AN ANALYTICAL AND EXPERIMENTAL STUDY

OF THE PYROLYSIS OF COMPOSITE

ABLATIVE MATERIALS

By
JACK BRADFORD HENDERSON
Bachelor of Science in Mechanical Engineering University of Tulsa
Tulsa, Oklahoma
1972
Master of Sclence Oklahoma State University Stillwater, Oklahoma 1973

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements
for the Degree of DOCTOR OF PHILOSOPHY

December, 1980

Thesis 1980D $H 496 a$
cop. 2

Thes is Approved:

ACKNOWLEDGMENTS

During my graduate study, my philosophies with regard to engineering research and education have been greatly influenced by my friend and adviser, Professor J. A. Wiebelt. Professor Wiebelt has set an example which has been a major source of inspiration during the past seven years. Words alone cannot express my gratitude.

Also, appreciation is expressed to Dr. J. D. Parker, Dr. G. R. Moore, Dr. D. G. Lilley, and Dr. R. L. Robinson for serving as members of my graduate committee. I would especially like to thank Dr. J. D. Parker for his support and encouragement during the past seven years. My association with Professor Parker has been a valuable part of my engineering education. To him 1 owe more than thanks. I am also obliged to my colleague and friend, Dr. G. R. Moore, for many valuable suggestions throughout this work.

In addition, I would like to thank my friend and fellow graduate student, Mr. M. R. Tant, for our many technical discussions and his help with part of the experimental work; and Mr. Eldon Hardy for his fine work in drawing the figures.

Finally, l would like to express my gratitude to Janna, my wife and best friend, for typing the manuscript and digitizing much of the experimental data. Her encouragement and sacrifice have not waived.

TABLE OF CONTENTS

Chapter Page
I: INTRODUCTION 1
II. REVIEW OF PREVIOUS WORK. 3
Mathematical Models 4
Kinetics of Thermal Decomposition 16
Isothermal Method. 16
Dynamic Heating Method 19
Single Heating Rate Techniques. 21
Multiple Heating Rate Techniques 26
Specific Heat Measurements. 35
Drop Calorimetry Method. 37
Differential Scanning Calorimetry Method 39
Determination of Heat of Decomposition. 44
In Situ Measurements 44
Differential Thermal Analysis Method 45
Differential Scanning Calorimetry Method 49
Temperature Profile Measurements. 50
III. THERMAL MODEL. 59
Deve lopment 59
Method of Solution. 64
IV. DETERMINATION OF KINETIC PARAMETERS. 69
Experimental Method 70
Equipment. 70
Temperature Calibration. 72
Sample Preparation and Procedure 75
Experimental Results. 78
Method of Data Analysis 80
V. MEASUREMENT OF SPECIFIC HEAT AND HEAT OF DECOMPOSITION 114
Experimental Method 114
Equipment. 114
Calibration. 119
Sample Preparation and Procedure 121
Data Analysis and Results 127
Chapter Page
VI. TEMPERATURE MEASUREMENTS 137
Apparatus 137
Calibration 139
Sample Preparation and Procedure. 142
VII. COMPARISON OF CALCULATED AND EXPERIMENTAL TEMPERATURE PROFILES 149
VIII. DISCUSSION AND RECOMMENDATIONS 163
Kinetic Parameters. 163
Experimental Technique and Data. 163
Data Analysis and Results. 164
Specific Heat and Heat of Decomposition 167
Theoretical Model and Temperature Measurements 168
BIBLIOGRAPHY 171
APPENDIX A - LISTING OF COMPUTER PROGRAM. 175
APPENDIX B - THERMOGRAVIMETRIC DATA 183

LIST OF TABLES

Table Page

1. Activation Energies for Weight Loss of Wood Samples by Thermal Degradation. 18
2. Activation Energy of Decomposition of Wood and Its Major Components 20
III. Summary of Kinetic Parameters Determined by the Ratio Method. 25
IV. Summary of Kinetic Parameters 29
V. Summary of Heat of Pyrolysis and Combustion 49
VI. Giant Planet Pilot Facility Test Results. 51
VII. Properties Used in Sample Calculations. 67
VIII. Magnetic Standards Used for TGS Calibration 74
IX. Composition of Materials Tested 79
X. Results of Thermogravimetric Analysis 110
XI. Statistical Analysis of Errors in Computed Versus
Experimental w/wo 113
XII. Calibration Standards Used for DSC Calibration. 120
XIII. Results of Specific Heat Measurements 136
XIV. Heat Flux Distribution Relative to Center Position. 145
XV. Summary of Dimensions and Density of Materials Used in
Temperature Profile Measurements. 147
XVI. Properties Used in Temperature Calculations for H41NE and MXBE-350 150
XVII. Statistical Analysis of Calculated Versus Experimental Temperatures for H41NE. 155
Table Page
XVIII. Statistical Analysis of Calculated Versus Experimental
Temperatures for MXBE-350, 255-Second Run 157
XIX. Statistical Analysis of Calculated Versus ExperimentalTemperatures for MXBE-350, 1200-Second Run. 160
XX. Weight Loss and Rate of Weight Loss Data for H41NE. 184
XXI. Weight Loss and Rate of Weight Loss Data for H41D 186
XXII. Weight Loss and Rate of Weight Loss Data for MXBE-350 . . . 188
XXIII. Weight Loss and Rate of Weight Loss Data for MXB-360. . . . 191
XXIV. Weight Loss and Rate of Weight Loss Data for FR-1 192
XXV. Weight Loss and Rate of Weight Loss Data for FR-2 195

