A RECENT COUNTEREXAMPLE IN BANACH SPACE THEORY

By

STEPHEN R. MURDOCK
Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1974
Master of Science Oklahoma State University Stillwater, Oklahoma 1976

```
Submitted to the Faculty of the Graduate College
        of the Oklahoma State University
    in partial fulfillment of the requirements
    for the Degree of
    DOCTOR OF EDUCATION
            May, 1980
```

> Thesis
> $1980 D$
> Ma974r
> Cop.

A RECENT COUNTEREXAMPLE IN BANACH SPACE THEORY

Thesis Approved:

1064674

PREFACE

In 1979 J. Bourgain and F. Delbaen constructed a Banach space which resolved several long standing conjectures in Banach space theory [2]. We shall demonstrate that this space has the following properties:

1) It is a separable L_{∞} space.
2) It has the Schur property.
3) It has the Radon-Nikodým property.

We will show at the end of Chapter IV how the existence of such a space resolves the conjectures mentioned above.

The example of Bourgain and Delbaen is thus very surprising. It is the purpose of this paper to provide an exposition of the construction of this space and the verification of its properties. We attempt to do this in a manner which makes the example accessible to a graduate student in mathematics. We assume that the reader has had a first course in Functional Analysis. We offer [5] in analysis and [4] in topology as references for prerequisites. The exposition is selfcontained except for one theorem which states that the second dual of an injective space is injective [10]. The proof of this theorem makes extensive use of the ideas from the theory of vector lattices. A proof would thus lead us far astray from the central issue of this example. One theorem we use which might be regarded as marginal to the theory established in a first course in Functional Analysis is the Vitali-Hahn-Saks theorem. For a proof of this see page 158 of [5]. Definitions and the prerequisite theory of all of the properties mentioned above are provided
together with a detailed construction of the space and verification of its properties.

Later in 1979 Bourgain and Delbaen constructed another example of a separable L_{∞} space with R.N.P. which in contrast to the first example contains no isomorph of ℓ_{1}. The construction of this space is essentially the same as the first space and we therefore include this example. We also show that this example has no subspace isomorphic to ℓ_{1}. It is a consequence of this fact that this space is, quite surprisingly, somewhat reflexive. We cite appropriate references to establish this fact. The construction of both spaces is done simultaneously. It is important to notice that the construction is accomplished by using isomorphic rather than isometric copies of ℓ_{∞}^{n}. We believe this to be the first example of a L_{∞} construction using this method [2]. The author wishes to express his appreciation to his advisor, Professor Jasper Johnson for his invaluable help and limitless patience in the preparation of this paper.

An expression of gratitude is also due to the members of my committee and the faculty of the mathematics department of Oklahoma State University as each has played a part in making this possible.

A special note of thanks is due to Ms. Janet Sallee who typed this manuscript.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. PRELIMINARIES 4
Bases in Banach Spaces 4
The Schur Property 11
The Radon-Nikodým Property 17
Injective Banach Spaces. 19
Weak Completeness. 22
The Class $\ell_{\infty}(\Gamma)$ 25
Separable L_{∞} Spaces. 32
III. THE CLASS X(a,b) 36
IV. THE CLASS X $(1, b)$ 45
V. THE CLASS $X(a, b), a<1$. 49
BIBLIOGRAPHY 57

FIGURE

Figure Page

1. The Choices of a and b. 36

CHAPTER I

INTRODUCTION

Throughout this paper we make use of some standard notations and terminology with which we hope the reader is familiar. For the sake of completeness and reference we list these. The collection of all (bounded linear) operators from a Banach space X to a Banach space Y is denoted by $B(X, Y)$, and we write $B(X)$ instead of $B(X, X)$. The word operator will always refer to a bounded linear operator. We reserve the symbol I_{X} for the identity operator on the space X. An operator $\mathrm{P} \varepsilon \mathrm{B}(\mathrm{X})$ is called a projection if $\mathrm{P}(\mathrm{Px})=\mathrm{Px}$ for all $\mathrm{x} \varepsilon \mathrm{X}$. A subspace E of a Banach space X is said to be complemented in X if there exists a projection $P \varepsilon B(X)$ such that $P(X)=E$. If $T \in B(X, Y)$ and there is a number $m>0$ such that $m\|x\||\leq||T x||$ for all $x \in X$ then T is called an isomorphism. In this case $T^{-1} \varepsilon B(T(X), X)$. Two Banach spaces X and Y are called isomorphic if there is an isomorphism $T \varepsilon B(X, Y)$ such that $T(X)=Y$. If X and Y are isomorphic then the number $d(X, Y)$ defined by $d(X, Y)=$ $\inf \left\{\|T\| \cdot\left\|T^{-1}\right\| \mid T\right.$ is an isomorphism of X onto Y is called the Banach-Mazur distance coefficient of the spaces X and Y. An isomorphism $T \varepsilon B(X, Y)$ is called an isometry if $\|T x\|=\|x\|$ for all $x \in X$, and X and Y are said to be isometric if there is an isometry $T \in B(X, Y)$ such that $T(X)=Y$.

The dual of a Banach space X is denoted by X^{*} and for (X^{*})* we write $X^{* *}$. We reserve the letter J to denote the canonical isometry of

X into $\mathrm{X}^{* *}$, ie. $(\mathrm{Jx})\left(\mathrm{x}^{*}\right)=\mathrm{X}^{*}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$ and all $\mathrm{x}^{*} \varepsilon \mathrm{X}^{*}$. If $T \varepsilon B(X, Y)$ then the adjoint of T denoted by T^{*} is the element of $B\left(Y^{*}, X^{*}\right)$ defined by $\left(T^{*} Y^{*}\right)(x)=y^{*}(T X)$ for all $x \in X$ and all $Y^{*} \varepsilon Y^{*}$. If A is a subset of a Banach space X then the annihilator of A is denoted by A^{\perp} and is defined by $A^{\perp}=\left\{x^{\star} \varepsilon X^{*} \mid x^{*}(x)=0\right.$ for all $\left.x \varepsilon A\right\}$. For ($\left.A^{\perp}\right)^{\perp}$ we write $A^{\perp \perp}$.

When we consider the weak and weak* topologies on a Banach space X we will distinguish limits and closures with respect to these topologies as follows: $\underset{n}{w-l i m} x_{n}, w^{*}-\lim _{n} x_{n}$, and $\lim _{n} x_{n}$ refers respectively to the weak, weak*, and norm limits of the sequence $\left\{x_{n}\right\} \subset x$. The weak, weak*, and norm closures of a subset $A \subset X$ are denoted respectively by $\bar{A}^{\mathrm{W}}, \overline{\mathrm{A}}^{\mathrm{w}^{*}}$, and $\overline{\mathrm{A}}$. The unit ball of a Banach space X is denoted by B_{X} and is defined by $B_{X}=\{x \varepsilon X| ||x| \mid \leq 1\}$. An operator $T \varepsilon B(X, Y)$ is called compact (respectively weakly compact) if $\overline{T(B)}$ is compact (respectively, weakly compact).

If (Ω, Σ, μ) is a measure space then $L_{p}(\mu), l \leq p<\infty$, denotes the Banach space consisting of equivalence classes of measurable real valued functions f defined on Ω, for which $\left(\int_{\Omega}|f|^{p} d \mu\right)^{1 / p}$ is finite. For $p=\infty, L^{\infty}(\mu)$ consists of such for which $|f|$ is essentially bounded. The norm in $L_{p}(\mu)$ is defined by $||f||=\left(\int_{\Omega}|f|^{p} d \mu\right)^{1 / p}$ for $p<\infty$, and $||f||=$ essential $\sup |f|$ for $p=\infty$. If (Ω, Σ, μ) is the usual Lebesque measure space on $\Omega=[0,1]$ then we write L_{p} for $L_{p}(\mu)$. If ($\left.\Gamma, \Sigma, \mu\right)$ is a discrete measure space with $\mu(\{Y\})=1$ for all $\gamma \varepsilon \Gamma$ then we write ${ }_{p}(\Gamma)$ for $L_{p}(\mu)$. When Γ is the set of positive integers then we write ℓ_{p} for $\ell_{p}(\Gamma)$. We write ℓ_{p}^{n} for $\ell_{p}(\Gamma)$ when $\Gamma=\{1,2, \cdots, n\}$. The subspace of $\ell_{\infty}(\Gamma)$ consisting of all $f \varepsilon \ell_{\infty}(\Gamma)$ such that $\{\gamma \in \Gamma||f(\gamma)|>\varepsilon\}$ is finite for each $\varepsilon>0$ is denoted by $c_{o}(\Gamma)$, and if Γ is the set of positive integers then we write c_{0} for $c_{o}(\Gamma)$. If K is.a compact Hausdorff space then $C(K)$
denotes the Banach space consisting of all continuous real valued functions defined on K. The norm of $f \in C(K)$ is defined by $\|f\|=\sup _{x \in K}|f(x)|$.

In Chapter II we provide the reader with the theory which is needed to discuss the counter-example described in Chapter IV and its properties. Chapter II is thus divided into sections dealing in order with l) Bases in Banach Spaces, 2) The Schur Property, 3) The Radon-Nikodym Property, 4) Injective Banach Spaces, 5) Weak Sequential Completeness, 6) The $\ell_{\infty}(\Gamma)$ spaces, and 7) Separable L_{∞} spaces. None of these sections is meant to be an exhaustive treatment of its topic. We include only those results which are necessary for an understanding of the space of Chapter IV.

In Chapter III we construct a class of separable L_{∞} spaces which have the Radon-Nikodym property. It is important to notice that the "building blocks" of these spaces are isomorphic copies of l_{∞}^{n} rather than isometric copies. To our knowledge this is the first such construction (see [2]). The spaces in this class have an important metric property that depends on two real parameters a and b, and thus the class will be denoted by $X(a, b)$.

Chapter IV is truly the heart of the paper. Here we investigate the subclass determined by setting the parameter $a=1, i . e ., x(1, b)$ spaces. It is shown in this chapter that an $X(I, b)$ space has the Schur property, and we establish the other surprising properties of such a space.

In Chapter V we observe that if $a<l$ then $a n X(a, b)$ space has no subspace isomorphic to ℓ_{1}. This fact together with some rather deep results, cited there, allow us to conclude some interesting properties about this class also.

PRELIMINARIES

In this chapter we will discuss the results necessary to read and understand the proofs and construction of examples that follow. We include only that which is necessary to make the exposition self contained and that which we feel the reader may not have been exposed to in a first course in Functional Analysis.

Bases in Banach Spaces

Throughout this paper we will use the term basis instead of Shauder basis as this is the only type we will consider. The reader is cautioned not to confuse this notion with that of the algebraic Hamel basis.

Definition O: A basis of an infinite dimensional Banach space X is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \leftharpoondown x$ such that for each $x \in X$ there exists a unique sequence of scalars $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ such that $x=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$. A basic sequence is a sequence which is a basis for its closed linear span.

We use the notation $\operatorname{sp}\left\{\mathrm{x}_{\mathrm{n}}\right\}$ to denote the set of all finite linear combinations of the vectors $\left\{x_{n}\right\}$ and the closure of this set will be denoted by $\left[x_{n}\right]$. The span of the first k of these vectors will be denoted $\left[x_{n}\right]_{n=1}^{k}$. An infinte dimensional Banach space X with basis $\left\{x_{n}\right\}$ is obviously separable and thus a nonseparable space, such as ℓ_{∞}, has no basis. If $x=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ we may associate to x the sequence
$\left\{\alpha_{n}\right\}$ and thus think of X as a sequence space. For such an x we will refer to α_{j} as the $j^{\text {th }}$ coordinate of x when no confusion can occur. If we are considering more than one basic sequence we will refer to coordinates with respect to certain basic sequences. The mappings P_{k} onto $\left[x_{n}\right]_{n=1}^{k}$ defined by $P_{k}\left(\sum_{n=1}^{\infty} \alpha_{n} x_{n}\right)=\sum_{n=1}^{k} \alpha_{n} x_{n}$ will be referred to as the natural projections associated with the basis $\left\{x_{n}\right\}$.

Theorem 1: If $\left\{\mathrm{X}_{\mathrm{n}}\right\}$ is a basis for a Banach space X and $\left\{\mathrm{P}_{\mathrm{n}}\right\}$ is the sequence of natural projections associated with $\left\{x_{n}\right\}$ then P_{n} is a bounded linear operator for each n and $\sup _{n}\left\|P_{n}\right\|<\infty$.

Proof: Define $\|\mid x\|=\sup _{n}\left\|P_{n} x\right\|$. It is easily verified that $\|\mid \cdot\|$ is indeed a norm on X. We will show that in fact these two norms are equivalent. Obviously $||x||=\lim _{n}| | P_{n} x| | \leq \sup _{n}| | P_{n} x| |=$ $\|\mid x\| \cdot \operatorname{Let} I:(X,\|\cdot\| \mid \|(X,\|\cdot\|)$ be the identity map. If we show that X is complete with respect to the new norm $\|\|\cdot\|$, then the open mapping theorem gives us that I is an isomorphism and hence the two norms are equivalent.

Assume that $\left\{y_{n}\right\}$ is a Cauchy sequence with respect to $\|\|\cdot\|\|$ Since $\left\{x_{n}\right\}$ is a basis for X there exists a unique sequence of scalars $\left\{\alpha_{j}(n)\right\}_{j=1}^{\infty}$ such that $y_{n}=\sum_{j=1}^{\infty} \alpha_{j}(n) x_{n}$ for each n (the convergence of this sum is with respect to $\|\cdot\| \mid$. We fix now k and notice that $\left|\alpha_{k}(m)-\alpha_{k}(n)\right|\left|\left|x_{k}\right|\right|=\|\left(\alpha_{k}(m)-\alpha_{k}(n) x_{k}\|=\| p_{k}\left(y_{m}-y_{n}\right)-\right.$ $P_{k-1}\left(y_{m}-y_{n}\right)| | \leq\left|\left|P_{k}\left(y_{m}-y_{n}\right)\right|\right|+\left|\left|P_{k-1}\left(y_{m}-y_{n}\right) \| \leq 2\right|\right|\left|y_{m}-y_{n}\right|| |$. But $\left\{y_{n}\right\}$ is $\|\|\cdot\|$-Cauchy so 2$\| y_{m}-y_{n} \| \rightarrow 0$ and thus the sequence of scalars $\left\{\alpha_{k}(n)\right\}_{n=1}^{\infty}$ is Cauchy. So put $\alpha_{k}=\lim _{n} \alpha_{k}(n)$, and consider the $\|\cdot\|$ convergence of $\sum_{k=1}^{\infty} \alpha_{k} x_{k}$. Let $\varepsilon>0$ be given. We know that there exists an M such that for $m, n \geq M$, we have $\left\|y_{m}-y_{n}\right\|<\varepsilon$. So by the definition of $\|\cdot\| \|$ we have that for any $k,\left\|p_{k}\left(y_{m}-y_{n}\right)\right\|<\varepsilon$ when m,
$n \geq$ M. Thus $\left|\mid \sum_{j=1}^{k}\left(\alpha_{j}(m)-\alpha_{j}(n)\right) x_{j} \|<\varepsilon\right.$. In the limit as $n \rightarrow \infty$ this becomes $\left|\mid \sum_{j=1}^{k}\left(\alpha_{j}(m)-\alpha_{j}\right) x_{j} \| \leq \varepsilon\right.$ for all k and $m \geq$ M. Choose a y_{m} where $m \geq M$. Then $y_{m}=\sum_{j=1}^{\infty} \alpha_{j}(m) x_{j}$ so we can select an $N>M$ for which $\left|\left|\sum_{j=k}^{\ell} \alpha_{j}(m) x_{j}\right|\right|<\varepsilon$ whenever $k, \ell \geq N$. We get then that for $k, \ell \geq M$, $\left\|\sum_{j=k}^{\ell} \alpha_{j} x_{j}\right\|=\left\|\sum_{j=k}^{\ell}\left(\alpha_{j}-\alpha_{j}(m)\right) x_{j}+\sum_{j=k}^{\ell} \alpha_{j}(m) x_{j}\right\| \leq\left\|\sum_{j=k}^{\ell}\left(\alpha_{j}-\alpha_{j}(m)\right) x_{j}\right\|$ $+\left\|\sum_{j=k}^{\ell} \alpha_{j}(m) x_{j}\right\| \leq 2 \varepsilon+\varepsilon$. Thus the series $\sum_{j=1}^{\infty} \alpha_{j} x_{j}$ is Cauchy with respect to $\|\cdot\|$ and must converge to some element $y=\sum_{j=1}^{\infty} \alpha_{j} x_{j}$ (the equality is in the sense of $\|\cdot\|)$. We have already observed, however, that for sufficiently large m and all $k\left\|\sum_{j=1}^{k}\left(\alpha_{j}(m)-\alpha_{j}\right) x_{j}\right\| \leq \varepsilon$ which means that $\| P_{k}\left(y_{m}-y\right) \mid \leq \varepsilon$ for all k and sufficiently large m. Taking the supremum we have $\sup _{k}\left\|P_{k}\left(y_{m}-y\right)\right\|=\left\|y_{m}-y\right\|| | \varepsilon$. Thus the two norms are equivalent and so there is a number k such that $\||x| \mid \leq$ $K||x||$ for all $x \in X$. So $\sup _{n}| | P_{n} x| | \leq K| | x| |$. Therefore each P_{n} is a bounded linear operator and $\sup _{n}\left\|P_{n}\right\| \leq K$. Q.E.D.

If $\left\{P_{n}\right\}$ is the sequence of natural projections associated with the basis $\left\{x_{n}\right\}$ the number $\sup _{n}| | P_{n} \|$ is called the basis constant of the basis $\left\{x_{n}\right\}$.

Some important examples of Banach spaces with bases are,

1) c_{0} or $\ell_{p}, I \leq p<\infty$, with basis $\left\{e_{n}\right\}$ where $e_{n}=(0,0, .1 ., 0)$. The " 1 " is the $n{ }^{\text {th }}$ term of the sequence. Hereafter this basis will be referred to as the usual basis of the space in question.
2) $L_{p}[0,1], 1 \leq p<\infty$, with basis $\left\{x_{n}(t)\right\}$, where $\left\{x_{n}(t)\right\}$ is the Haar system defined by $x_{1}(t)=1$, and

$$
\begin{aligned}
& x_{2 k_{+\ell}}(t)=\left\{\begin{array}{l}
1 \text { if } t \varepsilon\left[(2 \ell-2) 2^{-k-1}, \quad(2 \ell-1) 2^{-k-1}\right] \\
=-1 \text { if } t \varepsilon\left[(2 \ell-1) 2^{-k-1}, 2 \ell \cdot 2^{-k-1}\right] \\
0, \text { elsewhere }
\end{array}\right. \\
& \text { for } k=0,1,2, \ldots ; \ell=1,2, \ldots, 2^{k}
\end{aligned}
$$

3) $\mathcal{C}[O, I]$, with basis $\left\{\phi_{n}(t)\right\}$, where $\left\{\phi_{n}(t)\right\}$ is the Schauder system defined by $\phi_{1}(t)=1$, and $\phi_{n}(t)=\int_{0}^{t} x_{n-1}(t) d t, n \geq 2 . x_{n}(t)$ is the $n^{\text {th }}$ Haar function from example 2).

We have previously alluded to the possibility of the existence of more than one basis for a given space. For a proper discussion of this we need the following definition of equivalence of basic sequences:

Definition 2: Two basic sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are said to be equivalent provided $\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ converges if and only if $\sum_{n=1}^{\infty} \alpha_{n} y_{n}$ converges.

It is a consequence of the closed graph theorem that the basic sequence $\left\{x_{n}\right\}$ is equivalent to the basic sequence $\left\{y_{n}\right\}$ if and only if the linear map $T:\left[x_{n}\right] \rightarrow\left[y_{n}\right]$, determined by $T x_{n}=y_{n}$ for all n, is an isomorphism onto $\left[y_{n}\right]$.

The next definition provides us with a way of generating new basic' sequences from an existing one.

Definition 3: Let $\left\{x_{n}\right\}$ be a basic sequence in some Banach space X. If $m_{1}<m_{2}<\ldots$ is any sequence of positive integers and $\left\{\alpha_{n}\right\}$ is a sequence of scalars, then the sequence $\left\{b_{j}\right\}$ of nonzero vectors defined by $b_{j}=\sum_{i=m_{j}+1}^{m_{j}+1} \alpha_{i} x_{i}$ is called a block basic sequence (or simply a blocking) of the basic sequence $\left\{x_{n}\right\}$.

Blockings will be used extensively in the constructions and proofs in subsequent chapters.

The following theorem provides us with another way of obtaining a
new basic sequence from an existing one. In essence the theorem says that if we perturb a basic sequence "slightly" the resultant sequence is an equivalent basic sequence.

Theorem 4: Let $\left\{x_{n}\right\}$ be a normalized (i.e., $\left\|x_{n}\right\|=1$ for each n) basic sequence in a Banach space X with basis constant K. If $\left\{y_{n}\right\} \subset X$ and $\sum_{n}| | x_{n}-y_{n} \|<\frac{1}{2 K}$ then $\left\{y_{n}\right\}$ is a basic sequence which is equivalent to $\left\{x_{n}\right\}$.

