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CHAPTER I

INTRODUCTION

According to a well quoted report of the Stanford Research Institute
(1), energy requirements for residential and commercial buildings (space
heating and cooling) amounts to approximately 20 percent of the total
eﬁergy consumed in the United States. It is often necessary to estimate
these energy requirements and fuel consumptions of HVAC sysfems for both
short and long term operation. These quantities can be much more diffi-
cult to calculate than design heat loss and gain or required system capa-
city, since they involve the integration over the period in question of
the influence of many factors which may vary greatly with time. éompari—
son of energy requirements before and after implementation of an energy
conservation program is also essential in determining the effectiveness
of the program. For these and other reasons it is important to be able
to estimate the energy requirements of buildings.

Application of the digital computer to calculate energy requirements
has become routine. Use of a computer to perform energy analysis calcula-
tions began over a decade ago, and this application has gained popularity
as fuel prices increase and as developments in the field bring this tech-
nology within the reach of the design engineer. Building energy analysis
on the computer has typically been accomplished by performing an hour-by-
hour (usually for a year) simulation of building zones and building energy

systems. While modern building energy simulation programs are extremely



useful, they are cumbersome to use and require detailed information about
the building. "Hand checking" of the many calculations performed in an
hour-by-hour analysis program is also difficult. For these reasons a
much simpler procedure for estimating annual energy usage in buildings is
desirable. This discussion does not imply in any sense that existing
techniques for the comprehensive analysis of building energy requirements
and costs are unadcceptable; instead, a need for a simple but reasonably
accurate technique to complement these more complex analytic aids is the
basis of concern. The need for development of these techniques for esti-
mating energy usage of commercial structures is of great importance, be-
cause a vast majority of the literature in this area has concentrated on
residential dwellings. A simplified procedure in estimating energy re-
quirements of commercial structures may find two successful applications:

1. As an aid in désign, allowing an early estimate of the impact of
design decisions and building uses on energy consumption.

2. As a diagnostic tool, facilitéting the identification of insuffi-
ciencies in existing buildings.

The heating degree-day has been in steady use for over 40 years by
utility and fuel suppliers as a measure to predict the energy demand of
the average population of structures. The building design profession
also uses it to estimate monthly and annual heating requirements. Tradi-
tionally, degree-days for both heating and cooling are calculated at a

base temperature of 65°F. Mathematically, a conventional degree-day is

expressed by the following:

Tmax M Tmin
Heating: DD = Max 65°F - — 0



Tmax * Tmin
Cooling: DD = Max — 5 65°ﬁ>, 0

where Tmax and Tmin are daily maximum and minimum temperatures, and the
statistic 1/2 (Tmax + Tmin) is called the midrange of the aaily tempera-
ture. The variable MAX indicates that positive quantities will result
for DD and resulting negative values will be set to zero. Theoretically,
degree-day base temperature should equal the building's balance point
temperature, defined as the temperature above or below which the heating
or cooling system is not needed, respectively. The balance temperature
of a building, which determines the degree-day base to be used, is a com-
plex function of thermostat settings, interior heat release, solar gains,
and insulation levels. Ideally, the balance point temperature is an ex-
terior temperature at which heat losses through the shell of the build-
ing, at the specified interior temperature, exactly matches its internal
gains with no contribution from the heating and cooling system. This
relationship is complicated by the sun, however, which can augment in-
terior gains through transparent surfaces, and which can increase the
effective temperature at the exterior surface of the building shell. The
65°F base traditionally used for both heating and cooling was obtained
from extensive analysis of light residentials (2). This value may well
have been appropriate for a poorly insulated building with 72°F heating
and cooling thermostat settings, but this value may be considerably dif-
ferent for buildings of different types and structures. An investigation
was undertaken in this study to determine the base temperature of a class
of structures from an analysis of thermal response of building samples.
Simple statistical analysis can be a useful tool for developing,

testing, and monitoring policy programs designed to reduce the building



demand for energy. Such analyses may also be useful for monitoring the
effects of changing demographic patterns or the effects of an acute tem-
porary energy shortage on building demand. The most simple, statistical
experiment would consist of measuring total energy demand at a monthly
level on a sample of building units before and after the implementation
of a conservation program. The before and after demands would be com-
pared in order to see whether the program had been effective in reducing
demand. Unfortunately, the anlaysis is complicated by the fact that the
fuel required for space conditioning is a major portion of the building
demand for energy, and the weather data distribution over a month is a
major determinant of this portion of the demand. Since weather is not
controllable, some attempt must be madé to adjust the monthly demand for
the coolhess or warmth of the month, prior to making any comparison. It
is crucial that the adjustment of demand for weather be as accurate as
possible; otherwise, an error introduced by a faulty adjustment may dis-
tort the assessment of the effécts of the program.

The conventional degree-day is the simplest method of extrapolating
climate to yearly or monthly heating and cooling requirements. It is a
function of atmospheric temperature only, so that significant effects of
sun, humidity, and wind on heating and cooling are considered only in—
directly. Although this method has shown satisfactory results for resi-
dential heating, utilizing weéther data averaged over a long period, its
extension for cooling computation has been limited and erratic.

A feasibility study of ways to replace or improve the present degree-
day procedure has been underway at Oklahoma State University for the past
few years. This study is based on an effort to develop an improved pro-

cedure to predict accurately the adjustment of demand for changes in



climate. One of the difficulties with the degree-day procedure is the
need for an efficiency parameter which adequately represents the system
performance over the period of time under consideration. 1In the present
study a simplified procedure for estimating an efficiency parameter for a

" system performance is discussed.
Objectives

The main objective of this study was to develop a procedure which
accounts for all significant environmental parameters for a particular
class of structures on a year-round basis; there is no intent to replace
existing methods which compute energy requirements on an hourly basis
using a dynamic model, such as the transfer function method. Rather, the
results would be used to process and analyze actual energy consumption
data so that actual usage trends and patterns of consumption can be deter-
mined. Furthermore, the results would be utilized to estimate energy re-
quirements in cases where detailed simulations are not possible or feasi-
ble. The major objective of this study can be broken down into the
following categories:

1. Identifying the significant environmental parameters.

2. Developing a procedure for structuring a hypothetical representa-
tive building which typifies thebgeneral behavior of the class of struc-
tures under consideration.

3. Developing a procedure for calculating heating and cooling
degree-days for estimating energy requirements of the representative
building.

4. Developing a simplified analytical procedure for estimating

energy requirements of commercial structures.



5. Recommending a simplified procedure for estimating a seasonal
energy efficiency parameter for predicting energy consumption.

The problem analysis included the following phases:

1. Significant environmental parameters were identified. This was
achieved by analyzing the sensitivity of the thermal response of build-
ings to perturbations in climate (see Chapter 1IV).

2. A procedure for selecting a hypothetical representative building
was established and a representative building was structured. This was
achieved by analysis of a sample of buildings from the population under
consideration (see Chapter V).

3. A procedure was developed for predicting energy requirements of
the representative building utilizing the newly developed degree-day con-
cept. This was achieved by regression analysis of the actual weather
daté and the corresponding simulated demand for the representative build-
ing (see Chapter VI).

4., An analytical expression for estimating energy requirements of
buildings was developed. This was achieved by regression analysis of the
combined actual weather and building data and simulated demand for a vari-
ety of buildings (see Chapter VII).

5. A simplified procedure for converting energy demand to energy
congumption was discussed. This was achieved by utilizing seasonal energy

efficiency ratio concepts (see Chapter VIII).



CHAPTER II
LITERATURE SURVEY

The heating degree-day has long been in use as an index of the fuel
consumption of a heating plant, whether it be residential or commercial,
altﬁough it applies to residential. The weather bureau includes this
term in practically all of its monthly weather reports and in some annual
summaries. The heating degree-day can also be used to check the operat-
ing efficiency of a heating plant from season to season and to estimate
the probable fuel or energy requirements of a heating plant. When it is
used for the latter purpose, a 10- or 20-year average of the annual
degree-days for the locality must be used to get reliable results.

In an extensive survey of the literature, no standard practice was
found concerning the correlation of cooling energy or fuel consumption
with some index similar to that for heating, as the degree-day. It has
been stated that if a cooling degree-day determined at some base mean
daily temperature were used, it would be highly erratic because of the
latent heat that has to be extracted from the air and the heat load of
the occupants, lights, and appliances not related to the outside air tem-
peratures.

The conventionél degree-day method is the simplest method used for
extrapolating climate to yearly or monthly heating and cooling require-
ments. The American Gas Association (2) determined from records in the

heating of residences that the gas consumption varied directly as the



degree-days, or as the difference between 65°F and the mean outdoor tem-
perature. In other words, on a day when the mean temperature was 20 de-
grees below 65°F, twice as much gas was consumed as on a day when the
temperature was 10 degrees below 65°F. Studies made by the National Dis-
trict Heating Association (3) of the metered steam consumption of 163
buildings located in 22 cities (and served with steam from a district
heating company) substantiated the approximate correctness of the 65°F
base chosen by the gas industry. From these developments researchers
utilized the fuel consumption per degree-day ratio (for a sufficiently
long period) to compare and determine the relative operating efficien-
cies. Such results should be used with some resérvation as discussed in
Reference (4), since it is possible to have wide variations (e.g., be-
tween early and late winter periods).

Since the early days of the development of the degree-day method,
researchers have constantiy been concentrating on refining and improving
this method. An example of this is discussed in a study by Harris and
Anderson (5) where they discuss the development of a degree-day correc-
tion factor. From their analyses they concluded that the corrected
degree-day approach to estimating seasonal energy consumption of residen-
tial heating equipment provides a logical procedure for applying correc-
tion factors to ﬁhe conventional degree-day operation to compensate for
normal extraneous heat inputs to the house, and for the maintenance of an
indoor temperature other than 70°F. Use of air temperature tables in
estimating energy requirements are discussed in a paper by Singman and
Cohen (6), who utilized air temperature tables published by the Depart-
ment of Water and Power of the City of Los Angeles, derived from 10-year

records of hourly dry bulb temperatures. This paper describes the use of



heating and cooling degree-hours, defined to be the sum of all products
ofvthe difference between each temperature, and selected base temperature,
times the expected number of hours during which such temperature occurs
within a given time period. A cooling energy factor was introduced by
Anders (7). in a study to develop a procedure for selecting the equipment
and utility systems that serves two purposes: (1) provides a basis of
comparison for all the various types of equipment and forms of fuel and
energy available,‘and (2) can be simplified for use by the 15 post office
regions. This paper describes the use of cooling energy factors and ex-
plains how this factor reflects the amount of cqoling effect that can be
obtained from outside air which assists the refrigeration machine in re-
jection of heat from the building. The procedure in this paper utilizes
calculations and tabulations of the monthly heating and cooling energies,
and normal electric energy demand and consumption, as the basic data for
comparison of various systems and energies.

The most accurate way to calculate the energy units of heating and
cooling reguirements for a structure over a period of time is to corre-
late the hourly weather duration and the heat flow associated with various
weather;(B). But this weather and heat flow information must be modified
to give due consideration to internal heat generated in the building.

This internal heat modification incorpérated into the weather and building
data approach represents a major departure from the degree-day methods on
heating that have been used for many years, and that have more recently
been considered for cooling. An interesting study by Umlang (9) describes
a method which employs weather data tables arranged so that they serve as
multipliers which determine the heating or cooling energy requirements for

any building for which the heat load characteristics are known. The major



10

drawback of this technique is that the work involved in preparing these
temperature tables for different areas is rather tedious. As the theory
was developed by stages, no systematic approach to pfeparation of these
tables is possible.

An investigation utilizing 11 normally occupied residences in six
cities was reported in Reference (10). A method for predicting the oper-
ating cost of residential cooling equipment was developed and confirmed
by test results in this paper. The analysis of the results of this paper
shows that operating costs can be related to degree-days above 70°F. It
was also concluded that the degree-day concept is preferable to the
degree-hour concept frequently postulated for cooling.

The concept of using a cooling degree-day as an index of air condi-
tioning energy'consumption was traced back to 1953 (11). A study by
Pappas and O'Brien of Southern Research Institute revealed that the use
of a cooling degree-day (based on 65°F as an index of cooling require-
ments) appears to give a reasonable correlation with the energy consump-
tion of.cooling plants. Temperature bases of 75°F and 80°F showed prac-
tically no correlation with cooling energy consumption. They concluded
that a 65°F base for the cooling degree day is not the complete answer
for estimating energy or fuel consumption to compare seasonal operating
efficiency; however, it does appear to be a step in the right direction
if it is adopted and practiced. Studies of monitored buildings in recent
years have revealed base temperatures significantly different from the
65°F base traditionally used. Analysis of data from the Twin River pro-
ject by Myer and Benjamini (12) of Princeton University led them to their
development of "modified degree-days." Their study stated that modified

degree-days differ from conventional degree-days in two ways: (1) the
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65°F base temperature in degree-days is replaced by a reference tempera-
ture parameter which is fitted to the data, and (2) the distribution of
temperatures over a typical day is taken into consideration for modified
degree-days. Their data exploration shows that the addition of a vari-
able reference temperature parameter is decidedly the most important dif-
ference between the "modified" and conventional measure. Another form of
the modified degree~day is discussed by McQuiston and Parker (13). This
method accounts for the adjustment of the use of a 65°F base temperatufe,
and the decrease in efficiency of a fuel-fired furnace and heat pumps
under partial load, by use of interim and part load correction factors,
respectively.

The influence of degree-day base temperature on building energy pre-
diction is studied by Arens and Nall (14). The companion paper to this
one (15) describes how to adjust the annual heating and cooling require-
ments predicted by TRY (test reference year) data. Their result is based
on the relationship between heating and cooling requirements and heating
and cooling degree-days to a base appropriate to a particular test house.
The test house was designed, however, to be typical of most current resi-
dential constructions. The conclusions of these studies are that a com-
bination of the TRY tape analysis and energy calculations demonstrate a
new test of the effectiveness of degree-days to different bases for pre-
dictions of annual heating and cooling requirements. Results both from
monitored buildings and from compﬁter studies indicaﬁe that the tradition-
al 65°F base for degree-day calculations does not accurately reflect the
actual balance point temperature of occupied residential bﬁildings. Vari-
ations of temperature distributions in different climate areas may result

in significant errors in predictions when an inappropriate base temperature
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is used for the degree-day calculation. Energy conservation efforts
based on these predictions may be inappropriate, resulting in increased
energy usage and operating costs.

Among the cited references, some were based in part on studies which
are closely\related to the present study. Selection of a hypotheticai
representative building for simulation studies of energy requiréments
were discussed in References (16, 17, 18). Studies by Armstrong and May
(19) of the Newcastle-Upon-Tyne Polytechnique, and Jones and Sepsy (20)
of Ohio State University, are also among these studies. 1In the study by
Jones and Sepsy, a building located on the campus of Ohio State Univer-
sity was instrumented and monitored to verify the simulation methods.

The purpose of their study was to develop computer simulation methods for
predicting heating and cooling load profiles using weather, structural,
and architectural data as input, and predicting energy consumption of the
system. Detailed field measurements on a test building were compared
with the simulated results. Theif conclusion from this study is that the
general agreement between simulated and measured data, during periods
where the equipment and controls were operating as assumed in the model,
were satisfactory. The major items which caused uncertainty were diffi-
cult to predict or cohtrol; these include the relationship between the
éssumed thermodynamic equilibrium space temperature and the set point of
the space thermostats, and the percent of internal shading at the windows.
Their current studies, utilizing this instrumented building, are directed
towards determining the effects of various changes in system operations
and control modes to identify various energy conservation ﬁethods.

