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CHAPTER I 

INTRODUCTION 

Few streams in the United States are uninfluenced by man's activi­

ties. Natural flows have been modified by irrigation diversions, 

changing land-use practices, construction of flood control and water 

supply reservoirs, and increased demands for generation of electricity 

using hydro-electric, fossil fuel, and nuclear power. Native stream 

fishes, which are adapted to natural, unregulated flow regimes and have 

preferences for a rather limited range of velocities, depths, substrates, 

or temperatures, have been impacted by stream flow modifications that 

alter these variables. Coupled with the increasing modification of 

streams is an increasing demand for recreational fishing and habitat 

preservation for native fishes. Methodologies must be developed that 

will enable fishery biologists to recommend flow regimes that will main­

tain or enhance this valuable natural resource and its fisheries. 

Reservation of a minimum instream flow is dependent on a legal 

right to water for fish and wildlife. Currently surface water rights 

may be legally obtained only for out-of-stream beneficial uses under 

appropriative water doctrine and the question of legal right of water 

for instream uses, such as fisheries, has only recently been considered 

(Dewsnup and Jensen 1977; Dewsnup et al. 1977; Doerksen 1977). Future 

conflicts over reserving instream flows for fisheries may require court 

action for resolution. Therefore, methodologies used for making instream 
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flow recommendations must be based on sound ecological theory and be 

thoroughly field tested to establish legal credibility. Furthermore, 

from a practical standpoint, the methodology must be designed so that 

it can be implemented easily by the field biologist and will provide 

relevant information for negotiating water allocations and mitigation. 

2 

There are two general categories of methodologies for determination 

of instream flow requirements. The first category includes reconnais­

sance level methodologies which rely on existing records (i.e., United 

States Geological Survey gaging records) and require little or no field 

work. The second category includes the intensive on-site field approaches. 

The latter procedures usually evaluate the ecological requirements of 

indicator species and determine to what extent these requirements are met 

at various stream flow levels. A plethora of methods of this type have 

resulted in confusion over which methodology is best (Orsborn and Allman 

1976; Stalnaker and Arnette 1976). In 1976, the United States Fish and 

Wildlife Service established the Instream Flow Group (IFG) and charged 

them to evaluate these different types of methodologies and develop a 

comprehensive state-of-the-art method for determining instream flows. 

The result was the IFG incremental method. This method consists of a 

system of deterministic and statistical models for habitat analysis, 

complete with computer software (PHABSIM = Physical Habitat Simulation 

System) and interpretive techniques. To date, the incremental method 

has been applied in 339 river reaches by 71 agencies throughout the 

United States (Cooperative Instream Flow Service Group 1979). However, 

no studies have been designed with the explicit purpose of testing the 

validity of the method in a warm-water stream and the scarcity of quanti­

tative data on habitat preferences of warm-water stream fishes limits its 



use in these habitats. 

Therefore, the objectives of this research were (1) to develop 

habitat suitability criteria for fishes of Glover Creek; (2) to test 

some of the assumptions inherent in the IFG incremental method; and 

3 

(3) to make monthly instream flow recommendations for Glover Creek below 

the proposed Lukfata Lake Dam for maintenance of the existing smallmouth 

bass (Micropterus dolomieui) fishery. 



CHAPTER II 

INCREMENTAL METHOD 

Numerous methods have been proposed by various state and federal 

agencies for making instream flow recommendations (Orsborn and Allman 

1976; Stalnaker and Arnette 1976). Although some of the approaches are 

quite different, the problems they address are the same, viz., what is 

the stream flow necessary for instream uses, and what are the effects on 

fish habitat of alteration of the flow regime. The incremental method 

was developed by the Cooperative Instream Flow Service Group as a syn­

thesis and refinement of the concepts previously used for making instream 

flow recommendations (Collings et al. 1970; Waters 1976; Bovee et al. 

1977). 

The need for a method that could be applied in a wide variety of 

situations made it essential to limit the variables considered to those 

which would be common to all instream flow investigations, namely velocity, 

depth, substrate, and temperature. The effects of these variables on 

the distribution and abundance of stream organisms and their relations 

to stream flow have been emphasized by Needham and Usinger (1956), 

Minckley (1963), Hynes (1970), Fraser (1972), Ward (1976), Gorman and 

Karr (1978), and Ward and Stanford (1979). The incremental method util­

izes a hydraulic simulation technique to predict depths, velocities, and 

substrates within a stream reach at different stream flows. From this 

simulation, and knowledge of habitat preferences, the amount of usable 
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(or suitable) habitat for a given fish species can be determined. 

Instream flows can then be recommended based on the effect on fish habi­

tat of incremental changes in stream flow. 

To use the incremental method the preferred habitat of all life 

stages of species of interest must be defined in relation to depth, 

velocity, substrate, and sometimes temperature. Bovee and Gochnauer 

(1977) suggest that a frequency analysis can be used to construct the 

habitat suitability curves. Data on the measurements of depth, velocity, 

and substrate at individual capture locations are arranged into frequency 

distributions for each habitat variable and an optimum range, defined as 

the interval having the greatest frequency of captures, is given a 

weighting factor of one. Weighting factors for the suitability for use 

in all other intervals are calculated by dividing the frequency of obser­

vations in each interval by the mean frequency within the optimum range. 

Flow recommendations are based on the amount of usable habitat in 

relation to discharge. Several investigators had previously used plani­

metric mapping techniques to measure the amount of usable habitat 

(Collings et al. 1970; Bovee 1975), but this procedure is very time 

consuming and requires field measurements at each flow of interest. The 

amount of time needed to measure the amount of usable habitat in a stream 

reach can be reduced by representing the stream reach as shown in Figure 

1 and using a computer program to determine the amount of area having 

particular combinations of depth, velocity, and substrate types at each 

flow. Depth, velocity, and substrate type within each interval along 

the transects are extended half way to the nearest upstream and down­

stream transects (Figure 1). Surface area of each segment is then equal 

to the length times the width. Hence, the amount of surface area having 
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a particular combination of depth, velocity, and substrate can easily be 

computed. To eliminate the need for field measurements at each flow of 

interest, one of two hydraulic simulation techniques can be used for 

estimating the depths and velocities within the stream reach in relation 

to discharge: the Water Surface Profile (WSP) program (United States 

Bureau of Reclamation 1968), and the IFG4 program (Main 1978a). The 

WSP program, which utilizes the Manning equation (Chow 1959) to predict 

velocities based on one set of field measurements, has been used success­

fully by Gochnauer (1976), Dooley (1976), Elser (1976), and White (1976). 

However, the WSP program has limited accuracy and is difficult to cali­

brate. The second technique, IFG4 (Main 1978a), is more accurate but 

requires at least two sets of field measuremehts (Bovee and Milhous 1978). 

Details on the field techniques and data requirements of the IFG4 

program are presented by Bovee and Milhous (1978) and Main (1978a). In 

general, data are obtained by taking stream bed elevations along tran­

sects at fixed intervals with a level and level rod to obtain a cross­

sectional profile (Figure 2). Elevations are measured relative to a 

benchmark established near the study area and on a permanent object, e.g., 

tree root, bridge. These objects are given an arbitrary reference ele­

vation. Depth, velocity, and substrate are then measured at the same 

intervals along transects at two or more flows encompassing the flows of 

interest. Water surface elevations (stage) relative to the benchmark 

are also measured at each transect and at each flow. These data are 

used as input to the IFG4 program (Main 1978a), which establishes linear 

regression equations for the log10 (stage) versus log10 (discharge) 

relations for each transect (Figure 3) and log10 (velocity) versus log10 

(discharge) relations for each segment (Figure 4). These relationships 
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allow the water surface elevation (stage) to be determined for any dis­

charge, and the depths at every segment along transects to be obtained 

by subtraction (Figure 2). Velocity in each segment can then be estimated 

by the log10 (velocity) versus log10 (discharge) relation for that par­

ticular segment (Figure 4). For segments in which there are fewer than 

two velocity measurements, Manning's equation is used to predict velocity. 

Using estimated depths and velocities, discharge can be computed and com­

pared with the desired discharge as a check on the reliability of the 

estimates. The ratio of desired discharge to computed discharge based 

on estimates is called an adjustment factor and is used to adjust veloci­

ties so that desired and computed discharges agree. 

Substrate data, distances between transects, estimated depths and 

velocities at various discharges, and suitability curves for life stages 

of species of interest are used as input to the IFG3 or Habitat program 

(Main 1978b). Suitability curves are used to compute a composite weight­

ing factor for suitability, which is the product of the individual 

weighting factors for the depth, velocity, and substrate in each rectangu~ 

lar segment of the stream reach (Figure 1). The composite weighting 

factor is multiplied by the surface area having that particular combi­

nation of depth, velocity, and substrate and the sum of these products 

over all segments of the stream reach is called the weighted usable area. 

Weighted usable area is an index of the quantity and quality of usable 

habitat. By computing weighted usable area for a wide range of flows, 

the impact on fish habitat of changes in the flow regime can be determined 

or an instream flow can be recommended (Stalnaker 1979; Trihey 1979). 

Any methodology of this type should be robust, so that minor viola­

tions of the assumptions do not limit the usefulness of the outcome. 
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1be objectives of this research were to test the assumptions and deter­

mine the robustness of the method. The following are the assumptions 

of the methodology: (1) depth, velocity, and substrate are the most 

important habitat variables affecting fish distribution and abundance 

when considering changes in stream flow regimes; (2) the stream channel 

is not altered by changes in flow regime; (3) depth, velocity, and sub­

strate are independent in their influence on habitat selection of fishes. 

This assumption allows one to calculate the composite weighting factor 

as the product of individual weighting factors; (4) the stream can be 

modeled by using one or more representative sample reaches of the stream; 

and (5) there is a positive, linear relationship between weighted usable 

area and fish standing crop or habitat use. 



CHAPTER III 

DESCRIPTION OF STUDY AREA 

Glover Creek (Figure 5) , located in McCurtain County in southeastern 

Oklahoma, is the last major uncontrolled tributary of the Little River 

System. The creek drains an area of about 876 km2 , the upper region of 

which is mountainous, characterized by sharp ridges and steep slopes. 

Downstream areas of the basin are more characteristic of low fertile 

flatlands. Rock formations of the basin cons,ist of sandstones, shales, 

limestones, and cherts. 

Long, hot summers and short, mild winters characterize the climate 

of the region. Average annual air temperature is 17.2 C, with monthly 

averages of 27.8 C in July and 6.7 C in January. Average annual precipi­

tation is about 127 em while runoff averages 47 em (United States Army 

Corps of Engineers 1975). 

Most of the drainage area supports an oak-hickory-pine forest (Rice 

and Penfound 1959); although, at the present time, clear-cutting and 

replanting with pine is diminishing the number of hardwoods. Commercial 

timber harvesting is the principle economic activity and much of the 

watershed is owned or leased by the Weyerhauser Company. A small per­

centage of the area is in pasture or under cultivation. 

Glover Creek rises in the Ouachita Mountains, near the LeFlore­

McCurtain county line, then flows south before emptying into the Little 

River. Elevations range from 103 meters above mean sea level at the 

13 
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mouth to 610 mat the source. The average gradient is 2.3 m/km, and 

ranges from 18.9 m/km in the upper reaches to 0.95 m/km near the mouth. 

The main stem of Glover Creek from the mouth to the confluence of the 

East and West Forks is 53 km long; the length of the East and West Forks, 

respectively, are approximately 35 and 33 km. Other major tributaries, 

Pine, Carter, and Cedar creeks, drain the eastern portion of the water-

shed. 

Above the United States Geological Survey stream gage located on the 
. 2 

Highway 3 and 7 bridge, the drainage encompasses an area of 816 km and 

has had an average discharge of 12.912 m3/s and a median discharge of 

3.171 m3/s for 1937 through 1973 (United States Army Corps of Engineers 

3 1975). Median monthly flows ranged from 0.680 m /sin August to 22.628 

3 m /s in May. 

Below the Carter Creek confluence the stream habitat is mostly deep, 

long pools separated.by shallow, relatively narrow riffles. Above the 

Carter Creek confluence the stream habitat consists of fewer pool and 

riffle areas and more shallow and wide bedrock bottom pools separated by 

low bedrock falls and chutes (United States Army Corps of Engineers 1975). 

Frequent flooding in all areas keeps the stream well-scoured with bed-

rock, large boulders, and rubble, the predominate substrate types. 

During the summer, extensive beds of water willow (Justicia sp.) develop 

in shallow, slow current areas. 

Water quality in Glover Creek is very good (Oklahoma State Depart-

ment of Health 1977). Dissolved oxygen remains near saturation year 

round and pH is usually near 7 (Appendix A) . Turbidity and suspended 

solids are generally low and the water is quite clear. However, during 

high flows, turbidity and suspended solids increase markedly (Appendix A). 



Glover Creek supports a diverse fish community. Taylor and Wade 

(1972) collected 50 species, the most abundant of which were bigeye 

shiner (Notropis hoops), ribbon shiner (N. fumeus), longear sunfish 

(Lepomis megalotis), stoneroller (Campostoma anomalum), green sunfish 
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(L. cyanellus), and orangebelly darter (Etheostoma radiosum). The pri­

mary game fish is smallmouth bass. In addition, most of Glover Creek is 

designated as critical habitat for the threatened leopard darter (Percina 

pantherina; United States Fish and Wildlife Service 1978), a species that 

is endemic to the Little River system in southeastern Oklahoma and south­

western Arkansas. Fishing, canoeing, and swimming are the principal 

recreational uses of the stream. 

The topography of the upper portion of t):le watershed results in 

rapid runoff, and an average of three floods per year occur on the lower 

Glover Creek. Flooding has been estimated to cause an average of about 

$1,083,900 of damages annually (United States Army Corps of Engineers 

1975). To avoid these flood damages, Lukfata Lake was authorized by the 

Flood Control Act in 1958; however, funds were never appropriated. The 

authorized damsite is located about 1.6 river km downstream from the 

mouth of Cedar Creek (Figure 5). Opposition from environmental groups 

and recreationists resulted in identification of an alternate damsite 

(0.5 river km downstream from Carter Creek). Since Glover Creek is 

designated as critical habitat for the threatened leopard darter, the 

possibility of appropriation for the Lukfata Lake project in the near 

future is remote. 



CHAPTER IV 

HABITAT SUITABILITY CURVES FOR FISHES OF GLOVER CREEK 

Introduction 

One of the major limitations in assessing the impact of stream flow 

changes and subsequent habitat alteration on fishes is the lack of quan­

titative information on habitat requirements of individual species. 

Intensive data collection efforts and evaluation of critical assumptions 

will be required before methodologies for the determination of instream 

flow requirements can be implemented and the resulting instream flow 

reservations justified in court (Lamb 1977). These methodologies, such 

as the incremental method, all involve determining the habitat (depth, 

velocity, substrate) requirements for the major life history stages of 

target species and converting this information into flow recommendations 

for these life stages. 

Habitat suitability curves have been developed for fishes of the 

family Salmonidae (Bovee 1978) and some other fish species (Bovee, unpub­

lished) based on existing data. However, there is very little suitable 

information for developing habitat suitability curves for fishes of 

Glover Creek. Furthermore, the assumption of independence of habitat 

variables in the selection of microhabitats by fishes has not been ade­

quately tested even though it is the basis for weighted usable area 

calculations. The objectives of this portion of the study were (1) to 

develop habitat suitability curves for several fish species of Glover 

17 
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Creek; (2) to test the assumption of independence of variables in habitat 

selection by fishes; and (3) to determine differences in the habitat 

preferences of different size groups of the same species. 

Methods 

Collection of habitat data was concentrated on five species: 

freckled madtom (Noturus nocturnus), orangebelly darter, stonerciller, 

smallmouth bass, and green sunfish. Fishes were sampled quarterly from 

January 1978 through September 1979 using a boat-mounted pulsed DC elec­

trofishing unit with hand-held electrodes, and a pulsed DC backpack 

electrofisher (Smith-Root Type VII) . Most of the data were collected at 

adjacent riffle and pool sites located at 61200 and 74100, although data 

on the less abundant species (freckled madtom and smallmouth bass) were 

obtained at 14 additional sites throughout the stream (Figure 6). Capture 

locations were marked with small bouys which were color-coded by species 

so that depth, current velocity, and substrate type could later be deter­

mined. Depth (em) was measured with a metric wading rod; current velocity 

(cm/s) was measured at 0.6 of the depth from the water surface with a 

pygmy current meter; and substrate type was classified according to a 

modified Wentworth scale and given a numerical code (Bovee and Cochnauer 

1977). Mixtures of substrates were given intermediate code values. 

Habitat data were collected in this manner for the freckled madtom, 

orangebelly darter, stoneroller, and smallmouth bass. Smallmouth bass 

were classified as juvenile (<150 mm total length, TL) and adult (>150 

mm TL) • 

Angling was also used to collect habitat information for those 

species vulnerable to angling, i. e., smallmouth bass and green sunfish. 
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Angling during canoe float trips provided the opportunity to sample a 

wide variety of habitats which otherwise would have been impossible 

because of the limited access to Glover Creek. The stream reach from 

the County Road Crossing to the Boy Scout Camp was sampled on May 19-20, 

1979, and the reach from the Boy Scout Camp to access road 71000 was 

sampled on August 2-3, 1979 (Figure 6). A total of about 27 stream 

kilometers were sampled by biologists fishing with artificial lures. 

At the locations where fish struck, depth, surface velocity, and substrate 

type were determined. Surface velocity (V in cm/s), measured by timing 
s 

a float, was converted to velocity at 0.6 depth (v. 6) by the equation: 

v. 6 = 1.1199 vs· 8842 (r=0.943; P<O.OOOl), which was derived from field 

data on Glover Creek. 

For adult smallmouth bass and green sunfish, suitability curves were 

developed in the following manner. Depth, velocity, and substrate fre-

quency distributions were tabulated for each species and a chi-square 

test was used to determine if the distribution was significantly differ-

ent from a uniform distribution over the range of the habitat variable. 

If this test indicated significant deviation from uniform, then the 

optimum range was assigned a weighting factor of one, and weighting 

factors for other intervals were obtained by dividing the frequencies in 

other intervals by the average frequency in the optimum range (Bovee and 

Gochnauer 1977). Suitability curves were then drawn to fit the weighting 

factor data. If there was no significant deviation from uniform, then a 

curve was drawn to indicate a suitability of one over the observed range 

of that habitat variable. 

For juvenile and adult smallmouth bass, green sunfish, and freckled 

madtom, the assumption of independence of depth, velocity, and substrate 
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frequency distributions was tested with a chi-square test for indepen-

dence (Conover 1971:154-156). Contingency tables were set up to test 

the independence of: depth and velocity, depth and substrate, and 

velocity and substrate. 

To account for the bias associated with the habitat availability at 

the time of sampling, depth, velocity, and substrate were estimated using 

the IFG4 hydraulic simulation program (Main 1978a), which had been cali-

brated for each main site. Calibration data were collected quarterly 

from November 1977 through September 1979. For each sampling period, the 

amount of area sampled in each depth, velocity, and substrate interval 

was computed. 

For juvenile smallmouth bass and the frepkled madtom, the frequen­

cies in one-way depth, velocity, and substrate tables were divided by the 

amount of area sampled in each interval for an estimate of relative den-

sity. Suitability curves were then drawn based on weighting factors 

calculated from the relative density estimates. 

For the orangebelly darter and the stoneroller, data were sufficient 

to estimate actual densities in relation to depth, velocity, and sub-

strate. Therefore, for each main site, population estimates were made 

quarterly by the removal method (Carle and Strub 1978). Frequencies in 

one-way depth, velocity, and substrate tables for each site were multi-

. plied by the ratio of the estimated population size to the actual number 

of fish that were captured and for which habitat data were recorded. 

The adjusted frequencies were summed over all sites and seasons and 

divided by the amount of surface area sampled in all sites and seasons 

in the respective interval for an estimate of the average density 

2 
(number/m ) in various depth, velocity, and substrate intervals. Suita-
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bility curves were then drawn based on weighting factors calculated from 

these density estimates. 

For juvenile smallmouth bass, freckled madtom, orangebelly darter, 

and the stoneroller, a chi-square test for goodness fit (Conover 1971: 

186-194) was used to test the null hypothesis that the one-way frequency 

distributions have the same distribution as the amount of area sampled; 

that is, densities do not vary over the sampled range of the habitat 

variable. 

