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~~RI 

INTRODUCTION 

Basic Concept of Surface Tension 

Aqueous interfaces are of considerable importance in many biologi-

cal and chemical systems (1,2). In particular, cell surfaces consist of 

a water/membrane interface for which very little quantitative detail is 

available. A key quantity in the characterization of interfaces is the 

surface tension. 

Surface tension can be viewed as the force tending to contract a 

surface area. The origin of this contracting force is illustrated in 

Figure 1. We note that a molecule in the interior of a liquid is 

attracted isotropically by its neighbors. However, a molecule very near 

or actually in the interface between the liquid and a gas experiences a 

net attractive force directed inward and normal to the surface. Suppose 

initially the concentration of the molecules at the surface is the same 

as that in the interior, then molecules will be pulled into the interior 

until the concentration gradient at the surface sets up a chemical force 

which is sufficient to cancel this tendency. Since a smaller concentra-

tion means a smaller pressure, the pressure P' at the interface should 

be smaller than the pressure P at other regions. Let ~F be the x-com­
x 

ponent of the force due to the pressure difference and b be the length, 

in the y direction, of the container shown in Figure 1 (ab being the 

surface area). Then the surface tension is defined by 

1 
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Figure 1. Illustration of the Surface Tension From a Molecular 
Point of View 
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y ( 1) 

( 31 4) • ?rom the mech~~ical definition, one can obtain (see Append~x A) 

the Ki=kwood-Buff f or:mula ( 3 , 5) , 

y = 1 < 
A 

.z. 
J.>) 

2 2 
(x .. - z .. ) 

_...;~;;..J.....__--"l.;;..J ..... - u' ( r .. ) > 
r.. ~J 

l.J 
(2) 

where A renresents t...i.e surface area, r. . is the dista11ce :between i th and 
- ~J 

jt.i. molecules, <>denotes the canonical ense~ble average, u' (r. ,) is t...i.e 
l.J 

derivative of t.i.e pa~r potent~al u(r .. ) , ~~d x .. = x. 
l.J l.J ~ 

x.,z .. =z. 
J ~] , 

z .• 
J 

Alternatively, t...~e surface tension can be viewed as the excess 

Helmholtz free energy over the bulk system. We have seen that the sur-

face tension tends to contract a surface area. Thus, in order to create 

a new surface arQ~ LA by an isothermal and reversible process, it is 

necessar".J to do an amount of mecha."lical work, Yt:. .. :;., against the surface 

tension. As t...i.e surface area is created, t.i.e molecules at ~~e surface 

will become fa-""ther apart. This moVL"lg-apart cf t...i.e molecules is aided 

by their ~i.er.mal motions. Dur~"g this process, t...i.e molecules lose 

kinetic energy so that, in order to keep the temperature constant, it is 

necessarz to supply an equivalent amount of heat from the surroundings. 

In a reversible process, t...i.e heat is equal to T~S, Nhere AS is t...~e 

entropy change acccmpanyL~g the creation of the surface area and T is 

the absolute temperature. Therefore, according to t...i.e f~rst law of 

t."'ler=.odynarnics, t...'le total energ-.f required fc:: the c:reaticn of s-:.1rface 

area is given by 

AE = YjA + T~S 
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or 

y = (LlE - Tt.S)/l!A. = t.F/M (3) 

where t.F is the change of Helmholtz free energy associated with the 

creation of surface area. 

In statistical mechanics (6), the Helmholtz free energy is given 

by 

F - kT ln Q 
N 

- kT ln J e-U(q )/kT dqN ( 4) 

where k is Boltzmann constant, U is the potential energy and Q denotes 

the partition function (configuration integral). Then, the free energy 

difference between any two systems "0" and "1" can be written 

t.F = - kT ln 

-U1/kT N 
! e dq 

-U0/kT N 
f e dq 

= - kT ln 

-(U1-u0)/kT -U0/kT N 
f e · e dq 

-u /kT 
f e 0 dqN 

- kT ln 
-t.u* 

<e > 
0 

(5) 

where <> 0 is the canonical ensemble average over all configurations of 

the system 0, and 

c.u* (6) 

The free energy difference can also be obtained by the Bennett formula 

( 7) ' 



= - kT ln 
<M(AU*)> 

0 
<M(-AU*)> 

1 

5 

(7) 

where M(x) : min{l, exp ( -x) }. Equation (7) is derived from the follow-

ing identity, 

M(x)/M(-x) 

or more specifically, 

MUm*> = 

-x 
= e 

M (-Au*) e 
-u /kT 

1 
( 8) 

Integrating this identity over all configuration space and multiplying 

by the trivial factors, Q0/Q0 and Q1/Q1 (Q0 and Q1 are the configura-

tion integrals of systems 0 and 1, respectively), one obtains 

Q ! 
0 

-U0/kT N 
M(AU*) e dq 

Qo 

Equation (9) can be written as 

= 

which leads to Equation (7). 

= (9) 

(10) 

In the last decade, two fairly realistic intermolecular potentials 

have been developed for water (8,9). The detailed analytical forms are 

given in the following section. 
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Water-Water Pair Potentials 

ST2 Potential 

The ST2 water molecule (8) contains four point charges. Its 

geometry is shown in Figure 2a. The positive charges +q are identified 

as protons, located Ji from the oxygen nucleus·o. The distance from 0 

to each of the negative charges -q is 0.8~. The angels between any two 

vectors connecting 0 to the point charges are all equal to the tetra-

hedral angel et' 

= = 

The interaction potential between two ST2 molecules is given by 

= VLJ(r .. ) + G(r .. ) ve1 (i,j) 
l.J l.J 

where r .. denotes the oxygen-oxygen distance and 
l.J 

= [ 12 6 
4e: (cr/r .. } - (cr/r .. ) ] 

l.J l.J 

vel (i,j) = 2 t (-l)m+n/d (i j) 
q m,n=l mn ' 

(ll) 

(12) 

(13) 

with d (i,j) the distance between charge m on molecule i and charge n 
mn 

on molecule j (m and n are even for positive charges, odd for negative 

charges) . The modulation function G is given by 



(a) 

+q 

(b) 

Figure 2. Diagrams for the ST2 arid CI Potentials. 
(a) The ST2 Model Where the Water Mole­
cule is Represented by Four Point 
Charges, 6t Being the Tetrahedral Angle. 
(b) Definition of Indices Used in the CI 
Potential. The M Point Lies on the 

. 0 
M':llecular C2 Ax~s. RaM = 002677A, 
ROH = 0.9572R, <HOH = 104.5 

7 
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G(r .. ) = 0 0 < r .. s RL 
~J ~J 

(r .. - RL) 2 (3RU - R - 2r .. ) 
~] L ~] 

RL < s ~ = r .. 
(R - R )2 ~J 

u L 

= 1 Ru < r .. (14) 
~J 

The parameters have the following values: 

5.2605 
-15 3.lo R e: = x 10 erg; cr = 

q = 0.2357 e = 1.13194 X 10-10 esu 

RL = 2. 0160 t Ru = 3.1287 R 

The ST2 potential was obtained by semiempirical means (8) . Its 

radial distribution function is in good agreement with experiments (8, 

10, 11). The potential energy of ST2 water is about - 10.5 kcal/mole 

at 25°C (11). When the kinetic energy of 1.8 kcal/mole (=3RT) is 

added, the internal energy of ST2 water becomes- 8.7 kcal/mole, which 

is slightly lower than the experimental value, - 8.1 kcal/mole (12). 

The heat capacity was calculated to be 26 cal/mole/deg (11) , compared 

with the experimental value of 18 cal/mole/deg (= 1 cal/gm/deg) . 

CI Potential 

The CI (configuration interaction) potential (9) takes the follow-

ing form, 

= 2 
q (l/Rl3 + l/R14 + l/R23 + l/R24 + 4/R78 - 2/Rl8 - 2/R28 

- 2/R37 - 2/R47) + alexp(-blR56) + a2[exp(-b2Rl3) 
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+ exp(-b3R45)]- a4[exp(-b4Rl6) + exp(-b4R26) 

+ exp(-b4R35) + exp(-b4R45)] (15) 

where R .. denotes the distance between a pair of atoms shown in Figure 
~J 

2b, and 

6 2 
al = 1.088931 x 10 kcal/rnole; a2 - 6.667210 x 10 kcal/rnole 

3 2 
a3 .. 1.455685 x 10 kcal/rnole; a4 = 2.736156 x 10 kcal/mole 

bl = 5.152759 i-1 ; b2 = 2.760870 i-1 

b3 = 2.961927 R-1 ; b4 = 2.233281 R-1 

2 
170.8842 kcal-R/mole q = 

These parameters were chosen to give a best fit to the energies obtained 

by ~ initio configuration interaction calculations on a set of 66 water 

dimer configurations (9) . The CI potential is then a true interaction 

potential (not the effective one) between two water molecules. Since 

quantum mechanical many-body interactions are not taken into account, it 

is not surprising that the calculated internal energy, - 6.8 kcal/mole 

(11,13), is higher than the experimental value, - 8.1 kcal/rnole. The 

resulting radial distribution functions, however, are in excellent agree-

ment with experiments (11,13). The heat capacity was calculated to be 

20 cal/mole/deg (11) • 



10 

Because both intermolecular potentials are so complex, it is im-

practical to carry out, by the usual numerical methods, the integrals 

involved in the surface tension calculation. For this reason it is 

natural to consider computer simulations. In the last decade, the 

Monte Carlo method has been used to calculate the surface tension of 

argon, which was assumed to obey the Lennard-Janes potential, 

= [ 12 6] 4€ (c/r) - (c/r) (16) 

where c and € are constants (14-16). The surface tension of water, how-

ever, has not been calculated by the Monte Carlo method so far as we 

know. In the next section, we describe a Monte Carlo method developed 

by Metropolis et al. (17). 

The Metropolis Monte Carlo Method 

Since 1953, canonical ensemble averages have been frequently eval-

uated by the Metropolis Monte Carlo method (17). The general procedure 

is: 

(i) Place the particles of the system in any configuration. 

(ii) Move one of the particles according to q. + q. + ~.aq,, 
J J J J 

where q. is the j-th coordinate for the particle, aq. is 
J J 

the maximum allowed displacement and ;. is a random number 
J 

between -1 and 1. 

(iii) Calculate the potential energy change, au(: unew - uo1d) I 

caused by the move. 

(iv} If aU S 0, the transition is accepted and the particle is 

placed in its new position. If oU > 0, we compare 

exp(-oU/kT) with a random number n between 0 and 1. If 
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exp(-oU/kT) > n, the transition is accepted; if 

exp(-oU/kT) < n, the transition is rejected and the parti-

cle is returned to its old position. 