LIST OF FIGURES

Figure Page

1. Schematic of Pyrolysis in a One-Dimensional Slab 5
2. Time-Temperature Curve for a 2.0-Cm Sheet of Deal Wood [1] 7
3. Time-Temperature Curve for a 4.0-Cm Sheet of Deal Wood [1] 7
4. Effect of Char Thermal Conductivity on Rate of Weight Loss [9] 14
5. Effect of Heat of Decomposition on Rate of Weight Loss [9] 15
6. Plot Used to Determine Activation Energy and Order of Reaction for Three Separate Weight Loss Regions for Calcium Oxalate Monohydrate [17] 23
7. Effect of Sample Geometry on Rate of Decomposition in an Inert Isothermal Environment [19]. 27
8. Comparison of Data for High Heating Rate Tests with Predictions from TGA Model [20]. 28
9. Thermogram for CTL91-LD Fiberglass-Phenolic [22] 32
10. Slopes Used to Determine Average Activation Energy [22]. 33
11. Plot to Determine the Pre-Exponential Factor and Order of Reaction [22] 34
12. Specific Heat of a $5000^{\circ} \mathrm{F}$ Precharred Carbon Phenolic [25]. 38
13. Qualitative Diagram of a Programmed Temperature Scan for Empty Pan, Virgin and Char Material [28] 41
14. Specific Heat of Oak Wood as a Function of Temperature in a Nitrogen Atmosphere [12] 43
15. Idealized DTA Scan [29]. 47
16. DTA Thermogram of BRP5549 Phenolic Resin [30]. 48
17. NASA's Giant Planet Pilot Facility [34] 52
18. Comparison Between Calculated and Predicted In-Depth Temperature Profiles [35]. 54
19. Time-Temperature Profiles at Various Radii of a Cellulose Cylinder Burning in Free Convection [36] 56
20. Comparison of Havens' Experimental and Brown's Computed Temperature Profiles for White Pine Cylinders [29] 58
21. Comparison of the Results of Kung's and Henderson's Computations for a 1.0-Cm Thick Slab of Pyrolyzing Wood 68
22. Perkin-Elmer TGS-2 Thermogravimetric System. 71
23. Schematic of TGS-2 Analyzer Unit 73
24. Magnetic Standard Temperature Calibration for TGS a† $80^{\circ} \mathrm{C} / \mathrm{Min}$ 76
25. Magnetic Standard Temperature Correction for TGS at $80^{\circ} \mathrm{C} / \mathrm{Min}$ 77
26. Fraction of Weight Remaining for Six Heating Rates for H41NE. 81
27. Fraction of Weight Remaining for Six Heating Rates for H41D 82
28. Fraction of Weight Remaining for Six Heating Rates for MXBE-350 83
29. Fraction of Weight Remaining for Six Heating Rates for MXB-360. 84
30. Fraction of Weight Remaining for Six Heating Rates for FR-1 85
31. Fraction of Weight Remaining for Six Heating Rates for FR-2 86
32. Derivatives of Weight Loss for Six Heating Rates for H41NE. 87
33. Derivatives of Weight Loss for Six Heating Rates for H41D 88
34. Derivatives of Weight Loss for Six Heating Rates for MXBE-350 89
35. Derivatives of Weight Loss for Six Heating Rates for MXB-360. 90
36. Derivatives of Weight Loss for Six Heating Rates for FR-1 91
37. Derivatives of Weight Loss for Six Heating Rates for FR-2 92
38. Plot of Slopes Used to Determine the Activation Energy for H41NE. 93
39. Plot of Slopes Used to Determine the Activation Energy for H41D 94
40. Plot of Slopes Used to Determine the Activation Energy for MXBE-350 95
41. Plot of Slopes Used to Determine the Activation Energy for MXB-360. 96
42. Plot of Slopes Used to Determine the Activation Energy for FR-1 97
43. Plot of Slopes Used to Determine the Activation Energy for FR -2 98
44. Activation Energy and Intercept as a Function of Degree of Conversion for H41NE. 99
45. Activation Energy and Intercept as a Function of Degree of Conversion for MXBE-350 100
46. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for H41NE 102
47. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for H41D. 103
48. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for MXBE-350. 104
49. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for MXB-360 105
50. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for FR-1. 106
51. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for FR-2. 107
52. Plot of Slopes Used to Determine the Activation Energy for H41NE by the Method of Flynn and Wall. 108
53. Plot of Slopes Used to Determine the Activation Energy for MXBE-350 by the Method of Flynn and Wall 109
Figure Page
54. Comparison of Calculated Versus Experimental Welght Loss for H4INE 111
55. Comparison of Calculated Versus Experimental Weight Loss for MXBE-350. 112
56. Perkin-Elmer DSC-1B Differential Scanning Calorimeter. 116
57. Schematic of DSC-1B Sample Holder. 117
58. Idealized DSC Thermogram [33]. 118
59. Temperature Calibration for DSC. 122
60. $20^{\circ} \mathrm{C} / \mathrm{Min}$ DSC.Scan for MXBE-350 124
61. Perkin-EImer AD-2Z Microbalance. 125
62. Specific Heat and Heat of Decomposition of H41NE 130
63. Specific Heat and Heat of Decomposition of H41D. 131
64. Specific Heat and Heat of Decomposition of MXBE-350. 132
65. Specific Heat and Heat of Decomposition of MXB-360 133
66. Specific Heat and Heat of Decomposi†ion of FR-1 134
67. Specific Heat and Heat of Decomposition of FR-2 135
68. Tungsten Lamps and Sample Holder 138
69. Thermogage, Inc. Blackbody Standard. 140
70. Calibration Curve for Gardon Heat Flux Transducer. 141
71. Calibration Curve for Tungsten Filament Lamps 143
72. Sample Dimensions and Thermocouple Locations 144
73. Sample of MXBE-350 Virgin Material with Thermocouples. 146
74. Sample of MXBE-350 After Pyrolysis 148
75. Calculated and Experimental Temperatures and Calculated Active Material Densities for H41NE. 151
76. Calculated Spatial Dependent Temperatures and Active Material Densities for H4 INE 152
Figure Page
77. Calculated and Experimental Temperatures and Calculated
Active Material Densities for MXBE-350, 255-Second Run 154
78. Calculated Spatial Dependent Temperatures and Active Material Densities for MXBE-350, 255-Second Run 156
79. Calculated and Experimental Temperatures and Calculated Active Material Densities for MXBE-350, 1200-Second Run. 158
80. Calculated Spatial Dependent Temperatures and Active Material Densities for MXBE-350, 1200-Second Run 159
81. Experimental Temperatures for FR-1 162
82. Comparison of Thermograms for H41NE Calculated Using Two Methods. 166