Proof: Define $T: \operatorname{sp}\left\{x_{n}\right\} \rightarrow \operatorname{sp}\left\{y_{n}\right\}$ as follows: For $x=\sum_{n=1}^{k} \alpha_{n} x_{n}$ put $T(x)=\sum_{n=1}^{k} \alpha_{n} Y_{n}$, and observe that $\left|\left|x-T_{x}\right|\right|=| | \sum_{n=1}^{k} \alpha_{n} x_{n}-$ $\sum_{n=1}^{k} \alpha_{n} y_{n}\left\|=| | \sum_{n=1}^{k} \alpha_{n}\left(x_{n}-y_{n}\right)\right\| \leq\left(\sup _{n}\left|\alpha_{n}\right|\right) \sum_{n=1}^{k}\left\|x_{n}-y_{n}\right\|$. But $\left|\alpha_{n}\right|=\left|\alpha_{n}\left\|\left|x_{n}\right| \mid=\right\| \alpha_{n} x_{n}\|=\|\left(p_{n}-P_{n-1}\right) x\|\leq 2 K\| x \|\right.$ for each n. Thus $\sup _{\mathrm{n}}\left|\alpha_{\mathrm{n}}\right|<2 \mathrm{~K}\|\mathrm{x}\| \mid$ and we have $\left\|\mathrm{x}-\mathrm{Tx}| | \leq 2 \mathrm{~K} \sum_{\mathrm{n}=1}^{\mathrm{k}}\right\| \mathrm{x}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}}\|| | \mathrm{x}\|$. Since $\sum_{n=1}^{\infty}| | x_{n}-y_{n}| |<\frac{1}{2 K}$ we have $2 K \sum_{n=1}^{k}| | x_{n}-y_{n}| |<1$. So there is a number $M<1$ such that $||x-T x|| \leq M| | x| |$ for all $x \varepsilon \operatorname{sp}\left\{x_{n}\right\}$. By the triangle inequality then we get $(1-M)||x|| \leq||T x|| \leq(l+M)| | x| |$. (Notice $M<1$ so $1-M>0$). It follows easily then that T is an isomorphism onto $\operatorname{sp}\left\{y_{n}\right\}$ and that T extends to an onto isomorphism $\tilde{T}:\left[x_{n}\right] \rightarrow\left[y_{n}\right]$ for which $\tilde{T}\left(\Sigma \alpha_{n} x_{n}\right)=\sum \alpha_{n} y_{n}$. Q.E.D.

The next theorem is a result of R. C. James [8]. It says essentially that any space which contains an isomorphic copy of ℓ_{1} (i.e. contains a subspace isomorphic to l_{l}) has another subspace which is "almost isometric" to ℓ_{1}. The term "almost isometric" is made precise by the statement of:

Theorem 5: If $\left\{u_{n}\right\}$ is a sequence in a normed linear space which is equivalent to the usual basis of ℓ_{1}, then for every $\varepsilon>0$ there exists a blocking $\left\{b_{n}\right\}$ of $\left\{u_{n}\right\}$ such that $\left\|b_{n}\right\|=1$ and
(1- $\varepsilon) \quad \sum_{i=1}^{n}\left|\alpha_{i}\right| \leq\left|\left|\sum_{i=1}^{n} \alpha_{i} b_{i}\right|\right| \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|$, for any sequence of scalars $\left\{\alpha_{i}\right\}$. Proof: Let $\varepsilon>0$ be given. Choose δ such that $\frac{1}{(I+\delta)^{2}}>(I-\varepsilon)$. We may assume, without loss of generality, that there exists a number α_{r} $0<\alpha \leq 1$, such that for any sequence of scalars $\left\{\alpha_{i}\right\}$ we have $\alpha\left\|\left.\right|_{i=1} ^{n} \alpha_{i} u_{i}\right\| \leq\| \|_{i=1}^{n} \alpha_{i} u_{i}\left\|_{I} \leq\right\| \sum_{i=1}^{n} \alpha_{i} u_{i} \|,\left(\|\cdot\| \|_{1}\right.$ means $\left.\left|\left|\sum_{i=1}^{n} \alpha_{i} u_{i} \|_{1}=\sum_{i=1}^{n}\right| \alpha_{i}\right|\right)$. Put $A_{n}=\left\{x \varepsilon \operatorname{sp}\left\{u_{k}\right\}| | x| |=1\right.$ and $\left.p_{n}(x)=0\right\}$, where $\left\{P_{n}\right\}$ is the sequence of natural projections associated with $\left\{u_{n}\right\}$. Also put $\lambda_{n}=\sup _{x \varepsilon A_{n}} \mid x \|_{1}$. Notice that $\alpha \leq \lambda_{n} \leq 1$, and $A_{n}>A_{n+1}$ for each n. Consequently there exists $a \lambda, 0 \leq \lambda \leq 1$, such that $\lambda_{n} \rightarrow \lambda$. Now choose n_{o} such that $\lambda_{n_{0}}<\lambda(l+\delta)$. Select $y_{1} \varepsilon A_{n_{0}}$ for which $\left\|y_{1}\right\|_{1}>\frac{n_{0}}{1+\delta} \geq \frac{\lambda}{1+\delta}$. Observe that $\lim _{j}\left\|_{j} y_{1}-y_{1}\right\|_{1}=0$ and thus. $\left\|\frac{P_{j} y_{1}}{\left\|P_{j} y_{1}\right\|}\right\|_{I} \rightarrow\left\|\frac{y_{1}}{\left\|y_{1}\right\|}\right\|_{I}=\left\|y_{1}\right\|_{1}>\frac{\lambda}{1+\delta}$. Thus we can choose $j_{1}>n_{0}$ such that $\left\|\frac{\sum_{j_{1}}^{Y_{1}}}{\left\|P_{j_{1}} y_{1}\right\|}\right\|_{1}>\frac{\lambda}{1+\delta} . \quad$ Put $b_{1}=\frac{P_{j_{1}} Y_{1}}{\left\|P_{j_{1}} y_{1}\right\|}$ and notice that $\left\|b_{1}\right\|=1, p_{n} b_{1}=0$, and $\left\|b_{1}\right\|_{1}>\frac{\lambda}{1+\delta}$. Now choose $y_{2} \varepsilon A_{j_{1}+1}$ such that $\left\|y_{2}\right\|_{1}>\frac{\lambda_{j_{1}+1}}{1+\delta} \geq \frac{\lambda}{1+\delta}$, and as before choose j_{2} so that $\left\|\frac{\mathrm{P}_{2} \mathrm{Y}_{2}}{\left\|\mathrm{P}_{j_{2}} \mathrm{Y}_{2}\right\|}\right\|_{1}>\frac{\lambda}{1+\delta}$. Then put $b_{2}=\frac{\mathrm{P}_{j_{2}}{ }^{Y_{2}}}{\left\|P_{j_{2}} Y_{2}\right\|}$ to get $\left\|b_{2}\right\|=1$, $P_{n_{0}} b_{2}=0$, and $\left\|b_{2}\right\|_{1}>\frac{\lambda}{1+\delta}$. Continue inductively to select a blocking $\left\{b_{n}\right\}$ of $\left\{u_{n}\right\}$ in this manner for which $\left\|b_{n}\right\|=1, p_{n_{0}} b_{n}=0$, and $\left\|b_{n}\right\|_{1}$ $>\frac{\lambda}{1+\delta}$ for each n.

We now simply check that this is the desired blocking. Since $P_{n_{0}} b_{n}=0$ for each n we get $P_{n_{0}}\left(\sum_{i=1}^{n} \alpha_{i} b_{i}\right)=0$ for any choice of scalars $\left\{\alpha_{i}\right\}$. In particular $P_{n_{0}}\left(\frac{\sum_{i=1}^{n} \alpha_{i} b_{i}}{\left\|\sum_{i=1}^{n} \alpha_{i} b_{i}\right\|}\right)=0$ and thus $\frac{\sum_{i=1}^{n} \alpha_{i} b_{i}}{\left\|\sum_{i=1}^{n} \alpha_{i} b_{i}\right\|}$ 有 $n_{o^{\prime}}$, so $\left\|\left\lvert\, \frac{\sum_{i=1}^{n} \alpha_{i} b_{i}}{\left\|\sum_{i=1}^{n} \alpha_{i} b_{i}\right\|}\right.\right\|_{1} \leq \lambda_{n_{0}} \leq \lambda(1+\delta)$, or equivalently, $\left\|\sum_{i=1}^{n} \alpha_{i} b_{i}\right\| \geq$ $\frac{1}{\lambda(1+\delta)}\left|\left.\right|_{i=1} ^{n} \alpha_{i} b_{i} \|_{1}\right.$. Since $\left\{b_{n}\right\}$ is a blocking of $\left\{u_{n}\right\}$ we get $\frac{1}{\lambda(1+\delta)}$

$$
\begin{aligned}
& \left|\left|\sum_{i=1}^{n} \alpha_{i} b_{i}\right|\right|_{1}=\frac{1}{\lambda(1+\delta)} \sum_{i=1}^{n}\left|\alpha_{i}\right|| | b_{i} \|_{1}, \text { and so }\left|\left|\sum_{i=1}^{n} \alpha_{i} b_{i}\right|\right|>\frac{1}{\lambda(1+\delta)} \\
& \sum_{i=1}^{n}\left|\alpha_{i}\right|| | b_{i} \|_{1} \geq \frac{1}{\lambda(1+\delta)} \cdot \frac{\lambda}{(1+\delta)} \sum_{i=1}^{n}\left|\alpha_{i}\right|=\frac{1}{(1+\delta)^{2}} \sum_{i=1}^{n}\left|\alpha_{i}\right| \geq(1-\varepsilon)
\end{aligned}
$$

$$
\sum_{i=1}^{n}\left|\alpha_{i}\right|
$$

Of course by the triangle inequality $\| \sum_{i=1}^{n} \alpha_{i} b_{i}| | \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|| | b_{i}| |$ $=\sum_{i=1}^{n}\left|\alpha_{i}\right|$, so we have $(1-\varepsilon) \quad \sum_{i=1}^{n}\left|\alpha_{i}\right| \leq\left|\left|\sum_{i=1}^{n} \alpha_{i} b_{i}\right|\right| \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|$ as desired. Q.E.D.

A very natural generalization of the notion of a basic sequence is given by the following definition.

Definition 6: Let X be a Banach space and $\left\{P_{n}\right\}$ be a sequence of finite rank projections defined on X such that $P_{m} P_{n}=P_{\text {min }}(m, n)$ and $\lim _{n} P_{n} x=x$ for each x. Then the sequence $\left\{B_{n}\right\}$ where $B_{1}=P_{1}(X)$, $B_{n}=\left(P_{n}-P_{n-1}\right)(X)$ for $n>1$ is called a Finite dimensional Shauder decomposition (or F.D.D.) of X.

Remark: Definition 6 is equivalent to the more common definition
which requires: $\operatorname{dim} B_{n}<\infty$ for each n, and each $x \varepsilon \times$ has a unique representation of the form $x=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ where $x_{n} \varepsilon B_{n}$ for each n.

We will also have some need of the notion of what is called an l_{1}-sum of finite dimensional subspaces, which is a special case of the following definition.

Definition 7: Let $\left\{\left(x_{n},\left.\|\cdot\|\right|_{n}\right)\right\}$ be a sequence of Banach spaces. An ℓ_{p}-sum of this sequence, denoted by $\left(\sum_{n} x_{n}\right)_{p}$ for $l \leq p \leq \infty$, is the space consisting of all sequences $\left\{x_{n}\right\}, x_{n} \varepsilon x_{n}$ for which $\sum_{n}\left\|x_{n}\right\|_{n}^{p}<\infty$ (for $p=\infty, \sup _{n}\left\|x_{n}\right\|_{n}<\infty$) with the norm defined by $\left\|\left\{x_{n}\right\}\right\|=$ $\left(\sum_{n}\left\|x_{n}\right\|_{n}^{p}\right)^{l / p}, \quad\left(\right.$ for $\left.p=\infty,\left\|\left\{x_{n}\right\}\right\|=\sup _{n}\left\|x_{n}\right\| \|_{n}\right)$.

We leave the following two facts as exercises.
(i) An ℓ_{p}-sum with the usual coordinate-wise algebraic structure is a Banach space.
(ii) $\left(\sum_{n} X_{n}\right)_{p}^{*}$ can be identified isometrically with $\left(\sum_{n} X_{n}^{*}\right)$ for $1 \leq p<\infty$, where $p^{-1}+q^{-1}=1$ (for $p=1$ take $q=\infty$).

We conclude here our discussion of bases in Banach spaces and refer the interested reader to [12] for more information.

The Schur Property

Definition 8: A Banach space X is said to have the Schur property if every weakly null sequence converges to zero in norm. That is to say, if $\left\{x_{n}\right\} \in x$ and $w-\lim _{n} x_{n}=0$ then $\lim _{n} x_{n}=0$. Such a space will be referred to as a Schur space.

Since in a Schur space weak and norm sequential convergence coincide it follows from the Eberlein-Šmulian theorem that weak and norm
compactness are equivalent. An important example of a Schur space is ℓ_{1}. We will use the same argument which appears in [l] to prove a theorem which contains this fact.

Theorem 9: An l_{1}-sum, $\left(\sum_{n} B_{n}\right)_{1}$, of finite dimensional spaces $\left\{B_{n}\right\}$ is a Schur space.

Proof: Let $\left\{Q_{n}\right\}$ be the sequence of projections such that $\left.Q_{n}\left(\sum_{n} B_{n}\right)_{1}\right)$
$=B_{n}$, and let $\left\{y_{n}\right\} C\left(\sum_{n} B_{n}\right)_{I}$ be a weakly null sequence. Suppose
$\lim _{\mathrm{n}} \mathrm{y}_{\mathrm{n}} \neq 0$. Then there is a $\delta>0$ and a subsequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ of $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ such that $\left|\left|x_{n}\right|\right| \geq \delta>0$ for each n. Since $\left.\left\|x_{1}| |=\sum_{n}\right\|\right|_{n} x_{1} \|$ we may choose m_{1} such that $\sum_{n=m}^{\infty}\left\|\mid Q_{n} x_{1}\right\|<\delta / 5$. Since the sequence $\left\{x_{n}\right\}$ is weakly null and each Q_{j} is a finite rank operator we have $\lim _{n} Q_{j} x_{n}=0$ for each j. Any finite sum of these operators also has finite rank and thus $\lim _{n}\left(\sum_{j=k}^{\ell} Q_{j}\right)\left(x_{n}\right)=0$ for all choices of k and l. In particular if we fix $k_{2}>m_{1}$ there exists an n_{2} such that $\left\|\left(\begin{array}{ll}k_{2} & \\ j=1 & Q_{j}\end{array}\right)\left(x_{n_{2}}\right)\right\|<\delta / 5$. But $\left\|\left(\begin{array}{ll}k_{2} & \\ \sum_{j=1} & Q_{j}\end{array}\right)\left(x_{n_{2}}\right)\right\|=$ $\sum_{j=1}^{k_{2}}\left\|Q_{j} x_{n_{2}}\right\|$ so $\sum_{j=1}^{k_{2}}\left\|Q_{j} x_{n_{2}}\right\|<\delta / 5$. Since $\left\|x_{n_{2}}\right\|=\sum_{j}\left\|Q_{j} x_{n_{2}}\right\|$ we can also choose $m_{2}>k_{2}$ such that $\sum_{j=m_{2}}^{\infty}\left\|Q_{j} x_{n_{2}}\right\|<\delta / 5$. Proceed inductively to select sequences of positive integers $\left\{k_{j}\right\},\left\{n_{j}\right\}$, and $\left\{m_{j}\right\}$ such that,
(i) ${\underset{i}{\mathrm{~K}_{i}^{j}}\left|\mid Q_{i} x_{n_{j}} \|<\delta / 5\right.}$
(ii)

$$
\sum_{i=m_{j}}^{\infty}\left\|Q_{i} x_{n_{j}}\right\|<\delta / 5, \text { and thus }
$$

(iii) $\underset{i=\sum_{j}^{\sum_{j}}+1}{m^{-1}}\left\|\Omega_{i} x_{n_{j}}\right\| \geq 3 \delta / 5$.

For part (iii) recall $\delta \leq\left\|x_{n_{j}}\right\|=\sum_{i}\left\|\varepsilon_{i} x_{n_{j}}\right\|$.
By exercise (ii) following Definition $7\left(\sum_{n} B_{n}\right)_{1}^{*}$ consists of sequences $\left\{x_{j}^{*}\right\}$ with $x_{j}^{*} \varepsilon B_{j}^{*}$ and $\sup _{j}\left\|x_{j}^{*}\right\|<\infty$. We construct such a sequence as follows: If j is not between k_{i} and m_{i} for some i put $x_{j}^{*}=0$. If, however, $k_{i} \leq j \leq m_{i}$ for some i put $x_{j}^{*}\left(Q_{j} x_{n_{i}}\right)=\left\|Q_{j} x_{n_{i}}\right\|$ and use the Hahn-Banach Theorem to extend x_{j}^{*} to all of B_{j} with $\left\|x_{j}^{*}\right\|=1$. Then $x^{*}=\left\{x_{j}^{*}\right\} \in\left(\sum_{n} B_{n}\right)_{i}^{*}$.

We apply this functional to our sequence $\left\{x_{n_{i}}\right\}$ and observe that for
each i we have $\left|x^{*}\left(\left\{x_{n_{i}}\right\}\right)\right|=\left.\right|_{j} \sum_{i=1}^{\infty} x_{j}^{*}\left(Q_{j} x_{n_{j}}\right)\left|\geq\left|{ }_{j=k_{i}+1}^{\sum_{i}^{-1}} x_{j}^{*}\left(Q_{j} x_{n_{i}}\right)\right|-\right.$ $\left|\sum_{j=1}^{k_{i}} x_{j}^{*}\left(Q_{j} x_{n_{i}}\right)\right|-\left|\sum_{j=m_{i}}^{\infty} x_{j}^{*}\left(Q_{j} x_{n_{i}}\right)\right|>\delta / 5$. Since $\left|{ }_{j} \sum_{i}^{\sum_{i}} x_{j}^{*}\left(Q_{j} x_{n_{i}}\right)\right| \leq$ $\sum_{j=1}^{k_{i}}| | x_{j}^{*}\| \| Q_{j} x_{n_{i}}\left\|\leq \sum_{j=1}^{k_{i}}\right\| Q_{j} x_{n_{i}} \|<\delta / 5$ by (i) above and similarly $\left|\sum_{j=m_{i}}^{\infty} x_{j}^{*}\left(Q_{j} x_{n_{i}}\right)\right|<\delta / 5$ by (ii) and $\left|\sum_{j=k_{i}+1}^{m_{i}^{-1}} x_{j}^{*}\left(Q_{j} x_{n_{i}}\right)\right| \geq 3 \delta / 5$ by and the definition of x^{*}. Thus the sequence $\left\{x_{n_{i}}\right\}$ cannot be weakly null which contradicts our original assumption and proves the theorem.

The following definitions provide us with another class of Schur spaces.

Definition 10: Let $\left\{\mathrm{B}_{\mathrm{n}}\right\}$ be a sequence of finite dimensional Banach spaces. If $\left\{m_{j}\right\}$ is a sequence of non-negative integers such that $m_{j}+1<m_{j+1}$, then the Banach space with F.D. D. $\left\{F_{j}\right\}$, where $F_{j}=\left[B_{n}\right]_{n=m_{j}+1}^{m_{j+1}}$, is called a skipped blocking of the sequence $\left\{B_{n}\right\}$.

While it is not exactly precise the following diagram should help to at least motivate the terminology of Definition 10.

Definition 11: A Banach space X is said to have the l_{1}-skipped-blocking-property provided there exists an F.F.D. $\left\{B_{n}\right\}$ of X such that every skipped blocking of $\left\{B_{n}\right\}$ is an ℓ_{1}-sum. Such a sequence $\left\{B_{n}\right\}$ will be called an ℓ_{1}-skipped-blocking sequence for X.

Remark: The reader might wish to consult $[7]$ and check that the example provided there by R. C. James could be said to have the $\ell_{2}-$ skipped-blocking-property.

Theorem 12: A Banach space X which has the ℓ_{1}-skipped-blockingproperty is a Schur space.

Proof: We will show that every weakly null sequence in X has a subsequence that goes to zero in norm. The procedure will be to show that every weakly null sequence has a subsequence which is "very close" to a skipped sequence, i.e. a sequence contained in a skipped blocking.

Let $\left\{B_{n}\right\}$ be an ℓ_{1}-skipped-blocking-sequence for X, and let $\left\{P_{n}\right\}$ be the sequence of natural projections, $P_{n}: X \rightarrow\left[B_{j}\right]_{j=1}^{n}$. Let $\left\{x_{n}\right\} \subset x$ be any weakly null sequence and $\left\{\varepsilon_{n}\right\}$ a sequence of positive numbers which decrease to zero.

