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CONTRIBUTIONS TO THE THEORY OF VARIATIONAL AND OPTIMAL

CONTROL PROBLEMS WITH DELAYED ARGUMENT
CHAPTER 1
INTRODUCTION

This paper is devoted to discovering necessary conditions to-
gether with some sufficient conditions for optimality in variational
and control problems with delayed argument, that is, problems which in-
volve functionals of the type found in relation (1l.1). In recent years
there have been many articles and several books which deal with various
aspects of such problems, In particular we call attention to the books
of M, N, Ofuztdreli [10] and of L. E. El'sgol'c (also transliterated
Elsgolts) [3]. Oguztoreli discusses delay-differential equations in
some detail and then studies the question of existence of optimal con-
trols for delay-differential control systems. He also discusses neces-
sary conditions from the point of view of dynamic programming, El'sgol'c
gives a few necessary conditions for a minimum problem of a more classical
nature [3, p.215] than that of Ofuztdreli [10, p.171]. We study neither
the problem of Ofuztoreli nor the problem of El'sgol’c although our pro-
blems do have similarities to both. There is no one formulation among
those that the present author has encountered which can be identified as
the canonical or standard problem involving delays. The problems that
receive most attention in this paper are those among various others
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examined by the author for which he has been able to obtain a collection
of results comparable to corresponding parts of the theory of necessary
conditions and of sufficient conditions for classical problems of the
calculus of variations with no delays., Much of the published work on
problems with delay has thus far been in existence theory. There are no
published results insofar as the author is aware on necessary conditions
analogous to those of Weierstrass and Jacobi for classical problems.
Neither has any sufficisnt condition for local or global extrema been
given except that in {2, p.5%%6] which appeared subseguently to most of
the work reported here.

Although differential equations with delays have been investigated
in occasional papers over a number of years, the wide recent and current
interest in general systems theory and in optimal design and control of
electromechanical systems in weaponry and industry together with problems
in mathematical economics and in other areas has motivated the introduc-
tion of variational problems with delays and the expanded recent litera-
ture on delay-differential equations,

The objective of the second and third chapters of this paper is

an investigation of a functional J(y) such that

b
(1.1) J(y) = I flt,y(t = T),y(t) y(t = 7),§(t)ldt,
a

There are no side-conditions; T is a positive real number; and y is a
continuous piecewise smooth vector function with n components., We find
necessary conditions analogous to those of Euler, Weierstrass, and Legendre
for the classical fixed endpoint problem [1], Also a fourth necessary con-

dition involving proper values associated with a certain boundary value
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problem is derived, A sufficient condition patterned after that of Ewing
(4] is obtained, and the indirect method of Hestenes is used to obtain
sufficiency in a special case, '

The fourth chapter contains a maximum principle for a problem
with time lag similar to the control problem without lag considered by
Hestenes [7] and also similar to the problem discussed in the important

book by L. S, Pontryagin et., al, [1ll, p.213], The approach used is that

of Hestenes, In particular we investigate the functional Io(y) where

b
(1.2) Ip(y) = f Lolt,y(t = 7),y(t) ult)ldt
a

is to be minimized on a class of functions satisfying the conditions

§' = Flt,y(t - D,y(),u(t)], i = 1,...,n, a <t <

A
o
we

yi(t) = al(t), a=-1 <t <a; y(b) = constant, 1 = 1,00 400

The vector function y = (ylgooogyn) is also subject to the isoperimetric

conditions
b
Iy(y) = I L [tyy(t = t)yy(t)yu(t)ldt <0, 1 <y <p°,
a (
b
Iy(y) = J L [t,y(t = t)y(t),u(t)]at = 0, p* <y £ p.
a

We also give an indirect sufficiency proof for a slight modification of
the above problem,
In the remainder of this paper we use the abbreviations PWS for

piecewise smooth and PWC for piecewise continuous, By a PWS function on
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[a,b] we mean a continuous function which has PWC derivatives on
[a,t]. This class of functions is sometimes denoted by the symbol
D'[a,b]. We adopt the convention that a repeated index will specify
summation on the index unless specifically stated otherwise,

Let © be a suitable class of PWS vector functions defined on
an interval [a,b]. For J : @ + R, we wish to define minima of J on
Q. First let x and y be elements of Q, Define a strong distance

ps and a weak distance pw as follows:

ps(x,y) = sup |x(t) - y(t)|, t in [a,bl;

%
p (%,y) = sup [%(t) - §(t)| + P (%,3), t in [a,b]
where | | denotes the Euclidean norm and
%
[a,b] = {t : t in [a,bl; §(t),&(t) exist}.

We now say that J(y) has a weak local minimum on @ at Yo

if and only if there exists 6 > 0 sucb that

(1.3) J(yo) < J(y) for all y 3in Q such that 0 < pw(y,yo) < 8,

We say that J(yo) is a strong local minimum on Q@ if and only if there

exists 6 > 0 such that
(1.4) J(yo) <J(y) for all y in 9 such that O <ps(y,yo) <38,

J(y.) is a global minimum on Q if and only if
0 & on
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(1.5) J(y,) < J(y) for all y in Q

Clearly if y, furnishes a minimum for J(y) in the sense of
(1.5), then it furnishes a minimum in the sense of (1l.4) and hence in
the sense of (1l.3). By the phrase "y, minimizes J(y)" we will mean

minimization in one of the senses (1.3), (1.4), (1.5) and hence in the

sense of (1.3),



CHAPTER II -

NECESSARY CONDITIONS FOR THE SIMPLE INTEGRAL PROBLEM

2.1 Introduction

It is the purpose of this chapter to find necessary conditions

on a function y which minimizes the functional \
N
b
(2,1) J(y) = I £(t,y(t = 1) ,y(),§(t - 1), §(t))at
a

on the class Q of all PWS vector functions y = (yl,ooo,yn) such that

y(t) = a’(t), a-T St Sa, i = l,000,0, where a(t) = (ul(t)] is a

given PWS vector function and also such that yl(b) = gt = constant,

i=1,000,0. We assume that £(t,x,y,q,r) is continuous on the region
R : [a,b] x R® x R x R® x R® and has continuous partial derivatives of
the first two orders with respect to the variables (x,y,q,r). The con-
stant T is positive and T <b -a, If T >Db - a, then since y(t)
is fixed on a - T £t £ a, the problem reduces to the classical fixed
endpoint problem, We define the symbols x and 2z by the formulas
x(t) = y(t - 1), z(t) = y(t + t). The following convention is in effect
throughout this entire chapter.

CONVENTION 2.1.1. When a condition involves the interval [a,bl

and any of the symbols &(t), §(t) or #Z(t), then at any interior point

of [a,b] where one or more of these derivatives fail to exist, the

stated condition &5 understood to hold with the derivatives interpreted

1

-6
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gg_either riEhtlgg.left derivatives,

It should be noted that most of what is done in this chapter and
in Chapter 3 remains valid if 1 is replaced by a function 1(t) with
suitable restrictions. We choose to consider the case with T a constant

since the notation is much simpler,

2.2 An Euler Equation

THEOREM 2.2,1 If y in @ furnishes J with a minimum, then

there exist constants ¢,, i = 1,0,00,0, such that y must satisfy the
H AL UL Y

following integro-differential-difference equations:

(2,2a) fri(t’sto;‘do’) + fqi(t + T¥s2:¥,2) =

t
J [fyi(s,x,y,i’c,j’r) +fxi(s+t,y,z,§r,%)]ds tc,ast sb- 13
b=t

t

(2.2b) £ _3(t,x,y,%,y) = f (s, x,y,%,y)ds+c,, b~ 1 <t <b,
T bt ¥V i

in which x,y,2,X,7,2 are respective abbreviations for x(t) or x(s) etc.

In order to prove this result let n be a PWS vector function de-
fined on a - T <t <b satisfying the conditions n(t) = 0,

a-1 <t <a, n(b) =0, Consider the function
b
F(e) = J(y + en) = I F(t,x + €£,y + en,x + e%,ft + en)dt,
a

where £(t) = n(t - 7)., Taking the derivative of F(e) at € = 0, we

find that

b

ea) = i i i cady o
(2.3) F?(0) fa(fxlg + £ogn + £580 + £ ghN)at = 0
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where the arguments of the integrand functions are (t,x(t),y(t),x(t),y(t)).
By a linear change of variable in the first and third terms under

the integral, (2.3) becomes
b . .

(2.4) j [¢i(t)nl(t) + »pi(t)ﬁl(t)ldt = 0
a

where

¢;(t) = f&i(t,x,y,i,ﬁ) + £t + Ty¥s2Zs¥s2)y, @ St Sb =T,

¢,(t) = fyi(t’staigi). b-t<t<b,
and

v (8) = £ s (t,%,y,%,5) + fqi(t FT,yz.9,8), a <t b -1,

wi(t) = fri(toxﬂo*.f'), b~T<t b,

Integration of (2.4) by parts and use of the boundary conditions on n

yields the equations

b t

(2.5) I [¢i(t) - I ¢i(s)ds]ﬁi(t)dt =0, 1= l’o;o'nn
a b-T

Applying the du Bois-Reymond Lemma [1, p.10] to (2.5) one has the analog
of the classical Euler equations:
t

(2.6) ‘pi(t) = I ¢i(3)ds + ci, is= l,oon g a £t < b.
b-T

After substitution for ¢ and ¥y this yields the stated equations (2.2).



9=

COROLLARY 2,2,1 If y in Q furnishes J with a minimum,

then y must satisfy the following differential-difference _eguations

for all values of t on [a,b] except the possible finite set of

t-values which correspond to cormers of x, y, or z:

(2.7a) fyi(t’x9Yo;‘a§) + fxi(t t TY,25¥,2) =

'ag-E[fri(tﬁ)‘OYDiﬁgr)-.-fqi(t*’TSYDzD&D%)]’ i=1l00n32a st <hb-r1;

(2.7b) fyi(tox.Yo;‘ai}) = 'ac’lf‘ fri(tsxs}’ﬁ.‘sy")’ i=1l40004n3 b=1T st <b.

To prove this result, differentiate (2.2).

