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CHAP\I'ER I 

INTRODUCTION AND R~VIEW OF LITERATURE 

Introduction 

The Lindisfarne scribes problem consists of estimating the change

points which occur in a sequence of n random variables (Ross, 1950; 

Silvey, 1958). It was assumed that'no more than one scribe was involved 

in the writing of any one of the s $ections in which the text was divid

ed. Such problems are common in real life situations and they are gen

erally known as the change-point, s])ift-point, or switch-point problems. 

Considerable work has been don~ in the past on the various problems 

of estimation and inference associaUed with the shift-point and the 

switching linear regressions for tha univariate case. Most of these re

search works relate only to abrupt dhanges. Both Bayesian and non

Bayesian approaches are found in tha literature, but most of the recent 

studies have followed the Bayesian point of view. Very little work can 

be found dealing with changes in a sequence of multivariate random vec

tors or in the multivariate linear regression model. 

In this study, Bayes' theorem wlll be used to combine sampling data 

with prior information on the unknowp parameters, to obtain their poste

rior distributions. 

The purpose of this research is to study abrupt structural changes 

in finite sequences of independent nqrmal vectors and also in multivari

ate regression models. Further, gen~ral changes, which include abrupt 
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as well as gradual changes as particular cases, are also investigated in 

univariate time-series models. 

In Chapter II, changes in the ~ean vector in a finite sequence of 

independent normal vectors is studi~d, assuming a common, unknown, co-

variance structure. The number of ~hifts is assumed known. Posterior 
I 

distributions of the parameters in the model are obtained using an uni-

form prior for the shift point and ~ multivariate normal Wishart for the 

location and scale parameters. 

In Chapter III, structural cha~ges in multivariate regression models 

are examined.In this case, posterio~ distributions of the parameters are 

derived using an uniform prior for ~he shift point, a Wishart prior for 
I 

the covariance matrix and both an uqiform and a normal as priors for the 

regression parameters. 

In Chapter IV, general changes are studied in univariate time series 

models using transition functions. The nature of the change is charac-

I terized by the transition parameter. Uniform distributions are used as 

priors for all the parameters excepting the scale parameter, for which a 

gamma prior is used. 

For some of the above cases, th~ posterior distributions of the 

shift point are studied, for generat~d data sets, using numerical inte-

gration and IMSL subroutines. 

Review of ~iterature 

The shift-point problem has receJived a great deal of attention in 
I 

recent years from both Bayesian and ~on-Bayesian researchers. 

The Non-Bayesian approach was fi1rst studied by Page (1954, 1955, 

1957). He used cumulative sums to analyze a mean change in a sequence 
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of independent random variables. !Quandt (1958, 1960) employed maximum 

likelihood techniques to estimate :the shift-point and regression param

eters in a linear regression model. Hinkley (1969, 1971) derived the 

asymptotic distributions of the ma~imum likelihood estimates and the 

likelihood ratio statistic for testing hypotheses about a change-point. 

He also investigated small sample properties of the estimators. Robinson 

(1964) derived the maximum likelihood estimator and confidence limits for 

the intersection of two regression lines. 

A locally most powerful test was developed by Farley and Hini.ch 

(1970) for the hypothesis that the slope in a linear time series model is 

stable, against the alternative of exactly one change. Farley, Hinch and 

McGuire (1971) generalized this test to include one or more slopes. 

Sen and Srivastava (1977) stuqied the detection of a mean change in 

a sequence of independent p-variat~ random vectors, ; 1 , ; 2 , •.• , ~' 

with precision matrix I. The likelihood ratio statistic to test the hy

pothesis of exactly one change, against the alternative of no change was 

derived, first, without the use of:prior information and then assigning 

prior information to the mean. Their results are similar to the likeli

hood ratio statistic used by Gardner (1969) for the univariate case. 

A Bayesian analysis for the m~an change in a finite sequence of 

random variables was provided by Chernoff and Zacks (1966). Their work 

was generalized by Kander and Zacks (1966) to the one parameter exponen

tial family and later, in 1968, to :the case of more than one mean change 

by Mustafi. 

Bacon and Watts (1971) proposeU a general model which allows for a 

smooth as well as an abrupt change ~rom one linear model to another. In 

this paper they introduced a class Qf transition functions with two 



parameters, one for the join point and the other for the nature of the 

transition. Tsurumi (1975, 1980) provided applications of the general 

model to the Japanese crude steel production and to the U. S. gasoline 

market. 

4 

Broemeling (1972, 1974) derived posterior distributions for the 

shift point and the unknown parameters in a sequence of Bernoulli, Expo

nential, and Normal random variablea. Holbert (1973) developed Bayesian 

techniques to estimate the shift-polnt and the abscissa of the intersec

tion of two regression lines. In 1~75 Ferreira assigned three different 

priors to the shift-point and obtai~ed marginal posterior densities for 

the shift-point and the unknown par~meters, and the same year Smith gave 

an informal sequential procedure to detect a possible change. In that 

paper he derived posterior odds rat!os for hypothesis testing. 

Broemeling (1977) derived the predictive densities for future obser

vations of a changing sequence of random variables. He also observed 

that the posterior densities were m~xtures of standard probability dis

tributions. That same year Holbert and Broemeling (1975) followed a 

Bayesian approach to estimate the switch point in a normal sequence. 

They extended the results to the switching linear regression. Chin Choy 

(1977) used conjugate priors to est~te the switch point and the unknown 

parameters of a changing linear model. Smith and Spielgelhalter (1979) 

derived an F-statistic to test the no-change model (M0) versus the model 

with a possible change at r. They assume an improper prior on a and a 

normal prior on the regression param~ter given cr. 

An application of the switching linear regression problem was made 

by Smith and Cook (1979) to data obtained from kidney transplant patients, 

with the object of detecting the tim~ of rejection of transplanted kid-
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neys. Smith (1977) applied this p~oblem to reliability theory. Austin 

' 
and Sylvia (1977) studied the shift of the mean level in a sequence of 

independent normal random variable$ and applied their results to traffic 

deaths in the state of Illinois. lhe same problem was worked by Srivas-

tava and Sen (1975). Chi (1979) i~vestigated changes in both the mean 

and the precision parameter on a normal sequence. He also studied some 

econometric models with respect to changes in the parameters. 

Apart from the applications to economics, this problem is important 

in the fields of medicine, biology, ecology, etc., where drugs and other 

chemicals are applied and the time when they might take effect is of in-

terest. 



CHAPTER II 

MULTIVARIATE NORMAL SEQUENCE 

Single Shift 

The main purpose of this chaptier and the next is to study shift 

point problems relating to a sequence of multivariate random variables. 

Posterior distributions of the unknown parameters and, in particular, the 

posterior distribution of the change point are derived using suitable 

prior distributions. In this chapter, a sequence of normal random vee-

tors, having a common covariance structure, is considered. Assuming a 

single change in the mean vector, the posterior distribution of the 

change point is derived. 

A change in one of the paramet~rs of the sequence of random vari-

ables will be assumed to have occurred at a point m, where m is an unknown 

positive integer having an uniform discrete prior distribution over the 

interval [1, n-1]. 

Therefore,_ throughout these two chapters, if 1r 0 (m) denotes the prior 

probability mass function (abbreviated p.m.f.) of m, then 

1 < m < n-1 
-1-

ot]ierwise. 
I 

Let ~1 , ~2 , , X be a fini~e sequence of n independent pxl ran-
~n 

dam vectors, and let the distributi~n of the X 's be as follows: 
~i 

6 
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~i "'N(~l' P), i = 1, 2, ••• , m, 
p 

~1 E JR. ' 

and P is a positive definite symmetric pxp unknown matrix. 

X "'N(e P) i = rm+l, m+2, ••• , n, ~l 4 e_ 2, _i _2' ' T 

where N(6, P) represents a normal d:istribution with mean vector e and 

precision matrix P. 

The likelihood function for the unknown parameters ~l' ~ 2 , P, and m 

is given by: 

h e e E ]R P' e 4 e i i i i E [1 11 d w ere _1 , _2 _1 r _2, m s a pos t ve nteger, m , n- , an 

P is a pxp positive definite symmetric matrix. 

