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CHAPTER I 

INTRODUCTION 

The purpose of this study is to investigate tl_le general mixed 

linear model using Bayesian techniques and to obtain the posterior 

distributions of the parameters involved in the model, especially the 

variance components. Such models contain both fixed and random fac

tors and are widely used ~n scientific investig,ations especially in 

biological, agricultural, and engineering ~tudies. 

This problem has drawn the attention of many research workers. 

Their studies can be grouped in to two approaches, namely, sampling 

theory (or classical approach) and Bayesian. 

Under classical studies there are three ma~n approaches to the 

problem. They are 

1. analysis of variance methods, 

2. max~mum likelihood methods, and 

3. m~n~mum norm methods. 

Due to computational difficulties and, sometimes, due to the posses

sion of certain undesirable properties (like a negative estimate for a 

variance) none of these methods is completely satisfactory in all 

situations. No general method is put forward to cover all situations 

and when alternative methods are suggested no principle has been laid 

down for choosing one among them as appropriate in a given problem. 

1 



Under the Bayesian approach, basically, all investigators have 

used Bayes' theorem after a suitable and convenient choice of a prior 

distribution for the parameters involved in the model. One group of 

workers have employed linear models, sometimes in a hierarchical order, 

for the prior distribution of the parameters and another group of wor

kers have used standard probability distributions. Most of the workers 

in the second group have used improper priors for the parameters. 

Regarding mixed linear models in multivariate cases, very little 

has been done under both sampling theory and Bayesian approaches. 

2 

In this study, inverse gamma distributions are used for the prior 

distributions of the variance components or ~n other words gamma dis

tributions for the precision components and the marginal and condition

al (conditional on the random factors) posterior distributions of the 

variance components are studied. Since the exact marginal distribu

tions are very difficult to obtain certain approximations are cons~

dered. Using the multivariate normal as an approximation for the multi

variate t, an approximation is obtained for the joint distribution of 

the random effects. On this basis, approximations are obtained for the 

distributions of the variance components. Further, closed expressions 

for the first two moments of the variance components are obtained using 

the approximate distribution of the random effects. The closeness of 

these approximations is numerically studied using Box's data. 

The organization of this thesis is as follows. The relevant 

literature is reviewed in Chapter II. Chapter III describes the model 

and the basic assumptions associated with the model and also discusses 

the conditional and marginal posterior distributions necessary for 

solving the problem. Chapter IV deals with the approximations to the 



various distributions of the parameters described in Chapter III. 

Chapter V discusses the l;'esults of a numerical study carried out to 

investigate the closeness of the approximations. Chapter VI contains a 

brief summary of the thesis and recommendations for further research. 

3 



CHAPTER II 

REVIEW OF LITERATURE 

There is considerable literature on the subject of variance com

ponents. As pointed out in Chapter I these could be broadly classified 

under two heads, namely, sampling theory ( or classical theory) methods 

and Bayesian methods. 

An exhaustive, but brief, survey of the different methods under 

sampling theory is given by Searle (1978). The book by Box and Tiao 

(1973) provides a good account of the Bayesian methodology as applied to 

linear models. Kleffe (1977) gives a good survey of the different 

methods of estimating variance components. A review of the related 

literature, under the different approaches, is given below. 

Analysis of Variance Methods 

Until about a decade ago, methods of estimation of variance compo

nents were based on equating the sums of squares of the entries in the 

analysis of variance to their expected values, assuming the existence 

of second order moments. This was first proposed by Daniels (1939) and 

Winsor and Clarke (1940). Henderson (1953) has an important paper in 

this area where he discussed the different possibilities under three 

cases, methods I, II, and III. Searle (1968) gives a good description 

of these methods and indicates various generalizations. The properties 

of estimates provided by such methods have been studied by Graybill and 

4 
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Wortham (1956) and Graybill and Hulquist (1961). There are no distribu

tional assumptions involved in the application of these methods except

ing that second order moments are assumed to exist. These methods yield 

translation invariant quadratic unbiased estimates. But negative 

estimates could be realized and the theoretical basis is not clear. 

Further, there is no single general method to cover all cases. In 

general, these estimates are uniformly minimum variance unbiased esti

mates for a large number of balanced designs. But for unbalanced designs 

these are not the best. Seely (1975) gives an example of an estimate of 

a variance component based on Analysis of Variance which is inadmissible 

in the class of quadratic unbiased estimates. 

Maximum Likelihood Methods 

Even though maximum likelihood, as a general method of estimation, 

was introduced by Fisher a few decades ago this method received little 

attention until recently. This is due to the computational difficulties 

involved in applying this method to the case of mixed linear models 

since the likelihood equation is quite complicated in such cases. Using 

normality assumptions on the error component, Hartley and Rao (1967) 

first introduced the maximum likelihood method to estimate the variance 

components. They also proposed a .computational algorithm for solving 

the likelihood equation and showed that the estimates are consistent 

and asymptotically normally distributed under certain conditions. In 

general, these estimates are biased and computationally quite difficult. 

Harville (1977) pointed out that the likelihood equation may have mul

tiple roots which may not lie within the parameter space at all. 



Patterson and Thompson (1971) considered a variation of the max1-

mum likelihood method which they called restricted maximum likelihood 

method. This method consists in assuming normality,·as with maximum 

likelihood, but maximizing only that portion of the log likelihood 

which is invariant to changes in fixed effects. Corbeil and Searle 

(1976a, 1976b) adapted Patterson and Thompson's procedure and developed 

a new procedure which is applicable.to mixed models also. Corbeil and 

Searle (1976b) obtained explicit solutions for the maximum likelihood 

and restricted maximum likelihood equations under normality for four 

common bafanced variance component models. In most balanced cases the 

two estimates turn out to be the same. 

Minimum Norm Methods 

6 

Rao (197la, 197lb) introduced m1n1mum norm quadratic unbiased esti

mates (MINQUE) and minimum variance quadratic unbiased estimates 

(MIVQUE). A linear function of the variance components is estimated 

by a quadratic function in the observations such that the estimate is 

translation invariant, unbiased, and a certain norm (like the variance 

1n the case of MINQUE) is minimized. There are no distributional assump

tions, but estimates could be negative. This is due to the knowledge 

of the. parameter space not being utilized in the estimation process. 