(v) Iterating the above procedure for a sufficiently large 

number of steps. If gt is the value of the function g at 

t-th step, then it can be shown (see Appendix B) that 

<g> = lim 
n~ 

1 
n 

(17) 

In practice, n is finite but large enough to make the fluctuation 

of the Monte Carlo average as small as we desire. From procedure (iv) 

we see that, regardless of the initial configuration, the system will 

eventually reach "equilibrium", that is, the Monte Carlo walk concen-

trates on the configurations with lower potential energies. The speed 

with which the system approaches equilibrium depends on the maximum 

allowed displacement oq .. If oq. is too large, most trial moves will 
J J 

be rejected, and if too small the configuration will not change enough. 

Usually oq, is chosen so that about half of the trial moves are accepted., 
J 

The speed of convergence of the Monte Carlo average also depends on the 

function to be measured. If the function (such as potential energy, 

radial distribution function or order parameter) changes slowly at 

equilibrium, good accuracy (within 3%) can be obtained for n = 105 - 106 

(10,18). However, for the calculation of surface tension, we note that 

Equation (2) contains derivative of u(r .. ) which may vary sharply with 
~J 

r ..• The presence or absence of certain configuration for which u' is 
~J 

large would strongly influence the Monte Carlo average. For particles 

obeying Lennard-Janes potential the surface tension calculated by 
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Equation (2) has been found to fluctuate over a wide range (- 14%) even 

6 
for n = 6 x 10 (14). In our preliminary studies, we have attempted to 

use Equation (2) to calculate the surface tension of water but failed 

to obtain a stable value using either the ST2 or CI potential. 

Purpose of This Study 

The goal of this work is to develop an efficient method to calcu-

late the surface tension using the free energy definition. We note that 

both Equations (5) and (7) contain exponential functions which also vary 

rapidly with configurations. The convergence of the Monte Carlo average 

is expected to be poor. To improve this convergence, Terrie and Valleau 

(19,20) suggested a sampling technique called "umbrella sampling", in 

which a weighting function, determined by trial and error, is introduced 

to sample the gt's so that the Monte Carlo average converges faster. In 

Chapter II we describe this method in more detail. In our conputation 

we shall use a similar but more straightforward technique also described 

in Chapter II. The technique is then applied to the study of the surface 

tension of air-water and lipid-water interfaces. The detailed procedure 

and computations are given in Chapter III and Chapter IV. Chapter V 

gives the results of our calculations and Chapter VI contains the con-

elusions and discussions. In Appendix D we also include the results on 

the orientation of water molecules near surface. 



CHAPTER II 

UMBRELLA SAMPLING 

Terrie-Valleau's Umbrella Sampling 

In the previous chapter, we derived three different formulas, Equa-

tions (2), (5) and (7) for the Monte Carlo calculation of surface ten-

sion. However, we also pointed out that the traditional Monte Carlo 

method is not efficient in all of the three cases. Over the past few 

years, an alternative algorithm has been proposed to calculate the term, 

* <e-6u >0, involved in Equation (5), where 6u* is the potential energy 

dif=erence in unit kT between any two systems, 0 and 1. This algorithm 

is based on the following idea. 

Let m(6U*) be the number of the Metropolis Monte Carlo steps with 

6u* falling between 6u* and 6u* + d~u*. Then for the calculation of 

-6u* 
<e >0 , Equation (17) becomes 

-6u* 
<e > = lim 

0 n-+<» 

00 

= ! 
-oo 

where 

f (6U*) 

1 co 
! 

n -oo 

f (6u*> e 

lim 
n-+oo 

-6u* 
m(6u*)d6u* e 

-6u* d6u* (18) 

(19) 

is the probability density function of 6u*. For the best efficiency of 

13 



14 

sampling, the Monte Carlo walk should concentrate on the region where 

the integrand, F(AU*) = f(AU*)exp(-Au*), is large. Unfortunately, as 

pointed out by Terrie and Valleau (20) the maximum of f(Au*) is unlikely 

to be the maximum of F(Au*). The two functions are depicted in Figure 

3a for the free energy difference between the following two systems. 

N [ 12 6 
ul = 4€ . E. (cr/r .. ) - (cr/r .. ) ] 

J.<J l.J l.J 
(20) 

N 12 
uo = 4€ E (cr/r .. ) i<j l.J 

(21) 

where N is the number of particles in a unit cell (simple cubic periodic 

boundary conditions are used), and c: and cr are constants. In this 

example, N = 32, c: = 0.365 kT, and the length of cubic unit cell = 

3.35 cr. We note that f(Au*) is of umbrella shape and its slope becomes 

steeper and steeper on both sides of the most probable position, AU* . 
mo 

Thus, f(Au*) is small at the region where F(AU*) is large. This makes 

it very difficult to sample this region. To improve the sampling 

efficiency, let us consider the following identity: 

<g> 
0 

= 

= 

/(g/W)W 

/(1/W)W 

-u /kT 
e 0 

-UO/kT N 
f (g/W)W e dq 

-u /kT 
f w e o- dqN 

X 

-00/kT N 
f We dq 

-u /kT 
f (1/W)W e O dqN 
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Figure 3. Properties of Configuration Space for the System 
of 32 Lennard-Jones·Particles. (a) Solid Line: 

* * * ' f(~U ); Dashed Line: f(~U )exp(-~U). (b) 
Solid Line: the Desired fw(~u*) in the Terrie­
Valleau Sampling; Broken Line (- • - • - •): 
w Obrained From Eq. (25), fw<~u*) and f(~u*) 
in (a); Left Dashed Line: [exp(-~U*)/W]fw(~u*); 
Right Dashed Line: fw(~u*)/W. (c) Solid Line: 
f1;2 <~u*); Left Dashed Line: f1;2 <~u*)exp(-~U*/2); 
Right Dashed Line: f1;2 <~u*)exp(~U*/2). Left 
Scales are for Solid and Broken Lines·, Right 
Scales are for Dashed Lines. The Horizontal 
Scale is the Same for All Figures 

15 



<g/W> w 
<1/W> w 

where W is an arbitrary non-negative function, and <> denotes the w 
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(22) 

average of a function weighted by Wexp(-U0/kT) (compared to the canoni-

cal ensemble average of a function which is weighted by exp(-U0/kT)). 

The integral introduced in the third step is a normalization factor. 

In the Metropolis Monte Carlo calculation (see Chapter I), the 

acceptance or rejection of a trial move is determined by comparing the 

quantity, [exp(-U0/kT)] /[exp(-U0/kT)] ld' with a random number. . new o 

Similarly, the average <>w ~an also be obtained by a Monte Carlo method 

where the transition of a Monte Carlo step is determined by using the 

weighting function w, and comparing the quantity, [wexp(-U0/kT) ]ne~ 

[wexp(-U0/kT)]01d' with a random number. If in the modified Monte Carlo 

walk the number of steps falling between ~u* and ~u* + d~u* is denoted 

by mw(~u*), then similar to Equation (19), we can define a probability 

density function, 

= 

for the modified Monte Carlo walk. Equation (22) gives 

! g f(~u*> d~u* = 
! (g/W) fw<~u*> d~u* 

<1/W>w 

Since the above equation holds for any function g, we obtain (20) 

f(~u*> = 

(23) 

(24) 

(25) 
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From Equation (22), we also-have 

-~u* 
<e > = 

0 
(26) 

Up to this point the function W has not been specified. One must choose 

this function to improve the accuracy of the simulation. But the de-

tailed properties of the system being simulated are usually not known, 

so no general method for picking W exists. Terrie and Valleau (20) sug­

gest ·that W be chosen by trial and error so that fw(~u*) is nearly uni­

form over a wide range. Because <1/W>W is independent of ~u*, Eouation 

(25) gives W ~ 1/f(~u*), if fw(~U*) is to be uniform over a wide range 

of energies. The shape of W as determined from f(~u*) in Figure 3a is 

shown in Figure ·3b. This shape is consistent with that obtained by 

Terrie and Valleau (20) who did not determine directly the f(~u*), but 

tried to find a weighting function to make fw(~u*) uniform. In Figure 

3b we see that the probability density for a Lennard-Janes system is 

appreciable at both of the important regions (around ~U~ and ~u;, the 

regions where important contributions to numerator and denominator in 

Equation (26) occur). Thus, the Terrie-Valleau sampling is potentially 

much more efficient than the Metropolis Monte Carlo sampling for this 

system. The disadvantage, however, is that we have to spend time in 

finding an appropriate weighting function. 

Half-Umbrella Sampling 

Let us consider a specific choice for the weighting function, 
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w = exp(-~U*/2). Equation (26) becomes 

! 00 

-~u* 
<e > = 

0 
-co 

(27) -

f -co 

where f112 <~u*) is the probability density function using W = e.xp(-~U*/2). 

The result is shown in Figure 3c. Again, f112 c~u*) is of umbrella shape 

and its slope becomes steeper and steeper on both sides of ~U~ (the most 

probable position using W = exp(-~u*/2). In the Metropolis Monte Carlo 

walk, the most important contribution to Equation (18) occurs at the 

region around ~U~ where the rate ~f increase of f(~u*) is roughly the 
.unp 

same as the slope of exp(-~U*), while in the present sampling, the most 

important contributions to Equation (27) occur near the points, ~u; for 

* * the numerator and ~u0 for the denomenator, where the slopes of f112 (~U ) 

are roughly the same as those of exp(-~U*/2) and exp(~U*/2), respective­

ly. Because the rate of change of exp(±6U*/2) is only one-half the 

rate of change of exp(-~U*), the distance between 6U~ and 6u; (or ~u;) 

should be smaller than the distance between 6u* and ~U~ mo .unp 
Thus, 

f 112 (6U;) and f 112 (6u;) should be greater than f(~Uimp). The sampling 

efficiency is then substantially increased. Figure 4 shows typical be-

havior of the Monte Carlo sampling using W = 1 (Metropolis) and 

* w = exp (-~u /2). 

* The above arguments apply for the cases that the slopes of f(6U ) 

or t 112 (6U*) becomes steeper and steeper on both sides of the most 

probable position. This seems to be a general property for most sys-

tems. Otherwise, there would be an infinite range of ~u* which we have 

to sample. At any rate, we found that the surface excess free energy 

of water also has this property. 