COROLLARY 2,2,2 If y in @ furnishes J with a minimum, then

at t=b-r1 the following‘ relation holds:

(2.8) £ ilb - 1,x(b - 1),y - 1)yx (b - 1),y (b - )] +
fqi[b,y(b = 1)y2(b = 1),§ (b = 1),% (b -1)]=
fri[b - T.X(b - T).y(b - T)’;‘.‘_(b - T).§+(b - T)]’ i = l.ooo,n.

in which x_, X, etc. denote respective left and right derivatives,

The stated conclusion is immediate from relations (2.6), (2.2) and
the continuity of the integral in t.
Also from relations (2.2) one obtains the further (Erdmann) cornmer

conditions if t 1is the abscissa of a corner:
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(2.9a) fri[t,x(t),y(t),i_(t),ﬁ_(t)] + fqi[t+19y(t),2(t),?_(t),ﬁ_(t)] =

fri[t,x(t),y(t),§+(t),9+(t)] + fqi[t+r,y(t),z(t),§+(t).%+(t)].

a<t b - 13

(2.9b) fri[t,x<t),y(t),i_(t),ﬁ_(t)] =-fri[t,x(t),y(t).&+(t),§+(t)],

b-1t<t <b,
We now consider several special cases, If
(2.10) F{t,x,¥7,q,0) = gltyx,y,r) + h(t,x,y,9),
then the Euler equations (2.2) become

. t
(2.11a) Epi t hqi = fb(gyi + hyi teggt hxi)ds + Csy
-1
is= l,too’n; acs<t Sb - T3

t
(2.llb) gri = Jb-r(gyi"'hyi)dS"“ci’ i = l,ooo,n; b=-r< < t _<.bo

The partial derivatives g ;, gyis are evaluated at (t,x(t),y(t) (t));
hyi stands for hyi(t,x(t),y(t),i(t)]; the partial derivatives g,i are
evaluated at (t+1,y(t),z(t),2(t)); and the partial derivativex h ; and
hqi are evaluated at (t+1?y(t),z(t),§(t))o In this case the corner con-~

dition (2.8) at t = b - T becomes
(2.12) gri[b-r,x(b-T),y(b-r),ﬁ_(b-r)]+ hqi[b,y(b-t),z(b-1)§_(b-r)] =

gri[b-r,x(b-T),y(b-r),§+(b-r)], 12 1,0004R



If t 1is the abscissa of a corner of y for a <t <b « t, then cor-

responding to (2.9a) we have the relation

(2,13a) g ;[t,x(t),y(t),§ _(t)] + hqi[t+r,y(t),z(t),§'_(t)3 =
gni[t,x(t),y(t),§ ()] + hqi[t-l-t,y(t),z(t).9+(t)]. i=15000,n

If b-1t <t <b, then corresponding to (2,9b) we have

(2,13b) g, 30t,x(t),y(t),F_(£)] = g ;[t,x(t),y(¢),§ ()], i = 1,0004m,

Now let £(t,x,y,q,r) = m(t,y,r) + n(t,x,q). We will call this
special case the separated problem. In this case the Euler equations have

no delayed arguments:

t

(2.14a) m ;(t,y,¥) +nq1(t+t,y,9) = JbETyi(s,y.ﬁ)* n j(s+1,7,§)1ds + ¢,
asts<be~-r;

t
(2,1ub) mri(t,y,i) = Jb myi(s,y,ﬁ)ds te, botTsts by, L = 1,6e0,n,
-T

There is a condition similar to (2.12) at t =D - t. Also of course there
are corner conditions of the nature of (2,13a) and (2.13b). The separated

problem will be quite useful in constructing some examples.

2,3 Legendre Condition
Again we consider the problem described in Section 2,1, and we as-
sume that y is a minimizing function for J(y). Since € = 0 furnishes

F(e) with a minimum, it necessarily follows that F"(0) > 0, Hence
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b

. cglgd . sgind . il . sglad . snind
(2.15) Ia[fxlxig g 4 26,1 55000+ 26 4 5EE) 4 26,4 ETHY + £ g 4

% i.3 3 o oLpied . oLalad
2£ 1,90 % 13 4 of LA Jg 13 4 of ip36 N+ £5 50 H01dE2 O,

yi ri" qir r

The arguments of the functions in (2.15) are (t,x(t),y(t),%(t),7(t)).
Let t, be an arbitrary point in (a,b = 7) such that neither
ty - T, ty, mor t, + T corresponds to a corner of y., Choose § >0

such that

§ < min {%3 tg-a,b-1- to}

and such that there is no value of t corresponding to a corner of y in
the intervals (ty - 1 = &, t; = T+ 8), (t, - &, ty + 8),
(tg + T=8, tyg + T+ 8, Let m= (7') be a constant vector and define

the vector function n(t) = (n’(t)) by the formulas

0, tg(t =8, t +38)

X to _ t
6'"1 [ - uz—i]’ t E (t - 6’ t + 6)’ i s l’ooo’nc

ni(t) =

This is an admissible n, and by use of it (2,15) becomes

t0+6

1,3 3y oog . onitd s 26, cnit]

(2,16) J (fslyjn n’ + 2fxlng n° + 2fylrjn R+ 2fqujn ¢
ta=

0

3 3 Ledg]
+ xlrjgﬁ + £ ﬁﬁ + 2f . q:lé)dt

xix]

totTHs .
+[ (£, z+2fx135£ st E)at
tytt-6
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tyté .
=J {te ; sC) + £ (+T)]ﬂ nd 4+ 2[f 500t fx,-_qj(+-r)]r\11r'13

+ L6550 ) + £ g 50+ igdiat 2 o,

rlrJ

in which ( ) stands for [t ,x(t),y(t),%(t),5(t)] and (+71) stands for
[t+1,y(t),2(t),§(t),2(t)]. The terms in n-gl, A*El, n EJ n*t)  disappear
since EM(t) T 0 for ty; -8 <t<ty+ 8, i= l,...,0

Substituting for nt in (2,16), we have that

to+s t -t (12
(2.17) J {P (t)n id s2fy l J"TF'JlL]

to-G
It - ¢,
+ 2Qg(t)m il sy - ——| + (DR (O)m idat > 0

where Pij(t), Qij(t)’ Rij(t) stand for the bracketed factors inthe pre-
ceeding integral, Dividing (2,17) by 28 and taking the limit as 6
tends to zero, we conclude that Rij(to)uiwj 20, If t,, ty -8, or

t, + 8§ corresponds to a corner of y or if t,=a or t; =b-1, the

inequality
i3
Rij(to)w ™ 20

still holds in the sense of convention 2,1.1 since R(t) is continuous.
If t, is in the interval (b - 7,b) such that neither t; nor
ty, = T corresponds to a corner of y, then F"(0) becomes (with n de-

fined as before)
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t°+5

(fyiyjnlnj + Zinijlnj + 2fyirjnlﬁJ + 2fyian EJ
t,=6

0

. apied . Loie] . .2ig]
+ 265 38R0+ £ 4 5000+ 2£ 5 5P Eat > o,

Setting Rij(t) = fpirj(tgx(t),y(t),i(t),?(t)), one finds by the same
analysis as before that Rij(to)viﬂj 2 0. Again if t;, or tj; -7
corresponds to a corner of y or if t, =b -1 or t, =Db, the in-
equality Rij(t )niwj > 0 remains true when interpreted in the sense of
Convention 2,1.1,

Hence we have proved the fellowing:

THEOREM 2.3.1 If y furnishe; J with a minimum, then it is

necessary that aloqg. y the nelation

(2.18) Rij(t)n"nl’ 20, astshb

hold for every constant vector 7 ,

Here
(2.19a) Rys(6) = £,1 5(t,x(1),y(£) ,&(£),§(1)

+ fqiqj(t+r,y(t),z(t),§(t),i(t))? a<ts<b-rt;

(2.19b) R;s(t) = frirj(t,x(t),y(t),i(t),i'(t)), b-1<t <b,

If the function f is of the special form (2.10), the condition

(2.18) becomes
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(2.20a) [grirj(t,x,y,fr) + hqiqj(tﬂ,y,z,i’r)]nlﬁl 20, a st £b -~ 13

(202013) grirj(t,x,Yn§')ﬂlﬂ] 2 0, b-1 st gb,

THEOREM 2,3.2, Suppose that f is of the form (2.10) and that y

satisfies the Euler equations (2.11), Suppose also that for all »p in R®

"and w#O0

[grirj(t,x,y,p) + h j(t+t,y.z,p)]1r"1r3 >0, a st sb -1,

qiq

‘Then y does not have a corner on (a,b - 1), Similarly if for all p in

n

R" and n#0

Srirj(tsanoP)“l'"j >0, b=-1 =<t <b
then y does not have a corner on (b - T,b),
Suppose that there exists t in (a,b - 1) such that ¥_(t) # }"+(t).
Let 9_’_‘(1:) = ul, §2(t) = v'. Utilizing cormer condition (2.13a), we have that

+

gri(t,x,y,u) - gri(t,x,y,v) + hqi(tﬂ,y,z,u) - hqi(t-l-'r,y,z,v) = 0,
After an application of the mean value theorem this becomes

(8,1 3 (taxaysuto(v-w) + g j(ter,y,z,ur0(v-w) ) I(viout)ivl-ud) = o

0 <8 <1,

This contradicts the hypothesis since the vector u-v is not the zero
vector,

Similarly if b-t <t <b, we arrive at the expression

gz»J'LG:i(1""'-""“‘*9("‘“))("J.'--‘Jli)(*rj- Jy-=0, o0 <o <1,
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This is also a contradiction. Hence we can infer the truth of the

theorem,

We note here that our Legendre condition for the separated pro-

blenm is
(2.21a) [m; s(t,y,§) + nqiqj(t+r,y,§)]ﬁlﬂ3 20, ast <b -1

(2,21b) (t,y,ir)vrlvrJ 20, be-T1<t<b,

m ry »
rir]

with ¥ interpreted in the sense of Convention 2.1.1l.

