PART I. SYNTHESIS AND DNMR STUDIES OF CERTAIN DERIVATIVES OF 9-METHYLENE-7-OXA-1-THIA-

SPIRO[4.5]DECAN-8-ONE
PART II. AN INVESTIGATION OF THE SPIN-LATTICE RELAXATION PHENOMENA (T_{1} VALUES) OF THE 3^{11} P NUCLEUS IN CERTAIN CLASSES OF ORGANOPHOSPHORUS COMPOUNDS

By

KRISHNASAMY RAMARAJAN
Bachelor of Science University of Madras Madras, India 1961

Master of Science University of Madras Madras, India 1963

```
Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY
MAY, 1980
```

$$
\begin{aligned}
& \text { Thesis } \\
& 1980 \text { D } \\
& \text { R165s } \\
& \text { cop. } 2
\end{aligned}
$$

PART I. SYNTHESIS AND DNMR STUDIES OF CERTAIN DERIVATIVES OF 9-METHYLENE-7-OXA-1-THIA-SPIRO[4.5]DECAN-8-ONE

PART II. AN INVESTIGATION OF THE SPIN-LATTICE RELAXATION PHENOMENA (TI VALUES) OF THE ${ }^{31} \mathrm{P}$ NUCLEUS IN CERTAIN CLASSES OF ORGANOPHOSPHORUS COMPOUNDS

Thesis Approved:

1064684

ACKNOWLEDGMENTS

With great pleasure I express my sincere and heartfelt gratitude to Dr. K. D. Berlin for his advice and guidance throughout the course of my research. I also would like to express my gratitude to Dr. K. Ramalingam, Dr. V. P. Senthil and Prof. G. Sidharthan whose help and encouragement made my higher education in this country a dream come true. I express my appreciation to my colleagues in Dr. Berlin's research group for their helpful suggestions and companionship.

Thanks are due to the Chemistry Department at Oklahoma State University and Halliburton Oil Company for the financial support.

I thank Prof. Dick van der Helm, at The University of Oklahoma, for his expertise in obtaining the X-ray data, Mr. Stan Sigle for his help in obtaining the NMR data and Mr. Wayne Adkins for making the special NMR tubes.

A special thank you to Mr. B. Raghava Reddy, Dr. Muthu. S. Sundaram, Dr. N. Shyama Sundar, to name a few, whose warm friendship and timely assistance made me forget my temporary separation from my family throughout the course of this work.

Finally, I thank my parents, Mr. and Mrs. P. R. Krishnasamy, for their love and dedication. This work is dedicated to my wife, Kalaiyarasi and my children, Sivakumar, Sureshkumar and Arthi, the distant partners of this work.

TABLE OF CONTENTS

Chapter Page
INTRODUCTION 1
PART I. SYNTHESIS AND DNMR STUDIES OF CERTAIN DERIVATIVES OF 9-METHYLENE-7-OXA-1-THIA- SPIRO[4.5]DECAN-8-ONE
I. HISTORICAL 3
Occurrence of the α-Methylene- γ-butyro-lactone Ring System in Natural Productsand the Physiological Activity of SuchCompounds Containing α-Methylene- $\gamma-$butyrolactone Units3
DNMR Spectroscopy as a Tool in the Study of Conformational Equilibria and Intra- molecular Rate Processes. 7
Study of Conformational Equilibria. 7
Study of Intramolecular Rate Processes 19
II. RESULTS AND DISCUSSION 23
Single Crystal Analysis by X-ray Diffraction 50
Suggestions for Future Work 53
Error Analysis. 54
III. EXPERIMENTAL 57
General Information 57
Preparation of Diethyl Bis(hydroxymethyl)- malonate (52) 58
Preparation of $\alpha-$ Bromomethylacrylic Acid (53). 59
Preparation of Ethyl α-Bromomethylacrylate (42) 60
Preparation of 2,2,6,6-Tetramethyl-4- Thianone (69) 61
Preparation of 4-Thianone-3,3,5,5-d (70) 62
Preparation of Dibenzalacetone (72) 63
Preparation of cis-2,6-Diphenyl-4- thianone (73) 63
General Procedure for the Synthesis of the 9-Methylene-7-oxa-1-thiaspiro[4.5]decan- 8 -ones $31,32,50$ and 51. 64
Synthesis of 9-Methylene-7-oxa-1-thiaspiro- [4.5]decan-8-one (31a or 31b) 65
Synthesis of 9-Methylene-7-oxa-1-thiaspiro-[4.5]decan-8-one-3,3,5,5-d (50a or 50b).66
Synthesis of $2,2,6,6$-Tetramethy1-9-Methy1-ene-7-oxa-1-thiaspiro[4.5]decan-8-one(51a)67
Synthesis of 2,6-Dipheny1-9-methylene-7- oxa-1-thiaspiro[4.5]decan-8-one (32a or32b)68
Synthesis of l-Methylthianium-9-methylene- 7-oxaspiro[4.5]decan-8-one Iodide (74) 68
BIBLIOGRAPHY 90
PART II. AN INVESTIGATION OF THE SPIN-LATTICERELAXATION PHENOMENA (T_{1} VALUES) OF THE31 p nucleus in certain classes ofORGANOPHOSPHORUS COMPOUNDS
I. HISTORICAL 97
Spin-1attice Relaxation 97
Method of Measurement 101
Mechanism of Spin-lattice Relaxation. 108
II. RESULTS AND DISCUSSION 118
III. EXPERIMENTAL 118
General Information 146
Preparation of $1-P h e n y 1-4-p h o s p h o r i n a n o n e$
(6) 148
Preparation of Methylenebis(diphenyl)- phosphine oxide (7) 148
Preparation of $1,2-$ Ethanediylbis (dipheny1)- phosphine oxide (8) 149
Preparation of 1-Pheny1-4-phosphorinanone 1-oxide (${ }_{\sim}^{9}$) 149
Preparation of Methylenebis(diphenyl)- phosphine sulfide (10). 150
Preparation of 1,2-Ethanediylbis(diphenyl)- phosphine sulfide (11). 150
Preparation of 1 -Phenyl-4-phosphorinanone 1-sulfide (12). 151
Chapter Page
Preparation of Methyltriphenylphosphonium Iodide (13) 151
BIBLIOGRAPHY . 152

PART I. SYNTHESIS AND DNMR STUDIES OF CERTAIN DERIVATIVES OF 9-METHYLENE-7-OXA-1-THIA-SPIRO[4.5]DECAN-8-ONE
I. Synthetic and Physical Data for Compounds 3la (or 31b), 32 a (or 32b), 50 (or 50b) and 51a. 28

III. ${ }^{13} \mathrm{C}$ NMR Data for $31 a \rightleftharpoons 31 \mathrm{~b}, 32 \mathrm{a}$ (or 32b), $50 \mathrm{a} \rightleftharpoons 50 \mathrm{~b}$ and $51 \mathrm{a} \rightleftharpoons 51 \mathrm{~b} \cdot \ldots 35$
IV. ${ }^{13}$ C Chemical Shifts of Selected Carbons in $30 \mathrm{a} \rightleftharpoons 30 \mathrm{~b}, 31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b}, 51 \mathrm{a} \rightleftharpoons 51 \mathrm{~b}$ and $56 \mathrm{a} \rightleftharpoons 56 \mathrm{~b}$. 37
V. IR and Mass Spectral Data for 31a (or 31b), 32a (or 32b), 50a (or 50b) and 51a ••••••39
VI. Torsional Angles from X-ray Analysis of $2,2,6,6-$ Tetramethy1-9-methylene-7-oxa1 -thiaspiro[4.5]decan-8-one (51). 42
VII. Selected Torsional Angles in 57 and 58. 44
VIII. Free Energy Barrier to Ring Reversal in a few Selected 1 -Heteracyclohexanes47

PART II. AN INVESTIGATION OF THE SPIN-LATTICE RELAXATION PHENOMENA (T_{1} VALUES) OF THE 31_{P} NUCLEUS IN CERTAIN CLASSES OF ORGANOPHOSPHORUS COMPOUNDS
I. Comparison of IRFT and FIRFT Experiments $80 \%(\mathrm{w} / \mathrm{v})$ $80 \%(w / v)$ Phenol in $\mathrm{D}_{2} 0$. 106
Table Page
II. Spin-lattice Relaxation Time as a Function of Temperature. 111
III. Comparison of IRFT with FIRFT 119
IV. Effect of Pulse Angles on T_{1} Values 121
V. Relaxation Data for Systems $\underset{\sim}{1}-\underset{\sim}{\sim}$ 122
VI. Relaxation Data for Systems $\underset{\sim}{\sim}-\underset{\sim}{4}$ 123
VII. Activation Energy for Molecular Rotational Reorientation 132

LIST OF FIGURES

PART I. SYNTHESIS AND DNMR STUDIES OF CERTAIN DERIVATIVES OF 9-METHYLENE-7-OXA-1-THIA-SPIRO[4.5]DECAN-8-ONE

1. Numbering Scheme and Bond Distance (in \AA) for 51a • • • • 51
2. Bond Angles for $51 a\left(\right.$ in $\left.^{\circ}\right)$. 52

PART II. AN INVESTIGATION OF THE SPIN-LATTICE RELAXATION PHENOMENA (T_{1} VALUES) OF THE ${ }^{31} \mathrm{P}$ NUCLEUS IN CERTAIN CLASSES OF ORGANOPHOSPHORUS COMPOUNDS

1. Temperature Dependence of Spin-1attice Relaxation Times in 3 a and $\underset{\sim}{5}$. 128
2. Temperature Dependence of Spin-lattice Relaxation Times in 3 b and 4 b 129
3. Temperature Dependence of Spin-lattice Relaxation Times in $1 c, 2 c$ and $3 c$.130
4. Temperature Dependence of Spin-lattice Relaxation Times in $1 \mathrm{c}, ~ 2 \mathrm{c}, \underset{\sim}{3 c}$ and 4 c 131
5. T1 vs Structure for the Phosphines $\underbrace{1 a}, \underbrace{2 a}$ and 3at 0.03 M 134
6. T1 vs Structure for the Phosphines 1a, 2a and
7. The v Structure for the Phosphine Oxides lb,
${ }^{1} 2 \mathrm{~b}$ and 3 b at 0.1 M
8. T_{1} vs Structure for the Phosphine Oxides 1 b , . 137
Figure Page
9. Th vs Structure for the Phosphine Sulfides $1 \mathrm{c}, 2 \mathrm{c}$ and 3 c at 0.1 M 138
10. T1 vs Structure for the Phosphine Sulfides $1 \mathrm{c}, 2 \mathrm{c}$ and 3 c at 0.2 M 139

LIST OF PLATES

Page

> PART IYNTHESIS AND DNMR STUDIES OF CERTAIN DERIVATIVES OF 9-METHYLENE-7-OXA-1-THIASPIRO[4.5]DECAN-8-ONE
I. ${ }^{1}{ }_{H}$ NMR Spectrum of $31 a=31 b$. 70
II. ${ }^{1} H$ NMR Spectrum of 9-Methylene-7-oxa-1-thia- spiro[4.5]decan-8-one-3,3,5,5-d 4 (50a=50b) 71
III. ${ }^{1} H$ NMR Spectrum of cis-2, 6-Diphenyl-9-methylene- 7-oxa-1-thiaspiro[4.5]decan-8-one (32a) 72
IV. ${ }^{1}{ }_{H}$ NMR Spectrum of $51 a \rightleftharpoons 51 b$ 73
V. ${ }^{1}{ }_{H}$ NMR Spectrum of 74 74
VI. ${ }^{1}{ }_{H}$ NMR Spectrum of 53 75
VII. ${ }^{1}{ }_{H}$ NMR Spectrum of 70 76
VIII. ${ }^{1}{ }_{H}$ NMR Spectrum of $\underset{\sim}{69}$. 77
IX. ${ }^{13} \mathrm{C}$ NMR Spectrum of 9-Methylene-7-oxa-1-thia- spiro[4.5]decan-8-one (31a $\rightleftharpoons 31 b)$ 78
X. ${ }^{13} \mathrm{C}$ NMR Spectrum of $50 \mathrm{a} \rightleftharpoons 50 \mathrm{~b}$ 79
XI. ${ }^{13} \mathrm{C}$ NMR Spectrum of 32 80
XII. ${ }^{13} \mathrm{C}$ NMR Spectrum of $51 \mathrm{a} \rightleftharpoons 51 \mathrm{~b}$ 81
XIII. IR Spectrum of 9-Methylene-7-oxa-1-thiaspiro- [4.5]decan-8-one (31a or 31b), KBr Pellet. 82
XIV. IR Spectrum of 9-Methylene-7-oxa-l-thiaspiro-[4.5]decan-8-one-3,3,5,5-d 4 (50a or $50 b$),KBr Pellet.83
XV. IR Spectrum of cis-2,6-Diphenyl-9-methylene-7- oxa-1-thiaspiro[4.5]decan-8-one (32a or 32b), KBr Pellet. 84
XVI. IR Spectrum of $2,2,6,6-$ Tetramethyl-9-methylene- 7-oxa-1-thiaspiro[4.5]decan-8-one (51a), KBr, Pellet 85
XVII. IR Spectrum of the Methyl Iodide of 9-Methy1- ene-7-oxa-1-thiaspiro[4.5]decan-8-one (74) KBr Pellet 86
XVIII. IR Spectrum of α-(Bromomethyl)acrylic Acid (53), KBR Pellet 87
XIX. IR Spectrum of 4 -Thianone-3,3,5,5-d 4 (70),
KBr Pellet • • • • • • 88
XX. IR Spectrum of $2,2,6,6-$ Tetramethyl-4-thianone (69), KBr Pellet 89
PART II. AN INVESTIGATION OF THE SPIN-LATTICE RELAXATION PHENOMENA (T_{1} VALUES) OF THE ${ }^{31} \mathrm{P}$ NUCLEUS IN CERTAIN CLASSES OF ORGANOPHOSPHORUS COMPOUNDS
I. Signal Intensity vs τ for the Relaxation of ${ }^{31} p$ Nucleus in 0.2 M Triphenylphosphine Sulfide (lc), at $35^{\circ} \mathrm{C}$ 144
II. Signal Intensity vs τ for the Relaxation of ${ }^{31} \mathrm{p}$ Nucleus in 0.1 M Triphenylphosphine Sulfide (1c), at $25^{\circ} \mathrm{C}$ 145

Owing to the difference in the primary objective of the two investigations recorded herein, this dissertation has been divided into two parts. Each is complete and independent of the other, containing its own Historical section, Results and Discussion, Experimental section and Bibliography.

PART I. SYNTHESIS AND DNMR STUDIES OF CERTAIN DERIVATIVES OF 9-METHYLENE-7-OXA-1-THIA-SPIRO[4.5]DECAN-8-ONE

CHAPTER I

HISTORICAL

Occurrence of the α-Methylene- γ-butyrolactone Ring System in Natural Products and the Physiological Activity of Such Compounds Containing α-Methylene- γ-butyrolactone Units

The isolation and structural elucidation of several sesquiterpene lactones $29,31,32,52,56,60-64,91$ having an $\alpha-$ methylene- γ-butyrolactone unit is not uncommon in nature. A number of these sesquiterpene lactones have been shown to possess high levels of cytotoxicity against tumor cells in vitro. $32,40,41,56,57,60-64,68,69,90$ These substances have stimulated considerable synthetic and biological interest in these and other similar ring systems.

In a search for tumor inhibitors from plant sources, Kupchan and co-workers isolated two novel sesquiterpene dilactones of the germacrane type, elephantin (1) and elephantopin (2), from alcoholic extracts of dried Elephantopus elatus Bertol (Compositae). ${ }^{56}$ The alcoholic extract showed significant inhibitory activity in vitro against cells derived from human carcinoma of the nasopharynx (KB). 56 There followed the isolation from Eupatorium rotundifolium L.
(Compositae) of euparotin acetate (3) and euparotin (4), ${ }_{\sim}^{3}$ and from Vernomia hymenolepis A.Rich (Compositae) of vernolepin ($\underset{\sim}{5}$) and vernomenin (6), all being active in vitro against cells derived from human carcinoma of the nasopharynx (KB). 60,62 For all cultures, the dose of compound that inhibits growth to 50% of the control growth is usually the criteria for activity. Eupachlorin acetate (Z), eupachlorin (${\underset{\sim}{~}}_{\text {) }}$) and eupachloroxin (${ }_{\sim}^{9}$), isolated by Kupchan and co-workers from the same source for euparotin acetate (3) and euparotin (4), appear to be the first recognized natural occurring chloro-sesquiterpenes. ${ }^{64}$

$$
\underset{\sim}{3} \quad \mathrm{R}=\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3} ; \underset{\sim}{4} \quad \mathrm{R}=\mathrm{H}
$$

$\underset{\sim}{5}$

$\stackrel{6}{\sim}$

2

$\xrightarrow[\sim]{11} \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}^{\prime \prime}=\underset{ }{\underset{\mathrm{O}}{\mathrm{C}}-\underset{\mathrm{CH}}{\mathrm{C}}-\mathrm{C}-\mathrm{CH}_{3}}$

The potent cytotoxic action of these sesquiterpenes, with the ability to inactivate selected enzymes in vitro, has been attributed to the presence of an α-methylene- $\gamma-$ butyrolactone unit. 27,54 The extreme ease with which this functionality reacts witn thiols (such as with cysteine) 54,90 and other biological nucleophiles is well documented. $36,58,59$ However, studies made by Kupchan and co-workers 55,57 have suggested that an important requirement for biological activity is the simultaneous presence of more than one chemically reactive group in the molecule. The groups necessary for $i n$ vivo activity were found to be a side chain composed of an α, β-unsaturated ester adjacent to the $\gamma-1 a c t o n e$ unit and either a primary or secondary allylic alcohol function or both. Thus, eriofertin (10), eriofertopin (11) and deacetyleupaserrin (12) have shown significant in vivo activity ${ }^{55}$ against $\mathrm{P}-388$ 1ymphocytic leukemia in the mouse. The unsaturated ester function adjacent to the α-methylene- γ butyrolactone unit has been shown to increase the rate of cysteine addition to the butyrolactone ring. ${ }^{57}$ The primary

12
and secondary allylic alcohol functions may serve as potential alkylation sites by a nucleophilic center on a biological macromolecule.

DNMR Spectroscopy as a Tool in the Study
of Conformational Equilibria and
Intramolecular Rate Processes

In the past three decades high resolution nuclear magnetic resonance (NMR) spectroscopy has developed from an ancillary technique of the nuclear physicist into one of the chemist's most valuable and immensely efficient tool for probing the structure and stereochemistry of molecules. Analysis of $N M R$ spectra recorded at various temperatures can provide information regarding the existence of more than one conformation, the nature and relative weight of different conformations and the energetics for the interconversion of certain conformers.

Study of Conformational Equilibria

Nuclear magnetic resonance spectroscopy was used to assess conformational equilibria in acylic systems for the first time by Nair and Roberts in 1957. ${ }^{74}$ A year later Lemieux and co-workers pointed out the differences in chemical shifts and spin-spin coupling between equatorial and axial protons in cyclohexyl systems. Determination of the equilibrium constant by Eliel ${ }^{15}$ for the equilibrium 13a $\rightleftharpoons 13 b$, based on the difference in chemical shift bet-
ween the axial and equatorial protons, represents the first quantitative application of NMR spectroscopy to the study of a conformational equilibrium in a cyclic system. At that time, it was reported that the ${ }^{1} H$ NMR spectrum of bromocyclohexane showed no sign of splitting for the α-proton signal at the temperatures used. However, later workers 76 observed a difference of 0.78 ppm between the axial and ! equatorial protons at $-75^{\circ} \mathrm{C}$. Therefore instead of bromocyclohexane itself, the conformationally biased ${ }^{16}$ cis- (14) and trans-4-tert-butylbromocyclohexane (15) were used to determine the chemical shifts of each α-proton in the individual conformers. The conformational equilibrium constant was calculated using Eq. (1). The assumption here is that the 4 -tert-butyl group does not in any significant way affect the chemical shift of $H(1)$ at $C(1) .15,18,19,21$ This

$\stackrel{13 a}{\sim}$

14

13 b

15
assumption was later disputed by other workers. ${ }^{4,44,73}$ In

$$
\begin{equation*}
K=N_{e} / N_{a}=\frac{\delta_{a}-\delta_{H}}{\delta_{H}-\delta_{e}} \tag{1}
\end{equation*}
$$

$K=$ the equilibrium constant for the ring reversal process
$N_{e}=$ mole fraction of the conformation with equatorial bromide $13 b$
$N_{a}=$ mole fraction of the conformation with axial bromide $13 a$
$\delta_{a}=$ chemical shift for the α-hydrogen in 14
$\delta_{e}=$ chemical shift for the α-hydrogen in 15
$\delta_{H}=$ chemical shift for $B r C-\underline{H}$ signal in bromocyclohexane under rapidly equilibrating conditions an attempt to test the validity of this assumption, Jensen and Beck carried out a systematic study ${ }^{43}$ on bromo-, chloro-, acetoxy-, trifluoroacetoxy-, and cyanocyclohexane and the corresponding cis- and trans-4-tert-butylcyclohexanes. At Low temperatures (between -80° and $-105^{\circ} \mathrm{C}$), significant differences were observed in all cases between the axial and equatorial methine proton resonances of the cyclohexyl derivatives and those of the corresponding 4-tert-butylcyclohexyl derivatives. However, plots of the chemical shifts against temperatures of the axial and equatorial $H(1)$ resonances in the cyclohexyl derivatives paralleled those for the corresponding $H(1)$ resonances in the 4 -tert-butyl derivatives within the uncertainty of the experiment. ${ }^{43}$ Thus,
the chemical shift of the axial and equatorial $H(1)$ resonances for the cyclohexyl derivatives (above the coalescence temperature) could be approximated by correcting the observed individual low temperature resonances in the monosubstituted cyclohexanes by the change observed between low temperature and the desired temperature for the corresponding resonances of the 4-tert-butylcyclohexyl compounds. The equilibrium constant values calculated from these corrected chemical shifts compare favorably with those ca1culated by the theoretically sound, peak-area measurement method ${ }^{6}$ at about $-80^{\circ} \mathrm{C}$. However, the values determined by the original uncorrected chemical shift method of E1iel and co-workers ${ }^{15}$ were significantly lower than the values obtained by either of the above methods. As was mentioned above, the peak area measurement is the most theoretically sound method as it involves no assumptions except, of course, that the activity coefficients for the conformers are taken as equal to unity. The areas under the signals for axial and equatorial methine protons are directly proportional to the concentrations of conformers present. The equilibrium constant could be calculated from Eq. (2) :

$$
\begin{equation*}
\mathrm{K}=[\mathrm{A}] /[\mathrm{E}] \tag{2}
\end{equation*}
$$

$K=t h e ~ e q u i l i b r i u m$ constant for the conformational equilibrium
$[E]=$ the integrated area under the equatorial proton signal

[A] = the integrated area under the axial proton signal

Nevertheless, this method is experimentally difficult for two reasons: accurate peak areas at a definite temperature much below room temperature are not easily obtained (because of difficulty in measuring the temperature required, because of viscosity broadening of the signals and frequently because of solubility problems), and the conformational equilibria at these low temperatures need not, and, in fact, often do not necessarily reflect the conformational equilibria at room temperature. The literature abounds with examples where one conformer is preferred at low temperature and another at room temperature. Thus for P-methyl-, P-ethyl- and P-phenylphosphorinanes (compounds shown to exist in the chair conformation ${ }^{71}$ like cyclohexanes), the equatorial conformer was found to predominate at $-110^{\circ} \mathrm{C}$ and the axial conformer was shown to predominate at room temperature. 23,24 This is not surprising since the equilibrium constant is governed by both ΔH° and ΔS° by Eq. (3). If

$$
\begin{aligned}
&-\mathrm{RT} \operatorname{lnK}=\Delta G^{o}=\Delta H^{o}-\mathrm{T} \Delta S^{\mathrm{o}} \\
& \mathrm{~T}= \text { temperature in degrees kelvin } \\
& \mathrm{K}= \text { equilibrium constant } \\
& \Delta \mathrm{G}^{\mathrm{o}=} \text { standard free energy difference } \\
& \text { between the two conformers } \\
& \Delta H^{o}= \text { standard enthalpy difference } \\
& \text { between the two conformers }
\end{aligned}
$$

$$
\begin{aligned}
\Delta S^{\circ}= & \text { standard entropy difference } \\
& \text { between the two conformers }
\end{aligned}
$$

both ΔH° and ΔS^{0} terms carry the same sign, both negative for example, then at low temperature ΔG° also may be negative as the magnitude of the $T \Delta S^{0}$ term may not exceed that of ΔH° term at this temperature. However, as the temperature increases, the magnitude of the $T \Delta S^{\circ}$ term changes at a much faster rate than that of the ΔH^{0} term and may eventually exceed the latter and thus ΔG^{0} can be positive. Consequently, both the chemical shift method as well as the peak area method have merits and demerits.

