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Aa Matrix of physical state coefficients in the vehicle equations 

of motion 

- Gust matrix 

a. 
1 

- Half width of dead zone element 

B a Matrix of control variable coefficients 1n the vehicle equa-

tions of motion 

bw - Aircraft wing span 

Ca Matrix of output variable coefficients in the vehicle attitude 

director equations 

-c - Wing mean aerodynamic chord w 

Da - Control distribution Matrix for observations 

E - Matrix of disturbance variable coeffjcients a 

E{·} -Expected value of{·} 

f. - Fraction of attention allocated to i th display variable 
1 

ft - Feet 

G Scalar white noise coefficient vector m the vehicle equabons 

of motion 

g - Local gravitational acceleration (32.17 ft/s2) 

Iy - Mass moment of inertia about stability axis y 

J - Cost functional 

Lu - Longitudinal gust scale factor 

Lw - Vertical gust scale factor 

m - Airplane mass 
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N - Describing function gain for the threshold element 

P.O.R.- Pilot opinion rating in Cooper-Harper scale 

r 

s 
w 

s 

u 
0 

u 

- Weighting on control rate 

- Weighting on display variables 

- Generalized force of the ith elastic mode 

- Perturbation pitch angle rate ( same as e ) 
- Perturbation of q due to variations in vertical gust properties 

along the centerline of the vehicle 

- •-second delayed of the pilot control input 

- Wing area 

- Second 

- Laplace transform variable 

- Neuromuscular constant matrix 

- time (s) 

- Steady state vehicle velocity 

- Perturbation forward speed 

- Control input vector 

- Perturbation of u due to gust 

- "Commanded" control input 

- Motor noise covariance matrix 

- Observation noise covariance matrix 

- Motor noise 

- Observation noise 

- Random external disturbance 

- State vector associated with the physical output states of 

the aircraft 

Ya - Display information vector 
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yp - Perceived display quantities 

a. - Perturbation angle of attack 

a.g - Perturbation of a. due to gust 

o - Elevator deflection e 

6 - Perturbation pitch angle 

6 g - Perturbation of e g due to gust 

p. -Multiplicative noise/signal ratio 
1 

a~ - Noise variance of i 
1 

L - Error covariance matrix 

T - Perceptual time delay 

~ Small positive parameter which arises due to the presence of 

w 

w. 
1 

cp: 
1 

of high frequency elastic modes 

- Temporal frequency in turbulence model 

- In-vacuum elastic mode undamped natural frequency of ith mode 

- Coupled undamped natural frequency of ith mode 

- Natural frequency of phugoid mode 

- Natural frequency of short-period mode 

Structural damping ratio of mode i 

- Coupled damping ratio of i th mode 

- Damping ratio of phugoid mode 

- Damping ratio of short-period mode 

- Generalized coordinate of ith elastic mode 

- Slope of ith normalized mode shape 
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CHAPTER 1 

INIRODUCTION 

The handling or flying qualities of a piloted aircraft are the static 

and dynamic characteristics that influence the ease and precision with 

which a pilot is ahle to perform the control task required in support of 

the aircraft mission flight phase. Thus, the handling qualities depend 

not only on aircraft characteristics and a mission flight phase but also 

on the pilot's subjective opinion of the ease with which he can perform 

the control task. 

To accurately assess the pilot's opinion of the handling qualities of 

an aircraft prior to first flight of a prototype, a groundbased simulation 

is usually required. In the early stages of the design, it is more eco­

nomical to usc a mathematical pilot modeling simulation because the design 

parameters can be easily adjusted. The pilot's assessment is then related 

to some scale such as the widely accepted Cooper-Harper pilot rating scale 

(Figure 1). 

Much research has been done to determine the relations between the 

parameters of the rigid body, small perturbation equations of motion and 

the pilot rating. The handling qualities requirements for a rigid air­

plane in C1lalk ct al. [1] are typical results of such research. Most of 

the airplanes in the past have been relatively rigid such that the elas­

ticity of the airplanes do not contribute significantly to the pilot 

perceived handling qualities. 
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Recent advances in control-configured vehicles design and active con­

trol technology makes it possible to increase aircraft size and the utili­

zation of lighter structures in future designs. The elastic behavior of 

these vehicles is therefore becoming an appreciable influence in their 

handling qualities. Because of the potential adverse effects of mode in­

teraction with the rigid body dynamics, there is a need for handling qual­

ities assessment in the preliminary design phase of new airplanes. 

General Background 

It is known that static aeroelastic deflections of an aircraft struc­

ture modify the aerodynamic pressure distributions which results in sta­

bility derivative changes associated with the rigid body, small 

perturbation equations of motion. Early attempts to account for aero­

elastic effects on aircraft stability and control took the approach of 

making static aeroelastic corrections to the aerodynamic stability de­

rivatives [2~4]. The drawbacks of this approach as pointed out by Milne 

[4] are that in calculating modified stability derivatives one is to 

imagine the major parts of the airplane to be kinematically constrained 

at various points which do not have any real physical meaning, and if 

the overall-motion frequencies are of the same order as the lower 

typical vibration natural frequencies of the structure then the approach 

is invalid. 

For flying in high dynamic pressure environments, such as terrain 

following in turbulent air, the dynamic effects of flexibility are im­

portant enough that they must be included as additional degrees of free­

dom. A common approach has been to approximate the dynamics by a trun­

cated set of superimposed orthogonal vibration modes. In this case 



the phenomena of most interest are the effects of aerodynamic coupling 

between the various elastic·modes and between elastic and rigid body 

modes, as well as elastic mode interaction with the feedback control 

system. Reference [5] was one of the earliest comprehensive studies 

of this problem. The most recent comprehensive work done under the 

AFFDL sponsorship is documented in reference [6]. 

The subject of handling qualities requirements and criteria for 

highly elastic airplanes in turbulent and high dynamic pressure environ-

ments has been largely ignored. Much of the research on handling quali-

4 

ties has been concerned with relatively rigid, tactical military aircraft. 

The handling qualities parameters, such as phugoid, short-period, dutch-

roll frequencies and damping ratios, which have been determined pertinent 

for such airplanes, are mostly meaningless for a flexible airplane with 

elastic mode frequencies close to the rigid body frequencies. When multi­

ple frequencies are in proximity to one another, the pilot cannot easily 

discern individtml modes of motion; rather his opinion of the transient 

dynamics will likely be based on the time history of the total motion. No 

performance criteria suitable for handling qualities specification are 

presently available for such higher-order responses. This is all too evi-

dent in that no useful discussion of aeroelastic effects is included in 

the revision to the military aircraft handling qualities specification [1]. 