Notice first that since $X=\left[B_{n}\right]$, then given any $X \varepsilon X$ and any $\varepsilon>o$ there exists k and $y \varepsilon P_{k}(X)$ such that $||x-y||<\varepsilon$. In particular there exists k_{1} and some $y_{1} \varepsilon P_{k_{1}}(X)$ for which $\left\|x_{1}-y_{1}\right\|<\varepsilon_{1}$. Put
$n_{1}=1$ and $\mathrm{F}_{1}=\mathrm{P}_{\mathrm{k}_{1}}(\mathrm{X})$, to get $\left|\left|\mathrm{x}_{\mathrm{n}_{1}}-\mathrm{y}_{1}\right|\right|<\varepsilon_{1}$ and $\mathrm{y}_{1} \varepsilon_{1} \mathrm{~F}_{1}$. Now since $w-\lim _{n} x_{n}=0$ and each of the projections P_{k} is of finite rank we have $\lim _{\mathrm{n}} \mathrm{P}_{\mathrm{k}} \mathrm{X}_{\mathrm{n}}=0$ for each k . Thus we can choose n_{2} large enough to insure that $\left|\mid P_{k_{1}+1} x_{n_{2}} \|<e_{2} / 3\right.$. Now choose a sequence $\left\{Z_{n}\right\}<U_{j}^{U} P_{j}(X)$ such that $\lim _{n} z_{n}=x_{n_{2}}$ then certainly $\lim _{n} P_{k_{1}+1} Z_{n}=p_{k_{1}+1} x_{n_{2}}$, so we may choose N such that $\left\|P_{k_{1}+1} Z_{N}-P_{k_{1}+1} X_{n_{2}}\right\|<\varepsilon_{2} / 3$. It follows then that $\left|\left|P_{k_{1}+1} Z_{N}\right|\right|<2 \varepsilon_{2} / 3$. Since $Z_{N} \varepsilon \underset{j}{U} P_{j}(X)$ there exists $k_{2}>k_{1}+1$ such $Z_{N}=P_{k_{2}} Z_{N}$. Now put $y_{2}=Z_{N}-P_{k_{1}+1} Z_{N}=\left(P_{k_{2}}-P_{k_{1}+1}\right)\left(Z_{N}\right)$, and let $\mathrm{F}_{2}=\left(\mathrm{P}_{\mathrm{k}_{2}}-\mathrm{P}_{\mathrm{k}_{1}+1}\right)(\mathrm{X})$. Then we have $\left|\left|\mathrm{x}_{\mathrm{n}_{2}}-\mathrm{y}_{2}\right|\right|=| | \mathrm{x}_{\mathrm{n}_{2}}-\mathrm{P}_{\mathrm{k}_{2}} \mathrm{Z}_{\mathrm{N}}+$ $P_{k_{1}+1} Z_{N}| | \leq\left|\left|x_{n_{2}}-P_{k_{2}} Z_{N}\right|\right|+| | P_{k_{1}+1} Z_{N} \|<\varepsilon_{2} / 3+2 \varepsilon_{2} / 3=\varepsilon_{2}$. . So that $\left|\left|x_{n_{2}}-\dot{y}_{2}\right|\right|<\varepsilon_{2}$ and $y_{2} \varepsilon F_{2}$. Proceed in this manner for an inductive definition of sequences $\left\{x_{n_{i}}\right\},\left\{y_{i}\right\}$, and $\left\{F_{i}\right\}$ where $\| x_{n_{i}}-$ $y_{i} \|<\varepsilon_{i}$ and $y_{i} \in F_{i}=\left[B_{n}\right]_{n=k_{i-1}}^{k}+2$.

Since $\lim _{i} \varepsilon_{i}=0$ we have $\lim _{i}| | x_{n_{i}}-y_{i}| |=0$. So if $x^{*} \varepsilon x^{*}$ we have $\left|x^{*} y_{i}\right|=\left|x^{*}\left(y_{i}-x_{n_{i}}\right)+x^{*}\left(x_{n_{i}}\right)\right| \leq\left|\left|x^{*}\right|\right|| | y_{i}-x_{n_{i}}| |+\left|x^{*}\left(x_{n_{i}}\right)\right| \rightarrow 0$. But $\left\{y_{n}\right\} \in\left[F_{n}\right]$ which is a skipped blocking of $\left\{B_{n}\right\}$ and hence $\left[F_{n}\right]$ is an ℓ_{1}-sum so by Theorem $9,\left[F_{n}\right]$ is a Schur space and $\lim _{\mathrm{n}} \mathrm{y}_{\mathrm{n}}=0$. But $\lim \left|\left|x_{n_{i}}-y_{i}\right|\right|=0$ so we must also have $\lim _{i} x_{n_{i}}=0$. Q.E.D.

We will construct a Schur space in a later chapter by building in this ℓ_{1}-skipped-blocking-property.

We conclude this section by considering a class of spaces which are not Schur spaces. The theorem that follows provides us with an example-the $C(K)$ spaces. It is easy to see that the Schur property is preserved by an isomorphism, and is inherited by closed subspaces and therefore the following theorem says that a Schur space cannot contain any subspace which is isomorphic to a $C(K)$ space.

Theorem 13: If K is an infinite compact Hausdorff space then $C(K)$ is not a Schur space.

Proof: We will use the fact that $\left\{f_{n}\right\}$ is weakly convergent in $C(K)$ if and only if $\left\{f_{n}\right\}$ is bounded and point-wise convergent. This follows from the Lebesgue convergence theorem and the Reisz representation theorem. In fact we will construct a sequence $\left\{f_{n}\right\}$ such that $\left\|f_{n}\right\|=1$ for each n and $w-\lim _{n} f_{n}=0$ (i.e., $\lim _{n} f_{n} x=0$ for every $x \in K$).

Choose a point p which is a limit point of K and a point $X_{1} \varepsilon K$ such that $x_{1} \neq p$. Since K is normal we may choose F_{1} and C_{1} closed subsets of K such that peint C_{1}, x_{1} हint F_{1} and $C_{1} \cap F_{1}=\varnothing$. Since p is a limit point int C_{1} must be infinite, so we may choose $x_{2} \varepsilon$ int C_{1} such that $x_{2} \neq p$. Using normality again we select closed subsets F_{2} and C_{2} of C_{1} such that $p \varepsilon$ int $C_{2}, x_{2} \varepsilon$ int F_{2} and $C_{2} \cap F_{2}=\varnothing$. Having chosen x_{n}, C_{n}, and F_{n} such $C_{n} \cap F_{n}=\varnothing,\left(C_{n} U F_{n}\right) \in C_{n-1}, p \varepsilon$ int $C_{n}, x \varepsilon$ int F_{n}, F_{n} and C_{n} both closed; we select $x_{n+1} \in C_{n}, x_{n+1} \neq p$, and closed subsets F_{n+1} and C_{n+1} of C_{n} such that $x_{n+1} \varepsilon$ int F_{n+1}, $p \varepsilon$ int C_{n+1}, and $F_{n+1} \cap C_{n+1}=\varnothing$. By induction then we have a sequence $\left\{F_{n}\right\}$ of closed (and hence compact) subsets of K which are pair-wise disjoint and a sequence of points $\left\{x_{n}\right\}$ such that $x_{n} \varepsilon$ int F_{n} for each n. Now we use Urysohn's lemma to construct a sequence of functions $\left\{f_{n}\right\} \subset C(K)$ such that $f_{n}(K) C^{-}[0,1], f_{n}\left(x_{n}\right)=1$, and support
$f_{n} \subset F_{n}$.
For any $x \in K$ such that $x \notin \mathrm{U}_{\mathrm{n}} \mathrm{F}_{\mathrm{n}}$ we have $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=0$ for all n , and if $x \in F_{j}$ for some j then $f_{k}(x)=0$ for all $k>j$. Thus $w-\lim _{n} f_{n}=0$. But, of course, $\left\|f_{n}\right\|=1$ for each n. Q.E.D.

The Radon-Nikodým Property

To discuss the Radon-Nikodým property (hereafter called R.N.P.) one needs some familiarity with the concepts of vector valued measures and vector valued integration. These notions are completely analogous to their scalar valued counterparts. A vector valued measure is a function F defined on a σ-algebra Σ of subsets of some set Ω taking values in a Banach space X, for which $F\left(U_{n} E_{n}\right)=\sum_{n} F\left(E_{n}\right)$ whenever $\left\{E_{n}\right\}$ is a sequence of pair-wise disjoint members of Σ. The variation of a vector valued measure F on $E \varepsilon \Sigma$, denoted by $|F|(E)$ is defined by $|F|(E)=\sup _{\Pi} \sum_{A \varepsilon \Pi}| | F(A)| |$ where the supremum is taken over all finite partitions Π of $E . F$ is said to be of bounded variation if $|F|(\Omega)$ is finite. $|F|$ is a measure. The proof of this fact, which is the same as the scalar valued case, is left to the reader. A vector valued measure F of bounded variation is said to be absolutely continuous with respect to a scalar valued measure μ if $|F|$ is absolutely continuous with respect to μ. In this case we will write $F \ll \mu$.

If (Ω, Σ, μ) is a finite measure space and μ is a scalar valued measure then a function $\phi: \Omega \rightarrow X$ (X a Banach space) is called a simple function if there exist vectors $\left\{x_{i}\right\}_{i=1}^{n} \approx x$ and $\operatorname{sets}\left\{E_{i}\right\}_{i=1}^{n}=\sum$ such that $\phi=\sum_{i=1}^{n} x_{i} X_{E_{i}} .\left(X_{E_{i}}\right.$ denotes the characteristic function of the set $\left.E_{i}.\right)$ A function $f: \Omega \rightarrow X$ is said to be μ-measurable if f is a point-wise limit
of simple functions, $\mu-a . e .$, in the norm topology of X. Given such an f and a sequence of simple functions $\left\{\phi_{n}\right\}$ which converge to $f, \mu-a . e .$, we say f is Bochner integrable (or simply integrable) if $\lim _{\mathrm{n}} \int_{\Omega}| | f(\omega)-$ $\phi_{n}(\omega) \| d \mu(\omega)=0$. It is an exercise to show that in this case $\lim _{\mathrm{n}} \mathrm{S}_{\mathrm{E}} \phi_{\mathrm{n}} \mathrm{d}_{\mu}$ exists for each $E \varepsilon \Sigma$. We define $\int_{E} f d \mu=\lim _{n} \int_{E} \phi_{n} d_{\mu}$ where $\delta_{E} \phi_{n} d{ }_{\mu}$ is defined in the usual way (i.e. if $\phi=\sum_{i=1}^{n} x_{i} X_{E_{i}}$ is the cononical representation of the simple function ϕ then $\int_{E_{1}} \phi d_{\mu}=\sum_{i=1}^{n} x_{i} \mu\left(E \cap E_{i}\right)$. It follows that for a μ-measurable X valued function f, f is integrable if and only if $\delta_{\Omega}\|f(\omega)\| d \mu(\omega)$ is finite. We denote the set of all equivalence classes of integrable functions by $I_{1}(\mu, X)$. Under the norm $\|f\|_{I}=\delta_{\Omega}| | f(\omega)| | d \mu(\omega)$ and usual algebraic operations $L_{1}(\mu, X)$ is a Banach space.

Definition 14: A Banach space X is said to have R.N.P. if for each finite measure space (Ω, Σ, μ) and every vector valued measure $F: \Sigma \rightarrow X$, of bounded variation which is μ-continuous there exists an $f \varepsilon L_{1}(\mu, X)$ such that $F(E)=\int_{E} f d \mu$ for all $E \varepsilon \Sigma$.

The reader should notice that in case X is the scalar field (or finite dimensional)the definition is simply a statement of the classical Radon-Nikodým Theorem. This leads us to think of R.N.P. spaces as those Banach spaces for which the Radon-Nikodým Theorem is valid. If a Banach space X has $R-N-P$ and F, f are as in Definition 14 we will call f the Radon-Nikodým derivative of F .

In subsequent chapters we will construct some spaces which have
R.N.P. We conclude the discussion here with an example of a very familiar space which does not have R.N.P.

Example 15: The Banach space c_{o} does not have R.N.P.

We will define a c_{o} valued measure which has no Radon-Nikodŷm derivative. We use the measure space (Ω, Σ, μ) where $\Omega=[0, I], \Sigma$ is the σ-algebra of Lebesgue measurable subsets of $[0,1]$, and μ is Lebesgue measure. Define $F: \Sigma \rightarrow c_{0}$ by $F(E)=\left\{\int_{E} \sin \left(2^{n} \pi t\right) d \mu\right\}_{n=1}^{\infty}$. According to the Riemann-Lebesgue Lemma $\lim _{n} \int_{E} \sin \left(2^{n} \pi t\right) d \mu=0$, so F is C_{o} valued. Also for each E we have $||F(E)||=\sup _{n}\left|S_{E} \sin \left(2^{n} \pi t\right) d \mu\right| \leq \mu(E)$. Therefore F is μ-continuous, countably additive and of bounded variation.

Suppose F does have a Radon-Nikodým derivative f. Then $£ \in L_{1}\left(\mu, c_{o}\right)$ and $F(E)=\int_{E} f d \mu$ for every $E \varepsilon \Sigma$. We will demonstrate that this f cannot be c_{o} valued for almost all $t \in[0,1]$. Let x_{n}^{*} be the functional that selects the $n{ }^{\text {th }}$ coordinate, i.e. $x_{n}^{*}\left(\left\{x_{j}\right\}_{j=1}^{\infty}\right)=x_{n}$. Then for any $E \varepsilon \Sigma$ we get $x_{n}^{*}(F(E))=x_{n}^{*}\left(\int_{E} f d \mu\right)=\int_{E} x_{n}^{*} f d \mu=\int_{E} f_{n} d \mu$ where $f=\left\{f_{j}\right\}_{j=1}^{\infty}$. So $\int_{E} f_{n} d \mu=\int_{E} \sin \left(2^{n} \pi t\right) d \mu$ for each $E \varepsilon \Sigma$ and thus $f_{n}(t)=\sin \left(2^{n} \pi t\right), u-$ a.e. on $[0,1]$. Now put $E_{n}=\left\{t| | \sin \left(2^{n} \pi t\right) \left\lvert\,>\frac{1}{\sqrt{2}}\right.\right\}$ and observe that $\mu\left(E_{n}\right)=1 / 2$ for each n. Let E be the element of Σ for which $X_{E}=\overline{\lim _{n}} X_{E_{n}}$. A standard notation for this set is $E=\overline{\lim _{n}} E_{n}$ and it is easy to verify that $\overline{\lim _{n}} E_{n}=\eta_{n} \sum_{n} E_{j}$. We have $\mu\left(\overline{\lim _{n}} E_{n}\right)=$ $\int \chi_{\overline{\lim }_{\mathrm{n}} \mathrm{E}_{\mathrm{n}}} \mathrm{d} \mu=\int \overline{\lim _{\mathrm{n}}} \chi_{\mathrm{E}_{\mathrm{n}}} \mathrm{d} \mu \geq \overline{\lim _{\mathrm{n}}} \int \chi_{\mathrm{E}_{\mathrm{n}}} d \mu=\overline{\lim _{\mathrm{n}}} \mu\left(\mathrm{E}_{\mathrm{n}}\right)=1 / 2$. But if $t \varepsilon \overline{\lim }_{\mathrm{n}} \mathrm{E}_{\mathrm{n}}$ then $\mathrm{f}(\mathrm{t}) \notin \mathrm{c}_{\mathrm{o}}$. Hence $\mu\left\{t \varepsilon[0,1] \mid \mathrm{f}(\mathrm{t}) \varepsilon \mathrm{c}_{0}\right\} \leq I / 2$, and thus f is not c_{o} valued μ-almost everywhere.

For detailed treatment of the R.N.P. we refer the interested reader to [3].

Injective Banach Spaces

Definition 16: A Banach space X is a P_{λ} space if for each $T \varepsilon B(Y, X)$
and each Banach space $Z \supset Y$ there exists a $\tilde{T} \varepsilon B(Z, X)$ such that $\left.\tilde{T}\right|_{Y}=T$ and $||\tilde{T}|| \leq \lambda \cdot| | T| |$. An injective Banach space is a Banach space which is a P_{λ} space for some λ.

We shall see eventually that this definition of "injective" for the category of Banach spaces and bounded linear operators is consistent with definition of injectiveness taken in general category theory. In fact, we shall see (in Theorem 19 below) that injectiveness is a purely category theoretic property.

Lemma 16: $\quad \ell_{\infty}(\Gamma)$ is a P_{1} space.
Proof: Let Y and Z be Banach spaces such that $Z O Y$ and $T \in B(Y$, $\left.\ell_{\infty}(\Gamma)\right)$. Define $E_{\gamma} \varepsilon \ell_{\infty}(\Gamma)^{*}$ by $E_{\gamma}(f)=f(\gamma)$. Then $E_{\gamma} T$ is a functional on Y which extends, by the Hahn Banach theorem, to a functional $T_{\gamma} \varepsilon Z^{*}$ with $\left\|T_{\gamma}\right\|=\left\|E_{\gamma} T\right\|$. Now define $\tilde{T}: Z \rightarrow \ell_{\infty}\left(I^{\prime}\right)$ by $(\tilde{T} z)(\gamma)=T_{\gamma} z$. Then for each $y \in Y$ we have $(\tilde{T} y)(\gamma)=T_{\gamma} Y=E_{\gamma}\left(T_{Y}\right)=\left(T_{Y}\right)(\gamma)$ for each $\gamma \varepsilon \Gamma$. So $\left.\tilde{T}\right|_{Y}=T . \quad$ Also $||\tilde{T} z||=\sup _{\gamma \varepsilon \Gamma}| |(\tilde{T} Z) \gamma| |=\sup _{\gamma \in \Gamma}| | T_{\gamma} z| | \leq||z|| \sup _{\gamma \varepsilon \Gamma}| | T_{\gamma}| |=$ $||z|| \sup _{\gamma \varepsilon \Gamma}| | E_{\gamma} T| | \leq||z||| | T| |$ since $\left|\left|E_{\gamma}\right|\right|=1$ for each $\gamma \varepsilon \Gamma$. Thus $||\tilde{T}|| \leq||T||$. Q.E.D.

Lemma 18: A Banach space X is a P_{λ} space if and only if there is an isometry $T: X \rightarrow Y$ where Y is a P_{1} space and a projection P of Y onto $T(X)$ such that $\|P\| \leq \lambda$.

Proof: Suppose first that X is a P_{λ} space. Put $Y=\ell_{\infty}\left(B_{X} *\right)$ and $(T X) x^{*}=x^{*}(x)$ for all $x^{*} \varepsilon B_{X}$ * and all $x \varepsilon X$. Then certainly T is an isometry of X into Y. Also $T^{-1}: T(X) \rightarrow X$ and X is assumed to be P_{λ} so there is an extension $\mathrm{T}^{-1}: \ell_{\infty}\left(\mathrm{B}_{X^{*}}\right) \rightarrow X$ with $\left|\left|T^{-1}\right| \leq \lambda\right|\left|T^{-1}\right| \mid=\lambda$. The operator T^{-1} then is the desired projection. To see this we observe that $\left\|T \mathrm{~T}^{-1}| | \leq\right\| \mathrm{T}\left|\mid \widetilde{\mathrm{T}}^{-1}\|\leq\| \mathrm{T} \| \cdot \lambda=\lambda\right.$, and for $\mathrm{Y} \| \mathrm{T}(\mathrm{X}) \mathrm{T} \mathrm{T}^{-1}(\mathrm{y})=$
$T T^{-1}(y)=y$.
Now suppose we have the P_{1} space Y , the isometry $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ and the projection $P: Y \rightarrow T(X)$ with $\|P\| \leq \lambda$. Let E and F be Banach spaces, $E \subset F$ and $A \varepsilon B(E, X)$. Notice that $T A \in B(E, Y)$ and since Y is P_{I} there exists $\widetilde{T A} \varepsilon B(F, Y)$ which extends TA with $||\tilde{T A}||=||T A||$. Put $\tilde{A}=T^{-1} \mathrm{P}$ TA. Then $\|\tilde{A}\|=\left\|T^{-1} P \widetilde{T A}| | \leq\right\| T^{-1}| ||P|| | \widetilde{T A}| | \leq\left|\left|T^{-1}\right|\right||P|| | T A| | \leq$ $\lambda||A||$, since $\|T\|=\| T^{-1}| |=1$ and $\|P\| \leq \lambda$. For e\&E we have $\tilde{A} e=\left(T^{-1} P \widetilde{T A}\right) e=^{-1} P(T A e)=T^{-1} T(A e)=A e$. Thus \tilde{A} is an extension of A. Q.E.D.

With these lemmas in hand we can now establish some useful characterizations of injective spaces.

Theorem 19: Each of the following statements concerning a Banach space X implies all of the others.

1. For each $T \varepsilon B(F, X)$ and all $E \supset F$ there exists a $\tilde{T} \varepsilon B(E, X)$ such that $\left.\tilde{\mathrm{T}}\right|_{\mathrm{F}}=\mathrm{T}$.
2. For every Banach space $E \supset X$ there exists a projection P of E onto X .
3. For every Banach space $E \supset X$ and all $T \in B(X, F)$ there exists a $\tilde{T} \varepsilon B(E, F)$ such that $\left.\tilde{T}\right|_{X}=T$.

1'. Same as 1 except \tilde{T} can be chosen so that $||\tilde{T}|| \leq \lambda| | T| |$ (i.e., X is P_{λ}).