CHAPTER I

INTRODUCTION

There is a large group of materials which undergo thermal-chemical decomposition, pyrolysis, when exposed to high temperatures. Some of these include wood, cellulose, fabric, plastics, and composite ablative materials. The pyrolysis phenomenon which occurs in these materials has been of interest for many years. Wood and cellulose have been studied in order to understand the rate of flame spread in building and forest fires. This knowledge has been valuable in evaluating fire retardant coatings and fire prevention systems. Composite ablative materials, which are used for thermal protection of re-entry vehicles, rocket motor nozzles and areas exposed to impingement from rocket motor exhausts have been the subject of study during recent years. Knowledge of the thermal response of ablative materials is required to optimize the amount and type of thermal protection required for a given application.

One particular class of ablative materials which has become of . interest is the glass- and asbestos-phenolics. These materlals consist primarily of a continuous or chopped strand fiber such as asbestos, sillca or fiberglass combined with a phenol-formaldehyde resin. This type of abla†ive, known as a charring ablative, is rela†tvely inexpensive and displays remarkable resistance to abla†ton/erosion. Applications for these materials have been found in such areas as blast shlelds
for rocket motor exhausts, liners for missile plenums, and in the chemical industry as corrosion resistant piping and storage tanks. Even though use of this particular class of ablative is widespread, little effort has been expended to study its thermal characteristics. Although the pyrolysis phenomenon has been the subject of intensive research, the exact process by which it occurs is still not well understood. Consequently, efforts to model the thermal response of pyrolyzable materials have had limited success. The problem is compounded for the charring ablatives described above because of the lack of accurate thermal and kinetic property data.

The object of this research was to characterize the thermal behavior of the low cost charring ablators; specifically to (1) measure the virgin and char specific heats, (2) estimate the heat of decomposi†ion, (3) determine the kinetic parameters from experimental data, (4) incorporate this property data into a thermal model, and (5) compare the time dependent temperatures calculated using the model with experimental data obtained from pyrolyzing samples of charring ablatives.

CHAPTER II

REVIEW OF PREVIOUS WORK

Charring ablative materials consist of an inert fiber and/or powder filler and a volatile, catalyst or thermal setting resin. The thermal resins are mixed with the other constituents, molded to the desired geometry and cured in an autoclave for a specified amount of time. In contrast, the catalyst setting resins utilize a catalyst and are usually cured at room temperature for 2 to 3 days. In either case the result is a heterogenous composite solid with resin contents ranging from 25 to 60 percent.

When a heat flux is applied to a one-dimensional slab of pyrolyzable material, the initial temperature rise is a function of the rate of heat conduction into the material and the boundary conditions. The temperature response for this initial heating period is described by the one-dimensionál, nonsteady heat conduction equation. When the surface temperature reaches the pyrolysis temperature at some time, t_{p}, chemical reactions begin to occur and the resin component begins to degrade to form volatlle gases. As time increases, the pyrolysis zone widens and progresses further into the virgin solid. At time \dagger_{c}, the active material at the surface is consumed leaving only a char residue containing the volatile gases. As time goes on, the pyrolysis front progresses through the slab consuming all of the active material.

Finally at time ${ }_{f}$, only the inactive char residue remains. This process is depicted qualltatively by Figure 1.

Once the pyrolysis process begins at time t_{p}, until its completion at time t_{f}, the thermal response of the material is altered by chemical reactions and/or the presence of pyrolysis gases. In order to predict the thermal response of the material, the energy liberated or consumed by these processes must be considered.

Mathematical Models

Several analytical models have been proposed which consider the pyrolysis phenomenon. They range from models which predict the rate of decomposition of wood, in which the char structure remains intact, to those which predict the surface recession of the subliming ablators used in re-entry applications. In general these models are similar. They consist primarily of the unsteady one-dimensional heat conduction equation with additional terms to account for the energy associated with the decomposition of the material. They differ primarlly in thelr geometry, boundary conditions, and method of solution. Several of these models and their solutions will be discussed.

Bamford, Crank, and Malan [1] were the first to propose a mathematical model for the decomposition of a pyrolyzing material. These researchers proposed that the transient response and the rate of mass loss from a one-dimensional slab of wood undergoing pyrolysis could be described by the following equation:

$$
\begin{equation*}
k \frac{\partial^{2} T}{\partial x^{2}}-Q_{p} \frac{\partial w}{\partial t}=C_{p} \rho \frac{\partial T}{\partial t} \tag{1}
\end{equation*}
$$

Figure 1. Schematic of Pyrolysis in a OneDimensional Slab

```
where \(\quad T=\) temperature of the slab \(\left({ }^{\circ} \mathrm{C}\right)\)
    \(x=\) spatial variable (cm)
    \(\dagger=\) time (sec)
    \(w=\) weight of pyrolyzable material (gm)
    \(k=\) thermal conductivity (cal/cm-sec- \({ }^{\circ} \mathrm{C}\) )
    \(C_{p}=\) specific heat \(\left(c a l / \mathrm{gm}^{\circ} \mathrm{C}\right)\)
    \(\rho=\) density ( \(\mathrm{gm} / \mathrm{cm}^{3}\) )
    \(Q_{p}=\) heat of decomposition of the material (cal/gm).
```

The weight loss term, $\partial w / \partial \dagger$ in Equation (1), was determined by assuming a first order decomposition reaction given by the kinetic rate equation:

$$
\begin{equation*}
\frac{\partial w}{\partial t}=-A w e^{-E / R T} \tag{2}
\end{equation*}
$$

where
$A=$ pre-exponential factor $\left(\sec ^{-1}\right)$
$E=$ activation energy (cal/gm-mole)
$R=$ gas constant ($\left.1.986 \mathrm{cal} / \mathrm{gm}-\mathrm{mole}-{ }^{\circ} \mathrm{K}\right)$.
Bamford et al. heated both faces of $23-\mathrm{cm}^{2}$ samples by a gas flame. The center temperature of both 2.0 and $4.0-\mathrm{cm}$ thick samples was monitored until complete pyrolysis of the sample had occurred.

