THE RELATIVE IMPORTANCE OF GRAPHIC SKILLS

DEVELOPMENT IN UNDERGRADUATE
ENGINEERING PROGRAMS

By
ROBERTO ALEXANDRE SCHLEMM
Bachelor of Science Universidade Federal de Paraná
Curitiba, Paraná, Brazil 1972
Master of Science
Oklahoma State University
Stillwater, Ok1ahoma 1973

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF EDUCATION
December, 1980

$$
\begin{aligned}
& 1980 \mathrm{D} \\
& 3341 \mathrm{r} \\
& \text { cop. }
\end{aligned}
$$

THE RELATIVE IMPORTANCE OF GRAPHIC SKILLS
DEVELOPMENT IN UNDERGRADUATE
ENGINEERING PROGRAMS

Thesis Approved:

ACKNOWLEDGMENTS

The writer wishes to express his appreciation to Dr. Lloyd D. Briggs, Chairman of the Advisory Committee for his patience and friendship. His encouragement, counsel, assistance, and willing contribution of time, during the author's total graduate program, goes far beyond the call of a professor's duty.
A deep appreciation is also expressed to other members of the Advisory Committee, Dr. Cecil W. Dugger, Dr. Harold J. Polk, and Dr. William E. Segall for their assistance and encouragement.
Throughout the professional development of the author, Professor Aramis Demeterco has been a real inspiration and morale booster. Few people could owe one man what the author owes Professor Aramis Demeterco.
The writer is also indebted to Professor Ir. Firmino Bonato, Professor Ocyron Cunha and Professor Ivo Mezzadri for making the continuing of his studies possible.
A special gratitude is extended to Engineer Marcos Olandoski whose friendship and help will always to cherished.
In addition, the writer is grateful for the scholarship provided by the Coordenacão do Aperfeicoamento de Pessoal de Nive1 Superior (CAPES) over the last two years without which the doctorate program could not have been completed.
And last, the author wishes to express his love and appreciation to his wife, Sonia, and his two daughters, Alessandra and Claudia, for
their endurance and patience, and to apologize to them for the sacriflces they encountered throughout this endeavor.

TABLE OF CONTENTS
Chapter Page
I. THE RESEARCH PROBLEM 1
Introduction 1
Statement of the Problem. 2
Need for the Study. 2
Purpose of the Study. 3
Research Questions. 3
II. REVIEW OF LITERATURE 4
III. METHODOLOGY. 12
Definition of Terms 12
Selection of the Subjects 14
The Instrument. 14
Collection of Data. 16
Analysis of Data 16
Assumptions 17
Scope and Limitations 18
IV. RESULTS. 19
Return Rates 19
Analysis of the NSPE Data 21
Analysis of the ASEE Data 29
Analysis and Comparison of Both Groups of Data. 33
V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS. 44
Summary 44
Conclusions 45
Recommendations 46
SELECTED BIBLIOGRAPHY 48
APPENDIXES. 50
APPENDIX A - QUESTIONNAIRE ADMINISTERED. 51
APPENDIX B - TRANSMITTAL LETTER. 54
APPENDIX C - COMMENTS BY GROUPS. 56
Chapter Page
APPENDIX D - LIST OF ADDITIONAL SKILLS 60
APPENDIX E - PRINTOUT OF RANKED TOP TEN GRAPHIC SKILLS 62
APPENDIX F - LISTING OF COMPUTER PROGRAMS 73

LIST OF TABLES

Table Page
I. Areas and Number of Skills 15
II. NSPE Members Participating in the Study 20
III. ASEE Members Participating in the Study 20
IV. Mean and Importance of Skills as Determined by NSPE Members 22
V. Graphic Skills Ranked Important and Very Important by Practicing Engineers. 26
VI. Mean and Importance of Skills as Determined by ASEE Members 30
VII. Graphic Skills Ranked Important and Very Important by Engineering Educators 34
VIII. Mean Responses by Groups. 37
IX. Graphic Skills Rated Important and Very Important by All Participants. 42

CHAPTER I

THE RESEARCH PROBLEM

Introduction

Admission to higher education in Brazil is determined exclusively by the candidate's performance on the college entrance examination (Exame Vestibular). With the unification of the college entrance examination, as recommended in Article 21 of the 1968 University Reform Law, and adopted in 1972, the drafting exam was eliminated and, as a consequence, the study of drafting in Brazilian high schools almost disappeared.

One contemporary trend in engineering education in Brazil, as well as in the United States, is the gradual disappearance of graphics from the Bachelor's Degree curriculum. Where it still survives, it has shrunk badly in terms of both content and time devoted to it. One of the reasons for such a change is that as science and technology grow and expand, so do demands for additional courses in the engineering curriculum. Uusually, these are advanced courses and, when they are added in the senior year, they create backwards pressure toward the freshman year where courses are reduced or eliminated. Many engineering educators believe graphics is not rigorous enough to be included in college curricula and some question the relevance of graphics to the modern engineer's work. Others, however, think it is fundamental--like French (1976) who stated:

Finally, let us have drawing taught well and understandingly for its own sake, for the sake of the subjects following, and for the students' sake, for whom, with the power it awakens it really becomes drawing in relation to life (p. 35)

Statement of the Problem

Graphics is basically a means of communication with some possibilities for problem solving. Drafting in the engineering curriculum combines these two functions and provides a coherent and integrated body of knowledge such as that which exists in other engineering subjects.

With the exception of mechanical drawing, which is relevant to only a small minority of practicing engineers, few texts agree on what should be included in a graphic course.

The problem with which this study was concerned was the lack of information about what graphic skills are needed in undergraduate engineering programs.

Need for the Study

In many engineering programs, graphic courses were taught in such a way that considerable emphasis was placed on the introductory chapters dealing with basic concepts and construction techniques. The exercise classes were devoted mostly to tricky problems which called for sophisticated solutions that were largely irrelevant to industrial practice. The final unit of the course, in which the above techniques normally are used for practical problems with close relevance to modern technology, now is superficially covered or omitted altogether, because of the limited time available to the teacher. The resulting course

Abstract

leaves the student with some graphical techniques, but without a clear understanding of how they are applied.

\section*{Purpose of the Study}

The purpose of this study was to obtain information from professional engineers and engineering educators for determining specific content elements appropriate for inclusion in graphic courses in undergraduate engineering programs.

Research Questions

This study attempted to answer the following questions:

1. What is the relative importance of graphic skills development in undergraduate engineering programs?
2. What information elements should be included in graphic courses in undergraduate engineering programs?
3. Is there a significant difference of opinions among Practicing Engineers and Engineering Educators in regard to which graphic skills should be developed in undergraduate engineering programs?

CHAPTER II

REVIEW OF LITERATURE

According to Heacock (1964), some years ago a small group of graphic teachers proposed wider horizons in the teaching of graphics to all engineering students in order to provide the best preparation for creative design. For this purpose they recommended that instruction in basic engineering drawing and descriptive geometry be supplemented by teaching advanced graphics, including an introduction to various applications of graphics that can be used to advantage in other engineering courses. These applications include graphic vector analysis, charts and diagrams for visual interpretation of various kinds of quantitative relationships, graphic analysis for solving technical problems, calculating charts and nomographs, graphical calculus and elementary design projects.

Further, Heacock said that a Committee on Advanced Graphics was appointed in the Engineering Drawing Division of the American Society for Engineering Education and adopted the following policy:
-To collect and analyze new graphic methods that have been employed to advantage in all scientific fields;
-To classify and integrate into a consistent pattern the underlying graphic principles involved;
-To circulate this material in convenient form for use by teachers, engineers and scientists (p. 5).

After three years of research for the committee, as chairman, Heacock (1964) published a report in the form of a book, Graphic Methods for Solving Problems, which was designed as a reading guide to recent articles in the technical journals describing new graphic solutions of significant problems in engineering, science, business and industry. Many of these articles require a fair knowledge of the methods involved in order that may be read with full understanding. The book, therefore, contains eight chapters in which the various graphics principles and procedures are explained and illustrated by typical examples. An important feature is the comprehensive bibliography of more than 600 references to articles and reports on graphic methods.

During more recent years, the bibliography has been expanded to include all articles publiched in the technical journals which describe new methods for the solution of problems encountered in engineering and science, business and industry, with more than 3,000 references and 2,000 abstracts.

It is interesting to note that the traditional methods of graphic communication are rarely mentioned. On the other hand, graphic analysis, problem solving, and interpretation of quantitative relationships, by means of charts and diagramsn, are frequently used in a wide range of engineering and scientific applications.

Graphic vector analysis is widely used in many different kinds of engineering applications as an essential part of design procedure. Many articles demonstrate the clarifying value of the graphic approach as the most effective way to ensure complete understanding of complex relations of various kinds.

The field of application in which a graphic method has been used to advantage is usually indicated by the title of the article, or by the name of the journal in which it is published.

The largest number of articles describing useful graphic solutions is found in the field of mechanical engineering. Other fields of application, in the descending order of their number of articles, are electrical engineering, business and industry, civil, and chemical engineering. The smallest number of articles on graphic methods is found in aeronautical engineering.

Trapp (1970) during the fall of 1967, directed an inquiry to appropriate institutions of higher learning in the United States as 1isted in the Industrial Teacher Education Directory, 1966-67 edition, concerning aspects of the teaching of descriptive geometry in the particular college or university. Of the 208 schools contacted, 158 (76\%) responded, with 110 (70\%) indicating that descriptive geometry was taught by some department in the university. Four schools noted the subject was to be initiated in September of 1968.

A significant revelation of the survey was that 42 schools (27\%) of those engaged in technical teacher preparation did not make descriptive geometry available to their students in any department of the college or university. In this group were included a number of state universities as well as state colleges.

Among the institutions offering descriptive geometry, the subject was taught as a separate course by 95%, while only 5% indicated that material from descriptive geometry was integrated into other courses such as graphics, mechanical drawing, drafting, and engineering drawing.

Approximate1y 80% of the institutions offering descriptive geometry required some form of introductory drawing as a prerequisite, such as: Engineering Drawing, Engineering Graphics, Technical Drawing or Basic Drawing.

French (1976) in writing about the need and value of drawing, quoted from an address by President Eliot of Harvard University:

I have recently examined all the courses offered by the University, and I find but one (the course of theology) in which a knowledge of drawing would not be of immediate value (and even there, I think it might he1p in some cases).

The power to draw is greatly needed in all the courses, and absolutely indispensable in some of them. A very large proportion of studies now train the memory, a very small proportion train the power to see straight and do straight, which is the basis of industrial skill (p. 32).

As to the value of drawing, he quoted again, this time from Dean

Shaler:

The value of drawing in all departments of science, not only as a language, but as a discipline of the mind, can hardly be overestimated. Many students entering Harvard University can think in one dimension, some few in two dimensions, but those who can think in three dimensions are exceedingly rare (p. 32)

There is concern in the drafting and design profession that computers will replace a large number of draftsmen and designers. However, there seems to be no apparent indication that computer aided drafting will cause less demand for draftsmen and designers. In a speech delivered to the Oklahoma Council of the American Institute for Design and Drafting (AIDD), Freling (1974) of Phillips Petroleum Company cited that the reason Phillips opted for an automated drafting system was to fill vacant technician slots.

There is evidence to indicate that computer-aided drafting does not reduce the labor force of designers and draftsmen, but rather deepens their design capabilities and frees them for more creative work. Farrel (1974), Manager of Design Drafting for RCA's Government Communications and Automated Systems Division, states that the implementation of design automation expanded the output of the drafting department to include producing software for numerically controlled machines. o'Neill (1974), a section supervisor for E. I. DuPont de Nemours and Company, stated that in a DuPont study, they found that only 20% of the draftsman's time is spent at the drawing board producing a drawing.

Slaby (1976) of Princeton University points out:
Computer graphics in its early days was being sold to the public, to industry, to educators, and administrators as a concept and system that would eventually replace all draftsmen and that design would also be placed in the category of obsolete people

Most of the promises of the past, including predictions for the future, have not materialized. Draftsmen and engineering designers continue to be the bedrock of industry and in my judgment this healthy state of affairs will continue as far as I can see into the indefinite future. If we take one of the most sophisticated areas of high technology, the space-satellite program, we see that the need for creative geometers and designers is a top priority, and as an example one only has to visit the jet propulsion laboratory in Pasadena, California to see the reality of this fact. Drawing tables with designers sitting at them with pencil and paper at their fingertips, doing creative engineering design based on fundamental geometrical principles and concepts are patently apparent (p. 34).

If we do not lose sight of the fact that the bedrock of physical engineering design is descriptive geometry and engineering drawing, then we can progress into the future assured of our position of control and our position in engineering and engineering education. Many attempts have been made to relegate these areas of knowledge to the past but in the process those who have attempted to do this themselves have faded into the past (p. 38).

Educator's response to this era of computer-aided design technology will depend heavily upon the type of infulence exercised by industry. About that, Turner (1976) said:

Of particular importance to the graduate design engineer is his proficiency in graphics and English as fundamental means of communication. It is extremely rare to find a graduate design engineer who has the required proficiency in engineering drawing, and who can write with accepted legibility without the use of lettering guides. It is often necessary to place the young engineer in the drafting department for at least one year under the supervision of a lead designer and hope that he will achieve proficiency through osmosis.

Use of computers for automated drafting and design is becoming more feasible throughout the industry. Nevertheless, their contribution and effectivity is directly correlated to the inputs of the design engineer who needs to be thoroughly conversant with design graphics (p. 11).

About drawing interpretation, he pointed out that the interminable loss suffered by industry due to ambiguous practices, illegible drawings and inadequate tolerancing have reached significant proportions among today's embattled economy design engineers, often due to ignorance. Geometric tolerancing is the least anbiguous method of specifying design and is based upon the use of universally recognized geometric characteristic symbols. An engineer's education cannot be considered complete without a complete working knowledge of the subject.

Land (1976) emphasized the importance of updating graphics in keeping abreast of recent technological developments. He stated that graphics, as an essential means for design, analysis, and communications, will never become obsolete; on the contrary, "For the computerization of engineering design, the engineer must have a deeper knoweldge of graphic methods than in the past" (p. 33).

Wilhoit (1962) conducted a study on engineering graphics and the application to industry within a 250 mile radius of Miami, Oklahoma.