2'. Same as 2 except P can be chosen so that $\|P\| \leq \lambda$.
3'. Same as 3 except \tilde{T} can be chosen so that $\|\tilde{T}\| \leq \lambda\|T\|$.
Proof: We will show that: $1 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 1,1^{\prime} \leftrightarrow 2^{\prime}, 2^{\prime} \leftrightarrow 3^{\prime}$, and $2 \leftrightarrow 1^{\prime}$. We start with $I \rightarrow 2:$ Let $E \supset X$ and let I be the identity operator on X. Then by I, I extends to $\tilde{I} \varepsilon B(E, X)$. Put $P=\tilde{I}$.
$2 \rightarrow 3:$ Let $E D X$ and $T \varepsilon B(X, F)$. We have a projection P of E onto X by 2 , so put $\tilde{T}=T P$.
$3 \rightarrow 2:$ Let $E \supset X$. Then the identity operator I on X extends by 3 to $\tilde{I} \in B(E, X)$, so put $P=\tilde{I}$.
$2 \rightarrow 1:$ Let $E \supset F$ and $T \varepsilon B(F, X)$. Let i be the natural injection of X into $\ell_{\infty}\left(B_{X^{*}}\right)$. Then iT $\varepsilon B\left(F_{\prime_{\infty}}\left(\mathcal{B}_{X^{*}}\right)\right)$ and $\ell_{\infty}\left(B_{X^{*}}\right)$ is P_{1} by Lemma 16 so there exists $\tilde{i T} \in B\left(E, \ell_{\infty}\left(B_{X^{*}}\right)\right)$ which extends $i T$. Also by 2 there is a projection P of $\ell_{\infty}\left(B_{X_{*}}\right)$ onto X. Put $\tilde{T}=P \tilde{i} T$.
$1^{\prime} \rightarrow 2^{\prime}:$ Using the P defined in $1 \rightarrow 2$ we have $P=\tilde{I}$ and thus $||P\|=\| \tilde{I}|| \leq \lambda| | I \|=\lambda$ by I^{\prime}.
$2^{\prime} \rightarrow I^{\prime}:$ Using the operators in $2 \rightarrow 1$ and Lemma 17 we may assume that $\left\|\tilde{i} T\left|\mid=\|i T\|\right.\right.$. And by $\left.2^{\prime}\right||P| \mid \leq \lambda$ so $\left.||\tilde{T}||=\right\| P(\tilde{i} T)||\leq \lambda||$ $i T \| \leq \lambda| | T| |$.
$2^{\prime} \rightarrow 3^{\prime}:$ From $2 \rightarrow 3$ above we have $\tilde{T}=T P$, and by $2^{\prime}\|P\| \leq \lambda$, so $\|\tilde{T}\| \leq \lambda\|T\|$.
$3^{\prime} \rightarrow 2^{\prime}:$ Since $P=\tilde{I}$ we have by 3^{\prime} that $\|P\|=\|\tilde{I}\| \leq \lambda| | I \|=\lambda$.
It remains to prove that $2 \leftrightarrow 1^{\prime}$. Obviously $I^{\prime} \rightarrow 2^{\prime} \rightarrow 2$. So we show that $2 \rightarrow I^{\prime}:$ Let $E>F$ and $T \varepsilon B(F, X)$. Since $X \subset \ell_{\infty}\left(B_{X_{*}}\right)$, by 2 there is a projection P of $\ell_{\infty}\left(B_{X_{*}}\right)$ onto X. Put $\lambda=\|P\|$. Since $\ell_{\infty}\left(B_{X} *\right)$ is P_{I} there is a $T_{I}: E \rightarrow \ell_{\infty}\left(B_{X *}\right)$ such that $\left.T_{I}\right|_{F}=T$ and $\left\|T_{I}\right\|=\|T\|$. Put $\tilde{T}=P T_{1}$. Then $\left|\left|\tilde{T}\|\leq\| P\left\|\left|\left|T_{1} \|=\lambda\right|\right| T|\mid \text { and } \tilde{T}|_{F}=T\right.\right.\right.$. Q.E.D.

Weak Completeness

A sequence $\left\{x_{n}\right\}$ in some Banach space X is said to be weakly-Cauchy if for each $x^{*} \varepsilon X^{*}$ the sequence $\left\{x^{*}\left(x_{n}\right)\right\}$ is a Cauchy sequence. If this is the case $\left\{x^{*}\left(x_{n}\right)\right\}$ converges and thus we are led to the natural question: What is the function f defined by $f\left(x^{*}\right)=\lim _{n} x^{*}\left(x_{n}\right)$? It is easy to verify that $f \varepsilon X^{* *}$ which leads to the question: For which Banach spaces X is this f an element of $J(X)$, where J is the canonical imbedding of X into $X^{* *}$? Such a space is called weakly sequentially complete.

Reflexive spaces obviously have this property. We will construct some non-reflexive examples in following chapters. The verification of these facts will depend on a familiarity with some other well known spaces which are weakly sequentially complete. Therefore this section is devoted to enumerating these examples, and thus we need the following formal definition.

Definition 20: A Banach space X is said to be weakly sequentially complete (w.s.c. for short) if each weak Cauchy sequence $\left\{x_{n}\right\} \subset X$ converges weakly to come $x \varepsilon X$.

Remark: Another class of spaces which is easily seen to be w.s.c. is the class of Schur spaces. To prove this we use the following characterization of Cauchy (respectively weak Cauchy) sequences: $\left\{x_{n}\right\}$ is Cauchy (respectively weak Cauchy) if and only if $\lim _{j}\left(x_{n}-x_{j}{ }_{j-1}\right)=0$ (respectively $w-\lim _{j}\left(x_{n_{j}}-x_{n_{j-1}}\right)=0$) for every subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$. The verification is left as an exercise. So if $\left\{x_{n}\right\}$ is a weak Cauchy sequence in a Schur space X then $w-\lim _{j}\left(x_{n j}-x_{n}{ }_{j-1}\right)=0$ for every subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$. But since x is a Schur space this means $\lim _{j}\left(x_{n}{ }_{j}-x_{n j-1}\right)=0$ for every subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$, or equivalently $\left\{x_{n}\right\}$ is Cauchy and must converge to some $x \in X$.

Theorem 21: $L_{I}(\Omega, \Sigma, \mu)$ is weakly sequentially complete.
Proof: We may assume without loss of generality that the measure space (Ω, Σ, μ) is σ-finite. To see this let $\left\{f_{n}\right\} C_{L_{1}}(\Omega, \Sigma, \mu)$. Since each f_{n} is integrable $\mu\left\{\omega \varepsilon \Omega\left|\left|f_{n}(\omega)\right| \geq \frac{1}{k}\right\}\right.$ is finite for each n and k. Thus the set $E=\left\{\omega \varepsilon \Omega \mid f_{n}(\omega)>0\right.$, for some $\left.n\right\}$ is σ-finite and $f_{n}(\omega)=0$ for all n and $\omega \in \Omega \backslash E$. So if $\Sigma(E)=\{A \in \Sigma \mid A \subset E\}$ then $\left\{f_{n}\right\} \subset I_{1}(E, \Sigma(E), \mu)$ and this space is isometric to the subspace of $L_{1}(\Omega, \Sigma, \mu)$ consisting of all
functions which vanish outside E.
We therefore assume that (Ω, Σ, μ) is σ-finite. Let $\left\{f_{n}\right\}$ be a weak Cauchy sequence in $L_{1}(\mu)$. Since $L_{1}^{*}=L_{\infty}$ the sequence $\left\{\int \chi_{E} f_{n} d \mu\right\}$ is Cauchy and hence must converge for each $E \varepsilon \Sigma$. We now appeal to the Vitali-Hahn-Saks theorem (c.f. p. 158 of [5]) to conclude that $\lim _{n} \int_{E} f_{n} d \mu$ defines a μ-continuous measure on Σ, and we write $\nu(E)=\lim _{n} \int_{E} f_{n} d \mu$. Since we are assuming that (Ω, Σ, μ) is $\sigma-f i n i t e$ we may apply the RadonNikodym theorem to obtain an $f \varepsilon I_{I}(\mu)$ such that $\nu(E)=\int_{E} f$ d for each Eع.E. This f turns out to be the weak limit of the sequence $\left\{f_{n}\right\}$. We check this by first letting ϕ be a simple function with canonical representation $\phi=\sum_{i=1}^{k} \alpha_{i} X_{E_{i}} . \quad$ Then $\int \phi f_{n} d \mu=\sum_{i=1}^{k} \alpha_{i} \int_{E_{i}} f_{n} d \mu \rightarrow \sum_{i=1}^{k} \alpha_{i} v\left(E_{i}\right)$ $=\sum_{i=1}^{k} \alpha_{i} \int_{E_{i}} f d \mu=\int \sum_{i=1}^{\sum_{i}} \alpha_{i} \chi_{E_{i}} f d \mu=\int \phi f d_{\mu}$. Since the simple functions are dense in $L_{\infty}(\mu)$ and $\left\{f_{n}\right\}$ is bounded in $L_{I}(\mu)$ we have. $\lim _{n} \int g f_{n} d \mu=\int g f d \mu$ for each $g \varepsilon L_{\infty}(\mu)$. Thus $w-\lim _{n} f_{n}=f$. Q.E.D.

Corollary 22: If K is a compact Hausdorff space then $C(K)$ * is weakly sequentially complete.

Proof: Let $\left\{\mu_{n}\right\}$ be a weak Cauchy sequence in $C(K)^{*}$. It is a consequence of the uniform boundedness principle that $\left\{\mu_{n}\right\}$ is bounded and thus $\mu=\sum_{n} 2^{-n}\left|\mu_{n}\right|$ defines a measure on K, and $\mu_{n} \ll \mu$ for each n. Let B be the σ-algebra of Borel sets in K and define $T: L_{1}(K, B, \mu) \rightarrow C(K)$ * by $(T f)(E)=\int_{E} f d \mu$. Then T is an isometry and $T\left(d \mu_{n} / d \mu\right)=\mu_{n}$ ($d \mu_{n} / d \mu$ is the Radon-Nikodým derivative of μ_{n} with respect to μ). Thus $\left\{\mu_{n}\right\} \approx T\left(L_{1}(K, B, \mu)\right)$ which is w.s.c. by Theorem 16 and the fact that weak completeness is preserved by an isometry. Q.E.D.

This corollary has an important corollary of its own.

Corollary 23: If a Banach space X is injective then X^{*} is w.s.c. In particular if $X^{* *}$ is injective then $X^{* * *}$ (and hence X^{*}) is w.s.c. Proof: Since X is injective it is complemented in a $C(K)$ space. (Choose $K=B_{X}$ * with its weak* topology.) Thus there is a projection $P: C(K) \rightarrow X$. It is easy to check that $P^{*}: X^{*} \rightarrow C(K)^{*}$ is an isomorphism. Therefore $P^{*}\left(X^{*}\right)$ and hence X^{*} must be w.s.c. since weak sequential completeness is inherited by closed subspaces. Q.E.D.

These corollaries will be used to verify the weak sequential completeness of the examples that follow.

The Class $\ell_{\infty}(\Gamma)$

If Γ is a discrete topological space we may think of $\ell_{\infty}(\Gamma)$ as a $C(K)$ space by making the appropriate choice of K. To see this we start by identifying the set Γ with its image $h(\Gamma)$ in $\ell_{\infty}(\Gamma)^{*}$, under the map $h: \Gamma \rightarrow \ell_{\infty}(\Gamma)^{*}$ defined by $h(t)=\varepsilon_{t}$ where ε_{t} is the evaluation functional $\varepsilon_{t}(f)=f(t)$. Obviously $h(\Gamma) \subset B_{\ell_{\infty}(\Gamma)}$ * and thus $\overline{h(\Gamma)}{ }^{\omega *}$ is weak*compact. We denote $\overline{h(\Gamma)} \omega^{*}$ by $\beta \Gamma$ because $\overline{h(\Gamma)} \omega^{*}$ is in fact the classical stoneCech compactification of Γ. From the definition of $\beta \Gamma$, any $f \varepsilon \ell_{\infty}(\Gamma)$ extends uniquely to a continuous function \tilde{f} on $\beta \Gamma$ with $\|\tilde{f}\|_{\infty}=\|f\|_{\infty}$. Conversely if $g \varepsilon C(\beta \Gamma),\left.g\right|_{\Gamma} \varepsilon \ell_{\infty}(\Gamma)$. So this set is the appropriate choice for K and these remarks provide a sketch of the proof of:

Theorem 24: If Γ is a discrete topological space then there is a compact Hausdorff space K such that $\ell_{\infty}(\Gamma)$ is isometric to $C(K)$.

For Γ discrete, the topological space $\beta \Gamma$ is extremally disconnected, i.e., the closure of each open subset of $\beta \Gamma$ is open. For the sake of reference we state this fact as a theorem.

Theorem 25: If I is a discrete topological space then $\beta \Gamma$ (defined above) is extremally disconnected.

Proof: Let $U \subset \beta \Gamma$ be an open set. Put $S=U \cap \Gamma$. Then $X_{S} \varepsilon \ell_{\infty}(\Gamma)$ extends uniquely to some $f \in C(\beta \Gamma)$. By definition Γ is dense in $\beta \Gamma$ and U is assumed to be open so S is dense in U. It follows then that $f(t)=1$ for each t $\overline{\bar{U}}$. We also have that $\beta \Gamma \backslash \bar{U}$ is open so $(\beta \Gamma \backslash \bar{U}) \cap \Gamma$ is dense in $\beta \Gamma \backslash \bar{U}$. But $f(t)=0$ for all $t \varepsilon(\beta \Gamma \backslash \bar{U}) \cap \Gamma$ since f is an extension of X_{S}. Consequently, $f(t)=0$ for all $t \in \beta \Gamma \backslash \bar{U}$. Therefore $f=X_{\bar{U}}$ and thus \bar{U} must be open since f is continuous. Q.E.D.

Another important property of $\ell_{\infty}(\Gamma)$ is that weak and weak* sequential convergence coincide in $\ell_{\infty}(\Gamma) *$.

Definition 26: A Banach space X is called a Grothendieck space if for each sequence $\left\{x_{n}^{*}\right\} \subset x^{*}$ such that $w^{*}-\lim _{n} x_{n}^{*}=0$ then $w-\lim _{n} x_{n}^{*}=0$.

The proof that $\ell_{\infty}(\Gamma)$ is a Grothendieck space will require some work. We start with the following notational conventions which will be used in the remainder of this section. For $\phi \varepsilon \ell_{\infty}(\Gamma)^{*}$ and $E \subset \Gamma$ we will write $\phi(E)$ instead of $\phi\left(X_{E}\right)$. We also put $|\phi|(E)=\sup \left\{|\phi(f)|: f \varepsilon l_{\infty}(\Gamma)\right.$, $\|f\| \leqslant l$, support $f \in E\}$, or for each $E \subset \Gamma$ put $\phi_{E}(f)=\phi\left(E X_{E}\right)$ then $|\phi|(E)=\left|\left|\phi_{E}\right|\right|$. All of the properties of these functionals used in the following are easily derived from these definitions. As an example let $A, B \subset \Gamma, A \cap B=\phi . \quad$ Then $|\phi|(A \cup B)=|\phi|(A)+|\phi|(B)$.

Lemma 27: Let $\left\{f_{n}\right\} \subset \ell_{1}(\Gamma)$ be such that $\lim _{n} f_{n}(s)=0$ for every $s \varepsilon \Gamma$. Then for every $\varepsilon>0$ there exists a sequence $\left\{\sigma_{k}\right\}$ of disjoint finite subsets of Γ, and a subsequence $\left\{f_{n_{k}}\right\}$ of $\left\{f_{n}\right\}$ such that $\sum_{s \varepsilon \sigma_{k}}\left|f_{n_{k}}(s)\right|$

Proof: Let $\varepsilon>0$ be given and put $n_{l}=1$. Since $f_{n_{l}}$ is countably supported there is a finite set σ_{1} such that $\sum_{s \varepsilon \sigma_{1}}\left|f_{n_{1}}(s)\right|>\left|\left|f_{n_{1}}\right|\right|-\varepsilon$. σ_{1} is finite so we may choose n_{2} large enough to insure that
$\sum_{s \in \sigma_{1}}\left|f_{k}(s)\right|<\varepsilon$ whenever $k \geq n_{2} . \quad$ Since $\left\|f_{n_{2}}\right\|=\sum_{s \in \Gamma}\left|f_{n_{2}}(s)\right|=$
$\sum_{s \varepsilon \sigma_{1}}\left|f_{n_{2}}(s)\right|+\sum_{s \varepsilon \Gamma \backslash \sigma_{1}}\left|f_{n_{2}}(s)\right|<\varepsilon+\sum_{s \varepsilon \Gamma \backslash \sigma_{1}}\left|f_{n_{2}}(s)\right|$ we have
$\left|\left|f_{n_{2}}\right|\right|-\varepsilon<\sum_{s \varepsilon \Gamma \sigma_{1}}\left|f_{n_{2}}(s)\right|$ and so we may chose a finite set $\sigma_{2} \Gamma \Gamma \backslash \sigma_{1}$ such that $\sum_{s \varepsilon \sigma_{2}}\left|f_{n_{2}}(s)\right|>\left|\left|f_{n_{2}}\right|\right|-\varepsilon$.

As before we may choose n_{3} large enough to insure that $\sum_{S \varepsilon \sigma_{1} U \sigma_{2}}\left|f_{k}(s)\right|$ $<\varepsilon$ whenever $k \geq n_{3}$. Then there is a finite set $\sigma_{3} \subset \Gamma \backslash \sigma_{1} U \sigma_{2}$ such that $\sum_{s \varepsilon \sigma_{3}}\left|f_{n_{3}}(s)\right|>\left|\left|f_{n_{3}}\right|\right|-\varepsilon$. Proceed inductively in this manner to select the sequence $\left\{\sigma_{k}\right\}$ and the sequence $\left\{f_{n_{k}}\right\}$ for which $\sum_{s \varepsilon \sigma_{k}}\left|f_{n_{k}}(s)\right|>$ $\left\|I_{n_{k}}\right\|-E$. Q.E.D.

The next lemma is sometimes called Rosenthal's lemma (c.f. [3]). It was originally proved by H. P. Rosenthal but the shorter proof here is due to Kupka.

Lemma 28: Let $\left\{\phi_{n}\right\}$ be a uniformly bounded sequence in $\ell_{\infty}(\Gamma)^{*}$, and $\left\{E_{n}\right\}$ a sequence of disjoint subsets of Γ. Then for every $\varepsilon>0$ there is a subsequence $\left\{E_{n_{j}}\right\}$ of $\left\{E_{n}\right\}$ such that $\left|\phi_{n_{j}}\right|\left(\underset{i \neq j}{U} E_{n_{i}}\right)<\varepsilon$.

Proof: Assume without loss of generality that $\sup _{n}\left|\phi_{n}\right|(\Gamma) \leq 1$.

Partition the positive integers N, into infinitely many disjoint infinite subsets $\left\{M_{p}\right\}$ with $\underset{P}{U M}=N$.

If for some p there is no $k \varepsilon M_{p}$ for which $\left.\left|\phi_{k}\right| \underset{\substack{j \neq k \\ j \in M_{p}}}{U_{n}} E_{j}\right) \geq \varepsilon$ we
obtain the desired subsequence by ordering $M_{p}=\left\{n_{I}<n_{2}<\cdots\right\}$ and then we have $\left|\phi_{n_{j}}\right|\left(\underset{i \neq j}{U} E_{n_{i}}\right)<\varepsilon$ for all j.

On the other hand if for each p there is a $k_{p} \varepsilon M_{p}$ with
 $j \in M_{p}$
 $j \in M_{p}$
each p we have $\left|\phi_{k_{p}}\right|\left({\underset{q}{\mathrm{U}}=1}_{\infty}^{=} \mathrm{E}_{k_{q}}\right)+\varepsilon \leq 1$ or $\left|\phi_{k_{p}}\right|\left({\underset{q}{\mathrm{U}}=1}_{\infty}^{E_{k}}{ }_{q}\right) \leq I-\varepsilon$.
We now apply the same argument to the subsequences $\left\{\phi_{k_{p}}\right\}$ and $\left\{E_{k_{p}}\right\}$
as we did to $\left\{\phi_{n}\right\}$ and $\left\{E_{n}\right\}$. If the process does not stop we obtain a new subsequence $\left\{E_{n_{j}}\right\}$ of $\left\{E_{n}\right\}$ for which $\left|\phi_{n_{j}}\right|\left({ }_{j=1}^{\infty} E_{N_{n}} E_{j} \leq 1-2 \varepsilon\right.$. It is apparent then that this iterative process must terminate before the nth application where n is the smallest positive integer for which 1-n $\mathrm{n}<0$. Q.E.D.

Theorem 29: If $\left\{\phi_{n}\right\} \mathcal{C l}_{\infty}(\Gamma) *$ is such that $w^{*}-\lim _{n} \phi_{n}=0$, then $\left.\lim _{\mathrm{n}} \sum_{s \in I^{\prime}} \mid \phi_{\mathrm{n}}\{s\}\right) \mid=0$.