Further, prior estimates of the variance components are needed, even

though, under certain conditions, the estimates are independent of the 

prior estimates. 

Hultquist and Atzinger (1972), assuming normality and independence, 

obtained minimal sufficient statistics for the parameters in a mixed 

effects model. They showed the existence of minimum variance unbiased 



estimates and how to explicitly determine them. Swallow and Searle 

(1978) obtained a MIVQUE of the variance components in one way random 

model both for balanced and unbalanced data. 

Bayesian Methods. 

7 

Lindley and Smith (1972) using a hierarchical form of prior struc

ture, derived Bayesian alternatives to the least square estimators for 

the parameters in a linear model. Smith (1973) studied the Bayesian 

approach along the same lines in some more detail and discussed the 

general properties of the resulting estimates. Leonard (1975) considered 

a Bayesian approach to the linear model with unequal variances taking 

a linear model for the prior structure of the means and a log linear 

model for the variances. 

Improper priors have been extensively used in the study of variance 

components. Rhode (1972) used such priors to study the fixed effects 

model. Box and Tiao (1973) have made an extensive contribution to the 

Bayesian inference for the variance components of mixed linear models. 

They used improper prior distributions for the expected mean squares of 

the corresponding analysis of variance procedures. Hut, their methods 

do not explain how to handle prior information which is always available, 

atleast in some limited measure. Sahai (1974) obtained sotne formal 

Bayes estimates of variance components in the case of a balanced three 

state nested random model using suitable loss functions. All the 

studies, mentioned above, are restrictive in the sense that they deal 

with specific problems like the one way random model and numerical 

integration techniques are needed to normalize the posterior distribu

tions and to evaluate the posterior moments. 



. Gharraf (1979) obtained conditional posterior estimates of the 

van_ance components 1n a general mixed 1 inear model, fixing the random 

effects at their least square estimates. He used improper priors for 

the fixed effects and inverse gamma priors for the variance components. 

Broemeling and Gharraf (1979), using proper priors for all the parame

ters ln a general mixed linear model, obtained the posterior distribu

tions of the variance components fixing the random effects. 

8 

It is clear, ·from the preceding survey, that no general solution 

to the problem of var1ance components, covering a11 cases, currently 

exists. In this thesis ab attempt is being made to develop a satisfac

tory Bayesian solution to that problem. 



CHAPTER III 

THE POSTERIOR ANALYSIS 

The Model 

The model investigated ~n this thesis ~s the general mixed linear 

model 

where 

X 

e 
"' 
u 

b 
"' 
e 
"' 

If the 

y 

"' 
= xe 

"' 
+ Ub 

"' 
+ 

~s a n-vector of observations, 

e 

"' 

is a known i1 x p design matrix of full rank ( n > p), 

is a p-vector of real unknown parameters, 

~sa known n x m design matrix of rank m (m < n-p), 

is a m-vector of unobservable random variables, and 

l.S a n-vector of unobservable random variables. 

number of random factors the model and the 
.th 

~n ~s c ~-. 

random factor occurs atm. levels then b can be partitioned as 
~ "' 

where 

and b. 
1 ' ~ 

b' 
"' 

b. 
"'~ 

b. 
~ 

= 

I = (b. L' ~ 

b. 
2' ... , 

~ 

. . . ' 

b. b. 2' ... • m.) ~ ~ 
~ 

the levels of the 
. th 

factor, are m. ~-m. ~ 
~ 

9 
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i = 1, 2, •• ' c. If u = (u 1 , u2 , . . . ' U ) is the corresponding 
c 

partition of U, then the above model (3.1) can be rewritten as 

~ = x e + 
'\, 

c 
1: u. b. 

i=l l.'\, 1. 

+ e. 
'\, 

(3. 2) 

The assumptions, associated with the model, are the following: 

1. e has n-variate normal distribution with mean vector 0 
'\, '\, 

and dispersion matrix i I , rl being some unknown positive 
n 

number. 

2. b. 
'\.J.. 

has tn.-variate normal distribution with mean vector 0 
1. 

2 and dispersion matrix a. I 
1. m. 

2 
, a. being some unknown 

1. 
1. 

positive constant, i = 1, 2, ... , c. 

3. ~· ~' ~· . . . ' b are mutually independent. 
'IF 

4. Rank of Ui is mi and m1 + m2 + ... +me= m. 

The fixed effects are the elements of 8 and the variance components 
'\, 

2 2 
, a , and a ~ This model covers, as particular 

c 

cases, the models of almost all design problems encountered in practice. 

by 

The likelihood function of the parameters 8, ,, p, and b is given 

L(e, ,, P• b) a: ' 
'\, '\, '\, 

2 
-r = 1/cr > 0, 

'\, '\, '\, 

(n/2) 
exp {Cy - X9 - Ub) '(y - X9 - UbX;--r/2)} 

c 
n { ,. 

i=1 1. 

(m./2) 
1. exp(- T. b. 'b. / 2)} , 

1 '\,1 '\,1 

'· 1. 
I 2 m 1 a. > 0, b € R , and where 

1. '\, 

(3. 3) 
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The prior distributions for the parameters are assigned as follows: 

1. Each component of 8 has uniform distribution in (-oo, oo), 

2. T has gamma distribution with known parameters a > 0, and 

B > o. 

3. T • has gamma distribution with known parameters a. > 0, and 
1 1 

ja. > 0, 1 = 1 ' 2, ... c. 
1 ' 

4. The elements of~ and the precision parameters T, , 1 , T 2 , ... , 

'c are all mutually independent. 

Thus the joint prior density function of e' T' and p is given by 

-ST a-1 
a: e T 

'V 'V 

c 
II 

i=1 

-B ·T. a .-1 
{e 11,.1} 

1 

'''1''2' ... ''c > o. 

(3 .4) 

Using (3.3), (3.4), and Bayes' theorem, the joint posterior density 

of ~' T, ~' and~ is obtained as 

II!(~, T, p' b) a: 
'V 'V 

a + (n/2) - 1 
T 

-(,/2){ 2S + (~ - xe 
x e 

X 

c 
II 

i=l 
T. 