Data on the stoneroller and orangebelly darter for the spring 1979, 

and summer 1979 sampling periods were sufficient to analyze for the 

extent of the effects of each two-way interaction on density. Numbers 

and area sampled were tabulated in a three-way table using 10 em depth 

intervals, 10 cm/s velocity intervals, and 0.5 substrate intervals. 

Midpoints of the depth and velocity intervals were used as values for 

depth and velocity. Exponential polynomial functions were chosen to fit 

to the density data. Numbers (N) were adjusted to N+l, and areas sampled 

were adjusted to Area+l, so the dependent variable modeled was actually 

(N+l)/(Area+l). This variable, (N+l)/(Area+l), is a biased estimate of 

density. The bias is negative at densities greater than one, and posi­

tive at densities less than one. A natural logarithm transformation of 

(N+l)/(Area+l) was then done so that the exponential polynomial function 

could be fitted by multiple linear regression. The order of the poly­

nomial used was the one that gave the best fit to the marginal densities. 

An exponential polynomial function was then derived to relate density 

to depth, velocity, substrate, and the two-way interactions between 

depth, velocity, and substrate. The significance of the interactions 

was tested using a partial F test (Draper and Smith 1966), which tests 
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the significance of including a variable after all other variables have 

already been included in the model. Reductions in the mean square error 

due to inclusion of the interaction terms were also calculated. 

Results 

Smallmouth Bass - Adult 

Adult smallmouth bass were most frequently captured at depths from 

40 to 100 em in slow to moderate.current velocities (0-19 cm/s), near 

boulder substrates (Figure 7). Data based on electrofishing were biased 

towards the shallower depths since habitat greater than 120 em deep could 

not be sampled with the gear used. The depth frequency distributions 

based on electrofishing data was significantly different than that based 

on angling data according to the chi-square test for independence 

(P<O.OOl). Although the angling data may have some bias associated with 

it, the dashed depth suitability curve based only on angling data (Figure 

7) probably is more representative of the habitat of adult smallmouth 

bass in Glover Creek. The velocity frequency distribution based on 

electrofishing data was also significantly different than that based on 

angling data (P<0.025). Much of this difference could be attributed to 

the very low flow conditions in summer and fall 1978, during which 31 of 

the 73 adult smallmouth bass captured by electrofishing were collected. 

If the data from summer and fall 1978 were omitted, the electrofishing 

velocity distribution would not be significantly different than the 

angling velocity distribution (P>0.25). Also, angling was conducted at 

flows which offered a wider range and probably a more uniform distribu­

tion of velocities for the fish to select from; flows during angling 
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collections were at levels which were exceeded only 36 to 37% of the 

time during the period of record (1961-74). Therefore, the dashed 

velocity suitability curve appears to be more accurate. In contrast, 

there was no significant .difference (P>0.25) between the substrate fre­

quency distribution based on electrofishing data and that based on 

angling data. Therefore, the combined data were used to develop the 

substrate suitability curve. 

Observed frequencies of adult smallmouth bass in relation to depth 

and velocity were not significantly different than the expected frequen­

cies under the assumption of independence, although the observed 

significance level (P=0.088) was low enough to indicate slight depen­

dencies (Table 1). At shallow depths (<45 em) adult smallmouth bass 

were captured at lower velocities (<5 cm/s) more frequently but at 

greater depths were captured at higher velocities more frequently than 

would be expected. 

For depth and substrate, the assumption of independence was rejected 

at an observed significance level of 0.025 (Table 2). Adult smallmouth 

bass utilized smaller substrates (1.0-6~5) more frequently than expected 

at shallow depths and utilized larger substrates (7.0-8.0) more fre­

quently than expected in deeper areas. In contrast, the assumption of 

independence of velocity and substrate in habitat selection by adult 

smallmouth bass was not rejected (P>0.25; Table 3). 

Smallmouth Bass - Juvenile 

Juvenile smallmouth bass were most abundant in relatively shallow 

areas, usually in or near riffles, with velocities from 10-20 cm/s, over 

substrates ranging from gravel to boulder. Densities varied significantly 
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Table 1. Observed frequencies of adult smallmouth bass and 

expected frequencies (in parentheses) assuming independence 

of depth and velocity. 

Velocity (cm/s) 
Depth (em) 0-4 5-14 15-69 Totals 

15-44 21 (14.09) 3 ( 7.25) 5 ( 7 .66) 29 

45-59 15 (15.06) 7 ( 7. 75) 9 ( 8 .19) 31 

60-74 10 (13. 60) 11 ( 7 .00) 7 ( 7. 40) 28 

75-260 22 (25. 26) 14 (13.00) 16 (13.74) 52 

Totals 68 35 37 140 

T = 11.09 (6 df) p = 0.088 
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Table 2. Observed frequencies of adult smallmouth bass and expected 

frequencies (in parentheses) assuming independence of depth and 

substrate. 

Substrate 
Depth (em) 1. 0-5.5 6.0 & 6.5 7.0 7.5 & 8.0 Totals 

15-44 9 (4.02) 10 ( 6 .69) 8 (12.72) 2 (5. 35) 29 

45-59 1 (4.15) 9 ( 6. 92) 15 (13 .15) 5 (5.54) 30 

60-74 2 (3.46) 4 ( 5.77) 14 (10.96) 5 (4.62) 25 

75-260 6 (6.37) 7 (10.62) 20 (20.17) 13 (8.49) 46 

Totals 18 30 57 24 130 

T = 20.68 (9 df) P<0.025 
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Table 3. Observed frequencies of adult smallmouth bass and expected 

frequencies (in parentheses) assuming independence of velocity and 

substrate. 

Substrate 
Velocity (cm/s) 1.0-5.5 6.0 & 6.5 7.0 7.5 & 8.0 Totals 

0-4 13 (9. 21) 12 (15.35) 28 (29.16) 13 (12.28) 66 

5-14 1 (4.19) 7 ( 6. 98) 16 (13.26) 6 ( 5 .58) 30 

15-69 4 (4.60) 11 ( 7 .67) 13 (14.58) 5 ( 6 .14) 33 

Totals 18 30 57 24 129 

T = 7. 31 (6 df) P>0.25 
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over the range of depths (P<O.OOl) and velocities (P<0.005) sampled, but 

did not vary significantly (P>O.lO) over the substrate range sampled 

(Table 4). Habitat suitability curves were fit to the relative density 

data (Figure 8), thereby eliminating bias that would have been in the 

curves if the raw frequency data had been used. This bias would have 

been greatest in the velocity and substrate curves because the distribu­

tions of the amount of area sampled over the range of velocities and 

substrates were non-uniform (Table 4). Although relative densities were 

not highest ·at velocities from 0-9 cm/s andover rubble-boulder st,1bstrate, 

habitat suitability would have been highest in these ranges if the raw 

frequency data were the basis for defining the suitability curves. 

Depth and velocity were independent in the habitat selection by 

juvenile smallmouth bass (P = 0.085), but the contingency table indicates 

some slight dependencies in the data (Table 5). At depths less than 

25 em, juvenile smallmouth bass utilized higher velocities (15-39 cm/s) 

more frequently than expected, and at depths greater than 25 em, they 

utilized higher velocities less frequently than would be expected. The 

test for independence of depth and substrate indicated significant 

differences between observed and expected frequencies (P<0.005; Table 6) 

with juvenile smallmouth bass utilizing progressively larger substrates 

at greater depths. In the test for independence of velocity and substrate, 

no significant differences were found between observed and expected 

frequencies (P>O·. 25; Table 7) . 

To determine if there were any differences in the depths, velocities, 

and substrate types utilized by different length groups of smallmouth 

bass, chi-square tests for independence were performed. There was a 

definite trend for the smallmouth bass to utilize microhabitats of 
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Table 4. Total area sampled, frequency of capture, and relative den-

sity of juvenile smallmouth bass in relation to depth, velocity, and 

substrate type in Glover Creek, January 1978 to September 1979. 

Variable and Area 2 Relative density 
interval sampled (m . ) Frequency (Frequency/Area) 

Depth (em) 
0- 9 2,253 8 .004 

10-19 2,466 40 .016 
20-29 2,688 25 .009 
30-39 2,220 13 .006 
40-49 1,425 12 .008 
50-59 1,340 11 .008 
60-69 956 8 .008 
70-79 849 2 .002 
80-89 847 0 .000 
~ 90 1,400 5 .004 

16,444 124 
T=43.9 (9 df) P<O.OOl 

Velocity (cm/s) 
0- 9 10,336 86 .008 

10-19 2,168 23 .011 
20-29 1,368 10 .007 
30-39 792 5 .006 
40-49 474 0 .000 
50-59 517 0 .000 
60-69 332 0 .000 
70-79 190 0 .000 
80-89 178 0 .000 
90-119 90 0 .000 

16,445 124 
T=l7. 3 (5 df) P<0.005 

Substrate 
Detritus 20 0 .000 
Sand 188 0 .000 
Sand-Gravel 34 0 .000 
Gravel 319 4 .012 
Gravel-Rubble 2,059 20 .010 
Rubble 3,177 22 .007 
Rubble-Boulder 6,412 42 .007 
Boulder 2,989 31 .010 
Boulder-Bedrock 209 1 .005 
Bedrock 1,038 4 .004 

16,445 124 
T=7.5 (5 df) P>O.lO 
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Table 5. Observed frequencies of juvenile smallmouth bass 

and expected frequencies (in parentheses) assuming inde-

pendence of depth and velocity. 

Velocit~ (cm/s) 
Depth (em) 0-4 5-14 15-39 Totals 

5-14 13 (13 .84) 5 (6.29) 8 (5.87) 26 

15-24 13 (19.69) 11 (8.95) 13 (8. 36) 37 

25-34 13 (10 .11) 5 (4. 60) 1 (4.29) 19 

35-54 13 (12.24) 5 (5.56) 5 (5 .19) 23 

55-110 14 (10 .11) 4 (4.60) 1 (4.29) 19 

Totals 66 30 28 124 

T = 14.00 (8 df) p = 0.085 
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Table 6. Observed frequencies of juvenile smallmouth bass and expected 

frequencies (in parentheses) assuming independence of depth and 

substrate. 

Substrate 
Depth (em) 5.0 & 5.5 6.0 6.5 7.0, 7.5, & 8.0 Totals 

5-14 7 (5.03) 7 (4.61) 8 ( 8. 81) 4 ( 7.55) 26 

15-24 10 (7 .16) 7 (6.56) 16 (12.53) 4 (10.74) 37 

25-34 3 (3.68) 4 (3. 37) 8 ( 6.44) 4 ( 5.52) 19 

35-54 2 (4.45) 2 (4.08) 7 ( 7.79) 12 ( 6.68) 23 

55-llO 2 (3.68) 2 (3. 37) 3 ( 6.44) 12 ( 5.52) 19 

Totals 24 22 42 36 124 

T = 28.64 (12 df) P<0.005 
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Table 7. Observed frequencies of juvenile smallmouth bass and expected 

frequencies (in parentheses) assuming independence of velocity and 

substrate. 

Velocity Substrate 
(cm/s) 5.0 & 5.5 6.0 6.5 7.0, 7.5, & 8.0 Totals 

0-4 11 (12.77) 13 (11. 71) 26 (22.36) 16 (19 .16) 66 

5-14 6 ( 5 .81) 5 ( 5.32) 8 (10.16) 11 ( 8. 71) 30 

15-39 7 ( 5. 42) 4 ( 4 .97) 8 ( 9.48) 9 ( 8 .13) 28 

\' 

Totals 24 22 42 36 124 

T = 3.57 (6 df) P>0.25 
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greater depths as they grew (Table 8), and the differences between ob­

served and expected frequencies were significant (P<O.OOl). The greatest 

change in the preferred depth range occurred between smallmouth bass less 

than 100 and those greater than 100 mm TL. Conversely, in the test for 

independence of fish length and velocity, no significant differences were 

found between observed and expected frequencies (P>O .10; Table 9). In· 

the test for independence of fish length and substrate type, there were 

significant differences between observed and expected frequencies 

(P<O.OOl; Table 10). Smallmouth bass less than 100 mm TL utilized sub­

strates of gravel-rubble, rubble, and rubble-boulder (5.5, 6.0, and 6.5) 

more frequently than expected and those greater than 100 mm TL utilized 

substrates of boulder, boulder-bedrock, and bledrock (7 .0, 7 .5, and 8.0) 

more frequently than expected. 

Green Sunfish - Adult 

A total of 254 adult green sunfish were captured by angling in 

Glover Creek, usually in areas 40 to 120 em deep, with little or no 

current (0-4 cm/s), and boulder substrate (Figure 9). Within the opti­

mum depth range there were no significant differences (P>0.25) between 

observed and expected frequencies assuming a uniform distribution. 

Because the adult green sunfish ranged in size from 75 to 243 nnn TL, 

chi-square tests for independence of fish length and habitat use were per­

formed. There was significant evidence to reject the null hypothesis 

that depth at capture locations is independent of fish length (P<0.025; 

Table 11). Green sunfish greater than 200 mm TL were captured at depths 

of 80-119 em more frequently, and green sunfish less than 140 mm TL were 

captured at depths less than 80 em more frequently than would be expected 



Table 8. Observed frequencies of smallmouth bass and expected frequencies (in parentheses) assuming inde-

pendence of fish length and the water depth at capture locations. 

Total . De th (em) 
length (mm) 5-19 20-34 35-49 50-64 65-84 85-260 Totals 

35-99 23 (7.87) 21 (10.40) 10 (10.40) 2 (10.68) 3 (9.28) 2 (12. 37) 61 

100-149 3 ( 4 .00) 6 ( 5.29) 4 ( 5.29) 11 ( 5.43) 4 (4.71) 3 ( 6.29) 31 

150-199 1 ( 6. 71) 5 ( 8 .87) 13 ( 8.87) 11 ( 9 .11) 14 (7 .91) 8 (10.54) 52 

200-249 1 (5.81) 4 ( 7. 67) 6 ( 7.67) 10 ( 7.88) 8 (6.84) 16 ( 9 .12) 45 

250-450 0 (3. 61) 1 ( 4.77) 4 ( 4.77) 4 ( 4.90) 4 (4.26) 15 ( 5.68) 28 

Totals 28 37 37 38 33 44 217 

T = 116.?0 (20 df) P<O.OOl 



Table 9. Observed frequencies of smallmouth bass an4 expected frequencies (in paren­
l 

theses). assuming independence of fish length and the current velocity at capture 

locations. 

Total Velocitl (cm/s) 
length (nnn) 0-4 5-9 10-14 15-19 20-69 Totals 

35-99 41 (29.52) 5 (8.43) 4 (7. 31) 5 (8 .15) 6 (7.59) 61 

100-149 11 (15.00) 6 (4.29) 6 (3. 71) 5 (4.14) 3 (3. 86) 31 

150-199 21 (25.16) 10 (7 .19) 5 (6.23) 7 (6.95) 9 (6.47) 52 

200-249 18 (21. 77) 8 (6.22) 6 (5.39) 6 ( 6. 01) 7 (5.60) 45 

250-450 14 (13 .55) 1 (3.87) 5 (3.36) 6 (3.74) 2 (3 .48) 28 

Totals 105 30 26 29 27 217 
')' 

T = 20.77 (16 df) P>O.lO 



Table 10. Observed frequencies of smallmouth bass and expected frequencies (in parentheses) assuming 

independence of fish length and substrate type at capture locations. 

Total Substrate 
length (mm) 1.0-5.0 5.5 6.0 6.5 7.0 7.5 & 8.0 Totals 

35-99 1 (4 .15) 15 (5.92) 16 (9. 48) 22 (13.03) 6 (21. 91) 1 (6.52) 61 

100-149 1 (2 .11) 0 (3. 01) 3 (4.82) 7 ( 6.62) 16 (11.14) 4 (3.31) 31 

150-199 7 (3 .19) 0 (4.56) 7 (7.30) 5 (10.04) 22 (16.88) 6 (5.02) 47 

200-249 4 (2.85) 4 (4.08) 4 (6.52) 5 ( 8.97) 16 (15.09) 9 (4.48) 42 

250-450 1 (1. 70) 1 (2.43) 2 (3.88) 5 ( 5.34) 14 ( 8.98) 2 (2. 67) 25 

Totals 14 20 32 44 74 22 206 

T = 75.98 (20 df) P<O.OOl 

w 
00 
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Table 11. Observed frequencies of green sunfish and expected 

frequencies (in parentheses) assuming independence of fish 

length and depth at capture locations. 

Total DeEth (em) 
length (mm) < 80 80-119 > 120 Totals 

< 140 22 (15.81) 14 (18.70) 7 ( 8.50) 43 

140-159 16 (12.50) 13 (14.78) 5 ( 6 0 72) 34 

160-179 29 (23.53) 22 (27 .83) 13 (12.65) 64 

180-199 14 (16.54) 21 (19 .56) 10 ( 8.89) 45 

> 200 12 (24.63) 40 (29 .13) 15 (13.24) 67 

Totals 93 110 so 253 

T = 19.41 (8 df) P<0.025 
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if depth of capture was independent of fish length. Velocity at capture 

locations was independent of fish length (P>0.25; Table 12), but sub­

strate at capture locations and fish length were not independent (P<0.025; 

Table 13). Green sunfish less than 140 nun TL utilized rubble (6.0) more 

frequently and boulder-bedrock and bedrock (7.5 and 8.0) less frequently 

than would be expected assuming independence. 

In the test for independence of depth and velocity in the habitat 

selection by adult green sunfish, the observed significance level was 

0.061 (Table 14). At shallow depths green sunfish utilized velocities 

greater than 10 cm/s more frequently, and at greater depths utilized 

velocities less than 10 cm/s more frequently than would be expected if 

depth and velocity were independent. Depth at capture locations was 

related to substrate (P<0.025; Table 15). At shallow depths green sun­

fish utilized substrates ranging from sand-gravel (4.5) to rubble-

boulder (6.5) more frequently than would be expected if depth and velocity 

were independent. The observed significance level for the test for 

independence of velocity and substrate was 0.072 (Table 16). The major 

difference between observed and expected frequencies was for substrates 

from detritus to sand (1.0-4.0). At velocities less than 10 cm/s, 

green sunfish utilized these finer substrates more frequently, and at 

velocities greater than 10 cm/s, they utilized the smaller substrate 

types less frequently than would be expected if velocity and substrate 

were independent. 

Freckled Madtom 

Freckled madtoms were almost always captured in shallow riffle habi­

tat. Relative densities were greatest at depths from 10-19 em, velocities 
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Table 12. Observed frequencies of green sunfish and expected 

frequencies (in parentheses) assuming independence of fish 

length and velocity at capture locations. 

Total Velocit~ (cm/s) 
length (mm) 0 1-10 >10 Totals 

< 140 28 (25.83) 7 ( 8.16) 8 ( 9.01) 43 

140-159 20 (20.43) 4 ( 6.45) 10 ( 7.12) 34 

160-179 40 (38 .45) 12 (12.14) 12 (13.41) 64 

180-199 27 (27.04) 12 ( 8.54) 6 ( 9.43) 45 

~ 200 37 (40.25) 13 (12.71) 17 (14.04) 67 

Totals 152 48 53 253 

T = 6.32 (8 df) P>0.25 



Table 13. Observed frequencies of green sunfish and expected frequencies (in paren-

theses) assuming independence of fish length and substrate at capture locations. 

Total Substrate 
length (mm) 1.0-5.5 6.0 6.5 7.0 7.5 & 8.0 Totals 

< 140 3 (6.08) 15 (5.91) 2 (3.88) 18 (18.90) 2 (5.23) 40 

140-159 7 (4.86) 3 (4.73) 2 (3.10) 16 (15 .12) 4 (4.19) 32 

160-179 7 (9.57) 9 (9. 30) 8 (6.11) 32 (29.77) 7 (8.24) 63 

180-199 10 (6.23) 4 (6.06) 4 (3. 98) 16 (19.38) 7 (7.98) 41 

~ 200 9 (9.27) 4 (9. 01) 7 (5.92) 30 (28.83) 11 (7. 98) 61 

Totals 36 35 23 112 31 237 

T = 30.03 (16 df) P<O .025 
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Table 14. Observed frequencies of adult green 

sunfish and expected frequencies (in paren-

theses) assuming independence of depth and 

velocity. 