It contains only the following statement: 

Since aeroelasticity, control equipment, and structural dynamics 
may exert an important influence on the airplane flying qualities, 
such effects should not be overlooked in calculations or analysis 
directed toward investigation of compliance with requirements of 
this specification (p. 497) • 
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The specification is concerned only with desirable ranges of values 

on rigid body static and dynamic response parameters. There are methods 

available for estimating static aeroelastic corrections to rigid body aero­

dynamic stability derivatives [7]; however, the specification then re­

quires the use of these in rigid aircraft equations of motion. It seems 

quite possible that the desirable ranges of parameter values could be 

significantly affected by elastic mode degrees of freedom, particularly 

when same of the modes have natural frequencies of the same order of 

magnitudes as the frequencies of the rigid body alone. It is not at all 

clear that the. handling qualities should be specified by rigid body dy­

namic parameters when such mode interaction is present. In fact, the 

pilot could not tell, for example, how much of a given pitch angle re­

sponse to command input is due to rigid body and how much to low fre­

quency elastic modes. 

The key in developing handling qualities criteria and eventually 

specifications for severe mode interaction situations is to establish 

when and under what conditions the pilot can visually separate the rigid 

body response from the total response. In conditions when he cannot, a 

structural mode suppression control system probably will be required. 

Objectives and Scope of Study 

The primary objective "ras to develop an analytical method to de­

termine the boundary between when the pilot can visually separate the 

rigid body motion from the total motion and when he cannot in terms of 

the small perturbation equations of motion parameters. This study is 

an extension of the experimental work done in reference [8], where a 

ground-based pilot-flown simulation was studied. The mathematical 



pilot modeling simulation approach is used to assess the effects of 

mode interaction on the pilot opinion rating. 

An extension of the optimal control model for the human pilot [9] 

is made so that the effects of mode interaction can be assessed. The 

extension is motivated by an observation of the experimental evidences 

of reference [8]. 

Plan of Presentation 

6 

A summary of past results is presented in Chapter II. The long­

itudinal equations of motion for a flexible airplane are developed in 

Chapter III. The general description and flight condition of the flex­

ible airplane under study are also described in that chapter. Numeri­

cal values of stability derivatives for the equations of motion are 

given in Appendix A. The pilot modeling and its extension is presented 

in Chapter IV. Derivations of some singular perturbation techniques 

needed in Chapter IV are summarized in Appendix B. The major results 

are presented in Chapter V. The conclusions and recommendations appear 

in Chapter VI . 



GIA.PTER II 

PAST RESULTS 

'The only research of which we are aware that is directly relevant to 

the subject is documented in Crother [10] and Yen [8]. 

The results o:f ·North American Rockwell in Crother [10] were :for an 

early version for the B-1 aircraft and included piloted simulator evalu­

ations of tracking perfonnance in turbulence. They concluded that the 

structural dynarrtics appeared as essentially a nuisance oscillation to the 

pilots and did not significantly effect tracking performance. However, 

the longitudinal dynamics of their configuration were very close to Case 

1 of our results. Thus, it is not surprising that the elasticity did not 

significantly degrade pilot opinion; it was merely a ripple on the rigid 

body response. 

In the work of Yen [8], the effects of parametric lowering of the 

undamped natural frequencies of the first two symmetric elastic modes 

of a flexible aircraft were investigated. A pitch tracking task, which 

included phugoid and short period dynamics, was programmed on a fixed­

base simulator with a CRT attitude-director display of pitch command, 

total pitch angle and pitch error. The display and its variables are 

depicted in Figures 2 and 3. 

The attitullc-director equations are 

ei(xp,t) "'e(t)- o.ozsc;1(t) ... 0,029c; 2(t) 

pitdl error = e6 = ei - ec 

7 

(3.1) 

(3.2) 
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where 0,025 and 0,029 are the slopes of the two elastic modes at thepilot 

station, The flight condition is Mach 0, 85 at sea level derisi ty, 

Four pilots each flew eight cases which were cOI'Ilbinations of elastic 

mode interaction. The cases are shown in Table I, Case 1 is the original 

dynamics, Case 6 was the most difficult, where the free-free elastic mode 

frequencies were set at 6.93 rad/s for both modes. This resulted in the 

phugoid mode splitting into positive and negative real roots. Sample time 

histories of one pilot's tracking difficulty on Case 6 are shown in Fig­

ure 4. Note the large amplitudes of the elastic modes' contributions to 

total pitch e. relative to rigid pitch e. This made it very difficult 
1 

for the pilot to visually separate rigid from elastic pitch. The average 

of the four pilots' ratings of Case 6 was 6.7 on the Cooper-Harper scale. 

Contrast this with a 1.6 rating on Casel, the original dynamics. This 

work has clearly established the potential seriousness of elastic-rigid 

body low frequency mode interaction to handling qualities specifications 

and pilot rating. 



FIXED AIRCRAFT 
SYMBOL 

9 

j_ 
9· 

T 
HORIZON LINE 

FLIGHT DIRECTOR 
(COMMANDING PITCH DOWN) 

Figure 2. Electronic Attitude Director Indicator (EADI) 

Figure 3. The Airplane Attitude Corresponding To Above EADI 



TABLE I 

~ATUR!\1 FREQUENCIES AND DAMPING RATIOS OF EIGHf CASES 

Case [\)1 w2 ssp wsp z;;ph wph z;;le wle s2e w2e P.O.R. 
# rad/sec rad/sec rad/sec rad/sec rad/sec rad/sec 

1 13.59 21.18 0.5339 2.806 0.0197 0.0708 0.0494 13.312 0.0215 21.354 1.6 

2 9.17 21.18 0.5235 2.5724 -0.00060267 0.0573 0.08769 8.7891 0.0213 21.356 2.0 

Real Roots 
+0.090978 

3 6.16 21.18 0.5217 1.7691 -0.076723 0.1999 5.8669 0.0213 21.357 5.9 

Real Roots 
+0.14654 

4 13.59 4.79 0. 6872 1. 5745 -0.13167 0.05284 13.270 0.1137 5.9702 3.1 

5 11.66 11.66 0.5436 2.5819 -0.0001122 0.0537 0.0773 11.801 0.0162 11.574 2.0 

Real Roots 
+0.17581 

6 6.93 6.93 0.7028 1.3665 -0.15307 0.1919 7.3305 0.007599 6.9178 6.7 

7 10.25 9.75 0.5517 -0.0483 0.0282 0.1129 10.234 -0.0004277 9.8978 2.3 

8 10.68 9.27 2.3893 -0.0541 0.0256 0.11021 10.347 0.0005306 9.7781 1.9 
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CHAPTER III 

EQUATIONS OF Mm'ION 

The equations of a flexible airplane consist of an overall spatial 

motion, that is, a rigid body motion, and a local deformation due to 

its inherent flexibility. The basic principles underlying the equations 

of motion are the conservation of the linear and angular momenta and an 

internal equilibrium due to elastic deformation. The equations are 

written in terms of the x,y,z body-fixed axes frame of reference. The 

orthogonal axes are chosen such that the x~axis passes through the cen­

ter of gravity of the airplane and points forward parallel to the free 

stream steady-state(trim) velocity, they-axis points out to the right 

wing, and z-axis points downward. 