Assume that ~l' ~ 2 , P, and m are independent and assign prior dis

tributions as follows: The conditiQnal joint distribution of ~land ~ 2 

given P is a p-variate normal distribution with mean vectors ~l' ~2 and 

precision matrices r 1P and r 2P, respectively, r 1 , r 2 > 0. The distribu-

-1 tion of P is Wishart with n degrees of freedom and parametric matrix ~ . 

By using the identity 

n 

i~l (~i-~)'P(~1-~) = n(~-~)'P(~-~) + trSP 

where "tr" denotes the trace operat:(on and 

s = 
n 
~ (X -X)(X -X)', 

i=l _i - _i -

n 
nX • ~ X 

i=l _i 



the likelihood function can be written as: 

ii' 
mX = z x_i' 

-1 i=l 

m 

n 
(n-m)X2 = Z X , 

- i=m+l _i 

81 = i~l <~i-~l)(~i-~1)', 

s -2 

n 
Z (Xi+X2)(Xi-X2)'. 

i=m+l - - - -

8 

(2.1) 

Using Bayes' theorem, the joint posterior probability distribution 

function is obtained as: 

2n-p+l 

1r(~l' ~ 2 , P, m) a: jPj 2 Exp{ ... ~[tr(Z+S1+s2 )P + 

m(~l-~l)'P(~l~l) + rl(~l-~l)'P(~l-~1) + 

(n-m)(~2-~2)'P(~2-~2) + r2(~2-~2)'P(~2-~2)] · 

This joint posterior can be written as: 

2n-p+l 

1r(~l' ~2 ,P, m) a: jPj 2 Exp{-< ~ tr(E+S1+s2)P-

1 m+rl 
-2 [K1 (m)+K2 (n-m)] - --[ e -e (m)] 'P [ e -e (m)] -

2 _l _l _l -1 

(2.2) 
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By integrating (2.2) with respect to ~l and ~ 2 , the joint posterior 

distribution of P and m will be obtained as: 

2n-p-l 

TI(P, m) oc IPI 2 12 Exp{- ~ trC(m)P}. 
[(m+r1)(n-m+r2)]p 

(2.3) 

Integrating (2.3) with respect to P, the posterior distribution for 

the shift point m will be obtained as: 

1 1 < m < n-1 

TI(m) oc (2.4) 

0, otherwise. 

From (2.3), it is seen that the posterior distribution of Pis a 

mixture of Wisharts with 2n degree~ of freedom and parametric matrix 

-1 
C (m). The mixing p.m.f. is the posterior distribution of the ~~ift 

point m. Thus, 

TI(P) oc 
n-1 
z 

m=l 

-1 TI(m)W(2n, ~, C (m)) (2.5) 

where W(n, P, c-1 (m)) represents the Wishart distribution with n degrees 

~1 
of freedom and parametric matrix C (m). 

In order to get the joint posterior distribution of ~ 1 , ~ 2 , and m, 

(2.2) must be integrated with resp~ct to P. So, 
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This can be rewritten as follows: 

(e e ) lc(m) + Tm,-lT' 1-(n+l), 
'IT _l' _2' m ex: \1{ 

(2.6) 

Q-1 = (rn+rl 0 ) 

0 n-rn+r2 

From (2.3) and (2.6), it is seen that the posterior distribution 

for ~l' and ~ 2 is 

'IT(m)f(T/m), (2. 7) 

which is a mixture of matrix T-distxibutions. f(T/m) represents the 

matrix T-distribution given in (2.6). The mixing p.m.f. is the posterior 

distribution of m. 

Because of the properties of the matrix T-distribution, one can see 

that the marginal posteriors of ~l and ~ 2 are mixtures of multivariate 

t-distributions with mixing distribution, the posterior p.m.f. of m. 

Also, the posterior for any row of (~ 1 , ~ 2 ) is a mixture of bivariate t

distributions. If one wishes to detect the variables where a change on 

the mean took place, one should look at the posterior distribution of 

e11-e 2i' which is a mixture of univariate t-distributions, e1i and e2i 

th 
being the i component of the mean vectors ~l and ~2 , respectively. 

This will give a good idea whether or not a change took place in the mean 

th of the i variable. 
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Multipl,e Shift 

Assume a change in the mean vector from ~l to ~ 2 at m1 and another change 

from ~ 2 to ~ 3 at m2 , m1 and m2 positive integers, m1 < m2 < n-1. 

The priors for m1 and m2 will be assigned as follows: 

and 

1 
n-2 ' 

0 ' 

1 
n-m -1 ' 

1 

1 < m < n-2 - 1-

otherwise, 

0 , otherwise. 

The priors for ~l' ~ 2 , ~ 3 and P will be assigned as before. 

The likelihood function is given by: 

!!. ml 

L(~l' ~2' ~3' P, ml, m2) ~ IPI2 Exp{- tri:l (~i-~l)'P(~i-81) + 

n 

i=m ~l(~i-~3)'P(~i-~3)]}, 
2 

~i E ~ P' i = 1, 2, 3, P a pxp positive definite symmetric matrix. 

The joint posterior distributio~ for the unknown parameters 

~l' ~ 2 , ~ 3 , P, m1 and m2 is given by: 
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IPI(2n-~+2)/2 1 
n(~l' ~2' ~3' P, ml' m2) « (n-m ~1) Exp{- 2[trCl(ml, m2)P + 

1 

(ml+rl)(~l-~l(ml)]'P[~l-~l(ml)] + 

(m2-ml+T2)[~2-~2(m2-ml)]'P[~2-~2(m2-ml)] + 

(n-m2+r3 )[~3-~ 3 (n-m2)]'P[~3-~3 (n-m2)]}, (2.8) 

where ri > 0 (constant), i = 1, 2, 3, 

3 3 3 
~ + ~ 8i + ~ ri~i~i' + ~ aixix~ -

i=l i=l - ~ i=l - -

al = ml' a2 = m2 - ml, a3 

m2 

a2~2 = ~ 
i=m1+1 

Integrating (2.8) with respect to ~l' ~ 2 , and ~ 3 , the joint poste

rior distribution for P, m1 and m2 Will be obtained as: 

(2. 9) 

Therefore, the posterior distribution for m1 and m2 is given by: 

(2.10) 

0, otherwise 

From (2.9) and (2.10), it is s~en that the posterior distribution 

I 
of P is a mixture of Wisharts with ~n degrees of freedom and parametric 

-1 
matrix C (m1 , m2). The mixing distribution is the joint posterior 

p.m.£. of m1 and m2• 



Integrating (2.8) with respect to P, the joint posterior for ~ 1 , 

e2 , ~ 3 , m1 and m2 is obtained as: 

13 

(2.11) 

0 

-1 
Q = 

0 

From (2.10) and (2.11), one cart see that the posterior distribution 

of ~l' ~ 2 , and ~ 3 is a mixture of matrix T-distributions with the joint 

posterior p.m.£. of m1 and m2 as its mixing distribution. 

Temporary Shift 

Let ~l = ~ 3 , that is, a shift occurs at m1 but the mean vector re

turns to its original value after m2. 

The joint posterior distribution for ~ 1 , ~ 2 , P, m1 and m2 is 

2n-p+l 

m) a: IPI 2 
2 (n-m1-1) 

3 3 



By integrating (2.12) with res~ect to ~l' ~2 and P, the joint 

posterior p.m.f. of m1 , m2 is obtai$ed as follows: 

lc2(ml,m2)1-n 

0 ' otherwise. 

14 

(2.13) 

The posterior distribution of j is a mixture of Wishart distribu

-1 
tions with 2n degrees of freedom and parametric matrix c2 (m1 , m2). The 

mixing distribution is the joint posterior p •. m. f. of m1 and m2 · 

The joint posterior distribution of ~l' ~ 2 , m1 and m2 is given by: 

(2.14) 

Therefore, the joint posterior distribution for ~l and ~ 2 is a mix

ture of matrix T-distributions given in (2.14). The mixing p.m.f. is the 

joint posterior distribution of m1 rund m2 • 

Numerical Example 

To illustrate some of the results of this chapter, IMSL subroutines 

were used to generate sets of fifty bivariate normal random vectors hav-

ing a common covariance matrix V. The mean of the first m random vectors 

(1 ~ m ~ n-1) was taken to be ~ 1 and ~ 2 for the remaining, ~l ~ ~ 2 • The 
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data was generated using e1 = (0, 4.)', ~2 = (e21 , e22)', a21 "1- 0, and 

V = C : ) in all cases. 