The ASHRAE Task Group on Energy Requirements, for heating and cool-

ing of buildings, has worked on the development of a procedure for hour-
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by~hour computer-based methods of calculating building cooling and heat-
ing loads and yearly energy usage (21, 22). They developed a procedure
for determining the weather data for input into the final calculation
method. They also researched existing computer programs which had the
same function (calculation of yearly building energy usage), compared

with one another and with measured test results. From their analyses

they developed a model for generating a Test Reference Year (TRY) to cal-
culate energy requirements of buildings. The ASHRAE précedures for load
and energy calculations were tested by the best means that the Task Group
were able to devise, and the correlation was close enough that, when
properly applied, predicted the energy requirements of a structure, depen-
dent on the input parameters. They also demonstrated how an accurate pre-
diction of energy requirements can be made by existing energy analysis
programs provided that (1) the program includes simulations for the sys-
tems under consideration, and (2) the input closely reflects the actual
operation of the building.

Emerging literature dealing with the analysis of energy data primar-
ily reports studies which are "macro," both in time and sample frame, in
the sense that the data indicate the monthly demand for energy for a
diverse aggregate of energy consumption units. Analysis of the monthly
energy bills for all of the residential consumers served by one or more
utility companies would be a typical framework. These analyses proceed
by ignoring, or statistically adjusting, the diversity of the units under
analysis.

A study of a single homogeneous community in central New Jersey,
where a set of almost identical owner-occupied town houses are located,

were reported by Mayer (23). On the negative side, analysis of a single
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homogeneous community prohibits one from making statistical references
about the totality of constructions, or even making claims about a wide
variety of construction types. On the positive side, analysis of a large
homogeneous sample gives one a great deal of confidence in making state-
ments about the behavior of units similar to fhose under analysis. Fur-
thermore, analysis of similar units gives a strong indication of both the
variation in energy consumption patterns and the effects of numerous vari-
ables on the level and pattern of energy demand.

In the survey of literature cited, there seemed to be a great deal
of homogeneity in the sense that energy consumptions were directly relat-
ed to a climatic index in various forms of a degree-day, which in almost

all cases had no climatic parameter other than the atmospheric tempera-

ture.



CHAPTER III
DESCRIPTION OF THE METHODS OF SOLUTION

This chapter outlines the general procedure to accomplish the objec-
tives of this study. Discussions are made to demonstrate the needs for
the analyses that are discussed in the chapters that follow.

From the survey of literature discussed in the previous chapter, the
need for a simplified procedure to estimate energy requirements of commer-
cial structures was apparent. The vast majority of literature surveyed
deals with procedures for estimating the energy requirements of residen-
tial dwellings. These procedures normally relate energy consumption to
climatic indices, which are functions of atmospheric temperature only.
This has been known to result in erratic estimation, as the effects of
the other significant climatic parameters are neglected. The present
study differs from these in that enérgy requirements are reléted to a
climatic index which accounts for all significant environmental variables.

As mentioned in the previous chapter, the concept of selecting a
hypothetical representative building for simulation studies of energy re-
éuirements has been a common practice (16, 17, 18). This concept general-
ly is used to avoid extensive analyses of a large number of structures
which require a great deal of computation, time, and effort. 1Instead, a
representative building from the class of structures under consideration

can be selected and efforts can be directed to an analysis of this

15
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building. The results of these analyses can be generalized and extended
to other structures in the same category.

In the present study, a hypothetical building was modeled to repre-
sent the thermal behavior of heavy institutional buildings. This build-
ing was selected from the architectural plans of a sample of institutional
huildings. A detailed procedure in modeling a representative building,
which typifies the behavior of the class of structures under study, is
discussed in Chapter V.

It was discussed earlier that this study differed from most others
in that the effects of additional environmental parameters were consider-
ed in estimating energy requirements. For this purpose, the parameters
were identified (Chapter IV) and a representative building was structured
(Chapter V). Prom simulation studies of the representétive building, an
improved degree-day concept, which is a function Qf the significant envi-
ronmental parameters, was developed (Chapter VI). Detailed discussion of
the formulation and development of this concept, along with its feasibili-
ties and applications, are discussed in Chapter VI. The method described
in Chapter VI assumes that the heating and cooling demands of a building ‘
are directly related to the corresponding degree-days. Moreover, these

degree-days are functions of significant weather parameters. That is:

CL = £ (CDD) : (3.1)
HL = g (HDD) (3.2)
where
CL = cooling demand;
HL = heating demand;
CDD = cooling degree-day;
HDD = heating degree-day;
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and

CDD

]

f (weather parameters) . (3.3)

g (weather parameters) (3.4)

HDD

The functional relationships of the above equations, along with the me-
thodology utilized in obtaining these relationships, are discussed in
detail in Chapter VI.

It is important to realize that the analysis of the results from the
representative building was instrumental in the development of an improv-
ed degree-day concept. This concept was utilized to estimate the demand
of the representative building.

The procedure was then generalized td develop a method for estimat-
ing energy requirements of the commercial structures. This developed
procedure accounts for variations in the shape and envelope characteris-
ﬁics of any building within the category of heavy structures. More spe-
cifically, the procedure was developed for estimating energy requirements
of buildings which may be categorized as heavy structures (6 to 8 inch
heavy concrete exterior walls, 6 inch concrete floor slab, and approxi-
mately 130 1b of building material per square foot of floor area). The
estimating technique was developed for buildings whose total glass area
ranges between 1/4 to 3/4 of their total wall area. The interior shading
devices which were utilized in these formulations had shading coeffi-
cients which ranged between 0.25 to 1.00 (Table X). Various glass mate-
rials which were utilized in these developments covered the range of the
transparent material typically used in commercial structures. The occu-
pancy of these buildings was in the range of approximately 200 to 300
square feet of net floor area per person. The internal loads generated

by lights amounted to approximately 1.5 to 3.0 watts per square foot of
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net floor area. Ventilation and infiltration rates were in the range of
five cubic feet per minute per person. Computational experimentsvwhich
were conducted to develop these techniques involved the analysis of simu-
lated heating and cooling demand of these buildings with continuous occu-
pancy (seven days per week), and with the heating and cooling equipment
operating under steady state conditions. It is emphasized that these
developments are for estimating energy requirements for space heating and
cooling, and the power input to lights, appliances, and other components
should be estimated separately.

The methodology in development of this generalized procedure is dis-
cussed in detail in Chapter VII. The procedure involves the assumption
that heating and cooling demand of a building is a function of the pro-
duct of two distinct variables. These variables represent the character-

istic behavior of the building and weather parameters. That is:

CL

fl(building parameters) x f2(weather parameters) (3.5)

HL

gl(building parameters) x gz(weather parameters) (3.6)

where the weather variables are expected to be the functions.of signifi-
cant environmental parameters, and the building variables are expected to
be the functions of the most significant building parameters. The func-
tional forms of the above equations, along with the methodology utilized
in obtaining those equations, are discussed in detail in Chapter VII.

One of the major difficulties with the degree-day procedures for
estimating energy requirements is the need for an efficiency parameter
which adequately presents the system performance over the period of time
under consideration. In the present study, research was concentrated on
the presentation of a procedure to determine a seasonal energy efficiency

ratio which will adequately describe the system performance. Detailed
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discussion of this procedure is explained in Chapter VIII. Utilizing
this efficiency parameter concept, energy consumption may be calculated

from predicted demand obtained from Equations (3.5) and (3.6). That is:

[l

EC CL/SEER ' (3.7)

EH

KHL/SHE (3.8)

where

EC = cooling energy consumption;
EH = heating energy consumption;
CL = cooling demand;
HL = heatihg demand;

SEER = seasonal enerqgy efficiency ratio;
SHE = seasonal heating efficiency; and

K = conversion factor.

One of the most important features of the present moael is the capa-
bility of a systematic generation of weather taples for different loca-
tions. These tables can be generated through the use of an analytical
expression developed in this study, and utilizing weather tapes. The
values in these tables serve as multipliers to estimate heating and cool-
ing demand when used in conjunction with the significant building para-
meters (Equations (3.5) and (3.6)). It is important to note that these
significant building parameters are combined in a systematic manner to
produce a constant value for the building under consideration. Therefore,
the analysis will include determination of the product of two values
(building and weather pardmeters) to estimate the demands of this build-
ing. Utilizing the concept of efficiency parameter, the energy consump-

tion of the building can be calculated. A generated weather table using



this procedure for different locations are presented in Appendix A of
this study.

In summary, the following procedure was followed to accomplish the
major goal of this study:

1. Significant environmental parameters were identified {Chapter
v).

2. A representative building was modeled (Chapter V).

3. An improved degree-day concept was developed (Chapter VI).

4. A simplified approach for predicting the demand of a building

was developed (Chapter VII).

5. BAn efficiency parameter for estimating energy consumption was

introduced (Chapter VIII).



CHAPTER IV

SENSITIVITY ANALYSIS OF THE THERMAL RESPONSE
OF BUILDINGS TO PERTURBATIONS IN

THE WEATHER PARAMETERS

This chapter analyzes the sensitivity of building structures to
changes in weather conditions and identifies the significant envifonmen—
tal variables. Two different buildings from different classes of struc-
tures (i.e., heavy and light) were investigated. The cooling demand of
the buildings were used to measure the effect of perturbations in envir-
onmental conditions. Computational tests were conducted to determine
sensitivities to outdoor dry bulb temperature, solar flux, humidity, and
combined ventilation and infiltration. Computational experiments were
conducted utilizing actual climatic data (24) and employing an energy
simulation program using the ASHRAE transfer function procedure (25).
Results obtained from these analyses are discussed in the latter part of
this chapter.

It should be apparent (due to interactions between the outside envir-
onmental variables, the structure, the inside space, and the occupant)
that the role of climatalogical factors in predicting the thermal behav-
ior of buildings cannot be assessed independently of the interacting ele-
ments. Changes in outside ambient air temperature certainly have fewer
immediate effects on the demand of a massive structure than on a light-

weight structure. However, this may not be a valid statement if the
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massive structure permits a large infiltration rate. The role of inci-
dent solar radiation is very important when irradiated surfaces are good
absorbers, or when they transmit directly to the interior space. On the
other hand, if the opaque surfaces are good reflectofs and the transpar-
ent surfaces are shaded, or if air velocities over the surfaces are high
and the air temperaﬁure low (compared to surface temperatures), the
effect of incident solar radiation may not be significant. In general,
environmental factors become less important in influencing energy require-
ments as the thermal resistance and capacitance of protective elements
separating the human from the surroundings is made greater. The two
buildings that were analyzed and are discussed in this chapter were
selected to have identical shapes, size, volume, and occupancy, but with
different boundary characteristics in that the thermal resistances and
capacitances of the exterior walls of these buildings were different.
Detailed discussion of the procedure involved in conducting the computa-

tional experiments is discussed for each building separately.
Heavy Construction

A sample building (Whitehurst Hall), located on the campus of
Oklahoma State University, was chosen to investigate the sensitivity of
the thermal response of a heavy building to perturbations in the weather.
Whitehurst Hall is a four-story office building facing north with 57,366
square feet of net floor area. This building was chosen specifically be-
cause of the availability of extensive building envelope information and
specifications from a previous study (i.e., shape, construction material,
people and other inte;nal heat generating loads, and schedule). Computa-

tional experiments were conducted to analyze the effects of varying
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climatalogical parameters on the cooling demand of this building. Basic-
ally, four variables were considered for this analysis, namely, atmés—
pheric dry bulb temperature, solar insolation, humidity difference of
indoor and outdoor space, and the combined effects of ventilation and
infiltration. The computational experiments involved simulating cooling
demand of this building for an average 24-hour day by employing a dyna—
mic simulation model which required detailed building data and actual
weather information on an hourly basis. The methodology involved to
generate an average 24-hour day, utilizing actual weather data, is dis-
cussed in Reference (26). This procedure was employed in conducting the
computational experiments. The concept of an average day was utilized,
as this represents a variation of the climate over an entire month which
has a great deal of influence on the outcome of the experiments. Each
computation investigated the variation in cooling energy demand of this
building as a result of perturbations in the variables under considera-
tion. The range of values that was investigated for each variable cover-
ed both extremes of a typical situation. To investigate the sensitivities
to humidity difference (denoted by DW) and ventilation and infiltration
(denoted by VI), a daily average value of these quantities was put into
the simulation program and was used to compute the demand. However, this
procedure could not be followed for variations in temperature and solar
insolation because there is no one-to-one correspondence of data. In
other words, each computational experiment which required one input value
of humidity, ventilation, and infiltration also required 24 hourly values
of temperature and solar insolation data. It is apparent that profiles
of temperature and solar insolation data should be used for calculating

the cooling demand. One possibility would be to use temperature and
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solar insolation values which are randomly distributed over 24 hours for
each computation. The appiication of this method to a problem of thié
magnitude, which is being analyzed in this context, would be very rigor-
ous and time consuming, and the outcome probably will not provide any
additional information than a simple systematic approach as was utilized
in the present study.

The methodology used was based on generating temperature and solar
insolation profiles similar in shape to those calculated for the average
day. This was achieved by use of constants, which served as multipliers
of weather data in the computer program, to generate distributions of
identical shapes with different mean values. These multipliers were de-
noted by FRACT and FRACS, representing fractions of the actual tempera—
ture and solar insolation hourly data thét were used in the simulationl
program. The values of these constants were chosen because they produced
distributions. of temperatures ranging from 80 percent to 120 percent of
the actual temperature data (see Figure 1l). The solar insolation multi-
pliers also generated a distribution which ranged from 10 percent to 200
percent of the actual insolation data (see Figure 2). This approach
greatly simplifies input information for computational purposes.

It is important to realize that the assumption that identical distri-
butions are used in each computation can be justified for the following
reasons. An average day is used to simulate the cooling demand and is a
justification of this assumption. This day is calculated from an arith-
metic averaging of the actual weather data over an entire month. There-
fore,‘it contains the information in perturbations of the weather over an
entire month. Hence the distribution of the temperature and solar insola-

tions, which are calculated for this day, represent the typical
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distribution for that month. This justifies the use of similar profiles
(by use of multipliers) because they can also be regarded as typical
variations in the weather.

The general procedure to conduct the computational experiments con-
sists of constructing a two-dimensional table of values where the rows
and columns dénote the variables under consideration, and each entry of
this table denotes the cooling demand. The matrix of values obtained
from computational experiments made for Whitehurst Hall is tabulated in
Table I. Major rows and columns of Table I, which represent the vari-
ables under analysis, are divided into several subrows and subcolumns to
represent the actual magnitude of the variables used in the simulation
program. As discussed earlier, where temperature and solar insolation
are concerned, the values of multipliers represent a fraction of the ac-
tual recorded data which were used in the simulation program. After com-
pletion of the computational experiments, which led to development of
Table I, an attempt was made to analyze the general outcome. Results
obtained from these analyses are discussed in the latter part of this

chapter. Graphical representation of the results obtained are displayed

in Figures 5 through 8.
Light Construction

For the purpose of compa;ison and as a measure of dependability and
reliability of the preQailihg results, identical computational tests were
conducted for a building from a different class of structures (i.e., light
construction). This is a hypothetical building which was selected be-
cause of its identical shape, facade, and area to the>heavy building

which was discussed earlier. The envelope characteristics of this



TABLE I

SENSITIVITY ANALYSIS OF THE HEAVY CONSTRUCTION TO

PERTURBATIONS IN THE CLIMATE

FRACT
1.00

1.10

1.20

DW x 102

-0.80 -0.50

0.20

0.70

0.85

VI
325 650 975

1300

FRACS

0.10
0.50
1.00
1.50
2.00

0.809
1.013
1.138
1.216
1.360

1.102
1.306
1.432
1.510
1.655

1.397
1.600
1.727
1.804
1.949

0.590 0.635
0.794 0.839
0.919 0.964
0.997 1.042
1.141 1.187

0.741
0.945
1.070
1.148
1.292

0.839

1.043

1.168
1.246
1.391

0.729 0.756 0.783
0.933 0.960 0.987
1.058 1.085 1.111
1.136 1.163 1.189
1.281 1.307 1.334

0.809
1.013
1.138
1.216
1.360

FRACT

0.80
0.90
1.00
1.10
1.20

0.561
0.844

1.138

1.432
1.727

0.330 0.375
0.695 0.671
0.919 0.964
1.213 1.259
1.508 1.553

0.481
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0.525 0.537 0.549
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1.004 0.975 0.947
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1.138

1.004 1.015
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1.134
1.158
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building were chosen because they placed this building within the light
construction category, as suggested by ASHRAE (25).