He collected data pertaining to engineering graphics simplification and the application and acceptance by industry. The approach made by this study was based on sound engineering graphics taken from recognized authorities in the field of study. He concluded that simplified drawing was a functional working drawing with purpose in each and every line, legend, note, and view placed on the drawing. The simplified drawing, he said, gives justification for the elimination of superfluous views, elaborate pictorials, hidden lines, and repetitive detail to relieve the time stress placed on today's engineers and draftsmen.

In a study conducted in 1972, McNeal (1972) reported that the units of instruction which were found to be in the most demand were basic drawing, machine drafting, structural drafting, graphical geometry, and design. Courses in less demand were map drafting and architectural drafting.

The most recent study conducted at the Oklahoma State University was accomplished by Hysaw (1978). His conclusion was that fluid power is very essential in design drafting and recommended application and design of a complete hydraulic system to better prepare graduates for job placement.

During the fall semester of 1979-1980, the State University of New York (1980) reviewed and revised the undergraduate Mechanical Engineering curriculum. A survey of their peer institutions had been made regarding the drafting question. The results based on a survey of available catalogs, showed that 86% of their peers offer drafting courses within engineering. In general, this is an elective course in the Freshman year, however, 62% of Mechanical Engineering Departments do require drafting.

In discussing the changes which they made, it was pointed out that, sometime in the mid-sixties, the teaching of engineering drawing became unfashionable and was dropped from many engineering curricula. The State University of New York (1980) stated that
. . . while this may be justified for certain branches of engineering, the practicing Mechanical Engineer is continually involved with engineering drawings and must be comfortable working with them. Many of our Mechanical Engineering faculty hear complaints from graduating and past students regarding the lack of engineering drawing in the curriculum (p. 1).

They concluded that: (1) the proper place for an engineering drawing course is undoubtedly at the lower undergraduate level, prior to the Junior and Senior Mechanical Engineering coursework; (2) that the drafting course now is required at the high school, community college or university level, before acceptance into the Mechanical Engineering program at the beginning of the Junior year; and (3) that an introductory engineering drawing course will now be offered to help students meet this requirement. These revisions have been approved by vote of the department faculty and are planned to begin taking effect in September, 1980.

In view of this presented literature, it seems appropriate to investigate the research questions previously stated in Chapter I:

1. What is the relative importance of graphic skills development in undergraduate engineering programs?
2. What information elements should be included in graphic courses in undergraduate engineering programs?
3. Is there a significant difference of opinions among Practicing Engineers and Engineering Educators in regard to which graphic skills should be developed in undergraduate engineering programs?

METHODOLOGY

The purpose of this study was to obtain information from professional engineers and engineering educators for determining specific content elements appropriate for inclusion in graphic courses in undergraduate engineering programs.

```
Definition of Terms
```

Auxiliary Views--One or more views used to show true shape and relationships of features that are not parallel to any of the principal planes of projection.

Block Diagrams--A pictorial method of representing components and signals within a system, where blocks represent the components and lines show signal flow.

Computer Graphics--The graphical output of analytical data which has been processed by a digital computer.

Connection Diagram--A diagram which shows the connections of installation or its component devices or parts.

Contour--Is a theoretical line on the surface of the ground which at, every point passes through the same elevation.

Descriptive Geometry--Is the science of graphically solving problems involving space distances and relationships.

Dimension--A numerical value expressed in appropriate units of measure and indicated on a drawing along with lines, symbols, and notes, to define a geometrical characteristic of an object.

Erection Drawing--Shows procedures and operation sequence for erection or assembly of individual items or assemblies of items.

Flow Diagram--A graphical representation of a sequence of operations.
Graphics--The art or science of representing a three dimensional object on a two dimensional surface according to mathematical rules of projection.

Isometric Projection--A pictorial drawing in which the three principal faces and the three principal axes of an object are equally inclined to the plane of projection.

Nomograms--Consists of three or more scales arranged and graduated so that any straight line drawn to intercept the three scales will intercept them at scale values which are distinct solutions of the equation.

Oblique Projection--A projected view in which the lines of sight are parallel to each other but inclined to the plane of projection.

Orthographic Projection--A system of drawing, composed of images of an object formed by projectors from the object, perpendicular to desired planes of projection.

Perspective--A pictorial drawing made by the intersection of the picture plane with lines of sight converging from points on the object to the point of sight, which is located at a finite distance from the picture plane.

Printed Circuits--Any circuit formed by depositing a conductive material on the surface of an insulating sheet.

Schematic Diagram--A diagram which shows, by means of graphic symbols, the electrical connections and functions of a specific circuit arrangement.

Sectional View--Is the one obtained by cutting away part of an object to show the shape and construction at the cutting plane.

Tolerance--A total permissible variation from design, size and location.

Selection of the Subjects

In order to select the sample, the writer used the table of random numbers found in Snedecor's text (1978) and randomly selected 300 members of the National Society of Professional Engineers (NSPE) 1isted in the 1980-81 Directory of Engineers in Private Practice and also randomly selected 300 members of the American Society of Engineering Education (ASEE) 1isted in the 1980 Individual Member Directory.

The Instrument

The writer, with the help of the Advisory Committee Chairman, developed a tentative questionnaire which was then presented to experts in the field. Each person was asked to review and refine the instrument by adding, deleting, and/or changing it in any ways necessary for its improvement.

Several skills were added to the questionnaire as a result of suggestions. After the review and revisions had been accomplished, the questionnaire was developed into an instrument comprised of 49 skills grouped in nine areas as follows: (1) Basic Drawing; (2) Machine Drafting; (3) Structural Drafting; (4) Architectural Drafting;
(5) Electrical and Electronics Drafting; (6) Map Drafting; (7) Pipe Drafting; (8) Design; and (9) Other. A list of the areas and the number of the corresponding skills is given in Table I .

TABLE I
AREAS AND NUMBER OF SKILLS

	Area	Number of Skills
1. Basic Drawing	12	
2. Machine Drafting	7	
3. Structural Drafting	2	
4. Architectural Drafting	3	
5. Electrical and Electronics Drafting	5	
6. Map Drafting	4	
7. Pipe Drafting	3	
8. Design	7	
9. Other	7	
Total	6	

For each of the skills listed, the respondent placed a circle on the appropriate number of a five-point continuum scale. One point in the scale indicated not important and five points indicated extremely important. In addition to the skills listed, blank spaces were left
for listing additional skills they thought were important. The instrument was then printed in two different colors in order to differentiate the two group responses. A copy of the questionnaire is included in the Appendix A.

Collection of Data

Data for this study were acquired by mailing the study instrument to each of the persons selected. A cover letter (Appendix B) explaining the purpose of the study and a self-addressed stamped envelope were sent to each mailed questionnaire.

In addition to indicating their responses by circling the appropriate number, some respondents added comments and listed additional skills (refer to Appendix C for comments and Appendix D for list of additional skills).

The criteria for judging whether a skill was important or not were established in consultation with the writer's Advisory Committee Chairman. An item was considered to be very important if the mean was 3.50 or higher. An item was considered to be important if the mean was 2.50 through 3.49. An item was considered to be not important if the mean was less than 2.5 C .

Analysis of Data

The questionnaire comprised 49 graphic skills, to which the persons participating in this study responded on a five-point continuum scale, from not important to extremely important. The information was keypunched for computer processing as follows:

Not Important	1
Slightly Important	2
Important	3
Very Important	4
Extremely Important	5
No Response	0

The Statistical Package for the Social Sciences (SPSS) was used to perform the statistical analysis of the raw data. The mean, median, mode, standard deviation, range, as well as absolute and relative frequencies were computed on each item for the two groups participating in the study, using the subprogram Frequencies. The t-test was used to evaluate the statistical significance of the difference between the two sample means. The uncorrelated t-test was used, as when, "A researcher is not dealing with matched pairs or with two measures of the same individuals . . . he assumes no relationship between data in the two groups" (Popham, 1967, p. 144). The uncorrelated design was evaluated for differences between the two means at the . 05 level of significance. (See Appendix F for listing of Computer Programs.)

Assumptions

For the purpose of this study, the following assumptions were made:

1. The selected participants possess expertise in the engineering graphic field.
2. The selected participants responded objectively and to the best of their ability.
3. The five point continuum used for the calculations is an interval scale.

Scope and Limitations

This study was restricted to identifying skills appropriate for inclusion in undergraduate engineering programs.

The participants in this study were limited to a random selection
of the members of the Professional Engineers in Private Practice (PEPP),
a division of the National Society of Professional Engineers (NSPE), and a random selection of the members of the American Society for Engineering Education (ASEE).

CHAPTER IV

RESULTS

Return Rates

The purpose of this study was to obtain information from professional engineers and engineering educators for determining specific content elements appropriate for inclusion in graphic courses in undergraduate engineering programs.

The participant sample in this study consisted of 300 members of the National Society of Professional Engineers (NSPE) and 300 members of the American Society for Engineering Education (ASEE) in the United States. The procedure was as follows: the names and addresses of the participants were obtained from the 1980-81 Directory of Engineers in Private Practice of the National Society of Professional Engineers, and from the 1980 Individual Member Directory of the American Society for Engineering Education, using the table of random digits of Snedecor's text (1978).

A questionnaire of identified graphic skills was mailed to each of the persons surveyed on April 11, 1980. At the deadline date for accepting the returned questionnaires, May $30,1980,51.33 \%$ of the questionnaires mailed to the NSPE members had been returned with two questionnaires not completed (see Table II).

TABLE II
NSPE MEMBERS PARTICIPATING IN THE STUDY

Item	Number	Percentage
Questionnaire Sent to NSPE Members	300	100.00
NSPE Member Returning Questionnaires	154	51.33
Unusuable Returns	2	0.66
Usable Returns	152	50.67

At the deadline for accepting the returned questionnaires, May $30,1980,49.33 \%$ of the questionnaires mailed to the ASEE members had been returned with 10 questionnaires not completed (see Table III).

TABLE III

ASEE MEMBERS PARTICIPATING IN THE STUDY

Item	Number	Percentage
Questionnaires Sent to ASEE Members	300	100.00
ASEE Member Returning Questionnaires	148	49.33
Unusuable Returns	10	3.33
Usable Returns	138	46.00

Analysis of the NSPE Data

The first step in analyzing this data consisted of computing the mean responses and their relative importance as determined by the established criteria; that is, an item was considered as very important if the mean was 3.50 or higher; important if the mean was 2.50 through 3.49; and not important if the mean was less than 2.50 . The results are presented in Table IV.

It was determined that 42 items (85.7%) out of the 49 were considered important by the practicing engineers. Twelve (12) of the 49 items (24.5\%) were rated very important. Eleven participants added comments to their responses (refer to Appendix C for comments), and 25 listed one or more graphic skills that they thought were important (see Appendix D).

Of the 12 items in the basic drawing area, four were considered to be very important and five were considered important. They considered Lettering, Sectional Views, Dimensioning, and Working Drawings as being very important. They considered Orthographic Projection, Sketching, Auxiliary Views, Isometric Projection, Intersection and Development as being important. Eleven respondents listed additions skills in this area.

In the area of Machine Drafting, four items out of the seven were considered as being important: Surface Treatment of Metals, Tolerancing, General Machine Drawing and Fabrication. Two of the participants added graphic skills important for that discipline.

One of the items in Structural Drafting, Detail Drawing was rated as very important and the other, Erection Drawing rated as important. Additional skills in this area were mentioned by nine respondents.

TABLE IV

MEAN AND IMPORTANCE OF SKILLS AS DETERMINED BY NSPE MEMBERS

Area and Skill		Mean	Rank
Basic Drawing			
**1	Lettering	3.56	(10)
*2	Orthographic Projection	2.88	(28)
*3	Sketching	3.36	(15)
4	Inking and Reproduction	2.36	(46)
*5	Auxiliary Views	3.09	(23)
**6	Sectional Views	3.75	(4)
$2 * 7$	Dimensioning	3.96	(1)
**8	Working Drawings	3.90	(2)
*9	Isometric Projection	2.80	(30)
10	Oblique Projection	2.34	(47)
11	Perspective Drawing	2.48	(43)
*12	Intersection and Development	2.71	(35)
Machine Drafting			
*1	Surface Treatment of Metals	2.55	(42)
*2	Tolerancing	3.12	(21)
*3	General Machine Drawing	2.92	(27)
4	Casting and Forming	2.37	(45)
*5	Fabrication	2.97	(26)
6	Cams	2.30	(49)
	Gears	2.33	(48)

TABLE IV (Continued)

Area and Skill Mean Rank
Structural Drafting
**1. Detail Drawing 3.88 (3)
*2. Erection Drawing 3.37(14)
Architectural Drafting
*1. Residential 2.78(32)
*2. Commercial 3. 30
*3. Energy Conservation 3.22(16)(19)
Electrical and Electronics Drafting
*1. Graphic Symbol 3.26
*2. Connections Diagram 3.21
*3. Printed Circuits 2.70
*4. Block Diagrams 3.07
**5. Schematic Diagrams 3.54
Map Drafting
**1. Survey Practice 3.66
**2. Topography Maps 3.65
**3. Contour Maps 3.58
**4. Profile Maps 3.50
Pipe Drafting
**1. Flow Diagrams 3.59
*2. Vessel Drawing 2.73(8)
*3. Exchange Drawing 2.68(18)(20)(36)(24)

TABLE IV (Continued)

Area and Skill	Mean	Rank
Design		
*1. Hydraulic and Pneumatic	3.40	(13)
*2. Mechanism and Kinematics	3.06	(25)
3. Jigs and Fixtures	2.38	(44)
**4. Structural	3.63	(7)
*5. Machine	2.79	(31)
*6. Materials	2.83	(29)
*7. Solar	2.69	(37)
Other		
*1. Descriptive Geometry	3.29	(17)
*2. Graphical Integral	2.56	(41)
*3. Nomograms	2.62	(39)
*4. Vector Geometry	2.74	(33)
*5. Graphical Calculus	2.61	(40)
*6. Computer Graphics	3.10	(22)
*Important.		
**Very Important.		

A11 the three items in Architectural Drafting, residential, commercial, and energy conservation, were considered as important and five participants mentioned additional skills.

In Electrical and Electronics Drafting, one item was considered as being very important and the four others as being important. Seven respondents listed additional skills in this area.

All of the four items in the Map Drafting Area, Survey Practice, Topography Maps, Contour Maps and Profile Maps were considered as being very important. No additional skills were mentioned in this field.

In the Pipe Drafting area, one skill was considered to be very important and the two others were considered important. Four participants added skills in this discipline.