The deformation of the airplane is expressed in terms of natural 

mode shapes and generalized coordinates. The airplane is assumed to 

be a plate like structure in the normal mode (in-vacuum vibration modes) 

calculation. 

In the next four sections the pertinent assumptions and the equa-

tions of motion are summarized. The detailed derivation and related 

discussions can be found in [11-14]. 

Small Perturbation Equations of Motion 

For a cruise, level flight condition at a trim speed U , the small 
0 

perturbation longitudinal equations of motion are given by: 

13 



nni= -mge + X (u + u ) + X (~ + ~ ) + X~ Q u g ~ g u. e, . e 

mU0 (& - G) = Zu(u + ug) + Za(Cl + ag) + Z&(_d; - qg) + Ze(e + qgl 

oo <lZ · az 
+ zococ +i~l [~i + ati t i] 

i 

I (j = M (u + u ) + M (a + a ) + M. (& - q ) + M· (a + q ) 
y u g a g a g e g 

+ M~c.oe +1.~1 [~. + a~~-] 
u at;i 1 at;i 1 

m. [f. + 2~-w.t. + w. 2t;.] = ( 
1 1 1 1 1 1 1 

where: 
. 

( ) - d( )/dt 

u Perturbation forward speed 

ug Perturbation of u due to gust 

e Perturbation pitch angle (rad) 

q Perturbation pitch angle rate (rad/s), (q=e) 

qg ·Perturbation of q due to gust 

a 
g 

6 e 

£;. 
1 

m. 
1 

Q I; . 
1 

Perturbation of angle of attack (rad) 

Perturbation of a due to gust 

Perturbation of elevator deflection (rad) 

Generalized coordinate of the ith elastic mode 

Gencralizc(1 mass of the i th elastic mode 

Generalized force of the ith elastic mode 

14 

(3 .1) 

W· 
1 

in-vacuum elastic mode undamped natural frequency of ith mode 
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The equations (3.1) are rewritten in a state-variable fonnulation 

as: 

(3. 2) 

where 

xa(t)= col. [ug' agj_ ag, qg' u, a, e, e, t;l' t;2''"' tl' t2, ... ] 

ua(t) = o e 

The state a and the input vector wa(t) are to be discussed in the 
gl 

next section on the turbulence model. 

Turbulence Model 

The turbulence model is derived from the Dryden gust power spectra 

which have the fona~ [1]. 

cp (w) 
2 2Lu 1 = a 

uo u u 1 + L g c.; w) 2 
0 

1u 2 
2lw 

l-3(u- w) 

tjlw (w) 0 = a 
w~ [1+(~ w)2]2 

. g 

0 

cpa (w) = - 1- <Pw (w) 
u2 g g 

0 

Cuw )2 

<P (w) = 0 
<Pw (w) 

qg 
1 + 

4hw w 2 g 
( 1T u) 

0 

where 



w temporal frequency (rad/s) 

U0 true air speed 

bw wing span 

Lu' ~ gust scale factors which depend on the altitude 

16 

The time domain representation of the turbulence as a shaping filter 

with zero mean, gaussian, white noise processes 1, and 2 as inputs is: 

u ug g 

a a 
gl 

[J\r;] 
gl 

+ = a a g g 
[G] [~~] 

qg q 
g 

where 

u 
0 0 -Lu 

0 . 0 

u 
0 0 

I:-- 0 0 
w 

[A ]== 

"ftw 
g 

0 - (j3-1) w 0 r;- r;-
w w 

u 
0 0 -r-
w 

1T0 u~ 0 -- w 0 0 - (j3-1)---· 
fw 1w 4bw 

1TlJ2 1TlJ 
0 0 

-41)[ 41) 
ww 

;:i 0 

0 1 

[G] ;::; 

0 

0 
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and 

Attitude Director Equations 

The total pitch angle time history that the pilot feels and sees, 

either on the outside horizontal or the attitude indicator display, is 

given by (10]: 

n 
Ya(xp,t) = e(t) - r ~~(x) r,.(t) 

i=l J p J 
(3. 5) 

where xp indicates pilot fuselage station, cpj(xp) the slope of the 

j th symmetric elastic mode at that station, e (t) the rigid body pitch 

angle, and ee(t) the elastic contribution to the total pitch angle 

(Figure 5). 

The equation (3.5) can be written in terms of the state variables 

defined in equation (3.2) as follows: 

where 

Ca= col. (O,O,O,O,O,O,l,O,-~~-cpz, ... ,O,O, ... ] 



FLEXURE BODY 

TANGENT TO FLEXURE 
BODY AT COCKPIT 

RIGID BODY 
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FLEXURE BODY 

LOCAL HORIZON 

n 
e. s: e ( t) - .}'; cf>'1 ( xp l eJ· < t l 

L J •1 

rigurc 5. Rigid And l~lastic Pitch Angles 
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B-1 Flight Condition 

The B-1 bomber was chosen for this study because it exemplifies the 

trend toward more clastic structures for future large aircraft. The 

total length of the B-1 is 46 m (151ft.). The reference wing span util­

ized at the flight condition in Table II is 41.7 m (136. 67 ft.). The 

values of the stability derivatives and the necessary data for the equa-

tions of motion are given in Appendix A. 

TABLE II 

B-1 FLIGI-IT CONDITION 

Mass = 103,370.15 kg (7085.0 slugs) 

M.'lch No. = 0. 85 

Velocity= 289.4 m/s (949.0 fps) 

cg at fuselage station= 40.67 m (1061.2 in) 

I = 8.0 x 106 kg-m2 (5.9 x 106 slug - ft2) y 

sw = 180.8 m2 (1946.0 ft 2) 

cw = 4.67 m (15.33 ft) 

bw = 41.7 m (136.67 ft) 



CHAPTER IV 

PILOT MODELING 

The human pilot in a manual control task can be modeled as an 

active feedback element in the aircraft control system. The quasi­

linear model and the optimal control model COCNO are the two models 

widely used in this way. The quasi-linear model has the analytical 

description in terms of the frequency-domain control system design 

technique, while the optimal control model is based on the time­

domain or optimal control theory. Since the analysis in this study 

is mostly in the time-domain, the optimal control model is employed 

through out. There are other reasons for employing the optimal con­

trol model which will be discussed later. 