The posterior distribution for the shift point, m, has been calcu

lated and Table 1 of Appendix A shdws the posterior probability of the 

true value, m*. One can see that if the magnitude of the mean change (~) 

is greater than one standard deviation <1~1 > o), the posterior distribu

tion of m gives a clear indication 'about the true value, m*. When the 

value of m* is close to either ext~eme, it takes a larger shift to be de

tected than for values of m* near ~he center. 

From Table 1 of Appendix A, it is clear that the posterior distribu

tion of m also depends on the valua of the correlation coefficient (p). 

If p is close to one, a change in both coordinates and in the same direc

tion is harder to detect than a change in opposite directions or a change 

in only one coordinate. On the other hand, for values of p close to 

minus one the detection of the true value of the shift point is very good 

if the change is in the same direct:ion in both coordinates or in only one 

coordinate. But changes in the opposite direction in both coordinates 

are less sensitive. Further, when p is in the neighborhood of zero, the 

magnitude of the shift should be fairly large <1~1 > l.So) in order to be 

detected. Probably it is better to study both variables separately since 

uncorrelated nature implies independence in normal variables. In Figures 

1 and 2 of Appendix B, the posterior p.m.f. of the shift point for dif

ferent values of p and ~ are plotted. 



CHAPTER III 

MULTIVARIATE ~GRESSION MODEL 

Singlte Shift 

Consider the multivariate regression model 

Y = Xf3 + e, 

where Y = <:i• :z• ... , =~)' is a nxp matrix of observations, X is a 

known nxk design matrix, f3 is a kxp matrix of real unknown parameters, 

and e is a nxp matrix of unobservable random variables. 

It is assumed that :i' i = 1, 2, . . . ' n, are identically and inde-

d 1 d . ib d N (0 P) h i h .th f pen ent y 1str ute as , , w ere ei s t e 1-- row o e. 
p -

P is a 

pxp positive definite matrix. 

Suppose there is a shift in f3 ~t some point mE [1, n-1], m a posi-

tive integer. In this case the mod~l can be written as: 

where . . . , Y') I 
_n 

is a nxp matrix of observations, 

X (X • X ) (X' X' X' • I X' I) I 
(1) (2) = _l' _2' • • • ' _m • ~m+l' _m+2' · • • ' ~n 

16 
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is a nxk design matrix, and 

. . . ' e t • t 

_m • :m+l' ... ,e')' _n 

is a nxp matrix of unobservable random variables. 

The problem is to estimate the unknown parameters m, s1 , S2, and P. 

Bayes' Theorem will provide complete posterior distributions for these 

parameters and not just a summary point estimate. A point estimate can 

be easily obtained. 

The likelihood function of Sl" s2 , P, and m is given by: 

n 

L(S1 , s2 , P, m) ~ IPI 2 Exp{- ~r(Y~1)-x(l)S1)'(Y(l)-x(l)B1)P-

where Bl' and s2 are kxp matrices of unknown parameters, P is a pxp pos-
I 
I 

itive definite symmetric I matrix, a111d m is a positive integer, m < n-1. 

By substituting the identity 

,., ,., ,., 
(Y-XS)'(Y-XS) = (Y-XS)'(Y-XS) + (S-S)'X'X(S-S)~ 

in the likelihood function, it can be rewritten as 

(3.1) 



18 

" 
where Si = (Y(i)-X(i)Si)'(Y(i)-X(i)Si), i = 1, 2. 

It is assumed that little is known about the parameters and that 

s1 , s2 , P and m are independent. The prior distributions for the param-

eters are assigned as follows: P has a Wishart distribution with n de

-l 
grees of freedom and parametric matrix E , m is an uniform discrete pxp 

random variable on the interval [1, n-1], and s1 , s2 have an improper 

prior such that 

(3.2) 

is the joint prior distribution of s1 , s2 , P, and m. 

This joint prior distribution (3.2) is combined with the likelihood 

function in (3.1) to obtain the joint.posterior distribution of s1 , s2 , 

P, and m as, 

n(Sl' s2' P, m) ~ IPI (2n-p-l)/ 2 ·exp(- ~r(E+S +S )P)· 
2 . 1 2 

(3.3) 

In order to integrate with respect to Sl and s2 , (3.3) will be 

written as follows: 
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(3.4) 

where ~i = (~11 , ~12 , ••• , ~1k) is a 1xpk vector and ~1i, i = 1, 2, 

, k are the rows of s1 and ~2 = (~21 , ••• , ~2k) is a 1xpk vector 

A A ~ ~ 

and ~ 2 i, i = 1, 2, ••• , k are the rows of s2 , B~ = (~i1 ' ~i2 ' ••• , ~ik) 

is a lxpk vector and ® is the kronecker matrix multiplication. 

Integrating (3.4) with respect to ~l and ~2 the joint posterior of 

P and m will be obtained. 

1T(P, m) ex: 

It can be rewritten as 

IPI (2(n-k)-p-l)/2 
1T (P , m) ex: -----'-'· '--'-· --:-:::-------:-::: 

lx~l)x(l) lp/2 lx~2)x(2)1p/2 
1 

• exp(- ztrC(m)P) (3.5) 

i = 1, 2 and 

Integrating (3.5) with respect to P the posterior distribution for 

the shift point m is obtained as 

1 < m < n-1 
1T(m) ex: (3.6) 

0, otherwise. 

It is seen from (3.5) and (3.6) that the posterior distribution of 

P is a mixture of Wishart's densities with 2(n-k) degrees of freedom and 
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parametric matr~c-1 (m), the mixing p.m.f. is the posterior distribu-

tion (3.6) for m. so 

1r(P) o: 

n-1 
L: 

m=1 

-1 1T(m)w(2(n-k), P, C (m)), (3.7) 

where w(n, P, C) represents the Wisbart density with n degrees of free-

dom and parametric matrix C, as tha!t given in (3. 5). 

To find the joint posterior d~stribution of s1 , s2 , and m (3.3) 

must be integrated with respect to P. So 

" " 
1T(81 , 82 , m) o: lc(m)+(S1-81 )'~(1 )x(1 )<s1-s1 ) + 

I 

<s2-s2)'x(2)x(~)<s2-B2) ,-n. 

This can be rewritten as fo11dWs: 

(
s -

where T • 1 

s2 
~1 ) is a 2kxp ma~rix, and 
sz 

) is a 2~x2k matrix. 

(3. 8) 

Therefore, from (3.6) and (3.8) one can see that the posterior dis-

tribution of s1 .and 82 is a mixtur~ of matrix T-distributions with mixing 

p.m.£. the posterior distribution of m. Thus, 

n-1 
L: lT(m)f(T/m), (3.9) 

m=1 
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where f(T/m) is the matrix T-distribution given in (3.8). 

From (3.9) one can easily obtain the marginals of s1 and s2• They 

are also mixtures of matrix T-distrlbutions with the same mixing p.m.f. 

The distribution of any column or any row of s1 and s 2 is a mixture 

of multivariate student t-distributions. 

So far, only improper priors h~ve been used for the parameters. In 

this part proper priors will be considered for all the unknown param-

eters. The idea is to choose prior probability density functions that 

are mathematically convenient and useful. The same priors will be used 

for P and m. For S1 and s 2 the prior density will be assigned as fol

lows: the conditional distribution of the rows of si' i = 1, 2 

(Sij' j = 1, 2, ... , k) given Pis a multivariate normal distribution 

with mean vector ~j' i = 1, 2, j = 1, 2, ••• , k, and precision matrix 

~ijp' ~ij > 0 (constant). The marginal distribution of Pis a Wishart 

with n degrees of freedom and param~tric matrix E-1 . Therefore, 

i = 1, 2, 

where Ri is a diagonal (~ij), ~i = (~~l' ~~2 , ' ) ' ' ~ik (kxp) 

Combining (3.1) and the priors for s1 , s2 , P and m the joint poste-

rior of s1 , s2, P, and m will be obtained as: 

I 

n(S1 , 82 , P, m) ~ jPj (2 (n+k)-p+l)/Z·exp(- ~r(E+S +S )P)· 
2 1 2 

1 ~ ~ 

exp(- ztr((S1-s1)'X(1)x(l)(S1-S1) + 

1 ... 
(Sl-~l)'Rl (Sl-~l))P)•exp(- ztr((S2-S2)'X(z)" 
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(3 .10) 

In order to integrate (3.10) with respect to 131 and 132 , the follow-

ing identity will be needed: 

A A 

(Si-Si)'X(i)X(i)(l3i-l3i) + (l3i-~i)'Ri(l3i-~i) = 

where 

Si(m) 

Thus, 

( o 0 p ) IPI (2(n+k)-p-l)/2 n "'l, "'z, , m cc • 

(3.11) 

where 



" 
<x(i)x(i)si + Ri~i), i = 1, 2. 