Transfer function coefficients of the exterior surfaces for this
construction were computed by employing a computer program TRANSF based
on a method described in Reference (27). Computational experiments made
for a heavy construction were replicated for this light building, and as
discussed earlier, the results were tabulated and are shown in Table II.
Graphic presentation of the outcome of this analysis is shown in Figures
9 through 12. Analysis and discussion of the prevailing results for this
building are discussed, along with the results of the heavy construction

in the next section of this study.

Analysis of the Results

As discussed earlier in this chapter, the general outcome of the
sensitivity analysis of both heavy and light construction is tabulated
in Tables I and II, respectively. There are a number of ways, preferred
by most engineers and scientistsg, to graphically demonstrate this analy-
sis. A graphic illustration of data has the advantage of providing in-
sight into the physical behavior of the variables under analysis. As
stated previously, one objective of this study was to identify signifi-
cant environmental variables (see Chapter I). In order to accomplish
this task, an attempt was made to illustrate the variations in the cool-
ing demand of each building as a function of each variable. Figures 3
and 4 present typical variations in cooling demand as a function of cli-
matic‘variables for heavy and light construction, respectively. Sharp
variations in cooling demand are observed for variations in temperature
and solar insolation values, moderate changes can be observed for changes
in humidity, and no significant variations are detected for perturbations

in ventilation and infiltration for both construction types. It is



TABLE II

SENSITIVITY ANALYSIS OF THE LIGHT CONSTRUCTION TO

PERTURBATIONS IN THE CLIMATE
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important to notice that the pattern of variations in both cases is al-
most identical, which serves as a measure of reliability and dependabil-
ity of the computational experiments. This will be discussed in further
detail in the remainder of this chapter.

Basically, four series of plots were made for each construction to
illustrate variations in cooling demand as a function of each variable.
Each series consists of three plots which demonstrate the effects of
parametric values of each variable. These plots are discussed in order.
Illustrations for the heavy construction are considered first. Series of
plots are illustrated in Figure 5(a), (b), (c¢) and demonstrate variations
in the cooling demand of the heavy construction as a function of solar
insolation. It is evident that each series of plots consists of three
illustrations, as seen in Figure 5. Figure 5(a) represents variations
for different parametric values of temperature. Figure 5(b) is represen-
tative of variations in parametric values of humidity ratio difference.
Figure 5(c) demonstrates variations in parametric values of ventilation
and infiltration. This analogy was consistently utilized in a graphic
representation of the results of this section. The pattern of variations
in all three plots of Figure 5 demonstrate an evident increase in cooling
demand for increasing values of solar insolation. Quantitative analysis
of these illustrations is demonstrated in tabular form in Table III and
will be discussed in detail in the latter part of this chapter. Figure
6(a), (b), and (c) illustrates variations in cooling demand as a function
of temperature for different parametric values of solar insolation
(Figure 6(a)), humidity ratio difference of indoor and outdoor (6(b));
and ventilation and infiltration (6(c)). Again, it is evident in all of

these plots that cooling demand . of this building increase sharply as the



2_0 T T T T T T T T T
_(a) _
1.6 FRACT=1.2
i FRACT=1.1
1.2+
- FRACT =1.0
0.8r FRACT=0.9
o 0.4r
o | N
T op——+ : et
p4
: L (b) -
1.6 .
9 " DW=.0085
2
m 1.2"
V =3
[a] DW=.0065
Z 08 DW =.0020 i
E i DW=-.0080 i
o 04f 7
2 | 4
0 } t + r t + + ¢
-l
8 L (c) -
O 16 ]
0.4+ .
0 1 1 i 1 i 1 o 1 1
() 4 8 1.2 16 20
FRACS
Figure 5. Cooling Demand of the Heavy Construction

Versus Solar Insolation

34



20

T T T T T LB
| (a) FRACS = 2.0 )
16k FRACS = 1.5 ]
1.2} .

0.8

COOLING DEMAND (BTU/DAY X 1077)

Figure 6.

FRACS =5
FRACS = .1

1 1 1 |

11 12 13
FRACT

Cooling Demand of the Heavy Construction
Versus Temperature

9 10

35



36

atmospheric temperature is increased. A series of plots illustrate the
effects of variations in humidity ratio differences on the cooling

demand of the building (Figure 7). A moderate increase in the wvalue of
cooling demand is observed for increasing values of humidity ratio dif-
ference in all plots. It is interésting to note the crossing pattern,
which is observed for parametric values of ventilation and infiltration
in Figure 7(c), because outdoor air is less humid than indoor conditions
(i.e., DW is negative). Therefore, when ventilation and infiltration are
introduced at a given rate, the latent component of heat generation, as a
result of differences in the humidity ratio (DW) of incoming and outgoing
air, acts as a detriment to the‘cooling component. This is best described

by the following equations:

q = 1.10 (VI) (AT)
q, = 4840 (VI) (DW)
where
qg = sensible heat gain as a result of temperature difference
(Btuh) ;

9, = latent heat gain due to a difference in humidity ratio of
incoming and outgqing air (Btuh);
VI = ventilation and infiltration (ft3/min);
DW = difference in humidity of outdoér and indoor (lbm of water/
lbm of air); and
AT = difference in outdoor and indoor temperature (°F).
It is evident from the above that as DW becomes negative, it forces
the latent heat gain to become a negative quantity. This causes the
total heat gain, due to ventilation and infiltration (i.e., sensible plus

latent), to become either a smaller positive quantity or a negative
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quantity, depending on the magnitudes of sensible and latent heat gains,
respectively. It is also evident from the above equation that as VI in-
creases, latent heat gain and cooling demand will also increase for posi-
tive values of DW. The exact opposite of this is true for negative val-
ues of DW. This is evident in the plot of Figure 7(c), where the cross-
ing point occurs at point DW = 0, which is consistent with theoretical
expectations.

The last series of plots for the heavy construction are shown in
Figure 8. This figure illustrates variations in the cooling demand of
this building as a function of changes in ventilation and infiltration.
It is obvious that no significant changes in the cooling demand can be
observed in any one of these plots. From the graphic presentations up
to this point, one can observe that variations in the cooling demand
are strongly affected by perturbations in solar insolation and tempera-
ture, moderately changed by variations in humidity, and no significant
variations are detected for changes in ventilation and infiltration.

As discussed earlier, replicate series of figures were plotted for
variations in the cooling demand of the light construction as a function
of each variable. These plots are shown in Figures 9 through 12. It is
interesting to note that identical behaviors and patterns, which were dis-
cussed for the heavy construction, can be observed for the light construc-
tion as well. Figure 9 illustrates the effects of perturbation in solar
insolation on the cooling demand of this building. Strong effects can be
observed in all three plots of this figure. The variations in cooling
demand caused by perturbations in temperature are illustrated in Figure
10. A sharp increase in values of the cooling demand (for increasing

values of temperature) is observed in all three plots of this figure.
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The effects of .variations in humidity, ventilation, and infiltration on
cooling demand of the light construction are illustrated in Figures 11
and 12, respecfively. Moderate or no significant effects in cooling de-
mand are observed for humidity, ventilation, and infiltration, respec-
tively.

Quantitative analyses of the results obtained, based on the study in
this chapter, and represented by series of plots in Figures 5 through 12,
are summarized in Tables III and IV for heavy and light construction, re-
spectively. These tables summarize maximum deviations in cooling demand
as a result of variations in each variable and the corresponding paramet-
ers. Maximum deviations listed in Tables III and IV served as criteria
for determining the importance of the influence of environmental variables
on sensitivity of the thermal response of buildings. A criterion was
chosen with parameters which attributed to deviations below 10 percent;
these were considered insignificant. This means that the climatic vari-
ables, the perturbations of which caused maximum deviations of above 10
percent in cooling demand, are considered the most influential. Analysis
of the results of these tables demonstrate that temperature and solar in-
solation are the most dominant variables. This was also observed earlier
in the graphic presentatioh of the results. It is also evident that sen-
sitivity of the thermal response of both buildings is moderately affected
by variations in humidity ratio difference of indoor and outdoor air.
Deviations of about 10 percent énd smaller, resulting from changes in ven-
tilation and infiltration rates for both buildings, aiso suggest the in-
significance of this variable compared to the effects of others that were

considered.

In conclusion, it can be stated that quantitétive generalizations



SUMMARY OF RESULTS OF HEAVY CONSTRUCTION

TABLE III
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Cooling Demand (BTU)(10_7)

Percent

Variable Parameter MAX MIN Deviation
FRACS 1.39690 0.26703 80.88
FRACT DW 1.50780 0.32978 78.13
VI 1.72680 0.56104 67.51
FRACT 0.77307 0.26703 65.46
FRACS DW 1.14140 0.59029 48.28
VI 1.28070 0.72955 43.03
FRACT 0.58670 0.32978 43.79
DW FRACS 0.83945 0.59029 29.68
VI 1.16830 0.91915 21.32
FRACT 1.72680 1.60640 6.97
VI FRACS 0.80925 0.72955 9.85
DW 1.16830 1.06600 8.75




SUMMARY OF RESULTS OF LIGHT CONSTRUCTION

TABLE IV
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-7
Cooling Demand (BTUx 10 )

Percent

Variable Parameter MAX MIN Deviation
FRACS 1.27580 0.38298 69.98
FRACT DW 1.43590 0.42776 70.21
VI 1.65480 0.73202 ' 55.76
FRACT 1.01800 0.38298 62.38
FRACS DW 1.23630 0.55275 55.29
VI 1.37560 0.69304 49.62
FRACT 0.75089 0.42776 43.03
DW FRACS 0.80191 0.55275 31.10
VI 1.81000 0.93182 21.10
FRACT 1.65480 1.53450 7.27
VI FRACS 0.77171 0.69304 10.19
DW 1.18100 1.07860 8.67
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regarding the influence of climate on the thermal behavior of a structure
is not a simple task to achieve. This study shows how many interactions
between the climatic variables, the structure, and the interior space
should be taken into account, and a quantitative assessment of the result-
ing thermal response for a particular structurevsubjected to a particular

climate can be made.



CHAPTER V
MODELING A REPRESENTATIVE BUILDING

This chapter discusses the technique utilized in selecting a hypo-
thetical building to be represéntative of the class of structures under
investigation. This analysis is one requirement of the objectives of
this study (see Chapter I).

The practice of selecting a hypothetical fepresentative building
for simulation studies of energy requirgments is a common practice among
researchers (16, 17, 18). The general practice is to proceed with the
analytical developmenté of this building and, based on these advance-
ments, draw parallels to the actual conditions. The major interest of
this study was concerned with the class of structures that may be cate-
gorized as heavy construction. Analyzing the individual thermal behav-
ior of numerous constructicn types would require a tremendous amount of
effort and computation time; therefore, a modeling method must be employ-
ed which will closely approximate the general response and behavior of
these buildings. At this point an effort was concentrated on analyzing
the behavior of a sample of institutional type buildings, which may be
generally classified as heavy construction with average fenestration,
with medium to high internal loads. General University buildings on the
campus of Oklahoma State University were chosen for the investigation.

A hypothetical representative building which typifies the thermal re-

sponse of these buildings was modeled. The steps followed in

48
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étructuring the hypothetical representative building are described below:

1. fhe buildings under consideration were categorized in two
groups and a representative building for each category was found. These
categories included buildings whose nOrth-séuth axis constituted their
dominant length, and buildings whose east-west axis constituted their
dominant length.

2. After studying the architectural plans, general information
about each individual building was obtained. This information included
the building shape and facade, construction material used, and differ-
ent surface types (walls, glass, doors).

3. The exterior surface areas of each building were normalized,
based on‘the net floor area of the corresponding building. These nor-
malized quantities were summed over the total number of buildings, and
average values for these quantities were computed from the following
equation:

N
) (8, /FA.)

i=]1

(E]X)j = j=1,2, 3, 4 (5.1)

N i

NA = average normalized area;

A = surface area (wall, glass, door);
FA = net floor area;

N = number of buildings;

i = building index (i =1, 2, . . . N); and

.
[

surface index (1 = north, 2 = south, 3 = east, 4 = west).
4. An average net floor area was also calculated for these build-

ings by using the following equation:
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N
L (FA),
FA = =1 - (5.2)
FA = = '
where
FA = average floor area;

N = number of buildings; and

i building index (i =1, 2, . . ., N).
By definition, the representative building is an average building
which is modeled from analyses of the buildings that were investigated.

Thus different surface areas of this building can be computed from the

product of a corresponding normalized area and the average net floor

area, that is:

A .= (NA), x FA (5.3)
rj j

where Ar is the surface area of the representative building (wall, glass,
door) .

This procedure was utilized to calculate the dimensions of different
surfaces for the representative building of each category.

Types of construction materials used for the exterior walls of the
representative buildings were determined from a survey of the materials
used for each building. Internal loads, occupancy, and building schedule
were also determined from an analysis of each individual building. A
computer program TRANSF was employed for calculating the transfer func-
tion coefficients of the exterior shell of both representative build-
ings. Tables V and VI summarize pertinent information from the repre-
sentative buildings in each category.

Theoretically, the representative building typifies the thermal

response of the buildings which it represents. This analogy is followed



TABLE V

REPRESENTATIVE BUILDING FOR NORTH-SOUTH FACING BUILDINGS

North Wall South Wall East Wall West Wall"
A A A A
Aw g d w Aq Ad Aw Aq Ad Aw Ag d
(£t2) (f£2) | (£t2) (££2) (££2) | (£t2) (££2) (££2) | (£t2) (ft2) (££2) | (£t2)
L H L H L H L H
(ft) (ft) (£t) (ft) (ft) (ft) (ft) (ft)
264.225 60 264.225 60 119.58 60 119.58 &0
15853.5 3709.5 193 15853.5 3103 185 7175.1 1096 126 7175.1 1021 43
Roofs
North South East West Horizontal
L (ft) H (£t) L (ft) H (ft) L (ft) H (ft) L (ft) H (ft) L (ft) H (ft)
264,225 29.35 264.225 29.35 119.58 27.21 119.58 27.21 234.225 89.58
Building: Representative for north-south facing buildings Nomenclature:
.= 11
FA = 109812 £t Ay = total wall area
3 Ag = window area
Volume = 1895761.5 ft Ad = door area
L = length
H = height

19



TABLE VI

REPRESENTATIVE BUILDING FOR EAST-WEST FACING BUILDINGS

North Wall South Wall East Wall West Wwall
A A A
w Ag 4 Aw Ag Ad Aw Ag Ad Aw g a
(£t2) (££2) | (££2) (££2)  (£t2) | (£E2) (££2) (££2) | (£t2) (££2) (££2) | (£t2)
L H L H L H L H
(ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)
81.6 60 84.6 60 222.57 60 222.57 60
5076 1012 11.5 5076 1001 0 13354 2377 170 13354 2115 260
Roofs
North South East West Horizontal
L (ft) H (ft) L (ft) H (ft) L (ft) H (ft) L (ft) H (ft) L (ft) H (ft)
84.6 25.60 84.60 25.60 222.57 29.02 222.57 29.02 192.57 54.60
Building: Representative for east-west facing buildings Nomenclature:
FA = 63787.5 ftz Aw = total wall arca
3 Ag = window area
Volume = 1129765.3 ft Ad = door area
L = length
H = height

Zs
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in the next chapter (see Chapter VI), where an analytical model for ex-
pressing heating and cooling degree-days was developed from a simulation

study of the thermal response of the representative building.