1 

'V 

a. + (m./2) - 1 
1 1 

p > 0' 
'V 'V 

- Ub)'(y- xe - Ub)} 
'V 'V 'V 'V 

- ( T • I 2) (b. I b. + 2(3 • ) 
1 rvl rv1 1 

e 

(3. 5) 

The above joint posterior density can be rewritten as 



{ o; + ( n/ 2) - 1 } 

" " x exp {(-T/2) {2B + y'Ry - b'U'R U b 
~ ~ ~ . ~ 

A A 

+ (b- b)'U'R U (b- b)+ (9- 9)'X'X (8 -· 8)} 
~ ~ t\. ~ ~ ~ ~ ~ 

c {a.+ (m./2)- 1} 
1 1 

X II 
i = 1 

T· 
1 

I 

12 

X eXp {(-T./2) (2s. +b. b.)} (3.6) 
1 1 ~1 ~1 

where 

" b = (U'R U) U'R y, 
~ ~ 

-1 
8 = (X'X) X' (y - u b)' 
~ ~ ~ 

-1 
R = I - X (X'X) X' and 

n ' 

(U'R U) 1s the unique Moore-Penrose generalized inverse of U'R U. 

It is relevant to remark at this stage that if the components of 

e are apriori assumed to have independent normal distributions instead 

of the improper uniform distributions in (-oo, oo) as assumed above then 

the resulting joint posterior distribution of 8, T, p, and b will tend 
~ ~ ~ . 

to (3.6) if the prior variances of the elements of 8 are made to go to 

infinity. 

The Conditional Posterior Distributions 

Integrating (3.6) with respect toT and p, the joint posterior 
~ 

density of e and b is obtained as 
' ~ ~ 
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~ ~ 

rr1 < a, b) <X {2 8 + (R y - b'U'R u b + (b - b) 'U'R u (b - b) 
'V 'V 'V 'V 'V 'V 'V 'V 'V 

~ ~ 
-(n + 2a) I 2 

+ <a - S)'X'X < e - e)} 
'V 'V 'V 'V 

-(m. + 2a.)/2 c 
X IT 

i=l 
(28. +b. 'b.) l 1 (3. 7) 

1 '\,1 '\,1 

Further, integrating (3.6) with respect to e the joint posterior 
'V 

density of T, p, and b 1S obtained as 
'V 'V 

(a + n/2 - p/2 - 1) 

Jil ( T, ~· 
b) <X T 
'V 

~ ~ 

x exp {(-T/2) { 213 + y'R y - b'U'R u b 
'V 'V 'V -'V 

~ 

+ (b - b) 'U'R u (b - b)}} 
'V 'V 'V 'V 

c 
X TI 

i=l 
T. 

1 

(a. + m./2- 1) 
1 1 exp{(-,./2)(28. + b.'b.)} 

1 1 "'1 '\,1 

p > 0, 
'V 'V 

From (3.7) and (3.8) it 1s easily seen that 

1. e, conditional on b, has a multivariate t distribution 
'V 'V 

with mean vector 8 and precision matrix T where 
'V 

n - p + 2a 

(3. 8) 

T = { ~ ,. ~ } X'X , 
26 + y'R Y- b'U'R U b + (b- b)'U'R U (b- b) 

'V 'V 'V 'V 'V 'V 'V 'V 

2, T, conditional on b, has a gamma distribution with 
'V 

* * parameters a and 13 
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3. t·; conditional on b., has a gamma distribution with para-
1 ~1 ' 

'It * meters a., and 8·, i = 1, 2, ... , c, 
1 1 

(3.9) 

where 

= (n - p + 2a) I 2,. 

-It 
(m. 2a.) I 2 i 1' 2, a. = + = . .. c·, 

' ' 1 1 1 

-It . " "" 
8 ·- ( 2B + y'R y - b'U'R u b + Q) 12, 

~ ~ ~ ~ 

")'( 

(2 Q.) B· == e. + I 2, 
1 1 l 

" A 

Q = (b - b) 'U'R u (b b)' and 
~ ~ 'V ~ 

Q. = ·b. 'b. 
1 ~1 ~l 

i = 1, 2, c. 

To obtain the marginal posterior density n1(b), the joint poste
~ . 

rior density of t, p, and b in (3,8) is integrated with ~espect to 
~ 'V 

t and p. This gives 
~ 

Til(~) a: (28 + y'R y -
~ ~· 

c 
TI (28. + X 

i=l 1 

"' 

A 
-(n - p + 

b'U'R u b + Q) 
~ ~ 

-(m. + 2a. )12 
Q.) 1 

1 

1 

" 
-(n - p + 2a)l2 

a: {1 + (b - b)' A (b - b)} 
'U ~ ~ ~. 

c -(m. + 2a. )12 
x n {(1 +b. 'A. b.) ]. 1. } 

' i=l ~1 1 ~l 

where 

2a)/2 

(3.10)· 



A • { A .} U'R u , 
2B + ~'R ~- ~'U'R U ~ 

A. = (1 I 2S.) I 
1 1 m. 1 = 1, 2, ... , c. 

1 

Such densities are known as multiple t densities or poly-t densities 

and are quite difficult to handle. 

Marginal Posterior Distributions 

For proper Bayesian inference on the variance components one 

needs their marginal distributions. The joint posterior density of 

,, and p, namely rr 1(T,p), can be obtained by integrating (3.7) with 
'V 'V 

respect to b. Thus 
'V 

ex: 

{(n - p + 2a)/2 -1} 
T 

A A 

x exp {(-</2){ 28 + y'R y - b'U'R U b 

ex: 

where 

c 
X JI 

i=l 
T • 

1 

'V 'V 'V 'V 

A A 

+ (b- b)'U'R U (b- b)}} 

{(m. + 2 a.)/2 -1} 
1 1 

x exp { (-T./2) (26. +b. 'b.)} db 
L 1 rv1 rv1 rv 

A A 

exp {(-1/2) {(b- b) R (b- b) + b'B b}} db 
'V 'V 1 'V 'V 'V 2 'V 'V 

15 
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{(n - p + 2a.)/2 - 1} 
A a T 

A A 

x exp {(-T/2) <2 8 + y'R y - b'U'R u b)} 
'\, '\, '\, '\, 

c {(m. + 2 a.)/2- 1} 
II 

1 1' 
exp (-T·B·) X T· 

i=1 1 1 1 

Bl = T U'R u, 

B2 = Tl I ~ 
ml 

~ T2 I ~ 
m2 

Combining the two quadratic forms 1n the exponent of the above inte-

grand it follows that 

rr 1<T, p) a: A f exp {(-1/2) (b - f)) B (b - f))} 
'\, 

Rm 
'\, '\, '\, '\, 

b'B (B- 1 B -1) 
A 

X exp {(-1/2) B1 b} db 
'\, 1 1 '\, '\, 

a: A !B!-~ exp{(-1/2) b B (B- 1 
'\, 1 

(3.11) 

where B = B + B and 
1 2 

The above joint posterior density ofT and p in (3.11) is a very 
'\, 

complicated expression and is analytically intractable. For instance, 

it seems impossible to integrate it with respect to the precision 



components in order to obtain the marginal posterior densities of the 

variance components which are essential for purposes of posterior 

inference. 