The optimal control model of the human pilot was originally 

developed by Kleinman, Baron and Levison [9]. The fundamental assump­

tion underlying the OCM is that the well-motivated, well-trained human 

pilot will act in a near optimal manner subject to the pilot's intern­

al limitations and understanding of the task. By specifying human 

limitations, the optimality assumption gives a model that adapts to 

task specifications and requirements automatically and not through 

a subsidiary set of adjustment rules as has been done in the quasi­

linear model. Thus, for a new situation, the optimal control model 

can be modified by just determining the operative limitations and the 

7.0 
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new control task. The review of the past applications of the model 

can be found in reference [15]. 

Model Description 

The structure of the optimal control model of hlD11an pilot response 

is shown in Figure 6. The aircraft dynamics, which also include noise 

shaping filters of the turbulence, are described by the linear, time 

invariant equations. 

where 

( 4 .1) 

xa(O) = given 

X (t) = a 

ua(t) = 

w (t) = 
a 

aircraft and shaping filters state vector of dimension Na 

pilot's control input vector of dimension Nu 

disturbance vector of dimension Nw, each of which is an 

independent zero mean, Guassian white noise process with 

covariance 

E {w (t) w (a)} = W.o(t-a), i = 1,2, ... , Nw a. a. 1 
( 4. 2) 

1 l 

The display variables are given by a linear combination of state 

variables. 

( 4. 3) 

where 

Ya(t) =displayed vector ofdimension Ny 
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The usual assumption in the model is that if a quantity yi is explicitly 

displayed to the pilot, he also derives the rate of change y .. Thus, 
l 

ya(t) contains both position and velocity information of a displayed 

signal, but no higher derivative information. 

Internal Model 

The information processor in the pilot model operates on a noisy, 

delayed version of the displayed variables to obtain a "best" estimate 

of the aircraft state vector. This is accomplished by a Kalman filter 

and a least-mean-square predictor and makes use of an internal model. 

The internal model of the pilot may be considered to consist of [16]. 

l. Knowledge about the overall behavior of the aircraft 

under control and about the possibilities to control it. 

2. Knowledge about the disturbances acting on the aircraft 

and the way they will influence it. This knowledge 

will he of a statistical nature. 

3. Knowledge about the task to be performed. 

In many instances, the assumption that the internal model is an exact 

replica of the system model, i.e., perfect internal model, appears to 

be a satisfactory one [17]. There are situations in which the assump­

tion of a perfect internal model does not appear tenable. In a highly 

complex system, i.e., one with a large number of state variables, with 

a single display it is unlikely to be modeled perfectly by the pilot. 

It is of interest in this study to determine the effects of high 

frequency oscillation, contributed mainly by the elastic modes, on 

the handling qualities and pilot rating. From a past experiment with 

ground based simulation of the elastic airplane [8], the pilot action 
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in a pitch tracking task closely resembles that of the rigid body 

pitch error rather than the total error displayed to him. This shows 

the pilot's ability to filter out the high frequency oscillation in the 

total pitch response and leads to a hypothesis that the pilot uses the 

slowly varying dynamics subsystem as the internal model. 

The decomposition of the slowly varying dynamics from the aircraft/ 

disturbance dynamics, Eqns. (4.1) and (4.3), is accomplished by the 

singular perturbation technique (Appendix B). The aircraft/disturbance 

dynamics can be written in the form: 

x1(t) = A11x1(t) + A12x2(t) + Blua(t) + E1wa(t) 

JJx2(t) = A21x1(t) + A22x2(t) + B2ua(t) + E2wa(t) 

Ya(t) = c1x1(t) + c2x2(t) 

where 

x1(t) =rigid body and noise shaping filters state vector 

x2(t) = elastic modes state vector 

( 4. 4) 

f.l = a small positive parameter which arises due to the presence 
of high frequency elastic modes and can be an unknown in 
this analysis. 

Then, by letting JJ+O+we get 

xd (t) = Ad xd (t) + Bdua (t) + Edwd (t) 

yd(t) = cd xd(t) + Ddua(t) 

where 

This is provided A;~ exists. 

( 4. 5) . 
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By using an imperfect internal model, the computational task be­

comes formidable since it involves the solution of the matrix delay 

differential equation [17]. The structure of the original optimal con­

trol model can be modified from Figure 6 to that of Figure 7. This mod­

ification does not affect the prediction capability of the model very 

much as has been shown in references [17-19]. In this modified model, 

the pure time delay • is approximated by a first-order Pade polynomial. 

Thus, the relation between ua(t) and r(t) in Figure 7, which was origi­

nally expressed hy 

ua(t) == r(t-T) 

or in the Laplace transform operator s, 
-TS ua(s) ~ e r(s) 

is now approximated by 
-s + 2/T 

ua (s) ~ s + Z/Tr(s) 

which can be expressed in the state variable form as 

ua(t) = z(t} - r(t) 

where 

(4.6) 

( 4. 7) 

( 4 .8) 

(4.9) 

z(t) =-l I z(t) +_!I r(t) (4.10) 
T T 

I is an identity matrix of appropriate dimension. The time delay T 

is normally 0.1 to 0. 2 sec. 

Human Limitations 

Other than the time delay, the pilot has inherent limitations of 

perceptual noise and perceptual indifference thresholds on displayed 

information. The time delay has been compensated for in the control 

action as shown in Eqns. (4.9) and (4.10). The other quantities are 

associated with the observation process in the pilot model, so the 
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pilot is assumed to perceived Yp(tl which is a noisy version of Ya(~)~ 

i.e.' 

Yp(t) =~ Ya(t) + vy(t) (4.11) 

where the observation threshold is replaced by the Random Input Describing 

Function N(cr) and incorporated in the observation noise, vy(t) is a zero­

mean, gaussian, white noise process with autocovariance. 

When directly viewing Ya. (t), the associated covariance vy. is: 
1 1 

where 

cry. = jE{y~. (t)} 
1 1 

a. 
N(cr ) = erfc( ~), describing function gain of threshold 

yi cry . .{[. 
1 

erfc = error function 

a. = half width of dead zone element 
1 

p 0 = noise/signal ratio at full attention on indicator i 
yi 

= O.Ol'rr or -20 dB normalized power density level 

f. = attention allocation to display indicator i 
]. 

( 4 .12) 

( 4 .13) 

For the total of k indicators, neglecting the time spent in interinstru-

ment scanning, we have 

k 
.r1 f.= l, O<f.<l 
1= 1 , . 1 

( 4 .14) 

The value of fi is chosen such that the cost functional of the pilot model 

is minimized. 
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Task Definition 

The :important assumption about the optimal control pilot model is 

that the pilot's control task is adequately reflected in the choice of a 

control r(·) that minimizes the cost functional of the form 

J(r) = limE{ l ;0T [y .. (t)Q y (t) + r"'(t)QRY(t)]dt} 
T +oo 1 a y a . 