In an attempt to evaluate the criticism voiced against his chemical shift method, Eliel and co-workers investigated a number of cyclohexane and 1,3 -dioxane derivatives. 20 While the time average chemical shift of the proton signal for the methyl ($\left.\mathrm{CH}_{3} 0\right)$ protons in cyclohexanone dimethyl ketal (which exists as an equilibrium mixture of equal parts of two indistinguishable conformers 16 and $\underset{\sim}{17}$) appears midway between the clearly resolved chemical shifts of the ${ }^{1} H$

$$
\nu=-183.9 \mathrm{~Hz}
$$

signal for the axial and equatorial methyl ($\left.\mathrm{CH}_{3} \mathrm{O}\right)$ protons of

4-tert-butylcyclohexanone dimethyl ketal (18), the same is not true for the 3 -tert-butylcyclohexanone dimethyl ketal (19). Consequently, it appears that while a 4-tert-butyl group does not affect the chemical shift of the proton signal for the methyl $\left(\mathrm{CH}_{3} 0\right)$ protons, the 3 -tert-butyl group does. ${ }^{20}$ In the following diagrams the chemical shifts are referenced to TMS standard and taken at 60 MHz . However,

$\stackrel{18}{\sim}$
$\nu_{a}=-182.9 \mathrm{~Hz}$
$\nu_{\mathrm{e}}=-184.9 \mathrm{~Hz}$

$\nu_{a}=-181.9 \mathrm{~Hz}$
$\nu_{e}=-185.6 \mathrm{~Hz}$
the situation in $1,3-$ dioxane is exactly the opposite as is evident from the chemical shift data shown for $\underset{\sim}{20} \underset{\sim}{21} \underset{\sim}{22}$, 23, $24 \rightleftharpoons 25,26$ and $27 .{ }^{20}$ While there could be several reasons for the differing effects of substituents (such as the bond distance; $C-0$ distance of $1.42 \AA$ in 1 ieu of a $C-C$ dis-

tance of $1.53 \AA$ in cyclohexane and a small difference in shape of the 1,3 -dioxane system), it was apparent that an extrapolation of the method used with cyclohexyl systems to
heteracyclohexanes may not be valid. The assignments for

$\stackrel{22}{\sim}$

$$
\begin{aligned}
& \nu_{\mathrm{a}}=-264.4 \mathrm{~Hz} \\
& \nu_{\mathrm{e}}=-289.2 \mathrm{~Hz}
\end{aligned}
$$

23

$$
\begin{aligned}
& \nu_{\mathrm{a}}=-271.7 \mathrm{~Hz} \\
& \nu_{\mathrm{e}}=-292.0 \mathrm{~Hz}
\end{aligned}
$$

ν_{a} and ν_{e} in $\underset{\sim}{26}$ and $\underset{\sim}{27}$ are still open to question since protons in axial methyl groups usually appear at higher field than equatorial methyl protons. In our work, a

26
$\nu_{a}=-78.0 \mathrm{~Hz}$
$\nu_{\mathrm{e}}=-74.1 \mathrm{~Hz}$
Average $v=-76.0 \mathrm{~Hz}$

27

$$
\nu_{\mathrm{a}}=-80.6 \mathrm{~Hz}
$$

$$
\nu_{\mathrm{e}}=-75.6 \mathrm{~Hz}
$$

Average $\nu=-78.1 \mathrm{~Hz}$
possible analogy with model systems 28 and $\underset{\sim}{29}$, which were used in the study of the equilibrium 30 a $\rightleftharpoons 30 \mathrm{~b},{ }^{79}$ was sought

$\stackrel{28}{\sim}$

29

30 a

with which to compare the ${ }^{1}{ }_{H}$ NMR spectra for the $\underbrace{31 a} \rightleftharpoons 31 b$ system to be investigated. The 2,6-diphenyl-substituted analogs 32 and 32 were considered reasonable since the phenyl groups were syn oriented and the long $C-S$ bond would likely minimize non-bonded, axial 1,3,5-interactions.

32a

32 b

Six-membered sulfur heterocyclics have been reported to exist mostly in the chair conformation. $10,13,38,39,48,72,92$ Recent ${ }^{1} H$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral investigations and single crystal X-ray diffraction studies of a few substituted 4thianones and 4 -thianols 85,86 further confirm the assignment of chair conformation for six-membered sulfur heterocyclics. Thus, the NMR spectral investigation of the conformational equilibrium for our system $31 a \rightleftharpoons 31 b$ could provide insight as to the effect the sulfur atom might have on the equilibrium compared to the carbocyclic analogous system $30 a \sim 30 b$.

The conformational equilibria in a few spiro systems have been investigated in the past decade. In an attempt to evaluate the steric requirements of both the formally sp ${ }^{3}$ hybridized $\underset{N}{ } \mathrm{H}$ and $\underline{N C H}_{3}$ atoms and the oxygen atom (in comparison with a methylene group), Jones and co-workers ${ }^{46}$ examined the systems $33 \mathrm{a} \rightleftharpoons 33 \mathrm{~b}$ and $34 \mathrm{a} \rightleftharpoons 34 \mathrm{~b}$. It was observed that at low temperatures the ${ }^{1}{ }_{H}$ signal for the methylene group in the oxazolidine ring was split into two singlets of unequal area. Equilibrium constants were calculated by the peak area method. ${ }^{46}$ The results of the investigation
showed that in the equilibrium $33 \mathrm{a} \rightleftharpoons 33 \mathrm{~b}, 33 \mathrm{a}$ is favored, a

$33 a$
33 b

$\stackrel{a}{\sim}$

$$
\begin{aligned}
& 34 \mathrm{R}^{\prime}=\mathrm{H} ; \mathrm{R}^{\prime \prime}=\mathrm{CH}_{3} \\
& 35 \mathrm{R}^{\prime}=\mathrm{CH}_{3} ; \mathrm{R}^{\prime \prime}=\mathrm{H}
\end{aligned}
$$

situation similar to that for the corresponding ${ }^{47}$ dioxolane equilibrium $36 a \underset{\sim}{36 b}$. Thus evidence was provided for a smaller steric requirements of an sp 3-hybridized lone pair on oxyzen as compared with a CH_{2} group. However, the situation was reversed in the systems $34 a \sim 34 b$ and $35 a \sim 35 b$. Conformers 34 and 35 were favored over 34 and $35 a$, respec-

tively.
Similar investigations by Ueb'el and co-workers ${ }^{96}$ on $37 \mathrm{a} \rightleftharpoons 37 \mathrm{~b}$ and $38 \mathrm{a} \rightleftharpoons 38 \mathrm{~b}$ at 10 w temperatures (less than $\left.-80^{\circ} \mathrm{C}\right)$ by the peak area method and by Picard and Moulines 81 on $39 \mathrm{a} \rightleftharpoons 39 \mathrm{~b}$ at $38^{\circ} \mathrm{C}$ by the uncorrected chemical shift method favored conformers with axial C-O bond.

$\stackrel{a}{\sim}$

$$
37 \quad \mathrm{G}=\mathrm{CH}_{2} ; 38 \quad \mathrm{G}=\stackrel{\substack{\text { ॥ } \\ \mathrm{C}}}{ }
$$

$\xrightarrow{39 a}$

$\xrightarrow{39 b}$

Very recently 0^{\prime} Donnell and co-workers ${ }^{79}$ reported an investigation of the thermodynamic and kinetic aspects of the equilibrium $30 \mathrm{a} \rightleftharpoons \underset{\sim}{30 b}$. Working at low temperatures (less than $185^{\circ} \mathrm{K}$), it was determined from peak area measurements that conformer 30 was favored over $30 b$ to the extend of about $0.09 \mathrm{kcal} / \mathrm{mole}$ difference in standard free energy. ${ }^{79}$ This finding was corroborated by a second inves-
tigation employing the corrected chemical shift method. 79 Moreover a single crystal analysis by X-ray diffraction of the isomer formed in preponderance (from reaction between 4-tert-butylcyclohexanone and the Reformatsky reagent of ethyl α-bromomethylacrylate) confirmed its structure to be cis-8-tert-butyl-3-methylene-1-oxaspiro[4.5]decan-2-one (28) with an axial $\mathrm{C}-0$ bond. 79

Study of Intramolecular Rate Processes

DNMR spectroscopy provides the chemist a powerful tool for studying intramolecular movements (like ring reversals, atomic inversions etc.) with activation energies of 5 to 40 kcal/mole. $2,8,89$ Processes of this type are frequently so fast that the resulting isomers cannot be separated at room temperature and, hence, are not amenable to conventional kinetic methods of investigation. On the other hand, they are too slow for investigation by $I R$ and Raman spectroscopy.

The theoretical aspects governing rate measurements by NMR data from the line shape function have been developed for a two-site exhange by Gutowsky and Holm. ${ }^{33}$ When two NMR active nuclei A and B reside in regions with different magnetic environments, there can be observed different resonance frequencies ν_{A} and ν_{B}. If the nuclei exhange sites by an intra- or intermolecular process, the NMR spectrum is a function of the difference in resonance frequency, $\left|\nu_{A}-\nu_{B}\right|=\Delta \nu$, and of the rate of exchange. Thus, in $\underline{N}, \underline{N}-d i-$ methylbenzamide, the equilibrium $40 a \rightleftharpoons 40 b$ was one of the
earliest examples studied. The exchange of methyl groups A and B is a first order degenerate process, the rate of which is determined by the temperature. At low temperature, when the exhange is slow and the rate coefficient $k \ll \Delta v$, the spectrum consists of two sharp singlets at ν_{A} and ν_{B}. At high temperatures ($k \gg \Delta V$) only one sharp signal is observed. In the intermediate region, when k increased from the lower to higher limit, the spectrum changed via a broadening of the two lines 28,98 which coalesced 49,50 and gave a single line with gradually decreasing line-width

with increasing temperature. ${ }^{7}$ The line shape, $v, 3,8,42$ of the NMR absorption can be written as Eq. (4) where v is the

$$
\begin{equation*}
v=f\left(\nu, k, \Delta \nu, T_{2}\right) \tag{4}
\end{equation*}
$$

frequency and T_{2} is the transverse relaxation time (related to the line width at half intensity, $W_{\frac{1}{2}}$) in the absence of exhange by Eq. (5). By making a computer comparison between

$$
\begin{equation*}
\mathrm{T}_{2}=1 / \pi \mathrm{W}_{\frac{1}{2}} \tag{5}
\end{equation*}
$$

the total experimental and theoretical line shapes, via variation of the parameters $k, \Delta \nu$ and T_{2}, until a minimum value is achieved for the expression $\left.\Sigma\right|_{\text {theor }}-\left.v_{\text {exp }}\right|^{2}$ for
a number of selected frequencies, the rate coefficients can be calculated. From the rate coefficients and the Eyring equation, Eq. (6), the free energy of activation can be calculated. From a plot of $1 n(k / T)$ vs $1 / T$, the thermodynamic

$$
\begin{equation*}
k=k \frac{k_{B} T}{h} \exp \left(-\Delta G^{*} / R T\right) \tag{6}
\end{equation*}
$$

$$
\text { where } k=\text { transmission coefficient (usually }
$$

$$
\text { assumed as equal to } 1 \text {) }
$$

$$
k_{B}=B o l t z m a n n \text { constant }
$$

$$
h=P l a n c k ' s \text { constant }
$$

$\mathrm{T}=$ temperature in degrees Kelvin
$\Delta G^{*}=$ free energy of activation
$R=$ gas constant
parameters ΔH^{*} (activation enthalpy) and ΔS^{*} (activation entropy) can be obtained.

$$
\begin{equation*}
\ln (k / T)=\ln \left(k \frac{k_{B}}{h}\right)+\Delta S^{*} / R-\Delta H^{*} / R T \tag{7}
\end{equation*}
$$

Rate coefficients at the coalescence temperature T_{c} can be also determined by means of approximate expressions, such as Eq. (8), for the coalescence of singlets associated with uncoupled, diastereotopic atoms or groups. ${ }^{83}$ Eq. (9) is for systems in which the coalescence of the coupled $A B$ spin system occurs as a singlet. ${ }^{65}$ Rate coefficients calculated by these approximate expressions have been compared

$$
\begin{equation*}
k_{c}=\frac{\pi \Delta \nu}{\sqrt{2}} \tag{8}
\end{equation*}
$$

with those obtained by complete line shape analysis ${ }^{67}$ and

$$
\begin{equation*}
\mathrm{k}_{\mathrm{c}}=\frac{\pi}{\sqrt{2}}\left(\Delta \nu^{2}+6 \mathrm{~J}^{2}\right)^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

have been found to give reliable estimates of free energies of activation. Use of Eq. (8) in conjunction with the Eyring equation (6) leads to Eq. (10) for $\Delta G_{T_{c}}^{*}$. This expression is the one most commonly used for determination of

$$
\Delta \mathrm{G}_{\mathrm{T}_{\mathrm{c}}}^{*}=0.004573 \mathrm{~T}_{\mathrm{c}}\left[9.97+\log \left(\mathrm{T}_{\mathrm{c}} / \Delta \nu\right)\right] \quad \text { Eq. (10) }
$$

approximate free energy barriers. ${ }^{42}$

CHAPTER II

RESULTS AND DISCUSSION

During the past two decades a large number of natural products containing the α-methylene- γ-butyrolactone unit have been isolated by several workers. $29,31,32,52,56,60-64$ However, most of the research activity has centered around the physiological activity of these compounds. $40,41,57,68,69$ O'Donnell and co-workers were the first group who made a DNMR study of a system containing the $\alpha-m e t h y l e n e-\gamma-b u t y r o-$ lactone unit. 79 In part this investigation prompted the present study of the thermodynamic and kinetic parameters of the ring reversal process in the hetero system 31a $\underbrace{21 b}$.

Presented herein are the synthesis and physical and spectral characteristics of 9-methylene-7-oxa-1-thiaspiro-[4.5]decan-8-ones. Also included is an estimate for the upper limit for the barrier to ring reversal, ΔG^{*}, for the
system $31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b}$, which is approximately $8 \mathrm{kcal/mole}$. addition, results of a single crystal analysis by X-ray diffraction of 2,2,6,6-tetramethyl-9-methylene-7-oxa-1-thia-spiro[4.5]decan-8-one is also reported.

Although there is no dearth of synthetic techniques available for the synthesis of α-methylene- γ-butyrolactones, none of them $26,30-32,51,84$ were found suitable for the synthesis of the required 9-methylene-7-oxa-1-thiaspiro[4.5]-decan-8-ones. Since the techniques employed for the synthesis of these compounds bear a partial resemblance to the one developed by 0^{\prime} Donne11 ${ }^{79}$ for the synthesis of $30 \mathrm{a} \rightleftharpoons 30 \mathrm{~b}$, a brief description of our modification ${ }^{87}$ is presented.

A solution of ethyl α-bromomethylacrylate (42) in dry THF is added slowly to a suspension of Zn in a solution of cyclohexanone (41) in dry THF. The mixture is stirred for 3 hr . After cooling to room temperature, the mixture is added to 5% ice-cold $\mathrm{H}_{2} \mathrm{SO}_{4}$. The lactone formed can be

4

$$
+\quad \begin{gathered}
\mathrm{CH}_{2} \mathrm{Br} \\
\mathrm{H}_{2} \mathrm{C}=\stackrel{\mathrm{C}}{\mathrm{C}} \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}
\end{gathered}
$$

Zn/THF $45-50^{\circ} \mathrm{C} / 3 \mathrm{hr}$

43 b

isolated by extraction with ether. ${ }^{79}$ Surprisingly, a similar technique when used with thian-4-ones resulted in the formation of only sulfonium salts. Hence, the following modified procedure was adopted. ${ }^{87}$ In all cases, the Reformatsky reagent was formed initially by treating the ester 42 (in dry THF) with a suspension of Zn in dry THF. This was followed by the addition of the appropriate thianone 45. Stirring the solution at $45-50^{\circ} \mathrm{C}$ under N_{2} for 3 hr and addition of the resulting solution to 5% ice-cold $H_{2} \mathrm{SO}_{4}$ resulted in formation of the lactone which usually separated as an oil. Extraction with ether and careful recovery from the ether extract (see chapter III for details) gave crystalline lactone in all the cases. ${ }^{87}$

42

Although a published procedure is available for the

45

$$
\begin{aligned}
& \left.\begin{array}{l}
\underset{\sim}{a} R^{\prime}=R^{\prime \prime}=R^{\prime \prime} \prime=R^{\prime \prime \prime}=H \\
\underset{\sim}{b} R^{\prime}=R^{\prime \prime}=D ; R^{\prime \prime}=R^{\prime \prime \prime}=H \\
\underset{\sim}{c} R^{\prime}=R^{\prime \prime}=H ; R^{\prime \prime}=R^{\prime \prime \prime}=C_{3} \\
\underset{\sim}{d} \\
R^{\prime}=R^{\prime \prime}=R^{\prime \prime}=H ; R^{\prime \prime \prime}=C_{6} H_{5}
\end{array} \right\rvert\, \begin{array}{l}
\text { Dry THF } \\
45-50^{\circ} \mathrm{C} / 3 \mathrm{hr}
\end{array} \\
& \text { (} \\
& \text { 46 } R^{\prime}=R^{\prime \prime}=R^{\prime \prime}=R^{\prime \prime \prime}=H \\
& 47 R^{\prime}=R^{\prime \prime}=D ; R^{\prime \prime}=R^{\prime \prime \prime}=H \\
& 48 R^{\prime}=R^{\prime \prime}=H ; R^{\prime \prime}=R^{\prime \prime \prime}=\mathrm{CH}_{3} \\
& \text { 49 } R^{\prime}=R^{\prime \prime}=R^{\prime \prime}=H ; R^{\prime \prime \prime}=C_{6} H_{5}
\end{aligned}
$$

$$
\left\lvert\, \begin{aligned}
& 5 \% \mathrm{H}_{2} \mathrm{SO}_{4} \\
& 0.5 \mathrm{hr} / 0^{\circ} \mathrm{C}
\end{aligned}\right.
$$

$\stackrel{a}{\sim}$

$\underset{\sim}{b}$

$$
\begin{aligned}
& \text { 告 } R^{\prime}=R^{\prime \prime}=D ; R^{\prime \prime}=R^{\prime \prime \prime}=H \\
& \sim^{\prime 1} R^{\prime}=R^{\prime \prime}=R^{\prime \prime}=R^{\prime \prime \prime}=H \\
& \underset{\sim}{51} R^{\prime}=R^{\prime \prime}=H ; R^{\prime \prime}=R^{\prime \prime \prime}=C_{3} \\
& \sim^{32} R^{\prime}=R^{\prime \prime}=R^{\prime \prime}=H ; R^{\prime \prime \prime}=C_{6} H_{5}
\end{aligned}
$$

synthesis of ethyl α-bromomethylacrylate, ${ }^{25}$ we have shown ${ }^{88}$ that by careful control of conditions one can eliminate one step with the added advantage of improved yield. The procedure adopted is outlined below.

$$
\left(\mathrm{HOH}_{2} \mathrm{C}\right)_{2} \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}+48 \% \mathrm{HBr} \frac{85-90^{\circ} \mathrm{C}}{12 \mathrm{hr}} \mathrm{H}_{2} \mathrm{C}=\underset{\substack{\mathrm{C} \\ \mathrm{CH} \\ 2}}{\mathrm{Cr}} \mathrm{CO}_{2} \mathrm{H}
$$

$$
\stackrel{52}{\sim}
$$

$$
53
$$

$$
\underline{42}
$$

The physical and synthetic data for the various lactones synthesized are reported in Table I. Compounds 3la, 50a and 51a are conformationally related to compounds 31b, 50b and $51 b$ by a ring reversal process. Although in sol-

TABLE I
SYNTHETIC AND PHYSICAL DATA FOR COMPOUNDS 31a (or 31b), 32a (or 32b), 50a (or 50b) and 51a

Cpd. ${ }^{\text {a }}$	R'	R"	R"'	R""	$m p\left({ }^{\circ} \mathrm{C}\right)$	yield (\%)
50a (or 50b)	D	D	H	H	94-96	15.2
31a (or 31b)	H	H	H	H	94-95	14.2
$\underline{51 a}$	H	H	CH_{3}	CH_{3}	109-111	34
32 a (or 32b)	H	H	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	148.5-150	10

${ }^{a}$ Compounds 50 (or $50 b$) and 31 a (or 31 b) were recrystallized from $\mathrm{CH}_{3} \mathrm{OH}$, compound 51 a from $\mathrm{CH}_{3} \mathrm{OH}$ and petroleum ether and compound 32 a (or 32b) from $1: 1 \mathrm{CH}_{3} \mathrm{OH}$ and petroleum ether containing a little benzene.
ution (at room temperature) these conformers are in rapid reversible equilibrium, isolation of a solid in each case with a sharp melting point by the aforesaid synthetic technique suggests that the solid, at least, is only one conformational isomer. 87 A single crystal analysis by X-ray diffraction of $2,2,6,6-t e t r a m e t h y 1-9-m e t h y 1 e n e-7-o x a-1-t h i a-$ spiro[4.5]decan-8-one shows that the $C(4)-0(7)$ bond is axial. A similar finding was reported previously ${ }^{79}$ for cis-8-tert-butyl-3-methylene-1-oxaspiro[4.5]decan-2-one (54) .