Another way of finding the marginal densities of the variance 

components is to combine the marginal density of b in (3.9) with the 
~ 

conditional densities of the variance components in (3.8) and then 

removing b by integration. But, here again, integration is a formi
~ 

dable problem. 

17 



CHAPTER IV 

APPROXIMATIONS 

The posterior distribution of b given ~n (3.10) ~s the key factor 
~ 

to obtain the conditional posterior distributions ~n (3.9) as well as 

to determine the true posterior marginal distributions of the variance 

components. This distribution is a multiple t distribution and ~s very 

difficult to handle. One way of solving the problem is to find an 

approximation to the multiple t density in terms of some simple 

expression. 

Approximation to the Posterior Distribution of b 
~ 

Since a multivariate t distribution can be approximated by a 

multivariate normal distribution having the same first two moments as 

the multivariate t distribution, 

-(n + k)/2 
{1 + (1/k) (~- ~)' A(~-~)} 

can be approximated by 

exp {(-1/2) ((k- 2)/k) (~- ~)' A (~- ~)} 

for any n-vector x and for any non-negative definite matrix A. 

Using this approximation in (3.10) one can show that the posterior 

density of b ~ay be approximated by 
~ 

18 



where 

= 

= 

A A 

a: exp {(-1/2) ( (b- b)'A1(b- b) + b A2b )} 
'V 'V 'V 'V 'V 'V 

,.. " 
{(n;_p+2a-m-2) / (2S+_(R,t-~U'RU~) } U'RU 

((al'-0/131) Im1 

<I> <I> 

((a -1)/B) I 
c c m 

c 

Combining the two quadratic forms in the exponent it follows that 

19 

exp {(-1/2) (b 
~( * * 

n1 (~) a: b ) 'A (b - b )} (4.1) 

where 

'V 'V 'V 'V 

•': * (A*)-1 
,. 

A = A + A and b = A1 b . 1 2 'V 'V 

Thus, the posterior distribution of b is approximately normal 
·'V 

* * with mean vector b and precision matrix A . 
'V 

* The mean of this posterior distribution of b, namely b is a good 
'V 'V 

choice to be used as the conditioning value of b in 0. 9). The results 'V . 

of (3.9) can now be used to make inferences about the parameters in 

(3.1). For instance, if conditional point estimates for the parameters 

are needed the mean of these conditional posterior distributions can 

be taken as the estimates. They are 

(X'X)- 1 X' * e = (~ - u b ) ' 'V 'V 

A2 A 

(J = {1/(n + 2.a - p- 2)} {2S + y'Ry - b' U'R U b 
'V 'V 'V 'V 

(4.2) 

(b* 
A * A 

+ - b) U'R U (b - b) }, 
'V 'V ·rv 'V 
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2 "'k * = ( 2 8. + b . ' b . ) I ( m. + 2 a. - 2 ) , i =1, 2, .. . , c. (4.2) 
~ ~ '\,~'\J. ~ ~ 

It is now proposed to makL' UIH' of (4.1) in (3.9) to derive the 

posterior distribution of tl1c variance components. For this purpose, 

one needs the.distribution of quadratic forms in normal variables. 

This is deriv•d b~low. 

Distribution of General Non-negative Quadratic Forms 

in Normal Variables 

Let z be a random n-vector having multivariate normal distribution 
'\, 

with mean vector ~ and a positive definite dispersion matrix D, or sym

"' 
bol ically let z 

'\, 
N (~, D). 

n "' 
Let Q(z) = (z- z 0)'M (z- z0 ) where 

'\, '\, '\, '\, '\, 

~0 ~s a known n-vector and M ~s a known non-negative definite matrix. 

It ~s clear that the distribution of Q( z) 
'\, 

~s the same as that of 

( 'IG~'c -1< * N ( 0, - z ) 'M (z - ~1) where ~1 = z - ~ and z D). 
rvl "' '\..0 '\, n "' 

Since D is positive definite there exists a nonsingular lower tri-

angular matrix L such that D = L L'. Further, since L'M L is symmet-

ric, there exists an orthogonal matrix P such that P'L'M L P = A, the 

diagonal matrix of the eigenvalues of L'M L. Hence, us1ng the trans-

'1< 
formation z = L P W, one can show that the distribution of Q(z) ~s 

'\, '\, '\, 

the same as that of 

where 

= 

n 

r 
i=l 

2 
\. ( W.- w.) 
~ ~ 1 

w ) 
n 

\ ) 
n 



W' 
'V 

= . . . , w ) , 
n 

~ = P'L- 1 ~1 , and n = # of rows of M. 

It is easily seen that w1, w2, ... , W0 are independent standard 

normal variables. 