Velocitl (cm/s) 
Depth (em) 0-9 ~ 10 Totals 

< 80 60 (73.59) 26 (19.41) 93 

80-119 89 (87.05) 21 (22.95) 110 

~ 120 45 (40.36) 6 (10.64) 51 

Totals 201 53 254 

T = 5.68 (2 df) p = 0.061 



Table 15. Observed frequencies of adult green sunfish and expected frequencies (in parentheses) 

assuming independence of depth and substrate. 

Substrate 
Depth (em) 1.0-4.0 4.5-5.5 6.0 6.5 7.0 7.5 & 8.0 Totals 

< 80 6 (6.66) 10 (6.66) 18 (12.94) 14 (8.50) 31 (41. 41) 9 (11.83) 88 

80-119 6 (7.71) 7 (7. 71) 13 (15.00) 7 (9. 86) 56 (48.00) 13 (13. 71) 102 

~ 120 6 (3. 63) 1 (3. 63) 4 ( 7. 06) 2 (4.64) 25 (22.59) 10 ( 6.45) 48 

Totals 18 18 35 23 112 32 238 

T = 21.97 (10 df) P<0.025 



Table 16. Observed frequencies of adult green sunfish and expected frequencies (in parentheses) 

assuming independence of velocity and substrate. 

Velocity Substrate 
(cm/s) 1.0-4.0 4.5-5.5 6.0 6.5 7.0 7.5 & 8.0 Totals 

0-9 18 (14.14) 14 (14.14) 31 (27.50) 15 (18.07) 84 (88.00) 25 (25.14) 187 

~ 10 0 ( 3.86) 4 ( 3 .86) 4 ( 7. 50) 8 ( 4.93) 28 (24.00) 7 ( 6.86) 51 

Totals 18 18 35 23 112 32 238 

T = 10.28 (5 df) p = 0.072 
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from 20-39 cm/s, in substrates of sand-gravel, gravel, and gravel-rubble 

(Table 17). The null hypothesis that densities do not vary over the 

sampled range of the habitat variable was rejected (P<O.OOl) for each 

habitat variable (Table 17). The suitability curves for the freckled 

madtom (Figure 10) are based on data which show that they were indeed 

selecting a particular range of each habitat variable while avoiding 

other ranges. 

The majority of these data (79 of 115 observations) were collected 

during summer 1979 and therefore the suitability curves are most repre­

sentative of summer habitat utilization. Based on length frequencies, 

most of the freckled madtoms captured during summer 1979 were probably 

young of the year. To determine if there were any differences in habi­

tat selection between freckled madtoms less than 40 rom TL and those 

greater than 40 rom TL, chi-square tests for independence were performed 

for length versus depth, length versus velocity, and length versus sub­

strate. In only 49 of the 115 observations were the length measurements 

associated with the observed depth, velocity, and substrate data. The 

average total length of these fish was 43 mm and the range was 16-98 mm. 

No significant differences were found between the depth, velocity, or 

substrate frequency distributions for freckled madtoms less than and 

those greater than 40 rom total length (Tables 18, 19, and 20). The same 

suitability curves (Figure 10) can thus be applied to both the juvenile 

and adult stages. 

Frequency distributions of the depths and velocities utilized by 

freckled madtoms were not independent (Table 21). At depths greater 

than 20 em, freckled madtoms used areas with higher velocities (>20 cm/s) 

more frequently than would be expected under the assumption of indepen-
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Table 17. Total area sampled, frequency of capture, and relative den-

sity of the freckled madtom in relation to depth, velocity, and 

substrate type in Glover Creek, January 1978 to September 1979. 

Variable and Area 2 Relative density 
interval sampled (m ) Frequency (Frequency/Area) 

Depth (em) 
0- 9 2,253 32 .014 

10-19 2,466 so .020 
20-29 2,688 27 .010 
30-39 2,220 2 .001 
40-49 1,425 2 .001 
50-59 1,340 1 .001 
60-69 956 0 .000 
70-79 849 1 .001 
80-89 847 0 .000 
~ 90 1,400 0 .000 

16,444 115 
T=l34.9 (9 df) P<O.OOl 

Velocity (cm/s) 
0- 9 10,336 32 .003 

10-19 2,168 32 .015 
20-29 1,368 24 .018 
30-39 792 15 .019 
40-49 474 1 .002 
50-59 517 5 .010 
60-69 332 4 .012 
70-79 190 1 .005 
80-89 178 0 .000 
90-119 90 1 .011 

16,445 115 
T::o:79.2 (5 df) P<O.OOl 

Substrate 
Detritus 20 0 .000 
Sand 188 0 .000 
Sand-Gravel 34 1 .029 
Gravel 319 4 .012 
Gravel-Rubble 2,056 33 .016 
Rubble 3,177 32 .010 
Rubble-Boulder 6,412 37 .006 
Boulder 2,989 8 .003 
Boulder-Bedrock 209 0 .000 
Bedrock 1,038 0 .000 

16,445 115 
T=46.9 (5 df) P<O.OOl 



cr: 
01.0 
1-
(.) 
<( 
u. 
c..? 
z 
1- .5 
I 
c..? 
l.IJ 

s: 

FRECKLED MADTOM 

- I ' 
r- r-

- \ 
~- "'- --

I I I 

gs 1.0 
1-
(.) 
<( 
u. 
c.:J 
z .5 
1-
I 
c..? 
l.IJ 

s: 

cr:1.0 
0 
1-
(.) 
<( 
u. 
c.:J 
z .5 
I-
I 
c.:J 
UJ 
s: 

0 

0 

20 40 60 80 
DEPTH (ern) 

20 40 60 80 
VELOCITY (cm/s) 

-----------

·····-·-···-r---·-· 
1 2 3 

(/) 

::> 
1-

cr: 
1-
UJ 
0 

1-
.....1 
(/) 

4 
0 
z 
<( 
en 

5 
....I 
UJ 
> 
<( 
cc 
c..? 

I 
100 

100 

6 7 
UJ cr: 
....I UJ 
co 0 co ....I 
::::) ::::> cc 0 

co 

r-

r-

.02 <( 
UJ 
cr: 
<( 
........ 
> 
(.) 
z 

.01 UJ 
::::) 

0 
UJ 
cr: 
u. 

120 

8 
~ 
(.) 

0 
cr: 
0 
UJ 
co 

.02 <( 
UJ 
cr: 
<( 
........ 
> 
(.) 

.01 ffi 
::::) 

0 
UJ 
cr: 
u. 

.015 ~ 
cr: 
<( 
........ 
> .010 (.) 
z 
UJ 
::> 
0 .005 UJ 
cr: 
u. 

Foigure 10. Relative density estimates and suitability 

weLgltting [actors J.n relation to depth, velocity, and sub-

strate, for tb(' rreckled madtom in Glover Creek. 



50 

Table 18. Observed frequencies of freckled madtoms and 

expected frequencies (in parentheses) assuming inde-

pendence of total length (TL) and the water depth (em) 

at capture locations. 

DeEth (em) 
TL (mm) 0-19 20-39 40-79 Totals 

< 40 20 (16.53) 6 (8.82) 1 (1. 65) 27 

> 40 10 (13.47) 10 (7.18) 2 (1. 35) 22 

Totals 30 16 3 49 

T = 4.20 (2 df) P>O.lO 
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Table 19. Observed frequencies of freckled madtorns and 

expected frequencies (in parentheses) assuming inde-

pendence of total length (TL) and current velocity 

(crn/s) at capture locations. 

Velocitl (crn/s) 
TL (nun) 0-19 20-39 ~ 40 Totals 

< 40 10 (10.47) 14 (11.57) 3 (4.96) 27 

;::, 40 9 ( 8.53) 7 ( 9.43) 6 (4.04) 22 

Totals 30 21 9 49 

T = 2.91 (2 df) P>O .10 
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Table 20. Observed frequencies of freckled madtoms and expected fre­

quencies (in parentheses) assuming independence of total length 

(TL) and substrate at capture locations. 

Substrate 
TL (mm) 4.5 & 5.0 5.5 6.0 6.5 & 7.0 Totals 

< 40 3 (2. 76) 10 (8.26) 11 (9.92) 3 ( 6. 06) 27 

2: 40 2 (2 .24) 5 (6.74) 7 (8.08) 8 (4.94) 22 

Totals 5 15 18 11 49 

T = 4.57 (3 df) P>O.lO 



53 

Table 21. Observed frequencies of freckled madtoms and 

expected frequencies (in parentheses) assuming indepen-

dence of depth and velocity. 

Velocitl (cm/s) 
Depth (em) 0-19 20-39 ~ 40 Totals 

0-19 51 (45. 64) 25 (27.81) 6 (8.56) 82 

20-70 13 (18.36) 14 (11.19) 6 (3. 44) 33 

Totals 64 39 12 115 

T = 7.39 (2 df) P<O .025 
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dence (P<0,025; Table 21). Therefore, the velocity suitability curve 

(Figure 10) would probably not be the same at depths less than and greater 

than 20 em. The depth frequency distribution was independent of sub-

strate type (P>0.25; Table 22) and the velocity frequency distribution 

was independent of substrate type (P>O.lO; Table 23). 

Stoneroller 

Stonerollers were most frequently captured in or near riffles or 

raceways. The null hypothesis that densities of the stoneroller do not 

vary over the sampled range of the habitat variable was rejected for each 

habitat variable (P<O.OOl; Table 24). Densities were greatest at depths 

from 10-19 em, velocities from 10-19 cm/s, and over gravel substrate 

(Figure 11). Velocities from 10 to 49 cm/s were judged to be the opti-

mum range for the suitability curve (Figure 11) since observed frequen-

cies in these intervals were greater than the expected frequencies under 

the null hypothesis. A weighted average density (0.18/m2) was calcu-

lated for this interval and weighting factors for other intervals were 

calculated by dividing the density by 0.18. Since a relatively small 

amount of area of gravel substrate was sampled (Table 24), the optimum 

substrate types were judged to be gravel and gravel-rubble and weighting 

2 factors were scaled to a weighted average density (0.19/m ) over gravel 

and gravel-rubble. The amount of area sampled over detritus substrate 

was under-estimated because of its ephemeral nature and, therefore, den-

sity of the stoneroller over detritus was inflated. Also, since the 

density estimate for detritus was based on so few fish (Table 24), it 

was not included in developing the suitability curve (Figure 11). 

During the spring 1979, the stoneroller population had a very low 



Table 22. Observed frequencies of freckled madtoms and expected frequencies (in paren-

theses) assuming independence of depth and substrate. 

Substrate 
Depth (em) 4.5 & 5.0 5.5 6.0 6.5 7.0 Totals 

0-19 4 (3.56) 24 (23.53) 22 (22.82) 28 (26. 38) 4 (5.70) 82 

20-70 1 (1. 44) 9 ( 9.47) 10 ( 9.18) 9 (10.62) 4 (2.30) 33 

Totals 5 33 32 37 8 115 

T = 2.44 (4 df) P>0.25 
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Table 23. Observed frequencies of freckled madtoms and expected fre-

quencies (in parentheses) assuming independence of velocity and 

substrate. 

Velocity Substrate 
(cm/s) 4.5 & 5.0 5.5 6.0 6.5 & 7.0 Totals 

0-19 2 (2.78) 16 (18.36) 15 (17 .81) 31 (25.04) 64 

20-39 3 (1. 70) 15 (11.19) 11 (10.85) 10 (15 0 26) 39 

2: 40 0 (0.52) 2 ( 3.44) 6 ( 3.34) 4 ( 4 0 70) 12 

Totals 5 33 32 45 115 

T = 9.852 (6 df) P>O .10 
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Table 24. Total area sampled, and estimated number and density of the 

stoneroller in relation to depth, velocity, and substrate type in 

Glover Creek, January 1978 to September 1979. 

Variable and Area 2 . 2 
interval sampled (m ) Number Number/m 

Depth (em) 
0- 9 2,253 394 .175 

10-19 2,466 1,131 .459 
20-29 2,688 293 .109 
30-39 2,220 78 .035 
40-49 1,425 44 .031 
50-59 1,340 10 .007 
60-69 956 2 .002 
70-79 849 1 .001 
80-89 847 0 .000 
~ 90 1,400 0 .000 

16,444 1,953 
T=3298 .4 (9 df) P<O.OOl 

Velocity (cm/s) 
0- 9 10,336 1,056 .102 

10-19 2,168 435 .201 
20-29 1,368 228 .166 
30-39 792 106 .134 
40-49 474 74 .157 
50-59 517 33 .064 
60-69 332 8 .023 
70-79 190 6 .033 
80-89 178 2 .013 
90-119 90 4 .046 

16,445 1,952 
T=251. 7 (9 df) P<O.OOl 

Substrate 
Detritus 20 3 .155 
Sand 188 0 .000 
Sand-Gravel 34 0 .000 
Gravel 319 80 .251 
Gravel-Rubble 2,059 364 .177 
Rubble 3,177 335 .105 
Rubble-Boulder 6,412 744 .116 
Boulder 2,989 412 .138 
Boulder-Bedrock 209 7 .035 
Bedrock 1,038 ' 6 .006 

16,445 1,951 
T==296.3 (7 df) P<O.OOl 
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2 
estimated density (0.07/m), and the exponential polynomial function of 

depth, velocity, substrate, and their interactions explained only 21.8% 

2 of the variation in density (R =0.218; Tables 25 and 26). The only vari-

able which was significant after adjusting for all other variables was 

the depth-velocity interaction (DxV; P=0.0029; Table 25). Inclusion of 

this interaction term decreased the mean square error by 6%, from 1.6564 

2 to 1.5543, and increased the R value from 0.160 to 0.218. Partial cor-

relation between density of the stoneroller and DxV was positive 

indicating that at higher depths the response surface would shift so that 

the maximum densities would occur at higher velocities. This significant 

depth-velocity interaction violates the assumption of independence which 

is inherent in the weighted usable area calculation used in the incre-

mental methodology. The low amount of variation (21.8%) explained by 

depth, velocity, substrate, and their interactions, indicates that either 

these variables were not the most important variables affecting stone-

roller distribution during spring 1979, or that the stoneroller population 

was below the carrying capacity of the stream at this point in time. 

The exponential polynomial function, which was derived for the 

stoneroller during spring 1979 (Table 26), defines the response surface 

of density at various habitat conditions. However, this function cannot 

be reliably applied for depth, velocity, or substrate types outside the 

ranges which were sampled (Table 24). 

During the summer 1979, the stoneroller population had a higher 

estimated density (0.41/m2) and the exponential polynomial function 

explained 66.7% of the variation in density (R2-0.667; Tables 27 and 28). 

A fourth-order series of depth terms was used in this model and therefore 

the exponential polynomial function does not hold at depths greater than 



60 

Table 25. Analysis of variance for multiple regression analysis 

of the dependent variable, loge(IN+l)/(Area+l)] for the stone-

2 roller, and independent variables: depth (D), D , velocity (V), 

v2 , substrate (S), s 2 , DxV, DxS, and VxS, for spring 1979. 

Sum of Mean 
Source df squares square F p 

Regression 9 53.7243 5.9694 3.84 0.0003 
Error 124 192.7344 1.5543 
Correction total 133 246.4587 

Sequential (Type I) 

D 1 32.6080 32.6080 20.98 0.0001 
D2 1 0.2174 0.2174 0.14 0.7091 

v 1 1.6936 1.6936 1.09 0.2986 
v2 1 1.5885 1.5885 1.02 0.3140 

s 1 0.2842 0.2842 0.18 0.6697 
s2 1 0.8857 0.8857 0.57 0.4518 

DxV 1 14.0563 14.0563 9.04 0.0032 

DxS 1 2.0034 2.0034 1.29 0.2584 

VxS 1 0.3871 0.3871 0.25 0.6186 

Partial (Type IV) 

D 1 0.0030 0.0030 0.00 0.9653 
D2 1 3.1926 3.1926 2.05 0.1543 

v 1 0.0043 0.0043 0.00 0.9583 
v2 1 0.6797 0. 6797 0.44 0.5097 

s 1 0.0139 0.0139 0.01 0.9247 
s2 1 0.0343 0.0343 0.02 0.8821 

DxV 1 14.3217 14.3217 9.21 0.0029 

DxS 1 2.3406 2.3406 1.51 0.2221 

VxS 1 0.3871 0.3871 0.25 0.6186 



Table 26. Estimates of the parameters of the expo­

nential polynomial function relating density of 

the stoneroller, spring 1979, to depth (D), 

velocity (V), substrate (S), and their inter­

actions. The model is (N+l)/(Area+l) = exp~o + 

81D + 82D2 + 83V + 84v2 + s5s + 8652 + B7DxV + 

88DxS + 89Vx[}. 

Variable 

D 

n2 

v 

v2 

s 

s2 

DxV 

DxS 

VxS 

Parameter 

8o 

81 

82 

83 

84 

85 

86 

87 

88 

89 

Estimate 

-2.420064 

-2.110190 X 10-3 

2.824449 x lo-4 

4.049990 x lo-3 

-2.239968 x lo-4 

0.157933 

2.369075 X 10-2 

1.323058 x lo-3 

-9.861233 x lo-3 

-5.880265 x lo-3 
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Table 27. Analysis of variance for multiple regression analysis 

of the dependent variable, loge [1N+l) I (Area+l)] for the stone­

roller, and independent variables: depth (D), n2 , n3 , n4 , 

velocity (V), v2 , substrate (S), s 2 , DxV, DxS, and VxS, for 

summer 1979. 

Sum of Mean 
Source df squares square F p 

Regression 11 280.9481 25.5407 14.38 0.0001 
Error 79 140.3029 1. 7760 
Corrected total 90 421.2509 

Sequential (Type 1) 

D 1 146.0791 146.0791 82.25 0.0001 
D2 1 1.5998 1.5998 0.90 0.3455 
D3 1 42.7340 42.7340 24.06 0.0001 
D4 1 30.7010 30.7010 17.29 0.0001 

v 1 17.3568 17.3568 9. 77 0.0025 
v2 1 3.0765 3.0765 1. 73 0.1919 

s 1 0.8276 0.8276 0.47 0.4968 
s2 1 0.0491 0.0491 0.03 0.8684 

DxV 1 24.6837 24.6837 13.90 0.0004 

DxS 1 4.8554 4.8554 2.73 0.1022 

VxS 1 8.9850 8.9850 5.06 0.0273 

Partial (Type IV) 

D 1 13.7202 13.7202 7.73 0.0068 
D2 1 13.4928 13.4928 7.60 0.0073 
D3 1 13.3650 13.3650 7.53 0.0075 
D4 1 11.7540 11.7540 6.62 0.0120 

v 1 6.9282 6.9282 3.90 0.0517 
v2 1 5.2407 5.2407 2.95 0.0897 

s 1 2.3790 2.3790 1.34 0.2506 
s2 1 4.6681 4.6681 2.63 0.1089 

• 

62 



63 

Table 27. (Continued). 

Sum of Mean 
Source df squares square F p 

DxV 1 32.3557 32.3557 18.22 0.0001 

DxS 1 10.4012 10.4012 5.86 0.0178 

VxS 1 8.9850 8.9850 5.06 0.0273 



Table 28. Estimates of the parameters of the expo­

nential polynomial function relating density of 

the stonerol1er, summer 1979, to depth (D), 

velocity (V), substrate (S), and their inter­

actions. The model is (N+l) /(Area+1) = exp ~0 + 

61n + s2n2 + s3n3 + 64n4 + 65v + 66v2 + 67s + 

68s2 + 69DxV + s10nxs + 611 Vx~. 

Variable Parameter Estimate 

Bo 1. 749429 

D 61 0.343397 

n2 132 -13.733793 x lo-3 

n3 133 21.904521 x 1o-5 

n4 64 -10.799299 x 1o-7 

v 135 0.225512 

v2 86 - 1.195159 X 10-3 

s 87 - 2.267743 

s2 8s 0.280705 

DxV 89 6.523762 x 1o-3 

DxS 81o -22.989572 X lQ-3 

VxS 811 -37.016870 x 1o-3 
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60 ern because of the bi-modal nature of the fourth-order polynomial. 