,...... 
C) 

In 

0 
or-

X 
'-"" 

~ 
* :::> 
<J 
I 
Q) 

'-.../ 

19 

60 

50 I ----I 
I 

I 
I 

40 I -....... , I I 
I -./ 

I 

30 
I , _ _, 

I 
I 

I 
I 

20 I ,.... I I --, I /. ' 
I ' _/ 

I 

10 I 

OL-----~------~------~----~~------
0 5 10 15 20 

NO. OF STEPS (X 10 4 ) 

Figure 4. Behavior of Monte Carlo Samplings. Dashed Line 
Represents the Metropolis Monte Carlo Sampling 
and Solid Line Represents the Half-Umbrella 
Sampling. Both Start From a Configuration 
With ~u* Around the Most Probable Position, 
~u* , of the Metropolis Monte Carlo Walk 

mo 



CHAPTER III 

PROCEDURE FOR THE CALCULATION OF THE 

SURFACE TENSION 

Outline of the Procedure 

In Chapter II we presented a more efficient algorithm than the tra­

ditional Monte Carlo method to calculate the free energy difference 

between two systems using Equation (5). However, we note that Equation 

(5) is applicable only when the potential energies of both systems can 

be obtained from any configuration of one of the two systems. For the 

calculation of surface tension, according to Equation (3), 

(28) 

where A is the total surface area, FB represents the free energy of the 

bulk liquid and Fs denotes the free energy of the liquid with a surface. 

In a real liquid the potential energies of both states, "B" and "S" 

contains long range interactions which cannot be included in a practical 

computer simulation. Moreover, even if the long range interactions can 

be neglected, the potential energy of the state "S" is very difficult to 

be obtained from a configuration of the state "B". For these two rea­

sons, Equation (5). cannot be applied directly to calculate F5 - FB. 

Recently, Miyazaki et al. (15) proposed a procedure which involves Monte 

Carlo simulation of several intermediate states, computing the free 

20 
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energy difference between each successive pair of states. We shall fol-

low the same idea and use the following successive states: 

(a) a bulk liquid with a nontruncated intermolecular potential; 

(b) a bulk liquid using a truncated intermolecular potential; 

(c) a slab shaped liquid with two hard-wall surfaces, using a 

truncated potential; 

(d) a slab shaped liquid with two free surfaces using a truncated 

potential; 

(e) a slab shaped liquid with two free surfaces using a nontrun-

cated potential. 

Th~ procedure of Miyazaki et al. (15) also involves an intermediate 

state where the cutoff distance is increased to maintain the bulk den-

sity near the center of the slab when the hard walls are released. This 

state was omitted in our procedure because, as we shall see later, only 

about 2% of the molecules flow out of the surface. The density change 

at the slab center should be even smaller. The surface tension becomes 

y : (F - F )/2A 
e a 

In the following sections, we consider each of the ter.ms in Equation 

(29) separately. 

The Main Contribution: F - F 
c b 

The term, F0 - Fb, represents the free energy change in separating 

the slab shaped liquids. During the separation process, the potential 

energy of this system can be described by a modified potential, making 



use of periodic boundary conditions (see Figure 5), 

u = 
N 1 
~ ~ u{[(x·. - x. 

i<j=l i,m,n=-1 ~ J 
2 + 2L ) 

X 
( mL ) 2 

+ y, - y. + 
~ J y 
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+ (30) 

where L , L , and L represent the size of the unit cell, and u(r) de-
x y z 

notes the pair potential function in which the interaction is neglected 

when the distance of two molecules is greater than a cutoff distance, 

R • The summation over 2, m and n from -1 to 1 contains 27 ter.ms, which 
c 

corresponds to one "central" unit cell and 26 nearest-neighbor cells. 

That is, in the calculation of the interaction energies between a. given 

molecule i and its surrounding molecules, another molecule. j in the 

central unit cell has 26 images. All of the 27 "j-th" molecules may be 

included in the sphere of radius R surrounding-the i-th molecule. 
c 

However, if R is less than half of the side-length of the unit cell, 
c 

only the one closest to i may not be neglected. This choice is referred 

to as the "minimum image convention" (21). In our computer program, 

the distance between the i-th molecule and its closest j-th molecule 

is determined by a subroutine DIST (see Appendix C). The parameter d 

represents the separation between two slabs. When d = R , the slabs 
c 

are completely separated, and when d = 0, Equation (30) reduces to the 

potential energy of the state (b). Thus, from Equation (5) we have 

where 

F 
c - F 

b = - kT 2n 
-t.1u* 

be <e > 
b 

(31) 
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~u* 
be = R ) - U(d 

c 
= 0)] . ( 32) 

F0 - Fb can also be viewed as the work required to separate the slabs. 

If R is large enough, this term should have the major contribution to 
c 

the total surface tension. 

Contribution From Long-Range Interactions 

The term, Fa- Fb, arises from the interactions between each mole­

cule i and the molecules outside the sphere of radius R surrounding 
c 

the i-th molecule. It is composed of two parts: (i) the free energy 

required to polarize the medium outside the sphere, and (ii) the energy 

+ + + 
- u.•B. of the i-th molecule (with dipole moment u.) in the reaction 

~ ~ ~ 

+ 
field B. which is produced by the medium polarized by the i-th molecule 

~ 

(22). The first part is proportional to B~, say CB~ (22). Then for 
~ ~ 

each molecule the long-range contribution is 

= + + 2 
- U. • B. + C B. 

J. J. J. 
(33) 

To find C, we use the fact that for a system in equilibrium the free 
' 

i 
energy should be a minimum, and consider that ~FLR depends on Bx' By' 

and B , 
z 

which gives 

i 
MFLR 
aB. 

J.X 

= 0, 

+ 
2 C B. 

~ 

= 0, 

+ 
== ll. 

J. 

= 0 ( 34) 

(35) 



Inserting this into Equation (33), 

= 
+ + 1 + + 

- ll. •B. + -2 ll. •B. 
J. J. J. J. 

= 
1 + + 
-2 ll. •B. 

J. J. 
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(36) 

The reaction field can be obtained by solving the Laplace Equation (22) , 

+ 
B. = 

J. 

2(e: - 1) + 
3 M. 

(2e: + 1) R J. 
c 

+ 
where e: is the dielectric constant and M. represents the net dipole 

J. 

(37) 

moment in the sphere surrounding the i-th molecule. Therefore, in a 

system of canonical distribution of configurations, 

= = 
(e: - 1) N + + 

3 < . !: 1 ll . • M . >b 
l)R J.= J. J. (2e: + 

c 

( 38) 

The term, Fe - Fd, is due to the long-range interactions in a 

liquid with surface. Its value is very difficult to obtain accurately. 

As a rough estimate, we assume 

l(F - F ) 
3 a b 

(39) 

because the slab shaped liquid extends only in two dimensions. The error 

in this approximation may be potentially large. However, in Equation 

(38) the contribution of·Fb- Fa to the total surface tension is propor­

-3 
tional to Rc • Similarly, the contribution of Fe - Fd should vary in-

versely with same power of R , so we can choose a large R to make the 
c c 

error of the total surface tension small. 
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Contribution From Relaxing the 

Hard Wall Constraint 

To change the system from state (c) to state (d), we gradually 

increase the distance between two hard walls. Let t 1 and t 2 be the 

values of the z coordinate at which the walls are located (initially 

L and 0). The configuration integral of this system can be expressed 
z 

by 

(40) 

where H(x) is the step function which is 0 for x < 0 and 1 for x > 0; 

the derivative of H(x) is the Dirac delta function, o(x). Then 

f e-U/kT(E o(t1-zi)/H(t1-zi)]rr(H(t1-zi)H(zi-t2)]dqN 

Q 

(41) 

At this stage the step function in Equation (41) can be omitted, since 

the z-components of all molecules are less than t 1 and thus H(t1-zi) is 

equal to unity. Integrating Equation (41), 

= (42) 

Let Qi and Qf be the configuration integrals for the system before and 

after relaxation of one surface, respectively. The free energy differ-

ence due to the relaxation per surface is 



M'if = 

= 
00 

- kT /L 
z 

<E o(t -z )>dt 
1 i 1 
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(43) 

Equation (43) was first obtained by Miyazaki et al. (15). From this 

equation, it is clear that 

= - kT{J 
00 

L z 
<E o(t- z.)> dt + 1 ° <E o(t- z.)>dt} 

i ~ -oo i ~ 

= - kT <N > 
out 

(44) 

where N represents the number of molecules which move out of the two 
out 

surfaces after the two walls are released. 



CHAPTER IV 

COMPUTATIONAL DETAILS 

According to the procedure described in Chapter III, a surface ten-

sion calculation should involve three canonical ensemble averages,· 

+ + 
<exp(-~u* )> , <E~.·M.>b, and <N >in Equations (31), (38), and (44) 

be b ~ ~ out 

respectively. The first one can be evaluated by the half-umbrella sam-

pling algorithm as described in Chapter II, and the last two ar~ suit-

able for the Metropolis Monte Carlo method since they contain no rapidly 

varying functions. The general procedure for the Metropolis algorithm 

has been given in the Introduction. Figure 6 shows the flow chart of 

the half-umbrella sampling. In the following sections we describe our 

computation in more detail. 

Initial Configuration 

As mentioned earlier, the cutoff distance R should be sufficiently 
c 

large to reduce the long range error made by Equation (39). On the 

other hand, by the minimum image convention (see Chapter III), the 

length of the unit cell should be greater than 2R . In our simulation 
c 

model, R is chosen to be 9.8i, which is about half of the length, c 

19. 72i, of our cubic unit cell containing 256 water molecules. The 

density of water is then equal 
3 

to 1 g/cm • In this study, the ST2 

potential will be used. Because neither the ST2 nor the CI potentials 

can accurately reproduce the internal energy of water (see the Introduc-

28 
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I INITIAL CONFIGURATION I 

CALCULATE ENERGIES u 0 AND u1 

~ TRIAL MOVE OF A MOLECULE J 

' ' CALCULATE NEW ENERGIES u 0 AND u1 

' ' ' IS EXP[-(U0- u 0)/kT- [(u1- u 0) - (u1- u 0)]/2kT] GREATER THAN A 

UNIFORMLY DISTRIBUTED RANDOM NUMBER BETWEEN 0 AND 1 ? 

NO ~ YES 

I REJECT THE MOVE I I ACCEPI' THE MOVE I 

(cALCULATE PROBABILITY DENSITY FUNCTION AND MONTE CARLO AVERAGES~ -

I DOES THE SAMPLING COVER SUBSTANTIALLY THE TWO IMPORTANT REGIONS? 

NO -YES --~ END ( 

Figure 6. Flow Chart of the Half-Umbrella Sampling 
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tion) , there is no reason to favor one potential over the other for the 

computation of. the surface tension. We chose the ST2 potential because 

it is simpler and requires less computer time to work with. 