In his book Qualitative Methods of Mathematical Analysis, [3],

L. E. El'sgol'c studies the following problem: to minimize
b

J =I f[t ’Y(t"Tl(t)) ’Y(t-Tz(t)) gaovo ,Y(t"Tn(t)) ,9(t-1‘1(t)),o o0 ,S’(t"rn(t))]dt
a

on the class of all PWS functions y such that y(a) = a, y(a-m) = B,

y(b-m) = o, y(b) =y (a,8,y,0 all constants) where m = max |Ti(a)lo
i

Also Ti(t) is assumed to be non-negative and such that 1 - r;(t) is
bounded away from zero.

If f is written as f(t,yl,o.o,yh,il,e..,ﬁn), then El'sgol'c
states without exhibiting any details that the Legendre necessary con-
dition for his problem is

det |[f, o | 20 (i,k = 1,00.,0) for a <t <b-m,
yil}k

That this is not the case for our problem will be shown by the following
example,
Let y be one-dimensional and consider the separated problem

with
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(=

n(t,y,¥) = &2; n(t,x,%x) = - =%2

[

Then
b 1
Jly) = I [§2(t) - -2--&2(t)]dt°
a

Suppose further that y(t)= 0, a=-17 st sa; y(b) =0, It is seen

that J(y) is positive definite by writing it in the form

b=T b
J(y) = [ %-°2(t)dt + { §2(t)at.

a b-1
Then y(t) = 0 is a minimizing function and this function clearly satisfies

the Euler equations (2.1%a) and (2,14b):

29(t) = y(t) = ¢y, a st b -1,

2§(t) = e, b-tTst<b.

The E-function defined by (2.22a) and (2.22b) in the section to follow is
identically zero, Also relations(2.2la) and (2.21b) are satisfied since

2=-1=1>0 and 2 > 0 where

Bpp(ts¥s¥) = 25 hqq(t+r,y,9) = -1,

Now the El'sgol'c result applied to our problem is certainly not true since

grrhqq = 2(-1) = =2 <0,

It is to be noted that the El'sgol’c formulation is distinct from

the formulation of the present example so that this example does not bear

on the validity of El'sgol'c theorem in [3].
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2.4 Weierstrass Necessary Condition

Define a function E : [a,b] x R > R by the equations

(2.22a) E(ty%,7,2,%,7,2,p) = £(t,%,7,%,p) + £(t+7,y,2,D,%)
= £(t,x,7,%,¥) - £(t+1,y,2,¥7,%) - (Pi“.';'i)[fri(tsx9Ya’u"§)

+ fqi(t""t’y’zol}:ﬁ)]’ a <t <b ~ T3

(2,22b) E(t,X,¥42,%,¥,2,0) = £(t,x,5,%,p) ~ £(t,x,y,%,§)

- (pl-frl)fri(t,x,y,i,i) b-1st sb,

THEOREM 2.4.1 If y furnishes J with a strong local minimum

then at each t in [a,b],

4 (2,23) E(t,x(t),y(t),z(t) ,&(t),y(t),2(t),p) 2 0

‘in the sense of Convention 2.1.1 for all real numbers p.

let & be a point of the open interval (a,b - 1) such' that a,
6 ~-T, o+ T do not correspond to corners of y. Choose B such that
B <b-T1, 0 <B=-2a <71, and such that no corner of y appears for t
on the intervals a -1 <t <B=-1T, a <t <B, a+ T <t <B + 1. Now
let Y(t) = [Yi(t)) be a function such that Y¥(a) # §(a) but otherwise
arbitrary. Here and elsewhere in this proof we understand the symbol
‘}(a) to mean the right derivative of Y(t) at t = a,

Let ¢ be a real number such that o <o <8 and define a func-

tion ¢(t,0) = (cbi(t,o)) (i =1,,0.,n) Dby the formulas
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dit,0 = yieey » I B-1), (i=1,...0.

Let w(t) = (w'(t)) be the function defined by the formulas

ryi(t), a-T<t <a,
: Yo, @ st <o,
w(t) = { .
¢ (ty), oSt <B,
\yi(t)’ B St Sb’ i = l’aoo,n.

Since y minimizes J, we have that J(w) - J(y) 2 0, Set

J(w) = J(y). Then

(o)

4 B o+T
G(o) = |£(t,x,Y,%,¥)dt + Jf(t,x,d}(t,o),i,cbt(t,o)]dt + If(t,x,y,).(,fr)dt

rB+T B B+T
+ f(t,¢(t-‘r,0),y,¢t(t-‘r,a) .ﬁ)dt - Jf(t:xQ"’.‘.}.’)dt - Jf(t,x,y,:’c,;’r)dt,

J o+T [+ ot+T
where X(t) = Y(t - 1), Upon the linear change of variable t =s + t in

the third, fourth and sixth integrals, we find that

o B
6(o) = [[f,t,x,y,ﬁ,i) + F(t+1,Y,2z,Y,2)dt + [[f(t,x,¢(t,o),i,¢t(t,a))

o o
B

+ f(t+t,¢(t,o),z,¢t(t,o),§)3dt - ‘[f(t,x,y,i,§) + E(t+7,y,2,7,2))dt
o

Now
6'(0) = £(0,%(0),¥(0),%(0),¥(0)) +£(o+1,¥(0),2(0),¥(0),2(0))

= £(0,%(0),6(0,0) ,(0) ,¢,(0,0)) - £(0+7,0(0,0),2(0) 4, (0,0, 2(0))



-20=-

B . .
° 1
+ Jgfyi(t,x,¢,x,¢t)¢;(t,c)_+ fxi(t+t,¢,z,¢t,2)¢o(t,c)
° i oy 1
+ fri(tlx9¢0x’¢t)¢;°(taq) + fqi(t+T9¢,z9¢tgz)¢ta(t,U)Jdte
After integrating by parts and setting o = o, we find that

6'(a) = £(o,x(a),y(a),x(a),¥(a)) + f[a+r,y(a),z(a),?(a),é(a))

£la,x(a) ,y(a) ,%(a) ,7(a)) = £latT,y(a),2(a),¥(a),2(a))

+

. B
¢;(t,a)[fr1[t,x(t),y(t),i(t),§(t)] + fqi(t+r,y(t),z(t),&(t).i(t))]L

+

B
© Q e O d o o
J{fyi(t’xoYoxuy) + fxi(t""t 2V 125Y,2) - d_t[fri(t”"y'xoy)
[+

+

fqi(t+r,y,z,&,%)]}¢;(t,a)dt > 0,

The expression under the integral is zero since y is a minimizing func-
tion and hence satisfies the Euler equation. Also ¢G(B,a) =0 so we
have the conclusion that (2,23) holds for all t in the open interval
(a,b - 1) where #&,§,2 all exist, If t corresponds to a corner of y
or if t=a or t=Db -1, use the continuity of f to find that (2,23)
holds for all t in [a,b - 1] in the sense of Convention 2,1.1.

By a similar argument (2,23) holds on [b - t,b] with E defined
by (2.22b). Note that at t = b = T there are two conditions.

We will say that if y, satisfies condition (2,23), then it satis-
fies condition II. The function y, satisfies condition IIN if there is
a neighborhood #~ of the elements (t’xO’Y0’§0'§o) associated with the

function y, such that the inequality
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E(tQX;Yoz'ioﬁoéoP) 20

holds for all (t,x,y,%,§) in ~# and (t,x,y,%,p) in K,

The following result is one which will be useful in proving suf-
ficient conditions.

THEOREM 2.4.2° Suppose that y, is an admissible function which

‘satisfies condition IIN° Also suppose that the matrices

’frirj(tsxoy’isf') + fqiqj(t'i"[,y,z,?,é)l, a <t b =1 and

Ifrird(t,x,y,ﬁ,ﬁ)l, b-t<tsb are non-singular along y,. Then there

- exists a constant h > 0 such that

(2.24) E(t,X,¥,2%,¥52,p) 2 hA(p = §)

for (t,x,¥,%,¥) in a neighborhood.z¢°'of (t,xo,yo,io,ﬁo) and (t,x,y,%,p)

in R wvhere
1
Mp -9 =L+ |p-9H?%-1.

This theorem has been proved for a Bolza problem with no time-lags
by Reid [14]. Also Hestenes [6, p.,151] has given a proof for a simpler
problem than that considered by Reid. We show that Hestenes' proof may be
extended to cover the present problem with delayed arguménta

Denote the E-function by the abbreviated symbol E(§,p). Now on

[a,b - 1]

RPTERNE SOR. I
E(y,p) = LR ?§? E )Efrirj(t,x,y,§,9+e(p-§)) + £ 10506y, 2,340(p-9),2) ).

rirj(t’x’y’§’§+e(P‘9))c Then there

exists u > 0 such that E(§,p) 2 u|3°r-p|2 on a neighborhood R, of y.

i 1yeed
on [b- 1,01, E(§,p) =& -pﬁ)g,i pDe

Since

[p-¢12 = TAlp-9) + 2ICA(p=§)1 2 2A(p-§),

we have that
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(2.25) | ~ E(F,p) 2 2un(p=§),
Reduce lRl- so that condition Iy is satisfied with (t,%,¥5%,9) in Ry,
‘let -No be another néighborhood oijosuéh that the closure of Ny -is
'in R, and let € > 0 be a constant such that if (t,x,y,%,§) is in N,
fhen-(t;x,y,i,§+n) is in Ri‘ for'evefy>veétor T &ithﬂllﬂ[ <e, Let
(t,k,y,ﬁ;ij. be in Ny and (t,x,y,%,p) be in R - R,. Choose a vector
T with |r] = ¢ anda constant k such that p=y +kmn, Now k > 1.