Most of the variables and all of the interaction terms in the model 

for sunnner 1979 were judged significant by the partial F tests (Table 

27). Inclusion of the interaction terms in the model decreased the mean 

2 square error by 19%, from 2.181 to 1.776, and increased the R value 

from 0.575 to 0.667. The most significant interaction was again the 

depth-velocity interaction. Without the depth-velocity interaction term 

. 2 
in the model the R would have been only 0.590, whereas without the depth-

substrate and velocity-substrate interactions the R2 values would have 

been 0.642 and 0.646, respectively. The assumption of independence, 

especially of depth and velocity, was invalid for the stoneroller and the 

importance of these interactions was greater in sunnner 1979 than in 

spring 1979. 

Orangebelly Darter 

Orangebelly darters were most common in shallow riffles and race-

ways. The null hypothesis that densities do not vary over the sampled 

range of the habitat variable was rejected for each habitat variable 

(Table 29; P<O.OOl). Densities of the orangebelly darter were greatest 

at depths from 10-19 em, velocities from 40-49 cm/s, and over gravel sub-

strate (Figure 12). As with the stoneroller data, the density estimate 

over detritus was not used for developing the substrate suitability 

curve (Figure 12). Weighted average density (0.37/m2) was calculated for 

the optimum substrate range (gravel and gravel-rubble) and weighting 

factors for other substrate types were scaled to this value. 

During the spring 1979, the orangebelly darter population had an 

estimated density of 0.29/m2 . The exponential polynomial function with 
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Table 29. Total area sampled, and estimated number and density of the 

orangebelly darter in relation to depth, velocity, and substrate type 

in Glover Creek, January 1978 to September 1979. 

Variable and Area 2 2 
interval sampled (m ) Number Number/m 

Depth (em) 
0- 9 2,253 540 .240 

10-19 2,466 1,278 .518 
20-29 2,688 606 .225 
30-39 2,220 327 .147 
40-49 1,425 102 .071 
50-59 1,340 19 .014 
60-69 956 2 .002 
70-79 849 0 .000 
80-89 847 1 .001 
~ 90 1,400 0 .000 

16,444 2,875 
T=2590. 9 (9 df) P<O.OOl 

Velocity (cm/s) 
0- 9 10,336 1,331. .129 

10-19 2,168 527 .243 
20-29 1,368 388 .284 
30-39 792 261 .330 
40-49 474 172 .363 
50-59 517 88 .170 
60-69 332 57 .172 
70-79 190 25 .132 
80-89 178 18 .101 
90-119 90 8 .089 

16,445 2,875 
T=491.3 (9 df) P<O.OOl 

Substrate 
Detritus 20 11 .555 
Sand 188 0 .000 
Sand-Gravel 34 2 .070 
Gravel 319 203 .636 
Gravel-Rubble 2,059 674 .327 
Rubble 3,177 421 .133 
Rubble-Boulder 6,412 1,078 .168 
Boulder 2,989 479 .160 
Boulder-Bedrock 209 4 .018 
Bedrock 1,038 3 .003 

16,445 2,876 
T=924.8 (7 df) P<O.OOl 



~ 1.0 
r-
(.) 

<! 
u... 
C) 
z .5 
f-
I 
C) 

w 
s 

~ 1.0 
f-
u 
<( 
lL 

CJ 
z .5 
r-
I 
CJ 
w 
? ;;> 

~1.0 
r­
u 
<( 
lL 

CJ 
z .5 
f-
I 
CJ 
w 
~ 

0 

0 

1 
(/) 

::> 
f-

a: 
f-
w 
0 

ORANGE BELLY DARTER 

20 40 60 80 
DEPTH (em) 

-------·. 

20 40 60 80 
VELOCITY (crn/s) 

·T·--·-···-· 
2 3 4 5 
0 r- 0 ..J 
::> ..J z LU 

~ (/) <! > 
(/) <! 

0:: 
... 

(.!) 

.5 

.4 NE 

--.3 a: 
LU 
o:l 

.2 ~ ::> 
z 

.1 

100 

100 120 

6 7 8 
w 0:: :::.::: 
..J LU (.) 
CXl 0 0 CXl ..J a: ::> ::> 0 a: 0 IJJ 

o:l CXl 

.4 

N 

.3 E 
-·-. 
a: 
w 

.2 o:l 
~ 
::> 

.1 z 

--a: 
.4LU 

CXl 
~ 
::> 

.2 z 

Flgure 12. Density estimates and suitability weighting 

[actors in relation to depth, velocity, and substrate, 

for the orangebelly darter Jn Glover Creek. 

67 



68 

a third-order series of depth terms, fourth-order series of velocity 

terms, second-order series of substrate terms, and interaction terms 

explained 39.9% of the variation in density (R2=0.399; Tables 30 and 31). 

None of the interaction terms significantly improved the fit of the model 

to the data (Table 30). Based on partial F tests, all velocity terms 

(P<0,005) and all depth terms (P<O.lO) were significant, but the substrate 

terms were not (Table 30). Apparently within the range of substrates 

sampled (gravel to bedrock), substrate was not the most important vari­

able. Depth and velocity were definitely important in affecting the 

distribution of orangebelly darters during spring 1979. However, con­

sidering the amount of variation explained (39.9%), either other factors 

were also equally important or the orangebelly darter population was below 

the carrying capacity of the stream at this point in time. 

Because of the range of each habitat variable sampled and the use 

of third- and fourth-order terms in the model, the exponential polynomial 

function (Table 31) which defines the response surface of density at 

various habitat conditions for spring 1979 cannot be reliably applied at 

depths greater than 80 em, velocities greater than 65 cm/s, or substrate 

types smaller than sand. 

During the summer 1979, the orangebelly darter population had an 

estimated density of 0.41/m2 • An exponential polynomial function with 

a fourth-order series of depth terms, second order series of velocity 

and substrate terms, and interaction terms explained 71.1% of the vari­

ation in density (R2=0.711; Tables 32 and 33). Only the depth terms, 

and the depth-velocity interaction term (DxV) were judged significant 

(P<0.005) by the partial F tests (Table 32). Inclusion of the depth-

velocity interaction term in the model decreased the mean square error 



Table 30. Analysis of variance for multiple regression analysis 

of the dependent variable, log (1N+l) /(Area+lU for the orange­e 
2 03 belly darter, and independent variables: depth (D), D , , 

velocity (V), v2 , v3 , v4 , substrate (S), s2 , DxV, DxS, and 

VxS, for spring 1979. 

Sum of Mean 
Source df squares square F p 

Regression 12 234.4422 19.5369 9.07 0.0001 
Error 164 353.4210 2.1550 
Corrected total 176 587.8632 

Sequential (Type I) 

D 1 131.6940 131.6940 61.11 0.0001 
D2 1 24.6170 24.6170 11.42 0.0009 
D3 1 16.9249 16.9249 7.85 0.0057 

v 1 29.3432 29.3432 13.62 0.0003 
v2 1 0.0017 0.0017 0.00 0.9774 
v3 1 10.1998 10.1998 4.73 0.0310 
v4 1 14.5282 14.5282 6.74 0.0103 

s 1 0.6805 0.6805 0.32 0.5749 
s2 1 2.5331 2.5331 1.18 0.2799 

DxV 1 0.1144 0.1144 0.05 0.8180 

DxS 1 2.2801 2.2801 1.06 0.3052 

VxS 1 1.5252 1.5252 0.71 0.4014 

Partial (Type IV) 

D 1 8.3079 8.3079 3.86 0.0513 
D2 1 8.1453 8.1453 3.78 0.0536 
D3 1 6.3287 6.3287 2.94 0.0885 

v 1 21.9680 21.9680 10.19 0.0017 
vz 1 22.1231 22.1231 10.27 0.0016 
v3 1 19.2645 19.2645 8.94 0.0032 
v4 1 15.9487 15.9487 7.40 0.0072 
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Table 30. (Continued). 

Sum of Mean 
Source df squares square F p 

s 1 0.0293 0.0293 0.01 0.9074 
82 1 0.0226 0.0226 0.01 0.9186 

DxV 1 0.5828 0.5828 0.27 0.6037 

DxS 1 3.5157 3.5157 1.63 0.2033 

VxS 1 1.5252 1.5252 0.71 0.4014 



Table 31. Estimates of the parameters of the expo­

nential polynomial function relating density of 

the orangebelly darter, spring 1979, to depth (D), 

velocity (V), substrate (S), and their inter­

actions. The model is (N+l)/(Area+l) = exp~o + 

s1n + s 2n2 + s3n 3 + s4v + s5v 2 + S6v3 + s7v4 + 

S8S + S9S2 + S10DxV + S11DxS + S12Vx~. 

Variable Parameter Estimate 

so - 4.416257 

D Bl 0.131039 

D2 s2 - 2.216020 x lo-3 

n3 s3 1.370094 x lo-5 

v B4 0.266026 

v2 B5 - 8.245234 x lo-3 

v3 s6 11.107827 x lo-5 

v4 B7 - 4.709585 x lo-7 

s Bs 0.214365 

s2 S9 1. 770406 x 10-2 

DxV B1o 1.972065 x lo-4 

DxS 811 -10.953525 x lo-3 

VxS sl2 - 7.310504 x lo-3 
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Table 32. Analysis of variance for multiple regression analysis 

of the dependent variable, loge [!N+l) / (Area+l[) for the orange-

belly darter, and independent variables: 2 3 depth (D), D , D , 

n4 , velocity (V), v2 , substrate (S), s 2 , DxV, DxS, and VxS, 

for sununer 1979. 

Sum of Mean 
Source df squares square F p 

Regression 11 275.8517 25.0774 18.82 0.0001 
Error 84 111.9345 1.3326 
Corrected total 95 387.7861 

Sequential (Type I) 

D 1 148.3077 148.3077 111.30 0.0001 
D2 1 6.5568 6.5568 4.92 0.0292 
D3 1 49.4814 49.4814 37.13 0.0001 
D4 1 24.4257 24.4257 18.33 0.0001 

v 1 22.5535 22.5535 16.93 0.0001 
v2 1 4.3260 4.3260 3.25 0.0752 

s 1 0.3391 0.3391 0.25 0.6153 
.2 s 1 0.7365 0.7365 0.55 0.4593 

DxV 1 14.9442 14.9442 11.21 0.0012 

DxS 1 1. 7229 1. 7229 1.29 0.2587 

VxS 1 2.4578 2.4578 1.84 0.1781 

Partial (Type IV) 

D 1 16.1789 16.1789 12.14 0.0008 
D2 1 18.4096 18.4096 13.82 0.0004 
D3 1 15.0541 15.0541 11.30 0.0012 
D4 1 11.9702 11.9702 8.98 0.0036 

v 1 2.6295 2.6295 1.97 0.1638 
v2 1 3.3306 3.3306 2.50 0.1176 

s 1 0.1453 0.1453 0.11 0.7421 
s2 1 0.0019 0.0019 0.00 0.9699 
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Table 32. (Continued). 

Sum of Mean 
Source df squares square F p 

DxV 1 11.7020 11.7020 8.78 0.0040 

DxS 1 3.0108 3.0108 2.26 0.1366 

VxS 1 2.4578 2.4578 1.84 0.1781 



Table 33. Estimates of the parameters of the expo-

nential polynomial function relating density of 

the orangebeily darter, summer 1979, to depth (D), 

velocity (V), substrate (S), and their inter-

actions. The model is (N+l) I (Area+l) = exp !Jo + 

s 1n + s 2n2 + s 3n3 + s4n4 + s5v + s 6v2 + s 7s + 

s8s2 + 89DxV + 81oDxS + Sll Vx~ • 

Variable Parameter Estimate 

so - 5.952499 

D 81 0.380049 

n2 82 -15.442515 X 10-3 

n3 83 22.622678 x lo-5 

n4 84 -10.661934 x lo-7 

v 85 0.102666 

v2 86 - 4.892682 x 10-4 

s 87 0.545803 

s2 88 5.440317 x lo-3 

DxV Bg 3.176670 X lQ-3 

DxS S1o -11.334102 x lo-3 

VxS B11 -14.448920 x lo-3 
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2 
by 8%, from 1.454 to 1.333, and increased the R value from 0.681 to 

0.711. Partial correlation between density of the orangebelly darter 

and DxV was positive indicating that at higher depths the response sur-

face would shift so that maximum densities would occur at higher 

velocities. This significant interaction violates the assumption of 

independence which is inherent in the weighted usable area calculation. 

The exponential polynomial function (Table 33) for summer 1979 can-

not be reliably applied at depths greater than 60 em or substrate types 

smaller than sand. 

Discussion 

There are several potential biases associated with development of 

habitat suitability curves for instream flow methodologies. The first 

type of bias arises when the distributions of the depth, velocity, and 

the substrate types sampled deviate from uniform. The second bias arises 

when sampling efficiencies vary over the range of each habitat variable. 

To deal with the first bias, relatively equal amounts of area must be 

sampled in each depth, velocity, and substrate interv&l, and then the 

frequency analysis technique (Bovee and Gochnauer 1977) can be applied. 

Most streams, however, do not always have a uniform distribution of depth, 

velocity and substrate, and therefore data on habitat availability must 

be collected to determine the amounts of area sampled over each habitat 

variable. Relative density estimates can then be calculated and the 

habitat suitability curves developed with relative density estimates 

will be free of this bias. The potential biases due to differential sam-

pling efficiencies vary with species and therefore the discussion of 

these biases is broken down by species and life stages. The remainder 
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of the discussion on each species deals with the problems associated 

with application of the habitat suitability criteria: independence of 

habitat variables; changes in habitat preferences among length groups; 

differences between localized populations; and physical habitat variables 

as limiting factors. 

Smallmouth Bass - Adult 

For the adult smallmouth bass, there were differences in the depth 

and velocity distributions determined from angling and electrofishing 

data, although both curves showed the same general trends. Both depth 

suitability curves declined markedly at depths greater than 120 em (Fig­

ure 7) due to the lack of any current at these depths. 

The velocity suitability curve based on angling data is probably 

the more reliable of the two velocity curves (Figure 7). Evidence from 

other investigators supports this conclusion since the optimum velocity 

range determined in this curve (0-20 cm/s) is similar to velocity ranges 

where adult smallmouth bass have been observed in streams (Munther 1970; 

Klauda 1975). 

There were no differences between substrate frequency distributions 

determined by angling and electrofishing, and therefore the bias in the 

substrate curve due to sampling efficiencies is of no major concern. 

However, since boulder substrate was the predominant substrate type in 

Glover Creek and the most frequent substrate type at capture locations 

of adult smallmouth bass, bias due to non-uniform sampling distributions 

may be present. For example, other studies have indicated the importance 

of gravel and rubble substrates in addition to boulder substrate for 

smallmouth bass (Reynolds 1965; Paragamian 1978); however, the apparent 
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selection for boulder substrates may, in fact, be related to cover. 

Adult smallmouth bass spend most of their time (79-91%) in position-hold­

ing and shelter-using behaviors in areas of low to moderate current 

velocities (Klauda 1975) and, in Glover Creek, boulders may provide cover 

and areas of reduced current. 

The depth-substrate interaction, which was the only significant two­

way interaction for adult smallmouth bass, may result from the changing 

depth and substrate preferences of smallmouth bass as they grow rather 

than from an interaction between depth and substrate preferences. In 

this study, larger smallmouth bass utilized microhabitats of greater 

depths and with larger substrate types than did the smaller individuals. 

However, there is not enough data to test if the depth-substrate inter­

action is still significant among larger sized fish. It is also possible 

that some of the depth-substrate interaction was caused by systematic 

error in classifying substrate types in deeper water, since the same 

interaction was also significant for juvenile smallmouth bass and adult 

green sunfish. At greater depths, water clarity sometimes prevented 

accurate distinction between rubble and boulder sized substrates. Until 

more data is collected, independence will have to be assumed for adult 

and juvenile smallmouth bass and adult green sunfish. 

Smallmouth Bass - Juvenile 

Except for the interaction of depth and substrate, the data did not 

indicate any significant deviations from the assumption of independence 

of habitat variables in habitat selection by juvenile smallmouth bass. 

Juvenile smallmouth bass selected shallower areas of the stream and 

utilized smaller substrate types (gravel and rubble) than did adults and 
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the greatest shift in habitat use occurred at 100 mm total length. In 

other species, such as the bluegill (Lepomis macrochirus), similar 

differences in the habitat utilized by different length groups have been 

attributed to predation forcing smaller fish into cover (Werner et al. 

1977). For smallmouth bass, however, these differences may be related 

to the distribution of prey items, such as aquatic insects (Surber 1941; 

Lachner 1950; Pflieger 1966; Paragamian 1973), which are more abundant 

in the riffle habitats of streams (Surber 1939; O'Connell and Campbell 

1953). 

Green Sunfish - Adult 

Suitability curves for adult green sunfish were based entirely on 

angling data and could not be adjusted for any bias due to non-uniform 

distributions because habitat availability data were absent. The depth 

and velocity suitability curves probably have no significant biases due 

to non-uniform distributions since a variety of depths and velocities 

were sampled at flow levels which were exceeded 36-37% of the time dur­

ing the period of record (1961-1974). Preference for low velocity 

(0-5 cm/s) and moderate depths (40-120 em) was also noted by Minckley 

(1963), Jones (1970), and Moyle and Nickols (1973), who found green 

sunfish most often in slow velocity pools. 

In this study, green sunfish were found most frequently near boulder 

substrate, the predominant substrate in Glover Creek; however, other 

authors have found them over all substrates (Jenkins and Finnell 1957; 

Trautman 1957; Moyle and Nickols 1973). The preferences for boulder sub­

strate may indicate a cover seeking response since Summerfelt (1967) 

noted this species was invariably associated with cover and in Glover 
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Creek potential cover was provided by boulders and, in some cases, under­

cut banks. 

Different sized green sunfish occupied different depths and sub­

strates, but not velocities. Larger green sunfish tended to select areas 

of greater depth and larger substrate types. The trend was the same as 

that observed for smallmouth bass. Social hierarchies in green sunfish 

are such that larger individuals dominate smaller individuals (Greenberg 

1947). Therefore, rank in the dominance hierarchies may affect the hab­

itat use of individual green sunfish and smallmouth bass as it does in 

two species of trout, Salmo (Jenkins 1969). The results of future studies 

relating social structure with habitat use would have implications for , I 

development of suitability criteria for fishes with a social structure. 

If dominant individuals are inhabiting the preferred areas and other 

individuals occupy less suitable habitat, the preferred habitat of the 

dominant individuals may in fact be the most preferred habitat of that 

species. Future attempts to refine habitat suitability criteria should, 

therefore, consider the influence of social structure on habitat selec­

tion. 

Freckled Madtom 

Suitability curves for the freckled madtom in Glover Creek agree 

with the observations of Pflieger (1975a) and Smith (1979) that they are 

found in gravel-bottomed riffle areas with moderate currents. Cross 

(1967), however, found the species more frequently over muddy areas with 

a sluggish current in Kansas, and Orth and Jones (1980) found the species 

in similar habitat in western Oklahoma. These differences in habitat 

indicate some plasticity in the habitat requirements of the freckled 
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madtom. Differing habitat preferences could be attributed to the lack 

of gene flow between isolated populations, which has been observed for 

other species by Echelle et al. (1975) and Smith et al. (1976). In fact, 

Taylor (1969:79-81) noted that the freckled madtom tends to form distinc-

tive localized populations. Although different habitat preferences 

between isolated populations of the same species may not be common, hab-

itat suitability curves developed on a regional or site-specific basis 

would have more reliability than those developed over all habitats. 

Stoneroller 

No quantitative studies on habitat selection by the stoneroller are 

available for comparisons, although related studies indicated that the 

stoneroller prefers riffle habitat of headwater streams (Lewis and Elder 

1953; Metcalf 1959; Smith and Powell 1971). Other studies (Lennon and 

Parker 1960; Layher et al. 1978) have noted the importance of gradient, 

·which may reflect the preference for a certain range of depth, velocity, 

and substrate since each is related to gradient. Layher et al. (1978: 

338) found that gradient and mean depth were the two most important var-

iables affecting standing crops of the stoneroller in Kansas streams. 