Equation (1) was solved by a finite difference technique, using the appropriate boundary conditions. The assumption of constant thermal properties and a first order decomposition reaction of Equation (2) was made. The results of these calculations and the experimental measurements are shown in Figures 2 and 3. Figure 2 depicts both the calculated and experimental central temperatures as well as the calculated surface temperature of the $2-\mathrm{cm}$ thick samples. Figure 3 depicts only the comparison of computed and experimental central temperatures

Figure 2. Time-Temperature Curve for a 2.0-Cm Sheet of Deal Wood [1]

Figure 3. Time-Temperature Curve for a 4.0-Cm Sheet of Deal Wood [1]
of the $4-\mathrm{cm}$ thick samples. The lack of good agreement between measured and calculated temperatures in Figure 3 is due, in part, to the pyrolysis gas flowing out through the char structure.

Panton and Rittman [2] included the variations in physical and thermal properties and multiple decomposition reactions in the heat conduction equation. These researchers described the thermal conductivity of wood as a function of the percent of active virgin material. That is:

$$
\begin{equation*}
k=k_{0} \rho / \rho_{0} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{k}_{0}= & \text { thermal conductivity of the material at } \rho_{0} \\
& \left(\text { cal } / \mathrm{cm}-\mathrm{sec}-{ }^{\circ} \mathrm{C}\right) \\
\rho_{0}= & \text { density of the virgin material }\left(\mathrm{gm} / \mathrm{cm}^{3}\right) .
\end{aligned}
$$

Equation (1) written for variable thermal conductivity and heat effects from multiple decomposition reaction results in:

$$
\begin{equation*}
\rho C_{p} \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\underset{i}{\sum Q_{i}} \tag{4}
\end{equation*}
$$

where $\quad Q_{i}=$ heat of reaction from the $i^{\text {th }}$ reaction.
Substituting the definition of thermal conductivity from Equation (3) into Equation (4) yields:

$$
\begin{equation*}
\frac{\partial T}{\partial T}=\frac{k_{0}}{\rho_{0} C_{p}} \frac{\partial^{2} T}{\partial x^{2}}+\frac{k_{0}}{\rho_{0} \rho C_{p}} \frac{\partial \rho}{\partial x} \frac{\partial T}{\partial x}+\frac{\Sigma Q_{i}}{\rho C_{p}} . \tag{5}
\end{equation*}
$$

This model is significant since Panton and Rittman were the first researchers to account for the change in thermal conductivity during thermal decomposition. The specific heat was assumed to be constant
through pyrolysis and the effect of the gas flow back through the char structure was neglected. Equation (5) was solved by an integral technique.

The effect of gas flow on the temperature history was neglected not only by Panton and Rittman [2], but in similar models by Bamford et al. [1], Weatherford [3], Thomas and Bowes [4], and Murty Kanury [5]. Murty Kanury and Blackshear [6] suggested that the effect of the gas flow is a function of the thickness of the material and used the ratio of conduction and convection to evaluate its importance. That is:

$$
\begin{equation*}
\frac{\text { energy flux by convection }}{\text { heat transfer by conduction }}=\frac{c_{\rho g}\left(\rho_{g}{ }^{v}\right) \frac{\partial T}{\partial x}}{\frac{\partial}{\partial x}\left(k_{0} \frac{\partial T}{\partial x}\right)} \tag{6}
\end{equation*}
$$

which takes the form of the Peclet Number:

$$
\begin{equation*}
P e=\frac{C_{p g}\left(\rho_{g} v^{\prime}\right) L}{k_{0}} \tag{7}
\end{equation*}
$$

where $L=$ characteristic length (cm)
$v_{g}=$ gas velocity ($\mathrm{cm} / \mathrm{sec}$)
$C_{p g}=$ specific heat of the gas products (cal/gm- ${ }^{\circ} \mathrm{C}$)
$\rho_{\mathrm{g}}=$ gas density ($\mathrm{gm} / \mathrm{cm}^{3}$)
Other terms were previously defined.
Murty Kanury and Blackshear arrived at the criterion of $\mathrm{C}_{\mathrm{pg}} \mathrm{\rho}_{\mathrm{g}}{ }_{\mathrm{g}} \mathrm{L} / \mathrm{k}_{0}$ < 0.1 necessary to neglect the convection effects for times greater than $\rho C_{p} L^{2} / k$. In general, this criterion implies that if $\mathrm{Pe} \ll 1.0$, convection effects will be small and the analyses of $[1,2,3,4,5]$ will be correct.