Of the seven items in the Design area, only one, Jigs and Fixtures, was considered as not important. Of those items, the respondents rated Hydraulic and Pneumatic, Mechanism and Kinematics, Machine, Material and Solar Design as being important. In addition, they considered Structural Design as being very important and six of them summed other graphic skills they thought very important.

All of the six skills grouped under the area Other, Descriptive Geometry, Graphical Integral, Nomograms, Vector Geometry, Graphical Calculus, and Computer Graphics were considered to be important, and only two respondents added other skills here.

The second step in analyzing the data consisted of grouping the responses considered important and very important in rank order as appears in Table V .

TABLE V
GRAPHIC SKILLS RANKED IMPORTANT AND VERY IMPORTANT BY PRACTICING ENGINEERS

Area	Item No.	Skill	Mean	Rank
Basic Drawing	7.	Dimensioning	3.96	1
Basic Drawing	8.	Working Drawings	3.90	2
Structural Drawing	1.	Detail Drawing	3.88	3
Basic Drawing	6.	Sectional Views	3.75	4
Map Drafting	1.	Survey Practice	3.66	5
Map Drafting	2.	Topography Maps	3.65	6
Design	4.	Structural	3.63	7
Pipe Drafting	1.	Flow Diagrams	3.59	8
Map Drafting	3.	Contour Maps	3.58	9
Basic Drawing	1.	Lettering	3.56	10
Electrical and Electronics Drafting	5.	Schematic Diagram	3.54	11
Map Drafting	4.	Profile Maps	3.50	12
Design	1.	Hydraulic and Pneumatic	3.40	13
Structural Drafting	2.	Erection Drawing	3.37	14
Basic Drawing	3.	Sketching	3.36	15
Architectural Drafting	2.	Commercial	3.30	16
Other	1.	Descriptive Geometry	3.29	17
Electrical and Electronics Drafting	1.	Graphic Symbol	3.26	18
Architectural Drafting	3.	Energy Conservation	3.22	19

TABLE V (Continued)

Area	Item No.	Skill	Mean	
Electrical and Electronics Drafting	2.	Connections Diagram	3.21	20
Machine Drafting	2.	Tolerancing	3.12	21
Other	6.	Computer Graphics	3.10	22
Basic Drawing	5.	Auxiliary Views	3.09	23
Electrical and Electronics Drafting	4.	Block Diagrams	3.07	24
Design	2.	Mechanism and Kinematics	3.06	25
Machine Drafting	5.	Fabrication	2.97	26
Machine Drafting	3.	General Machine Drawing	2.92	27
Basic Drawing	2.	Orthographic Projection	2.88	28
Design	6.	Material	2.83	29
Basic Drawing	9.	Isometric Projection	2.80	30
Design	5.	Machine	2.79	31
Architectural Drafting	1.	Residential	2.78	32
Other	4.	Vector Geometry	2.74	33
Pipe Drafting	2.	Vessel Drawing	2.73	34
Basic Drawing	12.	Intersection and Development	2.71	35
Electrical and Electronics Drafting	3.	Printed Circuits	2.70	36
Design	7.	Solar	2.69	37
Pipe Drafting	3.	Exchange Drawing	2.68	38
Other	3.	Nomograms	2.62	39

TABLE V (Continued)

| Area | Item No. | Skill | Mean | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Other | \ldots | | Graphical Calculus | 2.61 |
| Other | 2. | Graphical Integral | 40 | |
| Machine Drafting | 1. | Surface Treatment of Metals | 2.56 | |

Analysis of ASEE Data

The first step in analyzing this data consisted of computing the mean responses and their relative importance as determined by the established criteria; that is, an item was considered as very important if the mean was 3.50 or higher; important if the mean was 2.50 through 3.49; and not important if the mean was less than 2.50 . The results are presented in Table VI.

It was determined that 31 items (63.3%) out of 49 were considered important by the engineering educators, being 3 (6.12%) out of 49 items rated very important. Seven participants added comments to their responses (refer to Appendix C for comments), and seven listed one or more graphic skills they thought were important (see Appendix D).

Of the 12 items in the Basic Drawing area, three were considered to be very important and six were considered important. They considered Orthographic Projection, Sketching, and Dimensioning as being very important. They considered Lettering, Auxiliary Views, Sectional Views, Working Drawings, Isometric Projection, and Intersection and Development as being important. Seven respondents listed additional skills in this area.

In the area of Machine Drafting, two of the seven items were considered as being important, Tolerancing, and General Machine Drafting. One of the participants added graphic skills important for this discipline.

One of the two items in Structural Drafting, Detail Drawing, was rated as important and two respondents added skills in this area.

TABLE VI

MEAN AND IMPORTANCE OF SKILLS AS DETERMINED BY ASEE MEMBERS

Area and Skill	Mean	Rank
Basic Drawing		
*1. Lettering	3.00	(11)
**2. Orthographic Projection	3.63	(2)
**3. Sketching	3.80	(1)
4. Inking and Reproduction	1.78	(49)
*5. Auxiliary Views	3.24	(8)
*6. Sectional Views	3.46	(4)
**7. Dimensioning	3.62	(3)
*8. Working Drawings	3.29	(6)
*9. Isometric Projection	2.93	(14)
10. Oblique Projection	2.47	(32)
11. Perspective Drawing	2.38	(37)
*12. Intersection and Development	2.60	(28)
Machine Drafting		
1. Surface Treatment of Metals	2.20	(43)
*2. Tolerancing	3.04	(10)
*3. General Machine Drawing	2.78	(20)
4. Casting and Forming	2.18	(45)
5. Fabrication	2.42	(33)
6. Cams	2.19	(44)
7. Gears	2.17	(46)

Area and Skill	Mean	Rank
Structural Drafting		
*1. Detail Drawing	2.67	(24)
2. Erection Drawing	2.39	(36)
Architectural Drafting		
1. Residential	2.09	(47)
2. Commercial	2.26	(41)
3. Energy Conservation	2.40	(35)
Electrical and Electronics Drafting		
*1. Graphic Symbol	2.97	(13)
*2. Connections Diagram	2.85	(16)
*3. Printed Circuits	2.69	(22)
*4. Block Diagrams	2.88	(15)
*5. Schematic Diagrams	3.08	(9)
Map Drafting		
*1. Survey Practice	2.68	(23)
*2. Topography Maps	2.71	(21)
*3. Contour Maps	2.79	(19)
*4. Profile Maps	2.64	(25)
Pipe Drafting		
*1. Flow Diagrams	2.83	(17)
2. Vessel Drawing	2.24	(42)
3. Exchange Drawing	2.01	(48)

TABLE VI (Continued)

Area and Skill	Mean	Rank
Design		
*1. Hydraulic and Pneumatic	2.57	(31)
*2. Mechanism and Kinematics	2.80	(18)
3. Jigs and Fixtures	2.27	(39)
*4. Structural	2.60	(27)
*5. Machine	2.62	(26)
6. Material	2.32	(38)
7. Solar	2.26	(40)
Other		
*1. Descriptive Geometry	3.26	(7)
*2. Graphical Integral	2.59	(29)
3. Nomograms	2.41	(34)
*4. Vector Geometry	2.99	(12)
*5. Graphical Calculus	2.58	(30)
*6. Computer Graphics	3.30	(5)
*Important.		
**Very Important.		

None of the items in Architectural Drafting were considered as important. Additional skills in this area were mentioned by two respondents.

All of the five items in Electrical and Electronics Drafting were considered as important and no additional skills were mentioned in this field.

All of the four items in the Map Drafting area, Survey Practice, Topography Maps, Contour Maps and Profile Maps were considered as being important. No additional skills were mentioned.

In the Pipe Drafting Area, one skill, Flow Diagram, was considered important and none of the repondents added skills in this field.

Of the seven items in the Design Area, four, Hydraulics and Pneumatic, Mechanism and Kinematics, Structural and Machine Design, were considered important. None of the participants added graphic skills important in this category.

Five of the six skills grouped under the area Other, Descriptive Geometry, Graphical Integral, Vector Geometry, Graphical Calculus, and Computer Graphics, were considered important. No additional skill was mentioned here.

The second step in analyzing this data consisted of grouping the responses considered important and very important in rank order, as appears in Table VII.

Analysis and Comparison of Both Groups of Data

This section was addressed in order to respond to research question three of this study which was to determine how the ratings of the graphic skills by both groups compared. In order to achieve this

GRAPHIC SKILLS RANKED IMPORTANT AND VERY IMPORTANT BY ENGINEERING EDUCATORS

Area	Item No.	Skill	Mean	Rank
Basic Drawing	3.	Sketching	3.80	1
Basic Drawing	2.	Orthographic Projection	3.63	2
Basic Drawing	7.	Dimensioning	3.62	3
Basic Drawing	6.	Sectional Views	3.46	4
Other	6.	Computer Graphics	3.30	5
Basic Drawing	8.	Working Drawings	3.29	6
Other	1.	Descriptive Geometry	3.26	7
Basic Drawing	3.	Auxiliary Views	3.24	8
Electrical and Electronics Drafting	5.	Schematic Diagram	3.08	9
Machine Drafting	2.	Tolerancing	3.04	10
Basic Drawing	1.	Lettering	3.00	11
Other	4.	Vector Geometry	2.99	12
Electrical and Electronic Drafting	1.	Graphic Symbol	2.97	13
Basic Drawing	9.	Isometric Projection	2.93	14
Electrical and Electronics Drafting	4.	Block Diagrams	2.88	15
Electrical and Electronics Drafting	2.	Connection Diagrams	2.85	16
Pipe Drafting	1.	Flow Diagrams	2.83	17
Design	2.	Mechanism and Kinematics	2.80	18
Map Drafting	3.	Contour Maps	2.79	19

TABLE VII (Continued)

Area	Item No.	Skill	Mean	Rank
Machine Drafting	3.	General Machine Drawing	2.78	20
Map Drafting	2.	Topography	2.71	21
Electrical and Electronics Drafting	3.	Printed Circuits	2.69	22
Map Drafting	1.	Survey Practice	2.68	23
Structural Drafting	1.	Detail Drawing	2.67	24
Map Drafting	4.	Profile Maps	2.64	25
Design	5.	Machine	2.62	26
Design	4.	Structural	2.61	27
Basic Drawing	12.	Intersection and Development	2.60	28
Other	2.	Graphical Integral	2.59	29
Other	5.	Graphical Calculus	2.58	30
Design	1.	Hydraulic and Pneumatics	2.57	31

objective, Table VIII was developed and the t-test was used. The table includes the item number, graphic skills by area, and the mean and rank of each item by group. The table also includes a composite mean for each item. The writer belfeved that a visual comparison of the graphic skills and their mean responses would allow for reflection of any significant differences among the groups on the importance placed on the rated items.

Further analysis of the data in Table VIII allows one to see that in the area of Basic Drawing, both groups rated the same nine skills as being important or very important. These are the items identified in the table with two asterisks.

It was also revealed in the table that in the area of Machine Drafting, Tolerancing and General Machine Drawing, were considered as being important by both groups. Both groups agreed that Casting and Forming, Cams and Gears, were not important.

In the area of Structural Drafting, Detail Drawing was rated very important by the engineers and important by the engineering educators.

No item was considered important by both groups, in Architectural Drafting area.

Flow Diagrams, in Pipe Drafting, was considered very important by the engineers and as important by the engineering educators.

In the Design area, Jigs and Fixtures was considered as not important and Hydraulics and Pneumatics, Mechanism and Kinematics, Structural and Machine Design were considered as important by both groups.

Of the six skills groups under the area of Other, five of them, Descriptive Geometry, Graphical Integral, Vector Geometry, Graphical

TABLE VIII
MEAN RESPONSES BY GROUPS

Area and Skill	NSPE		ASEE		Composite		t
	Mean	Rank	Mean	Rank	Mean	Rank	
Basic Drawing							
**1. Lettering	3.56	10	3.00	11	3.30	7	4.62*
**2. Orthographic Projection	2.88	28	3.63	2	3.24	9	5.45*
**3. Sketching	3.36	15	3.80	1	3.57	4	3.51*
4. Inking and Reproduction	2.36	46	1.78	49	2.09	49	4.72*
**5. Auxiliary Views	3.09	23	3.24	8	3.16	15	1.25
**6. Sectional Views	3.75	4	3.46	4	3.62	2	2.70*
**7. Dimensioning	3.96	1	3.62	3	3.80	1	2.69*
**8. Working Drawings	3.90	2	3.29	6	3.61	3	4.88*
**9. Isometric Projection	2.80	30	2.93	14	2.86	25	1.07
10. Oblique Projection	2.34	47	2.47	32	2.40	41	1.02
11. Perspective Drawing	2.48	43	2.38	37	2.43	40	0.91
**12. Intersection and Development	2.71	35	2.60	28	2.66	32	0.84
Machine Drafting							
1. Surface Treatment of Metals	2.55	42	2.20	43	2.35	43	2.39*
**2. Tolerancing	3.12	21	3.04	10	3.08	18	0.46
**3. General Machine Drawing	2.92	27	2.78	20	2.84	26	0.87
4. Casting and Forming	2.37	45	2.18	45	2.27	45	1.43

TABLE VIII (Continued)

Area and Skill	NSPE		ASEE		Composite		t
	Mean	Rank	Mean	Rank	Mean	Rank	
Machine Drafting (Continued)							
5. Fabrication	2.97	26	2.42	33	2.67	31	3.52*
6. Cams	2.30	49	2.19	44	2.23	47	0.77
7. Gears	2.33	48	2.17	46	2.24	46	1.07
Structural Drafting							
**1. Detail Drawing	3.88	3	2.67	24	3.25	5	8.85*
2. Erection Drawing	3.37	14	2.39	36	2.92	23	7.28*
Architectural Drafting							
1. Residential	2.78	32	2.09	47	2.46	39	4.78*
2. Commercial	3.30	16	2.26	41	2.82	38	7.04*
3. Energy Conservation	3.22	19	2.40	35	2.83	37	5.05*
Electrical and Electronics Drafting							
**1. Graphic Symbols	3.26	18	2.97	13	3.11	16	1.93
**2. Connections Diagram	3.21	20	2.85	16	3.03	19	2.43*
**3. Printed Circuit	2.70	36	2.69	22	2.70	30	0.10
**4. Block Diagrams	3.07	24	2.88	15	2.98	21	1.25
**5. Schematic Diagrams	3.54	11	3.08	9	3.31	6	3.04*

TABLE VIII (Continued)

Area and Skill	NSPE		ASEE		Composite		t
	Mean	Rank	Mean	Rank	Mean	Rank	
Map Drafting							
**l. Survey Practice	3.66	5	2.68	23	3.20	13	6.79*
**2. Topography Map	3.65	6	2.71	21	3.22	11	6.58*
**3. Contour Maps	3.58	9	2.79	19	3.21	12	5.30*
**4. Profile Maps	3.50	12	2.64	25	3.10	17	5.74*
Pipe Drafting							
**1. Flow Diagrams	3.59	8	2.83	17	3.22	10	5.12*
2. Vessel Drawing	2.73	34	2.24	42	2.49	37	3.63*
3. Exchange Drawing	2.68	38	2.01	48	2.36	42	4.96*
Design							
**1. Hydraulic and Pneumatic	3.40	13	2.57	31	2.99	20	5.87*
**2. Mechanism and Kinematics	3.06	25	2.80	18	2.93	22	1.71
3. Jigs and Fixtures	2.38	44	2.27	39	2.32	44	0.84
**4. Structural	3.63	7	2.60	27	3.13	16	7.46*
**5. Machine	2.79	31	2.62	26	2.70	29	1.22
6. Materials	2.83	29	2.32	38	2.58	34	3.63*
7. Solar	2.69	37	2.26	40	2.48	38	3.04*

TABLE VIII (Continued)

Area and Skill	NSPE		ASEE		Composite		t
	Mean	Rank	Mean	Rank	Mean	Rank	
Other							
**1. Descriptive Geometry	3.29	17	3.26	7	3.28	8	0.17
**2. Graphical Integral	2.56	41	2.59	29	2.57	35	0.20
3. Nomograms	2.62	39	2.41	34	2.51	36	1.70
**4. Vector Geometry	2.74	33	2.99	12	2.87	24	1.83
**5. Graphical Calculus	2.61	40	2.58	30	2.59	33	0.17
**6. Computer Graphics	3.10	22	3.30	5	3.19	14	1.35

*Significant at . 05 level of probability.
**Skill rated important or very important by both groups.
Calculus, and Computer Grahpics were considered as important by the practicing engineers and engineering educators.
The second step in analyzing this data consisted of grouping the responses considered important and very important in rank order, as appears in Table IX. Refer to Appendix E for printout of ranked top ten graphic skills.