The ST2 water molecule can be specified by three Cartesian coordi-

nates (x,y,z) for the center of the molecule and three Euler angles 

(6,~,a) for the rotational position about the center. The normal to 

the water surface is taken to be the z-axis. e and ~ denote the spheri-

cal polar and azimuthal angles of the dipole moment (pointing from the 

center to the middle point of the two positive charges) • a represents 

the rotational angle of the molecule about the dipolar axis. The 

initial positions of all of the 256 molecules in a unit cell are chosen 

randomly using the random number algorithm RANF written by Dr. J. P . 

Chandler of the OSU computer science. department. 

Calculation of Potential Energy 

Equation (30) is a general expression for the potential energy of 

the systems in which we are interested. As mentioned earlier, the 

distance between the molecular centers is calculated by the subroutine 

DIST (see Appendix C). When the ST2 potential, Equation (12}, is used, 

we have to calculate the distance between charges of two different 

molecules. For this purpose , we need to know their coordinates in the 

laboratory frame. Let O'Z 1 denote the dipolar axis (O' being the center 

of the ST2 molecule), 0 1 X' represent the axis perpendicular to 0 1 Z1 and 

to the face ABCD of the cube determined by the ST2 water model (see 

Figure 7) , and o 1 Y 1 be the third axis perpendicular to both o 1 X 1 and 
\ 

O'Z 1 • In this body frame, the coordinates of the rn-th charge of each 

molecule is given by 



Z' 

Figure 7. Definition of the Body Frame for the ST2 
Water Molecule 
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CX(l) = 0.8 dO'M C'l {1) = 0.8 dO'M cz {1) = -0.8 dO'M 

CX(2) = dO'M C'l(2). = -dO'M cz {2} = dO'M 

CX(3) = -0.8 dO'M C'l (3) = -0.8 dO'M cz (3) = -0.8 dO'M 

cs {4) = -dO'M C'l (4) = dO'M cz (4) = dO'M 

where 

dO'M = cos(St/2) = 0.57735 

In the laboratory frame, the coordinates of the m-th charge of i-th 

molecule become (23) 

-+- -+-
A (m, i) = D (ljJ.} D <e.> D (a.. ) c (m) (45) z l. y l. z l. 

where 

cos lJ;. - sin lJ;. 0 
l. l. 

D (ljJ.} = sin w. cos lJ;. 0 z l. l. l. 

0 0 1 

( cos e. 0 sin e. 
l. l. 

D <e.> = 0 1 0 
y l. 

- sin e. 0 cos e. 
l. l. 

cos a.. - sin a.. 0 
l. l. 

D (a. . ) = sin a.. cos a.. 0 
z l. l. l. 

0 0 1 



Then the distance, d (i,j), in Equation (13) is given by 
Illil 
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d (i,j) 
Illil 

= (46) 

-+ -+ 
where r. and r. represent the positions of the molecular centers. 

J. J 

Trial Move of a Molecule 

At each Monte Carlo step, a molecule is moved according to q. -+ 
J 

q. + ~.oq,, where q.is the j-th coordinate (= x,y,z,e,w, or a) of the 
J J J J 

molecule, oq. is the maximum allowed displacement and~. is a random 
J J 

number uniformly distributed between -1 and 1. The value of oq. is 
J 

essential for the speed with which the system approaches equilibrium. 

As mentioned in the Introduction, its value is usually chosen so that 

about half of the trial moves are accepted. For the ST2 water, we 

choose ox = oy = oz = 0.13R and oe = ow = oa = 0.13 radian. The 

acceptance probability is close to 50% either using the Metropolis 

sampling or the half-umbrella sampling. 

Acceptance or Rejection of the Trial Move 

In the general umbrella sampling algorithm (see Chapter II) , the 

acceptance or rejection of a trial move is determined by comparing the 

ratio [wexp(-U0/kT)]new/[Wexp(-U0/kT)]01d, with a random number uni­

formly distributed between 0 and 1, where W is an arbitrary weighting 

function. If the ratio is greater than the random number, the trial 

move is accepted; otherwise, it is rejected. We see that the umbrella 

sampling reduces to the Metropolis sampling when W = 1. In the calcu-

lation of <exp(-~u*)>0 , we use W = exp(-~U*/2) (called half-umbrella 
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sampling), since it gives better efficiency than the Metropolis sampling 

as shown in Chapter II. 

Location of the Important Regions 

From Chapter II, it is clear that the accuracy of the Monte Carlo 

sampling algorithm depends on whether the two important regions of con-

figuration space (the most important contributions to the denominator 

and numerator of Equation (27)) are covered or not. In Chapter II, the 

location of the two important regions for the Lennard-Janes system were 

found by a direct search of the configuration space over a certain 

range of ~u* which should cover the two important regions. However, if 

the two important regions are quite far apart in energy ~u*, this method 

will require a large number of steps. A much more efficient way is sug-

gested as follows. 

From Equation (25), because <1/W> is independent of ~u*, one can 
w 

obtain 

fw(ilu*) 
----a: f(~U*) w 

= f (~u*> 
l 

(47) 

(48) 

where f1 (~U*) is the probability density function using W = exp(-~u*). 

Thus, the important regions for the denominator and numerator of Equa-

tion (27) should be around the maxima of f(~U*) and f 1 (~u*), respect­

ively. This result is true for any weighting function. The distance 

between the two maxima will be called the "important range" , which is 
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an intrinsic property of a given system. Since the Monte Carlo walk 

concentrates on the maximum of a probability density function, to find 

the maxima of f(~u*) and f 1 (~u*) is obviously much more efficient than 

to determine the probability density function over a wide range of ~u*. 

The probability density function is defined to be m(~u*)/n, where 

n is the total number of Monte Carlo steps, m(~u*) denotes the number of 

steps falling between ~u* and ~u* + d~u*. In this study, a certain 

range of ~u* is divided into many small regions and the width of each 

region, d~u*, is chosen to bel (in unit kT). At each step, we deter­

mine the i-th region to which the ~u* of that step belongs. m(~u*) can 

be obtained by counting the number of steps falling into the i-th 

region. 

For more details on the computer calculation, one is referred to 

Appendix c. 



CHAPTER V 

MODEL SYSTEMS STUDIED AND THEIR RESULTS 

Air-Water Interfaces 

The Main Contribution Fe- Fb 

Using the method given in the last section of the previous chapter, 

we find that the important range (distance between two important regions) 

for F c - Fb is more than 300 (in unit kT), which is about 40 times the 

important range of the free energy difference for the simpler system 

studied in Chapter II. In this case, the Terrie-Valleau method involving 

a search for an appropriate weighting function to make fw(~u*) nearly 

uniform is extremely tedious and requires a large number of steps. For 

the half-umbrella sampling, as shown below, the probability density at 

the two important regions, around ~u; and ~u;, also becomes very small. 

From Chapter II, we can see that f112 c~u; + 0.5)/f112 <~u;- 0.5) 

* ( * - f112 (~UD- 0.5)/fl/2 ~UD + 0.5) - exp(l/2), and 

f112 <~u:n- 0.5) - 1 where ~u~ locates the peak in f 112 itself. For a 

rough estimate of the relative sizes of the distributions we assume that 

the slope (on a logarithmic scale) of f112 <~u*) changes uniformly from 

~u:n to ~u; or ~u;. Then a simple geometric argument gives 

f112 <~u;> - f112 <~u;) - lo-16 f112 <~U~) if the range in ~u* is 300 

from ~u* to ~u* 
N o· 
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The above argument shows that the probability densi·t:y at the two 

important regions increases rapidly with decreasing values of ~u* - ~u* 
D N" 

For this reason, we make this range smaller by dividing Fe - Fb into 

several stages, and doing m computer runs instead of one very long run. 

That is, we write 

m 
= ].~ (F. l - F.) 

-v ]+ . J 

= (49) 

where ~U~ = [u(d. 1 > - U(d.)]/kT and<>. denotes the canonical average 
J ]+ J J . 

over the configurations of the slab shaped liquid with separation 

d.(d : 0; d 1 : R). For each stage, 1.5 x 105 steps were generated. 
J o m+ c 

The probability density function was found to be very similar to that 

* given in Chapter II, i.e., the slope of f112 c~uj) becomes steeper and 

steeper on both sides of the most probable region. The canonical aver-

age and the important range for each stage are given in Table I for 

T = 298°K. From these results, we have Fe - Fb = 108 ± 5 kcal/mole. 

This gives a contribution to the surface tension of 96.5 ± 4.5 dynes/em. 

The Long Range Contribution 

The long range contribution can be obtained from Equations (38) and 

(39). The dielectric constant of water is known to be 78.5 (24). Al-

though the ST2 potential may not give the same value, we can still use 

the experimental value for € in Equation (38), since Fb- Fa is very 

insensitive to the dielectric constant when it is large. For the ST2 

molecule, ~ = 2.353 debye. 
-+ -+ 

The canonical ensemble average, <~~.·M.>b 
~ ~ 
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TABLE I 

FREE ENERGY DIFFERENCES AND IMPORTANT RANGES IN ENERGY AS A FUNCTION 
OF THE SEPARATION DISTANCE BETWEEN SLABS 

Separation d. <R> -D.u* J 
J>. D.u* - D.u; From To 

9.n<e 
J D 

0 0.15 - 0.1 ± 0.2 20 

0.15 0.3 - 0.7 ± 0.6 20 

0.3 0.5 - 5.3 ± 0.5 20 

0.5 0.7 - 5.5 ± 0.5 20 

0.7 0.9 - 7.6 ± 0.8 30 

0.9 1.1 - 5.3 ± 0.5 20 

1.1 1.35 -13.8 ± 1.5 40 

1.35 1.5 - 8.2 ± 0.6 20 

1.5 1.7 -10.0 ± 0.8 25 

1.7 1.9 -10.4 ± 0.8 25 

1.9 2.1 -17.3 ± 0.5 20 

2.1 2.3 -11.7 ± 0.5 20 

2.3 2.5 -15.4 ± 0.5 20 

2.5 3.2 -41.6 ± 0.4 20 

3.2 9.8 -29.5 ± 0.2 10 
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can be obtained by a conventional Monte Carlo calculation. From Equa-

tion (38), we have Fb- Fa= 12.5 ± 0.5 kcal/mole which, with the sur­

face area chosen, corresponds to a contribution to Y of 11 ± 0.45 dyne/ 

em. Then Equation (39) gives (Fb- Fa) + (Fe Fd) z 3.7 dyne/em. The 

error of this result is estimated to be less than 1 dyne/em, assuming 

Equation (39) is accurate to within 25%. 