CHAPTER VI

DEVELOPMENT OF AN IMPROVED HEATING

AND COOLING DEGREE-DAY CONCEPT

This chapter discusses the methodology for development of an analyti-
cal procedure for expressing heating and cooling degrge—days in terms of
the significant environment variables, which were identified earlier in
Chapter IV. These degree-day quantities were employed to develop a pro-
cedure for estimating the heating and cooling demand of the representative
building.

An effective way to calculate the heating and cooling demand of a
building is to study the building thermal performance by using accurate
computer simulations. 1In order for such studies to be conducted on the
computer, however, the computer program to be used should be very compre-
hensive, and should indicate the proper response to the change in many
parameters which are pertinent to energy usage. The intent of this chap-
ter and the chapters to follow is to provide a simplified procedure for
estimating heating and cooling demand which may be acceptable for many
engineering practices. The procedure developed is based on the detailed
computer simulation of thermal performance of buildings, which takes into
account all of the variables previously identified that affect the build-
ing characteristics. Appendix B displays the listing of the computer pro-
gram which was utilized throughout this study to perform an hour-by-hour

dynamic simulation of thermal performance of buildings. The analysis was

54
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concentrated strongly on heavy construction for which a representative
building was modeled in the preceding chapter. The procedure was then ex-
tended to study the thermal performance of a light residential dwelling

to determine the possibilities of implementing this methodology to other

classes of structures. These analyses are described below.

Prediction Model for the Representative Building

For this section an analytical model was developed for predicting
heating and cooling demand of the representative building. The analysis
is discussed under two different categories (i.e., cooling and heating).
An expression for degree-days and, consequently, a prediction equation

for demand of each category was developed.
Cooling

The procedure begins with the conventional degree-~day method and
proceeds with improving and modifying this technique, based on previous
findings of this study, to achieve the final formula.

First, the conventional degree-day is described by

N

DD = (T - 65) 5 (6.1)
where
DD = conventional degree-day (°F day); -
T = average temperature (Tmax + Tmin/z)(°F); and \
N = period for which T is calculated (hr) .

Theoretically, building demands over a period of time are directly propor-

tional to degree-days accumulated during that period. That is,

CL = £(DD) (6.2)
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and for the purpose of this study the conventional means are replaced by

the following improved procedure:

CL

]

f (CDD) (6.3)
Therefore,

CL

kCDD (6.4)
where CDD is defined by

N

CDD = (T ) >4 (6.5)

eq - Tbase

and
CL = cooling demand (Btu);
CDD = cooling degree-day (°F-day);
k = constant of proportionality (Btu/°F-day);
Teq = equivalent ambient temperature (°F); and

Tbase = balance or base temperature of the building (°F)

where, in the above formula, it is evident that equivalent and base tem-
peratures are utilized in places of average and 65°F temperatures, which
are typically used in the conventional procedure. Theoretically, the
equivalent ambient temperature is a function of predominant ambient para-
meters which were identified in Chapter IV. Moreover, this is a ficti-
tious temperature, and is defined to be the temperature of outdoor air,
which in the absence of any radiation exchanges and latent effects, and
with no variation in the temperature distribution, will result in the
same rate of heat entry into the surface as would exist Qith the actual

combination of incident solar radiation, humidity, and temperature distri-

bution effects. Furthermore, it can be postulated that this temperature

can be expressed in following form:
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I
Teq=cl¥+cznfr+c3%ﬁ+c4—cf-g—5ﬁ (6.6)
p
where
T = average daily temperature (°F);
DT = daily temperature range (Tmax - Tmin)(°F);
R = daily average solar insolation (Btu/hr—ftz);
DW = daily average humidity ratio difference between
indoor and outdoor air {(lbm of water/lbm of day air);
a = absorptance of the surface for solar radiation;
h = coefficient of heat transfer by long wave radiation
and convection at the outer surface (Btu/hr—ft2-°F);
Ifg = latent heat of vaporization of water (Btu/lbm water);
Cp = specific heat sapacity of air (Btu/lbm air, °F); and
Cl,Cz,C3,C4 = constants.

The parameters o; h, Ifg’ and Cp were employed to maintain the dimen=-
sional consistency of the above equation. It easily can be observed that
the equivalent ambient temperature is a function of éredominant climatic
variables as identified previously. It should also be noted that a hew
variable DT (daily temperature range) is added to this formulation. This
variable is a climatic characteristic, which is normally suppressed by a
daily average temperature in the conventional degree-day approach, al-
though it could be very influential in estimating energy consumption. A
day with an average temperature which is equal to building balance temper-
ture but with a large daily range might require heating by night and cool-
ing by day (accumulating energy requirements without accumulating either

type of degree-day). Thus a building in this climate will appear to have

a high energy demand in relation to its degree-day. This variable was
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included in the formulation of Teq and CDD to adjﬁst the estimated demand
for variations in the daily temperature. Prior to making any estimate of
the equivalent temperature for any climate, the coefficients of these cli-
matic terms (Cl through C4) must be determined. Evaluation of these co-

efficients is described as follows: from the basic equations we have,

CL = kCDD (6.4)
oD = (T - T, ) - (6.5)

eq base’ 24 )

—_ o — If —
= T + DT + — R + D .6
Teq o CDT + Cy =R + C, —-9-C (6.6)
p
therefore, by direct substitution,
o o = Ifg popy N

CL = k(ClT + C2DT + C3 oy R + c4 Cp DW - Tbase) CYY (6.7)

This expression relates cooling demand to climatic variables in the simp-
lest manner. For a specified building and a particular climate, evalua-
tion of cooling demand in the above equation will require knowledge of

the coefficients k, C., C,., C3, C

1 5 and also the balance temperature T

4 base

of this building. The method used to calculate these quantities required
least squares fitting of the regression analysis of the simulated and
weather data. These data were generated from simulating the cooling de-
mand of the representative building using actual weather data over a spe-
cified period. The listing of the computer program which performs the
regression analysis of data is presented in Appendix B. The results
obtained from these calculations are discussed in detail in the latter

part of this chapter, and the calculated coefficients are listed in Table

VII.



TABLE VII

CONSTANTS OF EQUATIONS FOR PREDICTING HEATING AND COOLING DEMANDS

Representative Residential

Constant Cooling Constant Heating Constant Cooling Constant Heating
Cl 1.00000 Hl ’ 1.00000 Cl 1.00000 Hl 1.00000
C2 -0.07745 H2 -0.13810 C2 ~0.15300 H2 0.00806
C3 0.25587 H3 0.42129 C3 0.24450 H3 0.25010
. -0. . © 0.08942

C4 0.08145 H4 0.06755 C4 0.15550 H4 0.089
k* 537440.16 B * 451299.93 : k* 12607.88 B* 12511.28

*% * % * % **%

Tbase 57.20 Tbase 57.20 Tbase 60.00 Tbase 60.00

*Units are Btu/day-°F.

**Jnits are °F.

69



60

Heating

This section describes a method developed for calculating heating
degree~days, utilizing the same procedure and identical analogy that was
used in the formula for cooling degree-days.

Based on the same analogy which was used previously for cooling, the
formulation begins with a definition of the conventional heating degree-
day:

- N
DD = (65 - T) 24 (6.8)

Theoretically, heating demand is directly related to heating degree-days.

HL = f (HDD) | (6.9)
Therefore,
HL = BHDD (6.10)
where
HDD = (T -r ) 2 (6.11)
base eq 24
and

HL = heating demand (Btu);

HDD = heating degree-day (°F-day);
Teq = equivalent ambient temperature (°F);
Tbase = balance or base temperature of building (°F);

N = period for which HDD is calculated (hxr); and
B = constant of proportionality (Btu/°F-day).
Without further elaboration, an equivalent ambient temperature can be ex-

pressed by the following formula, as it was discussed earlier.
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T =H.T+ HDT + H

I
— f —
+ —J ow 6.12
eq 1 2 3 R H c ( )

4
p

=R

This relationship expresses the equivalent ambient temperature as a func-
tion of climatic variables in a manner identical to the one that waé dis-
cussed for cooling. The difference between heating and cooling equivalent
temperatures is the coefficient of the climatic terms. When Equation
(6.12) is substituted in Equation (6.11l) and the result is replaced in

Equation (6.10), the following relationship is obtained:

I
- - uT o ® oo X
HL [T, oo = (BT + HDT + Hy =R + H, c DwW)1 > (6.13)

This relationship expresses the heating demand (HL) as a function:of the
predominant climatic parameters. As described for cooling, the evalua-
tion of heating demand for a particular climate will require knowledge of
the coefficients and the balance temperature in the above equation. Least
squares fitting of the regression analysis of the simulated demand and
weather data revealed the values of these quantities. These data were
generated by simulating the heating demand of the representative building
using actual weather data over a specified period. Detailed descriptions
of the.results which were obtained from these computations ére made in
the latter part of this chaptér. Table VII displays the computed values
of the constants that are necessary to compute heating and cooling demand
of the representative building. It is important to note that the analy-
sis in this chapter, up to this point, was mostly concentrated on a class
of heavy construction, and specifically on a typical representative build-
ing of this class. BAnalytical models were developed to predict heating

and cooling demand of this building. These analytical models were
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functions of improved heating and cooling degree-days, respectively. Al-
though the major interest of this study is concerned with heavy struc-
tures, there is a great deal of interest in investigating the applicabil-
ity of this procedure to other classes of structures (i.e., medium and
light construction). It is reiterated that this study does not intend to
work out the computations necessary for development of expressions that
are applicable to these classes of structures; rather, its purpose is to
investigate and determine whether the developedbprocedure can be imple-
mented and extended to other building categories. This led to the analy-

sis of a light residential dwelling which is described below.
Prediction Model for a Light Residential Building

This section describes an extension of the procedure, which was pre-
viously developed for the representative building, to analyze the thermal
response of a light residential building. The building selected is a
family dwelling located in Stillwater, Oklahoma, with an approximate net
floor area of about 2170 square feet. The identical procedure, which was
9eveloped for predicting demand of the representative building, was fol-
lowed to calculate the heating and cooling degree-days. These quantities
were utilized to develop equations for estimating heating and cooling
demand of this building. The analysis proceeded by simulating the heat-
ing and cooling demand of this residential building over a certain period
and formulating an analytical expression using the values of demand and
corresponding climate. The analytical expressions (heating and cooling)
which were developed for this building were identical in form to those

previously described for the representative building. That is,
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I
= k(T ©R+c, =W - N
CL o = K(CT + C DT + Cy =R +C, Cp D Tbase) Y (6.14)
— o — Teg — N
HL o = BIT .o~ (H)T + HDT + H, =R + H, ——9—cp DW)} 57 (.6.15)

where the subscript "res" denotes the calculations for a residential
building. For simplicity and convenience, identical nomenclature is used
for both buildings. The convention follows the use of "C" coefficients
describing the cooling mode and "H" coefficients denoting the heating
mode operations. It must be emphasized that although identical nomencla-
ture is used for both buildings (representative and residential), the
values of these constants are different for each case. Least squeresfit—
ting of the regression analysis of the heating and cooling demand, and
the corresponding climatic data, revealed the values of these constants.
Table VII presents the values of these constants for both the heating and
cooling modes and for both buildings. The results obtained from these

analyses are discussed in the following sections.

Analysis and Discussion of the Results

The results obtained from the analyses described in the previous sec-
tions of this chapter are described in detail below. These analyses are
discussed in two distinct parts for the representative and residential
types of construction, respectively. For each case comparisons are made
between the simulated and predicted results to verify the validity of the
developed procedure. Comparisons are also made between the predictions
of the developed model and the conventional degree-day procedure in an

attempt to demonstrate the advantages of the present study. The results
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are illustrated by both tabular and graphic means in the remainder of

this chapter.

Results of the Representative Building

As discussed in the introductory part of this chapter, the purpose
of the analysis included development of an improved procedure to deter-
mine heating and cooling degree-days, which will help to compute heating
and cooling demand, respectively. The procedure included determining a
functional relationship which expresses the demand of this building as a
function of the predominant climatic parameters. Furthermore, these sig-
nificant climatic variables are combined in a manner which forms a degree-
day type of function. The basic functional form of these variables was

discussed earlier and are repeated below:

CL = kCDD (6.4)
— o — Ifg — N
= + + — R + - - .
CDD (ClT CZDT c3 " R c4 Cp DW Tbase) >4 (6.14)
HL = BHDD
e o = Ifg-—~ N
HDD = [Tbase" (HlT + H2DT + H3 n R + H4 Cp DW) ] > (6.15)

The regression analysis procedure resulted in the evaluation of co-
efficients and constants in the above equations. These values are listed

in Table VII and when substituted in the above equations, result in the

following:

CL

537440.16*CDD (6.16)

I
CDD = [T - 0.0770 T + 0.256 %R + 0.081 ?f-g—'o‘v?] -57.2 (6.17)
p



65

HL 451299.93*HDD (6.18)

e
h

HDD

I
57.2~ [T + 0.138 DT + 0.421 — R - 0.067 -Cffl DW] (6.19)

p

Notice that the demand is expressed as linear functions of degree-days,
which are consistent with the theoretical assumptions and empirical re-
sults. It should also‘be noted that the variable N (the period for which
degree-days are calculated).does not appear in the final formula. This
is because daily averages of the climatic variables are used invthese
developments with the exception of the daily range (DT), which is a daily
characteristic, so that in reality N has a value of 24 hours and is can-
celled with the constant value of 24 in the denominator of these formulas.
In simpler terms one may state that these are degree-days and, as the
name implies, they represent deviations of a variable (temperature, in
this particular case) from a fixed quantity for a day (i.e, N = 24 hrs),
as compared to the possible degree-hours which represent these differ-
ences for an hour (i.e., N = 1 hr). These equations are helpful in esti-
mating and predicting heating and cooling demand via simple calculations,
rather than using dynamic simulation models which require extensive and
elaborate building data and hourly climatic conditions. Utilization of
these equations requires daily climatic conditions and a calculator to
perform an accumulative sum of the calculated demand.

As a check of the validity and reliability of the developed proce-
dure, an attempt was made to compare simulated and predicted demands.
The comparison method involved simulating heating and cooling demand
using a computer simulation model and actual weather data, then comparing
these values with those computed from the predicting equations. For clar-

ity these evaluations are graphically illustrated in Figures 13 and 14
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for cooling and heating, respectively. These figures demonstrate the
deviations between the computer simulated values and those computed from
the predicting equations. At this point we are concerned only with one
set of data points which are demonstrated by triangles. The purpose of
illustrating the other set of data points on the same plots will be dis-
cussed shortly. Figure 13 represents the variations in cooling demand as
a function of cooling degree-days. The data points demonstrate the simu-
lation values, and the solid line describes the prediction equation. It
is obvious that the prediction function closely describes the behavior of
simulated data, and the approximation is quite satisfactory. By compar-
ing the simulated and predicted values, the analysis of the results ob-
tained demonstrated that the maximum deviation is below 15 percent and the
average error is about 3 percent. This is very reasonable, considering
the fact that daily values are being compared, and smaller deviations are
expected when monthly or seasonal values are considered (see Figure 15).
Figure 14 illustrates variations of the heating demand as a function
of a heating degree-day. The scattered data illustrate the heating de-
mand from the computer simulation, and the solid line represents the pre-
dicting relation. The functional relationship that describes the varia-
tion of heating demand as a function §f heating degree-day is shown in
this figure. It is emphasized again that variations are plotted for
daily values and the deviations are satisfactory and within 15 percent,
with an average error of about 5 percent. In an attempt to demonstrate
how these deviations tend to become smaller for longer periods, monthly
values of heating and cooling demand versus corresponding degree-days
were plotted in Figure 15. This figure illustrates the extrapolation of

the predicting equations in approximating the computer simulation of
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monthly and seasonal demand. The simulated values are demonstrated by
unshaded and shaded characters, representing cocling and heating demand,
respectively. The solid and broken lines describe the functional rela-
tionships which were developed for perdicting cooling and heating demand;
It is evident that these relationships, when extrapoléted to cover longer
periods of time, result in better agreements. Variations of the simulat-
ed values from the predicting functions are within +5 percent.