TABLE IX
GRAPHIC SKILLS RATED IMPORTANT AND VERY IMPORTANT BY ALL PARTICIPANTS

Area	Item No.	Skill	Mean	Rank
Basic Drawing	7.	Dimensioning	3.801	1
Basic Drawing	6.	Sectional Views	3.615	2
Basic Drawing	8.	Working Drawing	3.610	3
Basic Drawing	3.	Sketching	3.568	4
Structural Drafting	1.	Detail Drawing	3.325	5
Electrical and Electronics Drafting	5	Schematic Diagram	3.307	6
Basic Drawing	1.	Lettering	3.296	7
Other	1.	Descriptive Geometry	3.276	8
Basic Drawing	2.	Orthographic Projection	3.242	9
Pipe Drafting	1.	Flow Diagrams	3.229	10
Map Drafting	2.	Topography Maps	3.220	11
Map Drafting	3.	Contour Maps	3.216	12
Map Drafting	1.	Survey Practice	3.209	13
Other	6.	Computer Graphics	3.202	14
Basic Drawing	5.	Auxiliary Views	3.162	15
Design	4.	Structural	3.130	16
Electrical and Electronics Drafting	1.	Graphical Symbols	3.114	17
Map Drafting	4.	Profile Maps	3.109	18
Machine Drafting	2.	Tolerancing	3.077	19

TABLE IX (Continued)

Area	Item No.	Ski11	Mean	Rank
Electrical and Electronics Drafting	2.	Connections Diagram	3.030	20
Design	1.	Hydraulic and Pneumatics	2.991	21
Electrical and Electronics Drafting	4.	Block Diagrams	2.975	22
Design	2.	Mechanism and Kinematics	2.927	23
Structural Drafting	2.	Erection Drawing	2.924	24
Other	4.	Vector Geometry	2.867	25
Basic Drawing	9.	Isometric Projection	2.857	26
Machine Drafting	3.	General Machine Drawing	2.840	27
Architectural Drafting	3.	Energy Conservation	2.826	28
Architectural Drafting	2.	Commercial	2.820	29
Design	5.	Machine	2.699	30
Electrical and Electronics Drafting	3.	Printed Circuits	2.697	31
Machine Drafting	5.	Fabrication	2.664	32
Basic Drawing	12.	Intersection and Development	2.657	33
Other	5.	Graphical Calculus	2.593	34
Design	6.	Material	2.579	35
Other	2.	Graphical Integral	2.574	36
Other	3.	Nomograms	2.512	37

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The purpose of this study was to obtain information from professional engineers and engineering educators for determining specific content elements appropriate for inclusion in graphic courses in undergraduate engineering programs. The three research questions with which this study dealt were cited in Chapter I as being:

1. What is the relative importance of graphic skills development in undergraduate engineering programs?
2. What information elements should be included in graphic courses in undergraduate engineering programs?
3. Is there a significant difference of opinions among practicing engineers and engineering educators in regard to which graphic skills should be developed in undergraduate engineering programs?

The participant sample in this study consisted of 300 members of the National Society of Professional Engineers (NSPE) and 300 members of the American Society for Engineering Education (ASEE) in the United States. The questionnaire consisted of 49 graphic skills grouped in nine areas. Provisions were made for the respondent to write in other skills that he or she might feel pertinent to the subject.

The questionnaite was mailed to each of the persons surveyed on April 11, 1980. May 30 , 1980 was set as a deadline for accepting returned questionnaires.

Of the 154 questionnaires returned by NSPE members, two were deleted from the study because they were not completed, yielding a total of 152 returns, or 50.67%.

Of the 148 questionnaires returned by ASEE members, ten were deleted from the study because they were not completed, yielding a total of 138 returns or 46%. The data collected from NSPE members revealed that 42 items (85.7%) out of the 49 were considered important by the practicing engineers. Twelve (24.5%) of the 49 were rated very important.

The data collected from ASEE members revealed that 31 items (63.3\%) out of the 49 were considered important by the engineering educators. Three (6.1\%) of the 49 were rated very important.

Thirty-seven graphic skills were rated important or very important by all respondents as one group.

Conclusions

Based on the data analyzed, the following conclusions were drawn:

1. Since the majority of the graphic skills were judged by both groups in a similar way, it is concluded that the list of skills in Table VIII is a valid display upon which the relative importance of graphic skills can be compared.
2. Since 37 graphic skills were rated important or very important by all respondents, it is concluded that these items listed
in order of priority in Table IX, would be appropriate to include in graphic courses in undergraduate engineering programs.
3. Since both groups rated important and not important items in a very similar way, differing merely in emphasis, it is concluded that there is no significant difference of opinions between the two groups in regard to which graphic skills should be developed in undergraduate engineering programs.
4. There was a significant difference in the two sample means, in regard to 27 graphic skills.
5. Since the pattern of the mean distribution of both groups was very similar, and the practicing engineers considered more items to be important or very important that did the engineering educators, it is concluded that the engineering educators rated the various graphic skills in a more conservative manner.
6. It is also concluded that the necessary importance was not given by the engineering eductors, to some items that the practicing engineers considered to be really important.

Recommendations

Truly comprehensive graphics courses must meet the needs of all students from all branches of engineering. To accomplish this does not require a major change of course content from what is presently taught; rather, it requires a change merely in emphasis. Therefore, based on data from this study, the following recommendations are made regarding graphic courses in undergraduate engineering curricula:

1. It is recommended that the emphasis be on graphics as a means of communications for all engineers, involving problems,
examples, and related applications from branches of engineering other than mechanical, in the teaching of traditional topics such as projection theory, auxiliary view, dimensioning, etc.
2. It is recommended that projection systems, symbols, conventions and formats be an integral part of graphic courses. Further, that is is important that the competent engineer recognize and understand the symbols and conventions used by engineering specialties other than his/her own.
3. Finally, while possibly less important than mathematical tools, graphics is still valuable in problem solving. This is especially true in design work; therefore, emphasis on developing knowledge of descriptive geometry is recommended for the beginning curriculum.

Beck, William E. "Automated Graphics in a Decentralized Corporation." A speech presented to the 1974 American Institute for Design and Drafting Conference, Chicago, Illinois, 1974.

Farrell, Art T. "Design Automation--Make It Work." A speech presented to the 1974 American Institute for Design and Drafting Conference, Chicago, Illinois, 1974.

French, Thomas E. "The Educational Side of Engineering Drawing." Engineering Design Graphics Journa1, Vol. 40, No. 3 (Fa11, 1976), p. 35 .

Giachino, J. W. and H. J. Beukema. Drafting Technology. Chicago, Illinois: American Technical Society, 1978.

Giesecke, F. E., Alva Mitchell and H. C. Spencer. Technical Drawing. New York, New York: The MacMillan Co., 1978.

Harper, G. Neil. Computer Applications in Architecture and Engineering. New York, New York: McGraw-Hill, 1968.

Heacock, Frank A. Graphical Solutions of Technical Problems. Princeton University, New Jersey, 1964.

Hysaw, Jimmy Lee. "A Study of Information Elements for Inclusion in a Fluid Power Course for a Design Drafting Program." (Unpubl. M.S. thesis, Oklahoma State University, 1978.)

Land, Ming H. "Historical Development of Grahpics." Engineering Design Grahpics Journal, Vol. 40, No. 2 (Spring, 1976), p. 33.

McNeal, Edward V. 'The Development of a Drafting and Design Program for the Adult Evening School at the Tulsa Area Vocational-Technical Center," (Unpub. M.S. thesis, Oklahoma State University, 1972.)

MacDonald, Stephen L. and Robert Wehil. "An Architechtural Design System Based on Computer Graphics." A speech presented at the National Conference on Architectural Psychology, Park City, Utah, 1966.

O'Neill, Phillip P. "Quantity Production of Computerized Engineering Drawings." Reprographics, Vol. 12, No. 8 (October, 1974), pp. 11-14.

Popham, James W. Educational Statistics. New York, New York: Harper and Row, 1967.

Slaby, Steve. "Geometry and Interactive Computer Graphics." Engineering Design Graphics Journal, Vol. 40, No. 2 (Spring, 1976).

Snedecor, George W. and William G. Cochran. Statistical Methods. The Iowa State University Press, Ames, Iowa, 1978.

State University of New York. Revisions to the Mechanical Engineering BS Program (January, 1980).

Sutherlin, Lewis T. "A Study of Information Elements for Inclusion in an Introductory Computer Graphics Course for a Design Drafting Program." (Unpub. MS thesis, Oklahoma State University, 1975.)

Trapp, Roy G. "Status of Descriptive Geometry in the United States." Engineering Design Graphics Journal, Vol. 34 , No. 1 (Winter, 1970), p. 31 .

Turner, Anthony E. "What Industry Needs in Design Engineers." Engineering Design Graphics Journal, Vol. 4, No. 2 (Spring, 1976), p. 11.

White, Fred and Tom Thomas. Computer Graphics Instruction Units. Stillwater, Oklahoma: Oklahoma State Department of Vo-Tech Education, 1973.

Wilhoit, John D. "Simplified Engineering Graphics and the Application to Industry." (Unpub. M.S. thesis, Oklahoma State University, 1962.)

APPENDIX A

QUESTIONNAIRE ADMINISTERED

GRAPHIC SKILLS DEVELOPMENT IN

 UNDERGRADUATE ENGINEERING PROGRAMSThe purpose of this questionnaire is to determine the extent to which various graphic skills should be developed among student majors in undergraduate engineering programs.

For each of the skill areas listed below, indicate your response by circling the appropriate number.

BASIC DRAWING

1.	Lettering	1	2	3	4
2. Orthographic Projection	1	2	3	4	5
3. Sketching	1	2	3	4	5
4. Inking \& Reproduction	1	2	3	4	5
5. Auxiliary Views	1	2	3	4	5
6. Sectional Views	1	2	3	4	5
7. Dimensioning	1	2	3	4	5
8. Working Drawings	1	2	3	4	5
9. Isometric Projection	1	2	3	4	5
10. Oblique Projection	1	2	3	4	5
11. Perspective Drawing	1	2	3	4	5
12. Intersection \& Development	1	2	3	4	5
13. Other	1	2	3	4	5

MACHINE DRAITING

1. Surface Treatment of Metals	1	2	3	4	5
2. Tolerancing	1	2	3	4	5
3. General Machine Drawing	1	2	3	4	5
4. Casting \& Forming	1	2	3	4	5
5. Fabrication	1	2	3	4	5
6. Cams	1	2	3	4	5
7. Gears	1	2	3	4	5
8. Other	1	2	3	4	5

STRUCTURAL DRAFTING

1.	Detail Drawing	1	2	3	4
2. Erection Drawing	1	2	3	4	5
3. Other	1	2	3	4	5

ARCHITECTURAL DRAFTING

1.	Residential	1	2	3	4
2.	Commercial	1	2	3	4
3. Energy Conservation	1	2	3	4	5

3. Energy Conservation
4. Other \qquad

ELECTRICAL \& ELECTRONICS DRAFTING

1. Graphic Symbol	1	2	3	4	5
2. Connections Diagram	1	2	3	4	5
3. Printed Circuits	1.	2	3	4	5
4. Block Diagrams	1	2	3	4	5
5. Schematic Diagrams	1	2	3	4	5
6. Othor	1	2	3	4	5

MAP DRAFTING

1.	Survey Practice	1	2	3	4	5
2. Topography Maps	1	2	3	4	5	
3. Contour Maps	1	2	3	4	5	
4. Profile Maps	1	2	3	4	5	

PIPE DRAFTING

1. Flow Diagrams
2. Vessel Drawing
3. Exchange Drawing

1	2	3	4	5
1	2	3	4	5

DESIGN

1. Hydraulic \& Pneumatic	1	2	3	4	5
2. Mechanism \& Kinematics	1	2	3	4	5
3. Jigs \& Fixtures	1	2	3	4	5
4. Structural	1	2	3	4	5
5. Machine	1	2	3	4	5
6. Material	1	2	3	4	5
7. Solar	1	2	3	4	5
8. Other	1	2	3	4	5

OTHER

1. Descriptive Geometry
2. Graphical Integral
3. Nomograms
4. Vector Geometry
5. Graphical Calculus
6. Computer Graphics
7. Other \qquad

1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5

Please send a copy of the results of this study to me.
Name
Address \qquad

APPENDIX B

TRANSMITTAL LETTER

Oklahoma State University
 SCH()OL ()F (XCUPAIIONAI. AND AIOII FDUICAIION

April 11, 1980

It is essential from time to time for educational institutions to compare curriculum content of professional education programs with existing conditions and needs of employing companies and agencies. We are especially concerned at this time with the extent to which various mechanical drafting skills should be developed among student majors in undergraduate engineering proprams. We therefore are asking selected individuals who are either practicing engineers or engineering educators to please respond io the enclosed questionnaire.