54

In an attempt to evaluate the steric requirements of the formally sp^{3}-hybridized oxygen atom in comparison with a methylene group, Jones and co-workers ${ }^{46}$ examined the system $33 a \sim 33 b$ at low temperatures by the peak area method. The results of the investigation showed that conformer 33a (with axial $C-0$ bond) is preferred over 33 b (with axial $\mathrm{C}-\mathrm{CH}_{2}$ bond) to the extent of $0.12 \mathrm{kcal} / \mathrm{mole}$ in standard free energy difference. ${ }^{46}$ This shows that most likely an sp ${ }^{3}$-hybridized lone pair on oxygen has a smaller steric requirement as compared to a CH_{2} group. Similar findings
were reported for the dioxolane equilibrium $\underbrace{36 a} \rightleftharpoons \underbrace{46 b^{47}}$ and spirolactone equilibrium 30 F 30b. ${ }^{79}$ It may be presumed that a similar situation (namely axial preferrence for C-O bond) exists in our system $31 a \sim 31 b$, and this results in preferrential crystallization of the conformer with $C-0$ bond axial as evidenced by the X-ray diffraction analysis of $2,2,6,6-t e t r a m e t h y 1-9-m e t h y 1 e n e-7-o x a-1-t h i a s p i r o[4.5]-$ decan-8-one (5la). Although the other three spirolactones $31 \mathrm{a}(\mathrm{or} 31 \mathrm{~b}), 50 \mathrm{a}$ (or 50b) and 32 a (or 32b) were not analyzed by X-ray diffraction, an evaluation, based on spectral analysis, suggests an axial orientation for the C(4)-0(7) bond. Compounds 32a and 32 are configurational isomers and are not interconvertible by ring reversal process. Again, isolation of a solid with a sharp melting point suggests that the solid contains only one isomer, presumably 32a with the $C(4)-O(7)$ bond in the axial position. 87

The proton $N M R$ spectral data are reported in Table II. The signal at $\delta 4.54(d d, J=11$ and 4 Hz) for compound 32 a (or 32 b) suggests that this compound has the two phenyl groups at $C(2)$ and $C(6)$ in equatorial positions. The coupIing constants for ${ }^{3} J_{\mathrm{H}}(2 \mathrm{a}), \mathrm{H}(3 \mathrm{a})$ or ${ }^{3} \mathrm{~J}_{\mathrm{H}(6 \mathrm{a}), \mathrm{H}(5 \mathrm{a})}=11 \mathrm{~Hz}$ and for ${ }^{3} J_{H(2 a), H(3 e)}$ or ${ }^{3} J_{H}(6 a), H(5 e)=4 \mathrm{~Hz}$ observed for this compound are typical values expected for vicinal coupling constants ${ }^{3} J_{\text {trans }}$ and ${ }^{3} J_{\text {cis }}$ in the chair conformation for a cyclohexane system. ${ }^{42}$ Indeed, this indicates that the $C(2)-H$ and $C(6)-H$ bonds are axial. The signals due to the $H(3)$ and $H(5)$ protons in 32a (or 32b) at $\delta 2.04-2.41$ (m,

TABLE II

$$
\begin{gathered}
1_{\mathrm{H} \text { NMR DATA FOR }}^{31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b}, ~ 32 \mathrm{a}}(\text { or } 32 \mathrm{~b}), \\
50 \mathrm{a} \rightleftharpoons 50 \mathrm{~b} \text { and } 51 \mathrm{a} \rightleftharpoons 51 \mathrm{~b}
\end{gathered}
$$

$50 R^{\prime}=R^{\prime \prime}=D ; R^{\prime \prime}=R^{\prime \prime \prime}=H$
31 $R^{\prime}=R^{\prime \prime}=R^{\prime \prime}=R^{\prime \prime \prime}=H$
51 R' $=R^{\prime \prime}=H ; R^{\prime \prime}=R^{\prime \prime \prime}=\mathrm{CH}_{3}$
$32 R^{\prime}=R^{\prime \prime}=R^{\prime \prime}=H ; R^{\prime \prime}=C_{6} H_{5}$

Cpd.	${ }^{1}{ }_{H}$ NMR Chemi $\mathrm{H}(10)^{\mathrm{a}}$	al Shift Dat $H_{b}\left(9^{\prime}\right)^{b}$	in ppm from $H_{a}\left(9^{\prime}\right)^{c}$	$\begin{gathered} \text { TMS }\left(\mathrm{DCCl}_{3}\right) \\ \text { other } \end{gathered}$
$50 \mathrm{a} \sim 50 \mathrm{~b}$	2.70 (m, 2 H$)$	5.66 (m, 1 H)	6.27 (m, 1 H)	$\begin{aligned} & 2.42-3.07 \\ & \left(\mathrm{~m}, 4 \mathrm{H}^{\mathrm{d}}\right) \end{aligned}$
$31 \mathrm{a} \stackrel{31 \mathrm{~b}}{ }$	2.70(m, 2 H$)$	5.66(m, 1 H)	6.27 (m, 1 H)	$\left\{\begin{array}{l} 1.76-3.18 \\ (\mathrm{~m}, 8 \mathrm{H}) \end{array}\right.$
$\xrightarrow{51 \mathrm{a}} \stackrel{51 \mathrm{~b}}{\sim}$	2.72(m, 2 H$)$	5.64 (m, 1 H)	6.26(m, 1 H)	$\begin{aligned} & 1.27(\mathrm{~m}, 6 \mathrm{H}) \\ & 1.61(\mathrm{~s}, 6 \mathrm{H}) \\ & 1.59-2.09 \\ & \left(\mathrm{~m}, 4 \mathrm{H}^{\mathrm{e}}\right) \end{aligned}$
$32 \mathrm{a} \text { (or }$	2.84 (m, 2 H$)$	5.68 (m, 1 H)	$6.30(\mathrm{~m}, 1 \mathrm{H})$	$\begin{aligned} & 2.04-2.41 \\ & (\mathrm{~m}, ~ 4 \mathrm{H}) \\ & 4.54\left(\mathrm{~m}, 2 \mathrm{H}^{\mathrm{f}}\right. \\ & 7.20-7.50 \\ & (\mathrm{~m}, \quad 10 \mathrm{H}) \end{aligned}$

${ }^{\text {a }}$ Three line pattern resulting from X_{2} of $A M X_{2}$ where $J_{A X} \simeq$ $J_{M X} \simeq 2.5 \mathrm{~Hz}$. The center of the triplet is taken as the chemical shift.
b_{M} portion of $A M X_{2}$ pattern where $J_{A M}<J_{A X} \simeq J_{M X} \simeq 2.5 \mathrm{~Hz}$. The center of the triplet is taken as the peak position. ${ }^{c} A_{\text {a }}$ portion of $A M X_{2}$ pattern where $J_{A M}<J_{A X} \simeq J_{M X} \simeq 2.5 \mathrm{~Hz}$. The center of the triplet is taken as the peak position. ${ }^{d} A B$ quartet with $J_{A B}=14.2 \mathrm{~Hz}$.
$e_{A B}$ quartet with $J_{A B}=14.0 \mathrm{~Hz}$.
${ }^{f}$ Doublet of a doublet with ${ }^{3} J_{H(2 a)}, H(3 a)\left(o r{ }^{3} J_{H(6 a), H(5 a)}\right)$ $=11 \mathrm{~Hz}$ and ${ }^{3} \mathrm{~J}_{\mathrm{H}(2 a), \mathrm{H}(3 \mathrm{e})}\left(\mathrm{or}^{3} \mathrm{~J}_{\mathrm{H}(6 \mathrm{a}), \mathrm{H}(5 \mathrm{e})}\right)=4 \mathrm{~Hz}$. The center of the multiplet is taken as the peak position.

4 H) are considerably downfield than the signals due to similar protons in $\underset{\sim}{51 a} \underset{\sim}{51 b}$ at $\delta 1.59-2.09$, suggests that the $H(3)$ and $H(5)$ protons in 32 (or 32b) are situated towards an edge of the arene ring. The cause for the deshielding effect experienced by these protons can be traced to the presence of phenyl groups at $C(2)$ and $C(6)$. The diamagnetic anisotropy of the electron cloud in the benzene ring is long known to shield any proton situated over the benzene ring (signal shifted to higher field than otherwise expected) and deshield any proton situated in the region of the periphery of the benzene ring (signal shifted to lower field than otherwise expected). ${ }^{35}$ A molecular model of 32 a (or 32b) shows that the $H(3)$ and $H(5)$ protons are indeed on the periphery of the benzene ring. The ${ }^{1} H$ NMR spectrum of 32 a (or 32) also shows that the diamagnetic anisotropy effect of the benzene ring may be felt, although to a lesser extent, even by the distant $H(10)$ protons ($\delta 2.84$) in comparison to $\delta \simeq 2.70$ found for similar protons in the other three lactones (31, 50 and 51). The assignment of signals at $\delta \simeq 5.66$ and $\delta \simeq 6.27$ for the $H_{b}\left(9^{\prime}\right)$ and $H_{a}\left(9^{\prime}\right)$ protons, respectively, was made on the basis of the empirical correlation Eq. (11) developed by Tobey ${ }^{94}$ and Pascual, Meir and Simon ${ }^{84}$ for the chemical shift of a proton on a double bond:

$$
\begin{equation*}
\delta=5.28+\mathrm{Z}_{\text {gem }}+\mathrm{Z}_{\mathrm{cis}}+\mathrm{Z}_{\text {trans }} \tag{11}
\end{equation*}
$$

where $Z_{g e m}, Z_{c i s}$ and $Z_{\text {trans }}$ are the substituent constants
for the other groups on the double bond that are added to the chemical shift of protons in ethylene (for ethylene δ 5.28). The molecular fragment of interest can be represented as $5 \sqrt{5}$. The calculation of chemical shifts for $H_{a}\left(9^{\prime}\right)$ and $H_{b}\left(9^{\prime}\right)$ follows. 80,94 As can be seen from Table II

55

$$
\begin{aligned}
\delta_{H_{a}}\left(9^{\prime}\right)= & 5.28+Z_{\text {gem }}+Z_{c i s}+Z_{\text {trans }} \\
& Z_{\text {gem }} \text { for }-H=0.0 \\
& Z_{\text {cis }} \text { for }-\mathrm{CO}_{2} R=1.15 \\
& Z_{\text {trans }} \text { for }-A 1 \mathrm{kyl}=-0.29
\end{aligned}
$$

Thus, $\delta_{H_{a}}\left(9^{\prime}\right)=5.28+0.0+1.15-0.29=6.14$

$$
\delta_{H_{b}}\left(9^{\prime}\right)=5.28+Z_{g e m}+Z_{c i s}+Z_{\text {trans }}
$$

$$
Z_{\text {gem }} f o r-H=0.0
$$

$$
Z_{c i s} \text { for }-A 1 k y l=-0.26
$$

$$
\mathrm{Z}_{\text {trans }} \text { for }-\mathrm{CO}_{2} \mathrm{R}=0.56
$$

Thus, $\delta_{H_{b}\left(9^{\prime}\right)}=5.28+0.0-0.26+0.56=5.58$
these values compare very favorably with experimental values.

The ${ }^{13}$ C NMR spectral data are reported in Table III.

TABLE III
${ }^{13} \mathrm{C}$ NMR DATA FOR $31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b}, 32 \mathrm{a}$ (or 32 b), $50 \mathrm{a} \rightleftharpoons 50 \mathrm{~b}$ and 51 a

$50 R^{\prime}=R^{\prime \prime}=D ; R^{\prime \prime}=R^{\prime \prime \prime}=H$
$31 R^{\prime}=R^{\prime \prime}=R^{\prime \prime}=R^{\prime \prime \prime}=H$
51 $\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H} ; \mathrm{R}^{\prime \prime}=\mathrm{R}^{\prime \prime \prime}=\mathrm{CH}_{3}$
$32 \mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{R}^{\prime \prime}=\mathrm{H} ; \mathrm{R}^{\prime \prime \prime}=\mathrm{C}_{6} \mathrm{H}_{5}$

${ }^{\text {a }}$ Assignment based upon off-resonance decoupled spectra, signals for selected model compounds and peak intensities. b assignment uncertain. $R^{\prime \prime \prime}=R^{\prime \prime \prime}=\mathrm{CH}_{3}$ and occur at 858 and 796 Hz .

Comparison of the chemical shift for $C(2)-C(6)$ in $31 a \rightleftharpoons 31 b$ and $51 \mathrm{a} \rightleftharpoons 51 \mathrm{~b}$ with those for $\mathrm{C}(7)-\mathrm{C}(9)$ in $30 \mathrm{a} \rightleftharpoons 30 \mathrm{~b}$ and 56a $\underset{\sim}{56 b}$ gives information regarding the electrostatic effect due to the presence of the sulfur atom. ${ }^{78}$ Besides, the presence of the more electronegative sulfur atom in both lactone $31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b}$ or $51 \mathrm{a} \rightleftharpoons 51 \mathrm{~b}$ changes the electron density at $C(2)-C(6)$ as reflected in the down field shift of these α-carbon ${ }^{13} \mathrm{C}$ signals compared with the shift for $\mathrm{C}(7)-\mathrm{C}(9)$ in $30 \mathrm{a} \rightleftharpoons \underset{\sim}{30 b}$ and $\underbrace{56 \mathrm{a}} \rightleftharpoons \underbrace{56 b^{78}}$ as shown in Table IV. As reported by Ramalingam and co-workers ${ }^{86}$ for a number of 2,6-disubstituted 1-thia-4-cyclohexanones, an upfield γ-shift was observed for the resonance of $C(4)$ in $31 a \rightleftharpoons 31 b$ and $51 \mathrm{a} \rightleftharpoons 51 \mathrm{~b}$. As suggested by Jones and Hassan ${ }^{45}$ and Dutch ${ }^{14}$ for simple systems, the upfield γ-shift probably arises from a field effect. Eliel and co-workers have proposed a hyperconjugative-type interaction of an electron pair on a heteroatom through the $C_{\alpha}{ }^{-C} \beta_{\beta}$ bond (in certain heterocyclohexanes), consequently affecting the shift of the antiperiplanar γ-carbon atom. ${ }^{17}$ The signal due to $C(3)$ $\mathrm{C}(5)$ in $50 \mathrm{a} \rightleftharpoons 50 \mathrm{~b}$ and $31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b}$ shows an upfield shift in

TABLE IV
${ }^{13}$ C CHEMICAL SHIFTS OF SELECTED CARBONS IN $31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b}$
$30 \mathrm{a} \rightleftharpoons 30 \mathrm{~b}, ~ 51 \mathrm{a} \rightleftharpoons 51 \mathrm{~b}$ AND $56 \mathrm{a} \rightleftharpoons 56 \mathrm{~b}$

$\stackrel{a}{\sim}$

$30 R^{\prime}=R^{\prime \prime}=H$
56 $\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{CH}_{3}$

[^0]the deutero-substituted compounds. Similar isotope-induced upfield shifts have been reported ${ }^{95}$ for long-chain, aliphatic compounds.

The $I R$ and mass spectral data are reported in Table V. The mass spectral data, besides confirming the molecular weight (mass of the parent ion peak corresponds to the molecular mass), also confirms the molecular formula through the ratio of intensities of the isotope peaks. ${ }^{93}$ A model calculation for obtaining the isotope peak intensities follows:

Compound $\underbrace{31 \mathrm{a}}$ (or $\underbrace{31 \mathrm{~b}}$) $: ~ M o l e c u l a r$ formula $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$ Calculation of isotope peak intensities:

$$
\begin{aligned}
\%(M+1)= & 100 \frac{(M+1)}{M} \\
\simeq & 1.1 \times \text { number of carbon atoms }+ \\
& 0.78 \times \text { number of sulfur atoms } \\
= & 1.1 \times 9+0.78=10.68 \\
\%(M+2)= & 100 \frac{(M+2)}{M} \\
\simeq & 0.20 \times \text { number of oxygen atoms }+ \\
& 4.4 \times \text { number of sulfur atoms } \\
= & \left.\frac{(1.1 \times 9)^{2}}{200}+0.20 \times 2 \text { number of carbon atoms }\right)^{2} \\
= & 5.29
\end{aligned}
$$

In an attempt to obtain the thermodynamic and kinetic parameters for the ring reversal equilibrium $31 a \sim 31 b, ~ t h e$ ${ }^{1} H$ NMR spectra of a solution of 9-methylene-7-oxa-1-thia-

TABLE V
IR AND MASS SPECTRAL DATA FOR 31a (or 31b) 32a (or 32b), 50a or $50 b$ and $51 a$

$\stackrel{a}{\sim}$

[^1]spiro[4.5]decan-8-one-3,3,5,5-d d $_{4}$ in acetone-d 6 were recorded at several temperatures. Measurement of chemical shift differences between the signals for the methyl and hydroxyl protons of methanol and the use of an empirical correlation relating chemical shift differences to temperature ${ }^{97}$ permitted the determination of temperatures at which these spectra were recorded. As the environment of the $H(10)$ protons differ in the two conformers, the $C(4)-C(10)$ bond being equatorial in one conformer and axial in the other, the chemical shifts for these protons are expected to be different. However, at temperatures at which $k_{r} \gg \pi\left|\nu_{a}-\nu_{e}\right| / \sqrt{2}$, the frequency of interconversion between the two conformers is fast enough to give only one single time-averaged signal. ${ }^{9,66}$ In our case the signal appeared as a three-1ine pattern (X_{2} of an $A M X_{2}$ pattern). Lowering the temperature lowers the frequency of interconversion and, at temperatures at which $k_{r} \ll \pi\left|\nu_{a}-\nu_{e}\right| / \sqrt{2}$, a splitting ${ }^{9,66}$ of this single, three-1ine pattern into two separate three-line patterns should be observed. However, even cooling to as low as $-100^{\circ} \mathrm{C}$ did not, unfortunately, result in a splitting of the signal due to the $H(10)$ protons. As acetone- \underline{d}_{6} freezes at $-96^{\circ} \mathrm{C}$ (a temperature of $-100^{\circ} \mathrm{C}$ was obtainable with this solvent because of the lower freezing point of the solution as compared to that of the solvent), a $1: 1$ mixture of Freon-2l and acetone-d \mathbf{d}_{6} was tried as the solvent system. Unfortunately, no splitting was observed for $H(10)$ protons even down to about $-110^{\circ} \mathrm{C}$.

This probably fixes an upper limit for the coalescence temperature since there appeared to be the initial stages of peak splitting in the spectrum. The actual coalescence temperature is, of course, less than $-110^{\circ} \mathrm{C}$. Obviously, the barrier for ring reversal, ΔG^{*}, in our system $31 a \rightleftharpoons 31 b$ is lower than that observed for the system $30 \mathrm{a} \rightleftharpoons \underset{\sim}{30 b} .^{79} \mathrm{~A}$ barrier of $10.9 \mathrm{kcal} / \mathrm{mole}$ and coalescence temperature of about $-65^{\circ} \mathrm{C}$ were observed for the 1atter system. ${ }^{79}$

Reported in Table VI are the torsional angles from X-ray analysis of single crystal of 51a. Although it may appear presumptuous to extrapolate these solid data to a solution of 5la, several workers in the past have demonstrated agreement within $\pm 2^{\circ}$ for these angles between X-ray data and the solution data for a number of simple and substituted cyclohexanes as well as for mono and diheteracyclohexanes. ${ }^{66}$ We suggest that structural changes which accompany dissolution, if any, may well be rather small in our case. The X-ray analysis of 51a, besides confirming the chair configuration for the six-membered ring, also shows that the six-membered ring is flattened on all sides. All the internal torsional angles in $51 a$ are lower than that observed in cyclohexane. ${ }^{9}$ For cyclohexane, the internal torsional angle is about 56° all around the ring. ${ }^{9}$ Not only the torsional angle found in 51a are lower than this figure but the values of -48.4° and 47.0° measured for the $C(5)-C(6)---S(1)-C(2)$ and $C(6)-S(1)---C(2)-C(3)$ internal angles respectively, in $\underset{\sim}{51 a}$ are significantly lower than

TABLE VI

TORSIONAL ANGLES FROM X-RAY ANALYSIS OF 2,2,6,6-TETRAMETHYL-9-METHYLENE-7-OXA-1-THIA-SPIRO[4.5]DECAN-8-ONE (51a)

51a

Bonds Involved Torsional Angle (${ }^{\circ}$)
$\mathrm{S}(1)-\mathrm{C}(2)--\mathrm{C}(3)-\mathrm{C}(4) \quad-53.9$
$\mathrm{C}(2)-\mathrm{C}(3)---\mathrm{C}(4)-\mathrm{C}(5) 54.3$
$C(3)-C(4)---C(5)-C(6)-52.6$
$\mathrm{C}(4)-\mathrm{C}(5)--\mathrm{C}(6)-\mathrm{S}(1) \quad 53.4$
$\mathrm{C}(5)-\mathrm{C}(6)---\mathrm{S}(1)-\mathrm{C}(2) \quad-48.4$
$C(6)-S(1)---C(2)-C(3) \quad 47.0$
$\mathrm{C}(2)-\mathrm{C}(3)---\mathrm{C}(4)-0(7) \quad-68.1$
$\mathrm{C}(6)-\mathrm{C}(5)--\mathrm{C}(4)-0(7) \quad 68.1$
$C(2)-C(3)---C(4)-C(10) \quad 177.6$
$C(6)-C(5)---C(4)-C(10) 182.1$
those found around the ostensibly sp 2-hybridized carbonyl carbon in the thianones 57 and 58. Table VII reports the relevant torsional angles found in the thianones 57 and $58 .{ }^{85}$

$$
\begin{array}{ll}
\sqrt[57]{\sim} & \mathrm{R}=\mathrm{CH}_{3} \\
\\
58 & \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}
\end{array}
$$

The significantly lower torsional angles found in $51 a$ $\left(-48.4^{\circ}, 47.0^{\circ}\right.$ compared to $-52^{\circ}, 51^{\circ}$ and $-54^{\circ}, 52^{\circ}$ in 57 and 58 , respectively) ${ }^{85}$ suggests extensive flattening around sulfur. Such flattening around sulfur is likely the major explanation for the low barrier of $8 \mathrm{kcal} / \mathrm{mole}$ for the ring reverlal and a coalescence temperature below $-110^{\circ} \mathrm{C}$ in 51 a . There is presented on page 45 an energy diagram for the conversion of one chair form of cyclohexane to another. ${ }^{82}$ Of course this assessment, which is supported by theoretical calculations, ${ }^{1,22}$ assumes that the transition state more closely resembles a half-chair. It is not unreasonable to expect a similar geometry for the transition state in the ring reversal process of heteracyclohexane and its derivatives. However, there are three possible half-chair forms, namely 59-61, for the latter system. ${ }^{67}$ Allinger and co-workers ${ }^{1}$ have shown that the major cause for the increase in energy in going from the ground-state chair to the transition state in cyclohexane is due to the increase

TABLE VII
SELECTED TORSIONAL ANGLES IN 57 AND 58

Fragment	$\begin{gathered} \text { Torsional } \\ 57 \end{gathered}$	$\begin{aligned} & \text { Ang1e }\left({ }^{\circ}\right) \\ & 58 \\ & 58 \end{aligned}$
$C(2)-C(3)---C(4)-C(5)$	51	52
$C(3)-C(4)---C(5)-C(6)$	-52	-54

$\stackrel{59}{\sim}$

$\stackrel{60}{\sim}$

~
in torsional strain. Contributions from van der Waals strain, and especially angle bending strain, are thought to be much smaller. ${ }^{1,37}$ In fact, Allinger ${ }^{1}$ calculates that bending strain makes a contribution of only 2 out of 12 kcal/mole to the barrier. Of the three possible forms 59 $^{-}$ 61, ${ }^{67}$ the least energetic one will be the most preferred. An estimate can be made of the torsional interactions in these three forms from the barrier to $\mathrm{CH}_{3}-\mathrm{X}$ - rotation (where $X=0, S, N H$ etc.) in molecules of the type $\mathrm{CH}_{3}-\mathrm{X}-\mathrm{CH}_{3}$. If the $\mathrm{C}-\mathrm{X}$ torsional barrier is lower than that of the $C-C$ bond, form $\underset{\sim}{59}$ (in which the heteroatom relieves the greatest amount of eclipsing strain) will be preferred, and indeed this is found. 67

Lambert and co-workers ${ }^{67}$ show a parallel between the ring reversal barrier in a number of l-heteracyclohexanes and the $C-X$ torsional energy. The torsional energy in molecules of the type $\mathrm{CH}_{3}-\mathrm{X}-\mathrm{CH}_{3}$ decreases in the order: $\mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{O}>\mathrm{C}-\mathrm{S}>\mathrm{C}-\mathrm{Se}>\mathrm{C}-\mathrm{Te} .^{67}$ Reported in Table VIII are the ring reversal barriers for a few l-heteracyclohexanes. ${ }^{67}$ This suggests that a lower barrier should be expected for the sulfur containing system $319 \rightleftharpoons 31 b$ than for the carbocyclic system $30 \underset{\sim}{30}$ (a value of 10.9 kcal/mole was found ${ }^{79}$ for the latter system). Moreover, the extensive flattening around sulfur (found from X-ray analysis of 51a) leads to a ground state configuration that is energetically close to the transition state configura-

TABLE VIII

free energy barrier to ring reversal in a FEW SELECTED 1-HETERACYCLOHEXANES

$$
\begin{array}{ll}
\underset{\sim}{62} & x=0 \\
\underset{\sim}{63} & x=S \\
\underset{\sim}{64} & x=S e \\
\underset{\sim}{65} & x=T e
\end{array}
$$

Cpd.	$\Delta G^{*}(\mathrm{kcal} / \mathrm{mole})$
$\frac{62}{\sim}$	10.3
64	9.4
65	8.2

tion (a situation that should be reflected in a lower barrier for the equilibrium 31a $\rightleftharpoons 31 b)$.

At the other end of the six-membered ring, namely around $C(4)$, the ring is relatively puckered in 51a (see Table VI), thus creating another strain factor that probably contributes to the easy attainment of the initial transition state in the ring reversal process. To summarize, lower C-S torsional energy, extensive flattening around sulfur and relative puckering around $C(4)$ are all consistent with a lower ring reversal barrier for our system $31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b}$ compared to that for the system $30 \mathrm{a} \rightleftharpoons 30 \mathrm{~b}$. Assuming the separation, $\Delta \nu$, between the $H(10)$ proton signals in 31a and 31 b (at temperatures well below the coalescence temperature) to be between 5 to 15 Hz (which seems reasonable from the results of the system $\underbrace{30 a} \rightleftharpoons 30 b)^{78}$ and using Eq. (10), ${ }^{86}$ the free energy of activation for $31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b}$ can be calculated. Results of the calculation for three different coalescence temperatures are shown in Table IX. The signal due to $H(10)$ protons did begin to broaden at $-110^{\circ} \mathrm{C}$ but did not split into separate signals. It can be tentatively concluded that T_{c} is probably not much below $-110^{\circ} \mathrm{C}$. Inspection of Table IX clearly shows that small changes in

$$
\Delta G^{*}=0.004573 \mathrm{~T}_{\mathrm{c}}\left[9.97+\log \left(\mathrm{T}_{\mathrm{c}} / \Delta \nu\right)\right] \quad \text { Eq. (10) }
$$

T_{c} cause large deviations in the calculated value of ΔG^{*}. The same conclusion is supported by error analysis (see error analysi below). Consequently, it can be reasonably

TABLE IX

$$
\begin{gathered}
\text { CALCULATED } \Delta G^{*} \text { VALUES FOR } 31 \mathrm{a} \rightleftharpoons 31 \mathrm{~b} \text { FROM } \\
\text { VARIATIONS OF } \Delta V \text { AND } \mathrm{T}_{\mathrm{c}}
\end{gathered}
$$

$\Delta \nu(\mathrm{Hz})$	$\mathrm{T}_{\mathrm{c}}\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{G}^{*}(\mathrm{kca1/mo1e)}$
5	-110	8.6
10	-110	8.3
15	-110	8.2
5	-120	8.0
10	-120	7.7
15	-120	7.7
10	-130	7.5
15	-130	7.2

concluded that the ΔG^{*} value for the equilibrium $31 a \rightleftharpoons 31 b$ 1ies somewhere between $7-8.5 \mathrm{kcal} / \mathrm{mole}$.