The Relaxation Contribution Fd- Fe 

Recall that this free energy difference is proportional to the num-

ber of molecules which leave the system via the surface, <N t>. To ou 

calculate <Nout>d, we first equilibrate the state (c). Then, in the 

subsequent Monte Carlo walk, the two hard walls are released, corres-

pending to the state (d) . In this calculation, the conventional Monte 

Carlo method is used. 
5 

After 10 steps, we find <Nout>d = 5.6 ± 0.4. 

Equation (44) gives Fd- Fe=- 3.3 ± 0.2 kcal/mole. This gives a con­

tribution to the surface tension of -2.9 ± 0.2 dynes/em. 

Combining the results in (A),. (B), and (C), we finally obtain 

Y = 97 ± 6 dyne/em, for T = 298°K. The experimental value at this tern-

perature is 72 dyne/em (25). Reasons for the discrepancy will be dis-

cussed in Chapter VI. 

Lipid-Water Interfaces 

Lipids are the building blocks of cell membranes. They are amphi-

philic molecules containing a polar head group and a non-polar portion 

consisting of hydrocarbon ch~ins. When lipids are spread at air-water 

interface at areas of less then 1ooR? per molecule, a monolayer of well.-

aligned lipid molecules are formed. The hydrophilic polar group is 
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anchored at the interface with its dipole moment parallel to the sur-

face (26) and the hydrocarbon chains project out of the water and asso-

ciated with each other (Figure ·a). The free energy of the lipid-water 

interface should depend on the following interactions: head group-water, 

chain-chain, chain-air, chain-water, and head group-chain. The last 

two interactions, however, are unlikely to depend on the molecular area 

(27,28). Thus, the surface tension of the lipid-water interface can be 

written 

aF 
3A = (50) 

where Yhw is the surface tension of the head group-water interface, ~cc 

is the chain pressure due to closely packed but not frozen chains, and 

Y is the surface tension of the chain-air interfaee. The thermo­
ca 

dynamic properties of the hydrocarbon chains have been extensively 

studied by theoreticians (29). However, the head group-water interface 

is far less understood. In this section, we shall apply the previous 

method to calculate the term, Yhw Then, using the theoretical results 

of ~ and Y , we can compare our results with the experimental values 
cc ca 

Phosphatidylcholine is one of the commonly observed lipids in 

nature. Its head group is shown in Figure 9. We note that there is a 

positive charge at the N atom and a negative charge at the P atom. 

Since electrostatic force is the dominate force in our system, it is 

reasonable to approximate the head group-head group and head group-water 

interactions by dipole-dipole interactions. The dipole moment of the 

head group is about 20 debyes as estimated from the distance between P 

and N atoms. However, because the dipolar field produced by the head 
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WATER 

Figure 8. Schematic Representation of the Lipids Spreading at Air/ 
Water Interface. The Zig-Zag Lines Represent the 
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Figure 9. The Head Group of Phosphatidylcholine 
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group can be shielded by its medium (e.g., water), the effective dipole 

moment of the head group should be smaller. In a continuous medium of 

dielectric constant E, it is reduced by a factor of E. In our procedure 

of calculating the surface tension, the modified periodic boundary con­

ditions as shown in Figure 5 are used. In this system, the effective 

dipole moment is very difficult to estimate. For this reason, we have 

calculated the surface tension under a variety of circumstances. Figure 

10 shows schematically the systems studied. In each case our system 

consisted of eight head groups and 248 water molecules. The density of 

the head groups was chosen to be 50.~2/head group. In the surface layer, 

the top sR, the head group dipoles are held fixed, but can flip-flop 

in their orientation, while the water in this top layer is allowed to 

r.otate freely and to move perpendicular to the surface, but not lateral­

ly in the plane of the surface. These restrictions are realistic from 

a steric point of view. 

We studied five different systems. Four of the systems had one free 

water per head group and varying head group dipole strengths, while the 

fifth system had no free water in the surface layer. From the previous 

results on pure water, we see that the long range contribution and the 

relaxation contribution are about to cancel. For this reason, we calcu-

late only the main contribution F 
c 

The results are presented in 

Table II. For the system with a large surface dipole moment but no free 

surface water (run 1) , the surface tension is smallest, while insertion 

of one free water into the surface (runs 2-5) makes the surface tension 

considerably larger. This is because that each head group dipole has 

only two different configurations so that the free energy change (log­

arithm of the configuration integral) is small as the two slabs are 
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TABLE II 

SYSTEMS STUDIED AND RESULTING SURFACE TENSION VALUES 

Head Group 
Dipole Water/Lipid a 

Run Strength in Surface Surface Tension 

1 20 De bye 0 32 dynes/em 

2 15 Debye 1 115 dynes/em 

3 10 Debye 1 82 dynes/em 

4 5 Debye 1 70 dynes/em 

5 1 Debye 1 45 dynes/em 

aThe uncertainty in all cases is estimated to be ± 6 dynes/em. 
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separated. With one free water per head group and with a head group 

dipole strength of 15 debyes, the surface tension is 115 ± 6 dynes/em 

greater than the calculated value.for pure water. This is because the 

total dipole strength is much greater than that of a pure water inter­

face. Since the surface tension of a lipid/water interface is neces­

sarily less than that of air/water interface we conclude that the 

effective head group dipole moment should be smaller than 15 debyes. 

In Figure 11, we plot the ratio of the calculated surface tension to the 

calculated air/water surface tension, 97 dynes/em, against dipole 

strength for runs 2-5 (Table II). The line is a least squares fit to 

the midpoints of the data. 
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CHAPTER VI 

DISCUSSION AND CONCLUSION 

In Chapter II, we have demonstrated that the half-umbrella sampling 

is superior to the Metropolis sampling. By comparingFigure 3b and 3c, 

we see that, if an optimum weighting function is used, the Torrie-

Valleau sampling should be more efficient than the half-umbrella samp-

ling. However, to search for an optimum weighting function is a tedious 

task and usually requires a considerable number of steps, and this tends 

to negate the advantage given by using this approach. 

In the surface tension calculation, the half-umbrella sampling is 

applied to calcu.late the major contribution, Fe- Fb. We have shown 

that the number of Monte Carlo steps required for accurately evaluating 

the free energy difference depends on its "important range". In Table 

I, we note that the important range of a given free energy difference 

is ~related to its magnitude, but seems to depend on the complexity 

of the interaction potentials. For the last stage, from 3.2R to 9.8R, 

6U~ actually involves calculations of ST2 potentials in which all the 
J 

water-water distances are beyond 3.2R. Thus, 6U~ is essentially domin­
J 

ated by dipole-dipole interactions. The important range in 6U* of this 

stage is only about 10, which is smaller than that of the other stages 

with even smaller separation. In Chapter II, we also found that the 

important range for the Lennard-Jones particles is small (about 8) . 

This result is reasonable because the free energy is essentially the 
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logarithm of the "partition function" (summation over all possible con-

figurations). When the interaction potentials have more variables, more 

distinct configurations are possible and, thus, more steps are required 

for an accurate Monte Carlo sampling. 

If the important range is not covered by the Monte Carlo walk, the 

error can be very large. For example, from d. = 0 to d. 1 = o.sR, we 
J J+ 

expect from Table I that in<exp(~U~)>. =- (0.1 + 0.7 + 5.3) ± 1.3 = 
J J 

- 6.1 ± 1.3. However, if we do it in a single stage instead of several 

steps, we get ~n<exp(~U~)> ~ 18 after 1.5 x 105 steps with the one-half 
J 

umbrella sampling algorithm. The latter result is in error because the 

important range of ~u* is far from being covered by 1.5 x 105 steps 

when the separation is large. In TAble I, the stage from d. = 2.5.R to 
J 

d. 1 = 3.2i has the largest contribution. As a check, we divide it 
J+ 

into two stages, 2.5R + 2.85~ and 2.8s.R + 3.~. The sum of their free 

energy difference is consistent with the free energy difference of the 

stage from 2.5R to 3.2i. 

The relaxation effect, is obtained by calculating N , the number 
out 

of molecules which move out of the two surfaces after the two hard walls 

are released. For the pure water, the model system actually contains 

vacuum/water interfaces, instead of air/water interfaces. One may 

argue that the liquid water in vacuum should evaporate indefinitely so 

that <N t> would be very large. In our Monte Carlo simulation, ou 
5 

<N > was only 5.6 ± 0.4 after 10 steps, and this value did not seem 
out 

to increase (within the error of the computation) for the subsequent 

5 10 steps. Thus, the expected increase of <N t> in vacuum/water inter­au 
5 faces should be very small after 10 steps. This slight increase .is 

likely to be canceled by the air pressure when the real system, the 



air/water interfaces, is considered. In our results the term, Fd - Fe 

contributes only about 3% of the total surface tension, which is small 

compared with 13% obtained by Miyazaki et al. (15) for argon. This is 

expected because the surface tension of argon was evaluated at critical 

temperature (actually the triple point) while in the present calcula-

tion, the surface tension of water is evaluated at room temperature 

The calculated surface tension of water, 97 dynes/em, is consider-

ably larger than the experimental value of 72 dynes/em. This overesti-

mation is most likely due to the following reasons: (1) the ST2 po-

tential does not accurately represent the interaction potentials of 

water molecules for the calculations presented here, (2) the model sys-

tem is too small so that the effects of boundary conditions are signifi-

cant and the center of the slab is still affected by the surfaces. In 

either case there is no simple remedy available. However, this result 

can serve as a basis for comparing pure water interfaces with lipid/ 

water interfaces, because when differences are considered one expects 

much of the error due to the above two reasons to cancel. 

Usually the surface tension of the lipid/water interface is not 

obtained by a direct measurement, but from the surface pressure which 

is defined by 

11' (51) 

where y is the surface tension of the air/water interface. Substi­
o 

tutin.'j Equation (50) into Equation (51), we· have 

1T = yo - Y - Y + 1T hw ca cc 
(52) 
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For dipalmitoyl phosphatidylcholine (DPPC) at 25°C and soR2;lipid, the 

surface pressure is about 18 dynes/em (30). Theoretical studies sug­

gest that the chain pressure or DPPC at 25°C is -10 dynes/em and the 

chain/air surface tension is roughly about 20 dynes (31). Equation (52) 

thus yields yhw - 44 dynes/em. This measn the ratio of Yh /Y = 44/72 w 0 

= 0.61. From Figure 11, we then estimate that the effective dipole mo-

ment is - 4 debyes. 

In conclusion, we have developed an efficient method for the cal-

culation of the surface tension of air/water and lipid/water interfaces. 