~i = (~i1 , ~i 2 , .•. , ~ik) a 1xpk vector, i = 1, 2; 

~i(rn) = (~i1 (rn), ~i2 (rn), ••• , ~ik(rn) a 1xpk vector, i = 1, 2; and 

A(rn) = C(rn) + F1 + F2• 

Therefore, 

lpl (2(n+k)-p-1)/2. ( 1 ) 7r(S1 , s2 , P, rn) a: exp- ztrAP • 

Integrating with respect to ~l and ~2 we get 

7r(P, rn) a: 

IPI (2(n+k)-p-1)/2exp(- ~rA(rn)P) 

lnl ® Pll/2 lnz ® Pi1!2 

Thus, the joint posterior for P and m is given by 

23 

!PI (2n-p-l)/2 1 
7r(P, rn) a: jnllp/2 ln21p/2 • exp(- ~rA(m)P). (3.12) 

Integrating (3.12) with respect to P, the posterior distribution 

for the shift-point is obtained as 
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1 < m < n-1 

1T(m) a: 

0, otherwise. 

Thus, from (3.12) and (3.13), it is seen that the posterior distri-

bution for P is a mixture of Wisharts with 2n degrees of freedom and 

-1 
parametric matrix A (m). The mixing p.m.f. is the posterior distribu-

tion of the shift point m. So, 

1T(P) a: 

n-1 
z: 

m""l 

-1 
1T(m)W(2n, p, A (m)) •. 

By integrating (3.11) with respect to P one gets the joint posterior 

distribution s1 , s2 , and m. Therefore 

This can be rewritten as follows: 

1T(Sl' s2' m) a: jA(m) + H'QHI-(n+k)' (3.14) 

where 

and 

From (3.13) and (3.14), it is easily seen that the joint posterior 

distribution for S1 and s 2 is a mixture of matrix T-distributions with 



25 

mixing p.m.f. the posterior distribution of the shift-point m. By the 

properties of the matrix T-distribution, the marginals of S1 and S2 can 

be shown to be mixtures of matrix T-distributions with the same mixing 

p.m.f. Also, the distribution of any column or row vector from S1 or S2 

can be easily obtained. It is known to be a mixture of multivariate 

T-distributions, thus 

~(m)f(H/m). 

-1 
Note that Di , i = 1, 2, exists even when X(i)X(i) is singular, be-

cause Ri is positive definite and X(i)X(i) is always positive semi-defin-

ite. 

by 

The marginal posterior distributions for Si' i = 1, 2, will be given 

n-1 
I 

m=l 

where f(zi/m) is the density function for the matrix T-distribution. 

The marginal posterior for each row vector of Si' say ~ij' i = 1, 2, 

j = 1, 2, ... , k, will be a mixture of multivariate T-distributions. 

Multiple Shifts 

Assume a change in B from s1 to s2 at m1 and another change from s2 

to s3 at m2, m1 and m2 positive integers, 1 ~ m1 < m2 ~ n-1. 

The priors for m1 and m2 are assigned as follows: 



= \ 

1 
n-2 ' 1 2 m1 ~ n-2 

1To(ml) 

0 ' otherwise 

and 

1 
n-m -1 ' 1 

m1+1 ~ m2 2 n-1 

1TO (mz!ml) = 

0 ' otherwise. 

The joint prior for S1 , s2' s3, P' ml and m2 is 

The likelihood function is given by 

" 
where Si = (Y(i)-X(i)Si)'(Y(i)-X(i)Si), i = 1, 2, 3, 

(X_m' 1+1' X' +2' -ml 

. . . , 

. . . ' 

I 

, y ) I, 
_n 
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given by 

(3.15) 

. . . ' 

. . . ' 

. . . ' X') I 
_n 
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m1 < m2 < n-1 and P is a pxp positive definite symmetric matrix. 

The joint posterior distribution for the unknown parameters is 

given by: 

( ) ~ (n-ml-1)-liPI (2n-p-l)/2. TI S1 , S2 , s3, P, m1 , m2 

(3.16) 

3 
l: Si + l: • 

i=l 

In order to integrate with respect to s1 , S2 and s3 (3.16) will be 

written as follows: 

( a a a p ) (n-ml-1)-liPI (2n-p-l)/2. 
TI ~-'1' ~-'2' ~-'3' ' ml' m2 ~ 

where B' _i (~il' ~i2' ... 

are the rows of Si and B' = _i 

~ik) is a lxpk vector, ~ij' j = 1, 2, ••• , k 

A 

(~il' ~i2' ~ik) is a lxpk vector. 

Integrating (3.17) with respect to ~l' ~2 and ~3 , the joint poste-

rior distribution of P and m1 , m2 will be obtained as: 
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(3.18) 

Integrating (3.18) with respect to P, the joint posterior distribu-

tion for m1 and m2 is obtained as: 

0, 

m < m < n-1 
1 2 

otherwise. 

(3.19) 

From (3.18) and (3.19), it is seen that the posterior distribution 

of P is a mixture of Wisharts with 2n-3k degrees of freedom and para

-1 metric matrix c3 (m1 , m2). The mixing distribution is the posterior 

p.m.£. of m1 and m2 . 

Integrating (3.16) with respect to P, the joint posterior distribu-

tion for sl' s2' s3' ml and m2 will be obtained as: 

(3.20) 

where T = is a 3kxp matrix and 
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X(I)X(l) " " 
Q = " X(z)x(2) " is a 3kx3k matrix. 

0 0 X(3)x(3) 

Thus, from (3.19) and (3.20) one can see that the posterior dis-

.tribution of 81 , 82 and 83 is a mixture of matrix T-distributions with 

mixing p.m.f. the joint posterior p.m.f. of m1 and m2• 

Temporary Shift 

Let 81 = 83 , that is, a shift occurs at m1 but the parameter returns 

to its original value after m2• 

The joint posterior distribution for the unknown parameters can be 

written as: 

1 - -
-tr(8 -8)'D(8 -8)P-2 1 1 

(3.21) 

A A A A 

where c4 (m1 , m2) = c3 (m1 , m2) - 8'D8 + 8iX(I)X(l)8l + 8zX(2)x(Z)82 

By integrating (3.21) with respect to 81 , 82 and P, the joint poste

rior p.m.f. of m1 and m2 is obtained as: 



lnlp/2 lx' x lp/2 
(2) (2) 

0, 
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otherwise. 

The posterior distribution of P is a mixture of Wishart distribu

-1 
tions with 2(n-k) degrees of freedom and parametric matrix c4 (m1 , m2). 

The mixing p.m.f. is the joint posterior p.m.f. of m1 and m2 • 

The joint posterior distribution of s1 , s2 , m1 and m2 is given by: 

~2 ~ is a 2kxp matrix, and Q • ( : is a 2kx2k 

matrix. 

So, the joint posterior distribution of s1 , s2 is a mixture of 

matrix T-distributions. The mixing p.m.f. is the joint posterior dis-

tribution of m1 and m2 . 



CHAPTER IV 

GENERAL CHANGE IN TIME SERIES MODELS 

Introduction 

The purpose of this chapter is to study a general model, which in-

corporates a transition function, to model both abrupt and gradual 

changes. 

s 
The transition function, w(y)' will satisfy the following condi-

tions: 

1) w<o> = o 

2) lim w(x) = 1 
x-+<x> 

The transition parameter y, y ~ 0, indicates how gradual the param-

eter change is. y = 0 implies an abrupt change, while y > 0 produces a 

more gradual change. 