If n' =rank of M < n, then assuming the last n-n' of the A's 

to be zero one can show that the distribution of Q(z) is the same as 
'V 

that of 

n' 
r 

i=1 

2 
A· (W.- w.) 

1 1 1 

Ruben (1960, 1962) has shown that, for a 

distribution of Q(W) can be expressed as 
'V 

F (q I A, w) Pr. (Q(z) < q) 
n 'V 'V -

n 
2 

= Pr. { r A. (W. - w.) 
. j=1 J J J 

00 

given /\, n, and w, the 
'V 

< - q } 
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= r e. 
2 

Pr. (X 2. n+ J 
< q/c) (4.3) 

j=O J 

where 

n 2 n 
(c/A.)~ eo = exp { (-1/2) 1: w. } IT 

j=l J j=l J 

r-1 
e = (1/2r) r G e. (r > 1) r r-j J ' j=O 

n n 
2 c/A./-1 (1 - r (1 (r 1) G = r c/A.) + rc r (w. /A.) - > r j=1 J j=l J J J 

and c 1S an arbitrary positive number. 
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Ruben has also shown that the ser1es on the right of (4.1) is 

uniformly convergent over any finite interval of q. He also gives the 

th bound for error in the above series at the N-= term Further, it is 

obvious that the distribution in (4.3) can be made to be an infinite 

mixture of chi-square densities provided c is chosen to be less than 

minimum of (A 1 , A2 , ••• , /..n)' to insure each ei > 0. 

2 
Approximation to the Posterior Distribution of cr 

From (3.8), T, given b, has a gamma distribution with parameters 
'\, 

'1< 
a = (n·- p + 2a) /2 , and 

A 

s~"' = (1/2) ( 28 + :(,I R ~ - b'U'R u b + Q) 
'\, '\, 

where 
A A 

Q = (b - b) 'U'R u (b - b). 
'\, '\, '\, '\, 

Because of (4.1), Q has the distribution * *-1 in (4.3) with ~ ' ~' A 

and U'R U in the places of ~· ~O' D, and M respective!~ s = n = rank 

of U'R U. 

Hence, the posterior marginal density of T 1s given by 

X 
"" 
E 

j=O 

* -1< 1 
exp(-8 T) .Ta -

* r (a ) 

e. { 
J 

d 

dq 

2 
Pr. ( X 2. 

s+ J 
< q/c)} dq . 

After a little simplification this expression can be rewritten as 
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k -(l/2)(d + qh (k- 1) 
00 

{ 0/2)(d + q)} 
I: Joo e '( 

e. 
( -q/2c) 

e 
j=O J 0 

(s + 2j)/2 
r (k). 2 r{(s + 2j)/2} 

(s/2) + J .... 1 
x (q/c) (1/c) dq. 

" 
where k = (n - p + 2a)/2, d = 28 + ~'R ~ - ~'U'R U ~· and c is an 

arbitrary positive number. 

Let k be an integer. To insure this one needs to make some slight 

adjustments in the value of a. But the magnitude of such changes never 

needs to be bigger than 0.5. On this assumption, the above expression 

can be rewritten as 

(k - 1) k 
·(k) (k - r) e. T I: 

J r=O r d 
00 

n Cr) ex: I: 
j=O ( s/ 2) + j 

+ j) c 2k r (k) 2 r (s/2 

r ( -1/2 )(d + qh - q/(2c) ( s/ 2) + j - 1 
00 q e q 

f dq 
(s/2) + j - 1 

0 
c 

After performing the integration and making the transformation 

2 
T = 1/a and simplifying the resulting expression the marginal poste-

2 rior density of a is seen to be 



= k e 
k 

(d/2) 
2 (k + 1) 

(1/cr ) 

e. 

24 

co 

I: 
j=O 

J (4.4) 
2 (s/2+j) 

r(s/2 + j) (1 + c/cr) 

r ( s/ 2 + r + j) 
k 
I: 

r=O r(r + 1) r(k- r + 1) {(d/2)(1/c + l/cr2)} r 

2 Approximation to the Posterior Distribution of cr. 
1 

The procedure of deriving an approximation to the marginal 

. d' 'b . f 2 . . '1 f 2 poster~or 1str1 ut1on o cr. 1s very s1m1 ar to that o cr 
l 

From 

(3,7) the posterior distribution of T•• conditional on b., 1s a gamma 
1 ~1 

with parameters 

* a. 
1 

* 

= (m. + 2a.) I 2 
1 1 

e. (1/2) c28. + q.> 
1 1 1 

where Q. = h, 'b .• As before, because of (4.1), Q1 has the distribu-
1 11:.1 ~1 

~'t *-1 
tion in (4.3) with b. , 0, A. , and I in the places of ~· z0 , D, and 

~l ~ 1 mi ~ . ~ 

M respectively. Lets. be the rank of I = m .. 
1 m. 1 

1 

Hence themarginal posterior distribution of the ith precision 

component T. is given by 
1 

= ~-{1/r (a. )} 
1 

* 
e 

~. 

-(3. T. 
1 1 

T. 
l 

a. 
1 

>'< 
- 1 

X 



00 

I: { 
d 

e .. 
j=O l.J 

dq. 1. 

Pr. ( 2 
xs.+2j 

1. 
< q./c.)} 

1. 1. 
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dq. 
1. 

After a little simplification this express1.on can be rewritten as 

k. -(l/2)(d. + q. h. (k. - 1) 
(1/2)(d. + q.) 1. 1. 1. 1 1 

00 e 'T • 

I: 
1 1 1. 

e .. 00 

j=O l.J f ( s. + 2j)/2 0 
r (k.) 2 1 r{(s. + 2j)/2} 

1 1 

(s./2 + j - 1) 
x (q./c.) 1 (1/c.) dq. 

1. 1. 1 1 

where k. = (m. + 2a. )/2, d. = 2[3. and c. l.S an arbitrary positive 
1. 1. 1. 1 1. 1. 

number. 

As before, let k. be assumed to be an integer. One needs to make 
1 

some slight changes 1n the value of a. to 1nsure k. to be an integer. 1 1 

But the magnitude of such changes never needs to be bigger than 0.5. 

On this assumption, the marginal posterior density ofT. can be written 
1 

as 

nl<-r·i) = 

X 

00 

r 
j=O 

!00 
0 

k.-1 k. 
(ki) 

k.-r 
1. r1 d. 1. e .. T. 

l.J 1. r=O r 1. 

s./2 + J 
r (k.) 2 1. r(s./2 j) + c. 

1 1. 1 

r (-1/2)(d.+q.)T.- (q./2c.) 
qi e 1. 1. 1. 1 1 

(s./2 + J - 1) 
c. 1. 

1 

2 
k. 1 

s./2 + j-1 
qi 1 

dq. 1. 

After performing the integration, making the transformation T. = l/a. 2 , 
1 1 

and simplifying the resulting expression the marginal posterior density 



2 
of cr. is obtained as 

]. 