Single Crystal Analysis by X-ray Diffraction

Results of a single crystal analysis by X-ray diffraction of $51 a$ are shown in Figure 1 (numbering scheme and bond distance) and Figure 2 (bond angles). The torsional angles are given in Table VI. As can be seen from the torsional angles, the six-membered ring exists in the chair conformation. Also evident from the torsional angles is the fact that the six-membered ring is significantly flattened around sulfur and relatively puckered (but still flatter than cyclohexane) around $C(4) .{ }^{9}$ The dihedral angles $C(2)-C(3)---C(4)-0(7)=68.1^{\circ}$ and $C(6)-C(3)---C(4)-0(7)=-68.1^{\circ}$ confirm that the $C(4)-0(7)$ bond is axial. As a corrolary, the dihedral angles $C(2)-C(3)---C(4)-C(10)=182.1^{\circ}$ and $C(6)-C(3)---C(4)-C(10)$ $=177.6^{\circ}$ confirm that the $C(4)-C(10)$ bond is equatorial. The $1,3,5$-interaction between the two axial $\mathrm{C}-\mathrm{CH}_{3}$ bonds and the C-O bond could probably be the cause for the overall flattening of the six-membered ring. The large 1,3-interaction between the two axial $\mathrm{C}-\mathrm{CH}_{3}$ bonds is reflected in the increased torsional angles $C(13)-C(6)--C(5)-C(4)=$. 74.0° and $C(11)-C(2)--C(3)-C(4)=-72.8^{\circ}$ as illustrated on page 53. The lactone ring is in a flattened twist conformation with the appropriate two-fold symmetry axis passing through atom $C(8)$ and bisecting the $C(10)-C(4)$ bond.

Figure 2. Bond angles for 51 a (in ${ }^{\circ}$).

Figure 1. Numbering scheme and bond distance (in A) for 51 l .

Suggestions for Future Work

As reported above, the coalescence temperature T_{c} for the system $31 a \rightleftharpoons 31 b$ is very probably not much below $-110^{\circ} \mathrm{C}$. Hence it will be interesting to extend the DNMR study to temperatures below $-110^{\circ} \mathrm{C}$ with selected Freons as the solvents.

It has been observed that for the l-heteracyclohexanes 62-65, the ring reversal barriers and the coalescence temperatures decrease with an increase in the atomic weight (and size) of the heteroatom. ${ }^{67}$ It is not unreasonable to expect a similar trend for the spirolactones $\underset{\sim}{3}$ and $\underset{\sim}{6}-68$. It would be interesting to study these compounds and test the prediction.

$\underset{\sim}{66} \quad \mathrm{X}=0 ; 31 \underset{\sim}{x}=S$
$\underset{\sim}{67} \mathrm{X}=\mathrm{Se} ; \underset{\sim}{68} \mathrm{X}=\mathrm{Te}$

Error Analysis

The rate coefficient at the coalescence temperature, and hence the free energy of activation at that temperature, are calculated using Eq. (8), and the Eyring's equation Eq. (6). The symbols have the usual meanings cited previously.

$$
\begin{gather*}
\mathrm{k}_{\mathrm{c}}=\pi \Delta \nu / \sqrt{2} \tag{8}\\
k_{c}=\kappa k_{B} T_{c} / h\left\{\exp \left(-\Delta G^{*} / R T\right)\right\}
\end{gather*}
$$

Eq. (6)

Eq. (6) yields the following formula for the error in ΔG^{*}, where $\sigma_{T_{c}}$ and $\sigma_{k_{c}}$ are the errors associated with T_{c} and k_{c} respectively.

$$
\begin{align*}
\left(\sigma_{\Delta G}^{*}\right)^{2} \simeq & \left\{\partial\left(\Delta G^{*}\right) / \partial T_{c}\right\}^{2}\left(\sigma_{T}\right)^{2}+ \\
& \left\{\partial\left(\Delta G^{*}\right) / \partial k_{c}\right\}^{2}\left(\sigma_{k_{c}}\right)^{2} \tag{12}
\end{align*}
$$

Dividing both sides of Eq. (12) by $\left(\Delta G^{*}\right)^{2}$, yields the expression, Eq. (13) for the relative statistical error in ΔG^{*}.

$$
\begin{align*}
\left(\sigma_{\Delta G}^{* / \Delta G^{*}}\right)^{2}= & \left\{\partial\left(\Delta G^{*}\right) / \partial T_{c}\right\}^{2}\left(\sigma_{T} / \Delta G^{*}\right)^{2}+ \\
& \left\{\partial\left(\Delta G^{*}\right) / \partial k_{c}\right\}^{2}\left(\sigma_{k_{c}} / \Delta G^{*}\right)^{2} \tag{13}
\end{align*}
$$

Multiplying both sides of equation (6) by $h / k_{B} T_{c}$, we get equation (14) after assuming that $k=1$.

$$
\begin{equation*}
k_{c} h / k_{B} T_{c}=\exp \left(-\Delta G^{*} / R T_{c}\right) \tag{14}
\end{equation*}
$$

Taking logarithm of equation (14) results in equation (15).

$$
\begin{gather*}
\ln \left(k_{c} h / k_{B} T_{c}\right)=-\left(\Delta G^{*} / R_{c}\right) \tag{15}\\
\text { or } \\
\Delta G^{*}=R T_{c} \ln \left(k_{B} T_{c} / k_{c} h\right)
\end{gather*}
$$

Eq: (16)

Equations (17) and (18) are the partial derivatives of ΔG^{*} with respect to T_{c} and k_{c} respectively.

$$
\begin{gather*}
\partial\left(\Delta G^{*} / \partial T_{c}\right)=R \ln \left(k_{B} T_{c} / k_{c} h\right)+R \tag{17}\\
\partial\left(\Delta G^{*} / \partial k_{c}\right)=-R T_{c} / k_{c} \tag{18}
\end{gather*}
$$

Substitution of equations (17) and (18) in equation
(13) results in equation (19).

$$
\begin{align*}
\left(\sigma_{\Delta G} * / \Delta G^{*}\right)^{2} & =\left\{R \ln \left(k_{B} T_{c} / k_{c} h\right)+R\right\}^{2}\left(\sigma_{T_{c}} / \Delta G^{*}\right)^{2} \\
& +\left(-R_{c} / k_{c}\right)^{2}\left(\sigma_{k_{c}} / \Delta G^{*}\right)^{2} \quad \text { Eq. } \tag{19}
\end{align*}
$$

Substituting for ΔG^{*} from equation (16) and simplifying, we get equation (20).

$$
\begin{aligned}
\left(\sigma_{\Delta G} * / \Delta G^{*}\right)^{2} & =\left[1+\left\{1 n\left(k_{B} T_{c} / k_{c} h\right)\right\}^{-1}\right]^{2}\left(\sigma_{T_{c}} / T_{c}\right)^{2} \\
& +\left\{1 n\left(k_{B} T_{c} / k_{c} h\right)\right\}^{-2}\left(\sigma_{k_{c}} / k_{c}\right)^{2} \text { Eq. (20) }
\end{aligned}
$$

The above equation may be approximated to Eq. (21):

$$
\left(\sigma_{\Delta G} * / \Delta G^{*}\right)^{2}=\left(\sigma_{T_{c}} / T_{c}\right)^{2}+\left\{\ln \left(k_{B} T_{c} / k_{c} h\right)\right\}^{-2}\left(\sigma_{k_{c}} / k_{c}\right)^{2}
$$

For a case with $T_{c} \simeq 160 \mathrm{~K}$, a reasonable value for our system, and $k_{c} \simeq 30 \sec ^{-1}$ (reasoned from observations made on the system $30 \underset{\sim}{~} \rightleftharpoons 30 b$ by 0^{\prime} Donnell and co-workers), a relative error of 100% in the rate coefficient introduces a relative error of only 4% in ΔG^{*}. A temperature error of about 10 K introduces a relative error of 7% in ΔG^{*}. This amounts to a total relative error of 8% or for a typical value of $\Delta G^{*}=8 \mathrm{kcal} / \mathrm{mole}$, the limits of error would be $\pm 0.69 \mathrm{kcal} / \mathrm{mole}$.

CHAPTER III

EXPERIMENTAL

General Information

Melting points were obtained on a Thomas-Hoover melting point apparatus and are uncorrected. The ${ }^{1} H$ NMR spectra and broad-band proton decoupled ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Varian $X L-100(15)$ NMR spectrometer equipped with a Nicolet TT-100 PFT accessory operating at 100.1 MHz for ${ }^{1} \mathrm{H}$ observation and at 25.2 MHz for ${ }^{13} \mathrm{C}$ signals with tetramethylsilane (TMS) as the internal standard. All low temperature spectra were recorded in acetone-d \boldsymbol{d}_{6} in the $F T$ mode with the solvent providing the necessary deuterium lock. Temperature regulation was made possible with a Varian temperature regulator. A sealed capillary filled with $\mathrm{CH}_{3} \mathrm{OH}$ and a trace of HCl placed in a 5 mm NMR tube containing 0.5 mL acetone- \underline{d}_{6} was used as a check to measure the temperature according to the method of Van Geet. 97 spectra were recorded on a Beckmann IR-5A unit. Mass spectral data were collected on a CEC model 21-110B HR mass spectrometer. Elemental analysis were performed by Galbraith Laboratories, Knoxville, Tennessee. Solvents used were reagent grade. Tetrahydrofuran (THF) was dried
via an initial distillation over $N a H$ and then over LiAlH_{4}. All other solvents were distilled and then dried over Na where required.

> Preparation of Diethyl Bis(hydroxymethyl)malonate (52)

Into a 2-1iter, Erlenmeyer flask fitted with a magnetic stirrer, thermometer and dropping funnel were placed $200.0 \mathrm{~g}(1.25 \mathrm{~mole})$ of diethylmalonate and 360.0 g (4.44 mole) of 37% formalin solution. A few drops of BDH Universal Indicator was added. This was followed by the addition of $10 \% \mathrm{NaOH}(15-20 \mathrm{~mL})$ slowly and dropwise. Reaction began at a pH of about 7.5 (room temperature) and became rapid at pH 8.5 as indicated by a rapid rise (nearly a 30° rise to $55^{\circ} \mathrm{C}$) in temperature. The addition of NaOH was continued over a period of 48 hr . During this period, the temperature was maintained below $50^{\circ} \mathrm{C}$ and the pH below 8.5. The reaction mixture was diluted with twice the volume of water (ca 1000 mL) and was then saturated with NaC1. The ester was extracted with 3 x $150-m$ portions of ether. The ether extracts were combined and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) for 3 hr . Removal of the ether was effected in a rotary evaporator. Residual traces of ether were removed by keeping the crude ester at $50^{\circ} \mathrm{C}$ under vacuum (2 mm) for 2 hr to yield 243.0 g (88%) of the diester $52 .{ }^{25}$ This crude ester was used as such. No attempt was made to solidify the ester. It has been reported ${ }^{25}$ that the crude ester solidifies after some
months, mp $55-56^{\circ} \mathrm{C}$.

> Preparation of $\alpha-$ Bromomethylacrylic acid (53) 88

A 1000 mL , two-necked, round-bottom flask was equipped with a magnetic stirrer, a fraction collector, a coldfinger condenser and two thermometers. Into the fiask were placed $55.0 \mathrm{~g}(0.25$ mole) of diethyl bis(hydroxymethyl)malonate (52) and $142 \mathrm{~mL}(1.25 \mathrm{~mole})$ of $47-49 \% \mathrm{HBr}$. The mixture was then heated and the temperature of the liquid was maintained between $85-90^{\circ} \mathrm{C}$. A mixture of ethyl bromide and water distilled over for about 1.5 to 2 hr . The mixture was then boiled for 10 hr , maintaining the temperature between $85-90^{\circ} \mathrm{C}$. At the end of this period, the mixture was concentrated on a rotary evaporator at $65-70^{\circ} \mathrm{C}$. About 100 mL of water were removed. The residue was cooled in the refrigerator overnight. Crystals of α-bromomethylacrylic acid were filtered in the cold to give, after drying in the air for 3 days, $13.0 \mathrm{~g}(33 \%)$ of acid. Recrystallization was effected from Skelly B (bp $\left.60-80^{\circ} \mathrm{C}\right)$; an analytical sample of 53 required sublimation at $60^{\circ} \mathrm{C}(1.5 \mathrm{~mm})$.

Ana1. Calcd. for $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{BrO}_{2}$: C, 29.12; H, 3.05 . Found: C, 29.07; H, 3.10.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\operatorname{in~} \mathrm{DCCl}_{3}\right.$): Chemical shift in ppm from TMS internal standard (multiplicity, number of protons, identity of proton): 4.18 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$) ; 6.09 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{viny} \mathrm{ic}$ proton trans to $\left.\mathrm{CO}_{2} \mathrm{H}\right) ; 6.49$ (s, 1 H , vinylic proton cis to
$\mathrm{CO}_{2} \mathrm{H}$).
IR (KBr): Absorption frequency in $c m^{-1}$ (functional group $)=1689(\mathrm{C}=0) ; 1626\left(\mathrm{C}=\mathrm{CH}_{2}\right)$.

Preparation of Ethyl α-Bromo-
methylacrylate $(\underline{42})^{88}$

In a nitrogen flushed, 1000 mL , round-bottom flask equipped with a magnetic stirrer, a Dean-Stark trap, and a condenser were placed $42.0 \mathrm{~g}(0.25$ mole) of α-bromomethylacrylic acid and 300 mL of benzene. Approximately 50 mL of a binary azeotrope of benzene and water were distilled out. The Dean-Stark trap was removed and 100 mL of absolute alcohol and 1 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ were added slowly. The contents of the flask were boiled (N_{2}) for 36 hr , the condensate being passed through 100 g of molecular sieve (Linde $3 A$) before being returned to the flask. About 125 $m L$ of a mixture of benzene and ethanol were removed from the reaction mixture by distillation (at $67^{\circ} \mathrm{C}$). Then, 100 mL of benzene was added, and another 125 mL of a benzeneethanol mixture was distilled (between $67-75^{\circ} \mathrm{C}$). The residue was poured into 200 mL of water, which was neutralized with solid NaHCO_{3} (ca $10-15 \mathrm{~g}$) until CO_{2} evolution ceased. The relulting solution was extracted with $3 \times 75-m \mathrm{p}$ portions of ether, and the combined extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) for 3 hr . The ether was removed by rotary evaporation and the crude ester was distilled to give a fraction boiling at $43-45^{\circ} \mathrm{C}(1.7 \mathrm{~mm})$ which weighed $36.0 \mathrm{~g}(75 \%)$.
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(\mathrm{in} \mathrm{DCCl}_{3}\right.$): Chemical shift in ppm from TMS internal standard (multiplicity, number of protons, identity of proton): $1.26-1.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 4.16-4.38$ (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}_{3}\right) ; 4.19\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right) ; 5.96$ (s, 1 H , vinylic proton trans to $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$) ; 6.32 (s, 1 H , vinylic proton cis to $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$).

IR (KBr): Absorption frequency in cm^{-1} (functional group): $1695(\mathrm{C}=0)$; $1610\left(\mathrm{C}=\mathrm{CH}_{2}\right)$.

$$
\begin{gathered}
\text { Preparation of } 2,2,6,6-\text { Tetramethy } 1- \\
4 \text {-thianone }(69)^{75}
\end{gathered}
$$

Exactly 100 g (0.725 mole) of phorone and 2 g (0.0357 mole) of KOH dissolved in 200 mL of 95% ethanol were placed in a 500 mL , three-necked round-bottom flask, equipped with a condenser, magnetic stirrer and gas inlet. The solution was heated to a boil, and a steady stream of $\mathrm{H}_{2} \mathrm{~S}$ was passed through this hot solution for 7 hr . It was then diluted with 200 mL of water and extracted with 3 x $200-m L$ portions of ether. The combined ether extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and filtered. Removal of ether was effected in a rotary evaporator. The crude product was distilled under aspirator pressure and the liquid that boiled between $123-133^{\circ} \mathrm{C}$ (27 mm) was collected; the yield of ketone $\underset{\sim}{69}$ was 99.4 g (79.7\%). Further purification was effected in the following way.

Semicarbazide hydroch1oride (97 g, 0.87 mole) and sodium acetate trihydrate (120 g, 0.87 mole$)$ dissolved in

400 mL of 50% alcohol were placed in a 1000 mL beaker. To the solution was added, slowly, with stirring at room temperature, ketone $\underset{\sim}{69}(99.4 \mathrm{~g}, 0.58$ mole). The semicarbazone formed was set aside for 4 hr and was then filtered and dried. The dry semicarbazone and 1000 mL of concentrated HCl were placed in a 2000 mL , round-bottom flask equipped with a condenser and magnetic stirrer. The reaction mixture was gently boiled for 4 hr and was then allowed to cool to room temperature. To the cold mixture was added 500 mL of water. The reaction mixture was then extracted with 3 x $250-m L$ portions of ether. The combined ether extracts were first washed with $3 \times 100-m L$ portions of 10% aqueous NaHCO_{3} and then with water. Drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtration, ether removal by rotary evaporation and distillation of the residue afforded 64.5 g ($0.375 \mathrm{~mole}, 52 \%$) of ketone $\underset{\sim}{6}, \mathrm{bp} 73^{\circ} \mathrm{C}$ (2 mm) [1it. ${ }^{75} \mathrm{bp} 92^{\circ} \mathrm{C}$ (13 mm)].
$1_{H} \operatorname{NMR}\left(\operatorname{in~} \mathrm{DCCl}_{3}\right.$): Chemical shift in ppm from TMS internal standard (multiplicity, number of protons, identity of proton): $1.4\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$; 2.56 (s, $4 \mathrm{H}, \mathrm{CH}_{2}$). IR (neat): Absorption frequency in cm^{-1} (functional group): $1695(\mathrm{C}=0)$.

$$
\begin{aligned}
& \text { Preparation of 4-Thianone- } \\
& \qquad 3,3,5,5--_{4}
\end{aligned}
$$

4-Thianone ($1.16 \mathrm{~g}, 0.01$ mole, mp $59-61^{\circ} \mathrm{C}$, Aldrich Chemical Company, Inc.) (71) and anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.5 \mathrm{~g}$, 0.0142 mole) dissolved in $50 \mathrm{~g}\left(2.5\right.$ mole) of $\mathrm{D}_{2} 0$ were placed
in a 200 mL , two-necked, round-bottom flask equipped with a condenser, magnetic stirrer, N_{2} inlet and an anhydrous CaC1 2 tube. The reaction mixture was boiled gently for 24 hr . After cooling to room temperature, the reaction mixture was extracted with $3 \mathrm{x} 50-\mathrm{mL}$ portions of ether. Drying ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) of the combined ether extracts and removal of ether by rotary evaporation afforded 0.7 g ($0.0058 \mathrm{~mole}, 58 \%$) of ketone 70. The colorless solid was recrystallized from petroleum ether to give pure $70, \mathrm{mp} 60-61^{\circ} \mathrm{C}$.
${ }^{1}{ }_{H} \operatorname{NMR}\left(i n \operatorname{DCC} 1_{3}\right)$: Chemical shift in ppm from TMS internal standard (multiplicity, number of protons, identity of proton): $2.89\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$.

IR (KBr): Absorption frequency in cm^{-1} (functional group): $1681 \quad(\mathrm{C}=0)$.

> Preparation of Dibenzalacetone (72)

Dibenzalacetone (72) was synthesized from 106 g (1 mole) of benzaldehyde, bp $178-179^{\circ} \mathrm{C}(760 \mathrm{~mm})$, following the 1iterature procedure. ${ }^{12}$ This gave 90 g ($0.77 \mathrm{~mole}, 77 \%$) of pure $72, m p 111-112^{\circ} \mathrm{C}$ [1it. ${ }^{12} \mathrm{mp}$ 111-112$\left.{ }^{\circ} \mathrm{C}\right]$.

$$
\begin{gathered}
\text { Preparation of cis }-2,6-\text { Diphenyl- } \\
4 \text {-thianone }(73)^{5}
\end{gathered}
$$

Ketone 73 was synthesized from 50 g (0.214 mole) of dibenzal acetone according to literature procedure ${ }^{5}$ to give $20 \mathrm{~g}\left(0.0746\right.$ mole, 34.9%) of $73, \mathrm{mp} 112^{\circ} \mathrm{C} \quad\left[1 \mathrm{it} .{ }^{5} \mathrm{mp} 112^{\circ} \mathrm{C}\right]$.

> General Procedure for the Synthesis of the 9-Methylene-7-oxa-1-thiaspiro[4.5]decan8 -ones $31,32,50$ and 51

The spirolactones were synthesized by using a Reformatsky reagent. The appropriate thianone was allowed to react with the Reformatsky reagent prepared from activated Zn (20 mesh, Baker Analyzed) and ethyl α-bromomethylacrylate in dry THF solvent. Since the usual method of carrying out this reaction ${ }^{77,84}$ (namely, addition of ethyl $\alpha-$ bromomethylacrylate in dry THF to a mixture of Zn and hianone in dry $T H F$) resulted in the formation of sulfonium salts, the following modified procedure was adopted. 87 Separate solutions of ethyl α-bromomethylacrylate (42) and the appropriate thianone were first prepared by dissolving 0.01 mole of each reagent in 10 mL of dry THF. Activated $\mathrm{Zn}(20$ mesh, $0.72 \mathrm{~g}, 0.011 \mathrm{~g}$ at) was placed in a 50 mL dry three-necked, round-bottom flask equipped with a magnetic stirrer, condenser, two pressure-equalizing addition funnels (25 mL) and a N_{2} inlet. Ten mL each of the solution of ester 42 and thianone (in dry THF) were then placed separately in the two pressure-equalizing addition funnels. Twenty five drops of a solution of ester $\underset{\sim}{42}$ were first added to the activated $Z n$, keeping the temperature at 45$50^{\circ} \mathrm{C}$. After 3 min , during which time the Reformatsky reagent formed, twenty five drops of the solution of thianone were added. This was followed by the addition, after 3 min, of twenty five drops of the solution of ester. After
these alternate additions were completed (ca 2 hr , the temperature being maintained at $45-50^{\circ} \mathrm{C}$ during the entire period), the reaction mixture was stirred for an additional period of 3 hr at $45-50^{\circ} \mathrm{C}$. The reaction mixture was then allowed to cool to room temperature and was then added to 100 mL of ice-cold $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. This usually yielded an oily product. Extraction with $3 \mathrm{x} 50-\mathrm{mL}$ portions of ether, drying the combined ether extracts $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and removal of ether by rotary evaporation resulted in the formation of crystalline products which were recrystallized from suitable solvents. ${ }^{87}$ The relevant data are found in Table I.

Synthesis of 9-Methylene-7-oxa-1-thiaspiro-

$$
[4.5] \text { decan-8-one }(31 a \text { or } 31 b)^{87}
$$

4-Thianone (1.16 g, 0.01 mole, Aldrich Chemical Company Inc.) (70) in dry THF (10 mL) was allowed to react with Zn (0.72 g, 0.011 g at) and ethyl α-bromomethylacrylate ($1.93 \mathrm{~g}, 0.01 \mathrm{~mole}$) (49) in dry THF (10 mL) as described above at $45-50^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature and poured into 100 mL of ice-cold $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The oily product that resulted was extracted with $3 \mathrm{x} 50-\mathrm{mL}$ portions of ether. The combined ether extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and the ether was removed by rotary evaporation. To the thick viscous oily residue was added 2 mL of absolute methanol and the solution was cooled to $-78^{\circ} \mathrm{C}$ (dry iceacetone mixture). A solid formed was quickly filtered and recrystallized from absolute methanol to afford 0.26 g
(0.0014 mole, 14.2%) of spirolactone 31 a (or 31 b), mp 94$95^{\circ} \mathrm{C}$.

Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 58.65$; $\mathrm{H}, 6.58 ; \mathrm{S}, 17.41$.
Found: C, 58.59 ; $H, 6.63 ; \mathrm{S}, 17.45$.
Mass spectral data for $31 a(o r$ 31b $)$ are as follows: m / e (\% of 184 mass) : 184 (100) M^{+}; 185 (10.8); 186 (5.3).
$1_{H} \operatorname{NMR}\left(\operatorname{in~} \mathrm{DCCl}_{3}\right.$): Chemical shift in ppm from TMS internal standard (multiplicity, number of protons, identity of proton): $2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ in 1 actone ring); 5.66 (m, 1 H , exocyclic $=\mathrm{CH}_{2}$); $6.27\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exocyc $1 \mathrm{ic}=\mathrm{CH}_{2}$); 1.76-3.18 (m, 8 H, thiane ring CH_{2}).

IR (KBr): Absorption frequency in cm^{-1} (functional group $): 1748(\mathrm{C}=0) ; 1653\left(\mathrm{C}=\mathrm{CH}_{2}\right)$.

$$
\begin{aligned}
& \text { Synthesis of } 9 \text {-Methylene- } 7-\text { oxa- } 1 \text {-thiaspiro- } \\
& {[4.5] \text { decan- } 8-\text { one }-3,3,5,5--_{4}(\underline{50 a} \text { or } 50 b)^{87}}
\end{aligned}
$$

The reaction of $4-$ thianone- $3,3,5,5-\underline{d}_{4}(1.20 \mathrm{~g}, 0.01$ mole) (70) with $\mathrm{Zn}(0.72 \mathrm{~g}, 0.011 \mathrm{~g}$ at) and ethyl α-bromomethylacrylate ($1.93 \mathrm{~g}, 0.01 \mathrm{~mole})$ in a manner described for the undeuterated thianone (71), yielded, after recrystallization (absolute methanol), 0.286 g (0.00152 mole, 15.2%) of spirolactone 50 a (or 50 b), mp $94-96^{\circ} \mathrm{C}$.

Mass spectral data for 50 (or $50 b$) are as follows: m / e (\% of 188 mass): 188 (100) M^{+}; 189 (12.5); 190 (6.9).
$1_{H} \operatorname{NMR}\left(\right.$ in $\left.\operatorname{DCCl}_{3}\right)$: Chemical shift in ppm from TMS internal standard (multiplicity, number of protons, identity of proton): $2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ in lactone ring); 5.66
(m, 1 H , exocyc1ic $=\mathrm{CH}_{2}$); $6.27\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exocyc1ic $=\mathrm{CH}_{2}$); 2.42-3.07 (m, 4 H , thiane ring CH_{2}).

IR (KBr) : Absorption frequency in cm^{-1} (functional group $): 1748(\mathrm{C}=0) ; 1653\left(\mathrm{C}=\mathrm{CH}_{2}\right)$.

$$
\text { Synthesis of } 2,2,6,6 \text {-Tetramethyl-9-methylene- }
$$ 7-oxa-1-thiaspiro[4.5]decan-8-one (51a) ${ }^{87}$

2,2,6,6-Tetramethy1-4-thianone (1.72 g, 0.01 mole)
(69 $_{\text {) }}$ dissolved in 100 mL of dry THF was allowed to react with the Reformatsky reagent prepared from Zn (0.72 g , 0.011 g at) and ethyl α-bromomethylacrylate ($1.93 \mathrm{~g}, 0.01$ mole) taken in 10 mL of dry THF in a manner analogous to the preparation of lactones 31 and 50. Recrystallization from 1:1 methanol:petroleum ether (bp 60-80 ${ }^{\circ} \mathrm{C}$) afforded 0.817 g ($0.0034 \mathrm{~mole}, 34 \%$) of lactone $51 \mathrm{a}, \mathrm{mp} 109-111^{\circ} \mathrm{C}$.

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 64.95 ; \mathrm{H}, 8.39$; $\mathrm{S}, 13.34$.
Found: C, $64.88 ; \mathrm{H}, 8.41$; S, 13.27 .
${ }^{1}{ }_{H} \operatorname{NMR}\left(\right.$ in DCCl_{3}): Chemical shift in ppm from TMS internal standard (multiplicity, number of protons, identity of proton): $2.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ in lactone ring); 5.64 (m, 1 H , exocyclic $=\mathrm{CH}_{2}$); $6.26\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exocyc1ic $=\mathrm{CH}_{2}$); 1.27 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$); 1.59-2.09 (m, 4 H , thiane ring CH_{2}).

IR (KBr): Absorption frequency in cm^{-1} (functional group $): 1754(\mathrm{C}=0)$; $1656\left(\mathrm{C}=\mathrm{CH}_{2}\right)$.

Mass spectral data for $51 a$ are as follows: m/e (\% of 240 mass): 240 (100) M^{+}; 241 (18.4); 242 (6.6).

> Synthesis of $2,6-$ Diphenyl-9-methylene-7-oxa1 -thiaspiro[4.5]decan-8-one $(32 a \text { or } 32 b)^{87}$

2,6-Diphenyl-4-thianone (73) (2.68 g, 0.01 mole) dissolved in 10 mL of dry THF was allowed to react with the Reformatsky reagent prepared from $\mathrm{Zn}(0.72 \mathrm{~g}, 0.011 \mathrm{~g}$ at) and ethyl α-bromomethylacrylate (42) taken in 10 mL of dry THF in a manner analogous to the preparation of the previous lactones. The crude product obtained was recrystallized twice with $1: 1$ methanol:petroleum ether mixture (20 $\mathrm{mL})$ containing a $11 t \mathrm{tle}(0.5 \mathrm{~mL})$ benzene to yield 0.336 g (0.001 mole, 10%) of 1actone 32 a (or 32b) mp $148.5-149.5^{\circ} \mathrm{C}$.

Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 75.00$; H, 5.95; S, 9.54.
Found: $\mathrm{C}, 75.08 ; \mathrm{H}, 6.03 ; \mathrm{S}, 9.72$.
Mass spectral data for 32 (or 32b) are as follows: $\mathrm{m} / \mathrm{e}(\%$ of 336 mass$): 336$ (100) M^{+}; 337 (10.8); 338 (5.3).
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(\operatorname{in~} \mathrm{DCCl}_{3}\right):$ Chemical shift in ppm from TMS internal standard (multiplicity, number of protons, identity of proton): $2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ in lactone ring); 5.68 (m, 1 H, exocyc1ic $=\mathrm{CH}_{2}$); $6.30\left(\mathrm{~m}, 1 \mathrm{H}\right.$, exocyclic $=\mathrm{CH}_{2}$); 2.04-2.41 (m, 4 H, thiane ring $\left.\mathrm{CH}_{2}\right) ; 4.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}$ in the thiane ring); 7.20-7.50 (m, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$.

IR (KBr): Absorption frequency in $c m^{-1}$ (functional group $): 1754(\mathrm{C}=0) ; 1664\left(\mathrm{C}=\mathrm{CH}_{2}\right)$.

> Synthesis of 1 -Methylthianium-9-methylene-7oxaspiro[4.5]decan-8-one Iodide

Into a 25 mL , round-bottom flask equipped with a condenser,
magnetic stirrer and N_{2} inlet, were placed spirolactone $32 a$ (or 32 b$)(0.310 \mathrm{~g}, 0.00169 \mathrm{~mole})$ and methy1 iodide $(2.28 \mathrm{~g}$, 0.0161 mole) dissolved in 3 mL of absolute methanol. The mixture was stirred at room temperature for 24 hr . The reaction mixture was then triturated with 5 mL of dry ether, and the mixture was refrigerated overnight and then filtered. The dry salt was dissolved in the minimum amount of absolute ethanol. Dry ether was then added dropwise to this solution until a cloudiness appeared. The mixture was again refrigerated overnight and the solid formed was filtered and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ in vacuum ($56^{\circ} \mathrm{C}, 2 \mathrm{~mm}$) to yield $0.360 \mathrm{~g}(0.0011 \mathrm{~mole}, 65 \%)$ of salt $74 \mathrm{mp} 135.5-137^{\circ} \mathrm{C}$.

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{IO}_{2} \mathrm{~S}: \mathrm{C}, 36.82$; $\mathrm{H}, 4.64 ; \mathrm{S}, 9.81$.
Found: C, 36.67 ; H, 4.49; S, 9.89 .
IR (KBr): Absorption frequency in cm^{-1} (functional
group $): 1754(\mathrm{C}=0)$; $1653 \quad\left(\mathrm{C}=\mathrm{CH}_{2}\right)$.
$1_{H} \operatorname{NMR}\left(\operatorname{in~} \mathrm{DCCl}_{3}\right):$ Chemical shift in ppm from TMS internal standard (multiplicity, number of protons, identity of proton): 5.91 (m, 1 H , exocyclic $=\mathrm{CH}_{2}$); 6.30 (m , 1 H, exocyc1ic $=\mathrm{CH}_{2}$); $3.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ; 2.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ in lactone ring) ; 2.12-2.70 (m, $4 \mathrm{H}, \mathrm{CH}_{2}$ in the thiane ring) ; $3.20-4.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ in the thiane ring).

PLATE I

PFT. $\quad \mathrm{X}$; Solvent DCCl_{3}; SO. $45251 \mathrm{~Hz} ; \quad \mathrm{PW} . \quad 1000 \mathrm{~Hz}$; T. $\quad 30^{\circ} \mathrm{C}$; Acq. 100 ;
Size 8K; P2 $5 \mu \mathrm{H} ; \mathrm{SF}$. 100.1 MHz ; FB. 700 Hz ; Lock 2 H ; D5 2 s .

 PFT. X; Solvent $\mathrm{DCCl}_{3} ; \quad$ SO. 45251 Hz ; PW. 1000 Hz ; T. $\quad 30^{\circ} \mathrm{C}$; Acq. $\quad 100$;

PLATE III

1_{H} NMR Spectrum of cis-2, 6-Diphenyl-9-methylene-7-oxa-1-thiaspiro[4.5]decan-8-one PFT. $\quad \mathrm{X}$; Solvent DCCl_{3}; SO. 45251 Hz ; PW. 1000 Hz ; T. $30^{\circ} \mathrm{C}$; Acq. 160 ; Size. 8K P2

5 HS; SF. 100.1 MHz;
FB. 700 Hz ; Lock ${ }^{2} \mathrm{H}$; D5
2 s.

PLATE V

${ }^{1}$ H NMR Spectrum of 53
CW.
X; Solvent DCCl_{3};
SO. 83701 Hz ; PW. 1000 Hz ;
T.
$30^{\circ} \mathrm{C}$
SA. 1.0 ;
RF. $\quad 57 \mathrm{~dB}$;
SF. 100.1 MHz;
FB.
2 Hz ;
Lock
${ }^{1} \mathrm{H}$; ST. 250 s .

Plate VII

PLATE VIII

${ }^{13}$ C NMR Spectrum of $9-M e t h y l e n e-7-o x a-1-t h i a s p i r o[4.5] d e c a n-8-o n e ~(31 a \rightleftharpoons 31 b) ~$
 P2 $15.5 \mu \mathrm{~s} ; \quad$ SF. 25.2 MHz ; FB. 3 KHz ; Lock. ${ }^{2} \mathrm{H}$; D5. 8 s .

PLATE X

PLATE XI

PFT. X; Solvent DCCl_{3}; So. $35101 \mathrm{~Hz} ; \quad \mathrm{PW} . \quad 5000 \mathrm{~Hz} ; \quad \mathrm{T} . \quad 30^{\circ} \mathrm{C} ; \quad \mathrm{Acq} . \quad 6000$;
Size $8 \mathrm{~K} ; \quad \mathrm{P} 2 \quad 15.5 \mathrm{~s}$;

SF. 25.2 MHz; FB.
3 KHz ; Lock
${ }^{2} \mathrm{H}$; D5 8 s .

PLATE XII

PLATE XIII

IR Spectrum of 9-Methylene-7-oxa-1-thiaspiro[4.5]-decan-8-one (31a or $31 b), \operatorname{KBr}$ Pe11et

IR Spectrum of 9-Methylene-7-oxa-1-thiaspiro[4.5]-decan-8-one-3,3,5,5-d 4 (50 or $50 b$) $K B r$ Pellet

IR Spectrum of cis-2,6-Diphenyl-9-methylene-7-oxa-1-thiaspiro[4.5]decan-8-one (32a or 32b) KBr Pellet

PLATE XVII

PLATE XVIII

IR Spectrum of $2,2,6,6-$ Tetramethy1-4-thianone (${\underset{\sim}{9}}_{9}^{9}$), KBr Pellet

1. Allinger, N. L., Miller, M. A., Van Cat1edge, F. A. and Hirsch, J. A., J. Am. Chem. Soc., 89, 4345 (1967).
2. Anderson, J. E., Quart. Rev. (Chem. Soc. London), 19, 426 (1965).
3. Anet, F. A. L. and Anet, R., "Conformational Processes in Rings", in Dynamic Nuclear Magnetic Resonance Spectroscopy, L. M. Jackman and F. A. Cotton (Eds.), Academic Press, New York, N. Y., 1975, Chapter 14.
4. Anteunis, M. and Tavernier, D., Tetrahedron Lett., 3949 (1964).
5. Baliah, V. and Chellathurai, T., Ind. J. Chem., $\underset{\sim}{9}, 424$ (1971).
6. Berlin, A. J. and Jensen, F. R., Chem. Ind. (london), 998 (1960).
7. Binsch, G., J. Am. Chem. Soc., 91, 1304 (1969).
8. Binsch, G., in Topics in Stereochemistry, Interscience, New York, 1968, Vol. 3, p. 97 ff.
9. Buys, H. R. and Geise, H. J., Tetrahedron Lett., 2991 (1970).
10. Campaigne, E., Chamberlain, N. F. and Edwards, B. E., J. Org. Chem., 27, 235 (1962).
11. Colli, H. N., Gold, V. and Pearson, L. E., J. Chem. Soc., Chem. Commun., 408 (1973).
12. Conard, C. R. and Dolliver, M. A., Org. Syn., Coll. Vol. II, 167.
13. Dothie, H. J., Acta Crystallogr., $\underset{\sim}{6}$, 804 (1953).
14. Dutch, A. J. and Hassan, M. M. A., J. Org. Chem., $\underset{\sim}{37}$, 2332 (1972).
15. Eliel, E. L., Chem. and Ind., 568 (1959).
16. Eliel, E. L., Allinger, N. L., Angyal, S. J. and Morrison, G. A., in Conformational Analysis, Interscience Divison, John Wiley and Sons, Inc., New York, N. Y., 1965, p. 71.
17. Eliel, E. L., Bailey, W. F., Kopp, L. D., Willer, R. L., Grant, D. M., Bertrand, R., Christensen, K. A., Dalling, D. K., Dutch, M. W., Wenkert, E., Schell, F. M. and Cochran, D. W., J. Am. Chem. Soc., 97, 322 (1975) 。
18. Eliel, E. L., Della, E. W. and Williams, T. H., Tetrahedron Lett., 831 (1963).
19. Eliel, E. L. and Gianni, M. H., Tetrahedron Lett., 97 (1962).
20. Eliel, E. L. and Martin, R. J. L., J. Am. Chem. Soc., 90, 682 (1968) .
21. Eliel, E. L. and Thill, B. P., Chem. Ind., (London), 88 (1963) .
22. Engler, E. M., Andose, J. D. and von R. Schleyer, P., J. Am. Chem. Soc., 95, 8005 (1973).
23. Featherman, S. I. and Quin, L. D., J. Am. Chem. Soc., 97, 4349 (1975).
24. Featherman, S. I. and Quin, L. D., J. Am. Chem. Soc., 95, 1699 (1973).
25. Ferris, A. F., J. Org. Chem., 20, 780 (1955).
26. Gammil, R. B., Wilson, C. A. and Bryson, T. A., Syn. Commun., 5, 245 (1975).
27. Geissman, T. A. and Irwin, M. A., Pure App1. Chem., 21, 167 (1970).
28. Glasstone, S., Laidler, K. J. and Eyring, H., Theory of Rate Processes, McGraw-Hill, New York, 1941 .
29. Gonzalez, A. G., Bermejo, J., Cabrera, I., Massanet, G. M., Mansilla, H. and Galindo, A., Phytochemistry., 17 , 955 (1978) .
30. Grieco, P. A., Synthesis, 67 (1975).
31. Grieco, P. A., Noguez, J. A., Masaki, Y., Hiroi, K., Nishizawa, M., Rosowsky, A., Oppenheim, S. and Lazarus, H., J. Med. Chem., 20, 71 (1977).
32. Grieco, P. A., Oguri, T. and Burke, S., J. Org. Chem., 43, 4552 (1978).
33. Gutowsky, H. S. and Holm, C. H., J. Chem. Phys., 25, 1228 (1956).
34. Gutowsky, H. S. and Saika, A., J. Chem. Phys., 21, 1688 (1953).
35. Haddon, R. C., Fortsch. Chem. Forsch., 16, 105 (1971).
36. Hanson, R. L., Lardy, H. A. and Kupchan, S. M., Science, 168, 378 (1970).
37. Harris, R. K. and Spragg, R. A., J. Chem. Soc.(B) 684 (1968).
38. Hasse1, O. and Vierovoll, H., Acta Chem. Scand., 1,149 (1947).
39. Hayasaki, K., Nippon Kagaku Zasshi., 76, 284 (1955).
40. Howie, G. A., Manni, P. E. and Cassady, J. M., J. Med. Chem., 17, 840 (1974).
41. Howie, G. A., Stamos, I. K. and Cassady, J. M., J. Med. Chem., 19, 309 (1976).
42. Jackman, L. M. and Sternhell, S., "App1ications of NMR Spectroscopy in Organic Chemistry", 2nd ed., Pergamon Press, Oxford, 1969, Chp. 1-2. Sandstrom, J., Endeavour., 33, 111 (1974).
43. Jensen, F. R. and Beck, B. H., J. Am. Chem. Soc., 3251 (1968).
44. Jensen, F. R. and Gale, L. H., J. Org. Chem., 25, 2075 (1960).
45. Jones, A. J. and Hassan, M. M. A., J. Org. Chem., 37 , 2332 (1972).
46. Jones, R. A. Y., Katritzky, A. R. and Lehman, P. G., J. Chem. Soc.(B) 1316 (1971).
47. Jones, R. A. Y., Katritzky, A. R., Lehman, P. G., Record, K. A. F. and Shapiro, B. B., J. Chem. Soc. (B) 1302 (1971).
48. Kalff, H. T. and Romers, C., Acta Crystallogr., 20, 490 (1966).
49. Kaplan, J. I., J. Chem. Phys., 28, 278 (1958).
50. Kaplan, J. I., J. Chem. Phys., 29, 462 (1958).
51. Karwe, M. V., Deshpande, N. R., Hiremath, S. V., Kulkarni, G. H. and Kelkar, G. R., Ind. J. Chem., 16B, 539 (1978).
52. Kisiel, W., Phytochemistry., 17, 1059 (1978).
53. Kitching, W., Bullpitt, M., Doddrel1, D. and Adcock, W., Org. Magn. Reson., 6, 289 (1974).
54. Kupchan, S. M., Pure App1. Chem., 21, 227 (1970).
55. Kupchan, S. M., Ashmore, J. W. and Sneden, A. T., J. Pharmaceutica1 Sci., 67, 865 (1978).
56. Kupchan, S. M., Aynechi, Y., Cassady, J. M., McPhail, A. T., Sim, G. A., Schnoes, H. K. and Burlingame, A. L., J. Am. Chem. Soc., 88, 3674 (1966).
57. Kupchan, S. M., Eakin, M. A. and Thomas, A. M., J. Med. Chem., 14, 1147 (1971).
58. Kupchan, S. M., Fessler, D. C., Eakin, M. A. and Giacobbe, T. J., Science, 168, 376 (1970).
59. Kupchan, S. M., Giacobbe, T. J., Krull, I. S., Thomas, A. M., Eakin, M. A. and Fessler, D. C., J. Org. Chem., 35, 3539 (1970).
60. Kupchan, S. M., Hemingway, J. C., Cassady, J. M., Knox, J. R., McPhail, A. T. and Sim, G. A., J. Am. Chem. Soc., 89, 465 (1967).
61. Kupchan, S. M., Hemingway, R. J., Werner, D. and Karim, A., J. Org. Chem., 34, 3903 (1969).
62. Kupchan, S. M., Hemingway, R. J., Werner, D., Karim, A., McPhail, A. T. and Sim, G. A., J. Am. Chem. Soc., 90, 3596 (1968) 。
63. Kupchan, S. M., Kelsey, J. E., Maruyama, M. and Cassady, J. M., Tetrahedron Lett., 3517 (1968).
64. Kupchan, S. M., Kelsey, J. E., Maruyama, M., Cassady, J. M., Hemingway, J. C. and Knox, J. R., J. Org. Chem., 34, 3876 (1969).
65. Kurland, R. J., Rubin, M. B. and Wise, M. B., J.Chem. Phys., 40,2426 (1964) .
66. Lambert, J. B., Acc. Chem. Res., 4, 87 (1971).
67. Lambert, J. B., M1xan, C. E. and Johnson, D. H., J. Am. Chem. Soc., 95 , 4634 (1973).
68. Lee, K. H., Huang, E. S., Piantadosi, C., Pagano, J. S. and Geissman, T. A., Cancer Res., 31, 1649 (1971).
69. Lee, K. H., Kim, S. H., Piantadosi, C., Huang, E. S. and Geissman, T. A., J. Pharm. Sci., 63, 1162 (1974).
70. Lemieux, R. U., Kulling, R. K., Bernstein, H. J. and Schneider, W. G., J. Am. Chem. Soc., 80, 6098 (1958).
71. Mann, F. G., The Heterocyclic Derivatives of Phosphorus Arsenic, Antimony and Bismuth, 2nd ed., Wiley Interscience, New York, N. Y., 1970, p. 99-104, 391-394, 606-607, 638-639.
72. Marsh, R. E., Acta Crystallogr., 8, 91 (1955).
73. Musher, J. I., J. Am. Chem. Soc., 83, 1146 (1961).
74. Nair, P. M. and Roberts, J. D., J. Am. Chem. Soc., 79, 4565 (1957).
75. Naylor, R. F., J. Chem. Soc., 2749 (1949).
76. Neikam, W. C. and Dailey, B. P., J. Chem. Phys., 38, 445 (1963).
77. Newman, M. S. and Evans, Jr, F. J., J. Am. Chem. Soc., 77, 946 (1955).
78. O'Donne11, D. J., Ph.D. Dissertation, Oklahoma State Uuiversity, 1978 .
79. O'Donnell, D. J., Ramalingam, K., Berlin, K. D., Ealick, S.E. and van der Helm, D., J. Org. Chem., 43, 4259 (1978).
80. Pascual, C., Meier, J. and Simon, W., Helv. Chim. Acta., 49, 164 (1966).
81. Picard, P. and Moulines, J., Tetrahedron Lett., 5133 (1970) .
82. Pickett, H. M. and Strauss, H. L., J. Am. Chem. Soc., 92, 7281 (1970).
83. Pople, J. A., Schneider, W. G. and Bernstein, H. J., $\frac{\text { High }}{\text { Mesolution }}$ Nuclear Magnetic Resonance, $\overline{M c G r a w-H i l 1, ~ N e w ~ Y o r k, ~ p . ~ 223, ~} 1959$.
84. Ramalingam, K. and Berlin, K. D., Org. Prep. and Proc. Int., (9) 15 (1977).
85. Ramalingam, K., Ber1in, K. D., Loghry, R. A., van der Helm, D. and Satyamurthy, N., J. Org. Chem., 44, 477 (1979).
86. Ramalingam, K., Berlin, K. D., Satyamurthy, N. and Sivakumar, R., J. Org. Chem., 44, 471 (1979).
87. Ramarajan, K and Berlin, K. D., Proc. Okla. Acad. Sci., 59, 70 (1979).
88. Ramarajan, K., Ramalingam, K., O'Donnell, D. J. and Berlin, K. D., pending publication in Org. Syn.
89. Riddel, F. G., Quart. Rev., (Chem. Soc. London) 21,364 (1967).
90. Rosowsky, A., Papathanasopoulos, N., Lazarus, H., Foley, G. E. and Modest, E. J., J. Med. Chem., 17 , 672 (1974).
91. Sanchez-Viesca, F. and Romo, J., Tetrahedron., 19,1285 (1963).
92. Shearer, H. M. M., J. Chem. Soc., 1394 (1959).
93. Silverstein, R. M., Bassler, G. C. and Morrill, T. C., "Mass Spectrometry", in Spectrometric Identification of Organic Compounds, $3 r$ d ed. John Wiley and Sons, Inc., New York, N. Y., 1974, Chapter 2.
94. Tobey, S. W., J. Org. Chem., 34, 1281 (1969).
95. Tulloch, A. P. and Mazurek, M., J. Chem. Soc., Chem. Commun., 692 (1973).
96. Uebel, J. J., Nickoloff, E. L., Cole, W. T. and Grant, C. B., Tetrahedron Lett., 2637 (1971).
97. Van Geet, A. L., Anal. Chem., 42, 679 (1970).
98. Wennerbeck, I. and Sandstrom, Org. Magn. Reson., 4, 783 (1972).