From the identity
E(§,941) = E(§+m,9+km) + E(F,9+Mk + (k=1)E(§+7,5)
we find that
(2.26) ﬁ(§,§+kw) 2 KE(§,7+7),
Now (2,25) holds so that (2.26) becomes
(2.27) E(§,9+km) > 2kuA(m), k> 1.
For |n| =€, S e . o
AMm) , /1weZ -1 e
AGkm)  /19kZeZ - 1 k(2+m)

Now

M) 2 Mk )gey 5

so by inequality (2.27)

E(§,$+kT) 2 x(kn)zéééy .

let h = %%E and p = ¥ + kr to get inequality (2.24),
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2.5 ExamEles
EXAMPLE 2.5.1.. Let

3
Iy = |(32() - 22(v))2ae
0

and seek a minimizing function on the class of all PWS functions
y ¢ y(t) = =t t in [-1,01, y(3) ='1, T =1, Immediately it is seen
that a function with alternate slopes bf‘pius and minus one is a minimizing
function, We note that cormers can occur anywhere on [0,3].

EXAMPLE 2,5.2., We now produce a similar example which is not quite
so trivial in order to apply a future sufficiency criterion, Let

3
Iy) = |(5() - x(t))?at
0

and seek a minimizing function on the class of all PWS functions
y ¢ y(t) = =t, =1 <t <0, y(3) =2 1 =1, The Euler equations which a

minimizing function must satisfy are the following:

29(t) + $(t+1) + $(t=1) = ¢, O <t 22,

y(t) + y(t-1) = ¢, 2 <t <3,
A solution of these equatioﬁs with ¢ = %- is
(-t -1 st <0,
St 0 <t <1,
y(t) =<
—St+3, 1<t <2,
kzt-u 2 <t <3,
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That this is a solution can eaéiiy.be"seen‘bymthe following substitution:

o 021, 2(3) -3-1-=%
on [1,2], 2(—-;-)+2+%=%-

n
N

on [2,3], 2-%

It will be shown later that such a function y acfuélly minimizes J,
It is to be noted that f 4 qu =4 >0 and that the minimizing
function has a corner at t = 1, This shows that Theorem 2,3.2 cannot be

extended to cover the case of a general function f£(t,x,y,%,y).

2,6 A Fourth Necessary Condition

Reééilifféﬁ.(2;15)'thaf under the hypdtheéiéAfhét y minimizes the

functional J, we have the relation

b . s . s 3
F"(0) J[f £led 4 of A Ja # 2F ; SEYR) 4 2F ; SETR)

xix] xlql x1ir]
NS A PRSI [PPSR *% St %
+ fylyjn n' + 2fy1an Y + 2fylr3n A+ fqlqja 3
3 j
+ qugﬁ + £ 54h 1p37at »

Tﬁe‘arguments of the partial derivatives of f are (t;x(t),y(t),*(t),9(t)).

Denote the integrand by 2w(t,£,n,§,ﬁ) and consider the integral
b

J(n,2) = J[2w(t.5.n.§,ﬁ) - anfnilat,
a

In view of Euler's theorem on homogeneous functions this may be written as

b
(2,28) J(n,A) = [ [Elwzi + nlw%i + Elwe: + n wag = Xn n ]dt.
a
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A linear change of variable in the first and third terms of the integrand

in (2,24) yields
b ; ; Ly
(2,29)  d(n,y)) = ] [O4 ()™ (£) + x; (OIA*(£) = An"(£In*(t)]at
a

where the functions ei(t) and xi(t) are defined as follows:

o (6) wgi(tﬂ,n,t‘;.;\,a) + o 1(t,6,n,8,0), a st b,
At) =
l L]
mni(t,g,n,ﬁ,n), b-1T<t < b;
® wg;i(tn,n,c.ﬁ.f;) + wﬁi(t,E,n,é,ﬁ), a<t<ba-nr,
X; t) =

mﬁi(tgg,n,é’ﬁ)’ b-T1T <t g<b.

The function z(t) is defined by the equation z(t) = n(t+1).
Note that if J(n,\) has a minimum for fixed A, then by Corol-
lary 2,2.1 it is necessary that the minimizing n satisfy the following

equations at points t not corresponding to corners:

. . dr. . Vs ooant =
(2.30a) wnl(t) + wgl(t+t) 3?[wﬁ1(t) + mgl(t+r)] An 0,
a<ts<b-t,n(t)s 0,a-1 <t <ay
(2.30b) wni(t) - -i—wﬁi(t) -ant=o0, b-71 <t <b, n(b) =0.
DEFINITION 2,6.,1 A value 1A, is said to be a proper value of
(2.30a), (2,30b) if there is a non-identically zero solution n, of (2.30a)
and (2.30b) with X = A, satisfying the given boundary conditions. Such

a solution is called a proper function corresponding to the proper value
Ly

Xge
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We assume that proper values of (2.30a), (2.30b) do exist and that

they are real,

LEMMA 2,6.1 If n, is a proper function corresponding to a pro-

per value A in (2.30a), (2.30b) then J(no,lo) = 0,
Recall that J(no,xo) may be written in the form (2.29). Inte-
grating the terms involving ﬁ; by parts and using the conditions

n;(a) =0 = n;(b), we obtain the equation

b
- d i i
J(no,)\o) = L[ei(t) - T X3 (1) - J\Ono(t)]no(t)dt.

The expression in square brackets is just the left-hand side of (2.30a),

(2.30b) which n_ satisfies with A,e Hence J(no,xo) = 0,

0

We can now prove the following necessary condition,

THEOREM 2.6,1 1f y minimizes the functional J, there exists

no proper value X <0 of (2.30a) and (2.30b),

Suppose A < 0 is a proper value with proper function n. By the
preceding lemma we have the conclusion that

b

(2,.31) F1"(0) = [ Aninidt.
a

Now F"(0) 2 0 which implies that A 2 0, But this is a contradiction,
and hence the theorem is proved.

A complete discussion of a boundary value problem arising from a
Bolza problem with no delays is given by Reid [12]. In [13] one finds for
the problem of Mayer the relation of a fourth necessary condition involving
proper values to a fourth necessary condition using the idea of conjugate

points along a solution of Jacobi's equation. Although the present author
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has not been'able to explicitly show that a conjugate point formulation is
not applicable to problems with delayed argument, he suspects that such is

the case.



CHAPTER III

SUFFICIENT CONDITIONS FOR THE SIMPLE INTEGRAL PROBLEM

3.1 Introduction

: in.thisughapter we give two conditions sufficient to ensure that
yo‘ in @ minimizes J(y) on Q, The first is for global minima pat-
terned after a similar theorem of Ewing [4]; the sécond for strong local
minima is proved by'indirect methods after Hestenes [6, p.161] and his

student, E, H, Mookini [8, 9],

3.2 A Sufficient Condition for a Global Minimum

There are few known criteria even for classical no-lag problems
that establish for a function y, that it furnishes a global extremum,
Yet one would ultimately desire to have this information. The results
of this section like those in [4] are effective for a limited class of
problems and yet one which includes many examples with convex integrands
that are to be found in the recent literature on control theory.

Define a function G(t,Xy,X,¥qsYsXgsXs¥gsy) by the formula
i i i i i o i '
(3.1) 6 =f-fo-(x"-xg)fg 1-(y -y;>foy,;-(&h&°)foqi-(y ~¥5)fopls @ St £D,

where

(3.2) f-= f(tox\vY9§‘o§)5 £ = f(t9x0’y0’i0'§0)'

-28-
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'THEOREM 3,2.1 Suppose that y, in @ satisfies equations

(éo7a). (2.7b), and (2,8), Let vy Es.ggvarbitréng:funcfion in

Then

b

(3.3) J(y) - J(Yo) = [ G dt.
a

In order to prove this result define the integral

b
o S SUNRPRY SFY. SOPRPE ST SN FY. Y SONN
J(y) = [a[fo+<x X ) gH(k &0)f0q1+(y yo)foyl+(§ Yo £ ypilat

where f, is as in (3.2)., Using a linear change of variable in the

second and third terms, we have that

b1 s s s s
Iy) = Ia{f°+(yl—y;)[f0yi+f0xi(+r)]+(91-§;)[f0r1+foqi(+1)]}dt

b s 3 9 o
1.1 1 .1
' fbffo+(y yhie, sretabie, sl

where (+1) again denotes the set of arguments (t+r,yo,z0,§ro,%o)° Upon

an integration by parts we find that

- b b~t, . d
(3.4) J(y) = Iafodt+f (YI'Y:)[foyi*f0x1(+f)‘E?(fgri*fgqi(+f))]dt

a

b . s . s b-t
i i d i i .
+ Jb‘iy 'Yo)(foyf'ﬁffori>dt+(y -yo)[fOri+foinTQ] ]

+ (yl-y:)fOri

e

b-~T1

Since both y and Y, are in 2, we have that y(a) = yo(a) and

y(b) = yo(b)o Using this fact in conjunction with (2.7a), (2.7b), (2.8)
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and (3.4), we find that
b
Hy) = I F(ty%2¥g9%gs¥g)dt .
a

Consequently 3Yy) = J(y,), so that we have the relation

b

Iy) - Iyg) = Iy) = Ay) =j G at.
a

This is conclusion (3.3).

- COROLLARY 3.2,1 If the relation

G(tgxo sXsY¥ sYsg‘o 0&»9'0 ) 20

holds for y, satisfying (2.7a), (2.7b), and (2.8), and if y is an ar-

bitrary function in @, then J(y,) 4is a global minimum for J(y).

The proof is immediate from Theorem 3,2.1l.

EXAMPLE 3.2.1 Recall Example 2.5.2: Minimize
3

Jy) = j [§(t) + %(t)]2dt
0

in the class of all PWS functions y : y(t) = -t, -1 <t <0, y(3) = 2,

T = 1, Our candidate for the minimizing function is

/-t, -1 <t <0,

3

5t 0 <t <1,
yo(t) =

-5t+3, 1<t <2,

2t-'+’ 2 <t 539

let p =¥, @ = % so that the G-function with our current y, becomes
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the following:

on 0,11, G=(p+ a2~ (3-12=(p-(3-2) - (qg+1)3-2)
=(p+q)2-p-gqt+ %-= [(p+q - %JZ 2 03

on [1,2], G= (p+ @2~ (-3+D? - (p + (-3 +3) + (g - N(23% 3)
= (p+q? 203

on[2,3], G=(p+@2~(2-D%-(p-2)4-3)-(q+P -3
=(p+2-p-q+tgy=lp+a -5220,

Hence G20 on 0 £t <3 and for all real numbers p and q. There-
fore the corollary to Theorem 3.2,1 yields the result that y, furnishes

a global minimum.