Your response to the questionnaire will require only about 10-15 minutes and will be a very worthwhile contribution to engi-. neering education. If you wish to receive a copy of the results, please indicate your desire by checking the bottom of the questionnaire.

Thanks in advance for assisting in this effort.

Sincerely,

Program Assistant

APPENDIX C

COMMENTS BY GROUPS

NSPE Members

It is not extremely important that a graduate engineer be personally proficient in any of these skills. However, it is absolutely necessary that he understand how his specialist can best perform their tasks and be able to recognize poor quality performance of a surveyor or draftsman in order to eliminate their errors. It is impossible for instance for a civil engineer to design without a knowledge of field surveying.

Glad to see that educators are reconsidering the need for engineering drafting, descriptive geometry, etc., in engineering education. This lack in curriculum in recent years has been a great disservice, not only to the Consulting Enginnering profession, but also the graduates and the Universities as well. Getting right in on the board, without a drafting handicap, is the best and quickest way for a new graduate to learn the consulting profession. No employer wants to teach a graduate how to draw lines and make letters.

There are in practice two very important items that should be stressed. Both are the basics of communication for engineers: to be able to "letter" so that the written communication is clear; to be able to sketch so that the engineer can communicate his thoughts to drafters, clients, other engineers and business associates. Anything else should be confined to "familiarization" only.

I have long been a critic of engineering curricula that acted as if all drafting was a high school subject and cut it out of the curriculum. Drafting is as important to the engineer as grammar is to journalism. Like mathematics, drafting can be at all levels. Advanced drafting is as intellectual demanding as calculus.

I very much appreciate the opportunity to offer an evaluating of your drafting program . . . For the civil engineering field, there are many major areas of drafting that are not included in your curriculum. These are filing plats; utility layouts; plan and profile for design of streets, sanitary sewer, storm drain and water mains; coordination of structural drafting with piping; process piping including routing, standard fittings, flexibility, joints, wall penetrations and supports; and the development of site plans . . .

Each is important only to the engineer who will practice in the field, otherwise not important except to understand what another trade is doing.

We find it essential that an engineer be capable of communicating in several ways, including verbal and written words, and through graphics. Graphic communication would include at least the following:
--Ability to communicate effectively, both telling and reading.
--Ability to organize a graphic presentation.
--Development of organizational abilities with regards to elements of project production, i.e., calculations, drawing and specifications.
We consider these to be conceptual abilities, that could be taught
through almost any of the categories listed in your questionnaire, as well as all subjects in the engineering curriculum . . . We want to encourage your efforts to incorporate graphic skills in your engineering program. This is an area in which most new graduates are deficient. It is also an area which is of obvious importance to the efficiency and effectiveness of consulting engineering work.

To understand, be able to read, to sketch but not necessarily have the mechanical ability to put out a finished drawing. Architects must develop drafting skills. Engineers whould be much better off learning how to write, express themselves, etc. Drafting in technical schools can stress drafting but I do not think an engineering curriculum should.

As a practicing Consulting Engineer in the Civil Engineering field, I am very much concerned about the question your questionnaire addresses. I wish to add emphasis to three particular areas: 1) Basic Drawing; 2) Structural Drafting; and 3) Map Drafting. These three areas were not approached during my education to the degree I would have requested had I been aware of the requirements of my field . . . Also, I would take this opportunity to state that the engineering schools I have visited with recently are eliminating surveying from the required course list. This is a mistake. Should this be the case at OSU, please inform the proper people that at least one alumni would like them to reconsider.

I am a Civil/Structural Engineer. My problem is that recent graduates have not been exposed to solutions of practical problems. Same applies to Drafting. I have some ideas but professors won't listen.

ASEE Members

Map arafting should not be taught as a separate course but should be included in a final project as part of a course in surveying and plane table mapping as we do it at E1 Camino College, Torrance, California, and as it is done at Long Beach State College, Long Beach, California.

In our opinion, the primary objective is to learn to visualize hardware and its function. To think in three dimensions plus time and temperature superimposed is a skill that is hard to find among recent graduates. The recent emphasis on the use of computers as wonderfully useful tools is not sufficient for effective development of the art of engineering. An understanding--a "feel"--for hardware and its function is a very important factor. The recent computer-trained graduates are not notable in this respect. We suggest that you consider as your criteria for judging the usefulness of drafting courses their contribution to teaching the engineering student to clearly visualize hardware and its function, both static and dynamic.

This is an excellent survey form to send to technical education centers throughout the country--not to schools of Engineering. Drafting is not an engineering function. Design is!

Special drafting skills related to these areas (Design) are not too important.

I do not believe any given engineering student will receive instruction in all these skill areas. All should have significant work in the Basic Drawing and Other categories. But beyond that, I believe only one or two specialty areas would be addressed by any given student--those specialty areas appropriate to his particular field of study.

I am unable to decide whether you want what we feel is important, what I expect students to know in advanced courses, or what I feel is essential for engineers in industry to know. Based on my industrial experience, I have chosen the latter.

APPENDIX D

LIST OF ADDITIONAL SKILLS

NSPE Members

Abstract

Steel Detailing; Water, Sewer and Street Design; Organizing Drawing Presentation; Layout for Power and Lighting; Control Diagrams; Concrete Drawings; Foundation Layout; Construction Detailing; Quality of Line Work; Symbols; Weight of Drawing Lines; Lighting, Switching Schedules.

ASEE Members

Pictorial Representation; Fasteners; Shop Drawings; Graphs; Symbolic Representation; Assembly Drawings.

APPENDIX E

PRINTOUT OF RANKED TOP TEN GRAPHIC SKILLS

averican	ScCitir for fugidfening f	fducation	page
C6/21/80	file - moname	- CREATED 06/2̂l/bs	
CINE	CIMENSICMINS		

CATEGGRY lapel	ccce	$\begin{gathered} \text { ABSOLUTE } \\ \text { FRFD } \end{gathered}$	RELATIVE FREQ (PCT)	$\begin{gathered} \text { ADJ:ISTEO } \\ \text { FREO } \\ \text { (PCT) } \end{gathered}$	CJM FRE: 6 (PC, T)
not impertant	1.	5	3.6	3.8	3.8
slightay inferinat	2.	14	10.1	16. 5	14.3
l:prrtant	3.	39	28.3	29.3	43.6
VFFY IHPURTEMT	4.	43	21.2	32.3	75.9
EXtREMEIT INFLRTANT	5.	32	23.2	24.1	1CC. C
	0.	5	3.6	:1ISSING	100.0
	TOTAL	130	100.0	100.0	

AMEKICAP, SCCIETY FUR ENGINEERING EDUCATICN:
PA GE
66/21/80 FILE - NUNANE - CREATED CE/21/80

SECV SECTIONAL VIEKS

CATECORY LAFEL	CCOr	$\begin{gathered} \text { ABSCLUTF } \\ \text { FKEQ } \end{gathered}$	$\begin{gathered} \text { RELAIIVE } \\ \text { FREO } \\ \text { (PCT) } \end{gathered}$	$\begin{gathered} \text { AJJLSTE) } \\ \text { FRFC } \\ \text { (PCT) } \end{gathered}$	
NET INPCRTANT	1.	4	2.9	3.0	3. C
SLIGFILY IVFORTANT	$?$	15	11. 11	11.9	14.9
JYPCET ANT	3.	44	31.9	32.8	47.8
VERY IMFORTANT	4.	54	3). 1	4ن. 3	\& \&. 1
EXTRENELY INPURTAIT	5.	16	11.6	11.9	130.0
	0 .	4	2.9	U1SSING	1CC.C
	TOTAL	138	100.5	$10 \% .0$	
MEAN 3.463	HEDIAN	3.556	M') Г.E		4.000
STECFV 0.955	RANGE	4.0313	MINISUM		1.000
MAXINUN 5.0.j					
VALIO CASES 13:4	AISSIIIG こ^SES		4		

AAT ICNAL SUCIF:TY OF PROF ! ©SICNAL FNGINEERS PACE: 11
CB/21/8C FILI - nONANE - CREATEC 06/21/80
WKING WCRKING CRANINGS

CATEGCRY LAEFL	CCOE	$\begin{gathered} \triangle B \text { SOLUTE } \\ \text { FREQ } \end{gathered}$	$\begin{aligned} & \text { FELATIVE } \\ & \text { FREQ } \\ & \text { (PCT) } \end{aligned}$	$\begin{aligned} & \text { AOJUSTED } \\ & \text { FREG } \\ & \text { (PCT) } \end{aligned}$	
NOT INPCPIANT	1.	3	2.0	2.0	2.C
SLIGHTLY IMPORTANT	2.	4	2.6	2.7	4.7
INFCRTANT	3.	45	25.6	30.2	34. S
VERY IMPCRIANT	4.	50	32.9	33.6	68.5
EXTREMELY IMPCRTANT	5.	47	30.9	31.5	100.0
	0.	3	2.0	MISSING	1CC. C
	TOTAL	152	10C. 0	100.0	

AMERICAN SCCIEIY FUR ENGIAEERING ECUCATICN PAGE 1106/21/80 FILE - NONANE - CREATED (E/टI/EJ
WKING WCRKING DRANINGS

Catecriy latel	CCDE	$\begin{gathered} \text { ABSCLUTE } \\ \text { FREQ } \end{gathered}$	$\begin{aligned} & \text { RELATIVE } \\ & \text { FREG } \\ & \text { (PCT) } \end{aligned}$	$\begin{aligned} & \text { AOJLSTE } \\ & \text { FREQ } \\ & \text { (PCT) } \end{aligned}$	$\begin{aligned} & \text { CUM } \\ & \text { FREQ } \\ & \text { (PCT) } \end{aligned}$
ACt IMPCATANT	1.	12	8.7	S.C	S. 0
SLIGHTLY INFIJRTANT	2.	16	11.5	12.3	21.1
IMFCRT ANT	3.	47	34.1	35.3	56.4
VERY IMFLOTANT	4.	38	27.5	28.6	E5. 0
EXTREMELY INPURTANT	5.	20	14.5	15.3	100.0
	0.	5	3.6	MISSIMS	$1 \mathrm{CC.O}$
	TOTAL	138	100.0	103.0	

MATICHAL SCCIETY OF PRUFESS IONAL ENGINEERS					PAGE
C6/21/80 FI	file - noname	- Created	Ct/21/80		
SKICH SKETCHING					
category labiel	C CDE	$\begin{gathered} \text { ABSGLUTE } \\ \text { FREQ } \end{gathered}$	$\begin{gathered} \text { RELAIIVE } \\ \text { FREQ } \\ \text { PCT) } \end{gathered}$	$\begin{aligned} & \text { AD JUSTED } \\ & \text { FREQ } \\ & \text { (PCT) } \end{aligned}$	$\begin{aligned} & \text { CUM } \\ & \text { FRE } 0 \\ & (P C T) \end{aligned}$
NCT IMPORTANT	1.	11	7.2	7.4	7.4
slightily infrifiant	2.	18	11.8	12.1	15. 5
IMPCRTANT	3.	50	32.9	33.6	53.0
very infiftant	4.	47	30.9	31.5	E4. 6
extremely imfortant	15	23	15.1	15.4	1CC.C
	0.	3	2.0	MISSING	100.0
	total	152	100.0	100.1	

AMFRICAN SCCITTY FOR ENGINEERING EDUCATITN FAGE 6 (6/21/80 FILE - noname - Createc 06/21/8)

SKICH SKETCHING

categcry lapel	CCDE	$\underset{\text { FREQ }}{\text { ABSULUTE }}$	$\begin{gathered} \text { FELATIVE } \\ \text { FREO } \\ \text { (PCT) } \end{gathered}$	AMJSSTED FREO (PCT)	$\begin{aligned} & \text { CJM } \\ & \text { FREC } \\ & (P C T) \end{aligned}$
NNT IMPCRTANT	1.	2	1.4	1.5	1.5
SLIGHTLY INFORT Ant	2.	14	10.1	1C. 3	11.8
IVFERTAAT	3.	33	23.9	24.3	$3 \in .0$
VFFY Importint	4.	41	34.1	34.6	70.6
extremely imfurtant	5.	40	25.0	29.4	1CC. C
	0.	2	1.4	'1ISSING	100.0
	TOTAL	133	100.0	103.0	
MEAN 3.831	MEOIAN	3.904	med		4.000
STO DEV 1.32\%	FANGE	$4 . \mathrm{CCO}$	MI'	1:39	1.COC
MAXIMIJM 5.uco					
VALIOCASFS 136	riss Ing	CASES 2			

SMERICAN SOCIETY FOR ENGINEERING FIUCATICN
PAGE
CE/21/8C FILE - NONANE - CREATED O6/21/8J

CET CETAIL CRAMINE

CATECCRY LAFEL	COCE	$\begin{gathered} A B S \mathcal{S U L U T E} \\ \text { FREO } \end{gathered}$	$\begin{aligned} & \text { RELATIVE } \\ & \text { FPE: } \\ & \text { (PC.T) } \end{aligned}$	$\begin{aligned} & \text { ACJUSTEU } \\ & \text { FRFQ } \\ & \text { (PCT) } \end{aligned}$	
ACTINPCDIANT	1.	29	21.0	24.0	24.C
SLIGFTLY IMFORTANT	2.	26	18.8	21.5	45.5
IMFCRTAAT	3.	33	23.9	27.3	72. 7
VERY INPCRIANT	4.	23	15.7	19.0	91.7
EXTRE'AELY I'MPORIAIT	5.	10	7. 2	ع. 3	100.0
-	0.	17	12.3	IISSING	1CC. 0
	TOIAL	128	1C6.0	1CC.C	

AMERICAN SCCIETY FOK ENGIDEER ING ECUCATION . PAGE 32
c6/21/80 file - inename - CREATED ce/21/80

SKEM SCHEMATIC DIAGRAMS.