PART II. AN INVESTIGATION OF THE SPIN-LATTICE RELAXATION PHENOMENA (T_{1} VALUES) OF THE ${ }^{31} \mathrm{P}$ NUCLEUS IN CERTAIN CLASSES OF ORGANOPHOSPHORUS COMPOUNDS

CHAPTER I

HISTORICAL

INTRODUCTION

The advent of Fourier transform $N M R^{51}$ has added one more tool, namely, spin-lattice relaxation time, to the arsenal of organic chemist in attacking structural problems. Along with the nuclear Overhauser effect ${ }^{42}$ (NOE) arising out of the broad-band proton decoupling of ${ }^{31} \mathrm{P}$ NMR spectra, the T_{1} values of ${ }^{31}$ p nuclei in a molecule may be expected to provide useful conclusions regarding the relaxation mechanisms, the mobility of a molecule in solution and the steric hindrance to internal motion of the groups containing the nuclei of interest in a molecule. 34 Most of the work in the past has been centered around the T_{1} and NOE of ${ }^{13}$ C nuclei. ${ }^{7}$ Except for a few isolated studies, studies, $6,10,22,27,31,54$ no systematic investigation of the T_{1} values of ${ }^{31} \mathrm{P}$ in organophosphorus compounds has been attempted and this has prompted the present endeavor.

```
Spin-1attice Relaxation
```

All nuclei are charged particles and some, in addition, have the property of spin angular momentum. The angular
momentum imparts a magnetic moment, $\mu=\gamma P$, to these nuc1ei. The ratio between the magnetic moment (μ) and the mechanical angular momentum (P) is called the gyromagnetic constant (γ), a constant characteristic of the nucleus. In the presence of an external magnetic field, H_{o} (or B_{0}), nuclei with spin quantum number $I=1 / 2$, for example ${ }^{1} H$, ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$, distribute themselves between the two possible energy levels in accordance with the Boltzmann distribution law. Nuclei in the lower energy levels have their magnetic vectors aligned with the field and those in the upper level have the opposite orientation for their magnetic vectors as shown in the diagram below. The difference in energy, ΔE, between the two energy levels depends on the strength of the external magnetic field and the gyromagnetic constant of the nucleus, according to Eq. (1):

$$
\begin{equation*}
\Delta E=(h / 2 \pi) \gamma H_{0} \tag{1}
\end{equation*}
$$

The I_{z} is the z component of spin quantum number which for ${ }^{1} \mathrm{H}, \quad{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ is $\pm \frac{1}{2}$.

Radiation (continuous or pulsed) in the radio frequency range (with energy corresponding to the difference between the two energy levels) can induce transition between the two nuclear magnetic energy levels (the NMR phenomenon) and this ultimately results in equal population in these two levels. At this stage nuclear magnetic absorption ceases unless there exists some mechanism by which the Boltzmann excess of nuclei in the lower level is restored. This restoration of equilibrium distribution by the return of the excited nuclear spins to the ground levlel is called the spin-lattice relaxation. The energy liberated during this process is transferred to the environment (neighboring or solvating solvent molecules called the "lattice") of the nuclei. Consequently, the spin-lattice relaxation time, T_{1}, is a measure of the time T_{1} required for this process to occur.

Another way of looking at the phenomenon of spin-1attice relaxation (a way which is more convenient from the point of view of understanding the methods of measurement) is to examine the whole phenomenon from the point of view of classical mechanics. ${ }^{4,5,16}$ According to this view point, in the presence of an external magnetic field, nuclei having $I=\frac{1}{2}$ adopt two possible modes of precession, i.e. precession about the direction of the field vector (by convention in the z direction) and precession in the opposite direction with a precessional frequency $\nu_{o}=\gamma H_{o} / 2 \pi$ as shown in the diagram that follows. At equilibrium, there is a net
excess of nuclei precessing about the direction of the field vector and this excess gives rise to the equilibrium magnetization M_{0} along the z direction. Radiation with radiofrequency radiation (with a frequency corresponding to the Larmor frequency) in the x direction fips the resultant

magnetization towards the y direction. In a coordinate system rotating at the Larmor frequency about the z axis ($x^{\prime}, y^{\prime}, z$ coordinate system), ${ }^{4,5,16}$ the radiofrequency vector H_{1} rotates with the x^{\prime} axis, causes a deflection of the M_{o} vector towards y^{\prime}, builds up the transverse magnetization M_{y}, and induces a signal in the receiver proportional to M_{y}. The angle of deflection θ of M_{o} (twist, flip or pulse angle) depends upon the duration of the radiofrequency irradiation in pulsed nuclear magnetic resonance according to $\theta=\gamma H_{1} t_{p}$, where t_{p} is the duration of the pulse (called pulse width). Immediately after a 90° pulse, $M_{y}=M_{o}$ and $M_{z}=0$. Following the 90° pulse, the nuclear spin system returns to the normal equilibrium situation, and the magnetization along the z axis approaches its equilibrium value M_{o}. Spin-lattice relaxation is assumed to
be a continuous increase in the longitudinal magnetization M_{z} to the equilibrium value with a time constant T_{1}, the spin-lattice relaxation time. The process is diagrammed below. ${ }^{4,5.16} \mathrm{~T}_{1}$ is the time after which M_{z} has risen to $1 / e$ of the equilibrium value M_{o}.

$$
\begin{equation*}
\mathrm{dM}_{z} / \mathrm{dt}=-\left(\mathrm{M}_{\mathrm{z}}-\mathrm{M}_{0}\right) / \mathrm{T}_{1} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } M_{z}= & \text { the } z \text { component of magnetization } \\
& \text { at any time } \\
M_{0}= & \text { the } z \text { component of magnetization } \\
& \text { at equilibrium } \\
T_{1}= & \text { the spin-lattice relaxation time }
\end{aligned}
$$

Method of Measurement
The advent of Fourier transform NMR analysis ${ }^{51}$ made possible, in general, the simultaneous determination of
spin-lattice relaxation times (T_{1} values) for each NMR active nuclei in a complex molecule. The approach most commonly used for the measurement of T_{1} is the inversion recovery method combined with Fourier transform IRFT). ${ }^{1,2,17,21,32,51}$ This method is based on the pulse sequence: $\left\{180^{\circ}-\tau-90^{\circ}(F I D)-T\right\}$. T is the time set to $5\left(\mathrm{~T}_{1}\right)_{\text {max }}$ value, where $\left(\mathrm{T}_{1}\right)_{\text {max }}$ is the longest spin-1attice relaxation time to be measured. The 180° pulse inverts the 31_{p} energy level populations, thus producing a Boltzmann excess of nuclei in the higher energy level. Following the 180° pulse, the nuclei immediately begin to relax to reestablish the normal Boltzman distribution, namely with excess nuclei in the lower energy state. The 90° pulse is applied after a waiting period τ, which is varied in the successive experiments. The free induction decays (FID's) that follow the 90° pulse are digitized, stored and then Fourier transformed. This leads to a spectrum of partially relaxed (for a time τ) nuclei. The relaxation of the nuclei from the inverted Boltzmann distribution (following the 180° pulse) to the normal Boltzmann distribution follows the first order rate law as given by Eq. (2). Integration of Eq. (2) between $M_{z}=-M_{o}$ at $t=0$ and $M_{z}=M_{\tau}$ at $t=\tau$ leads to Eq. (4). As the intensity of a line in a partially

$$
\begin{equation*}
\int_{M_{o}}^{M_{T}} d M_{z} /\left(M_{z}-M_{o}\right)=-\int_{0}^{\tau}\left(1 / T_{1}\right) d t \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\ln \left(M_{o}-M_{z}\right) / 2 M_{o}=-\tau / T_{1} \tag{4}
\end{equation*}
$$

relaxed (for a time τ) Fourier transform NMR spectrum is proportional to the z component of magnetization at that time, M_{τ}, Eq. (4) can be rewritten as Eq. (5):

$$
\ln \left(M_{o}-M_{\tau}\right)=\ln \left(2 M_{o}\right)-\tau / T_{1}
$$

Eq. (5)

$$
\begin{aligned}
\text { where } M_{o}= & \text { the intensity of the signal at } \\
& \text { equilibrium } \\
M_{\tau}= & \text { the intensity of the signal at } \tau
\end{aligned}
$$

Thus the spin-lattice relaxation time, T_{1}, is obtained as the negative of the reciprocal slope of the semilogarithmic plot of $\left(M_{o}-M_{\tau}\right)$ vs t.

In addition to the inversion recovery Fourier transform method, other methods in vogue for T_{1} measurements are the saturation recovery Fourier transform method (SRFT) 36,38 and the progressive saturation Fourier transform method (PSFT) 18,19 The IRFT method suffers from the drawbacks such as the $\left(T_{1}\right)_{\text {max }}$ is usually not known beforehand (thus necessitating a trial run which is eventually discarded), and it is excessively time consuming due to the long waiting time, about $5\left(\mathrm{~T}_{1}\right)_{\text {max }}$, between the pulse sequences. 29 However, Levy and Peat, who made a critical examination of these three methods, ${ }^{35}$ conclude that although the SRFT and PSFT methods are faster and somewhat more convenient than the IRFT method, the pulsing requirements in the PSFT method are most stringent. Mis-set pulse lengths (pulse angles) and variable spectral offsets are shown ${ }^{35}$ to introduce errors to the extent of 25% or more on the T_{1} values measured by the

PSFT method, while IRFT and SRFT methods lead to errors under $10-15 \%$. This relative insensitivity to the instrumental and other experimental deficiences ${ }^{35}$ makes the SRFT and IRFT methods the most preferred. The advantage that SRFT has \{compared to IRFT in speed (SRFT is approximately twice as fast as IRFT)\} is more than offset by a loss of dynamic range (or sensitivity) of 50% in SRFT with respect to IRFT. 18,19 This is evident from Eq. (6) and.Eq. (7) used in IRFT and SRFT experiments, respectively. Eq. (6) follows from Eq. (5). Canet and co-workers have shown ${ }^{9}$ that inversion recovery with an arbitrary short waiting time much less than $5\left(T_{1}\right)_{\text {max }}$ is comparable to the $S R F T$ and PSFT methods in speed, and that such a sequence gives optimum dynamic range

$$
\begin{align*}
& M_{\tau}=M_{o}\left\{1-2 \exp \left(-\tau / T_{1}\right)\right\} \\
& M_{\tau}=M_{o}\left\{1-\exp \left(-\tau / T_{1}\right)\right\} \tag{7}
\end{align*}
$$

Eq. (6)
(usually approaching that of IRFT). This method is called the fast inversion recovery Fourier transform method (FIRET) by contrast to standard inversion recovery fourier transform (IRFT). ${ }^{9}$ The FIRFT method utilizes a waiting time T much smaller than $5\left(T_{1}\right)_{\text {max }}$ and the successive FID's have amplitudes equal to: ${ }^{9} M_{0}\left\{1-2 \exp \left(-\tau / T_{1}\right)\right\}$;
$M_{o}\left\{1-\left(2-E_{1}\right) \exp \left(-\tau / T_{1}\right)\right\} ; \ldots$.
$M_{o}\left\{1-\left(2-E_{1}\right) \exp \left(-\tau / T_{1}\right)\right\}$, where $E_{1}=\exp \left(-T / T_{1}\right)$. Hence the accumulated signal intensity M_{τ} is given by Eq. (8):

$$
\begin{equation*}
M_{\tau}=M_{o}\left\{1-\alpha \exp \left(-\tau / T_{1}\right)\right\} \tag{8}
\end{equation*}
$$

$$
\text { where } \alpha=2-E_{1}(n-1) / n
$$

If n (the number of acquisitions) is large or if the first $F I D$ is not added, M reduces to:

$$
\begin{equation*}
M_{\tau}=M_{o}\left\{1-\left(2-E_{1}\right) \exp \left(-\tau / T_{1}\right)\right\} \tag{9}
\end{equation*}
$$

The usual semilogarithmic plot of ($M_{o}-M_{\tau}$) vs τ will 1ead to the determination of T_{1}, the τ values being chosen as in conventional IRFT. The measurement of M_{o}, however, requires that one spectrum be obtained where $\tau=5\left(T_{1}\right)_{\max }$. A comparison of the results from IRFT and FIRFT methods are given in Table I. ${ }^{9}$ As can be seen, the two sets of results do not differ by more than the experimental error.

Comparison of Eq. (6) and Eq. (9) reveals that instead of a dynamic range of 2 found in the standard IRFT method, the FIRFT method has a dynamic range of (2-En where E_{1} is much less than 1 . The actual value of E_{1} depends upon the waiting time T and the relaxation time T_{1}. For values of T comparable to T_{1} (for all our measurements $T \simeq 2 T_{1}$), E_{1} is very small. Thus, FIRFT compares with SRFT and PSFT in speed and at the same time does not suffer a loss in dynamic range (or sensitivity) by more than a very small fraction. ${ }^{9}$ Canet and co-workers ${ }^{9}$ have also examined the effects of mis-set pulse angles and variation in spectral offset on the T_{1} values determined by the FIRFT method. It is found ${ }^{9}$ that the FIRFT method is reasonably insensitive to pulse characteristics and spectral offsets

It has been pointed out recentiy 12,29 that a further

TABLE I

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{T}}=5 \mathrm{sec} \\
& \mathrm{~b}_{\mathrm{T}}=160 \mathrm{sec}
\end{aligned}
$$

time saving in the determination of T_{1} by the FIRFT method can be effected by omitting the time consuming measurement of the equilibrium magnetization corresponding to $\tau=$
$5\left(\mathrm{~T}_{1}\right)_{\text {max }}$ in the $\left(180^{\circ}-\tau-90^{\circ}\right)_{\mathrm{n}}$ sequence. However, in order to achieve this additional time saving, it is necessary 12,29 to replace the usual semilogarithmic plot method of data reduction by a non-1inear, least-squares fitting procedure using the two-parameter expression, Eq. (10):

$$
M_{\tau}=M_{o}\left[1-\left\{2-\exp \left(-W / T_{1}\right)\right\} \exp \left(-\tau / T_{1}\right)\right] \quad \text { Eq. (10) }
$$

where W is the waiting time between the $180^{\circ}-\tau-90^{\circ}$ sequences. But the above two-parameter expression has the disadvantage of being highly sensitive to systematic errors such as from misadjusted pulse angles and improper settings of the frequency offset between the carrier frequency and the resonance line positions. ${ }^{29}$ Sass and Ziessow ${ }^{45}$ have recently suggested that more flexible expression, to which the measured signal intensities can be fitted, should contain three adjustable parameters as shown in Eq. (11):

$$
\begin{equation*}
M_{\tau}=A+B \exp \left(-\tau / T_{1}\right) \tag{11}
\end{equation*}
$$

where A, B and T_{1} are the adjustable parameters. Sass and Ziessow ${ }^{45}$ have demonstrated that the non-1inear, three-parameter-fit procedure is capable of producing reliable data in cases of misadjusted pulses and for large frequency offsets. The question still remains.regarding the minimal acceptable value for the longest $\tau(\tau)_{\text {max }}$. This was
addressed in an empirical manner by Kowalewski and coworkers ${ }^{29}$ by determining T_{1} for different $\tau_{\max }$ using the same number of experimental points. On the basis of their experimental findings, ${ }^{29}$ it appears necessary to use τ values covering a range upto at least 1.5 to $2 \mathrm{~T}_{1}$ for accurate determination of T_{1} values. Moreover, inclusion of such τ values provides an optimum dynamic range and better signal to noise ratio; since the peak intensities may be rather attenuated for short τ values in the FIRFT experiment.

Mechanism of Spin-1attice Relaxation ${ }^{34}$

During spin-lattice relaxation, the excited nuclei transfer their excitation energy to their environment (the lattice) via interaction of their magnetic vectors with fluctuating local fields of sufficient strength, proper phase and a fluctuation frequency on the order of the Larmor frequency of the nuclei of interest. Depending on the nature of the environment of the relaxing nuclei, four possible mechanisms contribute to spin-1attice relaxation. $16,32,34$

Chemical Shift Anisotropy (CSA mechanism): The magnetic shielding of a nucleus arising from the surrounding electron cloud may be anisotropic. Thus, the ${ }^{13}$ C nucleus in carbon disulfide, for example, experiences a different local field when the axis of the molecule is parallel with the field direction compared to when it is orthogonal to the field. Therefore as the molecule tumbles in solution, the local
field experienced by the nucleus fluctuates. Frequency components of this fluctuating field corresponding to the Larmor frequency of the ${ }^{13}$ C nucleus can induce spin-1attice relaxation. A contibution, of the CSA mechanism will be evident from a proportionality of the T_{1} values measured to the square of the magnetic field strength H_{o} (or B_{o}) applied. This contribution is usually found to be negligible for the ${ }^{13}$ C nuclei of organic molecules. ${ }^{7}$ However, a substantial contribution from the CSA mechanism has been noticed in organophosphorus compounds containing the $\mathrm{P}=0$ bond, such as triphenylphosphine oxide, certain phosphoryl compounds and in phosphate groups in biochemical compounds. 26, 39, 41 Scalar Coupling Mechanism (SC): Quadrupolar nuclei having $I>1 / 2$, i.e. nuclei whose charge distribution is not spherically symmetrical, relax so fast that they accelerate the relaxation of neighboring coupled nuclei. The contribution of the scalar coupling mechanism, becomes particularly large when the coupling nuclei precess with similar Larmor frequencies, as can be seen by comparing the ${ }^{13}$ C relaxation in $\operatorname{HCCl}_{3}\left(\mathrm{~T}_{1}=32.4 \mathrm{sec}\right)$ and $\operatorname{HCBr}_{3}\left(\mathrm{~T}_{1}=1.65 \mathrm{sec}\right){ }^{34}$ Bromine and carbon precess with similar Larmor frequencies. In the absence of quadrupolar nuclei in the molecules, as is the case in the present investigation, there cannot be any contribution from the scalar coupling mechanism.

Spin Rotation Mechanism (SR): When a molecule or part of a molecule rotates, the magnetic vectors of the bonding
electron spins also rotate. This creates fluctuating magnetic fields in the immediate vicinity, thereby inducing spinlattice relaxation. In situations where the spin rotation mechanism makes a significant contribution to spin-1attice relaxation, as in small symmetrical molecules which do not have a proton directly attached to the relaxing nuclei, T_{1} values have been found to decrease significantly with an increase in temperature. 34 Reported in Table II are the T_{1} values for ${ }^{31} \mathrm{P}$ nuclei in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{P}$ and $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$ determined as a function of temperature. ${ }^{27}$ It is clear that for these two compounds the spin rotation mechanism makes a significant contribution to the relaxation process. Dale and Hobbs 10 investigated a number of trialkyl phosphites and trialkylphosphates. By means of relaxation times determined at two magnetic field strengths and by the different dependence of the spin rotation and dipolar interactions on the viscosity and temperature, they were able to effect a reasonably quantitative separation of the contributing mechanisms. The results of their investigation show that for $\mathrm{PBr}_{3}, \mathrm{O}=\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$, $\mathrm{S}=\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ and the cyclic phosphoryl compound $1,3-\mathrm{dimethyl}-$ 3-phospholene 1 -oxide, the spin rotation (SR) mechanism clearly dominates. ${ }^{10}$

Internuclear Dipole-Dipole Interaction Mechanism (DD):
Each nucleus with a spin quantum number $I>0$ generates a local magnetic field. If two such nuclei, for example ${ }^{31} P$ and ${ }^{1} H$ or ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$, are 1 inked by a bond, then each of the nuclei will experience not only the constant external field

TABLE II

SPIN-LATTICE RELAXATION TIME AS A
FUNCTION OF TEMPERATURE

Cpd.	Conc. (moles/liter)	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}_{1} \quad(\mathrm{sec})$
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right){ }_{3} \mathrm{P}$	0.7	-19	15.3
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$	0.7	29	10.4
	0.7	58	3.4
	0.7	29	30.8

${ }^{\mathrm{a}} \mathrm{In} \mathrm{DCCl}_{3}$.
$H_{o}\left(o r B_{o}\right)$ but also the local field due to the other nuclear spin. This is the internuclear dipole-dipole interaction. The strength and direction of this interaction depends on the magnetic moments of the interacting nuclei, the internuclear separation and the relative internal orientations of these nuclei with respect to H_{o} (or B_{o}). In solution, due to rapid molecular motions, the relative orientations of the two nuclei with respect to $H_{o}\left(o r B_{o}\right)$ are constantly changing, and this generates fluctuating local fields which contribute to the relaxation of the nuclei. Only those molecular motions whose "frequencies" lie in the region of the ${ }^{31} \mathrm{p}$ Larmor preceesion frequency lead to rapid dipolar relaxation. The ${ }^{31}$ p nuclei are known to precess with a frequency of $\nu_{0}=4.05 \times 10^{7} \mathrm{~Hz}$ or $\omega_{o}=2 \pi \nu_{o}=2.55 \times 10^{8}$ rad/s at a field strength of $H_{o}=23.5$ KG. The present investigation was carried out at 23.5 KG. Most efficient dipole-dipole relaxation, therefore, requires molecular motions having effective correlation times, τ_{c} (i.e. the average time required for a molecule to rotate through 1 radian) $14,16,23,53$ of:

$$
\tau_{c}=(1 / 2.55) \times 10^{8}=3.92 \times 10^{-9} \mathrm{sec}
$$

Thus a plot of T_{1} as a function of τ shows a minimum which corresponds to a correlation time comparable to the Larmor precession ${ }^{34}$ as shown in the diagram that follows. Both slow and rapid molecular motions lead to an increase in T_{1}. Except for highly restricted polymer systems, the correlation
time, for most molecules, falls on the left side of the minimum with correlation times of the order of $10^{-11}-10^{-13}$ sec. If the dipole dipole interaction is the major contributing mechanism, then any factor that shortens τ_{c} will

result in a lengthening of T_{1}. For example, lowering solution viscosity and raising the temperature should both shorten τ_{c}. Thus for tetraethylphosphonium iodide, values of 9.0 sec and 11.0 sec have been observed ${ }^{27}$ for a 0.7 M solution in DCCl_{3} at $29^{\circ} \mathrm{C}$ and $58^{\circ} \mathrm{C}$, respectively.