3,3 Sufficient Conditions for Local Minima Ex_Indirect Methods

This section adapts to certain problems with lags results of M. R,
Hestenes and of his student E. H, Mookini for problems without delayed
arguments,

In this section we assume that f is free of X; i.e.

f = £f(t,x,y,r). Also we enlarge § to be the class of all absolutely con-
tinuous vector functions on [a - T,b] satisfying yi(t) = ai(t),
a-T1Tst <a, yi(b) = Bi, i=1l,,00,n where a(t) = (ai(t)) is a fixed
absolutely continuous function with a(t) in Lz[a - T,a]. Assume that
(t,x,y,r) is in the region R : [a,b] x B for almost all t in [a,b]
where B 1is an open arcwise connected subset of R x R x R®, Assume
also that f and its partial derivatives with respect to x,y, and r

evaluated at (t,x(t),y(t),y(t)) are integrable on [a,bl.
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Let Yo in Q@ be a function which satisfies the following con=-

ditions:

I (Euler) The function Yo is of class C'[a,b] (smooth on [a,b])

and satisfies the equations

4+

£i(t) = f LE i(stT) + fyi(s)ds +cty ast sb-rg
k-t
t ~
fri(t) = I fyi(s)ds + ¢ b=12x2t b,
“hey

where (t) means (t,xo(t),yo(t),ﬁo(t)) and (t+1) means

(trroy (0,2 (0) 2 (0)),

11 (Welerstrass) There is a neighborhcod N of the elements

(tgxo,yo,ﬁo) such that the inequality
E(t,x,y,r,p) = £(t,x,y,p) = £(t,x,y,r) = (plmrl)fri(t,x,y,r) 20
holds for all (t,x,y,r) in N and (t,x,y,p) in & ,

III' (Legendre=Clebsch) Along y, the following inequality holds for all
0 q .

constant vectors w = (7)) # 0, 1= 1,.004n3

) i“
frirj(t,xo,yo,yo)n 2d > 0,

IV' The second variation Jz(n) (called F"(0) in Chapter 2) is positive
for all n¥ 0 such that n(t) is absolutely continuous and n(t)

is in Lz[a - t,b] and such that n(t) = 0, a -1 <t <a, n(b) = 0,

THEOREM 3.3.1 1If y, in @ satisfies the conditions I, II ., III',

N’

and IV' above, then Yo minimizes the functional
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b =y

J(y) = J F(t,x,y,y)dt
a

_:'L_h_ the sense that for all y in @ in a strong neighborhood of vy,

J(y) > J(yo)o

The proof of Theorem 3.3.1 will be given after a few preliminary
theorems have been noted.

%
Define the integral I (y) by the relation

1%(y) = 3(y) = E(3,,)
where
* b '
E'ge) = [ Blemyigg
a

The function E(t,x,¥,¥,,¥) is defined by the relation

(3.5) E(t'xo}'»ﬁosi’) = £(t,%,y,¥) ‘f(t9x9Ys3°fo) '(91"93)fri(t9x'Yv§o)-
Relation (3.5) is of course relations (2,22) appropriately modified in
view of the fact that f is free of %.

The proofs of the following two theorems are given in [8, p.22,23]
for a problem with no delays. Since the proofs are exactly the same, we

omit them here.

THEOREM 8.3.2 If y, in @ satisfies condition IIN, then for

eve € > 0 there exists a strong neighborhood of y, such that

1) - T8 yg)] <ell + B (3,9,)]
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for every admissible function y in that neighborhood.

THEOREM 3.3.3 Given a constant o > 0, there exists p > 0 and

a strong neighborhood Fo of Yo such that for every y 1in Fo

(3o5) J(Y) > J(yo) - 0o
%

If E (i,j"o) <p, then

(3.7) J(y) <Jd(yy) + oo
%

“If E (§,§,) 2 20, then

(3.8) J(y) > J(ya) + O,
Define the function K(y,yo) by the formula

| b
(3.9) K(y,y,) = I A - §,)at
a

where

NI =99 = At I3 - 9yl* - L.

Since Yo satisfies conditions IIN and III'; there exists h > 0 such

that
(3.10) E(t,X,¥,2,%,0y2,p) 2 hi(p-r).

%
We now note that if E (?,3}0) < c¢h, then K(y.yo) <E,

THEOREM 3.3.4 Let {yq} be a sequence of admissible functions with

the property that given a strong neighborhood F of y,, there exists an
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integer q, such that yq is in F whenever q > q4. If

lim sup J(yq) < J(yq), then

q-m

lim K ) = 0,
q:z (yq.yo

To prove this theorem let F be a strong neighborhood of y,
*
and assume E (iq,fro) 220, 0>0, q >qg. Then J(yq) > Jly,) + o
* .
which contradicts the hypothesis. Hence E (¥ q,fro) <20 <eh for

g < E;. The above remark applies and
K(yq,yo) <e, forall e>0, q > g4

This proves the theorem.

Suppose now that y, does not minimize J(y). Then for each in-
teger q ‘there exists Yq in Q such that

1
(3.11) J(yq) s J(yO)g Ds(yq,yo) <'q'e

Hence {yq} converges uniformly to yg. It may be shown as in [9, Thm.5.3]
that fi'q} converges in measure to §¥,, and hence there exists a subsequence

of {y q} (again called {y q}) such that { 9q] converges almost uniformly to

¥or

THEOREM 3.3.5 Let {yq} be the sequence of functions defined by

(3.11). Given a constant p > 0 there i_s_g constant 6 > 0 and g_n_i_n-

teger q such that if M is a subset of [a,b] of measure at most §

and q > qp, then

(3.12) 0 sf A (t)at <p
M 4
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where
3,13 A (t) = Ay - + 2,
( ) q ) 9q &o)
The proof of this theorem is also to be found in [9].
Define the constant kq by the relation
2 -
kq = K(yq,yo)o
Let
) yq(t) - ¥,(t)
nq(t) = T .
q

The variation nq(t) satisfies the relation

b. .
, n_ |2
(3.14) I 1—-??)- at = 1,
q
a

This relation follows from the identity

g, - 9,17

A(yq. - Yo) = _l'(_r—xq t °
The following theorem is proved in (9, Thm.6.2].

THEOREM 3,3.6 Let {yq'} be the sequence of.functions defined by

(3.11) and let n_= k;’(yq - 9o)o There is a function 1'10(1:) in

q v
Lz[a-t,b] such that the sequence {ﬁ q} has a subsequence (gain called

{;‘q}) which converges weakly to ﬁo(t) in sza-t,b] on every meas-

urable set M on which {9q(t)} converges uniformly to 90'(1:). More-

over, for every bounded integrable function g(t),

b b

(3.15) lim J glt)n (t)dt = J g(t)ﬁo(t)dt..
Qi I g q a
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The following two theorems are both proved in [6, p.157].

THEOREM 3.,3,7 Let {yq} be the sequence of functions of the

‘last theorem, and let “q be defined as before:

AN yolt) )

k
q

nq(t) =

‘There exists a function no(t) whose derivative is ﬁo(t) such that

{nq(t)} converges uniformly to no(t) on [a;bl.

THEOREM 3.3.8 Let Niq(t), Ni(t) be continuous functions such

that
lim N, (t) = N.(t) uniformly on [a,b];
g 14 i

then

1i JbN (t)°i(t)d -JbN (t)ﬁi(t)dt
qiﬂaiq g "'ai 0 °

We now write J(y) in the following way:

Hy) = 3y + 3 (y - 3) + K(y) + E (5,9,
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where b
Jl(y'yo) = Ja[(xl'x;)fOxi + (yl-y;)f + (y1 °1 Orlldt'
b .
K(y) = j [MCt,y) + (§=F )N, (t,3)lat,
a
Here
M(t,y) = f(t,x,y,fo) f(t,xo,yo,yo) (x =X )foxl (y yl)foy;

Ni(t.Y) = frj_(t"‘QYoﬁo) - fri(tvxosyos}"'o).

Now M and Ni can be written as follows:

1 PO ‘
M(t,y) = I (1-0)[£ 5 3 Cxtercd) (3 -x))
0

+ 2fxiyj(xl’x:)(y -yo) + f&lyj(y yo)(yj-yg)lde

where the partial derivatives of f are evaluated at

(t.x0+6(x-x°),y0+e(y-y0),§o), 0 <8 <1.

1

The partial derivatives of f are evaluated as above.

Recall that

% ®,0 o *
I(y) =Jd(y) -E (y,yo) and I (yo) z J(yo)o
Using the fact that Yo satisfies the Euler conditions, we find

that
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(yg) - 1(y,)

b
. - ol oi
(3.16) 3i2 2 = éﬁf ;5{ [M(t,yq) + (y =Y )N; (t.yq)]dt
' q q’a
b
climy -1 ¢ i3
a
We now show that
b —-
e s -2.% .o o 1 i j
lim inf k “E (y _,¥,.) 2 -J (X, Y. oY ) dat.
o q Q" 0 2 a rip] 0*Y0%¥0’ Mo

Let M .be a measurable subset of [a,b] on which {iq} converges to
§° uniformly, There exists an integer q; such that if q 24,
then

iej
oo

(3.17)  2E(t, xq,yq,yo,y ) = kqfrlrj(t xq,yq,yo+6(yq-yo))n
Also
é:z frirj(t,xq,yq,yo+9(yq-yo)) = rlrl(t’xo’yo’yo) uniformly on M.
Let
£;5(xy) = £ ipjLtexsy, ¥ te(F-¥ )1
Then

J :.j(x ¥ ).;etldt J fij(xo,yo)nqngdﬁj [fij(" o ) - f..(xo,yo)]nqngdt.

The last integral has limit zero as g+ so

lim inf J £, (x Yq ) 3 = 1im inf Iff..(x y . n nj
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Since {ﬁq} converges weakly to n. on M, we have the result that

0
éi': IMf (x ) n i cj1 JMfij(xo’yo);'iag°
Hence
li:*inf IMf..(xq,yq) ; 3 = Jmfij(xo,yo)ﬁgﬁg
+ m;-inf '[Mf..(xo.yo)( i %)(r'\g;g).