CATEGIKY I ABEL	CCOE	$\begin{gathered} \text { ARSULUTE } \\ \text { RHEO } \end{gathered}$	$\begin{aligned} & \text { RELATIVE } \\ & \text { FRFQ } \\ & \text { (PCT) } \end{aligned}$	A) Jlsteid fREO (PCT)	CUN FRE (PCT)
nct mporitant	1.	17	12.3	14.2	14.2
simgitly infigt ant	2.	21	15.2	17.5	21.7
imp:irtant	3.	35	25.4	29.2	60.8
veky infertant	4.	30	21.7	25.0	ε ¢. ε
extremely infortant	5.	17	12.3	14.2	1CC.C
	0.	18	13.0	:1ISSING	100.0
	reial	138	103.0	100.0	
MFAN 3.075	MECIDN	$\begin{aligned} & 3.125 \\ & 4.000 \end{aligned}$	MJ DE		$3.00 C$
STi DFV 1.251	fange		MIAMSM		1.000
Max 1m94 5.000					
VALIDCASES 120	MISSING CASFS 13				

PNERICAN SECIETY FER ER:CINEERING EDUCATISN PAGE 4
$\therefore 6 / 21 / 80$ FILF - MDNAME - CREATED 06/21/8)

LTR LETTERING

CATEGCRY LABEL	CLDE	$\begin{gathered} A B S O L U T E \\ \text { FKEQ } \end{gathered}$	$\begin{aligned} & \text { RELATIVE } \\ & \text { FREQ } \\ & \text { (PCT) } \end{aligned}$	$\begin{aligned} & \text { ADJISTED } \\ & \text { FREQ } \\ & \text { (PCT) } \end{aligned}$	
NHT IR:PCRTAAT	1.	8	5.8	5.9	5.9
SLICHTLY IfFCRTAUT	2.	31	22.5	22.8	2E. 7
INPRRTAAT	3.	56	40.6	41.2	6S. 9
VERY IMPIRTAIT	4.	34	24.6	25.12	94.9
EXtRENELY INPCRTAIIT	5.	7	5.1	c. 1	1CC.C
	0.	2	1.17	$\because 15 S I N G *$	130.0
	TOTAL	138	10. 0	103.0	
NFAN 3.Jつ7	AFDIAN	3.3	9 MJO		3.000
SiO DEV $\cup . G 62$	FANGE	4.0	$)$ MIN	I?UM	1.COC
NAXIMIIM 5.JGC					
VALICCASES 126	NISSING	ASES	2		

AMESICAN SCCIFTY FOR FIGGINERIAJ EDUCATICN
PAGE
06/21/80 FILE - NCNANE - CREATED CE/21/EO

ERTE CATEGRAPHIC PROJFCTIGN

APPENDIX F

LISTING OF COMPUTER PROGRAMS

```
//LIST JCB TYPFUN=CCPY
/*JOBPARM FCRNS=A031
// EXEC SFSS
//GC.SYSIN CD*
GUN NAME NATIONAL SOCIETY OF PROFESSIONAL ENGINEERS
cata LISt FiXEC/ 1 LTk CfTC SkTCH INK AUXV SECV DIME hKING ISO OBL PEG INT
    SUF TOL GEN CaS fab Cam GEar cet er res ccm enco sym Conn pfint
    RLOCK SKEM SURV TOP CONT PROF FLOn veSS FXGE HYDR NECH JIGS
    STRAL MACH MAT SOL DESC INTG NGRAM VECT CALC CCMP 1-49
INfUT medium card
N CF CASES 152
vaf labels LTf,LETtERING/
    ORTO,ORTHOGGAPHIC PROJECTION/
    SKTCH,SKETCHING/
    INK,INKING & REPFODUCTION/
    AUXV,AUXILIAFY VIEWS/
    SECV,SECTIONAL VIEWS/
    DIME,DIMENSIONING/
    WKING,WORKING DRAHINGSI
    ISO,ISOMETRIC PROJECTION/
    OBL,CGLICUE PROJECTICN/
    PER,PERSPECTIVE DRAGING/
    INT,ITERSECTION & DEVELOPMENT/
    SUF,SURFACE tREATMENI OF METALS/
    TOL,TOLERANCING/
    GEN,GENERAL MaCHINE DRAFTING/
    CAS,CASTING & fOFMING/
    FAR,FADRICAIION/
    CAM,CAMS/
    GEAh,GEAFS/
    DET,LETAIL [RAWING/
    ER,ERECTION DRAWING/
    RES,RESIDENTIAL/
    COY,COMMERCIAL/
    ENCO, ENERGY CONSERVATION/
    SYM,GFAPHIC SYMBCL/
    CCRN,CONNECIIONS DIAGRAMS/
    PRINT,PRINTED CIRCUITS/
    BLOCK, BLOCK DIAGRAMS/
    SKEM,SCHEMATIC DIAGRAMS/
    SURV,SIRVEY practice/
    TOF,IOPOGRAFHY MAPS/
    CONT,CONTOUR MAPS/
    PROF,PROFILE FAPS/
    FLOh,fIOH CIAGRAMS/
    VESS.VESSEL DRAGING/
    EXGE,EXCHANGE DRAWING/
    HYDG,HYDFAULIC & PNEUMATIC DESIGN/
    MECH,MECHANISM & KINEMATICS DESIGN/
    JIGS,JICS SFIXTURES DESIGN/
    STFAL,STFUCTUFAL DFSIGH/
    MACil,MACHINE CESIGN/
    wat,MATERIALS/
    SOL,SOLAF LESIGN/
    D'ESC,DESCRIfTIVE GEOMETRY/
    INTG,GRAPHICAL INTEGRAL/
    NGGAN,Nomogfans/
    vECT,VECTOR GEOMETRY/
    CALC,graphical calculos/
    COME,COMFUTEF GrAPHICS/
value labels lif to comf (5) extremfly impCritant (4) vefy impofiant
    (3) IMPORIANT (2) SLIGHTLY IMPORTANT (1) NOT IMPORTANT/
MISSING VALUES LTR 10 CCMF (0)
gFan INDIt CATA
```

4333224421320000000320000000033330000000000300000 0 Cl
4251243422 22天2222224422254225555542242243232111111 007
4531132321221252233443322323444434353324442322332 008
3242244422330000000323440000034453330000000323224 010
2431343241111C000CC331102211230332200000000113312 011
4532555433254543432343343435543335334435353323434 012
323223222222322222333332222244442223333333323332
3232332443330000000444442223453334223323222322223434334433333333030033333300003333333432333233343301 E
020
0255233445422323533222543355535445434343434345533444
4131445522230000000543433433333434333114123211121$02 t$
0294232245522342321421533320000034331111115232433442
4443444443330000000430000000044344304304030443333032
5345445422201111111441114444454441114111111223223 C36£2214555212333333335533353333555533322252522222224332334432222433333332333423344434313323332212223453123432212243233333222333331221322343443231111253323444322334333 3354443543355444543553544353333353453443323422222224433244344555555522222224242243331333333333333333331000000003333333333333030000031243445212115£11114204C1334344444224214321114111$3542555543224543322442224423400 C 04224423432543430$33524455333333000004404545055000055055050005333343231332231110000000330003323322223220000000300000334233333333000000033440000003332000000000041221533333334344E0C344334444333434343334433344333333334231144422240000000524440000044440000000000533533554455554444344333333333455545555133000000044333323313333322233434344311122323455533344423322323325445345322230000000443443322244443333334333113213$41521343111111111114244211111544+1113111111111111$¢ 3 324444443 2 CCCOOCC443443332334444442222222222222214343332112244341122222431343432411333333322222200000000000000000000000045434344443445445445544501111122311110CCOOCC3244412113233331C0000000311323£345445544435535533555555444455554444444444554445344144443233343343333334333344333333333333332233321113455112335425335333333225543253333243224322434241223432232234323240004433400004320000000000044355224533222453332243334532335333522332323352252421114434212 211223223212233233333322222133212232123321332432330000000333302333300003333333324333344
3345445532230000000433410000045555443334343444455334144333 23 2CCOOOOC 3323134444344443353243333333333244334432224543322544435433354435435433332403333403345544223000000044554443353554000000000000000043314455211111114115524231113333311111141114224324432444422123433433542222322353333222222222322224551135552120000000052755000004423000000500040000043323444323434444444444423333133333344443433341434334455333323324225423043334344444432243301333345244455522250000000554405555500000004545452444444224323ミ327420000CCC4434242ご500COJ32422400210332335422533221133333335200044255444453352242424444251151333321230000000330003333333133000000000333112£ 3344445223234333 33443444222344433333333333533223$503555550 C 000000000550000000055550000000000000000$3541343354540000000430000000000000000000000000000039
040043
045046
047$0 \leq 2$054055$0 \in 1$$.0 \in 2$$0 \in \varepsilon$070
071072
073
074077079080
0 E2
0 E4
085087
O\＆
0910 ¢ 3
054095
057
CS8
099103
105112
113116
118119
121123
£ 355444433223543533454534434544445334434333333330 £221034111100000000513404222542255225000000424300 4453555543345553323442224434554335335544333334433 2131332222112221111231233333344433212213221222222 223423342220000000000000000063333000000000030321 C $304100000 C 00000000000030300330000400000000000000 \mathrm{C}$ ᄃ252235522220000000¢22250000023335220003000211111 $13213333331222222222244 \cdot 1222222222222222222222222$ 3252133322311111111322211111134451113123121412313 252355435111222331142333333333444422222222222234 4343344443433333433433444333444443333224244443332 334133443111343132243134443343333422441443322235 4142244422310000000002423412444420000000000000003 4210245432230000000434420000044444324344330000000 3332333333332232233332343333322223223322424332234 144244554 2322422333322343443533333332224333322334 333 2543343455435544445454445454343334334434433242335 22310304111111111111441112222222223333333333433322 5333255431110000000541410000055523112224222313311 £3422345222111111111333332133332222112213212322332 43423455434300000005355044244444440 COOOO 000444444 3223333333333433433443333344333334334434333434444 223244432323433343333334442433324433332332222332 2351335532435555555554453335544445445555555333334 5233334433323334433433334343333333333333333433330 $323322542222000000044333000004333 C O C O O O C O O 022223$ 233233333 2333333333333492323434445333323322000000 4233344311120000006440004312455444304314121000000 433344432222222222333343333352222223323233332323 2333333332333331311333324424433333333333333333343 4342445433340000000443440000044430000000000143442 435244333 3333333333334443333334444444444444322333 ¿332143331112C0000C0322230CCOC54232224004332442235 4224234422221122111323320000000000000000000000000 5345455555443344545555554455523343333333333444444 324234442222000000000000000004444 CCCOOOOOOOOCOOOC 2111111141422333433443433445533335443333333432433 3144434322330000000520000000000000000005040000000 4422445532322453533543523444515555333423322323223
 4523554555350000000553554422555555304315344430435 5444445543435452444532354355555555554535545533454 33434434324323434224334334444COCO4232324323322222 42322234223223322112222.33322203322221112212332323 3242444322201111111433333223444445225424233402222 4312345521343532422532424424444443112224333431134
 4444345543443332322553455423533445355014202311224 3111145511110000000330000000033330000000000300030
 2242332332420000000000000000034405204323330403210 2444333332343430433003340000033333332432333403203 $334000000 C 000000000001334544400000000000 C O O O C O C O C$ 3342333322220000000334422333433444343334432433334 $525122241113111111122222222^{\text {² }} 33333325525215333333$ 4452345522224542222332143334334443223323323222222 5312255432242343522451351000000000700000000000000C 3352255521110000000550000000000000.000000000000000 55535554444522222224422222222244444444444444444 222222222221111111221111111144443335 c33133333334 $4351335533330000000421454444455555305 \prime 505034533555$
5344455540345544555554455555555555555545555455455 $2 t 4$
2443445532354440CCC550C03534554440CCOOOOU00000000 $2 \in 5$
3222233332321121211322343333343333333323332322324 267
343125543323445232232123 4434432334323323331534222 $2 t 8$
ᄃ353455533345644444553545343155544434444434522235 2も9
5531333533233543333443505435544555333333333332211 271
4114234321241111111441331111144443214214141421114 272
23322444321 CCCOOOO331443313332120C0331211412322C 273
212133332131111111301111111133231114114111201122 274
4252355322221221322543423333355553222115242445335 275
$4404 \mathrm{C4} 45 \mathrm{CCCCO4404CC4} 400 \mathrm{COCCCOOCCOOCCOCCOOOOOCOOOC}$ 276
52435545玉2440000000554455505555005050004004000000 277
5334345533334533433544550000000300000000000000000 278
4401344432230000000442333333433334335434333500003 279
3113133311131131111333312222233331113113111111111 280
5351255531321311411443433311355553115515113511111 $2 \varepsilon 1$
4433335544444444444444434443433334434444433333433 2 C32423333222111111111110111111111211111111011111142212444212222312223212233334233332230232222211222341332144450000000322434222443333004224223533334
284$2 \varepsilon 5$
5552555544352221322555555433535545555325323515313$2 \varepsilon \varepsilon$
5322555342200000000555550000055555505225244500000 252291
442234553:3323334344533334333434443?3334432322340
4055 C5555551555111153111111111445511111113441111115 295254
5323333333330000000443330000054443004404033222223 256
4453455532252232322553334434554445434324323433222
43233444322222222222232222222222223433333330333 297
244144244442333333333333333333334444444444444444 259
FREOUENCIES GENEFAL = ALLsTATISTICS $\quad 1,3,4,5,9,10,11$
OPTIONS
3
EINISH
11
-.---- JES2 JOB STATISTICS --....-
231 CARDS READ
C SYSCUT FFINT RECCRDS
O SYSCUT PUNCH RECORDS
0.00 MINUTES EXFCUTICN TIME

```
//LIST JCB TYPRUN=COPY
1"LOBPARM FCFMS=ACI1
// EXFC SFSS
//GO.SYSIN LC *
fun fare amfhican society fon enginfering enucaticn
LATA L.IST FIX:E/ I LIR ORTC SKTC!! INK AUXV SECV OINE WRING ISO ORL PEF IVT
    SUR 1OL cen C.aS fab cam Gear det er reS COm faco Sym CONN PRINT
    BLOCK SKEM SUEV TOF CONT FROF FLOM VESS EXGE HYDR MECH JIGS
    STfal maCH Mat SCL deSC INTG NGRAM VECT CALC CCmp 1-49
INPUT rEDIUR CAPD
M Of CaSES 13E
vaf labels lTf,LETTERING/
    ORTO,ORTHOGRAPHIC PROJECTION/
    SkTCH,SKETCHING/
    INK,INKING & REPPODUCTION/
    AUXV,AUXII,IARY VIEHSI
    SECY,SECTIONAL VIEHS/
    DINE,DIMENSIONING/
    WKING,WORKIAC DRAKINGS/
    ISC,ISOMETFIC FLOJECTION/
    OBL,COLIQUE PROJECTICN/
    PER,PERSPECTIVE DRAWING/
    INT,ITERSECTICN & DE VELOPMENT&
    SUR,SURFACE tREATMENT OF metalS/
    TOL.,TOLERANCING/
    GEN,GENEFAL MACHINE CRAFTING/
    CAS,CASTING & FOFMING/
    FAB,FABRICATION/
    CAM,CAIIS/
    GEAF,GEARS/
    DET,DETAIL DRAHING/
    ER,EFECTION DRAWINGS
    RES,RESIDENTIAL/
    COM,COMMFRCIAL/
    ENCC,ENERGY CONSERVATION/
    SYM,GRAPHIC SYMBCL/
    CONN,CONNECTIONS DIAGRAMS/
    PEINT,PRINTED CIFCUITS/
    BLOCK,BLOCK DIAGRAMSI
    SKEF,SCHEMATIC DIAGRAMS/
    SURV,SURVEY PFACTICE/
    TOP,TOPOGRAFHY MAPS/
    CONT,CONTOUR MAPSI
    PKOF,PROFILE MAPS/
    FLOW,FLOW DIAGRAMS/
    VESS,VESSEL DRAWING/
    EXGE,EXCHANGE DRAWING/
    HYDR,HYDRAULIC & PNEUMATIC DFSIGN/
    MECH,MECHANISH KINEMATICS DESIGN/
    JIGS,JIGS SFIXTURES CESIGN/
    STRAL,STFUCTUGAL DESIGN/
    MACH,MACHINE DESIGN/
mat, Matefials/
SOL,SOLAR DESIGN/
DESC,DESCRIPTIVE GEOMETRY/
    INTG,GRAPHICAL INTEGGAL/
NGRAM, NOMOGRANS/
VECT,VECTOR CEOMETRY/
calc,grafhical calculus/
COMP,COMPUTER GRAPHICS/
value labels lotr to Comp (5) EXtremely important (4) very important
    (3) IMPOFTANT (2) SLIGHTLY IMFORTANI (1) NOT IMPOKTANT/
MISSING valoES LTR to CCMF (0)
rgan tmput mata
```