In the Great Smoky Mountains National Park, Tennessee and North Carolina, 

the stoneroller did not occur in creeks with a gradient of more than 

44 m/km, but were common in fast-flowing areas of stream reaches with 

lower gradients, 13-44 m/km (Lennon and Parker 1960). The lowest grad-

ient section sampled, however, was still 13 m/km, and the stoneroller 

does inhabit streams of lower gradient. 
2 

An average density of 0.21/m , 

calculated from the data of Lennon and Parker, was between the spring and 

summer density estimates for the stoneroller in the Glover Creek study 
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areas, which had gradients somewhere between 2.3 and 18.9 m/km. 

There is a potential bias in the depth and velocity curves for the 

stoneroller which was due to pooling data from all seasons. Population 

density of the stoneroller was much lower during the winter and spring 

sampling periods, at which time there was more habitat present at higher 

velocities at all depths. Conversely, during summer sampling periods, 

when density was higher, there was less habitat present at higher veloci­

ties. Therefore the density estimates for the upper range of velocities 

were based mostly on winter and spring data. Furthermore, during the 

summer most of the areas with a moderate current were relatively shallow. 

Therefore, the decline in suitability at depths greater than 20 em and 

velocities greater than 50 cm/s may not be as steep as indicated by the 

data (Figure 11). 

Similarity in habitat preferences of different subspecies of stone­

roller must be established before these curves can be generally applied. 

Two supspecies of the stoneroller are generally recognized: the Ohio 

stoneroller, f· a. anomalum, and the central stoneroller, ~· a. pullum. 

Although the stoneroller from Glover Creek is f. a. pullum, the suita­

bility curves may be applicable to f. ~· anomalum since general habitat 

preferences of the two subspecies are similar (Burr 1976). 

Depth, velocity, substrate, and their interactions explained con­

siderably more of the variation in stoneroller density during summer 1979 

(66.7%) than in spring 1979 (21.8%). Densities were very low during 

spring 1979 (0.07/m2), which may account for the lack of significance. 

Previous conditions such as low flow conditions during summer and fall 

1978 and high winter and spring flows may be related to the low density 

of stonerollers during spring 1979, at which time populations were 



82 

probably below carrying capacity. Low flows could increase mortality 

indirectly by forcing stonerollers into marginal habitats, shallow pools, 

where they are more vulnerable to predation. Stonerollers have been 

identified in the stomachs of spotted bass, Micropterus punctulatus, and 

largemouth bass, M. salmoides (Scalet 1977). High flows might possibly 

cause mortality either directly by bombardment with moving bedload or 

indirectly due to increased stress and fatigue brought on by continually 

swimming against the current. 

The fact that depth, velocity, substrate, and their interactions 

explained 66.7% of the variation during the summer 1979 strengthens the 

assumption that these variables are important, at least during summer 

conditions. However, the significant depth-v~locity interaction indi­

cates that the assumption of independence of these two variables for the 

stoneroller would lead to some error in weighted usable area. The degree 

of error would probably be greatest the farther depth and velocity are 

from the optimum. Assuming independence of depth and substrate, and 

velocity and substrate would also lead to error, though, based on the 

data for Glover Creek, it would be less than that due to assuming inde­

pendence of depth and velocity. 

The interaction of depth and velocity affects the distribution of 

the stoneroller. At shallow depths and high velocities the stoneroller 

may not be able to maintain position and feed efficiently, since at a 

given velocity, as depth decreases, turbulence would increase. Conversely, 

at higher depths turbulence would decrease and, the stoneroller may be 

able to maintain in habitats with higher mean column velocities. Also, 

since the stoneroller feeds on the stream bottom, during feeding they 

are actually in areas of lower velocity than if they fed at the mean 



83 

column velocity. 

The effect of assuming independence of depth, velocity, and substrate, 

on the weighted usable area calculations and the ultimate flow recommen-

dation cannot be accurately determined for the stoneroller until a 

multivariate suitability function can be derived that holds for all 

regions of depth, velocity, and substrate space. The effect on the 

ultimate flow recommendation may not be great when one considers that 

suitable habitat conditions are still closely approximated. Recommended 

flows based on the assumption of independence should still provide suit-

able habitat for the species. 

Orangebelly Darter 

Little quantitative data exist on the habitat preferences of the 

orangebelly darter. Scalet (1973) estimated densities of the orangebelly 

2 2 
darter to be 2.66/m in raceway habitat, and noted that as many as 10/m 

may occupy the more preferred areas within the raceways. This population 

density is considerably higher than the estimated densities of the orange-

2 2 
belly darter in Glover Creek during spring (0.29/m) and summer (0.41/m ), 

1979. However, the density estimates for Glover Creek apply to all habi-

tat types encountered (pool, riffle, raceway). Average densities in more 

suitable habitat (depth: 10-30 em; velocity: 20-60 cm/s; substrate: 

2 2 gravel to boulder) were 0.52/m and 1.94/m in spring and summer 1979, 

respectively. These estimates are still less than the density reported 

by Scalet (1973). In spite of density differences, the habitat in which 

Scalet (1973) found the orangebelly darter .in the Blue River, Oklahoma, 

was similar to that for the orangebelly darter in Glover Creek (Figure 

12). Apparently the subspecies of orangebelly darter in Glover Creek, 
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!· .£· radiosum, has similar habitat requirements to the subspecies in 

the Blue River, E. r. cyanorum. Differing habitat preferences between 

isolated populations, therefore, do not .seem to be a problem, even 

though there is little gene flow between populations of the orangebelly 

darter in different drainages (Echelle et al. 1975). 

There is potentially some bias in the depth and velocity suitability 

curves since the high velocities were typically present only at lower 

population densities during winter and spring. Therefore the decline in 

suitability at depths greater than 20 em and velocities greater than 50 

cm/s may not be as steep as indicated by the data (Figure 12). 

The fact that less of the variation in density of the orangebelly 

darter could be explained by depth, velocity,. substrate, and their inter­

actions, in spring than in summer 1979 supports the hypothesis that usable 

habitat or space is limiting for darter populations only during summer 

months. Usable habitat may be limiting populations directly, or indirectly 

by limiting either the production or drift of aquatic insects, which in 

turn may affect the territory size and density. Competition with other 

darter species during non-breeding seasons is probably non-existent since 

the next most abundant darters in Glover Creek (channel darter, Percina 

copeland!, and leopard darter, P. pantherina) are present at extremely 

low densities and occupy different microhabitats (Jones et al. 1979; 

Orth and Maughan 1980, and unpublished data). Therefore, the assumption 

that depth, velocity, and substrate are important variables affecting 

distribution of the orangebelly darter is supported by the summer data. 

During the spring, either other factors were equally important, or the 

orangebelly darter population was below the carrying capacity of the 

stream. Predation as a factor affecting distribution can probably be 
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ruled out since predation on orangebelly darters was never detected in 

a study of the food habits of potential predators (Scalet 1974). Since 

adults of many aquatic insects typically emerge during the spring, 

limited populations of the immature aquatic insects at this time (Orth 

and Maughan, unpublished data) may also have affected the distribution 

of orangebelly darters. 

The depth-velocity interaction effect on density of the orangebelly 

darter was the only significant interaction and was only significant dur­

ing summer 1979. Lack of significance of the depth-velocity interaction 

during spring 1979 may be related to the fact that physical factors 

(depth, velocity, and substrate) were less important during spring 1979. 

During summer 1979 the significant depth-velocity interaction may 

be related to the need for a certain range of current velocity in the 

microhabitat of the orangebelly darter. Since orangebelly darters live 

and feed among the substrate of the stream bottom, velocity at the bottom 

must be fast enough to facilitate respiration for both the darter and its 

prey items and yet not so fast that the organisms are bombarded with 

bedload movement. As depth increases, the mean column velocity necessary 

to provide velocity within a suitable range on the stream bottom in­

creases. In addition, other factors may have had an influence during 

the summer period but not during the spring. Oxygen, which was typically 

super-saturated during the spring but below saturation during the summer, 

may have been one such factor. For example, critical oxygen tension as 

high as 6.1 ppm was reported for E. rufilineatum, a darter that occurs 

in fast-water habitats (Ultsch et al. 1978). Another possibility is 

that oxygen was limiting the distribution of the prey of the orangebelly 

darter (aquatic insects; Scalet 1972). In aquatic insects of the 
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Ephemeroptera, Trichoptera, and Plecoptera, current speed and the limit­

ing oxygen concentration are inversely related (Ambuhl 1959, 1961, 1962; 

cited by Hynes 1970) so that at faster current velocity the minimum oxy­

gen levels for survival decrease (Knight and Gaufin 1963, 1964; 

Philipson 1954). This phenomenon may also hold for stream fishes, such 

as the orangebelly darter, though it has not yet been documented (Hynes 

1970). 

Although inclusion of the depth-velocity interaction term only 

decreased the mean square error by 8% for summer 1979 data, the error in 

assuming independence when calculating weighted usable area would be 

greater the farther depth and velocity are from the optimum. However, 

the effect of this error on recommending minimum flows may not be great 

since the region of optimum habitat is still closely approximated and, 

therefore, recommended flows would provide suitable habitat. Instream 

flow methodologies previously used depth and velocity criteria consist­

ing of simply a definition of a suitable range (Collings et al. 1970; 

Smith 1973; Thopmson 1974; Bo.vee et al. 1977) and, therefore, the multi­

plication of suitability weighting factors is an improvement. However, 

research on the changes in minimum flow recommendation caused by assuming 

independence for various types and degrees of interaction is necessary 

to help those using the incremental method to decide when it would be 

safe to assume independence. It should be recognized that data require­

ments for developing multivariate suitability functions for just three 

variables and their interactions will be great; however, accurate assess­

ment of the effects of altered flows depends on an accurate descriptmon 

of habitat requirements. 

Flow recommendations have previously been developed with the incre-
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mental method, assuming independence, and have yielded reasonable 

recommendations (Pruitt and Nadeau 1978; Wegner 1979; McNatt et al. 1980). 

However, the present study indicated that the interaction of depth and 

velocity had an important effect on the distribution of three of the five 

species studied. Therefore, the effect on flow recommendations of ignor­

ing this interaction needs further investigation. Of greater concern, 

however, may be the consideration of the importance of other variables 

in instream flow assessments. Suitability curves developed for depth, 

velocity, and substrate, define necessary conditions for these species, 

but in all cases suitability based only on these variables may not be 

sufficient for survival. This criticism of the incremental method was 

also raised by Patten et al. (1979). However, until research efforts 

are successful in determining how many and which variables are sufficient 

for survival of target species of fishes, and until models are developed 

that can be parameterized to predict the values of these variables in 

relation to discharge, the incremental method offers one practical tool. 



CHAPTER V 

RELATIONSHIPS BETWEEN USABLE HABITAT AND STANDING 

CROP FOR FISHES OF GLOVER CREEK 

Introduction 

No previous studies have established a relationship between usable 

habitat (as defined by the product of depth, velocity, and substrate 

weighting factors) and biomass of any warm-water stream fish. Yet the 

existence of a positive, linear relation between weighted usable area 

and standing crop is a necessary assumption for recommending instream 

flows with the incremental method. If there is no positive, linear rela­

tion between weighted usable area and biomass of fishes, then factors 

other than these parameters of habitat are limiting populations and 

instream flows cannot be reliably based on the amount of weighted usable 

area. If, however, a positive, linear relation is established, then it 

may be possible to estimate the level of fish biomass that could be sus­

tained at different discharge levels. 

Studies on the relations between physical factors and standing crops 

of stream fishes have been concentrated on salmonids in cold-water 

streams (Lewis 1969; Burns 1971; Burton and Wesche 1974; Wesche 1974; 

Nickelson 1976; Platts 1976; White et al. 1976; Binns and Eiserman 1979). 

Although the results of these studies may not be directly applicable to 

warm-water streams, some of the same mechanisms may be operating. Chapman 

(1966) speculated that during the summer, the density of drift-feeding 

88 
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salmonids is regulated by a space-food, and sometimes a space-shelter, 

mechanism. In areas of higher velocities, drift-feeding salmonids require 

less space to obtain needed food; therefore~ territory size is reduced, 

population densities can be higher, and both food and space interact to 

regulate population density. In addition there may be a minimal spatial 

requirement of individuals regardless of food supply, so that when space 

is extremely limited or fish are present at extremely high densities, 

space will become the sole factor regulating density. Space could also 

act to regulate density because of limited shelter from predation and, 

during seasons of high flow, limited shelter from excessive currents. 

Since such needs as protection from currents should vary with season~ 

the mechanisms which regulate density probably also vary seasonally. 

Chapman's hypotheses seem to be supported by laboratory experiments, 

which showed that density of young rainbow trout, Salmo gairdneri, in­

creased and territory size decreased as prey abundance increased (Slaney 

and Northcote 1974), as well as field studies which showed that popula­

tion density of salmonids was related to the habitat attributes of the 

stream affecting amount of usable habitat (Lewis 1969; Burns 1971; 

Nickelson 1976; Binns and Eiserman 1979). Weighted usable area, which 

also measures the amount of usable habitat, was positively correlated 

with the biomass of brown trout, Salmo trutta, in eight Wyoming streams 

(Stalnaker 1979). 

For warm-water stream fishes, there have been a limited number of 

studies that attempted to relate habitat suitability to density. Matthews 

and Hill (1979) found that temperature, current velocity, and depth had 

the greatest influence on the habitat selection by the red shiner, Notropis 

lutrensis. Gorman and Karr (1978) found a positive relationship between 
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habitat structure, as defined by depth, velocity, and substrate, and fish 

species diversity. Although both of these studies emphasized the impor­

tance of physical factors as they influence habitat selection, neither 

demonstrated that usable space had any regulatory effect on population 

density. Paragamian (1978), however, did find a curvilinear relation­

ship between the standing crop of smallmouth bass and proportions of 

suitable substrate (gravel and rubble) in an Iowa stream. This relation­

ship may indicate a space-food mechanism if, in this case, the food of 

smallmouth bass (insects, fish,,and crayfish) was also more abundant in 

habitats with gravel and rubble substrate, as some studies have indicated 

(Surber 1939; Bovbjerg 1970). 

The instream flow methodology assumes that populations are limited 

by usable habitat, but the importance of this factor remains to be veri­

fied. Theoretically, limiting factors may vary with different species 

and seasons. Therefore, the objective of this portion of the study was 

to determine the extent to which usable habitat (or space), as measured 

by weighted usable area, was limiting biomass standing crop of fishes 

during different seasons in Glover Creek. 

Methods 

The relation between weighted usable area and standing crop was 

examined for four of the fish species for which habitat suitability curves 

had been previously developed: smallmouth bass (juvenile and adult), 

freckled madtom, stoneroller, and orangebelly darter. 

Four study sites were chosen, two riffles and two pools. The riffle 

sites initially chosen were located at sites 74100 and 71300 (Figure 5), 

and were designated 74100R and 71300R, respectively. Site designations 
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correspond to the number of the nearest logging road. In the spring 

1978, site 71300R was abandoned due to high flows and replaced with site 

61200R (Figure 5). The pool sites, designated 61200P and 74100P, were 

located immediately downstream from riffle sites 61200R and 74100R, 

respectively. An additional site was utilized during summer 1979 for 

the orangebelly darter. at 72000 (Figure 6). This site contained riffle, 

raceway, and pool habitats and data used to develop the suitability 

curves were not taken from this location. 

Population estimates for juvenile and adult smallmouth bass, freckled 

madtom, stoneroller, and orangebelly darter were made four times per 

year from November 1977 to September 1979. Sites were blocked at the 

upstream and downstream ends with a block net, (6.4 mm mesh) to prevent 
I 

movement of fish into and out of the study area. Fishes were captured 

using one of two types of electroshocking gear: a boat-mounted generator 

and variable voltage pulsator with hand-held electrodes; and a Smith-Root 

Type VII backpack electroshocker. Pulsed direct current was used with 

both of these units. The boat-mounted unit was always used in the pools, 

but was used in the riffles only when the water level was such that the 

boat could be maneuvered through the riffle. Fishes were captured on 

three or more units of effort and held in floating live bags outside of 

the block net. Data on the number of fish captured on each unit of 

effort was used to estimate population size by a maximum weighted likeli-

hood technique (Carle and Strub 1978). Total lengths (mm) and individual 

weights (grams) were measured for all smallmouth bass. For the smaller 

fishes, total lengths were measured from a sub~s.ample and group weights 

were measured. Estimated biomass was then calculated for each species, 

except for the smallmouth bass in which biomass of juveniles and adults 
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was calculated separately. 

At each site, four to six permanent transects were established, 

along which to measure habitat characteristics. Bed elevations were 

surveyed with a builder's level and level rod at one meter intervals 

along each transect. At the same time the substrate type at each inter-

val was classified and given a numerical code (Bovee and Gochnauer 1977). 

During each sampling period, depth and velocity were measured at the same 

intervals, and water surface elevation was measured at each transect. 

Depth was measured with a metric wading rod and the mean column velocity 

was measured at 0.6 of the depth from the water surface with a pygmy 

current meter. These data were used to calibrate the IFG4 hydraulic 

simulation program which fits power functions. to the stage-discharge data 
I 

for each transect and to the velocity-discharge data for each one-meter 

segment of each transect (Main 1978a). The IFG4 model was used to esti-

mate the depths and velocities at the time of sampling, which was often 

at a different discharge than the one at which depths and velocities 

were measured. Weighted usable areas for smallmouth bass (juvenile and 

adult), freckled madtom, stoneroller, and orangebelly darter, at the 

time of sampling, were then calculated based on the habitat suitability 

curves developed in the previous chapter. Computations of weighted 

usable area were done using the Habitat program (Main 1978b). 

For each season, the biomass of each species or life stage per 

weighted usable area was averaged over all sites. This enabled compari-

sons between seasons on the amount of biomass relative to the amount of 

usable habitat. Also, for each season, the estimated biomass of each 

species or life stage per total surface area was regressed against 

weighted usable area expressed as a percentage of the total surface area, 
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and correlation coefficients were calculated. 

Results and Discussion 

Smallmouth Bass - Juvenile 

Biomass of juvenile smallmouth bass (<150 mm total length) and bio­

mass per weighted usable area followed the same trend as weights of 

individual juveniles, being lowest in summer and increasing through fall, 

winter, and spring (Table 34). Values of biomass per weighted usable 

area are relatively low, ranging from 0.74 kg/hectare in summer to 2.03 

kg/hectare in spring. These data indicate that the amount of usable 

habitat is probably not limiting abundance. Two other lines of evidence 

support this hypothesis. Biomass of juvenile smallmouth bass per total 

area was not correlated with weighted usable area during any season 

(Figure 13). The correlation for winter approached significance (P=0.057), 

but elimination of a single high data point would have resulted in a non­

significant correlation. The other line of evidence supporting the 

hypothesis that usable habitat was not limiting abundance was that the 

abundance of juvenile smallmouth bass in summer 1979 was much higher than 

abundance in summer 1978, yet the amount of weighted usable area varied 

by less than 3% between the two summers (Table 34). 

Abundance of smallmouth bass less than 200 mm was related to the 

proportions of suitable substrate (gravel and rubble) in an Iowa stream 

(Paragamian 1978), but in Glover Creek, the presence of suitable sub­

strate was probably never a limiting factor for juveniles. This conclusion 

follows because, based on substrate suitability curves (Figure 8), almost 

all the substrate in the study areas was suitable, with only minimal 

amounts of sand and silt. In contrast, Paragamian's data set included 



Table 34. Total estimated biomass (grams), weighted 

2 usable area (m ), and biomass per weighted usable 

area (kg/hectare) for juvenile smallmouth bass in 

Glover Creek, November 1977 to September 1979. 