By measuring the NOE factors ${ }^{42}$ it is frequently possible to separate the contribution of dipole-dipole interaction mechanism from the other mechanisms. During the broad-band proton decoupling of the ${ }^{31} \mathrm{P}$ NMR spectra, the protons transfer their excitation energy to the "lattice" primarily by
internuclear dipole-dipole interaction with ${ }^{31} \mathrm{P}$ (and ${ }^{13} \mathrm{C}$) and this forces the relaxation of ${ }^{31} \mathrm{P}$ (and ${ }^{13} \mathrm{C}$) nuclei. As a consequence, the population of the energetically more favorable ${ }^{31} \mathrm{P}$ spin states increases and the ${ }^{31} \mathrm{P}$ signal intensities are enhanced on proton decoupling more than would be expected from the multiplet intensities in the undecoupled spectra. ${ }^{42}$ This enhancement is the nuclear Overhauser enhancement (NOE). ${ }^{42}$ If ${ }^{31} \mathrm{P}$ relaxation proceeds exclusively by the dipolar (DD) interaction mechanism, the NOE factor will be given by the ratio of the gyromagnetic constant of the proton to twice the gyromagnetic constant of the ${ }^{31} \mathrm{P}$ nucleus. NOE factors less than 1.235 indicates

$$
\eta=\gamma_{H} / 2 \gamma_{\mathrm{P}}=1.235
$$

participation of other mechanisms besides dipolar interaction. The percentage contribution of dipolar interaction mechanism can be evaluated from the measured NOE factor according to the relation:

$$
\% \text { DD contribution }=(n / 1.235) \times 100
$$

The time constant $T_{1(D D)}$ of the $D D$ mechanism is, therefore, given by:

$$
T_{1(D D)}=T_{1}(1.235 / \eta)
$$

Since the total relaxation rate is the sum of the contributions from the various mechanisms according to:

$$
1 / T_{1}=1 / T_{1(D D)}+1 / T_{1(S R)}+1 / T_{1(C S A)}+1 / T_{1}(S C)
$$

the NOE parameter helps to factor out the $D D$ contribution from other contributions. Thus:

$$
1 / T_{1}=1 / T_{1(D D)}+1 / T_{1(\text { other })}
$$

As expected, $T_{1}(D D)$ increases with an increase in temperature. ${ }^{10,27}$ The temperature dependence of dipole-dipole relaxation is that of the correlation time τ_{c}. An Arrhenius type of equation can be written for the correlation time:

$$
\begin{equation*}
\tau_{c}=\tau_{c_{o}} x \exp (\Delta E / R T) \tag{12}
\end{equation*}
$$

Thus a semilogarithmic plot of $T_{1(D D)}$ versus reciprocal temperature should provide ΔE, the activation energy for molecular reorientation which is usually of the order of 2$4 \mathrm{kcal} / \mathrm{mole} .^{24}$

When $D D$ is the major relaxation mechanism, as is the case with protonated phosphorus (or carbon), and the overall tumbling of the molecule is relatively isotropic (nondirectional, i.e. no preferrence for any particular rotational mode), the T_{1} value for each protonated carbon is inversely proportional to the number of directly attached protons. The values for isooctane are given below to. illustrate with carbon. ${ }^{34}$ Although a similar trend should be

expected for the T values of protonated phosphorus, no
attempt has been made to prove this hypothesis. Some of the results of our investigation suggest this trend.

In situations where part of the molecule is anchored and hence tumbles slowly (with a frequency matching the Larmor frequency of the relaxing nuclei), the T_{1} values for the nuclei located at the anchored site are smaller than the values for the nuclei situated at the rapidly "wiggling" end. This "segmental motion" is observed in the case of ndecanol ${ }^{33}$ where the hydroxyl end is anchored by H-bonding. Although it is difficult to create an exactly analogous situation for phosphorus, it would be interesting to examine the T_{1} values for phosphorus in a diphosphorus compound where one phosphorus is situated at the slowly tumbling end and the other at the rapidly "wiggling" end. No such data exist in the literature to date.

CHAPTER II

RESULTS AND DISCUSSION

In recent years a relatively large amount of work has been done on the relaxation behavior of carbon nuclei. ${ }^{7}$ However, except for a few isolated studies, $6,10,22,27,31,54$ no systematic investigation of the relaxation behavior of ${ }^{31} \mathrm{p}$ nuclei has been undertaken. Nevertheless relaxation measurements on ${ }^{31} \mathrm{P}$ nuclei should provide useful information regarding the relaxation mechanisms and the ease with which such molecules tumble in solution. 34 Reported in the following pages are the results of the investigation on the spinlattice relaxation behavior of ${ }^{31} \mathrm{P}$ nuclei as a function of temperature and concentration in systems $\underset{\sim}{1}-\underset{\sim}{5}$.

$$
\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{X} \quad\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{XCH}_{2} \mathrm{X}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}
$$

$\stackrel{1}{\sim}$
2

$$
\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{XCH}_{2} \mathrm{CH}_{2} \mathrm{X}^{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}}
$$

$$
\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}{ }^{+} \mathrm{PCH}_{3} \mathrm{I}^{-}
$$

$\stackrel{4}{\sim}$

$$
\underset{\sim}{a} \cdot X=P ; \underset{\sim}{b} . \quad X=P(0) ; \underset{\sim}{c} . \quad X=P(S)
$$

In general, the phosphine sulfides seem to relax predominantly by the dipole-dipole (DD) interaction mechanism. The activation energies for molecular rotational reorientation for these sulfides lie in the predictable range of $1-3$ kcal/mole. Activation energies for rotational reorientation have also been computed for compounds $3 a, 3 b$ and $4 a$. Relaxation via spin-rotation (SR) appears to dominate in triphenylphosphine (1 a) and 1 -pheny $1-4$-phosphorinanone (4a). The results of our investigation point towards the chemical shift anisotropy (CSA) mechanism as the major contributing factor in the relaxation of the phosphine oxides $1 b, 2 b, 3 b$ and $4 b$. For most of the systems examined, the T_{1} values were found to increase with decrease in concentration.

For reasons outlined in chapter I, the fast inversion recovery Fourier transform (FIRFT) ${ }^{9}$ method has been used for all our T_{1} measurements. The T_{1} values are computed by fitting the signal intensities (by a non-1inear, least-squares fitting procedure) to the expression of Eq. (11):45

$$
M_{\tau}=A+B \exp \left(-\tau / T_{1}\right)
$$

Eq. (11)

With a view to confirm that a shorter waiting time ($\simeq 2 \mathrm{~T}_{1}$) between the pulse sequences (as in FIRFT) did not lead to the T_{1} values significantly different from those obtained with a longer time delay ($\simeq 5 \mathrm{~T}_{1}$ as in IRFT), the relaxation times of ${ }^{31} \mathrm{p}$ nuclei in a few selected compounds were determined by both the IRFT and FIRFT methods. The results are reported in Table I. A similar investigation on

TABLE III

COMPARISON OF IRFT WITH FIRFT

Cpd.	Conc. (moles/1iter) ${ }^{a}$	$\begin{aligned} & \text { Temp } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{array}{r} \mathrm{T}_{1} \text { values } \\ \text { IRFT } \end{array}$	$\begin{gathered} (\sec)^{c} \\ \text { FIRFT } \end{gathered}$
1 b	0.2	35	$19.1 \pm 0.6(100)$	$18.4 \pm 0.8(40)$
$\stackrel{1 c}{\sim}$	0.2	35	$31.6 \pm 0.7(150)$	$32.4 \pm 0.1(60)$
			$31.8 \pm 0.8(150)$	$32.6 \pm 0.2(60)$
		15	$27.7 \pm 0.3(150)$	$27.7 \pm 0.5(60)$
			$28.1 \pm 0.2(150)$	$27.4 \pm 0.2(40)$
$2 \mathrm{c}$	0.2	35	$11.8 \pm 0.1(150)$	$11.9 \pm 0.1(25)$
		15	$8.35 \pm 0.14(75)$	$8.50 \pm 0.14(20)$
$3 \mathrm{c}$	0.2	35	$8.93 \pm 0.08(100)$	$9.23 \pm 0.11(18)$
			$8.77 \pm 0.28(100)$	$9.05 \pm 0.14(20)$
			$9.01 \pm 0.11(50)$	$9.14 \pm 0.09(20)$
		15	$6.60 \pm 0.06(40)$	$6.63 \pm 0.08(15)$
			$6.15 \pm 0.05(40)$	$6.60 \pm 0.08(15)$

${ }^{a}$ In $\mathrm{DCCl}_{3} . \quad \mathrm{All}$ solutions were degassed.
${ }^{\mathrm{b}}$ Temperature accurate to $\pm 2^{\circ} \mathrm{C}$.
${ }^{c}$ Waiting time, in sec, between the pulse sequences are given in the parenthesis.
the T_{1} values of ${ }^{13}$ C nuclei in phenol by Canet and co-workers workers ${ }^{9}$ reveal that the two sets of results do not differ by more than the experimental error.

Canet and co-workers ${ }^{9}$ have also found from their investigation of the relaxation behavior of ${ }^{13} \mathrm{C}$ in benzene that the FIRFT method is relatively insensitive to pulse characteristics. Reported in Table II are the T_{1} values measured for two different sets of pulse angles. As the data indicate, small changes in pulse characteristics do not significantly affect the T_{1} values.

Reported in Table $I I I$ and Table $I V$ are the T_{1} values for the compounds investigated. Relaxation data for the phosphines were collected in acetone- $\underline{d}_{6} . \operatorname{DCC1}_{3}$ was used as the solvent for all other compounds. Although T_{1} values of ${ }^{31}{ }^{P}$ in phosphines have been reported previously in DCC1 ${ }_{3}$ solvent, ${ }^{27}$ we have observed that the use of DCCl_{3} for phosphines resulted in T_{1} values that were not reproducible and decreased with time. Although HCBr_{3} and triphenylphosphine (1a) are reported to react at $150^{\circ} \mathrm{C}, 8^{8}$ to our knowledge no systematic analysis of the reaction mixture has been reported. Whether or not HCCl_{3} reacts with phosphines to a small extent on extended exposure is still apparently an unanswered question and could be the cause of the lack of consistency in the
 gave T_{1} values for the phosphines that were not reproducible and decreased with time.

Three mechanisms, namely, dipole-dipole (DD) interaction,

TABLE IV

EFFECT OF PULSE ANGLES ON T_{1} VALUES

Cpd.	$\left(180^{\circ}-\tau-90^{\circ}\right) \quad \mathrm{T}_{1}(\mathrm{sec})^{\mathrm{a}}$	$\left(172^{\circ}-\tau-86^{\circ}\right)$
2 c	$11.9 \pm 0.1(35)$	$11.9 \pm 0.1(35)$
	$8.69 \pm 0.08(15)$	$8.50 \pm 0.14(15)$
3 c	$9.05 \pm 0.14(35)$	$9.14 \pm 0.09(35)$
	$6.65 \pm 0.05(15)$	$6.60 \pm 0.08(15)$

a Temperature values in ${ }^{\circ} \mathrm{C}$ are given in the parenthesis. Pulse angles were adjusted by controlling the duration of the pulse width.

TABLE V

RELAXATION DATA FOR SYSTEMS $\underset{\sim}{1}-\underset{\sim}{\sim}$

Cpd.	Conc. es/1iter)	$\mathrm{T}_{1}(\mathrm{sec})$		
		$15^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$
$\stackrel{1}{\sim}$	0.05	23.2 ± 0.4	20.2 ± 0.3	17.3 ± 0.2
2a	0.05	20.6 ± 0.7	21.3 ± 0.3	22.7 ± 0.2
3 a	0.05	16.5 ± 0.4	19.1 ± 0.1	21.1 ± 0.2
4a	0.05	16.0 ± 0.2	16.0 ± 0.2	14.9 ± 0.1
1 b	0.2	14.4 ± 0.2	15.6 ± 0.6	18.7 ± 1.2
2 b	0.2	6.4 ± 0.07	7.07 ± 0.23	8.37 ± 0.14
3 b	0.2	3.78 ± 0.02		6.28 ± 0.47
4 b	0.2	8.79 ± 0.04	9.85 ± 0.07	11.3 ± 0.3
1 c	0.2	27.5 ± 0.3	29.7 ± 0.2	32.5 ± 0.1
2 C	0.2	8.60 ± 0.1	9.90 ± 0.2	11.9 ± 0.1
3 c	0.2	6.61 ± 0.07	7.98 ± 0.16	9.14 ± 0.1
4 c	0.2	13.2 ± 0.0	14.7 ± 0.3	16.0 ± 0.1
$\stackrel{5}{\sim}$	0.2	9.78 ± 0.05	10.8 ± 0.2	12.6 ± 0.2

TABLE VI

RELAXATION DATA FOR SYSTEMS $\underset{\sim}{\sim} \underset{\sim}{4}$

Cpd.	$\begin{gathered} \text { Conc. } \\ \text { (moles/liter) } \end{gathered}$	$15^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{T}_{1}\left(\begin{array}{c} \text { sec }) \\ 25^{\circ} \mathrm{C} \end{array}\right. \end{gathered}$	$35^{\circ} \mathrm{C}$
$\stackrel{1 a}{\sim}$	0.03	27.8 ± 0.4	23.1 ± 0.3	21.1 ± 0.5
2a	0.03	20.2 ± 0.7	23.3 ± 0.2	25.2 ± 0.7
$3{ }^{3}$	0.03	17.5 ± 0.5	18.8 ± 0.3	20.1 ± 0.4
$\stackrel{4}{\sim}$	0.03	15.4 ± 0.2	14.4 ± 0.1	14.0 ± 0.2
$\stackrel{1}{\sim}$	0.1	18.9 ± 0.2	19.9 ± 0.6	24.3 ± 1.2
2 b	0.1	6.45 ± 0.1	7.45 ± 0.14	9.94 ± 0.45
3 b	0.1	5.42 ± 0.05	6.25 ± 0.11	7.03 ± 0.25
4 b	0.1	10.4 ± 0.3	11.1 ± 0.3	12.1 ± 0.3
1 c	0.1	27.4 ± 0.2	29.7 ± 0.3	32.9 ± 0.2
2 c	0.1	9.48 ± 0.06	10.7 ± 0.1	12.2 ± 0.2
3 c	0.1	7.15 ± 0.04	8.30 ± 0.08	9.75 ± 0.12
$\stackrel{4 c}{\sim}$	0.1	13.3 ± 0.1	15.7 ± 0.5	16.6 ± 0.3

spin-rotation interaction (SR) and chemical shift anisotropy (CSA) could contribute to the relaxation of the ${ }^{31} \mathrm{p}$ nucleus in the systems investigated. ${ }^{34}$ since none of the molecules examined has a spin quantum number $I>1 / 2$, scalar coupling (SC) mechanism cannot make any contribution to the relaxation phenomena. 7,34 In general, for most of the compounds (under the conditions examined) the relaxation value increased with an increase of temperature. However, for both triphenylphosphine (1 a) and 1 -phenyl-4-phosphorinanone (4a), the relaxation times were found to decrease with increasing temperature, a trend that should be expected if spin-rotation (SR) interaction was the predominant relaxation mechanism. 34 A similar trend was observed by Kooli and co-workers with triethylphosphine and triphenylphosphine in DCCl_{3} solvent. 27 Usually the $S R$ mechanism plays an important role in small symmetrical molecules (such as in the ${ }^{13}$ C relaxation process for methane, cyclopropane, etc.) or in small segments of larger molecules (such as in the ${ }^{13} \mathrm{C}$ relaxation in CH_{3} groups). ${ }^{34}$ Hence, it was somewhat surprising that the $S R$ process was the predominant relaxation mechanism for a molecule of the size of triphenylphosphine (1a). In the absence of geminal or vicinal protons, the $D D$ interaction cannot be the dominant relaxation mechanism. This consideration and the fact that the molecule possesses an axis of symmetry (passing through the lone pair and phosphorus) may perhaps account for the dominance of the $S R$ mechanism. This result is also in keeping with a similar observation made by Dale
and Hobbs ${ }^{10}$ on trimethyl phosphite, a compound with similar symmetry properties as that of triphenylphosphine.

Although the change in T_{1} with temperature for 1 -phenyl-4-phosphorinanone (4a) was in the same direction as in triphenylphosphine ($\underbrace{1 a}$), it was not as significant as in the latter. The presence of neighboring protons $H-2$ and $H-6$ may permit the $D D$ mechanism to compete favorably with the $S R$ mechanism in $4 \underset{\sim}{a}$. Also changes in the molecular symmetry in 4a may have diminished the contribution of the $S R$ mechanism. It is quite possible that the combined motion of ring reversal and molecular rotation reduces the tumbling rate of the molecule, with the consequent increase in effective correlation time τ_{c}. This lengthening of the τ_{c} value in the region of motional narrowing may account for the improved efficiency of the DD mechanism. ${ }^{34}$ While T_{1} values decrease with increase in temperature when $S R$ is the predominant mechanism, the opposite behavior is often the result when DD is the dominant mechanism. ${ }^{34}$ Since the temperature dependence of these two mechanisms are in the opposite directions, it is conceivable that the decrease in T_{1} with increase in temperature (due to $S R$) is moderated by the opposing trend (due to DD) with a predominance of the SR mechanism as the net result.

Attempts to measure the nuclear overhauser enhancement (NOE) factor by Eq. (13) often resulted in η values higher than the theoretical maximum of 1.235. The theoretical maximum is related to the gyromagnetic constants of the ${ }^{1} H$
and ${ }^{31} \mathrm{p}$ nuclei according to Eq. (14):

$$
\begin{equation*}
\eta=\left(S_{\infty} / S_{0}\right)-1 \tag{13}
\end{equation*}
$$

$S_{\infty}=$ the intensity of the signal with the heteronuclear decoupler turned on during the entire measurement period.
$S_{o}=$ the signal intensity with the decoupler gated off during a suitable delay period prior to the analytical 90° pulse and gated on during the pulse and the acquisition.

$$
\begin{equation*}
\eta=\gamma_{H} / 2 \gamma_{P}=1.235 \tag{14}
\end{equation*}
$$

The programme GENLSS, ${ }^{13}$ which computes η values from Eq. (15) could not be used because this programme is not compatible with the Nicolet $T T-100$ computer system coupled to a Varian $X L-100(15)$ spectrometer. Hardware is also lacking on this unit to perform an NOE and a non NOE experiment in a rapid alternating manner.

In the absence of NOE measurements, it is not possible to gauge precisely the extent of DD interaction to the overal1 relaxation time. As discussed in chapter I, the effectiveness of dipolar relaxation depends in the effective correlation time $\tau_{c}\left\{T_{1}=f\left(\tau_{c}\right)\right\} .34$ The temperature dependence of the latter can be written in the form of an Arrhenius type Eq. (16):

$$
\begin{equation*}
\tau_{c}=\tau_{c_{o}} \exp (\Delta E / R T) \tag{16}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } \tau_{c_{o}}= & a \operatorname{constant} \\
\Delta \mathrm{E}= & \text { activation energy for molecular } \\
& \text { rotational reorientation }
\end{aligned}
$$

The temperature dependence of dipole-dipole relaxation is that of the correlation time. Hence, if DD interaction is the predominant relaxation mechanism, the temperature dependence of relaxation time should also follow an Arrhenius type Eq. (17):

$$
\begin{equation*}
T_{1}=K \exp (-\Delta E / R T) \tag{17}
\end{equation*}
$$

where $K=a$ constant

A semilogrithmic plot of relaxation time versus the reciprocal temperature should give a straight line and from the slope of which the activation energy for molecular reorientation can be evaluated. Shown in Figures 1-4 are the plots of the logarithm of the relaxation time versus the reciprocal temperature for those systems where a linear relationship is observed. This suggests that for these systems under the conditions specified, $D D$ is the predominant relaxation mechanism.

Reported in Table V are the activation energies, obtained from the slope of these straight line plots. The $\triangle E$ values, for molecules of the size examined, lie in the predictable range of $1-3 \mathrm{kcal} / \mathrm{mole} .^{7}$ The activation energies seem to correlate reasonably well with the size and shape of the molecules. The relatively small and symmetrical molecule, such as triphenylphosphine sulfide ($\underset{\sim}{c}$), has a lower

Figure 1. Temperature dependence of spin-1attice relaxatimes in $3 a$ and 5 . Orepresents 0.05 M 3 a ;

Figure 2. Temperature dependence of spin-1attice relaxation times in 3 b and 4 b . Orepresents 0.1 M 4 b ; Δ represents 0.2 M 4 b ; ロrepresents 0.1 M 3 W .

Figure 3. Temperature dependence of spin-1attice relaxation times in $1 \mathrm{c}, ~ 2 \mathrm{c}$ and 3 c . Orepresents 0.1 M 1 \mathbb{c}; Δ represents 0.1 M 2c; \square represents 0.1 M 3c.

Figure 4. Temperature dependence of spin-lattice relaxation times in $1 c, 2 c, 3 c$ and 4c. O represents 0.2 M 1c. Δ represents 0.2 M 2c. ロrepresents 0.2 M 3c. Orepresents 0.2 M 4.

TABLE VII

ACtivation energies for molecular ROTATIONAL REORIENTATION

Cpd.	Conc. $(\text { moles/liter })^{a}$	Coefficient of Determination ${ }^{\text {b }}$	$(\text { kcal/mole })^{c}$
$\stackrel{3 a}{\sim}$	0.05	0.988	2.2
3	0.1	0.997	2.3
4 ${ }_{\sim}$	0.1	0.994	1.4
1 c	0.2	0.998	1.5
2 c	0.2	0.994	2.9
3 c	0.2	0.991	2.9
4 C	0.2	0.995	1.7
$\underline{1}$	0.1	0.995	1.6
2 c	0.1	0.999	2.3
3 c	0.1	1.000	2.8

${ }^{\text {a Compound }} 3$ a is in acetone-d \mathbf{d}_{6} solvent and all other compounds are in DCCl_{3}.
$b_{\text {The }}$ coefficient of determination corresponds to the plot of $\log \mathrm{T}_{1} \mathrm{vs} 1 / \mathrm{T}_{1}$.
${ }^{\mathrm{C}}$ The error 1 imits for the activation energies are $\pm 1 \%$ or about $0.02 \mathrm{kca} / / \mathrm{mole}$.
activation energy. This implies that the molecule tumbles rather easily in solution. However, for the less symmetrical and relatively large molecules such as $2 c, 3 a, 3 b$ and 3c, the activation energies are found to be higher. The rotational reordentation of these larger molecules in solution probably requires a major reorganization of the solvent molecules in the solvent cage. In comparison with the molecules just cited, phosphorinanones $4 \underset{\sim}{b}$ and $\underset{\sim}{4}$ are smaller and more compact, and this is reflected in the lower activation energies for these molecules. Comparing the oxides $3 b$ and $4 \underset{\sim}{4}$ with the corresponding sulfides $3 c$ and $4 c$, the lower molecular weight oxides have lower activation energies as is reasonable. The T_{1} values for phosphorinanones $\underset{\sim}{4}$ are the first ever recorded for the family.

Illustrated in Figures $5-10$ is the influence of structure and temperature on the T_{1} values of phosphines $\underset{\sim}{l a}-3$, phosphine oxides $\underset{\sim}{1 b-3 b}$ and phosphine sulfides $\underset{\sim}{1 c}-3 c$, each system being examined at two different concentrations and three different temperatures. For both the sulfides and oxides, the change in structure from ($\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{X}$ to $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{XCH}_{2} \mathrm{X}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ resulted in a large decrese in the T_{1} values at all the temperatures and concentrations investigated. This is in keeping with our previous conclusion regarding the relaxation mechanism in sulfides. It may be recalled that sulfides relax predominantly by the DD mechanism. The presence of geminal protons has been shown ${ }^{34}$ to improve the efficiency of $D D$ interaction in ${ }^{13} \mathrm{C}$ relaxation.

Figure 5. Tr vs Structure for the phosphines
$\underset{\sim}{1 a}, \underbrace{}_{a}$ and $3 \underbrace{3 a}$ at 0.03 M.

Figure 6. T1 vs Structure for the phosphines 1a, 2a and 3 a at 0.05 M .

Figure 7. T1 vs Structure for the phosphine oxides $1 \mathrm{~b}, 2 \mathrm{~b}$ and 3 b at 0.1 m .

Figure 8. T_{1} vs Structure for the phosphine oxides $1 \mathrm{~b}, 2 \mathrm{~b}$ and 3 b at 0.2 M .

Figure 9. Th vs Structure for the phosphine sulfides $\xrightarrow[\sim]{c}, 2 \mathrm{c}$ and 3 c at 0.1 M .

Figure 10. Th vs Structure for the phosphine sulfides $\xrightarrow[\sim]{1 c}, 2 \mathrm{c}$ and 3 c at 0.2 M .

A similar effect may be expected for the ${ }^{31} \mathrm{p}$ relaxation process. In the absence of geminal protons, the vicinal protons could offer substantial assistance for the relaxation process via a DD interaction. This probably explains the considerable decrease in T_{1} values for the sulfides in going from $\underset{\sim}{c}$ to 2c. A similar large decrease in the T_{1} values for the corresponding oxides indicates a significant contribution from $D D$ for the relaxation of these molecules. Introduction of a second CH_{2} group, as in going from $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{XCH}_{2} \mathrm{X}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ to $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{XCH}_{2} \mathrm{CH}_{2} \mathrm{X}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$, resulted in a further decrease in T_{1} values under all the conditions examined. This observation again suggests a predominant (for sulfides) or significant (for oxides) contribution of DD in the relaxation process.