These agreements insured the validity of the developed procedure.
This led to further investigation of the performance of the present pro-
cedure as compared to the conventional method. This was achieved by com-
paring the predicted values (obtainéd from both the conventional degree-
day procedure and the present model) with the computer simulated results.
Heating and cooling results are graphically shown in Figures 13 and 14.
In Pigure 13, scattered data points (shown by circles) illustrate the
variation of simulated cooling demand versus changes in the conventional
degree-days. In this figure both sets of data points are simulated val-
ues and are not coincident aue to the use of an abscissa, which is defin-
ed in two different ways (DD and CDD). It was discussed earlier that the
simulation values and the corresponding weather data were fitted by an
equation which is shown by a solid line in Figure 13. The same procedure
was utilized to develop an analytical model which will predict heating and
cooling demand by employing the conventional degree-day method. The simu-
lation data and the corresponding degree-days calculated by the conven-

tional method were fitted by the following equations:
CL = kDD (6.20)

where
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— N
= - —— 6.1

DD (T - 65) >4 ( )
and

IIL, = BDD (6.21)
where

DD = (65 - T) —- (6.8)

24 :

Degree-days were calculated from weather data and were used with the simu-
lation data in the regression analysis to reveal the value of k and B.

The broken line that passes through the simulation data in Figure 13
represents>the functional relationship which was obtained from this anély—
sis.

In simpler terms the solid and broken lines of Figures 13 and 14
demonstrate the best fit eqﬁations that can be achieved by utilizing the
techniques of the present model and the conventional procedure, respec-
tively. Visual investigation of these figures reveals that the agree-
ments between the predicted and simulated results are much closer to the
present model than for the conventional procedure.> It is interesting to
note that there seems to be some uniformity between the general trends of
the simulation data and the present model prediction equations (solid
line)(figures 13 and 14). There also appears to be a great deal of scat-
ter and nonuniformity between the patterns of the simulated data and the
predicted model of the conventional method (broken line).

Quantitative analysis of these results is made possible by tabular
means in Table VIII. This table illustrates the simple statistical analy-
sis of both regression equations. The quantitative results listed in

Table VIII, as well as a graphic demonstration in Figures 13 and 14,



TABLE VIII

COMPARISON OF THE RESULTS OF THE PRESENT MODEL
AND THE CONVENTIONAL DEGREE-DAY PROCEDURE

Representative Residential
Present Conventional Present Conventional
Model ~ Degree-Day Model Degree-Day

Cooling Heating Cooling Heating

Cooling Heating Cooling Heating

Percent Maxi-
mum Error

Percent RMS
Deviation

Percent Aver-
age Error

Error Sum
Squared

14.38 14.50 36.70 32.78
4.60 8.50 15.34 13.54

3.15 6.02 12.34 10.99

0.18272 0.65398 0.18818 0.11367
x 104 x 104 x 105 x 105

14.30 14.89 35.00 41.05

4.20 6.20 15.97 12.58

3.20 4.70 13.61 9.67

0.18410 0.29665 0.21180 0.11714
x 104 x 104 x 105 x 105

42
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demonstrate the superiority of the present model as compared to conven-
tional measures. Table VIII lists smaller values of maximum deviation,
root mean square deviation of data from the fit, average error, and error
sum of squares for the present model as compared to the conventional
method. Some interesting observations were made during analyses of the
results which are worth mentioning. First, it was stated earlier that
climatic data used in development of this study were daily averaged values
over a period of‘24 hours. Most weather stations, however, report average
daily temperatures that are midrange values of maximum and minimum daily
temperatures. In an attempt to investigate the differences between these
two techniques, no significant improvement was observed. This sﬁggests
that although the procedure was developed based on an averaging procedure
over a 24-hour period, the midrange of maximum and minimum temperatures
for a day can also be used without a significant loss in accuracy of the
model. The applicability of this model covers climates where variations
in daily range are nof too severe in that the midrange and daily average
temperatures are almost identicai. Another interesting observation was
made by comparing the results of thé present model with the conventional
method, where the base temperature was replaced with 55°F in the conven-
tional model. This was done to account for changes in construction,
development of new insulation techniques, and changes in life style,
which have significant effects in reducing the balance temperature of
buildings. This procedure caused a shift in the data points of Figures
13 and 14. Consequently, this changed the slope of the best fit line;
however, no significant improvement was observed in the accuracy of the

model. This gives further proof that the model presented in this study
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is feasible and cannot be improved upon by the conventional degree~day
method.

The most unique feature of the present model (which cannot be de-
scribed quantitatively and requires qualitative analysis) is that there
seems to be a great deal of nonlinearity in the simulation data when
plotted versus the conventional degree-day values (Figures 13 and 14).
This causes large deviations between the simulated and the predicted val-
ues when a linear model is employed. However, this nonlinearity‘effect
is eliminated when data are plotted versus the degree-day model which was
developed in this study. This suggests that the addition of the other
important climatic variables appears to sﬁooth out the scatter in' the
data and eliminates the nonlinear effects. This can be considered a

great improvement and a desirable characteristic of the present model.
Results of the Residential Building

It was previously mentioned that extension of the devéloped proced-
ure to investigate the feasibility and generality of this model is desir-
able. The procedure was then extended to include the analysis of a resi-
dential structure, the results of which are discussed in this section.
The general methods used to develop an analytical model for this building
were discussed previoUsly. The results obtained from these analysés are
illustrated in Table VII and Figures 16, 17, and 18. These figures fol-
low the same format that was utilizéd in the graphic illustration of the
representative building. Figure 16 displays the plot of the cooling de-
mand versus degree-days. These degree—dayé are evaluated based on two
different techniques. Those demonstrated by CDD in these figures repre-

sent the present model procedure, and those shown by DD represent the
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conventional method. The agreements between predicted and simulated re-
sults are quite satisfactory. The solid and broken lines demonstrate the
behavior of the cooling demand as predicted by the present model and the
conventional method, respectively. The simulated results are shown by
triangles and circles representing these variations with respect to CDD
and DD, respectively. It is obvious that the present model predicts the
simulated values much closer than the conventional method. Figure 17
displays the plot of the heating demand versus HDD and DD. The solid and
broken lines represent the prediction equations for the present model and
the conventional procedure. The agreements between the predicted and
simulated values, as described by the present model, are quite satisfac-
tory. It is also evident from Figures 16 and 17 that the present model
{solid line) fits the simulation data much more closely than the‘conven—
tional method (broken line). The agreements between the simulated and
predicted values are within %15 percent for both heating and cooling. It
is re-emphasized that these deviations are plotted for daily results, and
better agreement is expected for ldnger periods. Figure 18 demonstrateé
the extrapolation of the predicting equations for estimating the monthly
and seasonal demand. In this figure shaded and unshaded characters repre-
sent the monthly and seasonal simulated demand for heating and cooling.
The solid and broken lines demonstrate the functional forms of the pre-
dicting models for cooling and heating. It is evident that deviations
between the simglated and predicted results are much smaller than those
shown in Figures 16 and 17. This suggests that the present model is a
better predictof when longer periods are considered. This generally is

considered to be of more interest in common engineering practices. The
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estimates of seasonal or monthly demand are usually more desirable than
the corresponding daily values.

A quantitative analysis of the results obtained for the residential
building is tabulated in Table VIII. The values of the statistical gquan-
tities that are listed in this table demonstrate the improvement and pre-
ference of the present model over the conventional procedure.

In summary, an improved aegree—day procedure was developed in this
chapter. These heating and cooling degree-days were expressed as the
function of important climatic variables, which were identified in Chap-
ter IV. Furthermore, these quantitiés were utilized in the development
of analytical expressions which were used to predict the demand. The pro-
cedure was first developed based on the analysis of the representative
building. This procedure was then utilized to analyze a residential
building. The results obtained proved the validity of this model, and
suggested the usefulness of similar deyelopments for other classes of
structures. The total analysis of this chapter is a preliminary step in
the development of a more general but elaborate procedure for predicting

the energy consumption of buildings. This procedure is described in the

following chapter.



CHAPTER VII

SIMPLIFIED PROCEDURE FOR ESTIMATING THE

ENERGY DEMAND OF BUILDINGS

This chapter analyzes the methods utilized to develop a simplified
procedure for estimating energy demand of commercial structures. This
procedure is developed based on the improved degree~day concept discussed
in the previous chapter. Transition from the model that was developed in
the previous chapter to a more elaborate model in this section, and the
need for making this transition, is discussed in the remainder of this
chapter. The procedure was first developed using a linear predicting
model which resulted in unsatisfactory evaluations. This technique was
then utilized to develop a more sophisticated, nonlinear predicting model
to estimate energy demand. The methods used to develop both oé these

techniques are discussed in the following sections.

Fundamental Necessities of a Simplified

Energy Predicting Model

Fundamental necessities of a simplified procedure to estimate energy
requirements of buildings (specifically for commercial structures) were
discussed in detail in the introductory part of this study. Based on
these discussions, an effort was made to develop a procedure to estimate
demand of a representative building. Analytical formulas demonstrating

demand of the representative building as functions of the improved

80
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degree~days (which are functions of the significant environmental para-

meters) were presented ih Chapter VI. These formulas were as follows:

1
= r @ = f9 == s
CL k(ClT + C2DT + c:3 h R + c4 Cp D Tbase) 2 (6.7)
= o = Ifg = | N
HL = B Tbase - (H-lT + }1213'1‘ + n3 Y R + H4 cp DW) 57 (6.13)

These equations were shown to adequately predict the computer simulation
results.

It is very important to realize that these equations (although they
are a good predictor of the demand of the representative building) can-
not be used to predict the demand of any building in general. There are
several reasons for this which will be discussed in detail. First, by
definition, the representative building is an average bulding which typi-
fies the behavior of a construction group. Thérefore, the prediction
model of this building has the capability of predicting an average aggre-
gate demand of these construction types. That is, no absolute data about
individual buildings can be assessed from ahalysis of the results of the
representative building. This implies that the representative building
is a good predictor of the average aggregate demand of the construction
which it typifies, but not a valid general predictor of an individual
building. Second, it was discussed in Chapter VI that the regression
analysis procedure was utilized to determine the value of the coefficients
in Equations (6.7) and (6.13). These constants reflect the dynamic char~
acterigstics of the building that was analyzed. Therefore, they are char-
acteristic functions of the representative building. These values will
be different for other buldings; hence the results of the representative

building cannot be generalized to analyze the dynamic response of other
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buildings. Therefore, these constants are utilized to describe the ther~-
mal behavior of the representative building via analytical expressions
described by Equations (6.7) and (6.13). It is apparént that when the
physical conditions are different (different buildings), the values of
these constants will also be changed. Finally, it is apparent that Equa-
tions (6.7) and (6.13) are functions of weather parameters only, and are
highly insensitive to building parameters. This means that these expres-
sions will estimate the same values for a given weather condition regard-
less of the type of building under consideration. This obviously can
lead to a highly erratic approximation when buildings with different en-
velope characteristics are analyzed.

Development of‘the analysis of the procedure described in the previ-
ous chapter was preceded by assuming ablineér relationship between the
demand and the weather parameteré. These relationships were in the form
demonstrated by Equations (6.7) and (6.13) and were strongly dependent on
weather parameters but insensitive to any building variables.

The coefficientsdof the weather variables and the constants of pro-
portionalities k and B were determined from regression analysis of the
simulated demand and weather data. From discussions up to this point it
is apparent that these proportionate constants should bevrelated to some
significant building variables. This means that the values of k and B
should be back tracked and broken down to demonstrate the function of the
fundamental building variables. It is also important to identify these -
building variables so that detailed building information will not be
necessary to estimate the demand.

Mathematically, one can express these analogies by the following

equations:
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CL fl(bldg) x fz(weather) (7.1)

HL

It

gl(bldg) x g2(weather) : (7.2)

From Chapter VI,

CL

kf (weather) g (7.3)

HL

]

Bg (weather) : (7.4)
Comparison of the forms of the above equations will yield:

k

[

f (bldg) (7.5)

w
I

g (bldg) (7.6)

It is emphasized again that building variables should be chosen so that
not only should they reflect the fundamental characteristics of the build-
ings, but they should also be basic and simple to calculate.

It is postulated that:

k=f(A,A,A,U,U,U,S) C(7.7)
w g r w g r c
g=gA,A,A,U,U,U, s) (7.8)
w g r \ g r c
where
2
Aw = total wall area (ft );
2
Ag = total glass area (ft );
Ar = roof area (ftz);
2
Uw = overall heat transfer coefficient of wall (Btu/hr-ft -°F);
Ug = overall heat transfer coefficient of glass (Btu/hr—ft2-°F);
2
Ur = overall heat transfer coefficient of roof (Btu/hr-ft -°F); and
Sc = shading coefficient of glass (dimensionless).

From the above equations the need to determine the functional rela-
tionships between k and B and the building variables is apparent. One

possibility would be to use the values of k and B, which were obtained
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for the representative building, then use a linear model and regression

analysis to obtain the coefficients of the building variables. That is:

k

CAU +CAU +CAU +C,5UA (7.9)
lww 2gg rr c

3 949

4

o)
1]

h AU +hAU +hAU +hSUA (7.10)
lww 2g9g 3 rr 4 cgg

where in the above equations the product of terms is used to establish
dimensional consistency. The difficulty with this technique is that this
problem is mathematically undetermined. Also, the information obtained
from this type of analysis will not be basic or reliable, because the
values of k and B are calculated for the representative building and do
not contain general information about any other construction.

From the aﬁalogies discussed above, the need for investigating the
thermal response of several different buildings becomes apparent. These
investigations will supply the necessary information to express the
values of k and B in terms of the basic building variables. The major
problem is to determine the number of construction types which need to be
analyzed in order to obtain enough information to develop a general pro-
cedure to estimate energy requirements., This problem was resolved by em-
ploying a fractional factorial technique using randomly selected test com-
binations. The application of this method to the problem involved in the

present study is discussed in the next section.

Fractional Factorial Experiments Randomly

Selected Test Combinations

The need for investigating several different buildings was discussed
in the previous section. From Equations (7.7) and (7.8) of the previous

scction, the significant building variables were considered to be the
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surface areas (wall, glass, roof), heat transfer coefficients of each
surface (wall, glass, roof), and the shading coefficient of glass. Basic-
‘ally, this amounts to seven different building variables. The problem
analysis includes simulation studies of the number of buildings that
could be structured using all possible combinations of these variables..
This analysis can be simplified by considering several reasonable, gener-
al shapes and dimensions (length, width, height) for commercial struc-
tures. Specifying the dimensions of a building fixes the values of the
variables Aw and Ar and in turn reduces the number of building variables
to five. These variables are heat transfer coefficients of each surface
(Uw, Ug’ Ur), glass areg (Ag), and shading coefficient of the glass(sc).
To simplify the analysis, a ratio of glaés to wall was considered in-
stead of the galss area. The analysis reduces to conduct a simulation
study of the number of buildings that can be structured from all possi4
‘ble combinations of these five variables. These variables should cover
the range of values which are typical for commercial structures. This
analogy is complicated by the fact'that if four levels of values are
assumed for each variable, the analysis will iequire the simulation
study of (4)5 or 1024 buildings. The analysis of such a large number of
structures is practically impossible. This would require utilization of
a procedure which would extract adequate information on the effects of
these variables more efficiently than the traditional method.