(4.15) 

conditioned on the perceived information yp(·). Qy is a specified con-

stant, symmetric, nonnegative definite matrix which depends on the task 

specification. The control rate term is used to account for the pilot's 

limitation on the rate of control motion and introduces first-order neuro-

muscular dynamics in the pilot model. 

where 

The selection of the weighting 0 = diag. [q ] is such that 
"'! yi 

q = Y· 1 

1 2 

Ypi, max (4.16) 

yPi,max is the maximum desired or allowable value of yPi Unlike QY, 

the weighting QR = diag. [q ], a positive definite matrix, is not speci­r. 
1 

fied before the pilot model equations are solved. It can be shown that 

the pilot control law which minimizes (4.15) takes the following form: 

(4.17) 

The matrix T is assumed to be in the formT = diag. [t ], i=l,Z, ... , Nu. 
n n ~ . 

The scalars tn. are a neuromuscular time constant of human limbs, which 
1 

has a typical value of 0.1 sec., independent of the system to be control-

led. Thus, the weighting q are adjusted iteratively until each t ~ 0.1 r. n. 1 . . 1 

sec. If the resulting qr. weighting is such that 1/ J~. is·much 
1 1 

greater than the physical rate at which one can move 



control r., then q = jJ/t. (t), max j2 must be used. Though, this 
1 r. 1 

1 

rarely happens except for highly unstable aircraft dynamics or an 

aircraft flying through very severe turbulence. 

The motor noise vm(t) is a zero-mean, gaussian, white noise 

process, with autocovariance 

E{'vm (t) vm (a)}= V mo (t -a) 

and Vis known to scale with E{m. 2(t)} ,i.e., m 1 

v =p E{m. 2(t)} m. m. 1 
1 1 

where the typical value of the motor noise/signal ratio 

Pm.=0.003rr. 
1 

Equations (4.9) and (4.10) may now be augmented to Eqn. 

(4.1) to define an augmented system of equations 

( 4 .18) 

( 4 .19) 
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x (t) = A x (t) + B u (t) + E w (t) c c c c m c c (4.20) 

. y a (t) = CCXC (t) 

where 

C = [C ,. 0, Ol c a 

we =[w, vm]"' 

Equation (4.20) is the "actual" dynamics to be controlled by the pilot. 
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The Pilot Model 

The pilot's control jnput r(t) that minimizes J(r) is generated 

based on the augmented system of the internal model (4.5) and the delay 

compensation (4.9) and (4.10), i.e., 

where 

xs(t) =As xs(t) + Bsr(t) + Esw(t) 

Ys(t) = C5 xs(t) + Dsr(t) 

X = s 

A= s 

B = s 

The command control of the pilot is given by 

where 

-1 t X (t) op s 

L* = [Lopt 0] 

xt" [:s] 

( 4. 21) 

( 4. 22) 



satisfies the equation 

A" P + PA + C" 0 C - PB Q-l B"P = 0 o o o ~ o o R o 

where 

A = 
0 
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(4. 23) 

The state xt(t) is the best estimate of xt(t) generated by a KaJman filter 
. 

xt(t) = Atxt(t) + BtUm(t) + K[yp - C0xt(t)] 

where 

K = J:C"'V-1 
0 y 

and 1: satisfies the equation 

A I + l:A"' + E W E"' + l:C"'V-l C L = 0 
t~ t 0 t 0 0 y 0 

where 

(4.24) 

( 4. 25) 

(4.26) 
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Combining equations (4.11). with (.4,20), (4.22) and (4.241 yields the 

closed loop system 

xc(t) = A x (t) - B L x (t) + E w (t) c c c t . c c 
( 4. 27) . 

xt(t) = (A1 - B1L)xt + K[Ccxc - C0xt + vy(t)] 

or 

~ = Fiji + Gw ( 4. 28) 

where 

• =[::} 

~A -B L* 

-~J F - c c 

KCC ~ -B L* 1 

[Be :} G = 
0 

w =[:;J 
Thus, 

cov VJ = [cov v~ cov v'tj = \jl 
cov xtx~ cov xtxt 

(4.29) 

is the solution of 

~ = Fiji + \jlf~+ G~G~ (4. 30) 

where 



Pilot Opinion Rating Tedmique 

Hess {18] has fonnulated a pilot rating. technique for the optimal 

control pilot modeling procedure, The technique has been successfully 

validated in a variety of tasks [18, 20]. The rating technique can be 

stated as follows: 

If 

(1) the indes of perfonnance and model parameters in the 

optimal control pilot modeling procedure yield a dynamically repre­

sentative model of the human pilot, 

(2) the variables selected for inclusion in the index of 

performance are directly observable by the pilot, 

(3) the weighting coefficients in the index of performance 

are chosen as the squares of the reciprocals of maximum "allowable" 

deviations of the respective variables, and these deviations are con­

sonent withthe task as perceived by the pilot. 

Then 

33 

the numerical value of the index of performance resulting from 

the modeling procedure can be related to the munerical pilot rating which 

the pilot assigns to the vehicle and task by 

where 

P.O.R. ~ 2.51 ln (10 J) + 0.3 (4.31) 

P.O.R. = pilot opinion rating on Cooper-Harper scale 

J = value of the perfonnance index 

Computational Algorithms 

There are two major computer programs developed in this work for pre­

dictions of pilot rating and standard deviations of the response variables 
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for a piloted-aircraft manual control task. A digital coJ!lputer program 

STDOCM is a modification and extension of the program J?IR.EP 121] written 

for operation on CIX>6600 at Wright Patterson Air Force Base to implement 

the standard opt:ima.l control -model of the human pilot. A program IDDOCM 

is developed to implement the modified optimal control model of the human 

pilot which is presented in this chapter. Both programs are written in 

Fortran IV for operation on IBM system 370/168 at Oklahoma State Univer­

sity and are available from Professor R. L. Swaim, School of Mechanical 

and Aerospace Engineering, Oklahoma State Unversity. 



CHAPTER V 

EFFECTS OF ElASTIC MJDES INTERACTION 

ON HANDLING QUALITIES 

The elastic modes interaction with the rigid body dynamics is intro­

duced to the large flexible aircraft model by parametric lowering of the 

undamped natural frequencies of the two elastic modes. This will cause 

controlling the rigid pitch angle by observing the total pitch error to 

become more difficult as indicated in the past experimental results [8]. 