The Regression Model with 

Autocorrelated Errors 

Suppose that one of the regression parameters, say s1 , shifts from 

1\o to s10 + s11 beginning at t*. In this case the model is given by: 

U == pU + e 
t t-1 t' t = 1, 2, .•• , T, 

where y ~ 0 is the transition parameter, 

31 
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j 0' 

st = i t-t*, 

t < t* 
(4.1) 

t > t*, 

T is a positive integer. 

This model can be rewritten as follows: 

t = 1, 2, ... , T, 

where Z = (X 1 , X 1~(n ), X 2, ... , X k)', Sis the regression co-
_t t, t, t t, t, -

efficient, ~ E Rk+~ Yt is the tth observation on the dependent variable, 

th X is the t- observation on the k independent variables, p is a scalar _t 

parameter, et' t = 1, 2, , T, are independent and identically dis-

tributed N(O, 6), o > 0, and u0 , :o and Y0 are initial quantities. 

The likelihood function is given by: 

T 

L(S, t*, y, p, o) oc o2 Exp{- i(v- ZS)'(V- ZS)}, 
2 -

where y > 0, 6 > 0, p E R , t* E [1, T), 

(4.2) 

Suppose the joint prior density for the unknown parameters S, t*, 

y, p and 6 is as follows: 

o > 0, a,b > 0. (4. 3) 
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The joint posterior density is 

~a-1 
(t* Q ~) oc ~2 7T ' y, ...,, p, u u 

0 ~ " 
Exp{- -[(t3-t3)'Z'Z(t3-8) + V'PV + 2b]}, 

2 - - - -

where t3 = (Z'Z)-lZ'V, and P = (I- Z(Z'Z)-lZ'). 

By integrating with respect to 8, the joint posterior distribution 

for t*, y, p and o is obtained as: 

T-k-11 a-1 -.!. 
7T(t*, y, p, o) oc o 2 lz'zl 2 Exp{-o(b + ;~,P~)}. 

Integrating with respect to o and p, the joint posterior for t* and 

y is obtained as: 

7T(t*, y) oc 

1 -(T-k-lla) 
f jz'zj- z [b + 1V'PV] 2 dp 

2"' ...., 
1R 

y ~0, t* E [1, T). 

(4.4) 

This can be generalized to inolude r, r 2 k, shifts in the k re-

gression parameters. Without loss of generality it can be assumed that 

a shift occurs with the first r parameters. In this case the joint pos-

terior distribution for t* and y will be given by: 

n<t*, y) oc I iz'z 1 
1R r r 

where Z 
r 

1 -(T-k-rla) 
2 [b + !yrp V] 2 d 2_ r_ P, (4.5) 
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P = (I - Z (Z'Z )-1z'). 
r t: rr r 

The posterior distributions in (4.4) and (4.5) can be used to make 

inferences about t* and the transition parameter, y, and will indicate 

whether the change is abrupt or gradual. 

To find the marginal posterior distribution for t* and y one must 

use numerical integration procedures since they can not be expressed in 

analytical form. If p = 0 this model reduces to a simple linear regres-

sion model. 

First Order Autoregressive Process 

The first order autoregressive model is given by: 

t = 1, 2, ... , T, 

where s1 , s2 are unknown parameters, and et' t = 1, 2, .•. , T, are in

th 
dependent and identically distributed N(O, o), o > 0, Yt is the t-- ob-

servation on the dependent variable, and Y0 is a given quantity. 

Assume that s2 shifts from s20 to s20 + s21 beginning at t*. In 

this situation the above model can be written as: 

t = 1, 2, .•• , T, 

where nt is defined above. 

The likelihood function for the unknown parameters is given by: 

T 

L(t*, y, S, o) ~ o2 Exp{- f ~(Yt - s1 - s20Yt-l - s21~(nt)Yt_1 ) 2 }, where 

3 o > 0, y ~ 0, ~ = (81 , s20 , s21 ) E ~ and t* E [1, T). 

Let the joint prior distribution fort*, y, S, and o be as in (4.3), 
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where 

a, ~) ~ ~a-1 e-bo 1T0 (t*, y, ..., u u o>O, a,b>O. (4.6) 

The joint posterior distribution is given by 

* ~a-1 0 ,.. ,.. ,.. 
1r(t , y, 13, o) ~ cS Exp{- -[(13-S)'H (t*,y)(S-S) + s1 (s) + 2b]}, where 

~ 2 ~ ~ 1 

T 
H]_(t*, y) = E Y 1 

t=1 t-

T 
E Y 1$ (n ) 

t=1 t- t 

~1 = (EYt , EY Y - t-1 t 

and s1 (S) 

T 
E y 

t=1 t-1 

T 
E y2 

t-1 t=1 

T 2 
E Y 1$(n ) 

t=1 t- t 

EY 1Hn )Y ) ', 
t- t t 

T 
E Y 1$(n ) 

t=1 t- t 

Integrating with respect to S and o, the joint posterior distribu-

tion for t* and y is, 

1T(t*, y) ~ IH1 (t*, y)l 

1 -(T-3Ia) 
2 [b + ls (S)] 2 . 

2 1 -
y ~ 0 and 

t * E [ 1 , T-1 ] • 
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Assume now a change in both parameters starting at t*. In this 

case the model is given by: 

t = 1, 2, ... , T. 

The likelihood function for the unknown parameters is given by: 

0 > 0, s (SlO' 811' s20' (321) I E :~a4 ' y > 0 and t* E [1, T). 

Let the joint prior be as in (4.6), then the joint posterior distri-

bution is given by: 

~a-1 
(t* s S) ~ s2 7T ' y, u, u 

where 

EtJ;(nt) EY 
t-1 t:Yt-ltJ!(nt) 

l:tJ;(nt) l:tJ;2(nt) l:tJ;(nt)Yt-1 l:tj;2Y 
t-1 

H2(t*, y) 
z:w<ntnt-1 l:Y2 2 l:Y z:y 1tJ;(n ) t-1 t-1 t- t 

r.Y 1tJ!(n ) 
2 2 L:Y2 tj;2 ( ) l:tJ! (n )Y 1 t:tJ; (n )Y 1 t- t t t- t t- t-1 nt 

-1 
y)~2' s = H2 (t*, 
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By integrating with respect to 8 and o one finds the joint poste-

rior distribution for t* and y is: 

1 T-4 
2 1 ~ -(~a) 

[b +f-'2 (8)] , y.?: 0 t* E [1, T). 

Second Order Autoregressive Process 

In this case the model is 

t = 1, 2, ... , T, 

th where Yt is the t-- observation on a random variable, 81 , 82 are unknown 

parameters, Y_1 , Y0 are given quantities, and et' o are defined as in 

the last section. 

Suppose that 81 shifts from 8lO to 8lO + 8ll beginning at t*. In 

this situation the model can be written as: 

t = 1, 2, ..• , T. 

The likelihood function for t*, y, 8 and o is given by: 

3 
cS > 0, y ~ 0, t* E [1, T), and 8 = (810 , 811 , 82) E lR • 

Assign joint prior for t*, y, 8 and o as in (4.6). The joint pos-
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terior distribution is given by: 

~a-1 
(t* a, o) ~ ~2 1T ' y, 1-' u 

where 

2:Y2 2 IY Y 
t-1 IYt-11/J(nt) t-1 t-2 

H3(t*, y) 
2 2 2 

I:Y ly 21/J(n ) = nt-11/J(nt) tYt-11/J (nt) t- t- t 

I:Y y 
t-1 t-2 tYt-lyt-21/J(nt) IY2 

t-2 

8 
-1 

y)~3' = H3 (t*, 

y3 = (2:Y 1Y, 2:Y 11/J(n )Y, I:Y 2Y )',and 
-- t- t t- t t t- t 

Integrating with respect to 13 and o one has the joint posterior dis-

tribution for t* and y, namely, 

1 -(T-3 1a) 
lT(t*, y) ~ jH3 (t*, y)j- 2 [b + ts3 (~)] 2 , y ~ 0, t* E [1, T). 

Suppose now that 131 shifts from 1310 to 1310 + 1311 and 132 from 13 20 to 

13 20 + s21 beginning at t*. In this case the model can be written as: 

t = 1, 2, ... , T. 
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Assign a joint prior to the unknown parameters as in (4.6). 