Applying III' and (3.17) to the last integral we find that

] . -2 o l . .j
1lim inf kq JME(ﬁq,y ) 2 i'IMfij(xo’yo)" Nge

q-no

Using condition IL, for E(iq,ﬁo), we see that

3 . -2 * o o l e Gj
lim inf k_E (¥_,¥.) 2 I £f..(x vy )n.n..
T a q q*~e’ = 7 y i3 0% 0
Recall that for all € > 0, M may be chosen so that the measure of M

differs from b - a by less than €. Hence

. —2 % o l b e
(3.18) lim inf kq E (iq,yo) 2.5-1 £..(x ,y In
Qe a

*
From the definition of I (y) we see that

* *

I(y)-1 (yo) J(y -2 %

lim sup a < lim sup a - lim inf k_ E (y_,v.)
g Kk qre K2 g 19

) - J(yo)

Hence we have by relations (3.16), (3.18) that
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J(y ) - J(y) -2 %
0 > lim sup ! °=éJ(n)+liminfk2E(§s§)
g ki 20 gre 4 Q70
1 [P 1.9 .1
- !.J frirj(t’xo’yo’yo)"o"o 235 Jz(no).

It now follows that no(t) = 0 since Jz(n) was assumed to be positive

A -2 * (] o
definite. We then can conclude that 0 2 lim inf kq E (¥ q,yo). This
q-iw

result and (3,10) imply that

b
0 2 lim inszj hA(§ =¥ )dt = h.
i B Rl

But h > 0, so that the assumption that J(yq) s.J(yo) is false, Theorem

3.3.1 is therefore proved.



CHAPTER IV

THE PROBLEM OF HESTENES WITH DELAYED ARGUMENT

4,1 Preliminary Theorems

In this chapter we adapt certain results on control problems
obtained by Hestenes [7; 6,Chap.6] to control problems with délayed
arguments. In particular we extend Theorem 3,1 of [7] to time lag
problems. Also we discuss the second variation of such problems.

The final section of this chapter contains a sufficient condition for
optimality which does not depend on the sign of the second variation
but is of rather limited applicability,

Following Hestenes we consider an arc to be a system
y0t) = (¥10) yooe,y™(8)),  ult) = (ul(t),000,uUD)).

Such an arc will be denoted by the single symbol y. The function y(t)
is a continuous (PWS) n-dimensional vector function; the function u(t)
is a PWC g-dimensional vector function., We define =x(t) = y(t - 1),
z(t) = y(t + t), v(t) = u(t + t) where 1t is a positive constant.

The problem is that of minimizing a functional

b
(4.1) Io(y) = [ Lo(t,x(t),y(t),u(t))dt
a

in a class of arcs

42«
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y: y(t), u(t)

satisfying a system of differential-difference equations
(4,2) FHe) = £t x(0) ,y(0),u(t)), i = 1,...,n,
the set of initial and terminal conditions

(4.3) yie) = oft), a-t <t sca, yim) = sl

and a set of isoperimetric relations

Iv(y) $0, 1<y <p'

(4.4)
IY(y) =0, p' <y=<p
where
b
I(y) = [ L [tyx(t),y(t)u(t)ldt,
Y aY

The conditions (4,2) and (4,3) in vector notation are

(4.5) F(t) = £(t,x(t),y(t) u(t))
(4.6) y(t) = a(t), a-71 <t ca, y(b) =8,

We assume that the functions f', L LY are all continuous and

09
have continuous first partial derivatives on a region & of (t,x,y,u)-
space, [a,b] x B where B is an open arcwise connected subset of

R® x " x R, Denote by 6?0 a subset of & with the property that if

(t,x,y,u) is in R,, then there exists a continuous vector function
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u(t) on T-6 <t s<t+ 6 such that u(t) =u and (t,x,y,u(t)’
is in Wo whenever [t =t| <6, [x = %] 26, |y - §| < 6. We will
denote by O the class of all arcs y such that (t,x(t),y(t) ,u(t))
is in @o along y, such that y(t) is a solution of (4.5), and such
that y(t) satisfies (4.6); The vector function a(t) is PWS on
[a-rt,a]l, and B is a constant vector,

In preparation for Theorem 4,1,1 we make the following definition
which is to be found in [7]. Let Jp(y)9 p = 0,1,000or be a set of
real valued functions defined on a space (B of elements y. Let Yo
be in®B. A set K of vectors k = (k%,...,k") in a Euclidean space

ntl

R will be called a derived set of vectors for Jp at y, on i

if given any finite set of vectors kl,o“gkN in K, there is a func-
tion

y(h) = y(hl,oaa ’hN)

defined on a set 0 g hj. 28,5 = 130009N; 8§ > 0y with values in 3]

such that y(0) = ¥, and such that the functions

$,(h) = Jp(y(h)) =3 (¥)s P = 0414u00,T

are continuous on the set 0 shj <6 and have d¢ 0 = kgdhj as their
differentials at h = 0 on the same set.

We now state the following theorem which is proved in [7, p.39].

THEOREM 4.1;1  Suppose that K is a derived set for Jp at Yo

on é. If Y, minimizes Jo(y) on & subject to the constraints

J (y) <0, l<ysgrx!
(4.7) Y

JY(y)

]
o
-
%
A
<
1A
s
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then there exist multipliers Ao 2 0 A 500054, DOt all zero, such

‘that the inegualitx

(4.8) L(k) = Apkp 20, p=0yl000,r

holds for every vector k 3.;15 K and hence for every vector _J’._n_ the

t T
closure K of the convex come generated by K. Moreover, AY 20,

' o 3 -3 o
1y sr' with A =0 if J(y) <0

4,2 A Maximum Principle

The following theorem extends for problems with delayed argument
a result established by Hestenes [7, Thm.3.1]. The results are quite
similar to those found in [11, p.213], but the method of proof is quite
different., Also isoperimetric relations do not appear explicitly in [11].

THEOREM 4,2.,1 Suppose that the arc

Yol yo(t), uglt), a st sb

affords a minimum to I, on Of. Then there exist multipliers
Ao 20, AY, pi(t), Y = looooPs 1 2 10004
not vanishing simultaneously on [a,b] and the function
(4,9) H(tyx,y,u,p) = Pifi(tn"DYou) ‘AoLu(toxJ:ou) -AYLY'(t 9Xs¥ pu)

(summed on i and y) such that the following relations hold.

(1) The multipliers XY are constant and AY 20,1 <y <p'

with A =0 i I <0,
i v in case Y(yo)
(i1) The multipliers p,(t) are continuous and have piecewise

continuous derivatives, There are constants . . di such that the
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.relations

t
(4,10) pi.(t) - I [Hyi( ) + Hxi(ﬂ)st + di’ a <t £b-r1,

b-T

t
_Inyi( )ds + d,, b-1t<t <D,
b-t

(4.11) pi(t)

hold along ¥,.

(iii) The inequality

(4.12)  H{t,x () ,y,(t) yu,p(t)} < H(t,x,(t),y0(t)uy(t),p(t))

holds whenever (t,x,(t),y (t),u) is in R,

The formula (4,10) is an abbreviation for the expression
t
py () = - Jb{HYi[s,xo(s),yo(s),uo(s),p(s)]
-1

+ Hxi[s+r,yo(s),zo(s),vo(s),p(s+r)]}ds + d,.

A similar remark holds for the expression (4.11),

In beginning the proof we make the following definitions, For

i’j = l.ooa'n and Y = o’l’oeﬂ.p. set

A0 = 55ty (0) 3,(8) uy ()
b o (1) = L 5(tyxg (1), (t)up(t))
C:ij(t) = fij(t,xo(t),yo(t),uo(t))
d () = L g(taxg(£),y,(0) up(0)),

Now let A(t) be the matrix (A;(t))o Likewise C(t) = (C;(t)), Let
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by(t) be the n-dimensional vector (byj(t))o Also dy(t) = (de(t)).