Proof: If $\lim _{\mathrm{n}} \sum_{\mathrm{s} \varepsilon \Gamma}\left|\phi_{\mathrm{n}}(\{s\})\right| \neq 0$ then there is an $\varepsilon>0$ and a subsequence (still called $\left\{\phi_{n}\right\}$) for which $\sum_{s \in \Gamma}\left|\phi_{n}(\{s\})\right| \geq \varepsilon$, for all n. By Lemma 27 we can select a sequence of disjoint finite sets $\left\{\sigma_{k}\right\}$ and a subsequence (still called ϕ_{n}) such that $\sum_{s \in \sigma_{k}}\left|\phi_{k}^{\prime}(\{s\})\right|>\sum_{s \Gamma \Gamma}\left|\phi_{k}(\{s\})\right|$ $-\varepsilon / 3$ for all k. We now apply Lemma 28 to obtain a subsequence $\left\{\sigma_{k_{j}}\right\}$ of $\left\{\sigma_{k}\right\}$ such that $\left|\phi_{k_{j}}\right|\left({ }_{i} \Psi_{j} \sigma_{k_{i}}\right)<\varepsilon / 3$. We define $x \in \ell_{\infty}(\Gamma)$ by
$x(s)= \begin{cases}\operatorname{sgn} \phi_{k_{j}}(\{s\}), & \text { if } s \in \sigma_{k_{j}} \text { for some } j \\ 0 \quad, & \text { if } s \notin \underset{j}{U \sigma_{k}}{ }_{j}\end{cases}$
and observe that $\left|\phi_{n_{k}}(x)\right| \geq\left|\sum_{s \varepsilon \sigma_{n_{k}}} x(s) \phi_{n_{k}}(\{s\})\right|-\left|\phi_{n_{k}}\left(x \mid \underset{j \neq k \sigma_{n_{j}}}{U}\right)\right|=$ $\underset{s \varepsilon \sigma_{n_{k}}}{\sum}\left|\phi_{n_{k}}^{\prime}(\{s\})\right|-\mid \phi_{n_{k}}\left(\right.$ U $\left._{j \neq k} \sigma_{n_{j}}\right)\left|>\sum_{s \varepsilon \Gamma}\right| \phi_{n_{k}}(\{s\}) \mid-\varepsilon / 3-\varepsilon / 3>\varepsilon / 3$ for all k, which contradicts $w^{*}-\lim _{\mathrm{n}} \phi_{\mathrm{n}}=0$. Q.E.D.

Corollary 30: Let $T \varepsilon B\left(\ell_{\infty}(\Gamma), X\right), x$ a Banach space, and $x_{S}=T\left(\delta_{S}\right)$ (where $\delta_{S}\left(s^{\prime}\right)=0$ if $s \neq s^{\prime}$ and $\left.\delta_{S}(s)=1\right)$. If $\left\{Z_{n}\right\}$ is any weak*null sequence in x^{*} then $\lim _{\mathrm{n}} \mathrm{S}_{\mathrm{E} \Gamma}\left|\mathrm{z}_{\mathrm{n}} \mathrm{x}_{\mathrm{S}}\right|=0$.

Proof: Since the adjoint operator T^{*} is weak*continuous we know that $\left\{T * z_{n}\right\}$ is also weak*null. Thus by Theorem 29 the proof will be complete if we can verify that the $s^{\text {th }}$ coordinate of $J^{*} T^{*} z_{n}$ is $z_{n}\left(x_{s}\right)$, where J is the canonical imbedding of $c_{0}(\Gamma)$ into $\ell_{\infty}(\Gamma)$. To see this we just apply $J^{*} T^{*} Z_{n}$ to $\delta_{S} . \quad J^{*} T^{*} Z_{n}\left(\delta_{S}\right)=T^{*} Z_{n}\left(J\left(\delta_{S}\right)=Z_{n} T\left(\delta_{S}\right)=Z_{n}\left(x_{S}\right)\right.$. Q.E.D.

With this corollary in hand we are finally ready to prove:
Theorem 31: If Γ is discrete then $\ell_{\infty}(\Gamma)$ is a Grothendieck space.
Proof: Let $\left\{Z_{i}\right\}$ be a weak*null sequence in $\ell_{\infty}(\Gamma) *$. By Theorem 19 we may replace the sequence $\left\{z_{i}\right\}$ with the corresponding sequence of measures $\left\{\mu_{i}\right\}$ on $B \Gamma$. (See the remarks preceding Theorem 24.) Put $\mu=\Sigma 2^{-i}\left|\mu_{i}\right|$. Then $\mu_{i} \ll \mu$ for each i so there exists a sequence $\left\{f_{i}\right\}$ $c L_{1}(\mu)$ such that $\mu_{i}(E)=\int_{E} f_{i} d \mu$.

Suppose the sequence $\left\{z_{i}\right\}$ is not weakly compact. If we can show that there is a subsequence $\left\{\mu_{i_{j}}\right\}$ and a sequence of disjoint open-closed sets $\left\{V_{n}\right\}$ in $\beta \Gamma$ for which $\mu_{i_{j}}\left(V_{j}\right) \geq \varepsilon>0$ for some $\varepsilon>0$, then we produce a contradiction as follows.

Observe that for each $\left\{a_{n}\right\} \varepsilon \ell_{\infty}$ we can define a function f on Γ by $f(x)=\left\{\begin{array}{l}a_{n} \text { if } x \varepsilon V_{n} \\ 0 \text { if } x \in \Gamma \backslash U_{n} V_{n}\end{array}\right.$. Since f is bounded we have that f extends uniquely to a continuous function \tilde{f} on $\beta \Gamma$. Since each V_{n} is open, $\Gamma \cap V_{n}$ is dense in V_{n} and thus $\tilde{f}(x)=a_{n}$ for all $X \in V_{n}$. Also $\operatorname{FAnt}\left(\Gamma V_{n} V_{n}\right)$ is dense $\operatorname{in} \operatorname{int}\left(\Gamma _{n}^{U} V_{n}\right)$ and so $\tilde{f}(x)=0$ for all $x \varepsilon \operatorname{int}\left(\Gamma_{V}^{\prime} U_{n} V_{n}\right)=\Gamma \bar{U} V_{n}$. Thus we may define an operator $T: \ell_{\infty} \rightarrow C(B \Gamma)$ by setting $T\left\{a_{n}\right\}=f$, where f is defined as above. Notice that $T\left(e_{n}\right)=X_{V_{n}}$. (Where $e_{n}=(0,0, \ldots, 0,1,0, \ldots)$ the 1 occurring in the $n^{\text {th }}$ position.) We are therefore set up to apply Corollary 30 and conclude that $\lim \sum_{j}\left(\mu_{n} V_{j}\right)=0$. Which contradicts $\mu_{i j}\left(V_{j}\right) \geq \varepsilon$ for each j.

We thus assume that $\left\{z_{i}\right\}$ is not relatively weakly compact. Therefore $\left\{f_{i}\right\}$ is not relatively weakly compact, so there is an $\varepsilon>0$, a sequence $\left\{E_{j}\right\}$ such that $\mu\left(E_{j}\right) \rightarrow 0$ and a subsequence f_{i} such that $\left|\int_{E_{j}} f_{j} d \mu\right| \geq 8 \varepsilon$ for each j. If that is the case then there is a subsequence (still called $f_{i_{j}}$) on which either $\int_{E_{j}} f_{i_{j}}^{+} d \mu \geq 4 \varepsilon$ for each j or $\int_{E_{j}} f_{j}^{-} d \mu \geq 4 \varepsilon$ for each j and we assume the former.

Since $\beta \Gamma$ is extremally disconnected (see Theorem 25), we may choose open-closed sets $U_{j} \supset E_{j}$ such that $\left|\mu_{i}\right|\left(U_{j} \backslash E_{j}\right)<2 \varepsilon$, and thus $\mu_{i}\left(U_{j}\right) \geq$ 2ε, for each j. Since U_{j} is open and closed we have $X_{U_{j}} \varepsilon C(\beta \Gamma)$ and thus $\lim _{j} \mu_{i}\left(U_{k}\right)=O$ for each k. Put $V_{1}=U_{1}$. Choose N_{2} large enough to insure that $\mu_{i_{j}}\left(V_{1}\right)<\varepsilon$ when $j \geq N_{2}$ and put $V_{2}=U_{N_{2}} \backslash U_{1}$. Then $\mu_{i_{N_{2}}}\left(V_{2}\right)=$
$\mu_{i_{N_{2}}}\left(U_{N_{2}} \backslash U_{1}\right) \geq \varepsilon \operatorname{since} \dot{\mu}_{i_{N_{2}}}\left(U_{N_{2}}\right) \geq 2 \varepsilon$ and $\mu_{i_{N_{2}}}\left(U_{1}\right)<\varepsilon$. Now $U_{1} U U_{N_{2}}$
is an open-closed set so $\lim \mu_{j} \operatorname{li}_{j}\left(U_{1} \cup U_{N_{2}}\right)=0$ so there is an $N_{3}>N_{2}$ such that $\mu_{i_{j}}\left(U_{1} \cup U_{N_{2}}\right)<\varepsilon$ whenever $j \geq N_{3}$. so put $V_{3}=U_{N_{3}} \backslash\left(U_{1} \cup U_{N_{2}}\right)$ and we get $\mu_{i_{N_{3}}}\left(V_{3}\right) \geq \varepsilon$ as before. This process inductively determines the sequence of pair-wise disjoint open-closed sets $\left\{V_{j}\right\}$ and the subsequence $\left\{\mu_{i_{N_{j}}}\right\}$ for which $\mu_{i_{N_{j}}}\left(V_{j}\right) \geq \varepsilon$ as prescribed. Q.E.D.

An important property of Grothendieck spaces is given by the following lemma.

Lemma 32: If X is Grothendieck and Y is separable then each $T \in B(X, Y)$ is weakly compact.

Proof: If $T \in B(X, Y)$ then $T^{*} \varepsilon B\left(Y^{*}, X^{*}\right)$. Since Y is separable B_{Y} * is weak*sequentially compact. But as an adjoint operator we know T * is weak* continuous and thus $T^{*}\left(B_{Y^{*}}\right)$ is weak* sequentially compact. However, X is assumed to be Grothendieck so weak*sequential compactness is equivalent to weak sequential compactness in X^{*}. Thus $T^{*}\left(B_{Y} *\right)$ is weakly sequentially compact and so T^{*} is weakly compact by the EberleinŠmulian theorem. Therefore T is weakly compact. Q.E.D.

Actually the property of Lemma 32 is only one of several which are equivalent to the Grothendieck property as we have defined it. We refer the reader to page 179 of [3] for others. Lemma 27 provides us with an easy proof of:

Theorem 33: If X is a Banach space such that $X^{* *}$ is injective, then X does not embed in any separable dual space.

Proof: Suppose $T: X \rightarrow Y^{\star}$ is an isomorphism of X into some separable dual space Y^{*}. Consider the second adjoint $T^{* *}: X^{* *} \rightarrow Y^{* * *}$. BY choosing Γ appropriately we may embed $X^{* *}$ in $\ell_{\infty}(\Gamma)$. Since $X^{* *}$ is injective we have a projection $P: \ell_{\infty}(\Gamma) \rightarrow X^{* *}$. Any dual space is complemented in its second adjoint by the projection $Q: Y^{* * *} \rightarrow J\left(Y^{*}\right)$ defined by $Q\left(y^{* * *}\right)(y)=y^{* * *}(J y)$, where J is the canonical isometry of Y^{*} into $\mathrm{Y}^{* * *}$. We conclude that $\mathrm{QT}{ }^{* *} \mathrm{P} \in \mathrm{B}\left(\ell_{\infty}(\Gamma), \mathrm{Y}^{*}\right)$ so by Lemma $32 Q \mathrm{~T}^{* *} \mathrm{P}$ is weakly compact. It is an easy exercise to check that this implies that T** is weakly compact and hence T is weakly compact. This is of course impossible since T is assumed to be an isomorphism. Q.E.D.

The following diagram should make the above proof easier to
follow.

We conclude here our discussion of the class $\ell_{\infty}(\Gamma)$ and remark that the next section deals with a class of spaces in which every space has an injective second adjoint and thus by Theorem 33 none of these spaces can be embedded in a separable dual space.

Separable L_{∞} Spaces

Definition 34: A Banach space X is a separable L_{∞} space if there is a number λ and a sequence of finite dimensional spaces $\left\{E_{n}\right\}$ such that, $E_{n} \subset E_{n+1}$ for each $n, d\left(E_{n}, \ell_{\infty}{ }_{n}\right) \leq \lambda$ (where $d_{n}=\operatorname{dim} E_{n}$) for each n and $\mathrm{X}=\overline{\mathrm{UE}} \mathrm{E}_{\mathrm{n}}$.

The class of L_{∞} spaces (not necessarily separable) was introduced by J. Lindenstrauss and A. Pelczynski in [11]. The reader might be familiar with the more common definition which says that X is L_{∞} if there is a number λ such that for each finite dimensional subspace B of X there is a finite dimensional subspace E of X such that $B \subset E$ and $d\left(E, l_{\infty}^{n}\right) \leq \lambda(n=\operatorname{dim} E)$. In case X is separable these two definitions coincide. We will only consider separable L_{∞} spaces in this paper. We therefore choose Definition 34 as it is better suited to the construction of such a space.

A property of L_{∞} spaces which will be used extensively in the examples that follow is that $X^{* *}$ is injective whenever X is a L_{∞} space. We will prove this for the separable case. For the proof of the general case see section 7 of [11].

Lemma 35: If X is a separable L_{∞} space and Z is any Banach space containing X then there exists $T \varepsilon B\left(Z, X^{* *}\right)$ such that $T x=x$ for each $x \in X$ and $\left|\mid T \| \leq \lambda^{2}\right.$. (Where λ is the constant mentioned in Definition 34.)

Proof: Let $X=\overline{U_{n} E_{n}}$. Since $d\left(E_{n}, \ell_{\infty}{ }_{n}\right) \leq \lambda$ for each n and ℓ_{∞}^{d} is a P_{1} space for each n by Lemma 17, it follows easily that each E_{n} is a P_{λ} space. By Theorem 19 we have a projection P_{n} of X onto E_{n} with $\left\|P_{n}\right\| \leq \lambda$ for each n. Thus we may write $X=\overline{U P_{n}(X)}$. Since each $P_{n} \varepsilon B(X), Z \perp X$, and $P_{n}(X)$ is P_{λ} we have from Theorem 19 that there exists $\tilde{P}_{n} \varepsilon B(Z, X)$ with $\left\|\tilde{P}_{n}\right\| \leq \lambda\left\|P_{n}\right\|=\lambda^{2}$ for each n. Consider the functions $\phi_{n}: B_{Z} \rightarrow \lambda^{2}\left(B_{X * *}\right)$ defined by $\phi_{n}(z)=\tilde{P}_{n} z$. since $\lambda^{2}\left(B_{X} * *\right)$ is weak*compact the Tychonoff theorem implies that there is a subnet $\left\{\phi_{n_{\gamma}}\right\}$ which converges pointwise to a function $\phi: B_{Z} \rightarrow \lambda^{2}\left(B_{X} * *\right)$. Now
define $T \varepsilon B\left(Z, X^{* *}\right)$ by $T z=\phi(z)$ if $z \varepsilon B_{Z}$ and $T_{z}=\|z\| \cdot \phi\left(\frac{Z}{\|z\|}\right)$ if $z \not \subset B_{Z}$. Since $T\left(B_{Z}\right) \subset \lambda^{2}\left(B_{X} * *\right)$ we have $\|T\| \leq \lambda^{2}$ and for $x \varepsilon \underset{n}{U} P_{n} X$, $x \in P_{n_{o}}(X)$ for some n_{o}. Thus $P_{k} x=x$ for all $k>n_{o}$ and so $\tilde{P}_{k} x=x$ for all $k>n_{0} . \quad$ Consequently $T x=\|x\| \phi\left(\frac{x}{| | x| |}\right)=\|x\| \lim _{j} \tilde{P}_{n_{j}}\left(\frac{x}{\|x\|}\right)=$ $\lim _{\gamma} \widetilde{P}_{n_{\gamma}} x=x$. Since $\underset{n}{U} P_{n}(X)$ is dense in X we conclude $T_{x}=x$ for all $\mathrm{x} \varepsilon \mathrm{X} . \quad \mathrm{T}$ then is the desired operator. Q.E.D.

We are now able to prove that the second dual of a separable L_{∞} space is injective. In the proof of this theorem we will use the following facts:

1. If E is a closed subspace of a Banach space X then $E *$ is isometric to $\left(X^{*} / E^{\perp}\right)$, and
2. $(X / E)^{*}$ is isometric to E^{\perp}.

In this situation we will write $E^{*}=\left(X^{*} / E^{\perp}\right)$ and $(X / E) *=E^{\perp}$. These two facts immediately imply that $X^{* *}=X^{k i}$. We may also simplify the argument some by first observing that if Q is a projection on a Banach space X then Q^{*} is a projection on X^{*} with range $\left[Q^{-1}(0)\right]^{1}$, which we leave as an exercise. The fact that $\ell_{\infty}(\Gamma) * *$ is injective was mentioned in the preface and we will also use this deep result.

Theorem 36: If X is a separable L_{∞} space then $X * *$ is injective.
Proof: Let Q be the projection on $X * * *$ which restricts every element of $X^{* * *}$ to X. It follows then that $Q^{-1}(O)=X^{1}$ and thus Q^{*} is a projection on $X^{* * * *}$ with range $X^{\perp 1}$.

Now choose Γ such that $\ell_{\infty}(\Gamma) \supset X * *$. By Lemma 35 there is a bounded operator $T: \ell_{\infty}(\Gamma) \rightarrow X * *$ such that $\left.T\right|_{X}=I_{X}$ Then $T * *: \ell_{\infty}(\Gamma) * * \rightarrow X^{* * *}$.

It follows that $\left.T^{* *}\right|_{X * *}=I_{X * *}$. Then $Q^{*} T^{* *}$ is a projection $Q^{*} T^{* *}$: $\ell_{\infty}(\Gamma)^{* *} \rightarrow X^{\perp 1}$. Using the isometric identifications $X^{* *^{\perp \perp}}=X^{* * * *}$ and $X^{* *}=X^{\perp 1}$ we get a projection $P: \ell_{\infty}(\Gamma)^{* *} \rightarrow X^{* *}$. This means $X^{* *}$ is complemented in $\ell_{\infty}(\Gamma)^{* *}$ which is injective. It is an easy exercise using Theorem 19 to see that any complemented subspace of an injective space is injective and thus $\mathrm{X}^{* *}$ is injective.

CHAPTER III

THE CLASS $X(a, b)$

In this chapter we will construct a class of separable L_{∞} spaces which have R.N.P. The spaces are determined by two parameters a and b and thus a space in this class will be referred to as an $X(a, b)$ space. The construction is done in such a manner that any $X(a, b)$ space is a subspace of ℓ_{∞}.

Let $\lambda>1$. Choose numbers a and b such that:

1) $\mathrm{O}<\mathrm{b}<\mathrm{a} \leq 1$,
2) $a+2 b \lambda \leq \lambda$, and
3) $a+b>1$.

The shaded area below indicates the possible choices of a and b (Figure 1).

Figure 1. The Choices of a and b

We will construct a sequence of positive integers $\left\{d_{n}\right\}$ inductively. For each such positive integer d_{n}, B_{n} will be the subspace of ℓ_{∞} defined by $B_{n}=\left\{\left\{x_{j}\right\}_{j=1}^{\infty}: x_{j}=0\right.$ if $\left.j>d_{n}\right\}$, and π_{n} will denote the natural projection $\pi_{n}: \ell_{\infty} \rightarrow B_{n}$. We now begin an inductive description of the sequence $\left\{d_{n}\right\}$ along with injective maps $T_{m, n}: B_{m} \rightarrow B_{n}$ that will be defined for every pair of positive integers $m<n$ so that they satisfy:
(i) $\pi_{m} T_{m, n}=I_{B_{m}}$ (the identity map on B_{m}) for $m<n$ and
(ii) $\mathrm{T}_{\mathrm{m}, \mathrm{n}} \mathrm{T}_{\mathrm{k}, \mathrm{m}}=\mathrm{T}_{\mathrm{k}, \mathrm{n}}$ for $\mathrm{k}<\mathrm{m}<\mathrm{n}$.

If $x=\left\{x_{j}\right\} \varepsilon B_{n}$ then the only non-zero coordinates of x occur in the first d_{n} positions. The maps $T_{n, k}$ will leave these coordinates fixed and "add on" $d_{k}-d_{n}$ new ones in the positions $d_{n+1}, d_{n+2}, \ldots, d_{k}$. For any $x \varepsilon \ell_{\infty} r \pi_{n} x$ simply replaces all of the coordinates of x in the positions d_{n+1}, d_{n+2}, \ldots with zeros. Defining the spaces B_{n} and the maps $T_{n, k}$ in this manner makes (i) and (ii) obvious.