The standard optimal control model for the human pilot and modified model 

presented in Chapter IV are applied to the illustrated cases of varying 

elastic modes interaction. It will be shown that the standard optimal 

control model gives the misleading results when there is a severe modes 

interaction between the elastic modes and the rigid body dynamics. The 

modified model gives more consistent results with the experimental data 

on the effects of elastic modes and the rigid body dynamics. The modified 

model gives more consistent results with the experimental data on the ef­

fects of elastic modes interaction on handling qualities and pilot ratings 

than that of the standard optimal control model. In this chapter the il­

lustrated cases used in the computer simulation study are described. Then 

the simulation results are presented. Finally, the separation boundary 

which can be used as an indicator of when the pilot can or cannot visually 

separate the rigid hody motion from the total motion is presented. 

35 
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The Illustrated Cases 

The ten illustrated cases are obtained from the equations of motion 

(3.1) in which the natural frequencies of the two elastic modes are para~ 

metrically reduced. Dynamic characteristics of each case are specified by 

four modes: phugoid mode, short period mode, elastic mode 1, and elastic 

mode 2 as shown in Table III. These ten cases will exemplify most of the 

situations in which the handling qualities and pilot ratings would be af­

fected differently by the two elastic modes included in the model. 

The lowering of the elastic mode natural frequencies resulted in mode 

interaction which lowered the coupled short-period and phugoid frequencies 

or made one of them split into positive and negative real roots. A full 

state feedback control law is used to place the roots of the characteris­

tic equation at precise values for each case. The rigid body dynamics are 

maintained to be the same as Case 1 and the elastic mode coupled frequen­

cies placed at original values before the state feedback control law was 

applied. This will ensure that the pilot ratings are based on the rela­

tive amplitudes of rigid and elastic pitch angle responses and not on poor 

rigid body dynamics. 

The simulation results on the ten cases by using the standard 

optimal control model (~ for the human pilot and the modified model 

are shown in Tables· IV and v, respectively. These results clearly indi­

cate that when there are severe modes interaction, such as Cases #3, 6 

and 9, the standard OCM gave very low pilot ratings predictions which are 

inconsistent withthe experimental results [8], In contrast the modified 

OCM gave more consistent results since it includes the visual separation 

process of the rigid body response from the elastic modes response which 

the pilot has to accomplish when the amplitude of the high frequency 



TABLE III 

NAWRAL FREQUENCIES M'D DAMPING RATIOS OF TEN CASES 

Case wl ~~d/s 
ph l;;ph SP. t;;sp ·le 'le wle z;2e 

# rad/s rad/s rau/s rad/s rad/s 

1 13.59 21.18 .0665 .0312 2.9334 .5209 13.236 .0497 21.395 .02112 

2· 8 21.18 .04614 .001376 2.581 .4992 7.508 .1127 21.390 .02104 
Real Roots 

3 4 21.18 .1412 .1336 + 1.652 4.544 .3892 21.380 .02102 
- 2.266 

4 13.59 15.00 .06345 .02899 2.889 .5247 13.04 .04508 15.480. .03052 

5 8 15.00 .04489 .001946 2.586 .5031 7.400 .1073 15.340 .02787 
Real Roots 

6 4 15.00 .1411 .134 + 1. 568 4.356 .3990 15.320 .02761 
- 2.172 

7 13.59 13.59 .06203 .02797 2.87 .5262 12.76 .03821 14.380 .02923 

8 8 13.59 .04433 .002208 2.588 .5048 7.345 .1042 13.990 .03117 
Real Roots 

9 4 13.59 .1411 .1350 + 1. 527 4.269 .4035 13.970 .03062 
- 2.126 

10 8 8 .03801 .005574 2.608 .5245 6.403 .04999 9.390 .08138 
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TABLE IV 

PERFORMANCE PREDI CfiON BY TilE STANDARD OCM 

. 
CASE e e 0 P. 0. R. # :rms nns :rms3 

(de g) (deg/s) (rad x 10 ) 

1 . 3895 1.650 1.143 1.0 

2 .5422 2.343 2.475 2.6 

3 .5042 1.573 2.234 1.0 

4 .3612 0.917 0.910 1.0 

5 .5096 2.335 2.266 2.5 

6 .4604 1. 721 2.061 1.2 

7 .3437 1.127 1. 392 1.0 

8 .4955 2.288 2.142 2.4 

9 .4445 1. 750 2.000 1.2 

10 .3833 1. 591 2.810 1.0 
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TABLE V 

PERFORMANCE PREDICTION BY THE MODIFIED OCM 

CASE enns enns 15 P.O.R. 
# nns 

(deg) (deg/s) (rad x 103) 

1 .3663 1.848 0.829 1.2 

2 .5724 2.832 1.199 3.3 

3 .8123 3. 721 1.014 4.7 

4 .3157 0.999 1.024 1.0 

5 .5345 2.746 1.195 3.2 

6 .7374 3.470 0.872 4.3 

7 .3228 1.428 0.869 1.0 

8 . 5172 2.657 1.181 3.0 

9 .7043 3.360 0.833 4.1 

10 .4187 2.091 1.167 1.8 



40 

elastic modes is getting larger. On the other hand> when the modes inter­

action are small, both pilot modeling tedmiques gave almost the same pre­

dictions. 

The Separation Boundary 

The separation bmmdary is defined as the limit of when the pilot can 

or carmot visually separate the rigid body motion from the total motion. 

The visual separation is essential in controlling the rigid pitch angle or 

other rigid body parameter of the elastic airplane when only the total 

pitch angle response or a corresponding parameter is available to thepilot. 

From Chapter rv, two kinds of pilot modeling techniques are discussed. 

The standard OCM is the pilot model that assst.nned that the pilot has the 

perfect internal model of the aircraft/disturbance dynamics. This model 

will give the best possible pilot opinion rating (P.O.R.) in any ·tracking 

task. The other model, the modified OCM, is the one with a slowly varying 

internal model. In this model, the pilot is asst.nned to be able to com­

pletely separate the slowly varying or the rigid body motion from the to­

tal motion. The difference between the P.O.R. 's, i.e., ~P.O.R., of 2 is 

chosen to be a separation boundary. That is if ~P.O.R. is greater than 

or equal to 2, the pilot cannot visually separate the rigid body motion 

from the elastic motion in the display. 

It is known that the pilot opinion rating depends on many factors 

such as the intensity of turbulence ru1d the level of difficulty of the 

task. To study the modes interaction effect all other effects should 

be kept at their nominal values. That is without severe 1nodes interaction 

effect the other parameters should be set such that P.O,R. is equal to 1. 