Weighted Biomass per 
usable weighted 

Biomass area usable area 
Season (grams) (m2) (kg/hectare) 

Fall 
Nov-Dec 1977 123 866.07 1.42 

Oct 1978 27 657.23 0.41 

Combined 150 1,523.30 0.98 

Winter 
Jan-Mar 1978 130 755 .. 60 1.72 

Jan 1979 12 410.86 0.29 

Combined 142 1,166.46 1.22 

Spring 
Apr 1978 109 487.76 2.23 

Apr-Jun 1979 94 513.99 1.83 

Combined 203 1,001.75 2.03 

Summer 
Ju1 1978 25 873.61 0.29 

Aug-Sep 1979 103 852.49 1.21 

Combined 128 1,726.10 0.74 
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several sites in areas of marginal smallmouth bass habitat containing 

vast stretches of silt and sand. 
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Juvenile smallmouth bass abundance in Glover Creek was most likely 

limited by factors other than habitat. Other investigators have estab­

lished the negative influence of low temperatures during the first year 

of life on recruitment of smallmouth bass in lakes in northern latitudes 

(Fry and Watt 1957; Forney 1972; Clady 1975), but this factor probably 

did not limit reproduction in Glover Creek, which is at the southern edge 

of the range of smallmouth bass. Food for juvenile smallmouth bass was 

probably adequate since Mauck (1972) found that, during their first year, 

smallmouth bass in Glover Creek grew faster than the averages for small­

mouth bass in Missouri (Purkett 1958) and the Little River system, 

Oklahoma (Finnell et al. 1956). In streams, such as Glover Creek, flood­

ing during or after the spawning period seems to be a dominant factor 

influencing survival of eggs and fry (Surber 1939, 1943; Cleary 1956; 

Funk and Fleener 1974; Larimore 1975; Pflieger 1975b). Timing of spring 

floods in Glover Creek, may likewise have limited reproduction of small­

mouth bass such that the influence of usable habitat for juveniles was 

not important. 

Smallmouth Bass - Adult 

Biomass of adult smallmouth bass per weighted usable area, as well 

as total estimated biomass, was highest during fall and summer, and low­

est during winter and spring (Table 35). The decrease in the total 

biomass during the winter period may be due to movements rather than 

mortality because total biomass increased in the spring, summer, and fall 

more than would be expected simply from recruitment of juveniles to the 



Table 35. Total estimated biomass (grams), weighted 

2 usable area (m ) , and biomass per weighted usable 

area (kg/hectare) for adult smallmouth bass in 

Glover Creek, November 1977 to September 1979. 

Weighted Biomass per 
usable weighted 

Biomass area usable area 
Season (grams) (m2) (kg/hectare) 

Fall 
Nov-Dec 1977 1,120. 701.94 15.96 

Oct 1978 1,743 443.39 39.31 

Combined 2,863 1,145.33 25.00 

Winter 
Jan-Mar 1978 310 683,,59 4.53 

Jan 1979 0 785.45 0.00 

Combined 310 1,469.04 2.11 

Spring 
Apr 1978 896 801.97 11.17 

Apr-Jun 1979 286 807.05 3.54 

Combined 1,182 1,609.02 7.35 

Sunnner 
Jul 1978 1 '707 491.15 34.76 

Aug-Sep 1979 323 695.75 4.64 

Combined 2,030 1,186.90 17.10 

97 



98 

adult size and growth of adults. Munther (1970) found that during late 

fall and winter, at temperatures below 15.5 c, smallmouth bass were con­

centrated in deep pools. In contrast, study pools on Glover Creek were 

relatively shallow (mean depth less than 1 meter), and during the winter 

months adult smallmouth bass may have sought out deeper pools. Residence 

in deeper pools during winter and early spring would provide more pro­

tection from high flows during a time when adult smallmouth bass are 

typically less active (Klauda 1975). 

No comparable data on biomass of adult smallmouth bass per weighted 

usable area are available from other studies. Biomass per total surface 

area has been estimated by other workers but these estimates would be 

less than the corresponding biomass per weighted usable area, although 

the degree of this difference cannot be determined. Funk (1975) sum­

marized thirty-five standing crop estimates of smallmouth bass in streams 

and found that the mean biomass per total area was 9.5 kg/hectare, and 

the range was 0.2 to 46.3 kg/hectare. The mean of the eleven highest 

sites was 18.0 kg/hectare. Considering that the aforementioned estimates 

of biomass per total area are underestimates of the biomass per weighted 

usable area, my estimates of biomass per weighted usable area (Table 35) 

are relatively low. Only during the summer and fall periods did biomass 

per weighted usable area in Glover Creek approach that typically found 

elsewhere for biomass per total area. 

Mauck (1972) estimated the standing crop of smallmouth bass in 

Glover Creek at 19.6 kg/hectare in a relatively shallow pool and 54.6 

kg/hectare in a deeper pool. These greater estimates could be due to 

the more downstream location of Mauck's sites, the different sampling 

technique used (prima cord explosives), or temporal variation in standing 
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crop. 

In addition to low estimates of biomass per weighted usable area, 

the lack of any significant correlations between biomass per total area 

and weighted usable area for any season (Figure 14) suggests that usable 

habitat was not limiting abundance of adult smallmouth bass in Glover 

Creek. Also, differences between estimated biomass in different years 

was not related to the amount of weighted usable area for any season 

(Table 35). Adult smallmouth bass were, however, always absent or nearly 

so at sites with weighted usable area less than 5% of the total surface 

area (Figure 14). Therefore, presence of adult smallmouth bass may be 

limited by usable habitat when conditions are marginal. In Glover Creek, 

habitat for adult smallmouth bass becomes marginal at the extremely high 

and low flows, and then usable habitat is a prime limiting factor. For 

example, flows were near zero during summer 1978 and the few data points 

fell on a straight line (Figure 14). As stated earlier, timing of spring 

flooding in Glover Creek may have limited reproduction in previous years 

to the extent that the amount of usable habitat for adults was not limit­

ing. If so, then production of several large year classes of smallmouth 

bass might result in the amount of usable habitat and its influence on 

food during the growing season and shelter during high flows limiting 

smallmouth bass abundance. 

Another explanation for the lack of significant correlations between 

weighted usable area and standing crop is that adult smallmouth bass use 

different microhabitats for feeding and resting (Munther 1970). Since 

the suitability curves (Chapter IV) were not developed at this level of 

resolution, they are a composite description of the two microhabitats. 

The resulting values of weighted usable area may, therefore, be an 
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inaccurate measure of actual usable habitat. Furthermore, other variables 

which influence the abundance of smallmouth bass, such as cover (Haines 

and Butler 1969; Hickman 1975), were not considered and this may have 

resulted in an inaccurate measurement of usable habitat. 

Freckled Madtom 

Biomass per weighted usable area was highest during summer (4.96 

kg/hectare), followed by spring (2.82), fall (1.79), and winter (0.78) 

(Table 36). Differences between the estimated total biomass between 

years within the summer and fall sampling periods seem to be related to 

the amount of weighted usable area (Table 36). Furthermore, there were 

significant positive correlations between biomass per total area and 
I 

weighted usable area (percentage of total area) for summer (r=0.927; 

P<O.OOl), and fall (r=0.754; P<0.050), and near-significant correlation 

for spring (r=0.682; P=0.064) (Figure 15). The seasons in which the 

correlations between biomass and weighted usable area were significant 

were also the seasons of highest biomass (Figure 15; Table 36), and the 

most likely seasons of maximum growth of the freckled madtom. The slope 

of the regression was greatest for the summer data indicating that the 

influence of usable habitat on biomass of freckled madtoms was greatest 

during the summer period. 

The mechanism by which usable habitat influences populations of 

madtoms is not known. However, it is clear that habitat influences are 

significant, especially during the summer, and therefore the assumption 

of a positive relation between weighted usable area and standing crop is 

supported for the freckled madtom. 



Table 36. Total estimated biomass (grams), weighted 

2 usable area (m ), and biomass per weighted usable 

area (kg/hectare) for the freckled madtom in Glover 

Creek, November 1977 to September 1979. 

Weighted Biomass per 
usable weighted 

Biomass area usable area 
Season (grams) (m2) (kg/hectare) 

Fall 
Nov-Dec 1977 32 226.66 1.41 

Oct 1978 9 2.51 35.86 -
Combined 41 229.17 1. 79 

Winter 
Jan-Mar 1978 33.5 226.63 1.48 

Jan 1979 2 226.01 0.09 

Combined 35.5 452.64 0.78 

Spring 
Apr 1978 97 293.98 3.30 

Apr-Jun 1979 68 292.01 2.33 

Combined 165 585.99 2.82 

Summer 
Jul 1978 17 10.20 16.67 

Aug-Sep 1979 86 197.42 4.36 

Combined 103 207.62 4.96 
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Stoneroller 

Biomass of the stoneroller per weighted usable area was greatest 

during the summer (108.81 kg/hectare), and decreased from summer to fall 

(34.92), winter (15.99), and spring (9.83) (Table 37). Usable habitat 

was most likely limiting during the summer and fall when biomass per 

usable habitat was highest. During the summer and fall, the total esti­

mated biomass for different years corresponded to the amounts of weighted 

usable area (Table 37). Biomass per total area and weighted usable area 

(percentage of the total area) were correlated for the winter, summer, 

and fall periods (Figure 16). The slope was greatest for the summer data 

indicating that the influence of usable habitat on standing crop of 

stonerollers was greatest during the summer. 

The stoneroller is similar to the freckled madtom, and most minnows 

and darters in that it is a relatively small fish that reaches maturity 

early (Moyle and Li 1979) and can respond quickly to favorable environ­

mental conditions. The stoneroller feeds on algae and detritus (Kraatz 

1923; Wynes 1979), and is probably not limited by food supply because, 

in general, most herbivores are not food-limited (Hairston et al. 1960). 

Usable habitat could probably limit abundance of stonerollers through 

predation. In optimum habitat, shallow riffles with gravel and rubble 

substrate, predation by fishes would be less efficient than it would be 

in shallow pools. As riffles dry up, stonerollers are forced to move 

into shallow pools where they are more vulnerable to predation by fishes 

and other vertebrate predators. 

The decrease in the biomass of stonerollers during winter and spring 

(Table 37) could probably be due to some agent of mortality related to 

high currents associated with winter and spring flows. Therefore, shelter 



Table 37. Total estimated biomass (grams), weighted 

2 usable area (m ), and biomass per weighted usable 

area (kg/hectare) for the stonerol1er in Glover 

Creek, November 1977 to September 1979. 

Weighted Biomass per 
usable weighted 

Biomass area usable area 
Season (grams) (m2) (kg/hectare) 

Fall 
Nov-Dec 1977 1,295 405.72 31.92 

Oct 1978 298 50.48 59.03 

Combined 1,593 456.20 34.92 

Winter 
Jan-Mar 1978 1,069 406 • .96 26.27 

! 
Jan 1979 149 354.77 4.20 

Combined 1,218 761.73 15.99 

Spring 
Apr 1978 489 422.67 11.57 

Apr-Jun 1979 390 471.22 8.28 

Combined 879 893.89 9.83 

Summer 
Jul 1978 2,009 119.94 167.50 

Aug-Sep 1979 3,536 392.83 90.01 

Combined 5,545 512.77 108.81 

105 



STONE ROLLER 

WINTER SPRING 
w 
~ 20 e1978 r = 0.789 

p < 0.020 

e1s1a r = 0.159 
NS ~ 

~ 01979 01979 • J: 
(/.\ 
~ 10-
~ 
a: 
0 
0 
....J 

~ 

UJ 
a: 

50 

40 

~ 30 
1-
u 
w 
:X: 
(/.\ 
~ 
~ 20 
a: 
0 
0 
...1 

~ 

• 0 o, 
1 0 20 30 40 10 20 30 40 

WEIGHTED USABLE AREA (PERCENT OF TOTAL AREA) 

SUMMER 

e1978 

01979 

• 

r = 0.835 
p < 0.010 

0 

FALL 
0 

e191a 

r = 0.737 
p < 0.050 

10 --

__L __ _l _______ _.____ 
20 30 40 10 20 30 40 

WEIGHTED USABLE AREA (PERCENT OF TOTAL AREA) 

106 

l'i)-',tlrl' 16. Correlations between standing crop of the stoneroller 

and weighted usable area for each season. 



107 

from excessive currents is another potential limiting factor. Winter 

and spring samples were taken when flows were low enough to permit effie-

ient sampling such that the conditions limiting usable habitat were not 

measured. 

For the summer 1978 and fall 1978 data the effect of the error in 

assuming independence is apparent (Figure 16). During these seasons 

there was little difference in the weighted usable area (percentage of 

total area) between the four sites, although riffle sites had much higher· 

standing crops. In addition, the depth of water in riffle sites was '' 

extremely shallow and less velocity would have been necessary to provide 

suitable habitat. Despite this error, significant correlations resulted 

when data from both years were combined (Figu~e 16). 

Orangebelly Darter 

Biomass of the orangebelly darter per weighted usable area was high-

est during the summer (61.45 kg/hectare) and ranged from 12.09 to 19.26 

kg/hectare during other seasons (Table 38) • Only during the sutmner was 

the estimated total biomass for different years related to the amount of 

weighted usable area. During the summer 1978 weighted usable area was 

2 
67.73 m and biomass was 383 grams, whereas during summer 1979 weighted 

2 
usable area was 309.84 m and biomass was 1,937 grams (Table 38). There 

were significant correlations between biomass per total area and weighted 

usable area (percentage of total area) for both the winter (r=0.764; 

P<0.050) and the summer (r=0.835; P<O.OlO), although the slope of the 

regression was much greater for the summer data (Figure 17). As was 

found for the freckled madtom and the stoneroller, it appears as though 

the influence of usable habitat on the abundance of the orangebelly 



Table 38. Total estimated biomass (grams), weighted 

2 usable area (m ), and biomass per weighted usable 

area (kg/hectare) for the orangebelly darter in 

Glover Creek, November 1977 to September 1979. 

Weighted Biomass per 
usable weighted 

Biomass area usable area 
Season (grams) (m2) (kg/hectare) 

Fall 
Nov....; Dec 1977 135 263.21 5.13 

Oct 1978 455 43.19 105.35 

Combined 590 306.40 19.26 

Winter 
Jan-Mar 1978 480 259.09 18.53 

Jan 1979 195 299.04 6.52 

Combined 675 558.13 12.09 

Spring 
Apr 1978 129 339.71 3.80 

Apr-Jun 1979 . 976 377 0 87 25.83 

Combined 1,105 717.58 15.40 

Summer 
Jul 1978 383 67.73 56.55 

Aug-Sep 1979 12937 309.84 62.52 

Combined 2,320 377.57 61.45 

108 



w 
a: 
<( 
..... 
u 
w 
r (/) 10 
:::!: 
<( 
a: 
0 
0 = 5 
~ 

w 
a: 
<( 
..... 
u 
w 
r 
(/) 
::E 
<( 
a: 
0 
0 
...J 

~ 

WINTER 

e1978 

01979 

ORANGEBELL Y DARTER 

r = 0.764 
p < 0.050 

• 

SPRING 

e191s 

01979 

r = 0.398 
NS 

0 

1 0 20 30 1 0 20 30 

WEIGHTED USABLE AREA (PERCENT OF TOTAL AREA) 

SUMMER 

r = 0.835 
p < 0.010 

0 

0 

0 

FALL 

01977 

• 

r = ·0.166 
NS 

0 

1 0 20 30 1 0 20 30 

WEIGHTED USABLE AREA (PERCENT OF TOTAL AREA) 

109 

0 

• 

Figure 17. Correlations between standing crop of the orangebelly 

darter and weighted usab.l e area for each season. 



110 

darter was greatest during the summer. Darters have developed a life 

history strategy of small size and rapid maturity (Moyle and Li 1979). 

Consequently, darter populations in small streams have high production 

to biomass ratios (Lotrich 1973; Small 1975), which may allow the 

orangebelly darter to respond quickly to favorable summer habitat. 

Abundance of orangebelly darters was probably limited in a different 

manner from that for either the freckled madtom or the stoneroller. 

Winn (1958) found that, even during the non-breeding season, two darters 

closely related to the orangebelly darter, E. spectabile and~· caeruleum, 

were territorial in aquaria and, in their respective habitats, individ­

uals were found separated by 20 em or more. The fantail darter, E. 

flabellare, also sets up non-reproductive territories in aquaria (Seifert 

1963). During the summer, when usable habitat typically declines, indi­

viduals probably defend a territory in suitable habitat. As usable 

habitat becomes more limited, and darters whose territories have become 

unsuitable begin to move to more suitable, but occupied, areas in the 

riffle, aggressive behavior might increase, resulting in the subordinate 

darters having to remain in unsuitable habitat. To determine whether or 

not this spatial requirement is related to food supply as it is in young 

rainbow trout (Slaney and Northcote 1974) would require experimental 

verification. 

The error due to assuming independence of depth and velocity is 

apparent from the summer and fall 1978 data. Weighted usable area for 

riffle sites were lower than they would have been if the depth-velocity 

interaction had been considered because the riffles were unusually shal­

low, and therefore the velocity required to provide suitable habitat 

conditions would be less than that indicated by the velocity suitability 
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curve (Figure 12). The two highest standing crops in summer 1978 and in 

fall 1978 were for riffle sites, but weighted usable area varied little 

among sites (figure 17). The error does not alter the conclusion that 

usable habitat was limiting the abundance of the orangebelly darter. 

To summarize these findings, usable habitat was correlated with the 

abundance of the freckled madtom, stoneroller, and orangebelly darter 

most markedly during the summer, but was not correlated with the abundance 

of juvenile or adult srnallmouth bass during any season. These findings 

support the hypothesis that usable habitat, especially during the summer, 

limits the abundance of the three riffle-dwelling fishes studied--freckled 

madtom, stoneroller, and orangebelly darter. Usable habitat was not 

limiting the abundance of srnallmouth bass. The riffle-dwelling species 

are obligate stream fishes, whereas the srnallmouth bass is adapted to 

both stream and lake environments. Furthermore, the riffle-dwelling 

species apparently utilize similar microhabitats for both feeding and 

resting, whereas the srnallmouth bass is not adapted to resting in the 

same microhabitats in which it feeds. It would not be surprising then 

that limiting factors would be different for the two groups. The riffle­

dwelling species evolved and adapted to warm-water stre.am environments 

that are characterized by extreme fluctuations in discharge (Starret 1951; 

Paloumpis 1958; Larimore et al. 1959; Metcalf 1959; Rinne 1975; Harrell 

1978). Typically the season of lowest flow, which limits usable habitat, 

is during the summer, and it is at this time that the influence of usable 

habitat is most clear. The use of the weighted usable area-discharge 

relation to recommend instream flows is best justified for those riffle­

dwelling fishes for which relations between standing crop and weighted 
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usable area have been established. Further research to establish cri­

teria for sufficient habitat conditions for the smallmouth bass is 

warranted. 



CHAPTER VI 

INSTREAM FLOW RECOMMENDATIONS FOR FISHES OF GLOVER CREEK 

Introduction 

In the event that the proposed Lukfata Lake is built, flow recom­

mendations will be needed to maintain the diverse fish conununity and 

substantial fishery for smallmouth bass in Glover Creek. However, 

recommendation of instream flows in Glover Creek is hampered since none 

of the instream flow methodologies, including the incremental method, 

have been adequately tested on the variety of fishes present in streams 

of this type. Previously, minimum flow releases from impoundments have 

been based on the adequacy of flows during dry years without concern for 

the needs of fishes. A reliable and defensible methodology is urgently 

needed to prevent degradation of stream resources. This chapter deals 

with the application of the incremental method to recommend instream 

flows for Glover Creek and comparison of the incremental method with two 

other methods for recommending instream flows. 

Methods which have been developed for recommending instream flows 

range in complexity from (1) those reconnaissance-level approaches based 

on historical discharge records requiring no field studies, to (2) threshold 

methods which examine a few habitat variables in critical cross-sections, 

and finally to (3) the multiple transect approaches which base flow 

recommendations on the relation b~tween the amount or quality of usable 
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habitat for a given species in relation to discharge (Stalnaker and 

Arnette 1976; Stalnaker 1979). 
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The Montana method (Tennant 1976), the most widely used of the 

reconnaissance-level methods, has been applied to warm-water and cold­

water streams in the Midwest, Great Plains, and Intermountain West. 

Based on field studies in Montana, Wyoming, and Nebraska, Tennant (1976) 

found that habitat quality was remarkably similar in most streams carry­

ing the same percentage of their average annual flow, and therefore 

percentages of the average annual flow were recommended that would pro­

vide suitable habitat. In general, ten percent of the average annual 

flow was recommended as a minimum instantaneous flow to provide short­

term survival habitat. Thirty percent of the average annual flow was 

recommended to maintain good habitat; 60 to 100 percent for optimum hab­

itat; and 200 percent for flushing flowsr These percentages were modified 

for the wet and dry seasons in the Northern Great Plains (Tennant 1976). 