Munson [7] and Murty Kanury [8] proposed models which accounted for the varlable thermal propertles, gas flow back through the char structure, and took into account the variable heat of gasification at different temperatures. The model proposed by Munson is:

$$
\begin{equation*}
\frac{\partial}{\partial t}(\rho h)=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)-C_{p g} \dot{m}_{g} \frac{\partial T}{\partial x}-\frac{\partial \rho}{\partial t}\left(C_{p g} T+Q_{p}\right) \tag{8}
\end{equation*}
$$

where $\quad \dot{m}_{g}=$ mass flux of the pyrolysis gas flowing through the char structure $\left(\mathrm{gm} / \mathrm{cm}^{2}-\mathrm{sec}\right)$
$h=e n t h a l p y ~ o f ~ s o l i d ~ m a t e r i a l ~(c a l / g m) . ~ . ~$
The mass flux of the volatiles is given by the continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=\frac{\partial \dot{m}_{g}}{\partial x} . \tag{9}
\end{equation*}
$$

Kung [9] proposed a model which not only accounted for variable heat of gasification, but separated the material into active and residual components. These additions to Equation (8) result in Equation (10).

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho_{a} h_{a}+\rho_{r} h_{r}\right)=\frac{\partial}{\partial x}\left(k \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial x}\left(\dot{m}_{g} h_{g}\right)+Q_{p} \frac{\partial \rho}{\partial t} \tag{10}
\end{equation*}
$$

where $\quad \rho_{a}=$ density of the active material ($\mathrm{gm} / \mathrm{cm}^{3}$)
$h_{a}=$ enthalpy of the active material (cal/gm)
$\rho_{r}=$ density of the residual material ($\mathrm{gm} / \mathrm{cm}^{3}$)
$h_{r}=$ enthalpy of the residual material (cal/gm)
$h_{g}=$ enthalpy of the gaseous material (cal/gm)
$Q_{p}=$ the heat of reaction associated with decomposition at an ambient reference temperature $\mathrm{T}_{\infty}(\mathrm{cal} / \mathrm{gm})$.

The enthalpy of the various components is given by:

$$
\begin{equation*}
h_{i}=\int_{T_{\infty}}^{T} C_{p i} d T \tag{11}
\end{equation*}
$$

where i represents the component of interest, i.e. gas phase (g), active material (a), and residual material (r).

Kung proposed that the rate of change of the density is given by a first order kinetic rate equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-A_{\rho}(T) e^{-E / R T} \tag{12}
\end{equation*}
$$

in which the active material density, $\rho_{a}(T)$ is given by:

$$
\begin{equation*}
\rho_{a}(T)=\frac{\rho(\dagger)-\rho_{f}}{1-\rho_{f} / \rho_{0}} \tag{13}
\end{equation*}
$$

where $\quad \rho_{f}=$ final density of the char material $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$.
The total instantaneous density of the partially pyrolyzed material is related to the active material density by

$$
\begin{equation*}
\rho(T)=\rho_{a}(T)+\rho_{r}(T) . \tag{14}
\end{equation*}
$$

Substituting Equation (13) into Equation (12) yields the relationship for the decomposition equation used by Kung:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-A \frac{\rho(T)-\rho_{f}}{1-\rho_{f} / \rho_{0}} e^{-E / R T} \tag{15}
\end{equation*}
$$

The thermal praperties were calculated by a IInear interpolation between the properties of ρ, k, and C_{p} of virgin and wood char. That is:

$$
\begin{equation*}
\rho C_{p}=\rho_{a} C_{p a}+\rho_{r} C_{p r} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho k=\rho_{a} k_{a}+\rho_{r} k_{r} \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{k}_{\mathrm{a}}= & \text { thermal conductivity of the active material } \\
& \left(\text { cal } / \mathrm{cm}-\mathrm{sec}-{ }^{\circ} \mathrm{C}\right) \\
\mathrm{k}_{\mathrm{r}}= & \text { thermal conductivity of the residual material } \\
& \left(\text { cal } / \mathrm{cm}-\mathrm{sec}-{ }^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

Equations (9), (10), and (15) form a set of nonlinear partial differential equations. The following boundary conditions apply:

$$
\begin{align*}
& T=T_{\infty}, \rho=\rho_{0}, \dot{m}_{g}=0, \text { at } t=0,0 \leq x \leq \ell \tag{18}\\
& k \frac{\partial T}{\partial x}=\alpha_{s} q_{0}-\varepsilon_{s} \sigma T_{s}^{4}, a t+>0, x=0 \tag{19}\\
& \frac{\partial T}{\partial x}=0, \dot{m}_{g}=0, a t+\geq 0, x=\ell \tag{20}
\end{align*}
$$

where $\quad T_{\infty}=$ ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$

$$
T_{s}=\text { surface temperature }\left({ }^{\circ} \mathrm{K}\right)
$$

$$
q_{0}=\text { incident energy }\left(\mathrm{cal}^{2} / \mathrm{cm}^{2}-\mathrm{sec}\right)
$$

$$
\ell=\text { half thickness of the material (cm) }
$$

$$
\alpha_{s}=\text { absorptivity of the material }
$$

$$
\varepsilon_{s}=\text { emissivity of the material }
$$

$$
\sigma=\text { Stefan-Boltzmann constant }\left(1.369 \times 10^{-12} \mathrm{cal} / \mathrm{sec}-\mathrm{cm}^{2}-{ }^{\circ} \mathrm{K}^{4}\right) .
$$

Kung solved the set of equations using (18), (19), and (20) as boundary conditions with the implicit method of Crank-Nicolson. The most interesting of Kung's computations were those which illustrated the
effect of the char material thermal conductivity and heat of decomposition on the rate of mass loss in a pyrolyzing sample. The results of these computations are shown in Figures 4 and 5. Kung's calculations were not compared to experimental data.

Kratsch, Hearne, and McChesney [10] modeled the thermal decomposition of organic charring ablators similar to the ones of interest in this work. This model was similar to that of Kung [9]. Kratsch et al. however determined the gas enthalpy by summing the enthalpies of each of the individual species evolved during decomposition. This results in the following equation for the gas enthalpy:

$$
\begin{equation*}
h_{g}=\sum_{j} K_{j}\left(\int_{0}^{T} C_{p j} d T+\Delta h_{f j}\right) \tag{21}
\end{equation*}
$$

where $j=$ species of interest

$$
K=\text { mass fraction of } j^{\text {th }} \text { gas species }
$$

$$
\Delta h_{f}=\text { heat of formation of the gas species (cal/gm). }
$$

Arai [11] developed a one-dimensional model to predict the ablation values of Teflon exposed to intense radiative and conductive environments. This model is unique because it includes the optical transmittance of the material.