The likelihood function is given by: 

T 

L(t*, y, s, o) tt 82 Exp{- f~<Yt-s10Yt-1-sll~Cnt)Yt-l-s20Yt-2-s2l~Cnt)· 

where ~ = (S10 , s11 , s20 , s21)' E ~4 , o > 0, y ~ 0 and t* E [1, T). 

The joint posterior distribution is given by: 

~a-1 
(t* a, ~) tt ~2 'IT ' y, 1-' u u 

where 

~y y 
t-1 t-2 ~Y ly 2~(n ) t- t- t 

H4(t*,y) = 

B 

~4 

2 
l..Y 1~Cn ) 

t- t 

L.Y ly 2 t- t-

2 2 
l.Y ~ ('TJ ) 

t-1 t 

2 
L.Y 2~Cn ) 

t- t 
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Integrating with respect to S and o the joint posterior distribu-

tion for t* and y is 

1 " -(T-4 1a) 

n(t*, y) ~ jH4(t*, y)j- 2 [b + ;s4(S)] 2 y ~ 0, t* E [1, T). 

It is interesting to see that, in the last two sections, the joint 

posterior for S given t* and y has a multivariate t-distribution, with 

mean S. This fact can be used to make inferences about S or any of its 

components. 

Distributed Lag Models 

The distributed lag model is given by: 

00 

i 
Yt = a Z A X i + et' 

i=O t-

which can be written as 

t = 1, 2, •.• , T 

t = 1, 2, ..• , T, 

th th 
where Yt is the t-- observed random response variable, Xt is the t--

stimulus variable, a and A are unknown parameters such that a E ~, 

A E [0, 1), et' t = 0, 1, .•. , Tare independent and identically dis

tributed N(O, o), o > 0 and YO is a given quantity. 

Assume a shift on a from a1 to a1 + a2 starting at t*, then the 

model is given by: 



nt is as defined in (4.2). 

The likelihood function for t*, y, a1 , a 2 , A and o is given by: 

L(t*, y, 

a == (a 1 , a 2 ) ' E :n/ , 6 > 0 and A E [ 0 , 1) , 

-A 0 0 

l+A2 -A . 0 

G = 0 -A l+A2 0 

-A 

0 0 -A . l+A2 TxT . . . . . . . 

Let the joint prior fort*, y, a, o and A be given as in (4.6). 

then, the joint posterior distribution is 

T -=+a-1 
1f(t* y ~ ~, ') oc ~2 , ' u, u. II. u 

where 

1 

lei 2 Exp{- ~[~(~) - ~(a) + K(A) + 2b]}, 

41 
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a= (a1 , a2)', $(a) = (a- a)'H(t*, A, y)(a- ~), 

$(a) • a'H(t*, y, A)a, and 

H(t*, y, A) 

Integrating with respect to a, o and A, the joint posterior distri-

bution for t* and y is derived as: 

1 
A -(~a-1) 

2 [2b + K(A) - $(a)] 2 dA, 

y .::._0, t* E [1, T). 

A generalization of the distributed lag model is given by: 

00 00 

i i 
Yt = a E A X i + E A e i' 

i=O t- i=O t-
t = 1, 2, ... , T, 

where Yt, A, a, Xt and et are as defined above. 

This model can be written as 

Yt = AY + aXt + e , t-1 t 
t = 1, 2, ••. , T. 
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Assume that a shifts from a1 to a 2 + a1 beginning at t*. In this 

case the model can be written as: 

t = 1, 2, ... , T, 

where t* E [1, T), y ~ 0, and nt is as defined above. 

The joint prior fort*, y, a, A and o will be assigned as in (4.6). 

The likelihood function for the unknown parameters t*, y, o, a and 

A is given by: 

T 

L(t*, y, a, A, o) ~ o2 Exp{- fcv(A)- a1~- a2~)'(~(A)- a1~- a2 ~)}, 

2 where o > 0, y ~ 0, t* E [1, T), ~ ~ (a1 , a 2)' E R , and A E [0, 1). 

The joint posterior distribution for the parameters is given by: 