Although the Montana method does not provide specific information on the 

effects of altered flows on fish habitat, it has the advantage of requir­

ing no field studies, which allows recommendations to be made early in 

the planning process. 

The wetted perimeter approach provides information on the effects of 

different flows on fish rearing habitat at critical cross-sections of 

the stream. Wetted perimeter is the length of wetted contact between 

the stream and its channel, measured perpendicular to the direction of 

flow. In a rectangular cross-section, a plot of wetted perimeter versus 

discharge shows a rapid increase in wetted perimeter from zero discharge 

to an inflection point beyond which further increases in discharge result 

in only minor increases in wetted perimeter. Minimum flows for fish 
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rearing have been set near the inflection point in the wetted perimeter­

discharge curve (Collings 1974; Cochnauer 1976). The rationale for this 

approach is that riffle areas are the first areas of the stream seriously 

affected by reduced discharges and therefore these areas are usually 

selected for the wetted perimeter method. The principal advantage of the 

wetted perimeter approach is that it requires relatively little field 

work. However, without information on velocities, it is difficult to 

determine whether the habitat at the recommended flow is suitable. 

In the third level of complexity, several methodologies have been 

developed to relate the amount or quality of usable habitat to discharge 

(Collings et al. 1970; Wesche 1973, 1974; Nickelson 1976; Waters 1976; 

Bovee et al. 1977; Stalnaker 1979). These me,thodologies differ in the 

level to which they define habitat needs of fishes, the manner in which 

suitabile habitat is measured, and the method used for predicting habitat 

conditions at different discharge levels. The incremental method uses a 

hydraulic simulation technique to estimate depths and velocities at dif­

ferent flows (Bovee and Milhous 1978) and can be used for any life stages 

of fish species for which habitat needs are defined (Stalnaker 1979; 

Trihey 1979). This flexibility to consider any life stages is an advan­

tage since one or more life stages or critical periods of time are often 

known to be limiting and instream flows can be based on these needs. 

For example, most instream flow reservations in California have been 

based on spawning and passage requirements of anadromous salmon (Oncorhyn­

chus spp.) and steelhead (Salmo gairdneri), and summer low flow habitat 

of trout (Salmo spp.; Hazel 1976). 

To recommend instream flows below the proposed Lukfata Lake dam, 

limiting factors must be recognized and flows recommended to reduce the 
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influence of the limiting factor. For the freckled madtom, stoneroller, 

and orangebelly darter, usable habitat was found to be important during 

all seasons, but most limiting during the summer (Chapter V). For the 

smallmouth bass, usable habitat was apparently not limiting. However, 

with alteration of natural flows usable habitat for smallmouth bass may 

become limiting. Since Glover Creek is designated as critical habitat 

for the threatened leopard darter (United States Fish and Wildlife Ser­

vice 1978), flow recommendations will also consider the habitat needs of 

adult leopard darters. Possibilities of funding for the Lukfata Lake 

project in the near future are remote because of the critical habitat 

designation for Glover Creek. 

Methods 

A stream reach, located immediately downstream from access road 

72000 and about 3 river kilometers above the proposed damsite, was chosen 

for the study (Figure 6). Since Carter Creek empties into the stream 

between study site 72000 and the damsite, the ratio of the drainage area 

above the damsite to that above site 72000 is 1.15 and the flow at the 

damsite would be approximately 1.15 times greater than that at site 72000. 

Five permanent transects were established to sample riffle (tran­

sects 1, 2), run (transects 3, 4), and pool (transect 5) habitats. These 

transects were placed perpendicular to the direction of flow. A perma­

nent benchmark was established and given an arbitrary reference elevation. 

Stream bed elevations, relative to the benchmark, were measured with a 

builder's level and level rod at one meter intervals along each transect. 

At the same fixed intervals along each transect, substrate type was 

classified according to a modified Wentworth scheme and given a numerical 
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code (Bovee and Cochnauer 1977). Mean column velocities, measured at 

0.6 of the depth from the water surface, were measured with a pygmy cur-

rent meter at the same fixed intervals of each transect at flows of 0.057, 

3 0.283, 2.379, and 3.342 m /s. Water surface elevation (stage) was mea-

sured at the thalweg of each cross-section at the same flows. Power 

functions were fitted to these data for the stage-discharge relation at 

each transect, and the velocity-discharge relation at each one meter 

segment along each transect, using the IFG4 program (Main 1978a). Weighted 

usable areas for selected species and life stages were computed for 

3 twelve different flows ranging from 0.10 to 7.00 m /s, using the Habitat 

program (Main 1978b). Habitat suitability curves for juvenile and adult 

smallmouth bass, freckled madtom, stoneroller, and orangebelly darter, 

developed in Chapter IV, were used to calculate weighted usable areas. 

For the adult leopard darter, weighted usable area calculations were 

based on the preliminary habitat suitability curves in Appendix B. Pre-

liminary habitat suitability curves for the spawning and fry stages of 

the smallmouth bass were also used (K. D. Bovee, Cooperative Instream 

Flow Service Group, unpublished; Appendix B). Plots of weighted usable 

area versus discharge were used to base recommendations of a minimum 

flow for each life stage. For each month, the recommended minimum flow 

was the greatest of the minimum flows for all life stages. 

Wetted perimeter was also measured at each flow for one of the rif-

fle transects. The inflection point of the wetted perimeter-discharge 

curve, the minimum rearing flow, was determined by someone who had no 

knowledge of the flow recommendations based on the other methods tested. 

The Montana method was also applied based on ~he average annual flow 

of 10.5 m3/s, estimated for the damsite location (United States Army 
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Corps of Engineers 1975). Ten percent of the average annual flow was 

recommended for the period from July through December, and thirty per-

cent of the average annual flow was recommended for the period from 

January through June. 

Results 

The total amount of wetted surface area within the study site in­

creased rapidly from 423m2 at 0.10 m3/s to 846m2 at 0.60 m3/s and then 

increased slowly at higher discharges to 980m2 at 7.00 m3/s (Figure 18). 

The suitability of the habitat is more important than the amount of 

wetted area for the purposes of making instream flow recommendations, 

but the wetted area-discharge curve (Figure 18) is needed to compare 

weighted usable area with total area. 

Weighted usable area-discharge curves for the freckled madtom, 

stoneroller, and orangebelly darter were similar (Figures 19, 20, and 21), 

as were their suitability curves (Figures 10, 11, and 12). In general, 

all three species prefer shallow riffle areas, with gravel and rubble 

substrate. The amount of this type of habitat increased rapidly from 

3 3 0.10 to 0.30 m /s. Consequently, flows were 0.30 m /s for the freckled 

3 madtoms and 0.50 m /s for the stoneroller and orangebelly darter. 

A minimum flow 0.90 m3/s was recommended so that usable habitat 

would not be limited for the adult leopard darter (Figure 22). Weighted 

usable area was a relatively high percentage of the total area at this 

flow (49%; Figure 18). 

Weighted usable area curves for life stages of smallmouth bass indi-

cate that the flow requirements are highest for the spawning stage (Fig-

ure 23). Typical spawning months for smallmouth bass in Oklahoma are 



I 
9001 

_sJ 
e 
<t 
w 
a: 
<t 700 
c 
w 
I-
I-w 
3: 
...J 600 
< 
1-
0 
1-

500 

0 1 2 3 4 5 6 7 

DISCHARGE (m3/s) 

Figure 18. Relationship between total wetted area and discharge 

for site 72000, Glover Creek. 



70 

-e -< w 
a: 
< 
w 
...J 

~ 50 
U) 
~ 

c 
w 
1-

~ 40 
w 
~ 

0 

FRECKLED MADTOM 

1 2 3 4 5 6 

DISCHARGE (m 3/s) 

Figure 19. Relationship between weighted usable area for the freckled 

madtom and discharge for site 72000, Glover Creek. 

7 

t-' 
N 
0 



STONEROLLER 

-"" E -ct 
w 
a: 
ct 
w 
..J 
m 
ct 100 en 
:::J 
Q 
w 
~ 
l: 
(!J 

75 iii 
3= 

2 3 4 5 6 7 

DISCHARGE (m3/s) 

Figure 20. Relationship between weighted usable area for the stoneroller 

and discharge for site 72000, Glover Creek. 



ORANGEBELL Y DARTER 

120 

-... 
E -ct 
w 100 a: 
ct 
w 
~ 
m 
c( 
en 80 :::::> 
c 
w 
1-
:I: 
0 
w 60 
~ 

0 1 2 3 4 5 6 7 

DISCHARGE (m3/s) 

Figure 21. Relationship between weighted usable area for the orangebelly 

darter and discharge for site 72000, Glover Creek. 1-' 
N 
N 



LEOPARD DARTER· ADULT 

-"' E -< w 
a: 
< 300 w 
...J 
Ql 
< 
(/) 
;:::) 

c 200 w 
1-
:I: 
Cl 
w 
~ 

100 

0 1 2 3 4 5 6 7 

DISCHARGE (m3/s) 

Figure 22, Relationship between weighted usable area for the leopard darter 

and discharge for site 72000, Glover Creek. 
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April and May (Miller and Robison 1973). However, since smallmouth bass 

may continue to re-nest through June after earlier nest failures 

(Pflieger 1966, 1975b), flows for the spawning and fry stages were recom­

mended for April, May, and June. A minimum flow of 1.2 m3/s was 

3 recommended for smallmouth bass fry, and a minimum flow of 3.5 m /s was 

recommended for spawning. Weighted usable area for adult smallmouth bass 

varied little over the entire range of flows; however since there was a 

slight decrease in weighted usable area at flows below 0.80 m3/s, that 

flow was recommended as a minimum (Figure 23). Weighted usable habitat 

for juvenile smallmouth bass was highest at 0.60 m3/s and since usable 

habitat declined so steeply at lower discharges, a minimum flow of 

0.6 m3/s was recommended (Figure 23). 

Based on the five fish species considered in this study, the recom­

mended minimum flow regime was 0.9 m3/s for July through March and 

3.5 m3/s for April through June (Table 39). A flushing flow of 12.0 m3/s 

was recommended for March based on the approximate median monthly flow 

at the damsite for March (United States Army Corps of Engineers 1975). 

However, the duration of flushing flows necessary to transport accumu-

lated silt is unknown. The flushing flow was much greater than the 

maximum flow for which the velocity-discharge and stage-discharge rela-

tions could be safely extrapolated, and therefore the suitability of the 

habitat at 12.0 m3/s could not be accurately determined. The minimum 

flow regime would result in a minimum average annual flow of 2.48 m3/s 

which is less than 25% of the estimated average annual flow (10.5 m3/s) 

at the damsite (United States Army Corps of Engineers 1975). This mini-

mum flow regime assures adequate availability of water during a typical 

water year and also mimics to some extent the seasonal pattern of flows 



Table 39. Recommended minimum instantaneous flows (m3/s) for Glover Creek at site 72000. 

3 Average Recommended monthll flow (m /s) 
Species/Life stage Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. annual 

Freckled madtom 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 
Stoneroller 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
Orangebelly darter 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
Leopard darter 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 
Smallmouth bass 

Spawning 3.50 3.50 3.50 
Fry 1.20 1.20 1.20 
Juvenile 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 
Adult 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Flushing flowa 12.00 

Recommended minimum 
100ntbly flows 
(median conditions) 0.90 0.90 12.00 3.50 3.50 3.50 0.90 0.90 0.90 0.90 0.90 0.90 2.48 

RecODIEnded minimum 
...,ntbly flows (low- b flow conditions) 0.50 0.50 3.60 1.20 1.20 1.20 0.50 0.50 0.50 0.50 0.50 0.50 0.93 

~edian monthly flow during March 

b Monthly flow exceeded 90% of the time during March recommended for flushing during low-flow conditions 
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(Figure 24). Minimum flows recommended for median conditions were sub­

stantially less than the median monthly flows for November through May 

(Table 39, Figure 24). The minimum flow recommended for July through 

October was slightly higher than the median monthly flows for July and 

August, similar to the median monthly flow for September, and slightly 

below that for October. Under low flow conditions (approximately 1 in 10 

year low flows), a contingency flow regime (Table 39) could provide some 

habitat for the fishes of Glover Creek, although it would be deleterious 

to the fish populations if adopted on an annual basis. 

The wetted perimeter-discharge curve for one of the riffle transects 

had an inflection point at a discharge of 0.90 m3/s (Figure 25). There­

fore, based on the wetted perimeter method, the minimum flow for fish 

rearing would be 0.90 m3/s. This recommendation agreed exactly with the 

recommendations of the incremental method for the July through February 

period (Table 40). The wetted perimeter method did not, however, permit 

recommendations of spawning flows. 

The recommendations based on the Montana method agreed closely with 

those based on the incremental method for all months except January and 

February (Table 40). The same flushing flows was recommended since the 

wetted perimeter approach and the incremental method do not allow for 

estimation of a flushing flow. 

Discussion 

Implementation of the three methods used in this study vary greatly 

in cost and time required, yet for the'low flow season (July through 

December) the flow recommendations based on each method were similar. 

Application of these results should be used with caution until comparable 
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Table ~0. Comparison of recommended minimum monthly flow regimes based on the ~fontana (Tennant) method, 

the wetted perimeter method, and the IFG incremental method, with the median monthly and 1-in-10 year 

monthly low flows for 1937 to 1974 at the proposed Lukfata Lake damsite. 

Recommended flow regimes (m3/s) Historical 
Analysis of records Single cross-section Multiple cross-section flows 

Honth (Montana-Tennant) (wetted perimeter) (incremental method) (m3/s) 

(Median conditions) (median) 
January 3.16 0.90 0.90 7.476 
February 3.16 0.90 0.90 12.036 
::--rarch 12.00 12.00 12.00 12.319 
April 3.16 0.90 3.50 17.700 
May 3.16 0.90 3.50 18.096 
June 3.16 0.90 3.50 3.200 
July 1.05 0.90 0.90 0. 708 
August 1.05 0.90 0.90 0.538 
September 1.05 0.90 0.90 0.878 
October 1.05 0.90 0.90 1.246 
November 1.05 0.90 0.90 3.936 
December 1.05 0.90 0.90 6.853 

Average annual 2.84 1.82 2.48 

(1-in-10 year low (1-in-10 year 
flow conditions) low flows) 

January 1.05 0.90 0.50 1.982 
February 1.05 0.90 0.50 2.124 
March 3.60 3.60 3.60 3.568 
April 1.05 0.90 1.20 6.599 
May 1.05 0.90 1.20 4.333 
June 1.05 0.90 1.20 0.481 t-' 

UJ 
0 



Table 40. (Continued). 

Month 

(1-in-10 year low 
flow conditions) 

July 
August 
September 
October 
November 
December 

Average annual 

Recommended flow regimes (m3fs) 
Analysis of records Single cross-section Multiple cross-section 

(Montana-Tennant) (wetted perimeter) (incremental method) 

1.05 
1.05 
1.05 
1.05 
1.05 
1.05 
1.26 

0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
1.12 

0.50 
0.50 
0.50 
0.50 
0.50 
0.50 
o. 93. 

Historical 
flows 

(m3/s) 

(1-in-10 year 
low flows) 

0.088 
0.059 
0.031 
0.031 
0.269 
0.538 
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studles substantiate these findings for other types of streams. In 

addition, both the Montana method and the wetted perimeter method should 

be restricted to reconnaissance level planning purposes, since neither 

provides any information on the effects of altered flows on fish habitat. 

This shortcoming limits the alternatives available to water resource 

managers. The incremental method offers more flexibility in this regard 

since the effects on fish habitat of any conceivable flow regime can be 

evaluated. 

The effect of the recommended flow regime on the water level in the 

proposed Lukfata Lake has not been considered in this study. However, 

water level fluctuation has a dramatic effect on the recruitment of 

reservoir fishes and manipulation of water levels to inundate suitable 

spawning and nursery habitat and allow for successful reproduction of 

reservoir fishes has proven to be a useful management technique (Keith 

1975; Benson 1976; Groen and Schroeder 1978; Nelson 1978). Management 

of river-reservoir ecosystems should involve flow reconunendations for 

the downstream community as well as concurrent evaluation and recommenda-

tion of water level regimes for the biota of the reservoir. Therefore, 

the incremental method offers the advantage of evaluating alternative 

flows that would be compatible with water l~vel manipulations for reser-

voir fisheries and reservoir operations. 

The validity of the flow recommcmdcationa made for Glover Creek de-

pmtds on how well the naE:~ump t ions of the incremental method were met. 

/\lao, the validity of the reconunsndliltlon~ may be questioned because the 

lack of information on the habitat rlilquiramenta of life stages of other 
• 

fish species prElvented consideration of thcair inatream flow needs. ~r 
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1972), but instream flow recommendations were based on only five of 

these. The implicit assumption is that adequate protection of the habi­

tat for these fishes will also result in habitat protection for the other 

species. This concept of indicator species for instream flow assessments 

has been suggested by Stalnaker and Arnette (1976) and Bovee et al. 

(1977), although the validity of such an approach has never been tested. 

There are, however, indications that some species are more sensitive to 

flow alterations than others (Spence and Hynes 1971; Trautman and Gartman 

1974; Holden and Stalnaker 1975; Bovee et al. 1977; Edwards 1978; Holden 

1979). All of the species for which flow recommendations were made in 

this study, except for the smallmouth bass, are obligate stream fishes, 

and therefore should be quite sensitive to alterations in the natural 

flow regime. Information on the requirements of all life stages of some 

of these fishes is still incomplete so the flow recommendations for these 

species must be regarded as tentative. For example, nothing is known of 

the habitat requirements of the spawning and early life stages of the 

threatened leopard darter. Therefore, flows to provide habitat for adult· 

leopard darters will not permit survival of the species if habitat for 

successful reproduction is not available. 

The assumptions inherent in this application of the incremental 

method were (1) depth, velocity, and substrate are the most important 

variables affecting fish distribution and abundance when considering 

changes in the flow regime; (2) the stream channel is not altered by 

changes in the flow regime; (3) depth, velocity, and substrate are inde­

pendent in their influence on habitat selection by fishes; (4) the stream 

can be modeled by using one representative sample reach; and (5) there 

is a positive, linear relation between weighted usable area and standing 
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crop or habitat use. 

The first assumption is a tenuous one, especially when dealing with 

flow alterations due to impoundment since chemical conditions as well as 

energy sources are altered below reservoirs (Hannan 1979; Webster et al. 

1979). Flow alterations that change light or thermal regimes, chemical 

water quality, or organic matter inputs would result in changes in the 

stream community structure (Cummins 1979) and the relative importance of 

these alterations as compared to changes in weighted usable area has not 

yet been investigated. Lukfata dam is designed to have multilevel out­

lets to allow lake water to be released from various depths in order to 

maintain downstream temperatures that are as natural as possible (United 

States Army Corps of Engineers 1975). Also,,the projected inflow to 

storage ratio is relatively high (6:1) and should not significantly 

decrease nutrient concentrations downstream (United States Army Corps of 

Engineers 1975). The impoundment would probably decrease the particulate 

organic matter concentration immediately downstream from the dam (Webster 

et al. 1979); however, it cannot yet be predicted how the alteration in 

the energy base would in turn alter food web relations and fish community 

structure, and if this influence would be more important than the influ­

ence of changes in weighted usable area. With this level of uncertainty, 

the only prudent approach for biologists and planners is to recommend 

fLows that would ensure that usable habitat is not the limiting factor, 

recognizing the potential ramifications of alterations of other ecosys­

tem components. 

The interactions of other variables, such as temperature and dissolved 

oxygen, with flow must also be recognized. The potential for low con­

centrations of dissolved oxygen and excessive temperatures is greater at 
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low flows during summer. During winter the potential for formation of 

frazile or anchor ice is greater at low flows and should be an added 

consideration in colder regions (Bovee et al. 1977). These problems 

have not been observed in Glover Creek at flows approximating those 

recommended. 

The amount of cover provided by stream banks and instream structures 

also changes with discharge; however, these changes were not evaluated 

in the present study. The effect of cover on abundance of fishes has 

been documented for both cold-water (Saunders and Smith 1962; Lewis 1969; 

Wesche 1974) and warm-water stream fishes (Hickman 1975). Attempts are 

being made to incorporate suitability criteria for cover types into 

weighted usable area calculations of the incremental method (K. D. Bovee, 

Cooperative Instream Flow Service Group, personal communication). 