= k. 
]. 

00 

x r 
j=O 

k. 
]. 

2 
( -d . I 2o. ) k. 2 ( k. + 1) 

e 1 1 (d /2) 1 (1/a. ) · 1 
i . ]. 

e .. 
1.] 

( /2 +J') 2 si 
r(s./2 + j) (1 +c./a. ) 

]. ]. ]. 

r(s./2+r+'j) 
]. 
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(4.6) 

X L 
r=O r ( r + 1 ) r ( k . -r + 1 ) { ( d . I 2 ) (1 I c . + 1 I a . 2 ) } r 

]. ]. ]. ]. 

Moments of the Posterior Distribution of the 

Variance Components 

2 2 
The moments of the posterior marginal distributions of a and oi 

as given by (4.4) and (4.5) are hard to obtain directly. But, they can 

be obtained relatively easily by noting how (4.4) and (4.5) were deri

ved. For instance, the moments of o 2 (especially the first· two) can be 

obtained by noting that 

1. cr 2 lb has a gamma distribution, and 

2. b has a multivariate normal distribution 
'V 

and using the formulas 

1. = 

2. 
2 

Var(a ) = 

Eb{E(a 2 lb)} , and 

2 
Varb {E(cr I b)} 

2 
+ Eb {Var(a I b)} 

They are 

2 Mean(a ) 
~ 

= {1 I (n- p +2a - 2)} {2S + z'Rz- ~'U'R u ~ 

+ Trace(U'R U A* -l) + (b*- b)'U'R U (b*- b)} 
'V 'V 'V ''V 

(4. 7) 



2 var(a ) == { 2 I 
2 

((n-p+2a-2)(n-p+2a-4))}{28 
A A 

b'U'R u b + ,(R ~ -
"' "' 

,.t-1 * A •k A 
2 

+ Trace(U'R U A ) + (b - b) 'U' R U (b - b)} 
1\, "' "' "' 

* 1 2 
+ {1 I (n-p+2a-2)(n-p+2a-4)}{ 2 Trace(U'R U A- ) 

* A *-1 * A 

+ 4(b- b)'U'R U A U'R U (b- b)} 
"' "' "' "' 

In a similar manner the first two moments of o. 2 are seen to be 
1 

2 Mean (a. ) 
1 

2 Var(a. ) = 
1 

. *-1 * * 
= { 1 I ( m. + 2a , -2)} { 2B . + t r (A. ) ·+ b . 'b . } 

1 1 1 1 '\.,1 "'1 

2 
{ 2 I (( m . + 2a . - 2 ) ( m . + 2a . - 4) } 

1 1 1 1 

-lt-1 * ,.( 
x {2a. + Trace(A. ) +b. 'b. } 

1 1 '\.,1 '\.,1 

2 

+ {1 I ((m. + 2a.- 2)(m. + 2a.- 4)} 
1 1 1 1 

-lt-1 2 
x {2 Trace(A. ) 

1 

,.( *-1 * 
+ 4 b. I A. b. } 

'\.,1 1 "'1 
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In a similar manner all the higher moments of the variance components 

can be obtained, These expressions could be easily evaluated for any 

data set using the matrix procedure in SAS .. 

Example 

Now, a balanced one way random model design is considered to 

illustrate the preceding results, The linear model describing such a 

design is 

y.. = ~ + b. + e .. ; 1 = 1, 2, .. . , m; j = 1, 2, .... , t; 
1] 1 1] 

where b. follows a normal distribution with mean 0 and variance a 2 
1 1 ' 



2 
and eij follows a normal distribution witn u mean and variance a for 

all i and j. This 1s precisely the model defined in (3.2) with c • l, 

m = m, p = 1, and n = mt. Also, 
1 

y 
rv 

= 

X = jn, a n X 1 matrix of ones, 

e = 
rv 

u = 

b = 
rv 

( l-1)' 

diagonal(jt, Jt' ... 

b ) I • 

m 

' j t) I of 

For this particular case, it can be shown that 

order n x m, 

R = I 
n 

(1/n)J , J being a n x n matrix of ones, 
n n 

U1 RU = t {I - (1/m)J } 
m m 

(U 1 RU) = (1/t) {I - (1/m)J } 
m m 

b = ' •.• ' Ym. - y ) I > 

,e 1 U1 RU,B 

* A 

= s1 , the between groups sum of squares 1n the AOV, 

= { (n-m+2a-3)/(28+S 2 )} {t Im 

the within groups sum of squares 1n the AOV, 

= 

= = (at + b) I - (at/m) J , where 
m m 

a= (n- m + 2a- 3)/(2S + s2) and b 
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Using the preceding results, it is straight forward to show that 

(A*)- 1= {1/(at+b)}I + {at/(bm(at+b))} J , 
m m 

* (y . ) b = {at/ (at+b)} - y ... Ym. - y 
1. ' ' "' 

U'RU(A"'(- 1) = {t/(at+b)}{I - ( 1/m) J } 
m m 

~'( ~·( 

{a2t/(at+b) 2} b 'b :::: s1, and 
"' "' 

"'/( "' * "" 
(b -b)'U'RU(b -b) 

"' "' "' "' 
Hence, the conditional Bayes estimates of the variance components, 

as defined in (4.2), are 

2 2 2 
a = {1/(n + 2a- 3)}{2B + s 2 + b s 1/(at +b) }, and 

Similarly, the Bayes estimates of the variance components. b~ased 

on the approximate distributions, as defined in (4. 7), are the following. 

2 
a = 

= 

{(1/(n + 2a - 3)}{ 28 + S + t(m- 1)/(at + b) 
2 . 

{(1/(m + 2a 1 - 2)}{ 2B 1 + (at + mb)/b(at +b) 



CHAPTER V 

NUMERICAL STUDY 

In this Chapter the results of a numerical study, carried out to 

examine the closeness of the approximate distributions of the variance 

components to their true distributions, is discussed, A set of data 

for a one-way rando:n model, generated by Box and Tiao (1973), is used 

for this purpose. For the generated data the true value of the within 

2 groups variance component cr is 16 and the true value of the between 

2 variance component cr 1 is 4. 