:£+a-l 
TI(t*, y, o, a, A)~ o2 Exp{- f[2b +$(a)- $(a)+ V'(A)V(A)]}, 

where 

¢(a) = (a a) 'H(t*, y) (a a), 

(
X'X 

H(t*, y) = 
X'Z 

~~~) 
Z'Z 



Integrating with respect to ~' o and A, the joint posterior dis

tribution for t* and y is obtained as: 

1 -(~a-1) 
2 [2b- ~(a)+ V'(A)V(A)] 2 dA, 

where t* E [1, T), y ~ 0. 

Numerical Work 

In this section, a numerical study of the regression model with 

autocorrelated errors is conducted for i) the usual shift point model 
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and ii) the more general model studied in the first part of this Chapter. 

The usual model with a shift at m is given by Chi (1979) as: 

' 
Yt = pYt-1 + (~~ - ~t-1)~1 + et, t = 1, 2, . . . , m, 

t m+2, m+3, • • • , T, 

where ~l :f ~2 are kxl vector of regression parameters, Yt' ~~' p, et' 

~O' Y0 and o are as defined in the first section of this Chapter; m is 

a positive integer, 1 < m < T-2. 

It is appropriate to assume that Y0 is a fixed and known quantity. 

Though, Y0 can also be assumed to be normally distributed with mean 

~b~l + M, and precision parameter 6~ where M is an unknown parameter, 

M E ~, and ~O is a fixed known vector. It can be shown that any of 

these assumptions regarding Y0 lead to the same joint posterior distri

butions for the unknown parameters. See Zellner (1971) for this devel-



ment. 

Let the joint prior distribution for ~l' ~2 , m, p and o be as in 

(4.2). 

The likelihood function is given by: 

T 

L(S, o, p, m) oc o2 Exp{- ~[(~1 - z1 ~1 )'(~1 - z1 ~1 ) + 

2k I 

where o > 0, ~ = <~i' ~z)' E 1R , p E 1R, m is a positive integer, 

m E [1, T-2], and 

z2 = (X +2- pX +1' Xm+3- pX +2' •.. 'XT- pXT-1)'. ~m _m _ _m _ _ 

The joint posterior distribution for the unknown parameters is 

given by: 

where 

T 
~a-1 

~(B, o, p, m) oc o2 Exp{- 1[(~-~)'H(p)(~-~) + K(p) + 2b]}, 
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H(p) = 

~1 = 

~2 = 

K(p) 

ZiZl + pX X' -pX X' 
~m~m ~m~m+l 

-p~m~~-H ZZZ2 + ~m+l~~l 

-1 
H11•2(p)(~l 

-1 
- Hl2(p)H22(p)~2)' 

-1 
H22•l(p)(~2 

-l 
- H2l(p)Hll (p)~l), 

T 2 " 
E (Y - pYt-l) - 8'H(p)8. 

t=l t 
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Integrating with respect to 8~ o and p, the posterior p.m.f. of m 

is obtained as: 

1T(m) a: 1 < m < T-2 

0, otherwise 

Numerical integration with respect to p is necessary in order to 

obtain the posterior p.m.f. for m. 

To illustrate these results a~d the ones from the first section of 

this Chapter, IMSL subroutines were used to generate sets of T standard-

ized normal random deviates. The posterior p.m.f. for the shift point m 
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was obtained with the data generated by the following model: 

t .. 1, 2, . . . , m, 

(4. 7) 

where u0 = .5, x0 = 0 and Y0 = .5. 

This was done for values of s2 equal to 3.1, 3.2, 3.3, 3.5, 3.7, 

3.8 and for values of p equal to .5 and 1.25 corresponding to the "ex

plosive" and "non-explosive" series described by Zellner. All calcu

lations were done in double precision. 

Table II of Appendix A shows the posterior probabilities of the 

true value of m, m*. In this case, one can see that if the magnitude of 

the shift, ~, is greater than .1, the posterior p.m.f. gives a clear in

dication about the true value of m, when m* is near the center of the 

series. For values of m* close to one it takes a much larger shift, say 

~ > .7, depending on the value of p. 

It is clear that the posterior p.m.f. of m depends on p. Tables II 

through X of Appendix A show that the non-explosive series, IPI < 1, 

takes a larger shift for the posterior p.m.f. of m to detect the true 

value of m. The explosive series, IPI ~ 1, is more sensitive to changes 

in the parameters. For example, when ~ = .5 and m* = 3, 

P(m=3) = .114 if p = 1.25 while 

P(m=3) = .049 if p = .5 

In the following example the x's represent the rescaled investment 
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expenditure used by Zellner to numerically analyze the posterior distri

butions for the unknown parameters of the regression model with auto

correlated errors. The data was generated using the model in (4.7) and 

the same values of s2 and p used in the previous example and T = 15. 

Table III of Appendix A shows the posterior probability of the true 

value of m for different values of ~ and m*. It is clear that for 

~ > .5, the posterior p.m.£. gives a clear indication about m* depending 

on the value of p. For example when ~ = .2 and m* = 8, 

P(m=8) = .12 if p = 1.25 

while 

P(m=8) = .03 if p = .5. 

In general, shifts in the center of the data are easier to detect 

than those at either extreme. As before, the "explosive" series are 

more sensitive to changes in the parameters than the "non-explosive" 

series. Also, large sample sizes produce a p.m.f. for m which is more 

sensitive to changes than that prod~ced by small sample sizes. In fig

ures 3 and 4 of Appendix B, the posterior p.m.f. of the shift point m, 

for both values of p and different values of ~, are plotted. 

To illustrate the general model a numerical study is performed for: 

i) the abrupt case, y = 0, and ii) the gradual change, y > 0. The re

sults are obtained by using a transition function, ~(X) =tanh (x). 

Table IV of Appendix A shows the posterior probability of the true 

value of t, namely t*, when y = 0 a~d for different values of ~ and t*. 

The values of Table IV are very similar to those of Table III. 

Therefore, the general model and the posterior probabilities of t* with 
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y = 0 relate to the same situation as the model which uses a shift point 

m. But the probability density function of t is easier to manipulate, 

both numerically and analytically. In figures 5 through 7, the posterior 

distribution of the shift point, for both values of p and different 

values of ~' are plotted. 

To illustrate the gradual change, y > 0, sets of T = 30 standard-

ized normal random deviates were generated. The posterior probability 

density function of t* was obtained with data generated from the follow-

ing model: 

where ~ 
t 

t = 1, 2, ... ' 30, 

= 0 for t = 1, 2, ... 
' t*-1 ~ * = .1, 0 ' to 

~t~+l . 3' ~ *+2 = . 5' 4t*+3 
= .8 

to 0 

~t0*+4 = l, ~ *+S to 
1.2, uo = .s 

x0 = 0 and Y0 = .s. 

To show how sensitive inferences about t* are to what is assumed 

about P and the true value of t*, t8, the posterior densities of t* were 

computed for p = 0, .5, 1.25 and t~ = 19 and 14, which are shown in fig

ures 8 and 9 of Appendix B. The results indicate that for the non-ex-

plosive series, jpj < 1, the center of the posterior densities oft* is 

relatively insensitive to changes on p. For example, when t~ = 19 and 
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p = 0 and .5, the posterior densities of t* are very concentrated around 

their modal values 18.5 and 19 as shown in figure 8 of Appendix B. For 

t* = 14 and p = 0 and .5, the posterior densities are spread out between 
0 

1 and 17 with modal values 10.5 and 11.5, respectively. The posterior 

densities when p == 1. 25 are quite Clifferent from those with I pI < 1. For 

instance, the posterior probabilit1 for t* is concentrated at the point 

26.5 when t~ = 19. But when t~ = 14 it is spread between 1 and 17 with 

modal value 12 as shown in figure 9 of Appendix B. Therefore, an inap-

propriate assumption about p can v~tally affect the analysis and give 

the wrong idea about t*. This fact underlines the importance of using 

bivariate numerical integration with respect to y and p in order to get 

the marginal posterior probability :density function for t*. 



CHAPTER V 

suMMARY 

The objectives of this dissertation are to study changes in the 

parameters of sequences of multivariate random variables, in multivari

ate linear regression models, and to develop a Bayesian analysis for 

general changes in the parameters of univariate time series models. 

In Chapter II the author inves,tigated single, multiple and tem

porary shifts in the mean vector of sequences of normal random vectors 

which have a common covariance structure. Similar changes in the re

gression parameters of multivariate linear regression models were also 

studied. The posterior distributions for the unknown multivariate 

parameters are mixtures of wishart Pr matrix !-distributions. This was 

expected because mixtures of gammas and multivariate t-distributions 

were found in the univariate case. 

This dissertation primarily investigates general changes in the 

parameters of certain linear models~ namely, auto-correlated errors, 

auto-regressive, and lagged variable time series models. The joint pos

terior distribution for the beginning of the shift, t*, and the transi

tion parameter, y, was found by Bay¢s' theorem using a gamma prior dis