Although at this tL~e the calculated values are not in good agreement 

with experiments (possibly due to the ST2 potential or the small size 

of the model system), the relative magnitude of the calculated values 

should be accurate. In this study, these values have been used to esti-

mate the effective dipole moment of the head group at surface. In the 

near future, one may apply the method to study the effects of the head 

group size or the head group density on the surface pressure. The 

method can also be applied to most of the other interfacial systems. 
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Consider that an assembly of molecules is confined in a rectangular 

container with edges extending from the origin to a, b, c in the x, y, 

z directions, respectively (Figure 1). Let m be the mass of each mole-

cule, x. , y. , z. be the Cartesian coordinates of the i th molecule and 
~ ~ ~ 

f ., f ,, f. be the components of the force exerted upon it. Then 
~ Y~ z~ 

x.f . 
l.~ 

= x. 
~ 

d(mX,) 
l. 

dt = 
d(x.IIIX.) 2 

~ l. • 
-~d-t~- - mxi (A.l} 

In a stationary system the sum of the velocities x. over the molecules 
~ 

at or near some specific value of x. must be zero (otherwise there 
~ 

would be a net flux into or out of the region around the specific x .. 
~ 

Thus 

r d(x.mX.)/dt d X,mX, = dtE = 0 
~ l. ~ ~ 

(A. 2} 

and therefore 

E f r mX, 2 
- NkT x. = - = 

l. xi l. 
(A. 3) 

where N is the number of molecules in the container. The forces in this 

system are of two kinds--intermolecular forces and forces between the 

molecules of the assembly and the walls. If the force between any pair 

of molecules, i and j, is a function of the distance r .. , and the force 
~J 

on any given molecule can be obtained by adding vectorically the forces 

due to all its neighbors, then 

f . = 
Xl. 

E 
j 

-u' (r .. ) (x. -x.) 
~J l. J 

r .. 
~J 

(A. 4) 
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where u' (r, .) is the derivative of the intermolecular potential u(r. ,) . 
~J ~J 

Furthermore, 

E' x.f . 
i ~ X~ 

= E E 
i j 

-x. u' (r .. ) (x. -x. ) 
~ ~] ~ J 

r .. 
(A.S) 

~J 

The prime on the summation sign means that the effect of the wall is 

not included. We may interchange i and j on the right-hand side, since 

they both range over all molecules. Then Equation (A.S) becomes 

!' x.f . 
i ~ X~ 

= 

and adding the two expressions 

! ! 
i j 

-x. u'(r .. )(x.-x.) 
J ~] J ~ 

r .. 
~J 

2 

!' x.f . 
i ~X~ 

= 
1 . - (x. -x.) u' (r .. ) 
- ! ! ~ J ~] 
2 i j r .. 

~J 

= - .!. 
~>J 

2 
x .. u' (r .. ) 
~] ~] 

r .. 
l.J 

(A. 6) 

(A. 7) 

Let F be the force exerted by one of the yz faces of the container 
X 

if there were no interfaces between a liquid and a gas, then F = Pbc. 
X 

As explained in the Introduction, the presence of interface will reduce 

the force by an amount t:.F • Thus, from E.quations (A. 3) and (A. 7), 
X 

2 
- x .. u' (r .. ) 

-(F + t:.F )a+ .E. 
X X J.>J 

J.] J.] = - NkT 
r .. 

l.J 

Similarly, for the z direction, we have 

(A. 8) 



- cF = .L:. z ~>] 

2 
- z .. u' (r .. ) 

~] ~] 

r .. 
~J 
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= -Nk.T (A. 9) 

Since aF = Pabc = cF , we see by subtracting Equation (A.9) from Equa-
x z 

tion (A. 8) 

2 2 
(x .. -z .. ) u' (r .. ) 

-a~ - .L:. 
X ~>] 

~J ~] ~J 

r .. 
~J 

= 0 (A.lO) 

According to Equation (l) of the text and assuming that the distribu-

tion of the configurations is "canonical" (i.e., the probability that a 

system is found to be in one of the configurations characterized by the 

energy U is proportional to exp(-U /kT)), Equation (A.lO) leads to the 
s s 

Kirkwood-Buff formula, Equation (2) of the text. 
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The Metropolis Monte Carlo walk is a realization of a "Markov 

chain" which is defined as follows: Let the points in a configuration 

spacer be numbered 1,2,3, •.•••••• and consider a random walker on 

these points. We are concerned with the conditional probability that 

the walker is at point k. at step (t+l) given that it was at point k 
J 0 

at step 0, k1 at step 1, •••.••.•.. , 

conditional probability as 

and k. at step t. We write this 
J. 

If the memory of the process extends back only one step, so that 

Pr{k.,t+llk.,t; ••.. k1 ,1; k ,0} = Pr{k.,t+llk.,t} 
J J. 0 J J. 

(B.l) 

then the process is called a Markov chain. For the Metropolis Monte 

Carlo walk, the transition probability is independent of t. We write 

Pr{k. ,t+llk. ,t} 
J J. 

= (B. 2) 

Let P~. be the transition probability of a Metropolis trial move between 
l.J 

two configurations, i and j (not including procedure (iv)). It satis-

fies 

E p* 
j ij 

= 1, * p .. = 
l..J 

* p .. 
Jl. 

(B. 3) 

With the acceptance or rejection procedure, (iv), the transition proba-

bility becomes 

* j t: i pij = p .. '!!', > '!!', 
J.] J J. 

* '!!' ./1T. '!!', < rr. j t: i (B. 4) p,. 
J.] J J. J J. 
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= 

where in the Metropolis sampling, 

-u /kT 
e s 

'IT = s -u /kT 
(B. 5) 

l: e s 
se:r · 

It is easy to show (32) that Equation (B.4) satisfies the following 

conditions for any distribution 'IT , 
s 

p,. > o, 
l.J 

L: p .. = 1, 
j l.J 

L: 1T,p .. = 1T, 
i l. l.J J 

(B. 6) 

A Markov chain satisfying Equation (B.6) is called "irreducible". For 

an irreducible Markov chain, the average of a quantity g is given by 

(33). 

ity. 

(B. 7) 

-1/2 
The second term, O(n ) , becomes negligible as n goes to infin-

If the distribution rr is given by Equation (B.S), Equation (B.7) 
s 

leads to Equation (17) of the text. In the umbrella-sampling method 

(see Chapter II) , the distribution is chosen to be 

W e 
s 

-u /kT s 

'IT = 
s -u /kT 

E W e s 
se:r s 

where W is an arbitrary function of configurations. 
s 

(B. 8) 

The Metropolis transition probability, Equation (B.4), is not a 

unique choice to satisfy the irreducible conditions of a Markov chain. 

An alternative, referred to as Barker sampling (21), is given below 
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* P . . = P . . 1l' • I < 1l' • +11' . ) 
~J ~J J ~ J 

= {B. 9) 

However, it has been shown (21) that the Metropolis sampling, in most 

cases, converges faster than the Barker sampling. 

\ 
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COMMON /A/L,K 1 X(256),Y(256),Z{256) 
COMMON /C/AX(41 256),AY{4 1 256),AZ(4,256) 
COMMON /E/THET(256),PH1(256),CTT{256),STT(256) 
COMMON /IMP/DO 
COM~~IJ N · /L/ LG 
C 0 M M 0 N · I M/ X M ( 2 56 ) , Y H ( 2 5 6 ) , Z M { 25 6) 
C 0 M ft'O N I MO N U I D V . 
COMMON /S/SIZEX 1 SIZEY,RC 
DIMENSION kXL(4),AYL(4),AZL(4) 
DI~ENSION BX(4,256),8Y(4,256),BZ{4) 
DIMENSION BXS{4) 1 BYS(4J,SWF(256) 
DIMfNS!ON CX(4),CY(4) 
DIMENSION E(255,128),EL(256) 
NQUIT=150 
NNN=5 

NAV=256 
N=25 6 

PI=3.141593 
RC=9. 8 

C *** RC IS THE CUTOfF. DISTANCE 
RC2=RC**2 
BKT=O .5 92 

C ••• BOLTZMANN CONSTANT TIMES TEMPERATURE AT 298 K, 
C UNIT KCAL/MOLE 
c 

OMIN=-50~ · 
srz£=19.72 
SIZEX=SIZE 
SIZEY=SIZE 
SIZEZ=SIZE 
DELA=O.l3 
DELR=O .13 

C *** MAXIMUM ALLOWED DISPLACEMENT 
c 

SEPAO=O. 
S£PA1=0.15 

C *** SLAB SEPARAiiONS IN SYSTEMS 0 AND 1 

ZPO=SIZEZ+SEP.\0 
ZPl=SIZEZ+SEPAl 

9 f0RMAT(/,SX,I7) 
1550 fORMAT(// 1 5X,I7,3E20.7) 

63 

1560 fORMAT(lOX,'AV.EXP.(~OU)/W= 1 ,El8.7,10X, 1 1V.l/W=',E18.7) 
1570 FORMAT(20X,•RATIO=•,E20.7) . 
6230 rOPMAT(2X,8(I4,El0.3)) 
6240 f0PHAT(2X,8(I6,f8.0)) 

0 f-! = 0 • 5 7 73 5 
CX(l)=O.B*OM 
CY(1)=0.8*0M 
CX(2)=0M 
CY{2)=-0M 



CX( 3)=-0.B•OM 
CY(3)=-0.8*0M 
CX(4)=-0M 
CY(4)=0M 
BZ(l)=-0 .B*OM 

'BZ ( 2) =OH 
BZ(3)=-0.8*0~1 
BZ { 4) =0 M 

00 55 L=l~N 
ROT=PI*RANF(O) 
CA=COS(ROT} 
SA=SIN(ROT} 
DO SO M=l, 4 
BX(M,L}=SA*CY{H)+CA*CX{M) 
BY(M,L)=CA*CY(M)-SA*CX(M) 

50 CONTINUE 
THET(L)=PI*RANF(O) 
PHI(L)=2.*PI•RANF(0) 
CTT(L)=COS(THET(L)) 
STT(L)=SIM(THET(L)) 
CP=COS(PHI (L)) 
SP=S1N(PHI(L)) 
00 53 M=l, 4 
AX(M,L)=CTT(L)*CP*BX(M,L)-SP*BY(M,L}+STT(L)*CP•BZ(M) 
AY(M,L)=CTT(L)*SP*DX(M,L)+CP*BY(M,L)+STT(L)*SP*BZ(M) 
A Z ( M, L } =-S T T ( L ) * B X ( M, L ) + C TT ( L ) * B Z ( M) 

51 CONTINUE 
55 CONTUfUE 
C *** AX(M,L),AY(M,L),AZ(M,L) ARE THE SPACE COORDINATES 
C UF THE H-TH (M=1,4) CHARGE Of L-TH MOLECULE 
c 

X(l)=SIZEX/2. 
'l(l)=SIZEY/2. 
Z(l)=SIZEZ/2. 
L=l 

205 L=L+l 
208 XR=RANF(O) 

ZR=RANF(O) 
Y R = RA ~1 f ( 0 ) 
X(L)=SlZEX*XR 
'l(L)=SIZEY*YR 
Z( L )=SI ZEZ *ZR 
LMl=L-1 

00 209 K=l,L 1.41 
CA~L OIST(X(L),Y{L) 1 Z(~),ZPO,RKL) 

IF (RKL .LT. 5.} GO TO 20U 
209 CONTINUE 

IF (l. .LT. N) GO TO 205 
C *** ~NO OF PICKING UP AN INITIAL CONFIGURATION 
c 

XM(l)=(AX(2,1)+lX(4 1 1))/2. 
YM(l)=(AY(2,1)+AY(4,1))/2. 
Z~(l)=(AZ(2,l)+AZ(4,1))/2. 
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DO 230 L=2,N 
XM(L)=(AX(2,L)+AX{4,L))/2. 
VM(L)=(hY(2,L)+AY(4,L))/2. 
ZM{L)={AZ(2,L)+AZ(4,L))/2. 