Perhaps the most unique model encountered was proposed by Havens [12]. Havens based his analysis on a model developed for predicting the transient temperature profiles in frozen soils. In this method the region of interest is divided into a set of cells of finite dimensions and an energy balance is written for each cell.

Figure 4. Effect of Char Thermal Conductivity on Rate of Weight Loss [9]

Figure 5. Effect of Heat of Decomposition on Rate of Weight Loss [9]

Kinetics of Thermal Decomposition

The rate of decomposition of a pyrolyzable material is modeled by the kinetic rate equation. If it is assumed that the material dimensions are constant, the rate equation determines the density of the remaining char. Both the rate of decomposition and the char density affect the thermal performance of the material. In order to predict the thermal response, accurate values of the kinetic parameters over the entire range of decomposition are required for use in the thermal model. These parameters include the pre-exponential factor and activation energy in Equations (2) and (15), and the order of reaction which will be defined later.

Several methods have been devised to extract the kinetic parameters from experimental data. Two standard techniques of obtaining this data are the measurement of the weight loss of a sample heated in an isothermal environment and the measurement of the weight loss of a sample exposed to a preprogrammed increasing temperature environment.

Isothermal Method

Several researchers have determined the kinetic parameters from data taken by the isothermal method. This is accomplished by placing a material sample, at ambient temperature, in an isothermal environment and measuring the sample weight as a function of time.

If the kinetics of thermal decomposition are described by a first order reaction similar to Equation (2), that is:

$$
\begin{equation*}
\frac{d w}{d t}=-B w=-A w e^{-E / R T} \tag{22}
\end{equation*}
$$

Equation (22) can be integrated to yield:

$$
\begin{equation*}
\ln w=B++\ln w_{0} \tag{23}
\end{equation*}
$$

where $\quad w_{0}=$ initial weight of sample (gm).
If the reaction is first order, then a plot of In w against time at each isothermal condition will yield a straight line with slope B. Repeating this procedure for several different isothermal conditions ylelds a plot with a serles of straight lines, each with a different slope. The temperature dependence may then be obtained by plotting In B vs $1 / T$, at the same weight loss, for each furnace temperature. This results in a straight line with slope $-E / R$ and intercept A. This method was used by Stamm [13] to determine the kinetic parameters for spruce, fir and pine samples. The samples were heated in ovens or beneath the surface of molten metal. Temperature ranges were varied from 93.5 to $300^{\circ} \mathrm{C}$ and heating times ranged from 1 minute to 2.4 years. A summary of these data is presented in Table 1.

McNaughton [14] used a technique similar to Stamm [13] to obtain weight loss data for hardwood maple samples. McNaughton heated the specimens for periods ranging from 16 to 1,050 days at temperatures of 107 to $150^{\circ} \mathrm{C}$. He obtained values of the pre-exponential factor and activation energy of $1.2 \times 10^{10} \mathrm{sec}^{-1}$ and $33.1 \mathrm{kcal} / \mathrm{gm}-\mathrm{mole}-{ }^{\circ} \mathrm{C}$, respectively.

Akita [15] also investigated the decomposition of wood using an Isothermal method. Temperatures ranged from 200 to $400^{\circ} \mathrm{C}$. Akita heated samples in a Pyrex vessel immersed in a molten metal bath at pressures ranging from 1 atmosphere to 2 mm Hg . The sample weights were continuously monitored during decomposition, while remaining in

TABLE 1
ACTIVATION ENERGIES FOR WEIGHT LOSS OF WOOD SAMPLES
BY THERMAL DEGRADATION*

Material	Heating Condition	Time Range	Temperature Range (${ }^{\circ} \mathrm{C}$)	Pre-Exponential Factor (sec^{-1})	Activation Energy (kcal/gm-mole)
Southern and white pine, Sitka spruce.	Oven	$\begin{aligned} & 1 \mathrm{hr}- \\ & 2.4 \mathrm{yr} \end{aligned}$	94-250	5.1×10^{11}	29.5
sticks, and Sitka spruce veneer ${ }^{+}$	Under molten metal	1 min- 6 days	167-300	2.3×10^{11}	29.8
Douglas fir sawdus \dagger	Oven	$16 \mathrm{hr}-$ 64 days	110-220	1.9×10^{9}	25.0
α-cellulose from Douglas fir	Oven	$\begin{aligned} & 16 \mathrm{hr}- \\ & 64 \text { days } \end{aligned}$	110-220	4.8×10^{9}	26.0
Hemicellulose from Douglas fir	Oven	$\begin{aligned} & 2 \mathrm{hr}- \\ & 64 \text { days } \end{aligned}$	110-220	3.6×10^{10}	26.7
Lignin from Douglas fir	Oven	$16 \mathrm{hr}-$ 64 days	110-220	1.4×10^{10}	23.0

${ }^{\dagger}$ Average value of activation energy and pre-exponential factor are listed for these samples.
*Data from Ref. [13]
the bath. This method of weighing eliminated the error induced, in Stamm's work, while removing the samples from the oven for weighing. Akita postulated that the majority of wood is composed of cellulose, lignin and hemicellulose, and that the rate constants differed for each component. He further postulated that the rate of isothermal decomposition could be described by considering only these three constituents in the following equation.

$$
\begin{equation*}
\frac{d N}{d t}=\sum_{j} B_{j}\left(N_{\infty j}-N_{j}\right) \tag{24}
\end{equation*}
$$

where $N=$ total number of moles of gas evolved at time \dagger
$N_{j}=$ number of moles of gas evolved at time t, by the $j^{\text {th }}$ component
$N_{\infty j}=$ number of moles of gas evolved at $t=\infty$, by the $j^{t h}$ component
$B_{j}=$ rate constant for the $j^{\text {th }}$ component $\left(\mathrm{sec}^{-1}\right)$.
Akita found that an apparent change of mechanism for cellulose pyrolysis occurred at approximately $340^{\circ} \mathrm{C}$, which resulted in two acti-. vation energies. These data are shown in Table ll.