Randomly selected test combinations of the fractional factorial ex-
periments method (28) were utilized for this purpose. This method re-~
quired testing of approximately one percent of the full factorial experi-
ments (1024). It is obvious that this method cannot produce as much

information as a complete analysis of all 1024 buildings. But, adequate
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information can be obtained by compromising the absolute accuracy with
economy and time. For the purpose of this study nine base buildings with
different shapes, orientations, and dimensions were considered.. The
shapes and dimensions of these buildingsvwere chosen so that they resem-
bled a typical commercial structure. The values of the variables were
also chosen so that they covered the typical range of values found in a
commercial structure. The analysis included randomly distributing the
values of these constants among the nine base buildings. The procedure
involved selecting a set of nine consecutive numbers from the random num-
ber table. A number between 1 and 9 was assigned to each random number
corresponding to its rank, if the random numbers were arranged in ascend-
ing order (Table IX). This created a set of random numbers between 1 and
9 (number of buildings). The values of the variables were assigned to
these buildings (Table IX). The information obtained from this analysis
was collected for cach building and are tabulated in Table X. This table
displays pertinent information ébout each building and the corresponding
values of each variable. The simulation studies of the demand of these
buildings, using actual weather data, provided the necessary information
needed to develop a procedure to estimate energy requirements. Two différ~

ent techniques were investigated and are discussed in this chapter.

Linear Model for Estimating Energy

Demand of Buildings

A linear model for estimating energy demand of commercial struc-
tures was developed. - This model was developed utilizing linear combina-

tions of significant weather and building variables. From the previous

discussgion we have:



TABLE IX

FRACTIONAL FACTORIAL EXPERIMENT RANDOMLY SELECTED TEST COMBINATIONS

RANDOM Bldg. U RANDOM Bldg. Aglass RANDOM Bldg. U Glass RANDOM Bldg. RANDOM Bldg.

No. No. Wall No. No. Awall No. No. s W No. No. Sc No. No. U Roof
31347 6 0.115 88977 7 0.25 11354 2 1.04 1.10 87056 7 0.25 10721 2 0.052
30240 5 0.115 . 15243 2 0.25 31312 3 1.04 1.10 90581 8 0.30 39755 6 0.052
23823 3 0.314 23335 4 0.25 69921 8 0.81 0.8F 94271 9 0.40 31652 S 0.052
19051 2 0.314 - 61105 6 0.40 79888 9 0.81 0.81 42187 3 0.50 87662 8 0.106
44640 7 0.378 19087 3 0.40 06256 1 0.65 0.62 74950 , 6 0.55 83651 7 0.106
00812 1 0.378 42678 5 0.50 46065 4 0.65 0.62 15804 2 0.60 23790 4 0.158
97207 9 . 0.415 98086 9 0.50 52777 5 0.50 0.50 62783 5 0.75 18370 3 0.158
24767 4 0.415 94614 8 6.75 54563 6 0.50 0.50 49159 4 0.85 88318 9 0.206
48336 8 0.415 00582 1 0.75 59952 7 0.50 0.50 14676 1 1.00 00157 1 0.206

LB




PERTINENT INFORMATION ABOUT

TABLE X

BASE BUILDINGS

Bldg. Bldg. U U ~2§;§§§— S A A A

Code No. wall “glass roof wall c wall ~roof “glass
1 1 0.378  0.65 0.206 0.75 1.00 8160. 20800. 6120.0
2 2 0.314 1.04 0.052 0.25 0.60 16320. 20800. 4080.0
3 3 0.314 1.04 0.158 0.40 0.50 24480. 20800. 9792.0
4 4 0.415 0.65 0.158 0.25 0.85 32640. 20800. 8160.0
5 5 0.115 0.50 0.052 0.50 0.75 28800. 22500. 14400.0
6 6 0.115 0.50 0.052 0.40 0.55 6360. 13000. 2544.0
7 7 0.378 0.50 0.106 0.25 0.25 12720. 13000. 3180.0
8 8 0.415 0.81 0.106 0.75 0.30 19080. 13000. 14310.0
9 9 0.415 0.81 0.206 0.50 0.40 25440. 13000. 12720.0

88
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CL = kf (weather) (7.3)
and
k = f(bldg) (7.5)

In Equation (7.5), if k is expressed in terms of the linear combination

of the significant building variables, we have: -

k=C,UA +CUA +CUA +CSURA (7.9)
lww 2949 3 rr 4°cgg

or

=
]

A+ +
clUw - (C2 c

S)UA +CUA (7.11)
4 "¢ g g 3 rr

If the weather variables are combined in a similar manner, we have:

I
R+ C ?gﬂ-DW - T . (7.12)

=C.T +
f(weather) C.T + CDT + C 8 o base

5 6 7

o1e

When Equations (7.11) and (7.12) are substituted into Iquation (7.3), the

following equation results:

— u.._
= + + + T + T+ C_ —R
CL [ClUwAw (c2 c4sc) UgAg c3UrAr][c5 C6D 7 h
Ttg —
+ c8 Cp DW - Tbase] (7.13)

By employing the same analogy, an identical expression for the heating

portion is obtained.

IL = [H.U A + + UA + T - (H.T + H_DT
1 [IlUw v (H2 H4Sc) g H3UrAr][ base ( 5 H6

R 4 f9 o '
R 4 ”8 a DW) ] (7.14)

Equations (7.13) and (7.14) are utilized to estimate the energy require-
ments if the coefficients are determined. Calculating the values of

these coefficients requires the following steps. First, the nine base
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buildings modeled (based on the analogy of the previous section) were
used to simulate heating and cooling demand. The regression analysis of
these simulated results and the corresponding weather data yielded the
values of these constants. A list of the computer program which performs
the necessary calculations to determine the values of these constants is
displayed in Appendix B. Esﬁimates of the energy requirements utilizing
this method resulted in errors up to 60 percent. The general trends and
patterns of the predicted values were largely different than the simulat-
ed results. It is therefore concluded that a simple model, expressed by
Equations (7.13) and (7.14), is not sufficient for estimating the com-
plex thermal behavior of commercial structures. However, development of
this technique provides the necessary background and expertise for devel-

oping a more complex and nonlinear model, which will be discussed in the

next section.

Nonlinear Model for Estimating Energy

Demand of Buildings

As mentioned earlier, the adaptation of a linear predicting model
resulted in unsatisfactory evaluations of the energy demand. This was
expected due to the complexity of the problem under analysis. However,

a linear model was developed for (1) the purpose of familiarization, and
(2) gaining éome experience in handling a more complex form of expres-
sion. Effort was concentrated on the development of a nonlinear model
for estimating heating and cooling energy demand. The development proce-

dure of this model is discussed separately for cooling and heating.
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Cooling

Based on the knowledge that was gained from the analysis of the lin-
ear predicting model, it is postulated that the cooling demand in a nor-

malized form can be expressed by the following equation:

c c c
. | I oa 6 . 8
_ 99 rr c
cip - Gu)b (G, C8) I Ta +C T a 7217
W W W w max
c c
+ o |=2E o +C R Y +C DW
9 |7 11 | R 13 | W
max max max
15
Tbase
_base .15
tCia T (7.13)
max '

where
CL = cooling demand (Btu);
CLD = design cooling load (Btu);

A = total wall area (ft2);

w
Ag = total glass area (ft2);
Ar = total roof area (ft2);

U = heat transfer coefficient of the wall (Btu/hr—ft2—°F);
U = heat transfer coefficient of the glass (Btu/hr—ft2—°F);
U_ = heat transfer coefficient of the roof (Btu/hr-ft2—°F);
S = shading coefficient of glass;
T = average daily temperature (°F);
T = maxiﬁum daily temperature (°F);
DT = daily temperature range (°F);
R = average daily solér insolation (Btu/hr—ftz);

« N R . 2
Rmax = maximum daily solar insolation (Btu/hr-ft');
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DW = average daily humidity difference (lbm of water/lbm of

air);
Wmax = maximum daily humidity ratio (1lbm of water/lbm 6f air);
Tbase = pbalance teﬁperature (°F); and
Cl-clS = constants.

The above equation is a nonlinear and normalized form of the equation
that was described earlier (Equation (7.13)). When the building vari-
ables are normalized by the product of UwAw, in Equation (7.13), and the
weather variables are normalized by their maximum quantities, Equation
(7.15) is obtained. It is interesting to note that this equation is non-
dimensional and the variables a, h, Ifg’ Cp, which were utilized in.Equa-
tion (7.13) to establish the dimensional consistency, are not present in
Equation (7.15). The procedure for determining the values of these con-
stants required the regression analysis of the simulation results of the
nine base buildings and the corresponding weather data. The results ob-
tained from this analysis are discussed in detail in the next section.
Listing of the computer program to perform the necessary calculations for

obtaining these constants is presented in Appendix B.

Heatinq

The identical procedure that was utilized for cooling was employed
for developing a predicting model for estimating heating energy require-
ments. This procedure consisted of expressing Equation (7.14) in a nor-

malized form, using variable exponents for the normalized building and

weather terms. That is:
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H B H
8
i val? UA_ 6 =
T R G - | I ) Ry B
; T
HLD ~ 1 2 " S\ U A 50 A "N
B
B H 15
+ H_ |2 10+H UL 12+H DA,y | Tbase
4
2 Tmax 11 Rma.x » 13 Wmax 1 Tmax
(7.16)

where HLD is the design heating load of the building under consideration,
and the remainder of the terms are as defined earlier. The values of Hl
through “15 were calculated using a regression analysis of simulated heat-
ing demand (for the nine base buildings) and the corresponding weather
data. |

The results obtained from this analysis are discussed in detail in
the following section and are demonstrated in Table XI. A listing of the
computer program which performs the necessary calculations for determin-
ing the values of these constants is presented in Appendix B.

It is evident that Eguations (7.15) and (7.16) can be utilized for
vestimating heating and cooling energy, requirements of any building. The
use of these expressions require access to weather data as well as build-
ing data. These expressions were utilized for estimating the energy de=~
mand of buildings for different locatiohs using historical weather data

(TMY tapes) (29). These estimated values were compared with the‘computer
simulated results to verify the validity of the developed procedure. The

results and discugsion of these analyses are discussed in the following

section.

Results and Discussion

This section analyzes the detailed discussion of the results obtain-

ed from analogies that were discussed in previous portions of this



TABLE XI

COEFFICIENTS OF EQUATIONS (7.15) AND (7.16)

Cooling Heating
Cl 0.32499970 Hl 0.03742400
02 0.00504360 H2 0.61480000
C3 ~-0.00611504 H3 -0.01246000
c4 6.57103190 H4 0.08969900
C5 -0.03990000 H5 0.14079970
C6 2.94984700 H6 2.56940000
C7‘ 1.45787300 H7 0.25037100
C8 7.16262740 H8 -2.34760000
C9 0.0062733 H9 4.97160050
Clo 1.08197340 HlO 0.93642000
Cll 42.60060000 Hll 0.00000140
C12 4.09993900 le ~7.12680000
Cl3 0.05404073 Hl3 0.00000000
C14 0.12950235 Hl4 5.73864980
C15 -4.26472060 H15 0.94583000
Tbase 55.0 (°F) Tbase 55.0 (°F)

94
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chapter. Following previous format, these results are discussed in two

separate sections (cooling and heating).

Results of Cooling Model

It was demonstrated that mathematical developments led to derivation
of Equation (7.15) for estimating the cooling demand of a building. This
equation predicts the cooling demand of a building for a specified period,
utilizing the significant weather and building data. The use of this
equation requires calculation of the constants Cl through C15 as well as
the value of the desiygn cooling load for the building under consideration.
The procedure for calculating the values of these constants involves a
nonlinear least squares regression analysis of the simulated cooling de-
mand and the building and weather data. In order to generate the simula-
tion data, the nine base buildings were modeled into the simulation pro-
gram (25). The cooling demand of these buildings were simulated for
several specified periods, using actual weather data (24). The envelope
characteristics of these buildings provided the necessary building data
to be used with the simulated results and the weather data to perform the
regression analysis. The coﬁputer program which performs the necessary
calculations for determining the values of C

through C is presented in

A 1 15
Appendix B. The calculated values of these constants are shown in Table
XI. Once these constants are determined, Equation (7.15) can‘be utilized
to estimate the cooling daménd, of any building.

As mentioned earlier, it is evident that the use of Equation (7.15)
requires access to some type of weather data. The most recent weather

tapes provide information on an hourly basis for temperature and solar

insolation data. The information obtained from these weather tapes
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cannot be used in a direct manner for evaluating Equation (7.15). Some
additional calculations are necessary to obtain the maximum and daily
averages of these weather gquantities to be used in Equation (7.15). A
simple computer program which performs the necessary calculations for ob-
taining these quantities is shown in Appendix B. This program utilizes a
technique described in Reference (30), and can be used in conjunction
with any weather data to estimate the cooling demand of any building
using Egquation (7.15). Furthermore, the weather portion of Equation
(7.15) (second bracket) may be used to generate tables of values for dif-
ferent locations sovthat the use of weather tapes is eliminated. This
will be discussed in detail later.

In order to evaluate the validity and performance of the developed
model described by Equation (7.15), the following experiments were con-
ducted. First, the cooling demand of some specified buildings were
simulated using weather data for several different locations. Using Equa-
tion (7.15), the cooling demand of these buildings were predicted for
the same locations. These simulated and predicted values were compared
to investigate the validity of the predicting model. Table XII demon=-
strates the results of this analysis. This table presents the values of
computer simulated demand and those predicted by Equation (7.15) for
different locations.

It is important to note that actual weather data were used for cal-
culating the simulated and predicted demand, employing the typical
metereological year data (29) for different locations.

Investigating deviations between the predicted and simulated results
revealed that the developed model adequately predicts the computer simu-

lation results. The deviations are well within #20 percent for all of



COMPARISON OF STIMULATED AND PREDICTED COOLING DEMAND
(BTU X 10~9)

TABLLE

XII

97

Simulation Prediction
Location Period Method (25) Eg. (7.15) Deviation
June 0.3072259 0.3057021 0.50
Oklahoma July 0.3874957 0.3809633 1.69
cityl Aug. 0.3709760 0.3577925 3.55
Total 1.0656920 1.0444540 1.99
June 0.3307656 0.3502966 -5.90
Fort July 0.4520427 0.4538058 -0.39
Worth Aug. 0.4227630 0.4181862 1.08
Total 1.2055670 1.2222830 -1.39
June 0.2627943 0.2718943 -3.46
Columbia July 0.3377769 0.3315520 1.84
Aug. 0.3132849 0.3133586 -0.02
Total 0.9138501 0.9167992 -0.32
June 0.2658297 0.2688604 -1.14
Nashville July 0.3503560 0.317991° 9.24
Aug. 0.3347763 0.2977697 11.05
Total 0.9509555 0.8846157 6.98
June 0.2542545 0.2501045 1.63
July 0.3609275 0.3308372 8.34
Charleston Aug. 0.3451684 0.3075448 10.90
Total 0.9603443 0.8884810 7.48
June 0.1993510 0.2164704 -8.59
Washington July 0.3200233 0.3153879 1.45
D.C. Aug. 0.2998615 0.2906199 3.08
Total 0.8192300 0.8224732 -0.40
June 0.3903083 0.4540843 -16.34
Phoenix July 0.5161347 0.6046781 -17.16
Aug. 0.4894484 0.5439480 -11.13
Total 1.3958880 1.6027070 ~-14.82
June 0.1282369 0.1322195 -3.11
Medford July 0.2632565 0.2478811 5.84
Aug. 0.2555479 0.2107444 10.53
Total 0.6270413 0.5908408 -5.77
June 0.2233833 0.2137688 4.30
Albuquerque July 0.3193923 0.2764803 13.44
Aug. 0.2914458 0.2390132 17.99
Total 0.8342152 0.7292570 12.58
June 0.3159281 0.2734149 13.46
Miami July 0.3818015 0.3263222 14.53
Aug. 0.3959314 0.3258337 17.70
Total 1.0936560 0.9255662 15.37

11964 oklahoma City data.
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the locations investigated. This is an acceptable error band for any
heat transfer related calculation. The deviations are actually within
+10 percent in most cases with very few exceptions. These exceptions in-
clude locations with extreme weather conditions (i.e., very hot and dry,
very hot and humid, large variations in daily temperatures). In general,
the developed model adequately estimates the energy demand using a pro-
cedure which is much simpler than the use of computer simulation tech-
niques. One very intereéting feature of this developed model is the fact
ﬁhat although this procedure was developed based on a specifiéd weather
datum, it can be extrapolated to predict energy demand dictated by a
completely different set of weather conditions. This is the major signi-
ficance of the present model, and is due to direct consideration of the

most significant building and weather parameters.