65 

C (XM,YM,ZM) REPR~SFNTS TH~ VECTOR OF THE DIPOLAR AXIS 
DO 21 5. M=l , 4 
AXL(M}=AX(H,L) 
AYL(M)=AY(M,L) 
AZL(M}=AZ(:-i,L) 

215 CONTINUE 
LMl=L-1 
DO 220 K=l, LMl 

CALL DIST(X(L),Y(L),Z(L),ZPO,RL) 
IF (Rt .GT. RC2) GO TO 220 
CALL ENERGY(RL,AXL,AVL,AZL,XM(L),YM(L),ZM(L),U) 
CALL INDEX(Kl,LI) 
E(KI,LI):(J 

(JJNS=(Jl~S+U 
IF (LG .EQ. 1) GO TO 233 

C **• C.F. SUBROUTINE DIST 
U I NSl=UINSl +U 
GO TO 220 

233 CALL DIST(X(L),Y(L),Z(L),ZPl,RL) 
IF (RL .GT. RC2) GO TO 220 

CALL ENERGY(RL,AXL,AVL,AZL,XM(L),YM(L),ZM(L),U) 
UINSl=UINSl+U 

220 CONTINUE. 
230 CONTINUE 
c 
C *** UINS AND UINSl ARE TH~ INSTANTANEOUS POTENTIAL 
C ENERGY OF SYSTEMS 0 AND !,RESPECTIVELY 
c 

DUINS:(UINS1-UINS)/8KT 
I=DUINS-DMIN 

WRITE (6,9) I 
FOW=EXP(-DUINS/2.) 

KOUNT=O 
10 DO 1900 KPASS=l,NQUIT 

DO 1600 KSTEP=l,NNN 
DO 1400 L=l,NAV 

KKK=KKK+l 
XS=X(L) 
YS=Y( L) 
ZS=Z(L) 
THETS=THET(L) 
PHlS=PHI(L) 
CTTS=CTT(L) 
STTS=STT(L) 

DO 580 ~1=1, 4 
BXS(M)=BX( M,L) 
BYS(H)=BY(M,L) 

580 CONTINUE 



0 0 2 55 :-i= 1 , 4 
AXLOO~AX(M,L) 
AYL(M}:::AY{M,L) 
AZL(H)=AZ(M,L) 
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255 CONTINUE 
C *** SAVE THS COORDINATES OF THE OLD CONFIGURATION 
c 

U LS =0. 
UtTS:::O. 
U Ll S=O. 
DO 258 K:::l,N 
If (K .EQ. L) GD TO 258 
CALL DIST(XS,VS,ZS,ZPO,RL) 
IF (RL .GT. RC2) GO TO 2S8 
CALL INDEX(KI,LI) 
ULS:::ULS+E(KI,LI) 
IF (LG .N~. 1) GO TO 258 

C *** C.F. SUBROUTINE DIST 
c 

ULTS=ULTS+E(KI,LI) 
CALL DIST(XS,YS,ZS,ZP1 1 RL) 
IF (RL .GT. RC2) bO TO 258 

CALL ENERGY(RL,AXL,AYL,AZL,XM(L),YM(L),ZM(L),U) 
ULlS=ULlS+U 

258 CONTINUr: 
C *** ULS IS THE INTERACTION ENERGY OF THE L-TH MOLECULE 
C WITH ITS SURROUNDING MOLECULES IN THE OLD CONFIGURA-
C TION OF SYSTEM 0 
C *** ULTS IS THE PORTION OF THE INTERACTIO~ ENERGY IN 
C SYSTEM O, WHICH MAY BE DIFFERENT FROM THAT IN SYSTEM 1 
C ••• ULlS IS THE PtORTION OF THE INTERACTION ENERGY IN 
C SVST~M 1, WHICH MAY BE DIFFERENT FROM THAT IN SYSTEM 0 
c 
450 TZ=RANF(O} 

TZM=OELR*(l.-TZ*2.) 
Z( L )= ZS +TZM 
IF (Z(L) .LT. 0.) GO TO 1150 
IF (Z(L) .GT. SIZEZ) GO TO 1150 

260 TX=RANF(O) 
TXM=DELR•(l.-TX*2.) 

X ( L )=XS+TXM 
IF (X(L) .LE. SIZEX) GO TO 300 
X(L)=X(L)-SIZEX· 
GO TO 350 

300 IF (X(L) .GT. 0.) GO TO 350 
X(L)=X(£..)+SIZEX 

350 TV=RANf(O) 
TYM=OELR*(l.-TY*2.) 

Y(L)=YS+TYM 
IF (Y(L) .LE. SIZEY) GO TO 400 
V(L):::Y(L)-SIZEY 

GO TO 575 
400 If (V{L) .GT. O.) GO TO 575 

'l(L)=Y(L)+SIZEY 



575 

600 

700 

750 

790 

920 
c 

RO=RANF(O) 
ROT=DELA*(l.-R0*2.) 
CA=COS(ROT) 
SA=S!N(ROT) 
DO 600 M=l ,2 

BX(M,t)=SA*BYS(M)+CA*BXS(M) 
BV(M,L)=CA*BYS{M)-SA*B~S(M) 

CONTINUE 
ax(3,L)=-BX(l,L) 
BY ( 3, L) =-BY ( 1 ,L) 
BX(4,L)=-BX(2 1 L) 
BY(4, L)=-BV(2,L) 

RT=RANF(O) 
RTH=DELA*(l.-RT*2.) 
THET(L)=THETS+RTM 
IF (THET(L) .GE. PI .oR. THET(L) .LT. 0.) GO TO 700 
CTT(L)=COS(THET(L)) 
STT(t)~SIN(THET(L)) 

RP=RANF(O) 
RPM=DELA*(l.-RP*2.) 
PHI{L)=PHIS+RPM 
C P =C 0 S ( PH l ( L ) ) 

SP=SIN(PHI(L)) 
CTt;P=CTT(L)*CP 
STCP=STT(L) *CP 
CTSP=CTT(L)*SP 
STSP=ST'l'(L) *SP 
DO 920 M=l, 4 
AXL(M)=CTCP*BX(~,L)-SP*BY(M,L)+STCP*BZ(M) 
AYL(M)=CTSP*BX(M,L)+CPxBY(M,L)+STSP*BZ(M) 
AZL(M)=-STT(L)*BX(M,L)+CTT(L)*BZ(M) 
CONTINUE 

UL=O. 
UL T=O. 
ULl=O. 

XML=(AXL(2)+AXL(4))/2. 
1ML=(AVL{2)+AYL(4))/2. 
ZML=(AZL(2)+AZL(4))/2. 

DO 1000 K=l,N 
IF (K .EQ. L) GD TO 1000 
CALL INDEX(KI,LI) 
CALL DIST(X(L),Y(L),Z(L),ZPO,RL) 
IF (RL .GT. RC2) GO TO 975 
CALL ENERGY(RL,AXL,AVL,AlL,XML,YML,ZML,U) 
EL(K)=U 
UL=UL+U 

IF (LG .NE. 1) GO TO 1000 
ULT=ULT+U 
CALL DIST(X(L),Y(L),Z(L),ZPl,RL) 
Ir (RL .GT. RC2) GO TO 1000 

C~LL ENERGY(RL,AXL,AYL,AZL,XML,YML,ZML,U) 
ULl=ULl+U 

GO TO 1000 
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975 
1000 

1100 

c 
c 
c 
1150 

1,200 

c 

EL ( K) =E ( KI, LI ) 
CONTINUE 

UMU.:ULl-ULT 
UMUS=UL1S-!JLTS 

DO=(UMU-UMUS)/BKT 
CALL CHECK (UL,ULS,NY) 
IF {NY .EQ. 1) GO TO 1300 
***·IF NY=1, THE TRANSITION lS ACCEPTED 

OTHERWISE, IT IS REJECTED 

X(L).:XS 
V(L)=VS 
Z(l.)=ZS 
THET( L) =THETS 
PHI(L)=PHIS 
CTT(l.)=CTTS 
STT(l.)=STTS 
DO 1200 M=l 1 4 
BX(M,L)=BXS(M) 
BY( H, L)=BYS( H) 
CONTINUE 

GO TO 1390 

1300 UINS=UINS+DV 
KOUNT=KOUNT+l 

1305 XM(L)=XML 
YM(L) =Y ML 
ZM(L)=Z~1L 
DO 1310 M=l 1 4 
.AX ( M, L) =AXL { t-1) 
A Y ( H, L) =A Y LOt> 
AZ(M,L)=AZL0l) 

1310 CONTINUE 
DO 1350 K=l,N 

IF ( K • E Q • L ) G 0 . TO 13 50 
CALL INDEX(KI,LI) 
E(KI,LI )=EL(K) 