Let qY(t) be a solution of the differential-difference system

£
~~
ot
4
[}

= -qY(t)A(t) -qY(tf'r),C(t-’:T)- b_y(t) -_dy.(t'!.-'.l’.).,.. ac<t<b-r1,

-qY(t)A(t) - by(t), b-1<t ¢h,

L
~~~
ot
A4
i

with qY(b-r) = 0, By applying standard existence theorems for dif-
ferential equations to the above system on the successive intervals

b - t,b], [b - 2t,b - t],... one finds that a PWS solution to the sys-

tem does exist.

Now set

(4.13) fY(t,x,y,u) = Ly(ﬁ,x,y,u) + é%(qu), (v = 0,1,000,p)

Define the function Jy(y) by the formula

b

JY(y) = I fy(t,x,y,u)dt + Cys Y = 0,1,00e4D-

a

where

e, = -qy(b)y(b)-+ qy(a)y(a)o

It is easily seen that
JY(y) =4IY(y)
for y in Of . Hence y, minimizes Jo(y) subject to the constraints

J?(y) <0, 1<y <p'

Jy(y) = 0, p' <Y S Dp.



Let the nxn-matrix G(t) = (Gij(t)) be a solution of the matrix

differential-difference equations

&(t) = -G(t)A(t) -G(t+T)C(t+T), a <t <b =T,

&(t) = -G(t)A(t) b-T<t sb,

with G(b) = I where I is the nxn identity matrix. As before a PWS

solution to this system exists, Define the function fb+i(t,x,y,u) by
the formula
(4,14) =4 § .
01 fp+i(t.x,y,U) - #Gij(t)y (t))’ 1 - l,'...n'
Set
b
- ]
Jp+i(y) = fafp+i(t,x,y,u)dt -

where we define

c; gt - Gij(a)yj(a)o

It is now clear that y in OV is equivalent to the condition

Jp+i(y) =0 (i=1,..04n) since

i i
Jpﬂ._(y) = y(b) - B,

let K be all n+pt+l-vectors of the form k = (k) where
(4,15) kP = fp(t,xo,yo,u) - fp(t,xo,yo,uo), P = 04l,0ee,ptn

where t is in the interval a <t <b, and t is neither a point of

discontinuity for u_ nor a point of discontinuity of q or . We

0
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now have the following.

LEMMA 4,2.1 The class K is a derived set of vectors for J‘J

on .

Granting for the moment the truth of the lemma for which the

at v,

proof will be given later, we proceed with the main line of the proof

of Theorem 4,2,1, By Theorem 4,1,)l there exist multipliers Ao 20,

Al,ooo,3p+n, not all zero such that

(4,16) L(k) = Apk" 20, P = 0,15000,pn,

for k in K. Also AYzO,lsv £p', with AY=0 if Jv(yo) <0,

Now set
(4,17) F(t,x,y,u) = Apfp(t,x,y,u)°

We then see using (4.15) and (4,16) that

(4,18) Ftyxg9¥gsu) 2 Fltyxg,y5,ue)

except possibly at a finite number of values of t on [a,b]l. Theorem
4,1,1 guarantees that (4,16) holds for all k in the closure K* of
the convex cone generated by K., Hence (4.18) holds for all t in
[a,b] with (t,x;,y,,u) in ‘?oo

We now define the functions pi(t) by the equation
pi(t) s - quYi(t) - Ap"'jGij(t)’ Y = O’I,oeo’p; 1= l.ooo’ne

Using the definition (4,17) of F, the definition of H and (4,18) we

find that

H(tyx,¥79usP) < H(tox),¥,4u,sP)0
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Differentiate pi(t) to find that the following relation holds for all
values of t on [a,b = T] except those which correspond to discontin-

uities of uv, qyi’ or Gij°

ﬁi(t) = -Hyi[t.xo(t),yo(t),uo(t).p(t)]-Hxi[t+r,yo(t).zo(t),VOCt),p(t+t)]o

on [b - t,b], the relation
ﬁi(t) = -Hyi[t,xo(t)gyo(t),uo(t).p(t)]

holds except for values of t corresponding-to discontinuities of Ugo
PROOF OF LEMMA 4,2,1 Let k ,e0osky be N vectors in K, They
are of the form kj = (kg) where

p = -
kg = £t (£5),y (€5),5u.) fp(tj,xo(tj),yo(tj),uo(tj)),

i = 1,°°°'N6

We may assume that <t <eoe < tye By assumption there exist func-

tions uj(t) defined on a e-neighborhood of tj such that

(t,xo(t),yo(t),uj(t)) is in 6?0 and uj(tj) = u Choose & > 0 such

jo
that N6 <e¢ and & <1, Also we require that the intervals

ti <t 5ti+N6, 1::I <t stj-st

be disjoint when i # j. Let A* be the set of all vectors h = (hj)'

j = 10008, such that 0 s'hj <68, Set T1 = tl, Tj = tj + h1 + coe

+ hi‘l’ j = 240004Nc Let M(h) be the complement in [a,b] of the set
of intervals Tj <t < Tj + hj’ j = 150004No Define a function u(t,h)

by the formula
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u(t,h) = uj(t), Tj £t g Tj + hj, j= 1,°°ifN
u(t,h) =u0(t), t in M(h),

If &' is chosen sufficiently small, it follows from standard theorems,
e.g. [5, Chap.IX, Sec.3], applied to the successive intervals [a,a + 7],

[a+ 1,2 + 271],... that the differential-difference system

7t = £ t,x,y,ut,h)), yt) =a(t), a-Tstsa
has a solution y(t,h) for a 2t b, 0 <£h £6', The arc
y(h): y(t,h), u(t,h), ast sb

has the property that y(0) = y Moreover, y(t,h) has partial deriv-

00
atives with respect to the h-j which are PWC functions of t on [a,bl.
The functions

$,(h) = Jp(y(h)] - 3y,

are of class C' on A4, Setting hi =0, i# j, we see that
=P
¢p(h) p(h) + Qp(h)

where

h
j+
Pp(h)=.] [fpzt,x(t,y),y(t,h),uj(t))-fp(t,xo(t).yo(t),uo(t))]dt :
T

Lde

Q,(h) = I L£, (t,x(t,h),y(t,h) ,uo(t)J-fp(t,xo(t) o7, (t)5u (1)) 1at,
M(h)

Now at h j = 0 we have the result that
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It remains to show that at hj =0, 51£i-=-0° Observe that except for

a finite set of points M(h) is the union of the intervals [a,Tj) and

('1'j + hj sbl. Hence

T,
3 _
Q,(h) ={ [fp[t,x(t,h),y(t,h) ,uo(t)]-fp[t,xo(t),yo(t),uo(t))]dt
a .

b
+I [fp(t,x(t,h).y(t,m,uo(t))-fp(t,xo(t),yo(t),uo(t))ldt.
Tj+hj

Therefore we have that

T, b
oQ I[3f, oy% of, Ix? 3f, dyt  of, Ix?
(4,20) S?fL=J [ ; gz + g T ‘]dt + [ [ g z z o at

- £ LT.+h, T.+h, T.+h.,h T.+h,
ol 3 ],x( 3 J,h).y( 53 ),uo( 3 3)]

+ fp[T +hj,x0(Tj+hj,h),yo(Tj+hj,h),u0(Tj+hj)].

3

Note that at hj = 0, the last two terms add to zero. A linear change

of variable yields the result that

fT -T T_j
3Q, If, I, 3yt 3f, 3yt
4.2 —— av—
(4.21) th [5?( )+é_x£(+'t)]éhj dat + QY"‘ ( )th
Ja T -T
i
!'Tj‘f'hj b=t
af vyt If Jf 3y 2
] : P it 3
¥ Ax"' (+T) éhj dt + [ay" ( ) sz (+T)] ahj
/ -
Tj+hj T Tj+hj
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b
of Iyt
+ —'%' ( ) S— dto
b-t .
3f,
Here e z ( ) denotes the expression a-;f (t,,x(t,h),y(t,h),uo(t));
af, ofp
the term T (+1) stands for TRE (t+1,y(t,h),z(t,h) ’Vo(t)Jo Note that
at hj = 0, the second and third integrals of (4,21) become
T3
of ;f oyt
p
() + == (+7) dt.
LY’" ] Bh
T.=1
J
af, £,
Since a—y-f( ) + 5E (+1) vanishes aléng y, by the definitions (4,13)
3Q
and (4.14) of fp we have that a—-}-;g- vanishes for Jj = l,...,N. Hence
3
we conclude that
o¢
T
3

at h=0 for p = 0,1,.0.4ptn. We therefore conclude that the differ-

ential of ¢p(h) at h=0 is k:?dhj as was to be proved.

COROLLARY 4.2,1 If @0 is an open set then

Hu(t,xo,yo,uo,p) =0

This result follows from (4,18) and the relation of F(t,x,y,u)

to H(t,x,y,u,p).



~5lw
4,3 The Second Variation

In this section we suppose that 620 is an open set, Also sup-

pose that IY(yo) 0, Y= l40004p"s It is then true that Jp(yo) =0,

P = lycooyptne

Let u(t) = (p'(t) ,.oo,uq(t)), a <t <b, be a PWC function

on [a,b] and set
u(tye) = uy(t) + ep(t),

In view of standard imbedding theorems, e.g. [5, Chap. IX, Sec. 3], applied
successively to the intervals [a,a + t], [a + T,a + 2t],... the equa-

tions
gt = fHtx,y,w), y(B) =a(t), a-71 st sa

with u = u(t,e) have a one-parameter family of solutions

A
o

yle): y(t,e), u(te), a st

for |e|l <e.. Also y(0) =y . The functions y(t,c) are continuous
0

0°
on [a,b] and have continuous derivatives with respect to €. The arc

ne n(t) = &L (£,0, wt) = -g-‘e-‘- (t,0)

is called the variation of y(e) along Yoe The arc n satisfies the

equations of variations for 1i,j = l,cc0sn3 k = 1,000,Q8
o1 i i i j i k
n(t) = ij(t,xo.yo.uo)zj(t)-+fyj(t.x0,y0.uo)nj(t)1-fuk(t,xo,yo,uo)u (t)

where Ej(t) = nd(t - t), A solution n of these equations will be

called a differentially admissible variation,
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Now consider the functionals Iy(y(e)), Y = 0,1,00.4P, and
Jp(y(e)), o = 0,1,...,ptn, defined in Section 4.2, Upon differenti-

ation with respect to € at € = 0 we see that

d

b
. . ok
-d—e-IY(y(e)) e=0= J [Lyxiﬁl(t) + Lwinl(t) + Loxw (£)1at,

a

b

d _ i i k
aE-Jp[y(e)) e=0- Ia[fpxiz (t) + fpyin (t) + fpuku (t)lat

with the partial derivatives of LY and fp evaluated at

(t,xo(t),yo(t),uo(t)]o Set I;(yo.n) = é% Iy(y(e)) o and set

o« After the linear change of variable t = s+t
e=0

I yeem = g I, (v(e))

in the terms involving E'(t), we find that

b-1
I;(yo,n) = [ {[Lyyi( ) + LYxi(+r)Jnl(t) + L yuk(e) Jat
a

b
[ SN LI R W k() lat,

+
b=t
and
rb=T
= i k