Results of the Heating Model

Based on the same analogy that was discussed for cooling, it was
shown that an analytical expression for estimating heating demand of
buildings was developed (Equation (7.16)). The use of this expression

requires the evaluation of the constants H, through H

1 The procedure

v 15°
for calculating these constants is identical to that discussed for cool-
ing. This procedure involves the nonlinear least squares regression
analysis of the set of data which includes simulated heating demand and
the corresponding building and weather data. A computer program which
performs the necessary calculations for determining the values of these
coefficients is shown in Appendix B. The calculated values of these con-

stants are demonstrated in Table XI.

When these values are replaced in Equation (7.16), an estimate of
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the heating demand of.a building can be made for any specified period of
time. It is emphasized again that the use of this expression will re-
quire access to some type of weather data. However, these calqulations
can be conducted on a small calculator‘and are much simpler to perform
than the use of computer simulation techniques.

For_the purpose of evaluating the performance and validity of the
model expressed by Equation (7.16), the following experiments were con-
ducted. First, the heating demand of some'specified buildings were
simulated for several different locations. This was achieved by an hour-
by~-hour computér simulation technique (25) using actual weather data.
Utilizing Equation (7.16), heating deﬁand of these same buildings were
calculated for the same locations.

The computer simulated demand was compared with the prediction
values of Equation (7.16). The deviations of the predicted quantities
from the simulated results acted as a measure for determining the valid-
ity of the developed procedures. Table XIII lists the computer simulat-
ed demand and the corresponding values as predicted by Equation (7.16)
for different locations. It is reitérated that actual weather data were
used for calculating both the simulated and predicted demand. These
data included the typical metereological year data (29) for each loca-
tion. It is evident from Table XIII that the values predicted by the
present model are well within 410 percent of the simulation results.
From these analyses it can be coﬁcluded that the developed procedure is
an adequate predictor of heating requirements of buildings.

It is interesting to ﬁote that once the validity of the developed
procedure is proved, this method may be used for generating tables of

values for different locations. These values will be functions of



TABLE XIII

COMPARISON OF SIMULATED AND PREDICTED

HEATING DEMAND

(BTU X 10-9)

100

: Simulation Prediction Percent

Location Period Method (25) Eq. (7.16) Deviation
Dec. 0.2290728 0.2090949 8.72
Dodge Jan. 0.2391256 0.2242728 6.21
City Feb. 0.1834659 0.1848928 -0.78
Total 0.6516643 0.6182574 5.12
Dec. 0.2637083 0.2801152 -6.22
. Jan. 0.2127934 0.2244004 -5.45
Columbia Feb. 0.2452276 0.2246708 8.38
Total 0.7217293 0.7291827 -1.03
Dec. 0.3168596 0.2873398 9.32
Boston Jan. 0.2163089 0.2236740 -3.40
' Feb. 0.2714127 0.2524734 6.98
Total 0.8045812 0.7634824 5.11
Dec. 0.1879212 0.1733250 7.76
Medford Jan. 0.1463671 0.1537443 -5.04
Feb. 0.1892800 0.1734417 8.37
Total 0.5235683 0.5005140 4.40
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weather parameters for different locations and can best be described by

the following equations:

C C C
Cu C 8+c cT lO+c R 12+C oW _
71T 21T . 11{R 13w
max max max max
15
base
+ 7.17
c14 - ( )
max .
H H vH
HU = H T + H DT lo+H R 12+H DW
AL 9l 11{Rr 13|w
.| max max max max
His
base
+ Hl4 T (7.18)
max

where CU is the cooling unit, and HU is the heating unit. It was men-
tioned prc§iously that a computer program was adopted (30) and implement-
ed to perform the neceésary calculafions for evaluating the heating and
cooling units; this program is shown in Appendix B. Equations (7.17) and
(7.18) may be utilized to calculate the values of CU and HU for any desir-
ed location, employing weather data for the location under consideration.
The values of HU and CU are tabulated for a sample of locations and are
shown in Appendix A. These values were calculated utilizing the TMY wea-
ther data (29) for those locations. These values will serve as multipli-

crs for estimating the energy demand of any building, that is:

CL :

i H = CBLD CU : .19
Cooling oD G x (7.19)
Heating: AL HBLDG x HU (7.20)

9% fLp : ’

where CBLDG and HBLDG are the building parameters for cooling and heat-

ing modes, respectively.
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U A UrAr 6
= + (C_+ + .
CBLDG cl 1 (02 CBSC) Ua c5 Y (7.21)
L W W W W
- T
U A UrAr 6
= + .22
HBLDG Hl 1 + (H2 H3SC) —-9—-9-U A HS e (7 v )
L W W W w

The values of Cl through C_ and Hl through H6 are calculated and

6

tabulated in Table XI. Therefore, estimates of the energy demand can

be made by the use of Equations (7.19) and (7.20).

The use of these equations requires the calculation of the product
of two terms (building and weather parameters), where the building para-
meters are calculated from Eguations (7.21) or (7.22), and weather para-
meters are obtained from Equations (7.17) or (7.18) or, more simply, from
the weather tables of Appendix A.

In summary, a simplified procedure for estimating the energy demand
of commercial structures was developed (Equations (7.15) and (7.16)).
These developments were demonstrated to adequately predict the computer
simulation results yhich use dymamic simulation techniques using actual
weather data on an hourly basis. These developments were then extended

to generate tables of values for a sample of locations, where these values

may be used as multipliers for estimating the energy requirements of build-

ings.



CHAPTER VIII

RECOMMTNDED METHOD FOR CALCULATING AN EFFICIENCY
PARAMETER FOR ESTIMATING ENERGY

CONSUMPTION OF BUILDINGS

This section describes a recommended procedure for calculating an
efficiency parameter which adequately represents the system's perfor-
mance over a set period of time. This parameter is used for estimating
energy consumption from estimated energy demand. The proposed procedure

is described in two parts (cooling and heating).
Cooling Seasonal Energy Efficiency Ratio

This section outlines a procedure for calculating a cooling season-
al energy efficiency ratio. The procedure is based on a survey of the
literature and a comparison of different methods to determine an ade-
quate and simple efficiency parameter. Although the developed procedure
is based on the analysis of the manufacturer's data for central air con-
ditioners used in light construction, the same analogy can be utilized
to estimate the seasonal energy efficiency ratio of the cooling equip-
ment of commercial structures. Difficulties in calculating a seasonal
efficiency parametcr are based on the following facts: (1) there is no
single, normal operation condition, (2) end use of the equipment and its
interaction with the building usually affects the energy used by the

cooling system, and (3) outdoor weather conditions vary greatly for
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different locations. In order to develop a rating program which truly
represents the energy used on a seasonal basis, one should at least con-
sider the following effects on energy usage: (1) outdoor temperature and
humidity, (2) cycling, (3) percentages of running time, (4) indoor tem-
perature and humidity, and (5) building interaction. If all possible
effects of these variables were considered, the developed procedure

would be so complex that.it would virtually be impossible. On the other
hand, a very simple‘energy rating system can be developed by ignoring all
such effects; the rating number would have little or no meaning with re-
spect to the actual seasonal energy used.

A research program conducted at the Ray W. Herrick Laboratories of
Purduc University (31) worked on improvements and/or alternative means
of determining seasonal energy efficiency ratios (SEER). This work was
based on an evaluation of the test procedures as set by the U.S. Depart-
ment of Energy (DOL). The DOE test procedure calls for conducting two
steady state, wet coil tests (tests A and B); these determine the influ-
ence of outdoor temperature on energy consumption. In addition, two
other dry coil tests (steady state (test C) and cyclic (test D)) are
used to determine the effects of cycling on energy consumption. Table
XIV lists the conditions of each test. In Reference (31), the data ob-
tained for 148 units supplied by various companies were used to calcu-
late efficicency ratios for cach testing method. These experimental data
were plotted in various ways to detexrmine whether any relationship could
be observed between various functions. The most interesting of these
was the plot of EERD/EERC versus EERA/EERB. Where EER is the energy
efficiency ratio (ratio of total capacity of the unit to the total power

input at specified indoor and outdoor ambient conditions, BTU/watt-hr),



TABLE XIV

SUMMARY OF TEST AND RATING REQUIREMENTS:
ENTERING AIR TEMPERATURE AND MODE OF OPERATION (32)

INDOOR AND OUTDOOR

Indoor Indoor Outdoor Outdoor
Dry-Bulb Wet-Bulb Dry-Bulb Wet-Bulb Mode of
Temperature Temperature Temperature Temperature - Operation
Test A B80°F (26.7°C) 67°F (19.4°C) 95°F (35.0°C) 75°F (23.9°C) Steady state
Test B 80°F (26.7°C) 67°F (19.4°C) 82°F (27.8°C) 65°F (18.3°C) Steady state
Test C 80°F (26.7°C) See Note 2 82°F (27.8°C) —-_— Steady state
Test D B80°F (26.7°C) See note 2 82°F (27.8°C) - Cyclic
6 min on-time
24 min

off-time

1 . . . . .
Applies only to those units which reject condensate to the outdoor coil.

2Shall at no time exceed that value of the wet-bulb temperature which results in the
production of condensate by the indoor coil at the dry-bulb temperatures existing for the
air entering the indoor portion of the unit.

S0t
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the subscripts denote the test methods. This plot is shown in Figure 19
and has a cluster of points at the approximate coordinates of 0.9, 0.9.
Using this clustering relationship, they developed an empirical relation-
ship which allows one to calculate an estimated SEER from only steady

state measurements. This relationship is given by the following:

S 1 - EERA/EERB
SEER = EERB ll ol Ear o (QA/QB) 0.5 (8.1)

where

SEEFR scasonal energy efficiency ratio, (BTU/watt-hr);

FER energy efficiency ratio, (BTU/watt-hr); and

(0] total seasonal cooling done,’(BTU).

The subscripts A and B denote the test procedures described in Table XIV.
A detailed description of the assumptions made in deriving this relation-
ship, and the justification for these assumptions, is shown in Reference
(31). This expression allows one to estimate SEER based solely on tests
A and B, rather than using thé more complicated form described by the

DOE procedure (33). Comparison of the SEER values calculated from Equa-
tion (8.1), and by a more claborate technique utilizing DOE's suggested
procedure, demonstrated excellent agreement. Figute‘20 displays the per-
centage of SEER estimated by Equation (8.1), which falls within a given
percentage of SFER calculated by the DOE method. This figure shows that
SEER values calculated for 85 percent of the 148 units fall within 5 per-
cent of the DOE's SEER, and almost all of the units fall within 9 percent
of the DOE's SEER. Therefore, one should decide whether a 10 pexrcent

deviation is adequate for estimating energy consumption. There is a

question of compromising accuracy with economy, time, and availability

of data.
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It is.the belief of this author that this method will provide suf-
ficient and adequate information for estimating energy consumption of
buildings via simple calculation of data which are available from most
manufacturers. Equation (8.1) may be used in conjunction with previous

developments. to estimate energy consumption. That is:

EC = CL/SEER (8.2)
where
EC = seasonal cooling enerqgy consumption (watt-hr);
CL = seasonal cooling demand (BTU);
SEER = seasonal energy efficiency ratio (BTU/watt—~hr);

and CL is calculated from Equation (7.19) of the previous chapter by:

CL = CLD x CBLDG x CU.
Seasonal Heating Efficiency

This section describes a recommended procedure for estimating a sea-
sonal efficiency parameter for heating. This method was developed based
on a simplified approach, which assumes a linear relationship between
the boiler energy demand and the outdoor dry bulb temperature. The fol-
lowing steps were taken to develop this procedure. |

1. It is obvious that the boiler‘output is at its maximum rating
for the design temperature, and is zero for the balance temperature of

" the building. This can be shown mathematically by the following equa-

tion:

T, = v; T. < T <T 8.3
E F a b ( )
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where

]
I

‘boiler output (BTU);

maximum boiler output (BTU);

T = outdoor dry bulb temperature (°F);

H
i

balance temperature of building (°F); and

3
|

= design temperature (°F).
The plot of Equation (8.3) in its normalized form is demonstrated in

Figure 21. The equation of the line in Figure 21 is given by:

y = ax + b (8.4)
where
E
y = 5 (8.5)
“bmax .
T-T
X = — ‘ : (8.6)
r -
l‘b d
a=-1
b = +1

Substituting all of the above information in Equation (8.4), we get:

E T - T
bmax b a

FEquation (8.7) describes the variatiop in load ratio (E /Eb ) as a
function of normalized temperature. This means that for any location,
the load ratio can be evaluated from Equation (8.7).

2. TFigure 22 demonstrates a typical plot of boiler efficiency ver-
sus load ratio (34). This figure can be utilized in estimating the

boiler efficiency from the values of load ratio calculated from Equation

(8.7).
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3. From the table of hourly weather occurrrences (35), which uses
temperature bins of 5°F for vaiious locations, the number of hours at
which certain temperatures occur annually can be obtained (Table XV)
from Equation (8.7) and the temperature bins of Table XV, load ratios
can be calculated for a range of temperature values. Figure 22 can be
used to evaluate the boiler efficiencies corresponding to these load
ratios.

4, The information obtained from descriptions 1 through 3 above
can be summarized in a table as follows. This information includes:

T = temperature bins (Table XV);

IR = number of occurrence hours (Table XV);
Y = load ratio (Fquation (8.7));
n = boiler efficiency (Figure 22); and

li = gsubscript.

A sample calculation for Oklahomé City is shown in Table‘XVI.