1350 CONTINUE 
DUINS=OUINS-+DD 
FOW=EXP(-OUINS/2.) 

1390 WFT=WFT+EXP(DUINS/2.) 
FOWT=FOt'iT+FOW 

I=OUINS-DMIN 

S Wr' (I) =S Wf (I) +1 • 
1400 CO Nil NUE 
1600 CONTINUE 

WRITE (6,1550) KKK,UINS,FOW,WFS 
FAV=FOWT/ KKK 
WFAV=WFT/KKK 
WRITE (6,1560) FAV,WFAV 
RAT=FA V/WFAV 
WRITE (6,1570) RAT 
WRITE (6,6235) 
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6235 · FORMAT(/,5X, 1 PROBABILITV DISTRIBUTION•) 
DO 1750 M=l, 16 
NBEG={M-1)*8+1 
NENO=N8£G+7 
WRITE (6,6240) ((J,SWF(J)},J=NBEG,NENO) 

1750 CONTINUE 
1900 CONTINUE 

WRITE (6,1550) KKK,USUM,FOWT,WFT 
WRITE (6,9) KOONT 
WRITE (56) X,Y,l,BX,BY,THET,PHI,SWF 

C *** STORE THE DATA AT THIS STEP IN DISK 
c 

c 
c 
c 

STOP 
END 

SUBROUTINE INDEX(KI,LI) 
COMMON /A/L,K 
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C STORING THE POTF:NTIAL ENERGY OF ALL PAIRS, E(K,L), WILL 
C SAVE COMPUTA~IO~ TIME SUBSTANTIALLY. HOWEVER, THE 
C MEMMORY CAPACITY OF ISM 370/158 IS NOT SUFFICIENT TO 
C STORE E(256,256). SINCE E(K1 L)=E(L,K),WE ACTUALLY 
C NEED ONLY 255X128 ADDRESSES. THIS SUBROUTINE IS TO 
C STORE E(l 1 2) IN E(255,2)i(l 1 3} IN (255,3) 1 (2,3) IN 
C (254,3), ••.••••• , (127,128). IN {129,128); (1,129) IN 
C (1,128), (2,129) IN (2,128), •• ,{255,256) IN (255,1) 

IF ( K • L T • L ) GO TO 9 4 0 
LI=K 
KI=L 
GO TO 950 

940 LI=L 
KI=K 

950 IF (LI .GT. 128) GO TO 960 
KI=25 6-KI 
GO TO 970 

960 LI=257-LI 
970 RETURN 

c 
c 
c 

END 

SUBROUTINE ENERGY(RKL,AXL,AYL,AZL,XML,Y~L,ZML,U) 

COMMO r-! I AIL, K 
COMMON /B/0(3) 
COMMON /C/AX(4,256) 1 AY(4,256),AZ(4,256} 
COMMON /E/THET(256),PHI(25o) 1 CTT(256),STT(25o) 
COMMON /M/XM(256),YM(256),ZM(256) 
DIMENSION AXL(4),AYL(4) 1 AZL(4) 

C UNIT KCAt/MOLE 
c 

IF {RKL .GT. 50.) GO TO 100 
A B = ( 9 • 61/ R K L) * *3 



VLJ=0.303*(AB*AB-AB) 
VEL=O. 
SGNJ=l. 
DO 70 J=l, 4 
Al=D(l)-AX(J,K) 
A2 =0( 2) -AV ( J, K) 
13=0(3)-AZ(J,K) 
SGN=S GNJ 

70 

DO 60 I =1, 4 
DR=SURT((A1+AXL(l))**2+(A2+AYL(I))**2+{A3+AZL(l))**2) 
VEL=V EL +18. 4366 ~s GN /DR 

60 SGN=-SGN 
70 SGNJ=-SGNJ 

IF (RKL .GE. 9.78876) GO TO 90 
R=SQRT(RKL) 
U=VLJ+VEL*(R-2.0160)**2*(7.3701-2.*R)/1.2381 
GO TO 200 

90 U=VLJ+\IEL 
GO 1'0 200 

c 
C *** THE FOLLOWI~G IS DIPOLE-DIPOLE APPROXIMATION 
100 R=SQRT(RKL) 

DIPL=XML*D(1)+YML*D(2)+ZML*D(3) 
DIPK=XM(K)*D(l)+YH(K)*0(2)+ZH(K)*0(3) 
PROJ=CTT(L)*CTT(K)+STT(L)*STT(K)*COS(PHI{L)-PHl(K)) 
R3=R*RKL . 

UAA=(PROJ-9.*0IPL*DIPK/RKL)/R3 
150 U=79.666*UAA 
200 RETURN 

c 
c 
c 

c 

END 

SUBROUTINE DI~T(XL,YL,ZL,SIZEZ,RL). 
COM~ON /A/L,K,XYZ(256,3) 
COMMON /B/0(3) 
CO,otMON /L/LG 
COMMON /S/.SIZE(2) 1 RC 

C THE PROGRAM IS TO CALCULATE THE DISTANCE BETWEEN K-TH 
C AND L-TH MOLECULES WITH PERIODIC BOUNDARY CONDITIONS 
c 

LG=O 
D( 1 )=XL -XYZ (K, 1) 
D( 2)=YL-XYZ(K,2) 
D(3)=ZL-XYZ(K,3) 

DO 50 !=1,2 
IF (0{1) .LE. RC) GO TO 20 
D(I)=D(I)-SIZE(I) 
IF (ABS(D(l)) .GT. RC) GO TO 60 
GO TO 50 

20 IF (D(I) .LT. -RC) GO TO 30 
GO TO 50 



30 D(I)=O(I)+SIZE(I) 
If (A9S(D(I)) .GT. RC) GO TO 60 

50 CONTINUE 
IF (0(3) .LE. RC) GO TO 51 
0(3):0(3)-SIZEZ 
IF (ABS(0(3)} .GT. RC) GO--TO 60 
LG=l 
GO TO 55 

51 IF (0(3) .GT. -RC-) GO TO 55 
D(3)=0(3)+SIZEZ 
I F ( A B S ( 0 ( 3 ) ) • GT • R C ) GO T 0 6 0 
LG=l 

C **• IF LG=l, THE INTERACTION ENERGIES BETWEE~ L-TH 
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C AND K-TH MOLECULES ARE DIFFERENT FOR THE TWO SYSTEMS 
C 0 AND 1; IF LG=O, THEY ARE THE SAME 
c 
55 RL=D{l)**2+0(2)~*2+0(3}**2 

GO TO 70 
60 RL=RC**2Tl.O 
C *** RL HERE IS GREATER THAN THE CUTOFF DISTANCE. THE 
C INTERACTION WILL BE NEGLECTED, SEE !·iAIN PROGRAr.f 
c 
70 RETURN 

c 

END 

SUBROUTINE CHECK(U,US,NY) 
COMMO~I /IMP/DO 
COMMON /MONU/OE 
BKT=0.592 

C TEMPERATURE=498 K 
C UNIT KCAL/MO~E 
c ************ 

DE=U-US 
DU=OE/.BKT 

ARG=DU+DD/2. 
C *** IF ARG=OU, THE HALF-UMBRELLA SAMPLING REDUCES 
C TO THE METROPULIS MONTe CARLO SAMPLING 

IF (A RG • LT. 0. ) GO TO 20 0 
IF (ARG .GT. 15.) GO TO 100 

C **• TO AVOID UNDERFLOW IN THE NEXT STATEMENT 
DP=EXP(-ARG) 

RAN=RANF(O) 
If (DP .GT. RAN) GO TO 200 

100 NY=O 
GO TO 300 

200 NY=l 
300 RETURN 

END 



//GO.fT56F001 DO DSN=OSU.ACT13029.SCOB,DISP=(NEW,KEEP), 
II UNIT=3350,VOL=SER=OASD40,SPACE=(1032,15), 
II DCB=(BLKSIZE=312D,LRECL=l028,RECFM=VBS) 
c 
c 
c 
c 
c 
c 
c 

**• THE FUNCTION RANF(O) GE~ERATES RANDOM NUMBERS 
UNIFORMLY DISTRIBUTED BETWEEN 0 AND 1. ITS PROGRAM 
IS WRITTEN BY DR. J.P. CHANDLER OF THE OSU COMPUTER 
SCIENCE DEPARTMENT AND IS OMITTED HERE. THE SUBROU­
TINE ENERGY IS ALSO IMPROVED BY DR. CHANDLER. 
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APPENDIX D 

ORIENTATION OF THE WATER MOLECULES NEAR SURFACE 
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The structure of water is important in many biological and chemical 

systems. For this reason, it is interesting to obtain some information 

about the orientation of the water molecules near surface. As described 

in Chapter IV, the orientation of water molecules can be specified by 

three Euler angles e, w, and a, where e and w denote the spherical 

polar and azimuthal angles of the dipolar axis (pointing from the oxy-

gen to the middle point of the two hydrogens), a represents the rota-

tional angle of the molecule about the dipolar axis. If the normal to 

the water surface is taken to be the z-axis, then e = 0° and e = 90° 

denote the orientations that the dipolar axis is perpendicular and 

parallel to the surface, ~aspectively. In this study, we attempt to 

obtain the distribution function of the angle for the surface water 

molecules. More specifically, we divide the e angle (0° - 180°) into 

32 regions and take the canonical ensemble average of the number of 

surface molecules falling into each region. The "surface molecules" 

here refers to the molecules located at top 3 R from the surface. 

The canonical. ensemble average can be obtained by the Metropolis 

Monte Carlo method as described in the Introduction. In the model sys-

tem the periodic boundary conditions are applied in x and y axes but 

not in z axis. Each cubic unit cell contains 256 water molecules and 

the length of the unit cell is chosen so that the density of water is 

3 
equal to 1 g/cm • For the interaction potential, we consider both the 

ST2 and CI functions (see Introduction) . In each case, the system is 

started from a slab-shaped liquid with hard wall constraint (i.e., the 

state (c) in Chapter IV). In the subsequent Monte Carlo steps, the 

hard walls are released. For each run, about 2 x 105 steps are called 

for. The results are shown in Figures 12 and 13. We note that for the 
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Figure 12. Orientational Distribution of the Surface Water Using ST2 Potential. The a Angle is 
Divided into 32 Regions and the Vertical Axis Represents the Percentage of the 
Monte Carlo Steps Falling Into Each Region 
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Figure 13. Orientational Distribution of the Surface Water Using CI Potential. The 8 Angle is 
Divided into 32 Regions and the Vertical Axis Represents the Percentage of the 
Monte Carlo Steps Falling Into Each Region 
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CI potential the surface molecules are almost isotropic while for the 

ST2 potential the surface molecules tend to orient parallel to the sur­

face. This is an interesting point for future experiments to test. 

The surface structure of water should affect the structure of 

solutes. In our preliminary studies, we put a spherical dipole (radius 

= 3.5i) at water surface and found that the dipolar solute also tends 

to orient parallel to the surface when the ST2 potential is used. The 

detailed orientational distribution still needs further elaboration. 
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