We start by putting $d_{1}=1, d_{2}=2$, and $T_{1,2}$ the natural inclusion map. Suppose $\left\{d_{j}\right\}_{j=1}^{\ell}$ and $T_{m, n}$ for $m<n \leq \ell$ have been defined and satisfy (i) and (ii). We will define $d_{\ell+1}$ and $T_{\ell, \ell+1}$. First define the set of 5-tuples $\Gamma_{\ell}=\left\{\gamma=\left(i, j, k, \varepsilon, \varepsilon^{\prime}\right): \varepsilon, \varepsilon^{\prime}= \pm l ; l \leq k<\ell ; l \leq i \leq d_{k} ;\right.$ and $\left.l \leq j \leq d_{\ell}\right\}$. For each $\gamma=\left(i, j, k, \varepsilon, \varepsilon^{\prime}\right) \varepsilon \Gamma_{\ell}$ define $f_{\gamma} \varepsilon B_{\ell}^{*}$ by $f_{\gamma}(x)=a \varepsilon\left(\pi_{k} x\right)_{i}+$ $\mathrm{b} \varepsilon^{\prime}\left(\mathrm{x}-\mathrm{T}_{k, \ell} \pi_{k} \mathrm{x}\right)_{j} . \quad$ Now put $d_{\ell+1}=d_{\ell}+$ the number of elements in Γ_{ℓ}. The reader might wish to check that $d_{\ell+1}=d_{\ell}\left(4 \sum_{i<\ell} d_{i}+1\right)$. We order the $\operatorname{set}\left\{\mathrm{f}_{\gamma}: \gamma_{\in \Gamma_{\ell}}\right\}$ as $f_{d_{\ell}+1}, f_{d_{\ell}+2}, \ldots, f_{d_{\ell+1}}$ and define $T_{\ell, \ell+1}: B_{\ell} \rightarrow B_{\ell+1}$ by $T_{\ell, \ell+1}(x)=\left(x_{1}, x_{2}, \ldots, x_{d_{\ell}}, f_{d_{\ell+1}}(x), \ldots, f_{d_{\ell+1}}(x), 0,0, \ldots\right)$. For $\mathrm{k}<\ell$ put $\mathrm{T}_{\mathrm{k}, \ell+1}=\mathrm{T}_{\ell, \ell+1} \mathrm{~T}_{\mathrm{k}, \ell}$. Properties (i) and (ii) are now valid by
the very definition of the spaces B_{n} and the maps $T_{m, n}$
Lemma 37: The maps $T_{m, n}$ and spaces B_{n} in the construction above satisfy:
(1) $d\left(B_{n}, l_{\infty}^{d}\right)=1$,
(2) For each $x \in B_{n}$ and all $m<n,\left\|T_{n, n+1} x\right\| \geq a| | \pi_{m} x \|+$ $b\left\|x-T_{m, n} \pi_{m} x\right\| ;$ in fact $\left\|T_{n, n+1} x\right\|=\max _{m<n}\left\{\|x\|, a| | \pi_{m} x \|+\right.$ $\left.b\left|\left|x-T_{m, n} \pi_{m} x\right|\right|\right\}$,
(3) $\left\|T_{m, n}\right\| \leq \lambda$ for $m<n$.

Proof: (1) is obvious. To see (2) notice that if $\gamma=\left(m, i, j, \varepsilon, \varepsilon^{\prime}\right)$ then $\left|f_{\gamma}(x)\right|=\left|a \varepsilon\left(\pi_{m} x\right)_{i}+b \varepsilon^{\prime}\left(x-T_{m, n} \pi_{m}\right)_{j}\right|<a\left|\left(\pi_{m} x\right)_{i}\right|+b \mid(x-$ $\left.T_{m, n} \pi_{m} x\right)_{j}|\leq a|\left|\pi_{m} x\left\|+b| | x-T_{m, n} \pi_{m} x\right\|\right.$. But $\left\|T_{n, n+1} x\right\|=\max$ $\left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{d_{n}}\right|,\left|f_{d_{n}+1}(x)\right|, \ldots,\left|f_{d_{n+1}}(x)\right|\right\}$, thus $\left|\left|T_{n_{n} n+1} x\right|\right| \leq \max _{m<n}$ $\left\{\|x\|, a| | \pi_{m} x\left\|+b| | x-T_{m, n} \pi_{m} x\right\|\right\}$. By the way the norm on l_{∞} is defined we may choose $\varepsilon, \varepsilon^{\prime}, i$, and j so that $\left\|\pi_{m} x\right\|=\varepsilon\left(\pi_{m} x\right){ }_{i}$ and $\| x-$ $T_{m, n} m_{m} x \|=\varepsilon^{\prime}\left(x-T_{m, n} \pi_{m} x\right){ }_{j}$. For these particular choices of $\varepsilon_{r} \varepsilon^{\prime}, i$, and j we get that $\gamma=\left(i, j, m, \varepsilon, \varepsilon^{\prime}\right) \varepsilon \Gamma_{n}$ and thus $\left|\left|T_{n, n+1} x\right|\right| \geq\left|f_{\gamma}(x)\right|=$ $a\left|\left|\pi_{m} x\right|\right|+b| | x-T_{m, n} \pi_{m} x| |$. Since $T_{n, n+1}$ just "adds coordinates onto $x "$ as described above we also have $\left|\mid T_{n, n+1} x\|\geq\| x \|\right.$. Therefore $\left\|T_{n, n+1} x\right\| \geq \max _{m<n}\left\{| | x| |, a| | \pi_{m} x| |+b| | x-T_{m, n} \pi_{m} x \|\right\}$, which verifies equation (2).

We get (3) inductively. $\left\|T_{1,2}\right\|=1 \leq \lambda$. So let $\ell \geq 2$ be given and suppose that for $m<\ell$ we have $\left\|T_{m, \ell}\right\| \leq \lambda$. It follows from the construction that if $m<\ell+1$ then $T_{m, \ell+1}=T_{\ell, \ell+1} T_{m, \ell}$. Thus
$\left\|T_{m, \ell+1} x| |=\right\| T_{\ell, \ell+1} T_{m}, \ell^{x}| |=\max _{k<\ell}\left\{| | T_{m, \ell} x| |, a| | T_{k} T_{m, \ell} x| |+b| | T_{m, \ell} x-\right.$ $\left.T_{k, \ell} \pi_{k} T_{m, \ell} x| |\right\}$ by Equation (2) above. Our inductive hypothesis gives us $\left|\left|T_{m}, \ell^{x}\right|\right| \leq \lambda| | x| |$ and therefore we need only investigate the quantity
 cases. First if $k \leq m$ notice that $\pi_{k} T l_{\ell} x=\pi_{k} x$ so that in this case (*) becomes $a\left|\left|\pi_{k} x\right|\right|+b| | T_{m, ~} e^{x}-T_{k, \ell} \pi_{k} x| | \leq a| | x| |+b\left(| | T_{m, \ell} x| |+\right.$ $\left.\left\|T_{k}, \ell \pi_{k} x\right\|\right) \leq a| | x\|+b(\lambda\|x\|+\lambda\|x\|)=(a+2 b \lambda)\| x\|\leq \lambda\| x \|$. Secondly if $k>m$ then $\pi_{k} T_{m, \ell} x=\pi_{k} T_{k, \ell} T_{m, k} x=I_{B_{k}} T_{m, k} x=T_{m, k} x$ and thus $T_{k, \ell} \pi_{k} T_{m, \ell}{ }^{x}=T_{k, \ell} T_{m, k} x=T_{m, \ell}{ }^{x}$, all of which follows from the construction of these maps. We use this to rewrite (*) as $a\left\|T_{m, k} x\right\|$ $+b| | T_{m, \ell} x-T_{m, \ell} x| |=a| | T_{m, k} x| | \leq\left|\left|T_{m, k} x \| \leq \lambda\right|\right| x| |$ inductively. This verifies (3) and thus completes the proof of Lemma 37.

Now fix n. For every $k>n$ we have an injection $T_{n, k}: B_{n} \rightarrow B_{k}$. The operators $T_{n, k}$ simply "add on new coordinates" to each element in B_{n} as defined above. Thus if we choose any j and consider $\left\{\left(T_{n, k} x\right)_{j}\right\}_{k=n+1}^{\infty}$ this sequence is constant for $d_{k} \geq j$ and bounded by $\lambda\|x\|$, so $\underset{k \rightarrow \infty}{w} \lim _{k \rightarrow \infty}$ $T_{n, k} x$ exists as an element of ℓ_{∞}. We define an operator $T_{n}: B_{n} \rightarrow \ell \infty$ $T_{n} x=w^{*}-\lim _{k \rightarrow \infty} T_{n, k} x$ and put $E_{n}=T_{n}\left(B_{n}\right)$. We get the following:

Theorem 38: The operators and spaces defined above satisfy the following properties.
(1) $T_{n}=T_{k} T_{n, k}$ for all $k>n$,
(2) $E_{n} \approx E_{n+1}$ for all n,
(3) $\left|\mid T_{n} \| \leq \lambda\right.$ for all n,
(4) $d\left(E_{n}, \ell_{\infty}^{d}\right) \leq \lambda$ for all n,
(5) For $x \in E_{n},||x||=\max _{m<n}\left\{| | \pi_{n} x| |, a| | \pi_{m} x| |+b| | x-T_{m} \pi_{m} x| |\right\}$.

Proof: (I) $T_{k} T_{n, k} x=w^{*}-\lim _{j \rightarrow \infty} T_{k, j} T_{n, k} x=w^{*}-\lim _{j \rightarrow \infty} T_{n, j} x=T_{n} x$.
(2) $E_{n}=T_{n}\left(B_{n}\right)=T_{n+1} T_{n, n+1}\left(B_{n}\right)-T_{n+1}\left(B_{n+1}\right)=E_{n+1}$.
(3) Since
$\left|\left|T_{n, k}\right|\right| \leq \lambda$ for all k and $T_{n} x=w^{*}-\lim _{k \rightarrow \infty} T_{n, k} x$ for all x, we get
$\| T_{n}| | \leq \lambda$. (4) $d\left(E_{n}, \ell_{\infty}^{d}\right)=d\left(E_{n}, B_{n}\right)$ since B_{n} is isometric to ℓ_{∞}^{d} and obviously $\pi_{n} T_{n}=I_{B_{n}}$ so we get $a\left(E_{n}, B_{n}\right) \leq\left\|\pi_{n}\right\| \cdot\left\|T_{n}\right\| \leq 1 \cdot \lambda=\lambda$.

Fix $x \in E_{n}$. Now observe that if $k>n$ we have
(i) $\pi_{k} x=T_{n, k} \pi_{n} x$, because for $x \in E_{n}$ there exists a $y \in B_{n}$ such that $T_{n} y=x . \quad$ Thus $\pi_{k} x=\pi_{k} T_{n} Y=\pi_{k} T_{k} T_{n, k} Y=T_{n, k} Y=T_{n, k} \pi_{n} T_{n} Y=T_{n, k} \pi_{n}$. Also notice that
(ii) $x=w^{*}-\lim _{k} T_{n, k} \pi_{n} x$ for $x \in E_{n}$.

For if $x=T_{n} y$ then $T_{n, k} \pi_{n} x=T_{n, k} \pi_{n} T_{n} y=T_{n, k} y$, then $w *-\lim _{k}$ $T_{n, k} T_{n} x=\omega_{k}^{*}-\lim _{k} T_{n, k} Y=T_{n} Y=x$.
(iii) If $k \geq n$ we have $\pi_{k+1} x=T_{k, k+1} \pi_{k} x$.

For $k=n$ just apply (i) above. If $k>n$ then $\pi_{k+1} x=T_{n, k+1} \pi_{n} x=$ $T_{k, k+1} T_{n, k} \pi_{n} x=T_{k, k+1} \pi_{k} x$.

Now apply Lemma 37 part (2) to (iii) to get
(iv) $\left|\left|\pi_{k+1} x\right|\right|=\max _{m<k}\left\{| | \pi_{k} x| |, a| | \pi_{m} x| |+b| | \pi_{k} x-T_{m, k} \pi_{m} x| |\right\}$.

But if $n \leq m \leq k$ then $x \in E_{m}$ so by (i) $T_{m, k} m_{m} x=\pi_{k} x$, and thus $a\left|\left|\pi_{m} x\right|\right|+b| | \pi_{k} x-T_{m, k} \pi_{m} x| |=a| | \pi_{m} x| |+b \cdot 0 \leq\left|\left|\pi_{m} x\right|\right| \leq\left|\left|\pi_{k} x\right|\right|$ and therefore it suffices to take the maximum in (iv) over m's such that $m<n$, i.e.
(v) $\left|\mid \pi_{k+1} x \|=\max _{m<n}\left\{| | \pi_{k} x| |, a| | \pi_{m} x| |+b| | \pi_{k} x-T_{m, k} \pi_{m} x| |\right\}\right.$.

We now proceed inductively to show that in fact

$$
\begin{equation*}
\left\|\pi_{k+1} x\right\|=\max _{m<n}\left\{| | \pi_{n} x\|, a\| \pi_{m} x| |+b| | \pi_{k} x-T_{m}, k_{m}^{\pi_{m}} x \mid\right\} \text {, for } \tag{vi}
\end{equation*}
$$

all $k \geq n$.
If $k=n$ we get (vi) directly from (v), so suppose that for some

From (v) we know that
$\left\|\pi_{\ell+2} \mathrm{x}\right\|=\max _{\mathrm{m}<\mathrm{n}}\left\{| | \pi_{\ell+1} \mathrm{x}\left\|, \mathrm{a}| | \pi_{\mathrm{m}} \mathrm{x}| |+\mathrm{b}| | \pi_{\ell+1} \mathrm{x}-\mathrm{T}_{\mathrm{m}, \ell+1} \pi_{\mathrm{m}} \mathrm{x}\right\|\right\}=$
$\max _{m<n}\left\{\max _{m<n}\left\{\left\|\pi_{n} x\right\|, a| | \pi_{m} x \|+b| | \pi_{\ell} x-T_{m}, \ell_{m} \pi_{m}| |\right\}, a| | \pi_{m} x \|+\right.$
$b\left|\mid \pi_{\ell+1} x-T_{m, \ell+1} \pi_{m} x \|\right\}$ inductively. Thus $\left\|\pi_{\ell+2} x\right\|=$
$\max _{m<n}\left\{| | \pi_{n} x\left\|, a| | \pi_{m} x| |+b| | \pi_{\ell} x-T_{m}, \ell \pi_{m} x| |, a| | \pi_{m} x| |+b| | \pi_{\ell+1} x-T_{m, \ell+1} \pi_{m} x\right\|\right\}$. $\mathrm{m}<\mathrm{n}$

But for each $m<n, a| | \pi_{m} x| |+b| | \pi_{\ell} x-T_{m}, \ell \pi_{m} x| | \leq a| | \pi_{m} x| |+$ $b\left|\left|\pi_{\ell+1} x-T_{m, \ell+1} \pi_{m} x\right|\right|$, since $T_{\ell, \ell+1}\left(\pi_{\ell} x-T_{m}, \ell \pi_{m} x\right)=T_{\ell, \ell+1} \pi_{\ell} x-$ $T_{\ell, \ell+1} T_{m, \ell} \pi_{m} x=\pi_{\ell+1} x-T_{m, \ell+1} x$. But by the very definition of $T_{\ell, \ell+1}$
we know that for each $z \varepsilon B_{\ell}\|z\| \leq\left\|T_{\ell, \ell+1} z\right\|$, so that $\left\|\pi_{\ell} x-T_{m, \ell} \pi_{m} x\right\|$
 $b\left|\mid \pi_{\ell+1} x-T_{m, \ell+1} \pi_{m} x \|\right.$. Therefore $\left\|\pi_{\ell+2} x\right\|=$
$\max _{m<n}\left\{| | \pi_{n} x| |, a| | \pi_{m} x| |+b| | \pi_{\ell+1} x-T_{m, \ell+1} \pi_{m} x| |\right\}$ which verifies (vi). $\mathrm{m}<\mathrm{n}$

Since $w^{*}-1 i_{n} \pi_{n} x=x$ we may conclude that $\frac{1 i m}{n}\left|\left|\pi_{n} x\right|\right| \geq\|x\|$.
But $\left\{\left\|\pi_{n} x\right\|\right\}$ is increasing and $\left\|\pi_{n} x\right\| \leq\|x\|$ for each n. Therefore we get $\lim _{\mathrm{n}}| | \pi_{\mathrm{n}} \mathrm{x}\|=\| \mathrm{x} \|$. A similar argument shows that
$\lim _{\mathrm{n}}| | \pi_{\mathrm{n}} \mathrm{x}-\mathrm{T}_{\mathrm{m}, \mathrm{n}} \pi_{\mathrm{m}} \mathrm{x}\|=\| \mathrm{x}-\mathrm{T}_{\mathrm{m}} \pi_{\mathrm{m}} \mathrm{x} \|$. So if we let
$\mathrm{k} \rightarrow \infty$ in line (vi) above we get $\|\mathrm{x}\|=\max _{\mathrm{m}<\mathrm{n}}\left\{\left\|\pi_{\mathrm{n}} \mathrm{x}\right\|, \mathrm{a}\| \|_{\mathrm{m}} \mathrm{x} \|+\right.$
$\left.b\left|\left|x-T_{m} \pi_{m} x\right|\right|\right\}$ for every $x \varepsilon E_{n}$, which concludes the proof of Theorem 38.

Now put $X(a, b)=\overline{{\underset{n}{U}}_{\infty}^{\infty} E_{n}}$. Notice that since $\pi_{n} T_{n}=I_{B_{n}}$ we have that $T_{n} \pi_{n}$ is a projection of ℓ_{∞} onto E_{n}. For notational convenience we put $T_{n} \pi_{n}=P_{n}$. The reader should take note here that $P_{n} P_{m}=P_{(m n m)}$. We get the following corollary which is an explicit statement of the aforementioned norm property on $X(a, b)$ and is of great importance in the rather surprising properties of the space.

Corollary 39: For each $x \in X(a, b)$ we have $||x|| \geq a| | \pi_{n} x| |+$ $b\left\|x-P_{n} x\right\|$, for all n.

Proof: If $x \in E_{k}$ and $n<k$ we get $\|x\| \geq a| | \pi_{n} x\|+b\| x-P_{n} x \|$ directly from Equation (5) of Theorem 37. If $n \geq k$ then $x \in E_{n}$ since in this case $E_{k} \in E_{n}$. Therefore $P_{n} x=x$ and $a\left|\left|\pi_{n} x\right|\right|+b| | x-P_{n} x| |=$ $a\left|\left|\pi_{n} x\right|\right| \leqslant||x||$. This verifies the inequality for $x \varepsilon{ }_{n} E_{n}$. A simple limit argument then concludes the proof for $x \in \overline{U_{n} E_{n}}=X(a, b)$.

Every $X(a, b)$ space $i s$ by the construction a separable L_{∞} space. The inequality of Corollary 39 is the key element used in establishing some rather remarkable properties of these spaces. The first of these properties is stated in the following:

Theorem 42: An $X(a, b)$ space has the Radon-Nikodým property.
(The following argument is due to J. J. Uhl).
Proof: Let (Ω, Σ, μ) be a finite measure space and let F be a μ continuous $X(a, b)$ valued measure of bounded variation. We will show that F has a Radon-Nikodým derivative.