.5.' Upon completion of the above table, a seasonal heating effi-
ciency . can be determined’from:

In, x HR,
i

SHE = L%Tfi—m (8.8)
ARy

For the sample case:

. 1887.46 _
SHE = =22 = 0.54

Equation (8.8) may be used in evaluation of seasonal heating efficiency
SHE. This value may be used for evaluating heating energy consumption

by the following relationship:
EH = KHL/SHE (8.9)

where



TABLE XV

HOURLY WEATHER OCCURRENCES

OUTDOOR TEMPERATURE, F

LOCATION 72 1 67 | 62 | 57 | 52 | 47 | 42 | 37 {32 | 27 | 22 | 7 | 12 7 2 3|8 {-13|-18
Albany, NY sgs| 733| 740 7081 652| 625| 647| 769| 793 | S574| 404! 278| 184| 110{ 63| 32 10 5 4
Albuquerque, NM 767 831 719| 651| 687| 734| 741| 689| 552| 346, 154, 66| 21 4 1 1
Atlanta, GA 1185| 926| 823 784| 735 676] 598 468| 27| 112| 44| 19 8 2
Bakersfield, CA 831| 898 966| 977| 908 746 541| 247 77 7
Birmingham, AL 11381 908 | 805 742| 668| 614| 5281 433 292| 143| 69 17 6 3
Bismark, ND 454| 566| 614 606! 563| 520 S18| 604| 653| 550| 474 371| 338| 292] 278 208 131 77 80
Boise, ID 4921 575| 643 702| 786| 798| 878 829| 522! 307| 148 53 26| 14 6 2
Boston, MA 676| 819| 804| 781 766| 757 828| 848 | 674 429! 256| 151 741 35 4 9 1
Buffalo, NY 6461 772| 760| 700| 666| 624| 647] 7561 B49| 602 426| 267 170/ 8l 51 24 2
Burlington, VT 5731 670| 703 694| 655 603| 637 716| 752| 561 491| 336} 272} 216{ 135; 81 9| 17 8
Casper, WY 423] 532] 592 642| 606| 670 782| 831! 806| 683| 495| 324| 200| 116] 73| 45 301 15 5
Charleston, SC 1267|1090 | 889} 787| 651| 576! 434} 321| 192} 79} 27 5
Charleston, WV 912 949 767| 689 661 667| 607 633| 630 322 2521 135 73} 22 7 1
Charlotte, NC 1115} 908| 839| 752| 730 684 634 515{ 360| 1 64 23 5 2
Chattanooga, TN 1021] 895| 775| 722| 713 679 642 553 | 414) 228} 113} 45 4 4 2
Chicago, IL 762| 769] 653 592 569 543| s91| soo| 822! 551 335| 196 117 85| 59} 25| 12 3
Cincinnati, OH 879 843 726| 639| 611| 599| 627| 698 711| 460 249| 131| 68} 44 18 8 2
Cleveland, OH 763| 831] 732 641 638 607| 620 754| 806 578 355f 201| 111| 47} 22¢ 11 2
Columbus, OH 774| 8201 720| 648] 622 603{ 658| 730| 772| 502| 280 169| 94| 40} 20¢ 10 41 1
Corpus Christi, TX 1175|1041 | 748 S551| 444 | 302| 180| 83§ 27 9 31 -

Dallas, TX 831 795 693| 656 629| 576 504| 371 231| 91} 34| 17 4 1

Denver, CO s49| 684 783 731| 678] 704| 692§ 717 721| 553| 359| 216| 119| 78| 36| 22 6 1 1
Des Moines, IA 707} 7511 681 600 S85| S12| 510| 627{ 747] 557| 405| 281| 211 152 104} 59 23 8 1
Detroit, MI 721 783 695| 633] 592 566! 595! 808 8834 | 618 377 2481 131 61 17 4 1

El Paso, TX 933| 839| 749 760| 687| 611 494 369| 233| 104| 34| 10 2

Ft. Wayne, IN 728! 777] 699) 608 569 S52| 601| 725| 905| 596| 381| 205 124] 69| 40} 19 6 1
Fresno, CA 709 | 803 | 921|1006|1036| 952| 673 | 426| I68| 34 .

Grand Rapids, MI 634| 739] 712 647] S71| 565 554 | 742| 938) 690! 469| 293| 172 78] 31 10 1 1
Great Falls, MT 407| 520 636 754| 822 830| 832| B13{ 698 533| 355| 218 167 136} 118 101 68f{ 511 62
Harrisburg, PA 807! 824 737| 692 635| 659| 722| 888 749| 427 222 125 52 18 4 1

Hartford, CT 617] 755] 751| 752) 649| 575| 683| 807| 825| 552| 370| 233) 153| 77| 33 1n 3 2
Houston, TX 1172} 980| 772| 681} 570 452 291| 141| 64| 18 4 2

Indianapolis, IN 8211 815| 722 585| 86| 579| 60s{ 712| 791 551| 293| 152| 97| 60| 35 13 3 2
Jackson, MS 1169 922} 790] 677| 618| 605| 484 367| 224 103| 41 6 2 2 1

Jacksonville, FL 1334] 975] 879 692| 530| 355 288| 154| 83| 24 2

VTl



TABLE XV (Continued)
OUTDOOR TEMPERATIRE, F

LOCATION 72 (Y4 62 57 52 47 42 37 32 27 2 17 12 7 2 -3 8 |{-13}-18
Kansas City, MO 7611 723] 601] ST2| 553 562| 628} 625| 591 407 | 265 175 99 51 21 4
Knoxville, TN 1056| 8891 746] 675| 672| 689| 648 590 | 456| 217| 101 41 21 7 2
Las Vegas, NV 651 644! 699f 786} 769| Ti6| 591 396 194 44 7 1
Little Rock, AR 940 903 725] 672 638] 669 605| SO9 ) 363 172 S0 25 5 1
Los Angeles, CA 881 /16542193 {1904 | 1054 | 428 107 10
Louisville, KY 8691 758! 693 | 654 619 634 649| 703} 631 332| 169 97! 45 25 8 3 1
Lubbock, TX 233! 829] 688! 700] 642 618) 620 S46| 490] 346 180 86 33 7 5 1
Memphis, TN or7| 798| 715| 690} 618} 633} 614| 532| 374 196 74 25 10 4

iami, FL 1705 810| 452 277| 147 71 26 4 '

Milwaukee, WI 597! 753] 749] 634] 585 591] 611} 774} 913 659 | 4211 285] 176 116 83 47 18 4 k]
Minneapolis, MN 621) 690! 695| 602| 588 482 500| 560| 632| 609 514 383( 311 246] 186 119 62 31 16
Mobile, AL 141111038 882 698 609| SO6| 377] 214] 109 49 7 3
Nashville, TN 933| 838] 738 697 637 619 627| 565| 463| 263| 132 67] 28 9 3 1 1
New Orleans, LA 1189 987] 850| 692 621] 449 282 128 47 9 2
New York, NY 926! 877| 754 745| 722| 796 838 | B858| 603 | 330 188 2] 26 10 1
Oklahoma City, OK 8811 7691 717 643] 645 611] 641| 570| 468| 287| 173 77 36 12 3 1
Omaha, NB 7261 721 606| 558) 539) S43| 543 655| 663| 511 390] 287 189} 135 93 40 15 1
Philadelphia, PA 863| 809! 735! 710| 663 701| 758 818| 654| 335| 189 100} 32 9
Phoenix, AZ 7621 776| 767| 769| 659 540} 391 182 57 8
Pittsburgh, PA 722| 910! 799} 678! 637] 587)| 631} 688 774] 569 360 233} 159 60 30 7 1
Portland, ME 407] 627| 780 808| 760| 748| 772} 839 820 599| 408 293 190 109 60 29 15 5 1
Portland, OR 373| 58111001{1316]1274 12711238 772| 343 123 40 10 4 1
Raleigh, NC 1087 937] 848| 762 707 672] 638| 527| 410 236| 103 38 11 1

NV 418) 477] 572 690 845 909| 890 829| 733 530| 387 227} 101 37 15 4 1
Richmond, VA 953 850| 784| 745| 690] 673| 699 632 478 285 138 67 19 2 1
Sacramento, CA 630! 773110711329{1298 |1049] 701 | 355 93 8 .
Salt Lake City, UT 569! 615! 614] 635] 682 685] 755| 831| 798| 564 | 328 158 80| 41 16 2
San Antonio, TX 1086| 943| 789 | 669 569 | 445| 387 190 94 31 11 4 1 1
San Francisco, CA 285| 6651264 2341123411153 449 9 10
Seattle, WA 258 | 448] 750|1272 146214451408 | 914 | 427 104 39 20 3
Shreveport, LA 1063| 8861 7721 679 619| 609| 516 361 | 200 72 23 ] 2
Sioux Falls, SD 566| 684| 669] 605} 5221 498 | 501 625| 712| 585 520| 448| 293} 208| 152{ 102 59 43 18
St. Louis, MO 823! 728| 646] 575] 585 578| 620 671| 650| 411 219 134 n 40 15 7 1
Syracuse, NY 6271 7135| 7231 717 656} 641 651 720| 830 547 392 2821 190 102 55 23 5 2 2
Tampa, FL 138711187} 877| 570] 345 216| 137 48 10 1

STT




CALCULATION OF SEASONAL HEATING EFFICIENCY

TABLE XVI

T HRi Yi ni ni X HRl
-3 1 1.000 0.800 0.80
2 3 1.000 0.800 2.40
7 12 1.000 0.800 9.60
12 36 1.000 0.800 28.80
17 77 .0.905 0.793 61.06
22 173 0.786 0.784 135.63
27 287 0.667 0.775 222.42
32 468 0.548 0.537 251.32
37 570 0.429 0.531 302.67
42 641 0.310 0.526 337.17
47 611 0.190 0.524 320.16
52 645 0.071 0.334 215.43

= 3524 L =1887.46
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EH = seasonal heating energy consumption (watt-hr);
HL = seasonal heating demand (BTU);
SHE = seasonal heating efficiency;

K = conversion coefficient (0.293 watt-hr/BTU);

and HL is calculated from Equation (7.20) of the previous chapter by:

HL = HLD x HBLDG x HU.

In summary, simplified procedures for estimating a cooling and
heatingbefficiency parameter were suggested. The analogies in develop-
ment of these procedures were described and the final formulations are
demonstrated by Equations (8.1) and (8.8) for cooling and heating.

These quantities may be used to estimate the cooling and heating energy
consumption utilizing Equations (8.2) and (8.9).

It is interesting to note that an identical method which was devel-
oped for estimating the seasonal heating efficiency can be structured
for estimating the seasonal efficiency of the cooling system. This
technique will require the development of the plots that are similar to
those shown by Figures 21 and 22. These plots will demonstrate the
chiller load ratio (ratio of chiller output to maximum output) versus
normalized temperature (i.e., (Teq - Td)/(Tb - Td)), and the chiller
efficiency versus the load ratio, respectively. Then, utilizing weather
data for numerous locations, a table identical to Table XV can be struc-
tured. This table will 1ist the number of hours of occurrence of 5°F
temperature bins for the cooling period. By following the same analogy
that was described previously, a table similar to Table XVI can be

structured and the seasonal cooling efficiency (SCE) can be calculated

from:
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where
SCE = seasonal cooling efficiency;
n = chiller efficiency;
HR = number of hours of occurrence of 5°F temperature bins during
cooling season; and
i = summation index.
As mentioned previously, this method will require structuring a
table similar to Table XV, where temperature bins and the number of

hours of their occurrence during the cooling season are tabulated.



CHAPTER IX
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
Summary and Conclusions

An investigation was undertaken to develop a simplified procedure
for estimating energy requirements of commercial structures. The accom-
plishments of this investigation may be summarized as follows:

1. The significant environmental parameters were identified. This
was achieved by conducting various computational experiments which in-
volved a sensitivity analysis of the thermal response of buildings to
perturbations in climate. The significant environmental variables were
found to be atmospheric dry bulb temperature, solar insolation, humidity
ratio difference of indoor and outdoor air, and daily temperature range

(see Chapter 1IV).

s

2. A hypothetical representative building, which typifies the ther-
mal response of a sample of institutional buildings, was modeled. This
building was modeled by analysis of the eﬁvelope information from several
institutional buildings (see Chapter V).

3. Improved cooling and heating degree-days were developed from a
combination of significant environmental parameters. These quantities
were demonstrated by analytical expressions that are functions of these
significant climatic variables (Equations (6.5) and (6.11)). The improv-
ed degree-day expressions were utilized to predict the heating and cool-

ing demand of the representative building. These expressions were found
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to adequately predict the computer simulation results. The improved
degree-day procedure was also compared with the conventional procedure.
The results of these analyses indicated the advantages of the present
model as compared with the conventional technique (Figures 13, 14, 15,
and Table VIII). Furthermore, the improved degree-day procedure was ex—
tended to predict the heating and cooling demand of a residential struc-
ture. The results of this analysis, when compared with the results
obtained from the conventional degree-day technique, revealed the advan-
tages of the present model (Figures 16, 17, 13, and Table VIII). It was
concluded that the imbroved degree-day procedure developed in this study
was a more realistic and desirable way of relating building demand to
weather. The primary reason for improved results by use of the improved
degree—-day technique is due to consideration of the effects of all the
significant environmental parameters in a direct manner.

4. A simplified procedure for estimating the energy demand of com-
mercial structures was developed (Chapter VII). The heating and cooling
demand of any building was expressed as a function of two distinct para-
meters. These parameters were found to be the fundamental buildiné and
weather variables (Equations (7.15) and (7.16)). The cooling and heating
units were developed from a combination of significant weather variables
by utilizing a set of constants, which were obtained from a regression
analysis of the simulated demand and weather data (Equations (7.17) and
(7.18)). These quantities may be used for generating tables of values
for different locations which can be employed to estimate the heating and
cooling demand (Equations (7.19) and (7.20)). The results obtained from
these developments were used to predict the computer simulated demand for

various locations utilizing TMY weather data. Excellent predictions were
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obtained which suggested the feasibility and validity of the present
technique (Tables XII and XIII).

5. Simplified procedures for estimating seasonal heating and cool-
ing efficiency parameters were developed (Chapter VIII). These devel-
ments included the seasonal energy efficiency ratio, SEER (Egquation
(8.1)), and the seasonal heating efficiency, SHE (Equation (8.8)). These
quantities may be used to calculate the energy consumption of buildings

via use of Equations (8.2) and (8.9) for cooling and heating.
Recommendations

Based on the observations made during the course of this study, the
following recommendations are made:

1. The identical procedure which was developed in the present study
for commercial structures should be extended to include other classes of
structures (i.e., light, medium). This procedure should be general and
its application should utilize correction factors to account for varia-
tion in buildings of different categories.

2. The results of the previous recommendation will be useful in
developing tables of values for heating and cooling units for various
locations. These tables will eventually replace the existing degree-day
tables and will eliminate the use of weather data in estimating the
energy requirements.

3. Finally, the procedure for estimating the efficiency parameter,
which was described in this content, is simply a suggested method. It
is recommended that actual consumption data from reliable sources (moni-
tored buildings) should be analyzed to develop a more fundamental proce-

dure for estimating seasonal efficiency parameters.
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HEATING AND COOLING UNITS FOR SELECTED CITIES

IN THE UNITED STATES
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HEATING AND COOLING UNITS

TABLE XVII

FOR SELECTED CITIES IN THE UNITED STATES

Design

Daily Range

Temperature Temperature Seasonal
Location Season {°F) (°F) Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec. Total

Boston, Cooling 88 16 -— -— -— -— 38.23 51.69 55.33 52.05 37.90 —-— -— — 235.25
MA Heating 9 369.25 277.23 294.30 229.46 --- — — — -—— 215.85 247.20 333.86 1967.15
Charleston, Cooling 92 13 -— -— —-—— 40.72 49.67 56.24 64.11 59.22 50.98 — —— -— 320.94
sC Heating 28 368.37 237.95 214.91 —-— -— — —_— -— --- 209.10 210.94 247.78 1489.05
Colwmbia, Cooling 94 22 -— -— -— --— 44.92 55.46 62.92 59.35 41.29 -— -— —— 264.01
MO Heating 4 420.58 327.52 289.71 218.88 --- -— —_— -— --- 216.16 270.20 348.85

Dodge City, Cooling 97 25 —— —-— -— --- 45.56 59.81 64.26 63.17 39.91 - —-— -— 272.71
KS Heating 5 386.15 284.03 293.32 219.48 -— -— -— -— —— 219.76 258.77 339.21 2000.72
Medford, Cooling 94 35 -— -— -— --- 32.31 48.54 61.33 51.95 39.64 —-— -— —-— 233.82
OR Heating 23 299.15 254.59 256.23 228.41 -— —_— —-— -— -— 230.06 251.85 308.50 1828.79
Nashville, Cooling 94 21 -— - -— --- 45.64 56.37 60.25 56.02 48.29 ——- —-— o 266.57
™ Heating 14 283.87 252.34 240.86 238.70 --- - ——— —— —-— 203.93 226.58 283.48 1729.76
Phoenix, Cooling 107 27 -— -— - 43.55 82.25 86.67 96.41 88.68 B5.51 83.28 -— -— 566.35
AZ Heating 34 226.79 201.41 208.26 —-— -— —-— —— —-— —-— -— 194.94 236.01 1067.41
Sterling, Cooling 91 18 -— -— -— --= 43.47 49.48 60.62 55.02 44.18 -— —-— —_— 252.77
VA Heating 17 366.47 302.13 268.15 242.58 -— —_— -— -— -— 213.11 248.77 297.47 1938.68

*Typical metereoclogical year weather data (see Reference (29)).
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® =3.0129,C.2155+0.3712,0.17904=).018067 $ IM130650
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