.10)

In these equations RR*NH 15 the chemical formula of the
ethanolamine.

A rigorous thermodynamic approach to the problem ot
calculating chemical equ111btlum in electrolyte sclutions
involves the use of activity coefficients for eacn species
in solution requiring interaction parameters between each
species. The activity coefticients are then used tc calcu-
late the effect of composition anc fonic strength on the
Chemical equilibrium constants. Such a method has been pro-
posed by Edwards, Neswman and Prausnitz (32) fcr aqueous
solutions of volatile weak electrolytes. However because ot
assumptions in their model, their correlation 1s not suita-
ble for concentrated solutions of these compounds. Also the
ionic entroplaes or salting out parameters raquired for the

estimation have not been determined for ethanolammonium or
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carbawmate ions. To avoid this problem and to minimize compu-
ter tiwe required tor calculating the activity ccefficients
of each individual species a more empirical methcd is used
to develop the mcdel. The equilibrium relaticns are writter

in terms of pseudo-equilibrium constantse.

xx;= CCRRYNCOO-JERR*NH2+1) /

(LRR*NH12*[C021} (3.11)
Kg\f CCRRONH2+ICHS=-1) /(CRRONHICH2S ]} (3.12)
K3 = CCH+ICHCO3-13/CCC2] | (3.13)
K4 = CH+ICOH=] (3.14)
KS = {cu+3cc03-3)/tuc03-3 (3.15)
KE = (LH+ICHS=13/ CH2S) (3.16)
K7 = (CHeILS=IH/CHS - (3.17)

The equilibrium partial pressures of €02 and H2S are
_related to the free concentrations ot C02 and H2S in solu-

tion through Henry®s Law as follouws:

HCO2 = pCO02/CC021 (3.18)
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HH2S = pH2S/LH2S) . (3.19)
The balance equations for the reacting species are:
Electroneutrality

[H+ + CRRONH2+1 = CRRYNCCO-] + CHCO3-1 + 2€CC3=1
+ COH-1 + CHS-1 + 2C5=1 (3.20)

Mass Balance

CRRYNH] + CRR'NH2+] + CRRYNCOO-3 = M (3.21)
CH2S] + CHS=1 + [S=1 = BM (3.22)
£C02] + CRRYNCOO-1 + CHCG3-3 + [C03=31 = a M (3.23)

Here o and 3 are the mole ratios in the liquid phase
(Carbon.to nitrogen and sulfur to nitrogen respectively) anc
are the experlmentélly measured concentrations. A solution
could be attempted for equations (1) to (13) wusing suitable
mathematical techniques since we have thirteen independent
aquations and the thirteen wurknowns, C(H+1, pH2S, pCO2,
CRR*NH2+1], L(RR*NCOO-1], C(HCO3-1, CCO3=3, [COH-1, [S=], (HS-1],
CRR*NH]1, (H2S] and [£CO23]
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The problem however, is one of solving a systeam of non-
linear alyebraic equations. Most alyorithms presently avail-
able for the purpose take a considerable amount of computer
time and require good initiai guesses. These problems are
not uncosmon to non-linear asethcds. Houwever, these were
further compounded by the tact that some of the species in
solutions have very low concentrations (10°15 gaoles1iter)
as compared to some other species (2.0 gnole/lltet).

To avoid such problems and especially that of conver-
gence, the system of equations was algebralcally reduced to
the following, more tractabie set of three equations con-

taining three unknouns.

pH2S = HH2S*A%cHe 12/
K6KTC1 + CH+l1/KT) (3.24)
v
pCO2 = HCO2*B*CH+1/

C(K3*KS*(1 + CHe1/KS) + K2*K6*M*CH+1/(K1%C)) (3.25)

and,
CH+] = (:??‘+ KT/(KT + CHed)) + e(j + 1/<§ + LH+Y/
KS + sz*us;ﬁyyitxaaq) + K4/CH+1)/
(1 + KI*HI(K6'C)1 (3.26)
where,
A = BM = [H2S]

B = aM - £C021
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and,

C = 1 + KI1(H+1/Ko + K6K2(C0O21/(K1*(H+1])

Equations 3.24 to 3.26 are easily solved by any itera-
tive method. The "successive substitution™ method aescribeg
by Carnahan (20) was successfully employed.

In devéloping the equilibrium model the ialues of all
the ¢issociation constants (K3 through K7) and Henry's Law
constants (HCO2 and HH2S), except K1 and K2, were retained
as obtained from the 1literature. The value of K1 was
obtained by fitting the model represented by equations
(2,4,6,7,and 9)to. pure H2S-amine data at veaerious tempera-
tures. The value of K1 obtained as a function of temperature
wag then used to fit the model represented by the group ot
equations(1,3,4,5,and B) to pure CO2Z2-amine data. The fittec
pseudo-equilibrium constants show an Arrhenjus type depen-
dence on temperature. A non-linear fitting prograw based on
the Marquardt algorithm was suitably modified for use. The
constants c¢chtaired from the pure¢ H2S-Amine and CO2-Amine
-data can be used to predict tne partial pressures of mix-
tures of H2S and C02 over aqueous alkanolamine solutions.

Comparisons between measured znd calculated data are given

in a subsegquent cnapter.



CHAPTER IV
THE AMINE PROCCESS MODEL

Although a variety ot alkanolamine acid-gas @absorptiorn
process systems has been in use for the past half-century,
no detailed or rigorous calcuiational schemes are available,
All available methods are either eampirical or are based on
gross approximations and "rules of thumb™ (11). Sufficient
data and operating experlenée with several ethanclamines is
required td permit a judicious selection of a treating solu-
tion for a «ide range of conditions and process types,
Again, the choice of amine concentration may be quite arpi-
trary and is usually made on the basis of operating experi-
ence. Regenerator and absorber heights are often the result
of designer recounendétion or suggestion. The paln cause for
this lack of rigor 1in alkandlaline acid-gas absorption-pro-
cess system design has been the non-availability of a relia-
ble wmethod for prediction of the vapor liquid equilibrium ir
the concentration and temperature ranges encountered 1n com-
_mercial units.

The need for a rigorous <calculational techrique for
designing acid-ygas removal plants has always existed but is

felt even more today. Some of the relevant factors responsi-

ble for this are?
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3.

4.

5.

With the advent of the digital computer,
simylation (or mathematical wmodelling) of
entire chemical processing plants and of
portions of these plants 1is becoming
extremely popular. Computer simulaticrs
enable the engineer to examine the behavi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>