1be second assumption of this application of the incremental method 

was that the morphometry of the channel would not change with the altered 

flow regime. The Glover Creek channel is mostly boulder and bedrock and 

seems relatively stable. However, this assumption is never strictly 

valid since all stream channels will eventually degrade. Impoundments 

might speed this process since reservoirs typically release clearer water, 

which may cause more erosion of the channel downstream, and they also 

block the downstream movement of larger-sized sediment particles (Simon 

1979). 

Of major concern is the effect of reduced flood flows on accumulated 

sediment in the stream, since there are several small tributaries below 

the proposed damsite which would carry sediment to the main channel. 

Smith (1976) noted that reduced flood flows in the Trinity River resulted 

in siltation of gravel beds used for spawning and pools used for nesting 
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by trout and salmon, as well as allowing encroachment of riparian vegeta-

tion in the channel. Research is essential to develop methods to estimate 

the duration and magnitude of flushing flows needed to scour silt from 

pools and the interstices of the substrate in riffles (Grenney and 

Porcella 1976) since production of typical stream insects in riffles 

depends on the presence of silt-free interstitial spaces (Ward 1976). 

The assumption of independence, especially of depth and velocity, 

was invalid for the freckled madtom, stoneroller, and orangebelly darter 

(Chapter IV), and this violation of the assumption undoubtedly affected 

the shape of the weighted usable area curves. At higher discharges the 

amount of weighted usable area for these three species declined more 

rapidly than it would have if interactions had been considered. At dis-

3 charges greater than about 0.5 m /s, the depth and velocity in riffle 

areas of the study reach would begin to exceed the optimum ranges as 

defined by the habitat suitability curves (Figures 10, 11, and 12). 

However, due to the depth-velocity interaction, at greater velocities 

the preferred depth range would be at greater depths. Therefore, the 

error in assuming independence of depth and velocity resulted in lower 

estimates of weighted usable area at the higher discharges. The amount 

of: weighted usable area probably still declines at the higher discharges, 

although less abruptly than indicated by the curve. In this case, the 

effect on the minimum flow recommendation does not appear to be great. 

The i.nfluence of high flows on usable habitat cannot, however, be accu-

rately determined because of the error due to assuming independence. 

Future attempts to determine habitat suitability criteria should utilize 

a multivariate suitability function which takes into account the inter-

actions among habitat variables (Voos 1980). 
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The fourth assumption of this application was that the stream reach 

sampled for habitat measurements is representative of the habitat types 

available in the stream. This assumption was not strictly met since 

deep, sluggish pool habitat was not represented in this reach. Most of 

the pool habitat in Glover Creek consists of relatively shallow, rock­

bottom pools with a noticeable current. The representative reach concept 

is especially critical when dealing with fishes which are mobile enough 

(e.g., smallmouth bass) to seek out more favorable habitats when local 

conditions become unsuitable. For fishes like the orangebelly darter, 

this is probably less of a problem since they move little (Scalet 1973). 

Although the application of stratified sampling concepts for choosing 

representative reaches has been introduced by Bovee and Milhous (1978), 

further research is necessary to establish the most efficient sampling 

scheme and an appropriate number of sample reaches. 

The validity of the assumption of a positive, linear relation be­

tween weighted usable area and standing crop depends on the validity of 

the assumption of independence and the assumption that depth, velocity, 

and substrate are the most critical variables. There is little doubt 

that usable habitat would be limiting at extremely low levels of weighted 

usable area, due to marginal habitat conditions or extremely low or high 

flows. However, above a certain level of weighted usable area, other 

factors may become overriding. The most important question with regard 

to making instream flow recommendations is: Within what range of weighted 

usable area is usable habitat the overriding factor? For three of the 

species considered in this study, there is evidence that usable habitat 

is the limiting factor within the range of typical summer flows (Chapter 

V). Also, high winter and spring flows can further limit abundance 
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through influence on usable habitat. However there have not been enough 

tests of the relation between weighted usable area and standing crops to 

generalize about the extent to which this assumption is valid. 

The use of weighted usable area for other life stages (spawning, 

fry, juvenile) has not been tested for warm-water stream fishes. The 

assumption is that there are direct relations between the weighted usable 

area for spawning and the number of successful nests; weighted usable 

area for fry and number of fry produced; and weighted usable area for 

juveniles and number or standing crop. Factors controlling successful 

reproduction and survival of young black basses, Micropterus spp., are 

much more complex than this assumption implies (Eipper 1975; Pflieger 

1975b; Shuter et al. 1980). Tests of this assumption for the spawning 

and early life stages are urgently needed to determine if an alternative 

approach needs to be developed. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Natural stream flow regimes have been altered by a variety of man's 

activities, and therefore fish populations in streams have also changed. 

To protect the instream values of stream resources in the face of con­

tinued modification of streams and increased demands for water, met.hod­

ologies for recommending instream flows have been developed. The 

incremental method developed by Cooperative Instream Flow Service Group, 

United States Fish and Wildlife Service, is one such methodology. Appli­

cation of the incremental method in warm-water streams is limited because 

there have been no field tests of the validity of the assumptions, and 

there is a scarcity of the type of quantitative information needed on 

habitat preferences of warm-water stream fishes. 

The objectives of this research were (1) to develop habitat suita­

bility curves for selected fishes of Glover Creek; (2) to test the 

assumption of independence of habitat variables in the selection of 

microhabitats by fishes; (3) to investigate the relationship between 

weighted usable area and fish standing crop; and (4) to make monthly 

instream flow recommendations for the fishes of Glover Creek. Glover 

Creek was chosen for the study because it supports a high quality fish­

ery for smallmouth bass, is designated as critical habitat for the 

threatened leopard darter, and is the site for the proposed Lukfata Lake. 

Habitat (depth, velocity, and substrate) suitability curves were 

139 
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developed for the smallmouth bass (juvenile and adult), adult green sun­

fish, freckled madtom, stoneroller, and orangebelly darter. Two types 

of bias were noted. The first type of bias arises when the distributions 

of depth, velocity, and substrate types sampled deviate from uniform and 

frequency of capture distributions are used to derive habitat suitability 

curves. This bias tvas adjusted for by dividing frequencies by the amount 

of area sampled within each interval. The second type of bias recognized 

was that due to differential sampling·efficiencies over the range of the 

particular habitat variable being considered. This bias may be minimized 

by using several different sampling techniques, but care must be exer­

cised to prevent over-representation by any single method. 

For each species studied, the assumption of independence was vio­

lated for at least one of the three possible two-way combinations (depth­

velocity, depth-substrate, velocity-substrate). Violation of the inde­

pendence assumption appeared to be greatest for the interaction of depth 

and velocity preferences for the freckled madtom, stoneroller, and orange­

belly darter. In each of these species, the optimum velocity range 

increased with increasing depth. The reason that depth and velocity 

preferences were not independent for these species is probably because 

their microhabitat is in or near the stream bottom and mean column veloci­

ties were measured rather than bottom velocities. The effect of violation 

of this assumption on the minimum flow recommendation did not appear to 

be great, although the suitability of the habitat at other flows could 

not be reliably determined. Research on the effects of assuming inde­

pendence for various types and degrees of interaction would enable those 

using the incremental method to decide when it might be appropriate to 

assume independence. 
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There were differences in the habitat used by different size groups 

of conspecifics for the smallmouth bass and green sunfish. These differ­

ences may be partially the result of size-related dominance hierarchies. 

If further research shows that the preferred habitat of the dominant 

individuals is actually the most preferred habitat of the species, then 

density of all individuals may be an inappropriate criterion on which to 

base suitability criteria. 

Although suitability curves for depth, velocity, and substrate 

define necessary conditions, suitability based only on these three vari­

ables will not always indicate that sufficient conditions exist to permit 

survival of a particular life stage (Patten et al. 1979). The incre­

mental method assumes that populations are limited by usable habitat. 

Part of this research was aimed at determining the extent to which usable 

habitat, as measured by weighted usable area, was limiting standing crops 

of fishes during different seasons. For the smallmouth bass, adults and 

juveniles, there were no significant correlations between weighted usable 

area and standing crop for any season. Standing crops of adults were, 

however, always near zero at sites where weighted usable area was less 

than 5% of the total surface area. Therefore, presence of adult small­

mouth bass was limited by usable habitat only where habitat conditions 

were marginal. Also, since habitat for smallmouth bass would become 

marginal at the extremely high and low flows, only then would usable 

habitat be a prime limiting factor. For the freckled madtom, stoneroller, 

and orangebelly darter, correlations between weighted usable areas and 

standing crops were significant during the summer. There were also sig­

nificant correlations during some of the other seasons but it appeared 

that usable habitat limited the abundance of freckled madtoms, stone-
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rollers, and orangebelly darters most markedly during the summer. Prob­

able mechanisms were different for each species. The amount of usable 

habitat to provide shelter from excessive currents during high winter 

and spring flows may have been an additional limiting factor, es.pecially 

for the stoneroller. In warm-water streams, which are characterized by 

extreme fluctuations in discharge, usable habitat is probably the prime 

factor limiting fish populations, however its influence is most intense 

at the extremes of high and low flows. 

The incremental method was used to recommend monthly flows for the 

freckled madtom, stoneroller, orangebelly darter, leopard darter, and 

all life stages of the smallmouth bass for a stream reach near the pro­

posed Lukfata Lake damsite. In addition the wetted perimeter method and 

the Montana (Tennant) method were also applied to make flow recommenda­

tions. Flow recommendations based on each method were remarkably similar 

for the low flow season (July through December) and recommended flows 

were present during typical water years. The validity of the assumptions 

made in this application of the incremental method was discussed. How­

ever, a major question still unresolved is what duration and magnitude 

of flushing flows would be required to scour silt from pools and the 

interstices of the substrate in riffles, yet prevent major mortality and 

displacement of stream fishes. In streams, such as Glover Creek, measure­

ments of velocities and water surface elevations are not possible at high 

flows. Therefore, predictions of depths and velocities at high flows 

are the least accurate; yet their effects on fishes and fish habitat 

cannot be disregarded. 

Further research is warranted to improve the accuracy of techniques 

for assessing the effects of habitat modifications and flow alterations, 



143 

and to enable fishery managers to reconnnend instream flows to optimize 

tlw value of the stream fishery. Specific recommendations for areas of 

needed research, which became apparent during the course of this study, 

are outlined below. 

1. Simulation studies could provide insight into the effects on 

the final flow recommendation of assuming independence of habi­

tat preferences for various types and degrees of interaction. 

2. Field investigations designed to determine the extent of inter­

action of habitat variables for various fish species would, 

when coupled with the results of the first research area, allow 

investigators to determine, for the species of interest, whether 

independence can be safely assumed ?r whether multivariate suit­

ability functions including the interactions must be developed. 

3. A greater understanding of the manner in which social structure 

influences habitat use or limits population density would enable 

fishery managers, through habitat modification or flow manipu­

lation, to manage for populations with a size structure to 

provide quality angling. Similar studies on interspecific 

interactions would help prevent further situations where exotic 

competitor species replace the native fauna after habitat or 

flow modifications. 

4. Studies on the mechanisms regulating population density of 

warm-water stream fishes are needed in order to determine 

necessary and sufficient conditions for these species. 

5. W11en variables describing necessary and sufficient conditions 

are determined, studies can then be aimed at examining the 

relationships of these variables to discharge. 
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6. Research is essential to develop methods to estimate the dura­

tion and magnitude of flushing flows needed to scour silt from 

pools and the interstices of the substrate in riffles. 

7. Comparison of the flow reconunendations based on field studies 

with those based on reconnaissance level-methodologies would 

help test the validity of these reconnaissance-level methodol­

ogies, which are extremely important for early planning purposes. 

The results of my research suggest that some refinements of the 

incremental methodology would permit more reliable estimation of minimum 

instream flow requirements. First, the assumption of independence of 

variables in habitat selection by fishes proved invalid. As a first-step 

approximation the assumption of independence can be made; however, as 

more data are obtained multivariate suitability functions, which take 

into account the interaction of variables, should be developed. Second, 

definition of habitat requirements should be aimed toward determining 

sufficient conditions for each life stage, i.e., what variables and what 

range o'f each comprise sufficient conditions for growth and survival of 

that life stage (Patten et al. 1979), rather than determining the require­

ments for only depth, velocity, and substrate. The use of weighted usable 

area-discharge curves for recommending instream flows is justified only 

for those species in which the variables considered in calculations of 

weighted usable areas include those which are limiting. 
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Table 41. Water quality data for Glover Creek at the State Highways 3 and 7 bridge (U. S. Geological Survey 

1977' 1978). 

Chemical 
Specific oxygen Hardness Calcium 

Discharge conductance Temperature Turbidity D.O. Percent demand CaMg co3 
Date Time (cfs) (]..Ullhos) pH (C) (JTU) (mg/1) saturation (mg/1) (mg/1) (mg/1) 

5 Nov 1975 1430 7.5 140 8.0 18.0 5 9.3 101 4 79 67 
3 Dec 1975 1430 16.0 125 7.8 14.0 2 10.7 107 8 65 50 

16 Jan 1976 29.0 16 24 59 31 
3 Feb 1976 1300 .24.0 70 7.2 10.5 7 11.4 106 59 11 11 
3 Mar 1976 1500 60.0 68 7.5 19.0 12 9.0 101 13. <2 <2 
7 Apr 1976 1430 97.0 55 8.1 19.0 8 9.1 102 15 <1 <1 
7 May 1976 1300 1300 .o 47 8.1 20.0 7 9.0 103 <4 30 19 
2 Jun 1976 1400 638.0 45 7.9 22.5 25 8.3 104 30 21 12 
7 Jul 1976 1330 57.0 55 7.6 32.0 10 7.3 100 7 60 10 
4 Aug 1976 1315 3.0 7.0 28.0 2 12 48 38 
8 Sep 1976 1400 50.0 64 8.0 27.0 6 8.2 105 12 13 13 

12 Oct 1976 1645 25.0 70 6.7 20.5 7 9.6 107 11 16 
9 Nov 1976 1600 48.0 71 6.7 12.5 14 11.0 105 9 97 

14 Dec 1976 1430 983.0 42 7.0 15 11.7 97 16 12 
19 Jan 1977 1330 579.0 31 7.2 1.0 12 12.6 87 5 93 

2 Feb 1977 1400 214.0 33 6.6 4.5 9 10.4 80 8 11 
8 Mar 1977 1700 597.0 7.7 12.5 13 10.8 102 5 10 

13 Apr 1977 1135 96.0 63 7.2 21.0 5 9.1 101 1 
10 May 1977 1030 251.0 40 6.1 22.0 9 8.3 94 2 10 

8 Jun 1977 1140 16.0 78 7.0 27.5 5 6.7 85 7 33 
27 Ju1 1977 1545 14.0 135 7.3 28.5 0 7.8 101 10 44 
2 Aug 1977 1530 305.0 54 6.7 27.5 18 7.3 92 24 23 

13 Sep 1977 1745 5.9 88 8.3 28.0 2 6.3 82 14 49 
t-' 

"' "' 



Table 42. Water quality data for site 61200P, Glover Creek. 

Dissolved Suspended Secchi disc Specific 
Discharge Temperature oxygen Percent Turbidity solids transparency conductance 

Date (m3/s) (C) (mg/1) saturation (JTU) (mg/1) (em) . (J.Imhos/cm) pH 

30 Oct 1977 0.014 19.0 7.4 78 23 6.0 48 85.0 

13 Jan 1978 '\JJ.010 0.5 15.9 110 15 0.5 a 67.4 

13 Mar 1978 1.326 8.5 12.6 107 11 0 >80 48.0 

8 Apr 1978 0.373 20.5 9.3 102 8 1.5 a 80.0 6.52 

21 Ju1 1978 0.000 26.0 6.9 83 15 7.0 a 

21 Ju1 1978b 26.0 6.9 83 6 1.0 

23 Oct 1978 0.000 16.0 10.4 104 13 4.0 a 85.0 

30 Dec 1978 6.0 6 2.0 a 52.0 

4 May 1979 1.359 15.0 13 3.0 a 56.0 

18 Ju1 1979 'V2.000 23.0 23 77.0 20 52.0 

18 Jul 1979 - Bluff Creek 8 1.0 a 67.0 

8 Aug 1979 0.085 20.0 11 2.0 >110 63.0 

aTransparency greater than maximum depth 

b 
Data for upstream pool 



Table 43. Water quality data for site 74100R, Glover Creek. 

Dissolved Suspended Secchi disc Specific 
Discharge Temperature oxygen Percent Turbidity solids transparency conductance 

Date (m3fs) (C) (mg/1) saturation (JTU) (mg/1) (em) ( Jlmhos/cm) pH 

10 Dec 1977 0.271 4.5 13.7 105 19 0 >100 90.0 

9 Jan 1978 'V0. 300 5.0 14.0 108 15 0.5 a 75.5 6.75 

14 Mar 1978 4.409 11.3 14.4 130 11 0 a 67.5 6.67 

15 Apr 1978 2.060 17.0 10.5 107 10 3.0 a 6.50 

13 Jul 1978 0.034 28.0 5.9 74 11 2.0 a 95.0 

21 Oct 1978 0.008 16.0 10.0 100 8 2.0 a 121.0 

30 Dec 1978 8.0 4 1.0 a 67.0 

5 May 1979 rv7.000 16.5 23 26.0 22 80.0 

27 Jun 1979 2.985 24.0 36 77 .o 20 

8 Aug 1979 0.283 25.0 11 3.0 a 76.0 

aTransparency greater than maximum depth 



Table 44. Water quality data for site 74100P, Glover Creek. 

Dissolved Suspended Secchi disc Specific 
Discharge Temperature oxygen Percent Turbidity solids transparency conductance 

Date (m3/s) (C) (mg/1) saturation (JTU) (mg/1) (em) (}.lmhos/cm) pH 

30 Oct 1977 low 18.2 8.8 93 21 2.0 132 

17 Nov 1977 .337 13.6 11.2 106 15 5.0 67 82.5 

9 Jan 1978 '\, • 300 5.0 13.4 104 11 2.5 a 80.5 6.65 

14 Mar 1978 4.325 11.6 13.0 118 11 0 a 65.0 6.61 

10 Apr 1978 1.588 19.3 9.8 105 10 3.0 a 6.50 

20 Ju1 1978 .034 29.0 10.0 127 15 1.0 a 

21 Oct 1978 .008 12.0 10.0 92 8 2.0 a 112.0 

30 Dec 1978 8.0 6 0 a 72.0 

5 May 1979 ,7.000 16.5 23 26.0 22 80.0 

27 Jun 1979 2.985 24.0 36 77.0 20 

8 Aug 1979 .283 25.0 11 4.0 >100 76.0 

aTransparency greater than maximum depth 



Table ~5. Warer quality data for sites 61200R, 71300R, and 53300R, Glover Creek. 

Dissolved Suspended 
Discharge Temperature oxygen Percent Turbidity solids 

Date (cfs) (C) (mg/1) saturation (JTU) (mg/1) 

Site 61200R 
12 Ju1 1978 ,.,__.0.000 24.5 7.2 85 11 1.0 
23 Oct 1978 0.002 16.0 9.4 95 13 4.0 
30 Dec 1978 6.0 6 1.0 
4 May 1979 1.359 15.0 13 9.0 
8 Aug 1979 0.085 20.0 11 3.0 

Site 71300R 
10 Dec 1977 1.395 2.5 14.4 105 19 0 
12 Jan 1978 1.4 15.4 109 21 0.5 

Site 53300R 
15 Apr 1978 4.151 19.0 10.9 117 10 3.0 
30 Dec 1978 7.0 10 2.0 

Specific 
conductance 
(Jlmhos/cm) 

82.0 
95.0 
54.0 
56.0 
66.0 

72.5 
84.0 

67.0 

pH 

6.4 

6.5 . 

...... 
-....! 
0 
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Figure 2h. llt•pth, velocity, and substrate frequency 

diHLrll>11lloiiH and s11ltahility curves for leopard darters 

(Orlll and Maughan 19HO). 
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Figure 27. Habitat suitability curves for smallmouth bass fry, 

developed by Bovee (unpublished, Cooperative Instream Flow Service 

Group, Fort Collins, Colorado). 
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bass, developed by Bovee (unpublished, Cooperative InstreamFlow Ser-
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