For the phosphines, however, a change from ($\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$ (1a)
 both $35^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ for the two concentrations investigated. It has already been cited that triphenylphosphine relaxed predominantly by the $S R$ mechanism. It is possible that in the system, bisdiphenylphosphinomethane (2a) both $S R$ and $D D$ interactions make substantial contributions to the relaxation process. However, since the T_{1} values in the latter system were observed to increase with increase in temperature, it is probable that the influence of the $S R$ process is outweighed by that of DD. Since $S R$ may not be as efficient in the less symmetric bisdiphenylphosphinomethane (2a) compared to the more symmetric triphenylphosphine, the above mentioned
results for $\underset{\sim}{2 a}$ are observed. In comparing $\underset{\sim}{2 a}$ with $\underset{\sim}{3 a}$, a decrease in T_{1} was observed for all the three temperatures and the two concentrations examined. This suggested a large DD contribution. At $15^{\circ} \mathrm{C}$, however, there was a monotonous decrease in T_{1} in going from la to for both the concentrations. At this lower temperature, the molecules apparently tumbled rather slowly in solution. The slower tumbling probably increased the effective rotational correlation time and thereby improved the efficiency of $D D$ interaction. At every temperature and concentration examined, the phosphine oxides were found to have lower T_{1} values compared to those of the sulfides. If the oxides and sulfides relaxed by the same mechanism, the relatively heavier sulfides, tumbling rather slowly in solution (as is evident from the activation energies for rotational reorientation) should be more efficiently relaxed. However, the contrary was observed. The lower T_{1} values for the oxides suggested that a different mechanism was operating in the case of the oxides. Kooli and co-workers ${ }^{27}$ concluded that in the case of triphenylphosphine oxide (1b) the results of their investigation were consistent with the operation of a CSA mechanism. The presence of a CSA mechanism has also been noted in some phosphoryl compounds ${ }^{10}$ containing $P=0$ bond. It is probable this mechanism was dominant in all the oxides examined in our work. Presumably, the $P=0$ bond disturbed the isotropic electron distribution around the ${ }^{31} p$ nucleus, resulting in substantial values for the anisotropy tensor.

Lowering the concentration resulted in an increase in T_{1} values for both the sulfides and the oxides at all the three temperatures studied. Tt is probable that lowering the concentration reduced constraints on molecular tumbing and increased tumbling rate. This would result in a lower value for the effective rotational correlation time and consequently would reduce the efficiency of $D D$ contribution. The effect of concentration on the relaxation times of phosphines was found to be irregular.

Compared to triphenylphosphine sulfide (1a) and triphenylphosphine oxide (1b), the salt methyltriphenylphosphonium iodide ($\underset{\sim}{5}$) had a lower T_{1} value at each of the three temperatures examined. This may partly be due to the presence of nearby protons in the CH_{3} group. However, a more important consideration may be the formation of ion-pairs in solution. ${ }^{27}$ As a result of ion-pair formation the tumbling rate of the phosphonium ion could be restricted and consequently the effective correlation time should increase. This increase in τ_{c} in the region of motional narrowing could account for the improved efficiency of the DD mechanism.

Thus, the T_{l} values of ${ }^{31} \mathrm{P}$ in four classes of phosphorus compounds show a pattern of behavior similar to the T_{1} values of ${ }^{13}$ C nuclei. The presence of geminal or vicinal protons assists in the relaxation process. A decrease in viscosity or an increase in temperature, in general, increases the T_{1} values. Any modification in the size and geometry
of the molecule that increaes ${ }^{T}$ c resulted in a more efficient relaxation process and smaller T_{1} values.
Error Analysis

The activation energies were evaluated using Eq. (17):

$$
T_{1}=K \exp (-\Delta E / R T)
$$

Eq. (17)

Eq. (17) yields the following formula for the relative error in ΔE, where σ_{T} and σ_{T} are the errors associated with T and T_{1} respective1y.

$$
\left(\sigma_{\Delta E} / \Delta E\right)^{2} \simeq\{\partial(\Lambda E) / \partial T\}^{2}\left(\sigma_{T} / \Delta E\right)^{2}+\{\partial(\Delta E) / \partial T\}^{2}\left(\sigma_{T_{1}} / \Delta E\right)^{2}
$$

Substituting for the partial derivatives of ΔE with respect to T and T_{1} and simplifying, we get Eq. (19):

$$
\left(\sigma_{\Delta E} / \Lambda E\right)^{2} \simeq\left(\sigma_{T} / T\right)^{2}+1 /\left\{\ln \left(\mathrm{k}_{\mathrm{T}} / \mathrm{T}_{1}\right)\right\}^{2}\left(\sigma_{\mathrm{T}_{1}} / \mathrm{T}_{1}\right)^{2} \quad \operatorname{Eq}
$$

At the temperatures at which the T_{1} measurements are made, an error of $3^{\circ} \mathrm{C}$ introduces an error of only 1% in ΔE.

PLATE 1

Signal intensity vs for the relaxation of ${ }^{31}$ P nucleus in 0.2 M triphenylphosphine sulfide (1c), at $35^{\circ} \mathrm{C}$.

PLATE II

τ (sec)
Signal intensity vs τ for the relaxation of ${ }^{31}{ }^{1}$ nucleus in 0.1 M triphenylphosphine sulfide (lc), at $25^{\circ} \mathrm{C}$.

EXPERIMENTAL

GENERAL INFORMATION

A11 T_{1} measurements were made on a Varian $X L-100(15)$ NMR spectrometer equipped with a Nicolet TT-100 PFT accessory operating at 40.5 MHz for ${ }^{31} \mathrm{P}$ observation. The spectra were recorded in an $F T$ mode with the solvent (DCCl_{3} or acetone-d $\underline{6}_{6}$) providing the necessary deuterium lock. The solvent DCCl_{3} (99.8 atom\% D) and acetone-d $\mathbf{d}_{6}(99+$ atom\% D) were obtained from Aldrich Chemical Company. All solutions were flushed with dry, oxygen-free nitrogen for 5 minutes. The samples were then degassed by repeated (at least 5 times) freezing, evacuation and thawing. The tubes were finally sealed under vacuum with a hand torch. A Varian temperature regulator was used for temperature control during the NMR experiments. Λ sealed capillary filled with methanol and a trace of HC1 placed in a 5 mm NMR tube containing 0.5 mL acetone-d \underline{d}_{6} was used as a check to measure the temperature according to the method of Van Geet. ${ }^{9} 9$ The fast inversion recovery fourier transform method recommended by canet and co-workers ${ }^{9}$ was used for all the T_{1} measurements. A waiting period ranging from 1 sec upto 1.5 to $2 \mathrm{~T}_{1}$, as suggested by Kowalewski and
co-workers, ${ }^{29}$ was allowed between the 180° and 90° pulses. A minimum of nine experimental points were used for each measurement. A trial run at $35^{\circ} \pm 1^{\circ} \mathrm{C}$ preceded the regular measurement of T_{1} values for all the sample. At least two and upto four separate measurements were made for each concentration at each of the three different temperatures. The temperature chosen for this investigation being $35^{\circ} \mathrm{C}$, $25^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$. The 180° and 90° pulses were obtained with pulse widths of $24 \mu \mathrm{~s}$ and $12 \mu \mathrm{~s}$, respectively. A waiting perfod of 200μ s was allowed after the 90° pulse before the data acquisition commenced. A non-linear, three-parameter expression, Eq. (10) was used to evaluate T_{1} values from the experimental points. ${ }^{43}$

Triphenylphosphine (${\underset{\sim}{\sim}}_{1}^{1}$) was obtained commercially from Eastman Organic Chemicals and purified by recrystallization from pentane containing a minimum amount of benzene, $m p 80-81^{\circ} \mathrm{C}\left\{1 \mathrm{it} . \mathrm{A}^{48} \mathrm{mp} 79^{\circ} \mathrm{C}\right\}$.

Bis(diphenylphosphino)methane ($\underset{\sim}{2}$) was obtained from Pressure Chemical Company and was used as such. .The compound melted at $119-120^{\circ} \mathrm{C}$ and gave only one signal (23.1 ppm with respect to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) in the ${ }^{31} \mathrm{P}$ NMR spectrum \{1it. ${ }^{25}$ mp $\left.122^{\circ} \mathrm{C}\right\}$.

Ethylenebis(diphenyl)phosphine (${ }_{\sim}^{3}$) was obtained commercially from Arapahoe Chemicals and melted at $138-139^{\circ} \mathrm{C}$ $\left\{1 \mathrm{it} .{ }^{25} \mathrm{mp} 159-161^{\circ} \mathrm{C}\right\}$.

Triphenylphosphine sulfide ($\underset{\sim}{4}$) was obtained from Aldrich Chemical Company and was used as such. The compound
melted at $162-164^{\circ} \mathrm{C}\left\{1 \mathrm{it} . \mathrm{C}^{3} \mathrm{mp} 163^{\circ} \mathrm{C}\right\}$. The ${ }^{31} \mathrm{P}$ NMR spectrum of the compound gave a single signal at -39.9 ppm.

Triphenylphosphine oxide (5) was obtained from Aldrich Chemical Company and was purified by recrystallization from petroleum ether containing a minimum amount of benzene, mp $156-157^{\circ} \mathrm{C}\left\{1\right.$ it. $\left.\mathrm{A}^{47} \mathrm{mp} 154-155^{\circ} \mathrm{C}\right\}$. The ${ }^{31} \mathrm{P}$ NMR spectrum gave a signal at $\mathbf{- 2 3 . 0} \mathrm{ppm}$.

$$
\text { Preparation of } 1 \text {-Phenyl-4- }
$$

phosphorinanone ($\underset{\sim}{6}$)

1-Pheny1-4-phosphorinanone (${\underset{\sim}{~}}^{\text {) }}$) was made following the literature procedure. ${ }^{45}$ Recrystallization (cyclohexane: hexane, in $3: 1$) and subsequent drying over $\mathrm{P}_{2} \mathrm{O}_{5}$ to constant weight gave pure 1-phenyl-4-phosphorinanone (6), mp $43^{\circ} \mathrm{C}$ $\left\{1\right.$ it. $\left.{ }^{37,40,52} \mathrm{mp} 42 \cdot 5-43.5^{\circ} \mathrm{C}\right\}$.

Preparation of Methylenebis(dipheny1)phosphine Oxide (7)

Bis(diphenylphosphino)methane (2a) (3.0 g, 0.0078 mole) dissolved in 75 mL of benzene was placed in a 250 mL , Erlenmeyer flask equipped with a magnetic stirrer. The solution was cooled to $0^{\circ} \mathrm{C}$. To the cooled solution was added dropwise, with stirring, a solution of $\underline{m}^{-C 1 C} 6_{6} \mathbf{H}^{\mathrm{CO}}{ }_{3} \mathrm{H}$ ($4.0 \mathrm{~g}, 0.023 \mathrm{~mole}$) in 20 mL of ether, maintaining the temperature at $0^{\circ} \mathrm{C}$. After the addition, the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 15 hr at room temperature. The reaction mixture was then washed with $3 \mathrm{x} 50-\mathrm{mL}$ portions
of $10 \% \mathrm{NaHCO}_{3}$ solution, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered; the solvent was removed by rotary evaporation. The crude solid was recrystaliized from $1: 1$ acetone and benzene mixture to yield $1.0 \mathrm{~g}(31 \%)$ of $\underset{\sim}{7}, \operatorname{mp} 181-183^{\circ} \mathrm{C}\left\{1 \mathrm{it} .44 \mathrm{mp} 181-182^{\circ} \mathrm{C}\right\}$.

Preparation of $1,2-$ Ethanediylbis(diphenyl) phosphine Oxide ($\underset{\sim}{8}$)

Ethylenebis (diphenylphosphine) (3a) (4.0 g, 0.01 mole) dissolved in 75 mL of benzene was placed in a 250 mL , Erlenmeyer flask equipped with a magnetic stirrer. The solution was cooled to $0^{\circ} \mathrm{C}$. To the cooled solution was added, dropwise, with stirring, a solution of $\underline{m}_{-} \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$ ($4.5 \mathrm{~g}, 0.026 \mathrm{~mole}$) in 20 mL of ether, maintaining the temperature at $0^{\circ} C$. After the addition, the reaction mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and 15 hr at room temperature. The rest of the procedure was the same as for the preparation of 7. The crude solid was recrystallized (acetone:benzene, in $1: 1$) to yield $1.2 \mathrm{~g}(28 \%)$ of $\underset{\sim}{8}, \operatorname{mp} 265-266^{\circ} \mathrm{C}\{1$ it. 28 mp $\left.276-278^{\circ} \mathrm{C}\right\}$.

Preparation of 1 -Pheny $1-4-$ phosphorinanone

$$
1 \text {-0xide }(9)
$$

1-Pheny $1-4$-phosphorinanone 1 -oxide (9) was prepared following the 1iterature procedure, ${ }^{49} \mathrm{mp} 164-165^{\circ} \mathrm{C}$ \{1it. 50 mp $\left.164-165^{\circ} \mathrm{C}\right\}$.

Preparation of Methylenebis(dipheny1)phosphine Sulfide (lo)

Bis(diphenylphosphino)methane (3a) (4.0 g, 0.0104 mole) dissolved in 100 mL of reagent grade toluene was placed in a 250-mL, round-bottom flask equipped with a condenser, a nitrogen inlet and a magnetic stireer. To this solution was added 1.0 g (0.0313 g at) of sulfur, and the mixture was boiled for 15 hr . At the end of this period, the mixture was cooled and filtered and the solvent was removed (rotary evaporation). The crude yellowish residue was recrystallized (metahnol and benzenc, in 1:1). Λ second recrystallization from acetonitrile and subsequent drying over $\mathrm{P}_{2} \mathrm{O}_{5}$ gave 3.0 g (64%) of a pure colorless crystalline $\underset{\sim}{10}$, mp $174-176^{\circ} \mathrm{C}$ $\left\{11 t .{ }^{11} \mathrm{mp} 175-176^{\circ} \mathrm{C}\right\}$.

Preparation of $1,2-E t h a n e d i y l b i s(d i p h e n y l)-$ phosphine Sulfide (11)

Ethylenebis(diphenyl)phosphine (3a) (4.0 g, 0.01 mole) dissolved in 100 mL of reagent grade toluene was placed in a $250-\mathrm{mL}$, round-bottom flask equipped with a condenser, nitrogen inlet and a magnetic stirrer. To this was added $1.0 \mathrm{~g}(0.0313 \mathrm{~g}$ at) of sulfur and the mixture was boiled for 15 hr. I'he remaining steps were identical to those used for 10. Recrystalifzation (methanol:chloroform, in 3:1) of the crude yellow solid and drying the resulting sample over $\mathrm{P}_{2} \mathrm{O}_{5}$ at $110^{\circ} \mathrm{C}$ for 5 hr gave $2.1 \mathrm{~g}(45 \%)$ of pure, colorless $\underset{\sim}{11}$,
mp $228-229^{\circ} \mathrm{C}\left\{1\right.$ it. $\left.{ }^{25} \mathrm{mp} 196-198^{\circ} \mathrm{C}\right\}$.

Preparation of 1-Pheny1-4-phosphorinanone 1-Sulfide (12)

1-Phenyl-4-phosphorinanone 1 -sulfide was made following the 1 iterature procedure, ${ }^{50} \mathrm{mp} 144-145^{\circ} \mathrm{C}\left\{1 i t .{ }^{50} \mathrm{mp} 144-\right.$ $\left.145^{\circ} \mathrm{C}\right\}$.

> Preparation of Methyltriphenylphosphonium Iodide (13)

Triphenylphosphine (1a) (2.62g, 0.01 mole) and methyl iodide ($2.84 \mathrm{~g}, 0.02 \mathrm{~mole}$) were dissolved in 5 mL of reagent grade benzene. The mixture was stirred at room temperature for 15 hr. The solid formed was recrystallized by dissolving in a minimum amount of reagent grade methanol and adding dry ether to give $3.2 \mathrm{~g}(80 \%)$ of 13 , mp $185-186^{\circ} \mathrm{C}\left\{1\right.$ it. ${ }^{3}$ $\left.\operatorname{mp} 186^{\circ} \mathrm{C}\right\}$.

BIBLIOGRAPHY

1. Allerhand, A., Doddrell, D., Gluschko, V., Cochran, D. W., Cochran, D. W., Wenkert, E., Lawson, P. J. and Gurd, F. R. N., J. Am. Chem. Soc., 93, 544 (1971).
2. Allerhand, A., Doddrell, D. and Komoroski, R., J. Chem. Phys., 55, 189 (1971).
3. Bestmann, H. J. and Goetlich, L., Ann., 655, 1 (1962).
4. Bloch, F., Phys. Rev., 70, 460 (1946).
5. Bloch, F., Hansen, W. W. and Packard, M., Phys. Rev., 70, 474 (1946).
6. Bolton, P. H. and James, T. L., J. Am. Chem. Soc., 102 , 25 (1980).
7. Breitmaier, E., Spohn, K. H. and Berger, S., Angew. Chem. Internat. Edit., $14(3), 144$ (1975).
8. Burn, A. J. and Cadogan, J. I. G., J. Chem. Soc., 5788 (1963) .
9. Canet, D., Levy, G. C. and Peat, I. R., J. Magn. Reson., 18, 199 (1975).
10. Dale, S. W. and Hobbs, M. E., J. Phys. Chem., 75(23), 3537 (1971).
11. Davison, A. and Reger, D. L., Inorg. Chem., 10, 1967 (1971).
12. De Fountaine, D. L., Ross, D. K. and Ternai, B., J. Magn. Reson., 18, 276 (1975).
13. De Tar, D. F., Computer Programs for Chemistry, Vol: IV, Academic Press, New York, 1972.
14. Doddrell, D., Gluschko, V. and Allerhand, A., J. Chem. Phys., 56, 3683 (1972).
15. Emsley, J. W., Feeney, J. and Sutcliffe, L. H., in High Resolution $\frac{\text { Nuclear }}{2,1 \text { Magnetic }} \frac{\text { Resonance }}{\text { Spectroscopy, }}$ Vol. 1 and 2, Pergamon Press, Oxford, 1965.
16. Farrar, T. C. and Becker, E. D., in Pulse and Fourier Transform NMR, Introduction to Theory and Methods, Academic press, New York, 1971.
17. Freeman, R. and Hill, H. D. W., J. Chem. Phys., 53, 4103 (1970).
18. Freeman, R. and Hill, H. D. W., J. Chem. Phys., 54, 3367 (1971).
19. Freeman, R., Hill, H. D. W. and Kaptein, R., J. Magn. Reson., $\underset{\sim}{\sim}, 82$ (1972).
20. Freeman, R., Hill, H. D. W. and Kaptein, R., J. Magn. Reson., $\underset{\sim}{7}, 327$ (1972).
21. Freeman, R. and Jones, R. C., J. Chem. Phys., 52, 465 (1970).
22. Glonek, T., J. Am. Chem. Soc., 98, 7090 (1976); Glonek, T. and Van Wazer, J. R., J. Phys. Chem., 80, 639 (1976); Glonek, T., Wang, P. J. and Van Wazer, J. R., J. Am. Chem. Soc., 98, 7968 (1976) .
23. Huntress, Jr., W. T., J. Chem. Phys., 48, 3524 (1968).
24. Imanari, M., Ohuchi, M. and Ishizu, K., J. Magn. Reson., 14, 374 (1974).
25. Issleib, K. and Muller, D. W., Chem. Ber., 92, 3175 (1959) .
26. Kohler, J. and Klein, M. P., Biochemistry, 15,967 (1976) .
27. Kooli, N. J., De Koning, A. J. and De Bie, M. J. A., J. Magn. Reson., 25, 375 (1977).
28. Kosolapoff, G. M. and Struck, R. F., J. Chem. Soc., 2423 (1961).
29. Kowalewski, J., Levy, G. C., Johnson, L. F. and Palmer, L., J. Magn. Reson., 26, 533 (1977).
30. Lambert, J. B., Shurvel1, H. F., Verbit, L., Cooks, R. G. and Stout, G. H., in Organic Structural Analysis, MacMillan Publishing Co., Inc. New York, 1976 .
31. Leipert, T. K., Freeman, W. J. and Noggle, J. H., J. Chem. Phys., 63(10), 4177 (1975).
32. Levy, G. C., Acc. Chem. Res., $\underset{\sim}{6}$, 161 (1973).
33. Levy, G. C. and Nelson, (G. L., J. Nin. Chem. Soc., 94, 4897 (1972).
34. Levy, G. C. and Nelson, G. L., in Carbon-13 Nuclear Magnetic Resonance for Organic Chemists, Wiley Interscience, New York, 1972 .
35. Levy, G. C. and Peat, I. R., J. Magn. Reson., 18,500 (1975) .
36. Markley, J. L., Horsley, W. H. and Klein, M. P., J. Chem. Phys., 55, 3604 (1971).
37. Mathey, F. and Muller, G., C. R. Acad. Sci. Ser. \underline{C}, 269, 158 (1969).
38. McDonald, G. G. and Leigh, J. S., J. Magn. Reson., 9, 358 (1973).
39. McLaughlin, A. C., Culiis, P. R., Berden, J. A. and Richards, R. E., J. Magn. Reson., 28, 146 (1975).
40. McPhail, A. T., Breen, J. J. and Quin, L. D., J. Am. Chem. Soc., 93, 2574 (1971).
41. Niederberger, W. and Seelig, J., J. Am. Chem. Soc., 98, 3704 (1976).
42. Noggle, J. H. and Schirmer, R. E., in The Nuclear Overhauser Effect, Chemical Applications, Academic Press, New York, 1971 .
43. Phillips, G. M., Hunter, J. S. and Sutton, L. E., J. Chem. Soc., 146 (1945).
44. Richard, J. J., Burke, K. E., O^{\prime} Laugh1in, J. W. and Banks, C. V., J. Am. Chem. Soc., 83, 1722 (1961).
45. Sass, M. and Ziessow, D., J. Magn. Reson., 25, 263 (1977) .
46. Snider, T. F., Morris, D. L., Srivastava, K. C. and Berlin, K. D., Org. Syn., 53, 98 (1973).
47. Standinger, H. and Hauser, E., Helv. Chim. Acta, 4,861 (1.921) .
48. Steinkopf, W. and Buchheim, K., Ber., 54B, 1024 (1921).
49. Van Geet, A. L., Ana1. Chem., 42, 679 (1970).
50. Venkataramu, S. D., Berlin, K. D., Ealick, S. E., Baker, J. R., Nichols, S. and van der Helm, D., Phosphorus and Sulfur, 7,133 (1979).
51. Vold, R. L., Waugh, J. S., Klein, M. P. and Phelps, Phelps, D. E., J. Chem. Phys., 48, 3831 (1968).
52. Welcher, R. P., Johnson, G. A. and Wystrach, $\dot{\text { V }}$. P., J. Am. Chem. Soc., 82, 4437 (1960).
53. Woessner, D. E., J. Chem. Phys., 42, 1855 (1965).
54. Yeagle, P. L., Hutton, W. C. and Bruce Martin, R., J. Am. Chem. Soc., 97, 7175 (1975).

VITA ${ }^{2}$
Krishnasamy Ramarajan
Candidate for the Degree of
Doctor of Philosophy

Thesis: Part I.	SYNTHESIS AND DNMR STUDIES OF CERTAIN
	DERIVATIVES OF 9-METHYLENE-7-OXA-1-
	THIASPIRO[4.5]DECAN-8-ONE

Major Field: Chemistry
Biographical:
Personal Data: The author was born in Moovanur, India, on August 1,1941 , to P. R. Krishnasamy and Sellapappu; married to Kalaiyarasi on June 13, 1969; has two sons and a daughter, Sivakumar, Sureshkumar and Arthi.

Education: The author was graduated from The Boy's High School, Srirangam, India, in 1957; received Bachelor of Science degree in Chemistry from St. Joseph's College, University of Madras, India, in 1961 ; received Master of Science degree in Chemistry from St. Joseph's College, University of Madras, Lndia, in 1963; completed requirements for the Doctor of Philosophy degree in Chemistry at Oklahoma State University, Stillwater, Oklahoma, in May, 1980.

Professional Experience: Assistant Professor in Chemistry at PSG Arts College, Coimabatore, India, from July 1963-August 1976; Graduate Teaching Assistant in the Department of Chemistry at Oklahoma State University, Stillwater, Oklahoma, from September 1976-December 1977; received a Halliburton Oil Company Fellowship for the summer
of 1978, an Alumni and Friends Scholarship for the summer of 1979, and research scholar during the summer of 1977, the spring and the fall of 1979 , and the spring of 1980 .

[^0]: ${ }^{\mathrm{a}}$ In DCCl_{3} solvent.

[^1]: ${ }^{\text {a }}$ Spectrum taken in KBr pellet.