Dynamic Heating Method

Several researchers have studied the thermal decomposition of various materials by the method known as thermogravimetric analysis (TGA). This method consists of measuring the weight of a very small sample which is heated at a preprogrammed linearly increasing temperature.

TABLE 11

ACTIVATION ENERGY OF DECOMPOSITION OF WOOD AND ITS MAJOR COMPONENTS*

Material	Temperature Range $\left({ }^{\circ} \mathrm{C}\right)$	Activation Energy $(\mathrm{kcal} / \mathrm{gm}-\mathrm{mole})$
Lignin	$270-400$	26.0
Hemicellulose	$270-400$	17.0
Cellulose	$270-340$	36.0
Cellulose	$340-370$	24.0
Wood (Japanese Cypress)	$270-340$	26.0 (avg)
	$340-370$	23.0 (avg)

*Data from Ref. [15]

This method is particularly attractive for the following reasons:
(1) it is much faster than the isothermal technique, (2) effect of heating rate on decomposition may be studied easily, (3) weight loss and rate of weight loss may be obtained simultaneously, (4) with accurate microbalances, very small samples may be studied, and (5) the transient response effect of placing a sample at ambient temperature in an isothermal furnace is eliminated. Despite these advantages, several potential problems may arise: (1) decomposition rates may be significantly affected by sample geometry due to thermal gradients and gas diffusion through the char, (2) the furnace temperature rate may lead
or lag the programmed rate, and (3) differences in the indicated furnace temperature may differ from the true sample temperature.

The kinetic parameters may be extracted from TGA data based on a single weight loss curve taken at one heating rate, or on multiple curves obtained from several heating rates. The limitations and advantages of each are discussed in detail by Flynn and Dickens [16].

Single Heating Rate Techniques. The difference method of Freeman and Carroll [17] was one of the first developed for the dynamic heating method and has been widely used. The kinetic parameters obtained by this method are based on a single weight loss and differential weight loss curve. The kinetic model is described by:

$$
\begin{equation*}
-\frac{d w}{d t}=B w^{n}=A w^{n} e^{-E / R T} \tag{25}
\end{equation*}
$$

where $n=$ order of reaction.
Solving for B yields:

$$
\begin{equation*}
A e^{-E / R T}=-\frac{d w / d t}{w^{n}} \tag{26}
\end{equation*}
$$

Taking the \log of both sides and differentiating with respect to T gives:

$$
\begin{equation*}
\frac{E}{R T^{2}}=\frac{d \log (-d w / d t)}{d T}-n \frac{d \log w}{d T} \tag{27}
\end{equation*}
$$

Integrating Equation (27) over a finite temperature range and dividing by $\Delta(\log w)$ yields

$$
\begin{equation*}
\frac{(-E / R) \Delta\left(T^{-1}\right)}{\Delta(\log w)}=\frac{\Delta \log (-d w / d t)}{\Delta(\log w)}-n \tag{28}
\end{equation*}
$$

If $\Delta\left(T^{-1}\right) / \Delta(\log w)$ is plotted vs $\Delta[\log (-d w / d t)] / \Delta(\log w)$ a straight I ine of slope $-E / 2.303 R$ and intercept n is obtained.

Freeman and Carroll used this technique to determine the kinetic parameters for calcium oxalate monohydrate. Samples weighing 423.0 mg were heated in an air atmosphere to $1000^{\circ} \mathrm{C}$ at a $10^{\circ} \mathrm{C} / \mathrm{min}$ heating rate. A plot of $\Delta\left(T^{-1}\right) / \Delta(\log w)$ vs $\Delta[\log (-d w / d t)] / \Delta(\log w)$ is shown in Figure 6.

Freeman and Carroll found that three separate sets of kinetic data were required to describe the thermal degradation at a single heating rate. The order of reaction was found to be $1.0,0.7$, and 0.4 for each of the three regions of weight loss. The activation energy was 22, 74, and $39 \mathrm{kcal} / \mathrm{mole}$ for each region.

Anderson and Freeman [18] later modified the Freeman and Carroll method. The modified procedure utilizes constant intervals of $1 / T$ rather than increasingly larger intervals of $1 / T$. The result of this modification is presented as Equation (29).

$$
\begin{equation*}
\Delta \log (d w / d t)=n \Delta \log w-\frac{E}{2 \cdot 303 R} \Delta(1 / T) \tag{29}
\end{equation*}
$$

$\Delta \log (d w / d t)$ may be plotted against $\Delta \log w$ if $\Delta(1 / T)$ is kept constant. The order of reaction, n, is obtained from the slope and the activation energy is obtained from the intercept at $\Delta \log w=0$. This method was applied to the study of polystyrene and polyethylene. Experiments were carried out in a spring type vacuum thermobalance at 1 mm of Hg pressure. Samples of 100 mg were heated from ambient temperature to $500^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C} / \mathrm{min}$. The polystyrene followed a zero-order reaction for the first 15 percent of the degradation. The initial

Figure 6. Plot Used to Determine Activation Energy and Order of Reaction for Three Separate Weight Loss Regions for Calcium Oxalate Monohydrate [17]
three percent had an activation energy of $48 \mathrm{kcal} / \mathrm{mole}$ and $61 \mathrm{kcal} / \mathrm{mole}$ from 3 to 15 percent. The order of reaction and activation energy for weight losses between 35 and 95 percent were approximately 1 and 67 $\mathrm{kcal} / \mathrm{mole}$. The weight loss between 15 and 35 percent was considered to be transition from zero to first order.