Once the P.O.R. has been initialized for some specific task, the separation 



boundary can be found from the P.O~R. prediction of the modified OCM 

alone, This is because the standard OCM will give almost tmity P.O~R. 
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in the severe modes interaction·cases, if the rigid body dynamics have 

been maintained at the known good handling qualities specifications. So, 

instead of using 6P.O,R.·= 2 as the separation boundary, the modified 

OCM's P.O.R. of 3 can be equally well used as the separation boundary 

provided the proper initialization mentioned above has been done. 



CHAPTER VI 

CONCLUSIONS AND RECOM-4ENDATIONS 

A model for the human pilot in a manual control task using the 

optimal control techniques has been developed for predicting the 

handling qualities or the pilot ratings of a large flexible aircraft 

where the elastic modes interaction with the rigid body dynamics is 

significant. The separation boundary concept, which will tell when 

the pilot can or cannot visually separate the rigid body motion from 

the elastic one, has been introduced. The techniques developed here 

make it easier to investigate the modes interaction effect on the 

handling qualities in a preliminary design stage before the first 

prototype has been built. If the handling qualities are severely 

affected by the elastic modes interaction with the rigid body dynamics, 

the elastic modes suppression control system should be designed and· 

implemented along with the stability augmentation system of the rigid 

body dynamics. 

A comparison of the model predictions with the past experimental 

data shows that the modified optimal control model for the human pilot 

developed here is much better in predicting the elastic modes effect 

on the handling qualities than the standard optimal control model. 

Thls is due to the fact that the mode decomposition mechanism has 

been incorporated into the modified model. 

42 
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However, only one longitudinal trim flight condition was investi-

gated, its validity for different flight conditions can only be confinned 

by conducting more investigations. 

Future work should also include the computational aspect of the 

model. In the pilot model parameters identification, it is required to 

solve an (na + n5 + 4)x(na + ns + 4) matrix equation (4.30) for the mod­

ified model instead of solving an (na + l)x(na + 1) matrix equation in 

the standard 001, where na, dimension of an aircraft/disturbance dynamics, 

is 12; n , dimension of a slowly varying part of the aircraft/disturbance s 

dynamics, is 8. This will risk the numerical instability when one has 

to include IOOre clastic modes in the aircraft/disturbance dynamics. An 

alternative structure of the pilot model should be explored to ease the 

computational burden of the high order aircraft/disturbance system. 
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APPENDIX A 

Nllt'1ERICAL VALUES OF STABILITI DERIVATIVES 

.AND EQUATIONS OF MOTION 

The low level penetration flight condition for the B-1 was supplied 

by the B-1 System Program Office at Wright-Patterson .AFB from Rockwell 

International unclassified doctm1ents, The stability derivatives used in 

euqations (3 ,1) were based on prelbninary aerodynamic analyses, but closely 

representative of the vehicle that has been flying. The relations between 

dimensional force and moment and elastic force derivatives as a function 

of nondimensional stability derivatives are given in Table VI and VII, 

respectively. The non-dimensional stability derivative values for the 

unqugmented vehicle are given in Table VIII. The gust specifications for 

the study vehicle are given in Table IX. Finally, the A11 , A12 , A21/ll, 

A221J1, B1 , BziJJ, c1, c2 and E1 matrices for the unaugmented airplane are 

given in Tables X to XVIII, respectively. The matrices E2 and D are 

zero matrices and the matrices Aa' Ba' Ca and Ea are defined as follows: 

Ba o [:~/J 
ca - [Cl Cz] 
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X :::; a1e /U 
u X 0 

u 

X ::: alex a. 
a. 

X. = a2c 
a x. 

a. 

xo = a2c 
X• e 

\') = a1c 
e xoe 

X == 
oe 

1 

Xf = a C /U 
? 1 x; o 

1 ..,1 

TABLE VI 

DPI!ENSIONAL FORCE AND MCMENT DERIVATIVES 
AS A FUNCTION OF NON-DIHENSIONAL 

STABILITI DERIVATIVES 

z = a1c /U u z 0 
u 

Z = a C 
a. 1 z a. 

z6• = a c 2 z, e 

z = a1c 
.; 1 z~ 

1 

M == a1ec 
a. m 

a. 

M. = a2ec 
a. m. 

a. 

M· = a eC e 2 me 
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Qt.: 

TABLE VII 

DIMENSIONAL ELASTIC FORCE DERIVATIVES 
AS A FUNCTION OF NON-DIMENSIONAL 

STABILI1Y DERIVATIVES 

lo 
e 
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c = -0.08066 
xu 

ex. = 0 
a 

ex. = 0 
t) 

c = 0 
XI;, 

2 

c = 0 xt 
2 

et,; = -0.06478 
1a 

er = o.o2469 
"1 • a 

CE = -1. 4 7658 
.1 e 

er = o.ooo64 
~lt,; 

l 

TABLE VIII 

STABILI'IY DERIVATIVES FOR B-1 BQ\1BER 
IN MACH 0.85 FLIGHT CONDITION 

ez = -1.9659 e m u u 

ez = -3.9367 em 
a a. 

c = -5.0 e z. m. a a. 

c = 17.8558 e 
Z• me El 

ez = -0.9426 em 
oe 0 

= -0.4546 

= -1.41052 

= -11.005 

= -35.7556 

= -2.799 

e 

e = -0.02922 Sn = -0.0348 
ZF,; t; 

l 1 

e = -0.6592 c = -1.32169 
Z• m· 

E; E;, 
l 1 

e = 0.015 c = 0.03787 
ZF,; mt;, 

2 2 

c = 0.4733 e = 1. 233 
Z• m~ t; 

2 2 

eE;, = 0.48975 
1a 

c~; = 0.48779 
1 • a. 

er;, = 3.97547 
20 

c~; = 0.00451 
2~; 

1 
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ct; 
It 

l 

ct,; 
lt; 

2 

ct: 
1 . 

t; 
1 

cc: 
10 

e 

-

= 

= 

== 

-0.07243 

-0.0014 

0.0765 

-0.I9635 

Parameters 

(J 
w 

(j 

u 

TABLE VIII (Continued) 

c~ -0.07333 
2' t; 

1 

cc: = -0.0051 
2t; 

2 

ct; = -0.2588 
l . 

t; 
2 

ct: == 0.3939 
20 

c 

TABLE IX 

GUST SPECIFICATIONS 

Value 

6 fps 

10.8 fps 

300 ft 

970 ft 

979 fps 

136.68 ft 
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TABLE X 

~l MATIUX 

-. 9777 0 0 0 0 0 0 0 

0 -3.1633 0 0 0 0 0 0 

0 -.02604 -3.1633 0 0 0 0 0 

0 -.142 -17.25028 -5.4532 0 0 0 0 

-.025 0 -25.0000 0 -.025 -25.0 -32.2 0 

-6.3408 X 10-4 0 -1.205 5.6506 X 10 -2 -.63408 X 10 -4 -1.205 0 1.03178 

0 0 0 0 0 0 0 1.0 

-2.292 X 10 -3 0 -7.0672 -1.1112 -2.292x 10 -3 -7.0672 0 -2.06314 
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TABLE XI 