1551332244144454433334442222234550003443344523423 001 4333443344443543433434444343343334334443333543335 007
4432444332243333333333334333333333333333333222222 008
3551455244131111111111111111111112111111111111111 013
2341303000200000000000003345300000000000000000404 014
4453444443332332322332224434434323332423333222434 015
3553554443330000000330000000000332000000000333333 022
¢5433443422243442145444455555455400000000000333542 023
3132332111212331311322225435522212112322200552453 025
2441444522220453422000003334400000003444540422320 027
2451444331133453333232324433533334323333342322332 029
5035000000000000000000004553500000000000000000000 031
3541355522233443333002202222222223333433332433433 032
332324C333322222222321222111155553114313211523323 035
4441444423324543333000000000000000003443443322223 037
3231111221111111111111111111111112221111111143221 044
4552334444233543333443355543344445333434543533335 048
2551445442350500055300000000000000000000000503350 052
3232344432432222222434444422433334222113123311112 053
443343343ミニ3え332323332334423432233223233323422222 $0 \leq 4$
2021223111102232211211101112211113212312321222223 056
4442443333332342333434433334455554443315143333224 057
3552555455223333333000000000000003323432333344445 $0 \leq 9$
1331231131121111111111111112111112111111111322224 060
2441333340101321211111113323311111111121121132332 $0 \in 1$
22333444 063
1131333311111133111111110000000000000000000000000 064
2341344334223433333322232334333334334333343443443 $0 \in E$
2532424233213543333333333040343403303323333422324 067
2541334221322443422321120000000000002423343322334 0693542444333133432344000000000000000003432422322325070
$3331333333320 C 33032111113333333333110321302444344$ 073
3442055532402553355444403344400004403434423423023 074
2541444422232431111111211111111111111111111421224 07935423534432113211113233344444455532245455445335342321444554333542422530000000000004434433352534222ce
2431132111211211222111313333311111111111111211210081
4552444431442443433411111111111111114543443222222 085Oと$234044003 C 000000000000000303300003000000000000000$4432444322223443322321114443344444333444433221122232133342323243232222 1442222222222224443443422225
3541554444143122221212222222322332111212212433332 097
1221222122221111111111111112211111111111111253555 058
$425233412 \mathrm{Z} 33 \mathrm{COCOOCCCOOCC45453COCUOCCOCOOOO} 452533$ 102
222222222222222222222255555222222222222222222 104
355154440322132111111111111111111111111111032323 1 C 5
15511111444111111111111111111111111111111111111111 107
4332333333223333300447053334400004000000000000000 108
3342333222332233333323333332433433213323324322333 109
4442444344421311111221111112333441111111111113113 113
4532545543423333333443333333355553333333333533543 114
3142343332323433222232223222333221113211212222221 116
244144543223344333351254434413333322222222311111 117
2253135421223332422332223222233233222242222222225 118
4252234321212332 244322245544534434323422434334445 120
4343355532243533544444443443433335434513442222532 121
44ミ2345432？22344433444444334454433223333333433323 123
2451335444222543323321235555532114223532224153554 128
3431445344352323211111111111121121111111111411211 132
£3222233223323ミ2222333332223333333222323333333444 134
З433324332222322222222224353322223222222222443334 136
345234432222000000330000000044440003434432442422 137
222222222221111111111114425511111111311113331433 135
25414432222333333？ 2 ？ 30003343355554223522432311525 146
C00000000C0000000000000022222111111111111111453445 147
2431223311332232322233333333323223222223322211334 148
444244444444224222244442222224444222222432232223 149
4442335411223544431443443434444445444444433422224 153
454255553114234444422114222223333221444444522524 155
344233443 ？322222222322322222223322222222222323223 156
2451445433431422422221103225411333000000000244555 161
2341255531133552222542225522433335405425422223322 $1 \in 2$
き353333333332232222220230544444445444333333554555 $1 \in 3$
3410444313111111111324430000044440003004000222222
2331332222212211111000000000000000000000000111111
4321333533210000000433443333343334334444433222224
164
17845433444435444423324300044344000043044300004000051 t 73423334343221322222211112222222332122212211332323
171$3242345433330000000335430000044550 C 04334334444524$
1733351333332231221111211111112111111111213211333334
141222421422211112111111211111111211111333 1754354333433222331222423343233322222202313324322224
178
ᄃ553344544343443333333334333433333223333323433333181
C0000000000000000000000000000333344000004000000030 182 1822322333332232332222000003333300000000000000322222
445322543211353111122113222223334421113110334343
3322332322232332220000003323000000000000000322222 $1 E 4$
189
5553555555553443333444454444444444344444444433435
190
4432445333443 ？3333ミ4411154ミ3532324323333331532434 151
3131113211212211111111113323311111111111111111113 193
234244234322222222222222222244443223223223323223 156
4542555544233553344444545555544445544443400543543 2 C 2
3351332222431122312313332233333224233323222533332 204
5554555554353553332544344433543344325544534522414 205
3241233232212221111211115425511211111211111122123 207
2221233332132233332122233233343334230000000403332 212
2331231332311221111111103333312211111111111233324 213
2341232322222232222331113222333332222223221312112 215
3531555431111541155331110CCCOOOCOCCCOOOOOOOOC0000 216
3231223322222222322220000000000003223333323333335 217
4344334432344533333443343432333224333344434333224 21ε
ミ5ミ0533333C5C5C0000C00000CCOOOOOOOOCOOOOCOOO55500 219
3452343342223332333331112222234443332222222322224 225
2542433332212232211111111111111221110311211542543 22 E
3342333332ミこ2222222443332222244442223333333333333 228
4351333311113313311330002222233333330000000301315 230
334322333222111111121222442443232222222222223324 232
3452343344133433343232334333433334333433322342443 234
35513333322323き2222212233342333334324324332411324 235
4543555433330000000554455535555555545534434535544 237
2541444544243554322443335444444443333333333443343 235
45524354323222222222222222こ2222222222222220543434 241324422242221111111111114444411114441111111111111247
3543444432230000000000000000000000000000000400304 252
3341343111331111111111114444422221111111111554555 253
4351223121113322222111113324321113213322222332444 254
1451335332242542422241223225521114203333333331312 255
3331333211113321111111113113323223113313311322223 257
4332444433223343433333334343433333334433433443444 260
3451444443333343322111113223312213112323333322223
2542444355441111111111111111111111111111111332433 $2 \epsilon \epsilon$
24£1444344442211211222232222211112222212212322223 2703231445532253553532535535333544445335535532521212
3222445534433333444442344543434433324433344334434 273
3341334411133434433331133333311113334445431313335 273
275
1111111111111111111111111111125551111111111111333 276
1451444344221311121111111222222111112310301111112 278
4232345522233443455554545555554444444445454433223 279
3351442143441111111111112222244442221111111434434 281
3141323111111111111111111111111114221111111333343 2E4
3531233211233433545553543553534535323334524523434 285
2352444332221111111331111111133332221113111333334 286
3421044344441111111111111111111111111111111211114 2\＆
4553445433333534333544454454434552223543443522525 2\＆9
〔551455544233533333330003333303003000323330533332 291
£5143355542100000000000000000555500000000005111111 $25 t$
ミ4523333535 $20 C C O C 0000222444440 C C O 0000000000444444$ 257
2522544522234553333443454443444433333433444543335 298
3442344341111111111111113111111314513211111111111 259
faEQUEACIES GENEFAL＝ALL
statistics $1,3,4,5,9,10,11$
CPIIONS 3
HIMSH

11
JES2 NOB STATISTICS --ー・ー・
217 CARCS READ
O SYSOUT FEINT RECORDS
C SYSCUT FUNCH RECORDS
0.00 MINUTES EXECUTION TIME

```
1/LIST JCB TYPFUN=COPY JOR 19E1
/*JOBPARM FCRMS=&031
// ExEC SPSS
//GO.SYSIN [D*
gun nare graphic skills devflcpment in undergraduaie ehginegring froggams
DATA LIST FIXED/ L LTR ORTO SKTCH INK AUXV SECV DIME WKING ISO OBL PER IMT
    Sug tol gen cas fab cam gear det er res Ccm enco sym Conk pgint
    BLOCK SKEM SUEV IOP CCNT PROF FLOW VESS EXGE HYDR MECH JIGS
    STRAL MACH rat SOL DESC INTG NGRAM vECT CALC COmP 1-49
INFUT MEDIUM CARD
A CF CASES 290
VAR LABELS LTR,LETTERING/
    ORTO,ORTHOGFAPHIC PROJECTION/
    SKICH,SKETCHING/
    INK,INKING & REPRODUCTION/
    AUXV,AUXILIARY VIEhSI
    SECV,SECTIONAL VIEWS/
    DINE,DIMENSIONINE/
    WKING,WORKING DRAZINGS/
    ISO,ISOMETRIC PRCJECTION/
    OBL,OBLIQUE PROJECTICN/
    PER,PERSPECTIVE CRAKING/
    INT,ITERSECTICN & DEVELOPMENT/
    SUR,SURFACE TREATMENT OF NETALS/
    TOL,TOLERANCING/
    gen,general Machine drafting/
    CAS,CASTING & FORHING/
    FAB,FABRICATION/
    CAH,CAMS/
    GEAR,GEARS/
    DET,[ETAIL [RAWING/
    ER,ERECTION DRAWING/
    RES,RESIDENTIAL/
    CON,COMmercial/
    ENCC,ENERGY CCNSERVATICN/
    SYN,GRAPHIC SYYBOL/
    CONN,CONNECIIONS DIAGRAMS/
    PRINT,PRINTED CIRCUITS/
    BLOCK, BLOCK DIAGRAMS /
    SKEM,SCHEMAIIC DIAGEAMS/
    SURV,SURVEY PRACTICE/
    TOP,TOPOGRAPHY MAPS/
    CONT,CONTOUK MAPS/
    PROF,PROFILE MAPS/
    FLON,FLOW DIAGRA*S/
    VESS,VESSEL DRAMING/
    EXGE,EYCHANGE DRAWING/
    HYDR,HYDPAULIC & PNEUMATIC DESIGN/
    MECH,MECHANISI & KINEMATICS DESIGN/
    JIGS.JIGS SFIXTURES DESIGN/
    STRAL,STRUCTURAL DESIGN/
    MACh,MACHINE DFSIGN/
    mat,NATERIALS/
    SOL,SCLAR DESIGN/
    DESC,DESCgIfTIVE LEONETRY/
    INTG,GRAPHICAL INTEGGAL/
    NGRAN,NONOGRAMS/
    vECT,VECTUR GEDMETRY/
    CAlC,GrapHICAl Calculus/
    CONP,COMPUTER GRAPHICS/
value labelS ltf to Comf (5) extfemely imfcktant (4) vefy impoftant
    (3) IMPORTANT (2) SLIGHTLY LMPORTANT (1) NCT IMPOFTANT/
MISSIN( values lTR to comp (u)
fead infut rata
```