By Corollary 39 above we get that $\|F(E)\| \geq a| | \pi_{n} F(E)| |+b| | F(E)$
$-P_{n} F(E) \|$ for every $E \varepsilon \Sigma$ and all n. Thus if Π is any partition of Ω we have $\sum_{E \Pi}\|F(E)\| \geq a_{E} \sum_{\varepsilon \Pi}\left\|\pi_{n} F(E)\right\|+b \sum_{E \Pi}^{\sum}\left\|F(E)-P_{n} F(E)\right\|$. Now let $\varepsilon>0$ be given. Choose $\varepsilon_{1}, \varepsilon_{2}>0$ such that $\varepsilon_{1}+\varepsilon_{2}<\varepsilon$, and partitions I_{1} and Π_{2} such that $a\left|\pi_{n} F\right|+b\left|F-P_{n} F\right| \leq a \sum_{E \Pi_{1}}^{\sum_{1}}| | \pi_{n} F E| |+\varepsilon_{1}+b \varepsilon_{E \Pi_{2}}^{\sum}| | F(E)-$ $P_{n} F(E) \|+\varepsilon_{2}$. Then if Π is a refinement of both Π_{1} and Π_{2} we get $a\left|\pi_{n} F\right|+b\left|F-P_{n} F\right| \leq a \sum_{E \in \Pi_{1}}| | \pi_{n} F(E)| |+b \sum_{E \in \Pi_{2}}| | F(E)-P_{n} F(E) \|+\varepsilon_{1}+\varepsilon_{2}$
 $|F|+\varepsilon$. Hence $|F| \geq a\left|\pi_{n} F\right|+b\left|F-P_{n} F\right|$ for all n. Choose a partition II such that $\varepsilon+\sum_{E \in \Pi}| | F(E)| |>|F| \geq a\left|\pi_{n} F\right|+b\left|F-P_{n}\right| \geq a_{E \in \Pi}| | \pi_{n} F(E)| |$
 $\left|\mid \pi_{n} F(E)\|\rightarrow\| F(E) \|\right.$ so that $\left.b \overline{\lim _{n}}\right| F-P_{n} F\left|\leq \varepsilon+(1-a)_{E \in \|} \sum_{\|}\right||F(E)| \mid \leq \varepsilon+$ (l-a) $|F|$. Since ε was arbitrary we have $\overline{l_{n} m}\left|F-P_{n} F\right| \leqq\left(\frac{1-a}{b}\right)|F|$. Because $\mathrm{a}+\mathrm{b}>1$ and $\mathrm{a} \leqq 1$, we have $0 \leqq \frac{1-\mathrm{a}}{\mathrm{b}}<1$. Choose $\left.\mathrm{r} \varepsilon\left(\frac{1-\mathrm{a}}{\mathrm{b}}\right), 1\right)$. Then
(*) $\overline{\lim _{\mathrm{n}}}|\mathrm{F}-\mathrm{P} \mathrm{F}|<r|F|$.
We will now proceed inductively to show that there exists a subsequence $\left\{P_{n_{j}} F\right\}_{j=1}^{\infty}$ of the sequence $\left\{P_{n} F\right\}$ such that $\left|P_{n_{j}} F-F\right| \underset{j}{\rightarrow} O$. By (*) we may choose n_{l} such that $\left|F-P_{n_{l}} F\right| \leq r|F|$. But $F-P_{n_{1}} F$ is an $X(a, b)$ valued, μ continuous measure of bounded variation so we may use (*) to choose $n_{2}>n_{1}$ such that $\left|F-P_{n_{1}} F-P_{n_{2}}\left(F-P_{n_{1}} F\right)\right| \leq r\left|F-P_{n_{1}} F\right|$. Since $P_{n_{2}} P_{n_{l}} F=P_{n_{2} \wedge_{1}} F=P_{n_{1}} F$ we get that $\left|F-P_{n_{2}} F\right| \leq r\left|F-P_{n_{1}} F\right| \leq r^{2}|F|$. Now apply (*) to $\mathrm{F}-\mathrm{P}_{\mathrm{n}_{2}} \mathrm{~F}$ and choose n_{3} such that $\left|\mathrm{F}-\mathrm{P}_{\mathrm{n}_{3}} \mathrm{~F}\right| \leq \mathrm{r}^{3}|\mathrm{~F}|$. Continue inductively to select a sequence $\left\{n_{j}\right\}_{j=1}^{\infty}$ of positive integers such
that $\left|F-P_{n_{j}} F\right| \leq r^{j}|F|$. Since $O<r<1$, we have $\lim _{j}\left|F-P_{n_{j}} F\right| \leq$ $\lim _{j} r^{j}|F|=0$. Thus the measures $P_{n_{j}} F$ converge to F in total variation. The range of each of the measures $P_{n_{j}} F$ lies in a finite dimensional space and thus each has a Radon-Nikodýn derivative f_{j}. Since $\left|F-P_{n} F\right| \rightarrow 0$ the sequence $\left\{f_{j}\right\}$ is Cauchy in $L_{I}(\mu, X(a, b))$ and therefore must converge to some $f \in L_{1}(\mu, X(a, b))$. This function f is the Radon-Nikodým derivative of F. Because $F(E)=\lim _{j} P_{n_{j}} F(E)=\lim _{j} \int_{E} f_{j} d \mu=\int_{E} \lim _{j} f_{j} d \mu=$ $\int_{E} f d \mu$, for all $E \varepsilon \Sigma$. This completes the proof.

THE CLASS $X(1, b)$

In this chapter we will investigate the $X(a, b)$ spaces with $a=1$, i.e. an $X(l, b)$ space. Such a space has some very strange properties. The first of these was noted in the previous chapter.

1) An $X(1, b)$ space is a separable L_{∞} space with R.N.P. With the help of the following lemma we will show that,
2) An $X(1, b)$ space has the Schur property.

Lemma 41: For every $\varepsilon>0$ and every k there exists an n such that $\left|\left|\pi_{n} x\right|\right| \geq(1-\varepsilon)| | x| |$ for all $\mathrm{xeE}_{\mathrm{k}}$.

Proof: As we have observed in the proof of Theorem $37 \| \pi_{n} x| | \vec{n}$ $||x||$ for every $x \in \underset{j}{U} E_{j}$. Since $B_{E_{k}}$ is compact, this convergence is uniform on $\mathrm{B}_{\mathrm{E}_{\mathrm{k}}}$. Thus given $\varepsilon>0$, we may choose n such that $\left|\left|\frac{x}{||x||}\right|\right|-\| \pi_{n}\left(\frac{x}{| | x| |}\right)| |<\varepsilon$ for all $x \in E_{k}$, or equivalently $(1-\varepsilon)||x||<\left\|\pi_{n} x\right\|$.

Theorem 42: An $X(1, b)$ space has the l_{1}-skipped-blocking-property.
Proof: First notice that if $\left\{n_{j}\right\}$ is any subsequence of the positive integers then $\overline{U_{j} P_{n_{j}}\left(\ell_{\infty}\right)}=\overline{U_{j} E_{n_{j}}}=x(1, b), \sup _{j}| | P_{n_{j}} \| \leq \lambda$, and $P_{n_{i}} P_{n_{j}}=P_{n_{i} \Lambda_{n}}$. These facts guarantee that if we put $G_{1}=P_{n_{1}}\left(\ell_{\infty}\right)=$ $E_{n_{l}}$, and $G_{j}=\left(P_{n_{j}}-P_{n_{j-1}}\right)\left(\ell_{\infty}\right)$ for $j \geq 2$ then the sequence $\left\{G_{j}\right\}_{j=1}^{\infty}$ is a
finite dimensional decomposition for $\mathrm{X}(\mathrm{l}, \mathrm{b})$. Choose a sequence $\left\{\varepsilon_{\mathrm{j}}\right\}$ such that $1 \geq \varepsilon_{1} \geq \ldots \geq \varepsilon_{n} \geq \varepsilon_{n-1} \geq \ldots>0, \varepsilon_{i j} \rightarrow 0$, and ${ }_{j}{ }_{j=1}^{\infty}\left(1-\varepsilon_{j}\right)>0$. Then by Lemma 41 we may choose $1=n_{1}<\ldots<n_{j}<n_{j+1}<\ldots$ such that for each j and $x \in E_{n_{j}}$ we have $\left\|\pi_{n_{j+1}} x\right\| \geq\left(1-\varepsilon_{j}\right)\|x\|$. Use this sequence $\left\{n_{j}\right\}$ to define an F.D.D. $\left\{G_{j}\right\}_{j=1}^{\infty}$ as above.

Now let $y \in\left[G_{i}\right]_{i=1}^{j-1}$ and $z \varepsilon\left[G_{i}\right]_{i=j+1}^{k}$, and use Corollary 38 to estimate the norm of $y+z$ as follows:
(*) $\left|\left|y+z\left\|\geq\left|\left|\pi_{n_{j}}(y+z)\left\|+b| |(y+z)-P_{n_{j}}(y+z)\right\|\right.\right.\right.\right.\right.$. But $z \varepsilon\left(P_{n_{k}}-\right.$
$\left.P_{n_{j}}\right)\left(\ell_{\infty}\right)$ so $z=P_{n_{k}} x-P_{n_{j}} x$ for some $x \varepsilon l_{\infty}$. Thus $\pi_{n_{j}} z=\pi_{n_{j}} P_{n_{k}} x-$

and since $y \in E_{n_{j}}$ we get $P_{n_{j}} y=y$. These facts make the inequality (*) reduce to $\|y+z\| \geq\left\|\pi_{n_{j}} y\right\|+b| | z \|$. Since $y \varepsilon E_{n_{j}}$ we get $\left\|\pi_{n_{j}} y\right\| \geq$ $\left(1-\varepsilon_{j-1}\right)\|y\|$ and so (**) $\|y+z\| \geq\left(1-\varepsilon_{j-1}\right)\|y\|+b\|z\|$.

Form a skipped blocking of the sequence $\left\{G_{i}\right\}$ by choosing a sequence of non-negative integers $\left\{m_{n}\right\}$ with $m_{0}=0, m_{n}+1<m_{n+1}$ and put $F_{n}=\left[G_{i}\right]_{i=m}^{m}{ }_{n-1}$. We claim then that the sequence $\left\{F_{n}\right\}$ determines and l_{l} decomposition. For if $\left\{x_{n}\right\} \subset\left[F_{n}\right]_{n=1}^{\infty}$ with $x_{j} \varepsilon F_{j}$ for all j we can estimate the norm of $x_{1}+x_{2}+\ldots+x_{k}$ with the inequality (**) above as follows: $\left|\left|x_{1}+\ldots+x_{k}\right|\right| \geq\left(1-\varepsilon_{m_{k-1}}\right)| | x_{1}+\ldots+x_{k-1}| |+b| | x_{k}| | \geq$ $\left(1-\varepsilon_{m_{k-1}}\right)\left(1-\varepsilon_{m_{k-2}}\right)\left\|x_{1}+\ldots+x_{k-2}| |+\left(1-\varepsilon_{m_{k-1}}\right) b| | x_{k-1}| |+b| | x_{k}\right\| \geq$ $b\left(1-\varepsilon_{m_{k-1}}\right)\left(1-\varepsilon_{m_{k-2}}\right)\left\|x_{1}+\ldots+x_{k-2}\right\|+b\left(1-\varepsilon_{m_{k-1}}\right)\left(1-\varepsilon_{m_{k-2}}\right)\left\|x_{k-1}\right\|+$
$b\left(1-\varepsilon_{m_{k-1}}\right)\left(1-\varepsilon_{m_{k-2}}\right)\left|\left|x_{k}\right|\right|$. Continuing this process inductively by stripping off one summand at a time yields $\left|\left|x_{1}+\ldots+x_{k}\right|\right| \geq b \prod_{i=1}^{k}\left(1-\varepsilon_{m_{i}}\right)$ $\left(\left\|x_{1}\right\|+\left\|x_{2}\right\|+\ldots+\left(\mid x_{k} \|\right)\right.$. In the limit this becomes $\left\|\sum_{n=1}^{\infty} x_{n}\right\|$ $\geq b \prod_{n=1}^{\infty}\left(1-\varepsilon_{m_{n}}\right) \sum_{n=1}^{\infty}| | x_{n} \|$. Thus the sequence' $\left\{F_{n}\right\}$ is in fact and ℓ_{1} de composition. This completes the proof and statement 2) above follows from Theorem 12.

Since an $X(1, b)$ space has the Schur property we get:
3) An $X(1, b)$ contains no subspace isomorphic to any $C(K)$ space
from Theorem 13.
Also as a consequence of 2) we have
4) An $X(1, b)$ space is weakly sequentially complete from the remark following Definition 20.

Since an $X(1, b)$ is a L_{∞} space, $X^{* *}(1, b)$ is injective by Theorem 36. This fact gives us the following two properties:
5) The dual of an $X(1, b)$ space is weakly sequentially complete from Corollary 23.
6) An $X(1, b)$ space does not embed in any separable dual space from Theorem 33.

In 1940 Dunford and Pettis proved that every separable dual space has R.N.P. The theory developed subsequent to the Dunford-Pettis theorem tended to support the converse of the theorem. This conjecture is generally attributed to J. Uhi (see [15]). Statement 6) above proves that the converse is false.

In [10] J. Lindenstrauss has shown that a Banach space X is a L_{∞} space if and only if it has the compact extension property, which means that every compact operator $T: Y \rightarrow X$ extends to a compact operator $\tilde{T}: Z \rightarrow X$ for
any space Z containing Y, with $||\tilde{T}|| \leq \lambda| | T| |$ (the constant λ being uniform in Y, Z, and T). The weak compact extension property has the same definition with the operators T and \tilde{T} being weakly compact instead of compact. Since an $X(1, b)$ space is a L_{∞} space the theorem of Lindenstrauss tells us that it has the compact extension property. Statement 2) above together with this fact guarantees that an $X(1, b)$ space has the weak compact extension property. In [10] Lindenstrauss conjectured that any space with the weak compact extension property must be finite dimensional. An $X(l, b)$ space thus resolves this conjecture also.

The local structure of a L_{∞} space is (up to isomorphism) that of a finite dimensional $C(K)$ space. It was thus natural to conjecture (c.f.[12]) that any L_{∞} space should contain an isomorph of c_{0}. Statement 3) above shows this conjecture to be false.

A much older question concerning Banach spaces was: If X and $X *$ are both weakly sequentially complete then must X be reflexive? Statements 4) and 5) above say that an $X(1, b)$ space satisfies the hypothesis of the question but since it is a L_{∞} space it can't be reflexive.

In the next chapter we shall see that a slight adjustment of the parameter "a" produces another interesting class of spaces.

THEE CLASS $X(a, b), a<l$

Here we will discuss $X(a, b)$ spaces with the parameter "a" strictly less than l. We have from our previous work that such a space is a separable L_{∞} space with R.N.P. but in contrast to the last example (i.e. an $X(1, b)$ space) the restriction on "a" produces the following property.

Theorem 43: An $X(a, b)$ space with $a<l$ has no subspace which is isomorphic to ℓ_{1}.

Proof: Suppose $X(a, b)$ does contain a subspace isomorphic to ℓ_{1}. Then there exists a sequence $\left\{u_{n}\right\}$ in $X(a, b)$ which is equivalent to the usual basis of ℓ_{1}. Since the weak* topology of ℓ_{∞} is metrizable on bounded sets we have a subsequence still called $\left\{u_{n}\right\}$ which is w* convergent. Thus if we put $y_{n}=u_{2 n}-u_{2 n-1}$ we get that for each $m, \lim _{n} \pi_{m} y_{n}=0$. The sequence' $\left\{y_{n}\right\}$ is just a blocking of $\left\{u_{n}\right\}$; as such it is a basic sequence equivalent to $\left\{u_{n}\right\}$ and thus to the usual basis of ℓ_{1}. Assume, without loss of generality, that the basic sequence $\left\{y_{n}\right\}$ is normalized with basis constant K. Since $\lim _{n} \pi_{m} y_{n}=O$ for each m we may pass to a subsequence, still called $\left\{y_{n}\right\}$, for which $\left\|\pi_{k} y_{n}\right\|<\frac{1}{\lambda \cdot 8 K \cdot 2^{n}}(\lambda$ as on page 36$)$. By the density of $U_{n} E_{n}$ choose a sequence $\left\{w_{n}\right\} \underset{j}{U} E_{j}$ such that $\left|\left|w_{n}-y_{n}\right|\right|<\frac{1}{\lambda \cdot 8 K \cdot 2^{n}}$. Notice that for $k<n,\left|\left|\pi_{k} w_{n}\|=\| \pi_{k}\left(w_{n}-y_{n}\right)+\pi_{k} y_{n}\right|\right| \leq\left|\left|w_{n}-y_{n}\right|\right| w_{n}-y_{n}\|+\| \pi_{n} y_{n}| |$
$<\frac{2}{\lambda \cdot 8 \cdot K \cdot 2^{n}}=\frac{1}{\lambda \cdot 4 K \cdot 2^{n}}$. Now put $v_{n}=w_{n}-T_{n-1} \pi_{n-1} W_{n}$ and observe that
$\left\|y_{n}-v_{n}\right\| \leq\left\|y_{n}-w_{n}\right\|+\left\|w_{n}-v_{n}\right\|<\frac{1}{\lambda 8 K 2^{n}}+\left\|T_{n-1} \pi_{n-1} w_{n}\right\|<$
$\frac{1}{\lambda 8 K 2^{n}}+\lambda\left\|\pi_{n-1} w_{n}\right\|<\frac{1}{\lambda \cdot 8 K 2^{n}}+\frac{1}{4 K 2^{n}}<\frac{1}{4 K 2^{n}}+\frac{1}{4 K 2^{n}}=\frac{1}{2 K 2^{n}}$. Thus
${ }_{n} \sum_{\underline{E}}^{\infty}\left\|y_{n}-v_{n}\right\|<\frac{1}{2 \mathrm{~K}}$. Therefore $\left\{\mathrm{v}_{\mathrm{n}}\right\}$ is equivalent to' $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ by Theorem 4 and thus to the usual basis of l_{1}. Moreover $\left\{v_{n}\right\}^{\prime} \sim \mathcal{U}_{j} E_{j}$ and $\pi_{k} v_{n}=0$ for $k<n$ by the construction of $\left\{v_{n}\right\}$.

Choose $\varepsilon>0$ such that $4 \varepsilon<1-a(r e c a l l$ that $a<1)$ and apply Theorem
5 to the sequence $\left\{v_{n}\right\}$ to obtain a blocking $\left\{b_{n}\right\}$ of $\left\{v_{n}\right\}$ for which $\| b_{n}| |=1$ and $\left|\left|\sum_{i=1}^{n} \alpha_{i} b_{i}\right|\right| \geq(1-\varepsilon) \sum_{i=1}^{n}\left|\alpha_{i}\right|$, for any sequence of scalars $\left\{\alpha_{i}\right\}$. Since $\left\{b_{n}\right\}$ is a blocking of $\left\{v_{n}\right\}$ we have $\pi_{k} b_{n}=0$ for $k<n$. Let $m_{1}<m_{2}<\ldots$ be a sequence of integers such that $b_{n} \varepsilon E_{m_{n}}$.

Put $x_{1}=b_{1}$. Let $m_{1}^{\prime}>m_{1}$ such that $\left\|\pi_{m_{1}^{\prime}}^{\prime} x_{1}\right\|>1-\varepsilon$. Choose k_{2} such that $\pi_{m_{1}^{\prime}} b_{k}=0$ for $k \geq k_{2}$ and put $x_{2}=b_{k_{2}}$. Select m_{2}^{\prime} such that $m_{2}^{\prime}>$ $m_{k_{2}}, m_{2}^{\prime}>m_{1}^{\prime}$, and $\left\|\pi_{m_{2}^{\prime}} x_{2}\right\|>1-\varepsilon$. Take k_{3} such that $\pi_{m_{2}^{\prime}} b_{k}=0$ for $k \geq k_{3}$, put $x_{3}=b_{k_{3}}$ and choose $m_{3}^{\prime}>\max \left(m_{k_{3}}, m_{2}^{\prime}\right)$ such that $\left\|\pi_{m_{3}}, x_{3}\right\|>1-\varepsilon$. Thus we have $x_{1} \varepsilon E_{m_{1}^{\prime}},\left\|\pi_{m_{1}^{\prime}} x_{1}\right\|>1-\varepsilon ; x_{2} \varepsilon E_{m_{2}^{\prime}}^{\prime} \prime_{m_{1}^{\prime}} x_{2}=0,\left\|\pi_{m_{2}^{\prime}} x_{2}\right\|>$ $1-\varepsilon ; x_{3} \varepsilon E_{m_{3}}{ }_{3}, m_{m}^{\prime} x_{3}=0,\left|\left|\pi_{m_{3}}^{\prime} x_{3}\right|\right|>1-\varepsilon ;$ and $m_{1}^{\prime}<m_{2}^{\prime}<m_{3}^{\prime}$. Now put $x=x_{1}+x_{2}+x_{3}$ and we have $\|x\|=\left\|\left.\right|_{i=1} ^{\sum} x_{i}\right\| \geq(1-\varepsilon) \sum_{i=1}^{3} 1=(1-\varepsilon) \cdot 3$. Thus the norm of x is at least $3-3 \varepsilon$. We now use Lemma 37, Theorem 37, Corollary 39, and the construction of $\mathrm{X}(\mathrm{a}, \mathrm{b})$ to obtain a contradictory upper estimate on the norm of x thus establishing the theorem.

$$
\text { Since } x \in E_{m_{3}^{\prime}} \text { we have that }\|x\|=\max _{\operatorname{m} \subset m_{3}^{\prime}}\left\{\left\|\pi_{m_{3}^{\prime}} x\right\|, a| | \pi_{m} x \|+\right.
$$

$b\left|\mid x-P_{m} x \|\right\}$, (recall $P_{m}=T_{m} \pi_{m}$ and is a projection onto E_{m}). There are several cases to consider:

1) If $m \leq m_{l}^{\prime}$ we have $a\left|\left|\pi_{m} x\left\|+b| | x-P_{m} x\right\|=a\right|\right| \pi_{m}\left(x_{1}+x_{2}+x_{3}\right) \|+$ $b\left|\left|x_{1}+x_{2}+x_{3}-T_{m} \pi_{m}\left(x_{1}+x_{2}+x_{3}\right)\left\|\leq a| | \pi_{m} x_{1}\right\|+b\right|\right| x_{1}-T_{m} \pi_{m} x_{1} \|+$ $\mathrm{b}\left|\left|\mathrm{x}_{2}+\mathrm{x}_{3}\right|\right|=\mathrm{a}| | \pi_{\mathrm{m}} \mathrm{x}_{1}| |+\mathrm{b}| | \mathrm{x}_{1}-\mathrm{P}_{\mathrm{m}} \mathrm{x}_{1}| |+\mathrm{b}| | \mathrm{x}_{2}+\mathrm{x}_{3}| | \leq$ $\left|\left|x_{1}\right|\right|+b| | x_{2}+x_{3} \|<1+2 b$.
2) If $m_{1}^{\prime}<m \leq m_{2}^{\prime}$ then $a\left|\left|\pi_{m} x\left\|+b| | x-P_{m} x\right\|=a\right|\right| \pi_{m}\left(x_{1}+x_{2}+x_{3}\right) \|+$ $b\left|\left|x_{1}+x_{2}+x_{3}-T_{m} \pi_{m}\left(x_{1}+x_{2}+x_{3}\right)\left\|=a| | \pi_{m}\left(x_{1}+x_{2}\right)\right\|+\right.\right.$ $b\left|\left|x_{1}+x_{2}-T_{m} \pi_{m}\left(x_{1}+x_{2}\right)+x_{3}\left\|\leq a| | \pi_{m}\left(x_{1}+x_{2}\right)\right\|+b\right|\right| x_{1}+x_{2}-P_{m}\left(x_{1}+x_{2}\right) \|+$ $\mathrm{b}\left|\left|\mathrm{x}_{3}\right|\right| \leq\left|\left|\mathrm{x}_{1}+\mathrm{x}_{2}\right|\right|+\mathrm{b}| | \mathrm{x}_{3}| | \leq 2+\mathrm{b}$.
3) If $m_{2}^{\prime}<m \leq m_{3}^{\prime}$ then $a\left|\left|\pi_{m} x\right|\right|+b| | x-P_{m} x| |=a| | \pi_{m}\left(x_{1}+x_{2}+x_{3}\right)| |$ $+b| | x_{1}+x_{2}+x_{3}-T_{m} \pi_{m}\left(x_{1}+x_{2}+x_{3}\right)\left\|=a| | \pi_{m}\left(x_{1}+x_{2}+x_{3}\right)\right\|+b| | x_{1}+x_{2}+x_{3}-$ $\left(x_{1}+x_{2}+T_{m} \pi_{m} x_{3}\right)\left\|\leq a| | \pi_{m}\left(x_{1}+x_{2}\right)\right\|+a| | \pi_{m} x_{3}\left\|+b| | x_{3}-T_{m} \pi_{m} x_{3}\right\|=$ $a\left|\left|\pi_{m}\left(x_{1}+x_{2}\right)\left\|+a| | \pi_{m} x_{3}\right\|+b\right|\right| x_{3}-P_{m} x_{3}\left\|\leq a| | x_{1}+x_{2}\right\|+\left\|x_{3}\right\| \leq 2 a+1$.