tribution for the scale parameter amd an uniform prior distribution for 

the remaining parameters of the model. This joint posterior distribution 

can be used to make inferences about t* and y. To find the marginal pos

terior probability densities for t* and y, one must use numerical inte-
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gration procedures since they can not be expressed in a convenient 

analytical form. 

With the numerical study of the general model, the transition func-

tion was ~(x) =tanh (x), although many transition functions could be 

employed. For example, the cumulalive distribution function of any sym-

metric probability density functio~ is sufficient. One would suspect 

that the exact nature of the transition will depend on both y and the 

transition function chosen. Therefore, more study should be conducted 

in choosing the transition functio~s and investigating their sensitivity. 

There are several problems which can be studied in the case of the 

general model. One is the analysi$ of multiple shifts with, possibly, 

multiple transition parameters. Tfue other is that of temporary shifts 

for which a new class of transitiom functions ~. which satisfy the fol-

lowing conditions: 

1) ~(0) = o, 

2) 0 < ~(x) < 1 for all x, 

3) Lim ~(x) o, 
x~ 

could be used. No attempt has been made to study general changes in the 

scale parameters. 

The approach used in this dissertation can be applied to develop 

Bayesian techniques for detecting Qutliers in data and for developing 

testing procedures for slippage al~ernatives. These procedures can be 

extended to the simultaneous equat~on models with both abrupt and general 

changes in the parameters. 

The numerical examples indicate that the general model with y = 0 
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detects the shift point as accurately as the usual shift point model. 

The marginal posterior distributions of t* and m were obtained by 

using Simpson's Rule for numerical integration and the calculations 

were done in double precision on the IBM 370/168 computer at Oklahoma 

State University. 
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X 
.4 

.6 

1.0 

1.4 

1.6 

1.8 

.4 

. 6 

1.0 

1.4 

1.6 

1.8 

.4 

. 6 

1.0 

1.4 

1.6 

1.8 

TABLE I 

POSTERIOR PROBABILITY OF m* FOR DIFFERENT VALUES OF p 

-.95 -.55 -.35 -.15 0 .15 .35 .55 • 95 
Change in Both Coordinates in the Same Direction 

.970 .990 .990 .004 .030 .107 .014 .000 .006 

.290 .810 .810 .230 .040 .060 .008 .020 .009 

.990 .990 .990 .036 .200 .370 .030 .000 .027 

.850 .990 .990 .760 .050 .110 .005 .070 .015 
1.00 1.00 1.00 .160 .820 .840 .500 .003 .400 
.990 1.00 1.00 .990 .160 .410 .002 .410 .064 
1.00 1.00 1.00 .840 .970 .980 .940 .040 .940 
1.00 1.00 1.00 1.00 .540 .850 .001 .870 .360 
1.00 1.00 1.00 .980 .990 .990 .970 .080 .980 
1. 00 1.00 1.00 1.00 .750 .960 .001 .950 .650 
1.00 1.00 1.00 1.00 1.00 1.00 .990 .120 .990 
1.00 1.00 1.00 1.00 .890 1.00 .001 .980 .880 

Change in One Coordinate Only 
.290 .420 .420 .ooo. .005 .060 .001 .001 .009 
.040 .030 .030 .030 .080 .090 .008 .015 .001 
.820 .820 .820 .ooo . .010 .060 .000 .001 .190 
.140 .050 .050 .060: .110 .160 .005 .033 .001 
1.00 .990 .990 .001 .210 .050 .001 .000 .970 
.790 .230 .230 .310 1 .270 .440 .002 .190 .002 
1.00 1.00 1.00 .0051 .740 .060 .120 .003 . 1.00 
.990 .810 .810 .760 .570 .780 .001 .560 .006 
1.00 1.00 1.00 .010' .850 .080 .760 .013 1.00 
1.00 .950 .950 .9001 .720 .900 .001 .710 .019 
1.00 1.00 1.00 .040 .920 .120 .980 .050 1.00 
1.00 1.00 .990 .960 .830 .960 .001 .820 .070 

Change in Both Coordinates in Opposite Directions 
.005 .001 .001 .005 .007 .030 .000 .006 .800 
.080 .016 .010 .030 .210 .230 .011 .020 .001 
.010 .040 .040 .010 .030 .010 .000 .019 .990 
.110 .016 .010 .110 .430 .560 .009 .097 .001 
.190 .990 .990 .350 .060 .009 .050 .470 1.00 
.310 .050 .050 .450 .880 .960 .012 .410 .060 
.700 1.00 1.00 .810 ' .180 .020 .990 .890 1.00 
.030 .520 .520 .790 .980 1.00 .050 .770 .740 
.830 1.00 1.00 .940 .390 .060 1.00 .970 1.00 
.770 .900 .900 .910 .990 1.00 .140 .910 .970 
.910 1.00 1. 00 . 1. 00 ' .690 .210 1.00 1.00 1.00 
.870 .990 1.00 . 970 ' 1.00 1.00 .390 .970 1.00 

The first value in each cell corresponds to m* = 20, the 
second to m* = 48. 
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TABILE II 

POSTERIOR PROBABIL,ITY OF m* FOR T = 50 

--

.1 .2 .3 .5 . 7 .8 

.029 .032 .042 .114 .423 .679 

.045 .040 .038 .049 .103 .171 

.039 .998 1.000 1.000 1.000 1.000 

.103 .981 .999 1.000 1.000 1.000 

The first value in each cell corresponds to p 1.25 
and the second to p = .5. 
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TABLE III 

POSTERIOR PROBABiliTY OF m* FOR T = 15 
·-

.2 .3 .5 .7 .8 

.07 . 06 .89 .99 1.00 

.03 .07 .42 .90 .97 

.05 .12 .65 .96 1.00 

.09 .03 .77 1.00 1.00 

.10 .14 . 35 .69 .·83 

.05 .11 .38 .73 .84 

The first value in e•ch cell corresponds to p = 1.25 
and the second to p * .5. 
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TASLE IV 

POSTERIOR PROBABILLTIES OF t* FOR T = 15 

.2 .3 .5 . 7 .8 -·-- ··- +----

.04 .os .18 .69 .89 

.16 .03 .01 .06 .23 

.26 .55 . 95 .99 1.00 

.05 .20 . 81 .98 1.00 

.09 .13 .19 .21 .23 

.02 .05 .27 • 64 .78 

The first value in each cell corresponds to p = 1.25 
and the second to p = .5. 
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TABLE V 

POSTERIOR DISTRIBUTION OF m FOR p = .5 AND m* = 3 

~--------------

.2 . 3 .5 • 7 .8 

1 .1177 .1391 .0599 .0073 .0020 
2 .0367 .0703 .0977 .0238 .0078 
3 .0338 .0764 .4221 .9059 .9726 
4 .0356 .0614 .0611 .0105 .0030 
5 .0865 .0902 .0448 .0055 .0014 
6 .0330 .0433 .0357 .0059 .0017 
7 .0565 .0451 .0252 .0039 .0011 
8 .2073 .1172 .0504 .0063 .0017 
9 .1561 .0987 .0410 .0054 .0014 

10 .0571 .0595 .0379 .0061 .0017 
11 .0699 .0766 .0471 .0072 .0020 
12 .0520 .0597 .0396 .0064 .0018 
13 .0577 .0623 .0374 .0057 .0016 
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TABLE VI 

POSTERIOR DISTRIBUTION OF m FOR p = 1.25 AND m* = 3 

~------ ---- ---
. 2 . 3 .5 .7 .8 

1 .0738 .0495 .0054 .0002 .0001 
2 .0519 .0636 .0153 .0009 .0002 
3 .0750 .2400 .8932 .9946 .9986 
4 .1661 .1255 .0123 .0004 .0001 
5 .0289 .0238 .0034 .0002 0.0000 
6 .1094 .0843 .0091 .0004 .0001 
7 .0346 .0312 .0048 .0002 .0001 
8 .0442 .0364 .0049 .0002 .0001 
9 .0528 .0398 .0049 .0002 0.0000 

10 .0731 .0630 .0095 .0005 .0001 
11 .1637 .1297 . 0171 .0008 .0002 
12 .0691 .0620 .0110 .0007 .0002 
13 .0573 .0511 .0089 .0005 .0001 
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TABLE VII 

POSTERIOR DISTRIBUTION OF m FOR p = 1.25 AND m* = 12 

.2 ~ __._5_ . 7 .8 

1 .1239 .1141 .0783 .0324 .0169 
2 .0331 .0330 .0273 .0135 .0076 
3 .0355 .0348 .0281 .0137 .0077 
4 .1417 .1350 .0951 .0388 .0199 
5 . 0369 .0358 . 0282 .0135 .0075 
6 .1063 .1036 .0771 .0332 .0174 
7 . 0333 .0331 .0271 .0133 .0074 
8 . 0456 .0435 .0335 .0160 .0089 
9 . 0635 .0585 .0420 .0187 .0102 

10 . 0817 .0833 .0745 .0405 .0239 
11 .1374 .1215 .0877 .0424 .0242 
12 .1003 .1440 .3523 .6998 .8348 
13 . 0606 .0596 .0486 .0240 .0136 
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TABLE VIII 

POSTERIOR DISTRIBUTION OF m FOR p = .5, 
AND m* = 8 

~--.2 
-- - - ---------- c----

.5 . 3 • 7 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

. 0923 

.0449 

.0616 

.0680 

.1623 

.1042 

.1133 

.0894 

.0661 

.0448 

.0467 

.0509 

.0552 

.0624 

.0191 

.0155 

.0139 

.0142 

.0136 

.0160 

.0308 

.0420 

.0970 

.2109 

.3691 

.0951 

.0031 

.0010 

.0011 

.0015 

.0014 

.0023 

.0039 

.7689 

.1543 

.0240 

.0161 

.0174 

.0045 

.0001 
0.0000 
0.0000 

.0001 

.0001 

.0001 

.0001 

.9949 

.0037 

.0003 

.0002 

.0003 

.0001 

.8 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

.9991 

.0006 

.0001 

.0001 

.0001 
0.0000 
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TABLE IX 

POSTERIOR DISTRIBUTION OF m FOR p = 1.25 AND m* = 8 

>Z 
--,---

.2 .3 .5 .7 .8 
--· -----

1 .1296 .1095 .0330 .0022 .0005 
2 .0304 .0289 .0118 .0010 .0003 
3 .0348 .0333 .0136 .0012 .0003 
4 .1098 .0844 .0228 .0015 .0004 
5 .0377 .0361 .0143 .0012 .0003 
6 .0811 .0652 .0194 .0013 .0003 
7 .0307 .0291 .0118 .0010 .0002 
8 .0533 .1202 .6504 .9693 .9918 
9 .0456 .0386 .0149 .0014 .0004 

10 .0948 .1094 .0631 .0066 .0018 
11 .2175 .2108 .0796 .0062 .0015 
12 .0747 .0761 .0393 .0045 .0013 
13 .0597 .0582 .0253 .0025 .0007 
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TABLE X 

POSTERIOR DISTRIBUTION OF m FOR p o5 AND m* = 12 

~------ - - - -- ·---· - ---- --·· r---·· . -
0 2 0 3 o5 0 7 o8 

1 o1197 o1475 o0713 o0145 o0059 
2 o0417 o0495 o0244 o0058 o0026 
3 o0713 o0752 o0335 o0078 o0034 
4 o0428 o0501 o0306 o0088 o0041 
5 o1521 o1154 o0389 o0085 o0036 
6 o0572 o0513 o0296 o0091 o0043 
7 o1147 o0663 o0226 o0055 o0025 
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