A12 MATRIX 

0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

-3 4.591 X 10-3 -2.1262 X 10-4 . 
-4 

-8.944 X 10 
1. 5266 X 10 

0 0 0 0 

-.1844 -3 -3 
.20762 -70449 X 10 6.9711 X 10 

TABLE XII 

A21/J.l MATIHX 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

-l.4343x10 -3 () -737.04 -137.51 -1.4353x10 -3 -738.04· 0 -133.038 

-3.9012xl0 -3 0 752.39 44.3375 -3.9017xl0-3 757,39 0 56.4903 



0 

0 

-177.444 

0 

0 

6.98597 

0 

0 

0 

0 

0 

0 

0 

TABLE XIII 

A · MATRIX 
22~ 

0 1.0 0 

0 0 1,0 

61.8964 .. 1,139 ,91536 

~456,528 ... 121926 -.849 

TABLE XIV 

B{ MATRIX 

0 0 -.28852 0 -15.465 

TABLE Y01 

0 -2229.4 613.343 

0 

0 

TABLE XVI 

0 

0 

0 

0 

57.2958 . 0 

0 57. 2958' 
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-1.4324 

0 

5.088 

0 

0 

1 

TABLE XVII 

CzMATRIX 

-.1,66158 

0 

0 

~1.4324 

TABLE XVIII 

El MATRIX 

0 

.01948 

0 

.10621 

0 

-1,66158 

0 

0 

0 

0 

0 

0 

0 

0 
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APPENDIX B 

DERIVATIONS RELATED TO SINGULAR PERTIJRBATION 

Consider a singularly perturbed linear time-invariant system 

where xl' x2, and y are n1 , n2 and rn dimensional vectors respec­

tively, the control u is an r vector, and f.i>O is a small scalar 

(A.la) 

(A.lb) 

(A.lc) 

parameter which arises due to the presence of high frequency elastic 

modes. The covariances of the p and q dimensional white noise 

vectors w and v are 

E {w(t) w'"(t)} = Wo(t--r) 

E {w(t) v'"(t)} = 0 

E {v(t) v .. (t)} = Vo(t-t) 

Given the observation y(t) for O<t<oo, it is desired to estimate x1(t) 

which is a slowly varying dynamics vector of the system (A.l). 

The conditions that guarantee that high frequency oscillations 

will occur are n2 is even and A22 has the form [ 22] 

Az2 = t:: "::] 
where n2, D3 are n2/2 x n2/Z nonsingular matrices and the matrix n2n3 

has simple and negative eigenvalues -wf, i=l,2, ..•. , n2/2. 
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By using 'the techniques presented in [22-24] it will be shown 

that in the limit (~~+) Xz Can be approximated as a white noise 

process which can be used as an input to the slow mode x1 . Then the 

estimation of x1 (t) by ignoring the high frequency oscillations can 
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be analytically represented by· the filtering of a reduced order system. 

If~ in (A.lb) is neglected and (A.lb) is replaced by 

o = A21x1 + A22x2 + B2u + E2w 

then, if Az~ exists, 

x2 = -A2~ CA21x1 + B2u + E2w) 

and the substitution of x2 in (A.la) results in the reduced order system 

(A. 3a) 

(A. 3b) 

where 
-1 

Ao = All - AlzAzz Azl 

-1 
Bo = Bl - A1zAzz Bz 

-1 
Eo = El - AlzAzz Ez 

co = cl 
-1 

- CzAzz Azl 

Do 
-1 = -CzAzz Bz 

F -1 
= -CzAzz Ez 0 

without any - -1 -input, the slowly varying part of x2 is x2 =-A2ZA21x1. To 

separate x2 

is used. 

from the highly oscillatory part of x2, a change of variable 

(A.4) 



transforming (A.l) into 

where 

The solution of F = 0 is 

To separate the slow modes, introduce 
-1 

~= x1 - ~CA12 A22 + ~M)n = x1 - ~Hn 

and choose M such that 

so 

The transformation (A.4) and (A.S) can be written as 

The original system (A.l) is finally transformed into 

. 
r=Ar;+Bu+Ew ... 0 0 0 
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(A. 5) 

(A.6) 

(A. 7a) 

(A. 7b) 

(A. 7c) 



where 

A0 = A0 - ~~2G ~ A0 + O(~) 

B0 = B0 - ~(HLB1 = MB2) ~ B0 - 0(~) 

E0 = E0 - ~(HLB1 + ME2) :! E0 - 0(~) 

Az = Azz + ~~z ~ Azz + oc~) 

B2 = B2 + ~LBl ~ B2 + 0(~) 

E2 = E2 + JJLE1 ~ Ez + O(p) 

c0 = c1 - c21 :! c0 + oc~) 

c2 = c2 + ~cc1 - c2)H ~ c2 + oc~) 

To investigate the behavior of n(t), we assume that (A.7b) can 

be written as 
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(A. 8) 

That is, u has been replaced by the feedback control before applying 

the transformation to get (A.7) 

t - t 
Let T = 0 , then (A.8) becomes 

~ 

where w in the ,_ scale has covariance W/~ instead of W in the t-scale. 

Consequently the covariance of the process n(T) would also have the 

form V/JJ where V satisfies the eqn. 

with steady state value V satisfying 



If A2 is stable and given an arbitrary e:>O, then there exists v*>O 

and t 1>0 such that IIV(t) - V")l<e for all t ~ t 1 and 0<11~11*. There­

fore, for t>t1 , n(t) may be approximated by a stationary stochastic 

process with the autocorrelation function 

However, R ( t .. , t"") +0 as )J-+0 for t.. ~ t"" , and . n 

where 

voo = v + 0(1l) 

so that V satisfies 

It follows that in the limit. n becomes a white noise process with 

covariance 

lim R (t' t"") 
)J+O n ' 

-1 - - '-1 
= - CAzz v + v Azz ) 

-1 .. .._1 
CAzz EzWEz Azz ) = 

which is the covariance of the process 

obtained by the formal substitution of 11=0 in (A.8). 

The estimation equation for the slow mode is 

" "' " 
~ = A ~ + K [y - C0~] 0 0 
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Since the inverse of (A.6) is 

So the filtered estimate of x1 and x2 are given as 

~ ~ 

x 2 = -Lt + (I ~LH)n 

Since A = A + 0 (J.l), B = B + 0 (11), ••. , so 
0 0 0 0 

" where x are the estimates obtained by solving the filtering problem for 

the reduced system (A.3). 
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