So the quantity $a\left|\left|\pi_{m} x\right|\right|+b| | x-P_{m} x \|$ where $m \leq m_{3}^{\prime}$ is less than or equal to $\max \{1+2 \mathrm{~b}, 2+\mathrm{b}, 1+2 \mathrm{a}\}$.

To get an upper estimate for $\left\|\pi_{m_{3}^{\prime}} x\right\|$ first notice that this norm can't be obtained in the first $d_{m_{2}^{\prime}}$ coordinates because here x_{3} is zero. These coordinates are thus bounded by $\left\|x_{1}+x_{2}\right\| \leq 2$ and we have observed that the norm of x is at least $3-3 \varepsilon$. We therefore focus on the coordinates of x situated between $\mathrm{d}_{\mathrm{m}_{2}^{\prime}}+1$ and $\mathrm{d}_{\mathrm{m}_{3}^{\prime}}$. These coordinates are bounded by the coordinates of $\left(x_{1}+x_{2}\right)$ plus $\left\|x_{3}\right\|=1$. We will then find upper bounds for the coordinates of $x_{1}+x_{2}$ situated between $d_{m_{2}}+1$
and $d_{m_{3}^{\prime}}$. By construction of $T_{m, n}$ recall that these coordinates are determined by functionals f_{γ} (see page 37) acting on $\pi_{j}\left(x_{1}+x_{2}\right)$, where $\gamma \varepsilon \Gamma_{j}$, and $m_{2}^{\prime} \leq j \leq m_{3}^{\prime}-1$. As such we see that $\left|f_{\gamma}\left(\pi_{j}\left(x_{1}+x_{2}\right)\right)\right|$ $\leq a| | \pi_{m}\left(\pi_{j}\left(x_{1}+x_{2}\right)\right)\|+b\| \pi_{j}\left(x_{1}+x_{2}\right)-T_{m, j} \pi_{m}\left(\pi_{j}\left(x_{1}+x_{2}\right)\right) \|$ for $m<j$. Thus $\left|f_{\gamma}\left(\pi_{j}\left(x_{1}+x_{2}\right)\right)\right| \leq a| | \pi_{m}\left(x_{1}+x_{2}\right)| |+b| | \pi_{j}\left(x_{1}+x_{2}\right)-T_{m, j} \pi_{m}\left(x_{1}+x_{2}\right)| |$, $m<j$. Now, $a\left|\left|\pi_{m}\left(x_{1}+x_{2}\right)\left\|+b| | \pi_{j}\left(x_{1}+x_{2}\right)-T_{m, j} \pi_{m}\left(x_{1}+x_{2}\right)\right\| \leq\right.\right.$
$a \mid \pi_{m}\left(x_{1}+x_{2}\right)\|+b\|\left\|_{m_{3}^{\prime}}\left(x_{1}+x_{2}\right)-T_{m_{1} m_{3}^{\prime}} \pi_{m}\left(x_{1}+x_{2}\right)\right\|$ because $T_{j, m_{3}^{\prime}}\left(\pi_{j}\left(x_{1}+x_{2}\right)-\right.$
$\left.T_{m, j} \pi_{m}\left(x_{1}+x_{2}\right)\right)=\pi_{m_{3}^{\prime}}\left(x_{1}+x_{2}\right)=T_{m, m_{3}^{\prime}} \pi_{m}\left(x_{1}+x_{2}\right)$. Hence the coordinates
are bounded by $\max _{\mathrm{m}<j}\left\{a\left\|\pi_{m}\left(x_{1}+x_{2}\right)\right\|+b\left\|\pi_{m_{3}^{\prime}}\left(x_{1}+x_{2}\right)-T_{m, m_{3}^{\prime}} \pi_{m}\left(x_{1}+x_{2}\right)\right\|\right\}$.
But for m^{\prime} s such that $m \geq m_{2}^{\prime}$ we have $x_{1}+x_{2} \in E_{m}$ and hence $\pi_{m_{3}^{\prime}}\left(x_{1}+\dot{x}_{2}\right)=$ $T_{m, m_{3}^{\prime}} \pi_{m}\left(x_{1}+x_{2}\right)$, as we observed in part (i) of Theorem 38.
Therefore, the coordinates are bounded by

$$
\begin{aligned}
& \max _{m<m_{2}^{\prime}}\left\{2 a, a\left\|\pi_{m}\left(x_{1}+x_{2}\right)\right\|+b\left\|\pi_{m_{3}^{\prime}}\left(x_{1}+x_{2}\right)-T_{m, m_{3}^{\prime}} \pi_{m}\left(x_{1}+x_{2}\right)\right\|\right\} . \\
& \text { 4) If } m \leq m_{1}^{\prime} \text { then } a\left\|\pi_{m}\left(x_{1}+x_{2}\right)\right\|+b| | \pi_{m_{3}^{\prime}}\left(x_{1}+x_{2}\right)-T_{m_{1} m_{3}^{\prime}} \pi_{m} \\
& \left(x_{1}+x_{2}\right)\|\leq a\| \pi_{m} x_{1}\left\|+b| | \pi_{m_{3}^{\prime}} x_{1}-T_{m, m_{3}^{\prime}} \pi_{m} x_{1}\right\|+b\left\|\pi_{m_{3}^{\prime}} x_{2}\right\| \leq \\
& \left\|x_{1}\right\|+b\left\|\pi_{m_{3}^{\prime}} x_{2}\right\| \leq 1+b .
\end{aligned}
$$

5) If $m_{1}^{\prime}<m<m_{2}^{\prime}$ then $a \mid \pi_{m}\left(x_{1}+x_{2}\right)\|+b\| \pi_{m_{3}^{\prime}}\left(x_{1}+x_{2}\right)-$
$T_{m, m_{3}^{\prime}} \pi_{m}\left(x_{1}+x_{2}\right)\left\|\leq a| | \pi_{m} x_{1}\right\|+a\left\|\pi_{m} x_{2}\right\|+b \| \pi_{m_{3}^{\prime}} x_{2}-T_{m, m_{3}^{\prime}}$
$\pi_{m} x_{2}\left\|\leq a| | \pi_{m} x_{1}\right\|+\left\|x_{2}\right\| \leq a+1$.
Adding now $\left\|\pi_{m_{3}} x_{3}\right\|$ to each case gives us that the coordinates of
x situated between $d_{m_{2}^{\prime}}+1$ and $d_{m_{3}^{\prime}}$ are bounded by max\{2a+1, $\left.2+b, 2+a\right\}$.

We summarize 1) - 5) and conclude that $\|x\| \leq \max \{1+2 b, 2+b, 2 a+1$, $2+b, 2+a\} \leq 2+a<3-4 \varepsilon$ which contradicts $||x|| \geq 3-3 \varepsilon$ and thus completes the proof.

The fact that an $X(a, b)$ space, $a<1$, contains no subspace which is isomorphic to ℓ_{1} produces another remarkable property. The space is somewhat reflexive, which means that every infinite dimensional subspace contains an infinite dimensional reflexive space. Prior to this example L_{∞} spaces were thought to be in a sense much like $C(K)$ spaces thus making this somewhat reflexive property very much unanticipated. The proof that follows will use several results not contained in this paper but appropriate references are provided for the interested reader.

Theorem 44: An $X(a, b)$ space is somewhat reflexive if $a<1$.
Proof: From the previous Theorem we have that an $X(a, b)$ space is a separable L_{∞} space with no subspace isomorphic to l_{1}. The results of Hagler [6], and Retherford and Stegall [13] then give us that $X^{*}(a, b)$ is isomorphic to ℓ_{1}. This means $X^{*}(a, b)$ has a basis. The deep results of Johnson, Rosenthal, and Zippin [9] then allow us to conclude that an $X(a, b)$ space has a shrinking basis $\left\{u_{n}\right\}$.

Now let Z be an infinite dimensional subspace of $X(a, b)$. Choose a sequence $\left\{z_{n}\right\} \in z$ such that $\left|\left|z_{n}\right|\right|=1$ for each n and $\lim _{n} \pi_{m} z_{n}=0$, for every m. Since Z has no subspace isomorphic to ℓ_{1} a result of Rosenthal $[14]$ ensures that $\left\{z_{n}\right\}$ contains a subsequence, still called $\left\{z_{n}\right\}$, which is weakly Cauchy. This sequence has a subsequence $\left\{z_{n_{k}}\right\}$ such that $\left|\left|z_{n_{k}}^{-z_{n_{k-1}}}\right|\right| \geq \delta>0$. If it did not then sequence would be norm Cauchy and hence converge to some z. This z would be a norm one
vector as the limit of norm one vectors but this is impossible since $\pi_{m}=\lim _{n} \pi_{m} z_{n}=0$ for each m. Now put $w_{k}=\frac{z_{n_{k}}-z_{n_{k}-1}}{\left|\left|z_{n_{k}}-z_{n_{k}-1}\right|\right|}$ and observe that $\left|\left|w_{k}\right|\right|=1, \lim _{\mathrm{k}} \pi_{\mathrm{m}} \mathrm{w}_{\mathrm{k}}=0$ and $\mathrm{w}-\lim _{\mathrm{k}} \mathrm{w}_{\mathrm{k}}=0$. This sequence then has a subsequence still called $\left\{w_{k}\right\}$ which is equivalent to a blocking of $\left\{u_{n}\right\}$ (see Proposition l.a.l2,p.7 of [12]) and as such is shrinking. So we have a normalized shrinking basic sequence $\left\{\mathrm{w}_{\mathrm{k}}\right\} 心 \mathrm{z}$ for which $\lim _{\mathrm{k}} \pi_{\mathrm{m}} \mathrm{w}_{\mathrm{k}}=0$ for each m. Now choose $\varepsilon>0$ such that $\gamma=(a+b)(1-\varepsilon)^{2}>1$. Using the perturbation argument in the proof of the previous theorem we obtain a sequence $\left\{y_{n}\right\}$ equivalent to a subsequence $\left\{w_{k_{n}}\right\}$ of $\left\{w_{k}\right\}$ such that

1) $\left\{y_{n}\right\} \subset U_{j} E_{j}$
2) $\left|\left|y_{n}\right|=1\right.$ for all n, and there is a sequence $m_{1}<m_{2}<\ldots$ such that
3) $\pi_{m_{k}} \sum_{s=k+1}^{t} a_{s} y_{s}=0$ for all $t \geq k+1$ and
 $\left(\sum_{S=1}^{k} a_{s} y_{s}\right) \|$ for all $m<m_{k-1}$ and any choice of scalars $\left\{a_{s}\right\}$. In 4) we also use Lemma 41.

We will show that the sequence $\left\{y_{n}\right\}$ is boundedly complete. Since $\left\{w_{k_{n}}\right\}$ is equivalent to $\left\{y_{n}\right\}$ it will thus be boundedly complete and since $\left\{_{w_{k}}\right\}$ is a subsequence of a shrinking basic sequence it is also shrinking. Therefore $\left\{\mathrm{w}_{\mathrm{k}_{\mathrm{n}}}\right\}$ will be shrinking and boundedly complete and so $\left[\mathrm{w}_{\mathrm{k}_{\mathrm{n}}}\right]$ is reflexive by Theorem 1.b.5,p.9 of [12].

Let $\left\{a_{k}\right\}$ be a sequence of scalars for which the sequence $\left\{v_{n}\right\}$ defined
by $v_{n}=\sum_{k=1}^{n} a_{k} y_{k}$ is bounded by some number M, i.e. $\left\|v_{n}\right\| \leq M$ for all n. To prove that $\left\{y_{n}\right\}$ is bounded by complete we must show that $\left\{v_{n}\right\}$ converges, or equivalently that $\left\{v_{n}\right\}$ is relatively compact. If $\left\{v_{n}\right\}$ is not relatively compact there exists a number $\beta>0$ such that (*) $\overline{\lim _{n}} \| v_{n}-$ $P_{m} v_{n} \|>\beta$, for every m. By Theorem 38 we get the following estimate for all $p<t$ and $m<m_{p-1}:\left\|v_{t}-P_{m} v_{t}\right\| \geq a\left\|m_{p}\left(v_{t}-P_{m} v_{t}\right)\right\|+b \| \pi_{m_{t}}\left(v_{t}-P_{m} v_{t}\right)-$ $T_{m_{p}, m_{t}} \pi_{m_{p}}\left(v_{t}-P_{m} v_{t}\right)\|=a\| \pi_{p}\left(v_{t}-P_{m} v_{t}\right)\|+b\| \pi_{m_{t}} v_{t}-\pi_{m_{t}} P_{m} v_{t}-T_{m_{p}}, m_{t}$ $\pi_{m_{p}} v_{t}+T_{m_{p}, m_{t}} \pi_{m_{p}} P_{m} v_{t} \|$. By the construction of these operators, $\pi_{m} P_{m} v_{t}=T_{m_{p}, m_{t}} \pi_{m_{p}} P_{m} v_{t}$ so the inequality becomes $\left\|v_{t}-P_{m} v_{t}\right\| \geq$ $a\left|\mid \pi_{m_{p}}\left(v_{t}-P_{m} v_{t}\right)\|+b\| \pi_{m_{t}} v_{t}-T_{m_{p}, m_{t}} \pi_{m_{p}} v_{t} \|\right.$. Since $\pi_{m_{t}} T_{m_{p}}=T_{m_{p}}, m_{t}$ on $B_{m_{p}}$ we get $\left|\left|v_{t}-P_{m} v_{t}\left\|\geq a| | \pi_{m}\left(v_{t}-P_{m} v_{t}\right)\right\|+b\right|\right| \pi_{m_{t}}\left(v_{t}-T_{m_{p}} \pi_{m_{p}} v_{t}\right) \|$. Since $p<t$ we use 3) above to replace $\pi_{m_{p}}\left(v_{t}-P_{m} v_{t}\right)$ with $\pi_{m}\left(v_{p}-P_{m} v_{p}\right)$ to get $\left\|v_{t}-P_{m} v_{t}\right\| \geq a| | \pi_{m_{p}}\left(v_{p}-P_{m} v_{p}\right)\left\|+b| | \pi_{m_{t}}\left(v_{t}-P_{m_{p}} v_{t}\right)\right\|$. For such an " m " we use (*) above to choose p so that $\left\|v_{p}-P_{m} v_{p}\right\| \geq \beta(1-\varepsilon)$, and then by 4) we have $\left\|\pi_{m_{p}}\left(v_{p}-P_{m} v_{p}\right)\right\| \geq \beta(l-\varepsilon)^{2}$. Having chosen this p we select t such that $\left\|v_{t}-P_{m_{p}} v_{t}\right\| \geq \beta(1-\varepsilon)$; and consequently $\left\|\pi_{m_{t}}\left(v_{t}-P_{m_{p}} v_{t}\right)\right\| \geq B(1-\varepsilon)^{2}$. Thus $\left\|v_{t}-p_{m} v_{t}\right\| \geq a\left\|\pi_{p}\left(v_{p}-P_{m} v_{p}\right)\right\|$ $+b\left\|\pi_{m_{t}}\left(v_{t}-P_{p} v_{t}\right)\right\| \geqslant(a+b)(1-\varepsilon)^{2}>\gamma_{\beta}$. Therefore (*) holds for γ_{β} instead of $\beta ; i . e . \overline{\lim _{n}}\left\|v_{n}-P_{m} v_{n}\right\|>\gamma_{\beta}$ for all m. Repeating this process k times yields $\overline{\lim _{n}}\left\|v_{n}-P_{m} v_{n}\right\|>\gamma_{\beta}^{k}$. Since $\gamma>1$ we may
choose k such that $\gamma_{\beta}^{k}>M(1+\lambda)$. But this means $\overline{\lim _{n}}\left|\left|v_{n}-P_{m} v_{n}\right|\right|>M(I+\lambda)$ which can't be the case since $\left\|v_{n}-P_{m} v_{n}\right\| \leq\left\|v_{n}\right\|+\left\|p_{m}\right\|\left\|u_{n}\right\| \leq$ $M(1+\lambda)$ for all choices of m and n. Thus the sequence $\left\{v_{n}\right\}$ is relatively compact and hence $\left\{y_{n}\right\}$ is boundedly complete. Q.E.D.
[I] Banach, S. Théorie des opérations linéaires, Warszawa, 1932.
[2] Bourgain, J. and Delbaen, F. A Special Class of L_{∞} Spaces, Acta Math., (to appear).
[3] Diestel, J. and Uhl, J. J. Vector Measures. American Mathematical Society. Mathematical Surveys 15 (1977).
[4] Dugundji, J. Topology, Allyn and Bacon, Inc., Boston (1966).
[5] Dunford, N. and Schwartz, J. T. Linear Operators I, New York, 1958.
[6] Hagler, J. Some More Banach Spaces Which Contain l_{1}. Studia Math. 46 (1973), p. 35-42.
[7] James, R. C. A Non-Reflexive Banach Isometric With Its Second Conjugate. Proc. Nat. Acad. Sci. (U.S.A.) 37, 174-177 (1951).
[8] James, R. C. Uniformly Non-Square Banach Spaces, Ann. of Math. 80 (1964), 542-550.
[9] Johnson, W. B. Rosenthal, H. P. and Zippin, M. On Bases, Finite Dimensional Decompositions and Weaker Structures in Banach Spaces. Israel J. of Math. 9 (1971), p. 488-506.
[10] Lindenstrauss, J. Extension of Compact Operators. Mem. Amer. Math. Soc. 48 (1964).
[11] Lindenstrauss, J. and Pelczynski, A. Absolutely Summing Operators in L_{p} Spaces and Their Applications, Studia. Math. 29 (1968), 275-326.
[12]
Lindenstrauss, J. and Tzafriri, L. Classical Banach Spaces I. Ergebnisse der Mathematik and Ihrer Grenzgebicte 02 (1977) Springer, Berlin.
[13] Retherford, J. and Stegall, C. Fully Nuclear and Completely Nuclear Operators With Applications to L_{1} and L_{∞} Spaces. Trans. Amer. Math. Soc. 163 (1972), p. 157-492.
[14] Rosenthal, H. P. A Characterization of Banach Spaces Containing l_{I}. Proc. Nat. Acad. Sciences U.S.A. 71 (1947), p. 2411-2413.
[15] Uhl, J. J., Jr. A Note on the Radon-Nikodým Property for Banach Spaces, Rev. Roumaine Math. Pures Appl. 17, (1972) 113-115.

?
 VITA

Stephen R. Murdock
Candidate for the Degree of
Doctor of Education

Thesis: A RECENT COUNTEREXAMPLE IN BANACH SPACE THEORY
Major Field: Higher Education Minor Field: Mathematics

Biographical:

Personal Data: Born in Tulsa, Oklahoma, February 9, 1949, the son of Robert D. and Aliene Murdock.

Education: Graduated from Tulsa Central High School, Tulsa, Oklahoma, in May, 1967; received Bachelor of Science degree from Oklahoma State University, Stillwater, Oklahoma, in December, 1974; received Masters of Science degree in Mathematics from Oklahoma State University in December, 1976; completed requirements for the Doctor of Education degree at Oklahoma State University, in May, 1980.

Professional Experience: Graduate Teaching Assistant in the Department of Mathematics, Oklahoma State University, 1975-1977; Graduate Teaching Associate in the Department of Mathematics, Oklahoma State University, 1977-1979; Lecturer in the Department of Mathematics, Oklahoma State University, 19791980.