330y em) = | {[fpyi( )+ £ G + £ (O (t)}at
a
rb
i k
+ | LE O () + £ L Ouf()lar,
‘b-1

The arguments appearing in the empty parentheses are (t,xo(t).yo(t),uo(t))
and those appearing in (+1) are (t+r,yo(t),z°(t).vo(t)] where zo(t)
= yo(t+r). Recall that the fp were defined so that the coefficients of

ni(t) in Js(yo,n) are zero, Hence
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b
J;,(Yos") = Jafpuk[t,xo(t)gyo(t)guo(t)]uk(t)dto

Note also that since

IY(y(e)) = JY[y(e)]i, Jpﬁ_i'(y(e)) = yl(b,,e) - Bl, ¥ = 051500055 1 = 15c00emy

we have that

e(yogn) = ni(b),

(4.22) I;(yo,n) = J;,(yo,n)9 Jp+.1

lpooo ’no

Y = 05150004p3 &

LEMMA 4,3.1 Given a set of N differentially admigsible varia-

n_: no(t), 1an(1:)9 2 €t €by 0 = lj.eo,N,

there is an N-parameter family

y(e): y(t,ei,uoo,sN), u(t,el,oooseN)g a<tzgb

of arcs in ol containing Y, for € =0 and having n, as its vari-

ations along Yo in the sense that

$ i k
n(e) = §= (1,0, w(e) =}‘§; (£,00, 1= 1y000403 K = Lyaoosqe

The proof of this lemma is given in several places for the case
with no delayed arguments, e.g. [6, P.273]. The argument in the present
case is the same, and so it will not be given here.

The arc Yy will be said to be normal if there exists p+n dif-

ferentially admissible variations



«57=

n_s no(t), ua(t), 0= 1,.00ypt0

such that no(t) =0 for a-1 £t <£a and such that the determinant

I;(yognc) Y 190909p; is= lgoocgn

n;(b) 0 = ly0aogptn

is different from zero, In view of (4,22), this determinant may be put

in the form
lJ;(yO'nU)I g0 = l,ooo,p+n

The following two results may now pe proved.

THEOREM 4.3.1 Suppose that Yo is normal and that

n: n(t), n(t)

is a differentially admissible variation having n(b) = 0, n(t) = 0,

a-Tst <a, and

Iy ) £0, 1 sy sp'y INygsm) =0, p' <¥ 2P
There exists a one parameter family of differentially admissible arcs
y(e): yt,e), ult,e), Je| <8

containing y, for € =0, joining the endpoints of vy, satisfying
the relations

Iy(y(e)] eI;(yo M)y

and having n as its variation along ¥,.
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THEOREM 4.3.2 If Yo is normal, then the multiplier lo is

positive and hence it can be chosen as one,

The same results for problems without delayed argument are to be
found in [6, pp.274=75]. The proofs of Theorsms 4.3.1 and 4.3.2 are
word for word the same zs in [6] and so will be omitted.

Recall that with A = ],

% liocoghy ¥ = lyo0005P0
? ¥ ?

i
3
a7
b
}:-Q
|1
b
Lo
=

(4.23) B(tyx,y,u,p) =

Also

"

(uo24) F(t’x,YQU) aH(t,xayeuap(T)} « ﬁi(t)ylg i = lseaogne

The integral
ib

(4.25) Jy) = J F[t,x{t)gy(t),u(t)}dt +c
a

has the property that

J(y) = Io(y) + kyIY{y)

favr
i i
c = pi(b)y (b) = pi(a)y (a):
The second variation of J along Yo is given by the expressjon
[b
Jz(yo,n) = Ja2w(tg€,n,u)dt
where

Ky

¢ - R i j o =2 i -‘j 3 i J
2u{t E,nyu) = in}ijg £+ 2Fx1y35 n- + Fy]_yjn n

e . ik 1k - kK &
+ nyluk“ u o+ 2Fxluk€ (VI S }ukugu u
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- i3 i3 R .ik
= -Hoi.387¢€ - 2Hxiij n” - Hylyjn n - 2Hyluk“ u

ik k 2 s s
~2ij_“kg u - Huk“!'u H 9 1e] = l’ooo’n; k'z = l.ooo,Qo
The arguments of the partial derivatives of F are (t,xo(t),yo(t),uo(t))
and those of H are (t,xo(t),yo(t).uo(t),p(t)].
Let I be the class of all differentially admissible variations

having n(t)= 0, a~1 <t ca, n(b) =0 and satisfying the relations

I;(Yo’n) s0, 1 sy <sp'; I;,(yo.n) =0, p' <y sp.

Denote by ' the class of all variations n in T which have the fur-
ther property that I;(yo,n) = 0 for all indices y <p' for which
A >0,
Y
For definiteness we state precisely the problem with which we are

concerned, Minimize the functional

b
I(y) = J Lo(t,x(t),y(t).u(t))dt
a

on the class of all arcs
y: y(t), u(t)
gatisfying the system of differential-difference equations

Yi = fi(t $Xs¥ o),y

the set of initial and terminal conditions

yi(t.).= ui(t), a-Tt<t La, yi(b) = gt

and a set of isoperimetric relations



0=
I#y)so. 1 <y <pf

IY(y) =0, p' <Y <P

The regioh AR is the .same as in section 3.1 and ﬂo is an open subset of
R . We further assume that at a minimizing arc Yos IY(yo) =0,
1 sy sp’.

THEOREM 4.3.3 If y, is a normal minimizing arc for the above pro-

blem, the second variation Jz(yo’“) of J along Yy has the property

‘that

Jz(yo,n) 20

for all differentially admissible variations n belonging to class TI'.

In order to prove this theorem let
n: n(t), u(t)

be a variation in TI'. In view of Theorem 4.3.1, there exists a one-

parameter family
y(e): y(t,e), u(t,e), le] <6

of differentially admissible arcs joining the endpoints of Yoo containe

ing Yo for € = 0, and having
= ' : o
Iy(y(e)) €1} (¥ sn)
Since n is in TI', we have

Iy(y(e)) s0, 1 sy sp'; Iy(y(e)) =0, p' <y sp'

for € on the range 0 e < 6.
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If y <sp' and AY > 0, we then have I;(yo,n) = 0 so that the
identity

AYIY(Y(E)) =0, |e] <8

is true, It follows from the definition (4.25) of J(y) that
(4.26) J(y(e)) = Io(y(e)), le| < S,

Using the relation (4.26) with 0 se <& and the minimizing property

of Yoo the function
gle) = J(y(e)) = Io(y(e))
satisfies the inequality
g(e) 2 g(0) = J(yo) = Io(yo)’ 0 se <8,

Now

b

g'(0) = J [F i( )£i(t)-+Fyi( )ni(t)-+Fuk( )uk(t)]dt, 12 1,0e0sn3 k= 1,000,q

a

where the arguments appearing in the open parentheses are

(t,xo(t),yo(t),uo(t)). The same linear change of variable as used previously

yields
(b1 :
g'(0) = {[Pyi( ) + in(+r)]nl(t) + Fuk( )uk(t)}dt
la
b
+ | [E2C T (®) + Pt o) Jae,
Ib-1

Here ( ) means (t,xo(t),yo(t),uo(t)) and (+T) means

(.3, (8),z (0),v (D).
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Using the definitions (4.24) of F and (4.23) of H, we see that

Fpa( ) + Fgm) = - By(t) = H () - H;s(+1) =0, a st <b-
Foi€ ) = = B(x) = H () =0, b-tst b
Fuj( )=-Huj( ) =0 3= 100059,

since Yo is a minimizing arc. Therefore

g'(0) = 0,
Hence

g"(0) 2 0.
However, note that g"(0) = J"(yo,n), Hence the theorem is proved.

4,4 Sufficient Conditions

In this section we modify the problem considered in Section 4.1 by

assuming that the isoperimetric inequalities
I(y)s0 1sysp
are indeed . equalities, i.e.
I#y)=0, l sy sp'.

We also assume that ao is an open set. Denote by ao this new class of
admissible functions,

The following theorem is quite similar to Theorem 3.2.1 for simple
integral problems., Suppose that Yo is a normal arc which satisfies the

following conditions:
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a. There exist multipliers Ao =1, Ay, pi(t), (v = LycoosPs

i= 1lyc00yn) such that y, with pi(z} and Ae,oua,xp satisfies

the equations

B; = -Hyi(t;x,yﬂugp)~ﬂxi(t+r,ygzgvgp(t+‘?}g 2 €t ¢b - 1,
ﬁi = -Hyj‘_(t,xgy-,u,,;'-), b - T Xt Sb; i = l,auo,no
Huk(t,x,ygugp) = 0y a 8t =2bj k = lyooosQo
. , RIS S SN o
b, h(t,xnovaguoqt)«u(L,y‘y9¢9p)+(; —.G)[hyi(tg.o;!ﬂvun,p)
Hixi(tﬂ,,_'r@,,zh,,t'gg;.:‘-;ut))] 20, 42t sb -1,
3

Y 2 UV P e Ve S ;
H(tgﬁogxswuoﬁg; S Ly et F Y yo)h]l(tgxoiyo,uo,p) 20

R

b -1 st &b

for all y in Cj%o

THEOREM u4,4.1 nirv ths zbove cenditions, the arc Yo furnishes

I0 with & global minisun,

In order to prove this result considsy the Tnllowing inequalitiess

: b ,
Io(y) - Io(yg) £ jiiic(t,x,y,u) - Lo(t,xogyo,:ﬁ!lit

"

b . s
1
L{pimtf (ty,y e)=£ (tyx 4y ou ) I=[HE %0 70,0)=H(t % 4y u 4p)T}at

b o . .
Ia{pi(t)[ﬁl(t)aﬁz(:)]-(H(t,x,y,u,p)aH(t,xo,yo,xo,p)]}dto

An intzgration by partz vields the relation

b

b . . . . ; . i
Ia{«fvi(t)[yl(t)uy:(t)]=[ril £4%,¥ 5 UsD)-H(tyx L,y su ,p) ifatp, (£)[y (£)-y (1]

a

Using condition a, we find that the preceding becomes



Bl

b
I [H(t,xo,yo,uo,p)-H(t,x,y,u,p)]dt
a

b-1 . .
+ Ia{[yl(t)-yz(t)lﬂyi(t,xo,yo,uo,p(t))+Hxi(t+1,yo,zo,vo,p(t+t)]}dt

+ I:-Eyi(t)-yi(t)lﬂyi(t,xo,yo,uo,p(t))dt.

An application of condition b yields the result that 'Io(y) - Io(yo) 20
 for all y in or.

The above theorem.is applicable to many examples with linear dif-
ferential equations and quadratic cost functionals, e.g. [2, p.5471.

One may of course prove a sufficient condition for the problem con-
sidered here by the indirect method of Hestenes. Such a theorem is quite
like Theorem 2.1 of [8]. The proof of such a theorem is essentially to

be found in [8] and also in the proof of our Theorem 3.3.1,
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