Many different sets of values for the prior parameters a, 8 and 

a 1, e1 were considered to examine the effects of the prior parameters 

on the posterior parameters and also on the closeness of the approxi-

mations. For each set of values of the prior parameters the posterior 

means and variances of the variance components were calculated, both 

for the true posterior distributions and also for their approximations. 

The eigen values and other constants, needed to evaluate the approxi-

mate distributions (4.4) and (4.5) and their moments, were evaluated 

using the MATRIX procedure in SAS (Statistical Analysis System). The 

true posterior distributions and their moments were evaluated using 

numerical integration techniques. These were done using a Fortran 

(Watfiv) program. To evaluate the approximate distributions (4.4) and 

(4.5) only 20 terms in the mixtures were taken, The contribution from 

the remaining terms was found to be negligible. The constant c was 
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arbitrarily selected to be some positive number less than the smallest 

of the ~igen values in order to make (4.4) and (4.5) mixtures. The 

computations were done on the IBM 370/168 computer at the Oklahoma 

State University. 

Table I gives the different sets of values considered for the 

prior parameters along with the means and variances of the true and 

approximate posterior marginal distributions of the variance components. 

The graphs of the true posterior distributions of the variance compo

nents and their approximations, for some selected values of the prior 

parameters, are given in Figures 1-6. 

The conclusions, indicated by the results of the numerical study, 

are summarized in the following paragraphs. 

Generally, in all the cases considered, the approximations were 

close to the true distributions. The closeness of the approximations 

increase with a, Even for values of the a-parameter as low as 8 the 

approximations are quite close the true ones. It is interesting to 

note that these are true whatever the values of the e-parameter may be. 

That this must be true is obvious from the fact that as the value of 

the a-parameter increase the degrees of freedom of the multivariate t 

type factors in (3.9) also increase bringing these factors very close 

to the corresponding normal type expressions. This insures the accu

racy of the approximations. But a large value of the a-parameter 

implies a small prior standard deviation. This is so because for an 

1nverse gamma distribution standard deviation = B I ( (a-1)/(a-2)) . 

This, in turn, implies a strongly informative prior for the variance 

components, Thus, when precise prior information is available the 

approximations will work very efficiently. 
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Secondly, when the value of the a-parameter is large and the prior 

means of the variance components are fairly close to the true values of 

the var1ance components, the posterior means are also quite close to 

the true values. In other words, in such situations, in addition to 

the true posterior distributions and their approximations being quite 

close to each other, the two distributions are also centered very close 

to the true value of the variance components. Further~ in such situa-

tions the posterior variances are also small. 

Thirdly, when the a-parameter is large, changes 1n the values of 

the a-parameter do not significantly affect the posterior distribution 

of the within variance component as compared to the between variance 

component. In other words, informative priors influence the between 

variance component relatively more than the within variance component. 

Therefore, unless one is quite sure of what he is doing, the value of 

the a-parameter for the between variance component should not be taken 

to be large even though it does not matter much for the within variance 

component. The reasons are not difficult to seek. In the first part 

of the multiple t density in (3.9), the degrees of freedom of the 

multivariate t type expression, which introduces the within variance 

component, is (n - p + 2a)/2 which is always reasonably large for any 

data set, irrespective of the value of a. Hence, variations in the 

a-parameter do not affect the value of that expression very much. 

Whereas, in the second part which introduces the other variance campo-

nents, the degrees of freedom of the multivariate t type factor is just 

a .. Hence, variations in the value of the a-parameter for the between 
1 

variance component significantly affect the posterior distribution of 

the between variance component. 
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Fourthly, when there is little prior information, it seems reaso

nable to take the value of the a-parameter to be close to 2 so that 

prior variance is large. It is interesting to note that, even in such 

cases, the approximations are good. But, whether the posterior distri

butions of the variance components are located at their true values or 

not depends on the B-parameter. From Table I, one can see that when 

a = 2 and 8 varies from 2 to 20 the posterior mean of the within vari

ance component goes from 13.06 to 14.82 only. Note that the true value 

~s 16.0. One can, therefore, conclude that the posterior distribution 

of the within variance component 1s not very sensitive to changes in 8. 

But, the case is different for the between variance component. When 

the a-parameter is 2 the posterior mean and variance heavily depend on 

the B-parameter. So a fairly good estimate of the true value is needed 

for the proper choice of the value of the B-parameter. 

It should be remembered that the above inferences are based upon 

a limited study of only one data set. More extensive numerical studies 

need be carried out before one can formulate general rules on the close

ness of the approximations and also on the choice of the prior parame-

ters. 



CHAPTER VI 

SUMMARY 

The ma1n objective of this thesis 1s to develop a Bayesian metho

dology with which inferences about the variance components in general 

·mixed linear mod·els can be made. This objective is fulfilled by study

ing the marginal posterior distributions of the variance components 

s1nce the joint posterior density of the variance components, which is 

quite easy to obtain, is a complicated function of the variance compo

nents and is analytically intractable. 

The results obtained are quite general and can be used with any 

design, balanced or otherwise, coming under mixed linear models. 

Results and Conclusions 

Assuming all the parameters in the model to be apriori independent 

and employing gaunna priors for the precision components and uniform 

priors for the fixed effects, it is shown that the posterior distribu

tion of the random effects is a multiple t distribution and that of .the 

variance components, conditional on the random effects, are independent 

inverse gaunna distributions. 

Since the exact marginal posterior distributions of the variance 

components is very difficult to obtain due to integration problems, 

certain approximations are considered. Approximating a multivariate t 

density by a normal multivariate density and employing distributions of 

34 



35 

quadratic forms in normal variables, where the idempotency condition is 

not fulfilled, approximations to the distributions of the variance com

ponents are obtained in infinite series form. Further, closed expres

sions for the moments of the approximate distributions of the variance 

components are also derived. 

The results of a numerical study, carried out using Box's data 

for a one way random model, indicate that the approximations are good. 

Generally, the accuracy of the approximations increase with the a-para

meter of the prior distribution of the variance components. The approxi

mations are close even for small values of the a-parameter such as 8. 

The posterior distribution of the within variance component is less 

sensitive to variations 1n the B-parameter of the gamma priors as com

pared to that of the between variance component. When precise prior 

information is not available, it seems desirable to fix the a-parameter 

around 2. Generally, in order to fix the B-parameter, a fairly good 

prior estimate of the true value of the variance components is needed. 