1551332244144454433334442222234550003443344523423 00143334433444435434334344443433433343344433335433354432444332243333333333334333333333333333333222222355145524 ¢1 3111111111111111111111211111111111111123413030002000000000000033453000000000000000004044453444443332332322332224434434323332423333222434ミ55355444233C00000c3300COCCOCOO3320C00000003333335543344342224344214544445555545540000000000333542313233211121233131132222543552221211232220055245324414445222045342 CCOOOC3334400COCOC344454042232C2451444331133453333232324433533334323333342322332$\subseteq 035000000000000000000004553500000000000000000000$35412555222334433230022022222222233334333324334333333240333332222222321222111155553114313211523323444144442332454333300000000000000000344344332222322311112211111111111111111111111111222111111114322145623344442335433334433555433444453334345435333352551445442350500055300000000000000000000000503350223234443743222222243444442243333422211312331111244334334332323323233323344234322332232333234222222021223111102232211211101112211113212312321222223444244333333234233343443333445555444331514333322435525554552233333330000000000000033234323333444451331231131121111111111111112111112111111111322224244133334101321211111113323311111111121121132332223334441131333311111133111111110000000000000000000000000234134433422343333332223233433333433433334344344325324242332135433333333330403434033033233334223242541334221322443422321120000000000002423343322334354244433313343234400000000000000000343242232232533313333323300330331111133333333331103213024443443442055533402553355444403344400004403434423423023254144442223243111111121111111111111111111142122435423534432113211113233344444455532245455445335342321444554333542422530000000000004434433352534222¿4311321112112112221113133333111111111111112112104552444431442443433411111111111111114543443222222234044003000000000000000030330000300000000000000044324443222234433223211144433444443334444332211222321332423232432322224442222222222224443443422225354155444414342222121222222232233211121221243333212212221222211111111111111122111111111111112535554252334122330000000000004545300000000000000452533222222222222222222222255555222222222222222222235515444032213211111111111111111111111111111032323155111114441111111111111111111111111111111111111433233333322333330044005333440000400000000000000044424443424 11311111221111111233344111111111111131134532545543423333333443333333355553333333333533543344234333232343322223222322233322111321121222222424414454322334433335425443444333332222222231111132531354212233324223322233222333332222422222222542522343212123322443222455445344343234224343344454343355532243533544444443443433235434543442222532443234543333234443344 444433．，+544332233333334333232451335444222543323321235555532114223532224153554玉43144534e三52323211111111111112112111111111114112113332223322332332222333332223333333222323333333444
343332433222232222222224353322223222222222443334007
008008014015022
023025
027029031032
3452344322220000000330000000044440003434432442422 137
222222222221111111111114425511111111311113331433 139
3541443222233333333330003343355554223522432311525 146000000000 CuOOOCOOOOOUOO 02222211111111111111453445243122331132223232223333323332322322222332221133444424444444422422224444222222444422222243223222231474442335411223544431443443434444445444444433422224454255551114234444422114222223333224444444522524344233443333222222232232222222332222222222323223245144543343142242222110322541133300000000024455523412555311235522225422255224333354 C542542222332233533333333322322222202305444444454443333335545554341044431311111111324430000044440003004000222222$2331332222212211111 C 000 C 0000000 C 00000000000111111$43213335322100000004334433333433343344444332222244543344443544442332430004434400004304430000400005
3423334342221222222こ11112222222332122212211332323
3242345432330000000335430000044550004334334444524214122242142222122222111443444111122111111111311223
43543334332223312224233432333222222023133243222245553344544343443333333334333433333223333323433333COOOOOCOOCOOOOOOOOOCOOOOOOOOO33334CCOCO4OOOOCOO3C44532254321135311112211322222233344211131103343433322333332232332222000003333300000000000000322222£5535555555534433334444544444444443444444443343E443244533344333333344111543353232432333333153243431311132112122111111111133233111111111111111111132342442343222222222222222222444432232232233232234542555544233553344444545555544445504443400543543335133222243112231231333223333322423332322253333255545555543535533325443444335433443255445345224143241233232212221111211115425511211111211111122123222123333213223333212223323334333423000000040333223312313323112211111111033333122111111111112333242341232322222232222331113222333332222223221312112353155543111154115533111000000000000000000000000032312233222222223222200000000000032233333233333354344334432344533333443343432333224333344434333224353053333305050000000000000000000000000000005550034523433422233323333311122222344433322222223222242542433333212232211111111111111122111031121154254333423333333322222224433322222444422233333333333334351333311113313311330002222233333330000000301315334322333222111111121222442443232222222222233243452343344133433343232334333433334333433322342443355133333323233222221223334233333432432433241132445435554333300000005544555355555555455344345355443541444544;43554322443335444444443333333333443343455243543333222222222222222222222222222222254343432442224222211111111111144444111144411111111111113543444432 Z ? CCOOCCCOOOCCCCOCOOCOCCCOOOCCOO400304334134311132111111111111144444222211111111115545554351223121113322222111113324321113213322222332444145133533224254242224122322552111420333333333131233313332111133211111111113113323223113313311322223133244443322334343333333134343333333443343344344434514444433333433221111132233122131123233333222232542444355441111111111111111111111111111111332433149153
155156$1 \in 1$t173175
1781811 E2184
189150
151192
15315t
202$2 C 4$
205207
212213
215216217218219225226228230232
234235237239
241247
252253254255257$2 \in 0$
$2 \in \varepsilon$2683451444344442211211222232222211112222212212322223 . 2703231445532253553532535535333544445335535532521212271
2222445534433333444442344543434433324433344334434 2733341334411133434433331133333311113334445431313335275
1111111111111111111111111111125551111111111111333 $27 t$
1451444344221311121111111222222111112310301111112 278
4232345522233443455554545555554444444445451433223 279
3351442143441111111111112222244442221111111434434 $2 \varepsilon 1$
3141323111111111111111111111111114221111111333343 284
3531233211233433545553543553534535323334524523434 285
33524443322111111133111111113333221113111333334 2EE
342104434444111111111111111111111111111111211114 28
4553445433333534333544454454434552223543443522525 289
5551455544233533333330003333303003000323330533332 251
551433555421COCOOOCC00000CCCC5555CCCOOOOOOO511111 256
3452333353530000000002224444400000000000000444444 257
2522544522234553333443454443444433333433444543335 258344234434111111111111111311111131451321111111111142512434222222222224422254225555542242243232111114531132321221252233443322323444434353324442322332324224442233000000032.344000003445333000000032322424313433411110000003311022112303322000000001133124532555433254543432343343435543335334435353323434ミ232232222222322222333？ 222222444422233333333233323232332443330000000444442223453334223323222322223
3431344422223441411421114310413114223444321201212
259259
001
4333224421320000000320000000033330000000000300000007
CC
010
010
011012
013$434334433333333030 C 333333000033333334323332333433$016
025£233445422323533222543355535445434343434345533444
0264131445522230000000543433433333434333114123211121 029
1244552230000054343343333434333114123211121
1244552230000054343343333434333114123211121
4232245522342321421533320C00034331111415232433442 030
4443444443330000000430000000044344304304030443333 032
5345445422201111111441114444454441114111111223223 036
3221455521233333333553335233355553332225252222222 039
4332334432222433333332333423344434313323332212223 040
531234322122432333332223333312213223434432311112£332344433233433333544435433554445435535443533333043
5345344332342222222443324434455555552222222424224 045
3331333333333333333330000000033333333333330300000 047
3124314521211531111420401334344444224214321114111 C5 2
3542555543224543322442224423400004224423432543430
3352445533333300000440454505500005505505000533334
$432323533233 C C C O O C C 3333400 C O C 2343 C C C O O C C 00302303$3231332231110000000330003323322223220000000300000334233333333000000033440000003312000000000041221533333334344300344334444333434343334433344333333334231144422240000000524440000044440000000000533533$0 \leq 5$
$0 \in 1$0620 O070071
5544555544443443333333334555455554330000000443333 072
23き133333z223343434431112232345553334442332232332 073
5445345322230000000443443322244143333334333113213 074
4152134311111111111421421111154441113111111111111 077
433244444432CC0000C443443233334444442222222222222 079
2143433321122443411222224313434324113333333222222 080
0000000000000000000000004543434444344544544554450 0 © 2
111112231111CCCOOCC324441211323？3？1CCOOOOOU311323 OE 4085
$0 \in 7$〔3454455444355355335555 £ $444455 \leq 54444444444554445$
2111345511233542533533333322554325333324322432243 CEg
4241223432 2322343233400044334000043200000000000044 091
3552245332224533322433345323353335223323233522524 0 ¢ 3
21114434212 ？1122322321223323333333222213321223212 0 S 4
3331332433330000000333302333300003333333324333344 095
3345445532230000000433440000045555443334343444455 057
334144333 232CCC0000332343444434444335324333333333 058
3244334432224543322544435433354435435433332403333 099
4033455442230000000445544433535540000000000000000 10343314455211111114115524231113333311111141114224321 C5
4432444422123433433542222322353333222222222322224 1125511355521200000000523550000044230000005000400000433234443334344444444444233333333333344443433344434334455333323324225423043334344444432243304333345244455522250000000554405555500000004545452444444324323332242000000044343422250000333422400230332335422533221133333335200044255444453352242424444251151333321230000000330003333333333000000000333112£334444522323433333443444322344433333333333533223EC3555S5CCCCCCOOOOC5500COCCCC55550000000000000000035413433545400000004300000000000000000000000000003552555555553333333444443333333333334444443555555423444543三ミ3CCOOOOO53333344434554432332524443344453554444332235435334545344345444453344343333333305221034111100000000513404222542255225000000424300445355554 23455553333542224434554335335544333334433213133222211222111123123333334443321221322122222222342334222000000000000000000333300000000003032103041000000000000000000303003300004000000 C00000000§2522355222200000000522250000023335220003000211111132133333312222222222444222222222222222222222223252133322311111111322211111134451113123121412313252355435111222331142333333333444422222222222234434334444343333343343344433344444333322424444333233413344311134313224313444334333342244144332223541422444223100000000024234124444200000000000000034210245432230000000434420000044444324344330000000333233333333223223333234333332222322332222433223414424455423324223323223434435333333322243333223343332543343455435544445454445454343334334434433242335223103041111111111114411122222222233333333334333225333255431110000000541410000055523112224222313311534223452221111111133333213333222211221321232233243423455424300000005355044244444440000000004444443223333333333433433443333344333334334434333434444223244432323433343333334442433324433332332222233223513355334355555555544533355444454455555553333345233334433323334433433334343333333333333333433330323322542222000000044333000004333 CCCOOOOOOO2222232332333333333333333333445232343444533332332200000C42333443111200000004400043124554443043141210000004333444322222222222333343333352222223323233232323333333333333333313113333244244333333333333333333434342445433310000000443440000044430000000000443442435244333333333333333444333333444444444441 1322333¿33214き33112CCCOCCC 222 20CCCC5423222400433244223542242344222211221113233200C0000CU000000000000000C5345455555443344545555554455523343333333333444444324234442222000000000000000004441 COCOOOOOOOOODOOC2111111141422333433443433445533335443333333432433$31444343223300000005200 C 0000000000000005040000000$$4422445532322453533543523444545 \leq 55333423322323223$4523554555350000000553551422555555304315344430435544444554343545244453235435 j 5555555545355455334543343443433432343422433433444400C04232324323322222423222342232233221122223332220332222111221233232332424443222011111114333332234444522542423310222243123455213435324225324244244444431122243334311345434455544231424311543555555555555335435343434324113116118119121
123124125126127131
133134137
140142144
146147
150154156
157
157
.161
-1E1
165
$1 t 9$
170
173
175
176
176
177
1 \& 3
185
186
181
189
190
$1 \leq 1$
193
195
158
157
199
202
$20 E$
207
208
209
210
212
213
215
215
219
219
221
22ϵ
227
229
234
234
236
237
4444345543443332322553455423533445355014202311224 239
3111145511110000000330000000033330000000000300030 240
2232233422220000000433340000044334334324234322333 242
224233233 442CCCOOCCCCOOCOCCCC344052C432333040321C 244$2444333332343430433 C 033400000333.13332432333403203$3342333322220000000334422333433444343334432433334
3340000000000000000001334544400000000000000000000 245£2¢1222411131111111222222222233333325525215333333251
4452345522224542222332443334334443223323323222222 254253
531225543224234352245435000000000000000 COOOO 0000
23522555211100000000550000000000000000000000000000 2555553555444452222222442222222222414444444 444444444222222222221111111221111111144443335533333333334257
4351335533330000000421454444455555305505034533555258
㑕
53455503455445555545555555s55555545555455455 $2 \in 4$260
2443445533354440CCC5500035345544400CCOOOC000C0000 265
3222233332321121211322343333343333333323332322324 267
3431255433234452322321234434432334323323331534222 268
巨35345553 3 345544444553545343355〔44434444434522235 269
5531333533233543333443505435544555333333333332211 271
4114234321241111111441331111144443214214141421114 272
233224443212CCCOOCC33144331333212CC0331211412322C 27321213333221311111113011111111332311141141112011224404 C4450CCCC4404CC4400COCCCCOOCOCOCOCOOOOOOOOOOO£2435545534400000005544555055550050500040040000005334345533334533433544550000000000000000000000000$44013444322300000004423333334333343354343335 C 0003$311313331113113111133331222223333111311311111111153512555313213114114434333113555531155151135111114423コ35544444444444444434443433334434444433333433324233332221111111111101111111112111111110111111422124442122223122232122333342333322302322222112255525555443522213225555554335355455553253235153132341332144450000000322434222443333004224223533334£ 322555342200000001555550000055555505225244500000442234553き3323334344533234333434443333344323223404055 C555555155511115311111111445511111134411111155323333333330000000443330000054443004404033222223く453455532く32232322553324434554445434324323433222274
4252355322221221322543423333355553222115242445335 425235322212213225342333335553222115242445335 275
276． 277278279
2802\＆12E 32842\＆5288291252
254
295256257
432334443222222222222232222222222222343333330333 2982441442444423333333333333333333334444444444444444T－TESTfinish
$1 /$
－－－－－－JE؟2 JOB STATISTICS－－－－－－－
37E CARDS READ
O SYSCUT FEIMT RECCRDSC SYSOUT PUNCH RECORDS
C．OC MINUTES EXECUTION IIME

2
 VITA
 Roberto Alexandre Schlemm
 Candidate for the Degree of
 Doctor of Education

Thesis: THE RELATIVE IMPORTANCE OF GRAPHIC SKILLS DEVELOPMENT IN UNDERGRADUATE ENGINEERING PROGRAMS

Major Field: Occupational and Adult Education
Biographical:
Personal Data: Born in Pôrto União, Santa Catarina, Brazil, May 28, 1944, the son of Alexandre and Luiza Schlemm.

Education: Graduated from Colégio Estadual Tulio de França, Brazil, in 1963; received the Bachelor of Science degree in Mechanical Engineering from Universidade Federal do Paraná, Brazil, in 1972; received the Master of Science degree in Technical Education from Oklahoma State University, in 1973; completed requirements for the Doctor of Education degree from Oklahoma State University in lecember, 1980.

Professional Experience: Assistant Professor, Centro Federal de Educação Tecnológica do Paraná, Brazil, 1970; Staff member (Engineer), Centro Paranaense de Assistência Gerencial (CEAG), Brazil, 1974-1976; Professor and Head, Drafting Department, Centro Federal de Educação Tecnológica do Paraná, 1975; Associate Professor, Universidade Católica do Paraná, Brazil, since 1975; Assistant Professor, Universidade Federal do Paraná, Brazil, since 1976.

Professional Organizations: American Institute for Design and Drafting, American Society for Engineering Education, American Vocational Association, Instituto de Engenharia do Paraná.