But, more detailed numerical studies are needed before one can put for

ward these indications as general rules. 

Further Work 

There are many areas under mixed linear models needing further 

research. If moments of multiple t distributions could be obtained in 

a general way, then the posterior moments of the var1ance components 

could be easily obtained with out using any approximations. 

The posterior analysis of the fixed effects is another area where 

much work still remains to be done. Again, multiple t distributions 
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play a central role in such research work. 

The results obtained in this thesis could, probably, be generalized 

to multivariate cases also. Any way, the approach through the condi~ 

tional posterior distributions, similar to the results of Gharraf 

(1979), could be easily generalized to covermultivariate cases. 

There are many practical situations where the random effects are 

correlated instead of being independent as assumed in this thesis. 

There are lots of possibilities in this area for further research. 

Another interesting area involving variance components is estima

ting the heritability parameters of models used in genetic progeny 

trials. 
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a 

2 

2 

2 

2 

2 

3 

3 

3 

3 

3 

3 

4 

4 

4 

4 

5 

5 

TABLE I 

MEAN AND VARIANCE OF THE TRUE AND THE APPROXIMATE MARGINAL 
POSTERIOR DISTRIBUTIONS OF THE WITHIN AND BETWEEN 

VARIANCE COMPONENTS FOR BOX'S DATA 

Within Between 
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Prior 
Parameters 

Variance Component Variance Component 

Mean Variance Mean Variance 

8 al 81 True App True App True App True App 

2 2 2 12.96 13.06 11.72 12.24 1. 22 1. 62 0.84 1. 07 

5 2 5 13.14 13.56 11.15 13.67 2.40 3.01 1. 97 2.66 

8 2 8 12.49 13.81 12.84 14.22 3.29 3.69 2.63 4.02 

20 2 20 14.59 14.82 16.16 17.02 7.44 8.97 16.87 24.40 

8 5 5 13.35 13.39 12.30 12.68 1.11 1.17 0.30 0.30 

3 3 3 12.21 12.28 9.92 10.13 1. 17 1. 33 0.56 0.60 

5 3 5 12.32 12.50 9.63 10.7 3 1. 79 2.05 1. 07 1.23 

10 3 10 12.75 12.97 10.96 11.67 3.07 3.36 2.12 2.61 

20 3 20 13.56 13.86 12.92 13.58 5. 77 6.50 9.37 11.90 

50 3 50 15.80 16. 18 17.86 19.08 12.07 12.23 24.22 26.73 

3 5 5 12.21 12.26 9.91 10.07 1.12 1.16 0.30 0.30 

5 4 5 11.59 11.69 8.24 8.74 1. 38 1. 50 0.56 0.56 

10 4 10 11.96 12.08 9.23 9.40 2.54 2. 77 1. 72 2.00 

20 4 20 12.68 12.85 10.52 10.77 4.64 5.03 5.15 6.08 

50 4 so 14.76 14.85 14.53 14.81 10.25 10.70 18.29 20.76 

5 5 5 10.95 11.00 7.23 7. 24 1.11 1.17 0. 30 0.30 

10 5 10 11.26 11.34 7.67 7.79 2.07 2.20 0.95 1.03 
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TABLE I (Continued) 

Prior Within Between 

Parameters Variance Component Variance Component 

Mean Variance Mean Variance 

a s al 81 True App True App True App True App 

5 20 5 20 11.91 12.04 8. 70 8.89 3.85 4.08 2.98 3.35 

5 50 5 50 13.85 13.98 11.98 12. 15 8. 76 9.13 13.86 14.37 

8 8 8 8 9.48 9.53 4.98 4.65 1. 08 1.09 0.16 0.16 

10 10 20 lO 8. 79 8.81 3.55 3.57 0.52 0.52 0.01 0.01 

10 40 20 )O 10.10 10.14 4. 77 4.82 2.51 2.52 0.32 0.32 

10 100 20 100 12.86 12.94 7.55 7.87 4.90 4.89 1.10 1. 25 

10 200 20 200 17.56 17.31 14.62 14.90 9.70 9.74 4.65 4. 71 

20 100 50 100 8.82 8.84 2.49 2.50 2.01 2.02 0.08 0.06 

20 400 50 200 18.14 18.02 10.58 11.26 4.00 4.00 0.43 0.33 

32 500 20 80 15.49 15.51 5.52 5.55 3.98 3.96 0.80 0. 79 
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Figure 1. Marginal Posterior Density of the Within Variance 
Component 
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Figure 2. Marginal Posterior Density of the Within Variance 
Component 
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Figure 3. Marginal Posterior Density of the Within Variance 
Component 
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Figure 4. Marginal Posterior Density of the Between Variance 
Component 
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Figure 5. Marginal Posterior Distribution of the Between Variance 
Component 



f(op 

0.6 

0.5 

0.4 

0.3 

0.2 

o. 1 

-I 

2 4 6 8 

a = 32, s = 500, al = 20, sl = 80 

Approximation 

True Distribution 

Figure 6. M~rginal Posterior Density of the Between Variance 
Component 

49 



1-
VITA 

Muthiya Rajagopalan 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: BAYESIAN INFERENCE FOR THE VARIANCE COMPONENTS IN MIXED 
LINEAR MODELS 

Major Field: Statistics 

Biographical: 

Personal Data: Born in Mayuram, Tamil Nadu, Republic of India, 
January 5, 1939, the second son of Mr. and Mrs. Muthiya 
Pillai. 

Education: Graduated from Municipal High School, Mayuram, 
India, in 1954; received Bachelor of Science (Honours) 
degree in Statistics from Annamalai University, India, in 
1960; received Master of Science (by research) degree in 
Statistics from Annamalai University, India, in May, 1967; 
completed requirements for the Doctor of Philosophy degree 
at Oklahoma State University in December, 1980. 

Professional Experience: Lecturer, P. S. G. Arts College; 
Coimbatore, India, 1961; Lecturer in Statistics, Annama
lai University, India, 1962-1977; Graduate teaching asso
ciate, Oklahoma State University, 1977-1980. 

Professional Organizations: American Statistical Association, 
Mu Sigma Rho. 