Mickelson and Einhorn [19] developed the ratio method to extract the kinetic parameters from a single thermogram taken at one heating rate. This method is attractive because it does not require rate of weight loss data. These researchers used the following form of the kinetic rate equation:

$$
\begin{equation*}
\frac{d \gamma}{d t}=A r^{n} e^{-E / R T} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma=\frac{w-w_{f}}{w_{0}-w_{f}} \tag{31}
\end{equation*}
$$

where $\quad w_{f}=$ final weight (mg).
If Equation (30) is written for two different temperatures, denoted by i and j, taking the ratio of the two results in

$$
\begin{equation*}
\frac{(d \gamma / d t)_{i}}{(d \gamma / d t)_{j}}=\exp \left\{-E / R\left[\left(T_{j}-T_{i}\right) / T_{i} T_{j}\right]\right\}\left(\gamma_{i} / \gamma_{j}\right)^{n} . \tag{32}
\end{equation*}
$$

Taking the logarithm of both sides yields

$$
\begin{equation*}
\log \left(\frac{(d \gamma / d t)_{i}}{(d \gamma / d t)_{j}}\right)=\left\{E / 2 \cdot 303 R\left[\left(T_{j}-T_{i}\right) / T_{i} T_{j}\right]\right\}-n \log \left(\gamma_{i} / \gamma_{j}\right)^{n} . \tag{33}
\end{equation*}
$$

Providing $\gamma_{i} / \gamma_{j}=$ constant, a plot of $\log \left[(d \gamma / d t)_{i} /(d \gamma / d t)_{j}\right]$ vs $\left(T_{j}-T_{i}\right) / T_{i} T_{j}$ will result in a straight line in which the slope is the activation energy and the intercept is the order of reaction.

These researchers decomposed 6.8 mg samples of shredded urethane polymer in a Mettler thermobalance. Samples were run in an argon atmosphere at heating rates of $4^{\circ} \mathrm{C} / \mathrm{min}$ and $10^{\circ} \mathrm{C} / \mathrm{min}$. The results are summarized in Table lll.

TABLE $\|\|$
SUMMARY OF KINETIC PARAMETERS DETERMINED by THE RATIO METHOD*

Heating Rate $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right)$	Activation Energy $(\mathrm{cal} / \mathrm{gm}-\mathrm{mole})$	Reaction Order	Pre-Exponential Factor $\left(\mathrm{min}^{-1}\right)$
4	33,200	0.46	1.32×10^{12}
10	33,200	0.55	1.51×10^{12}
10	30,500	0.61	1.55×10^{11}
10^{\dagger}	33,200	0.49	1.91×10^{12}
${ }^{+}$Sample weight was 4.0 mg			
*Data from Ref. [19]			

The effect of sample geometry on the rate of decomposition was studled by Mickelson and Einhorn as well. Samples welghing 6.8 mg were decomposed in an isothermal argon environment at $243^{\circ} \mathrm{C}$. Two samples
were cast with different surface areas and one sample was shredded. The rate of decomposition of the thick cast sample was significantly reduced, thus illustrating the importance of sample geometry. The results of these tests are shown in Figure 7.

Baer, Hedges, Seader, Jayakar, and Wojcik [20] studied the pyrolysis of three reinforced polymeric materials. The materlals were decomposed at heating rates from $10^{\circ} \mathrm{C} / \mathrm{min}$ to $4200^{\circ} \mathrm{C} / \mathrm{min}$, in a nitrogen atmosphere. A Mettler thermobalance was used for the $10^{\circ} \mathrm{C} / \mathrm{mln}$ heating rate and the data were reduced using the Mickelson and Einhorn method. The Higher Heating Rate (HHR) tests were carried out by applying thin films of the polymers to preoxidized stainless steel plates and passing a current through them. The HHR data was reduced by a quasilineariza†ion technique developed by Burningham and Seader [21]. The mos \dagger startling result of this work is the lack of agreement between the predicted results using the kinetic parameters calculated from the $10^{\circ} \mathrm{C} / \mathrm{min}$ heating rate and the experimental data taken using the HHR technique. The lack of agreement leads to the conclusion that kinetic parameters calculated from data taken at a single heating rate will not accurately predict kinetic behavior of a material at higher heating rates. This is illustrated by the data presented in Figure 8. A summary of the results of this work is shown in Table IV.

Multiple Heating Rate Techniques. The multiple heating rate methods have the capability of utilizing thermogravimetric data taken over a wide range of heating rates. Friedman [22] developed a technique based on the multiple heating rate technique where the Arrhenius equation is combined with an arbitrary function of weight. This allows

Figure 7. Effect of Sample Geometry on Rate of Decomposition in an Inert Isothermal Environment [19]

Figure 8. Comparison of Data for High Heating Rate Tests with Predictions from TGA Model [20]

TABLE IV
SUMMARY OF KINETIC PARAMETERS*

Material	Type of Test ${ }^{+}$	Fraction Retained at		Reaction Order	$\begin{gathered} \text { Activation } \\ \text { Energy } \\ (\mathrm{kcal} / \mathrm{gm}-\mathrm{mole}) \end{gathered}$	Pre-Exponentia Factor $\left(\mathrm{min}^{-1}\right)$
		${ }^{3} 50^{\circ} \mathrm{C}$	$T_{\text {max }}{ }^{\ddagger}$			
EPDM/Neoprene	TGA	0.95	0.32	0.58	58.0	0.47×10^{17}
Acrylonitrile Butadiene Resin	TGA	0.96	0.338	0.74	25.7	0.13×10^{8}
BKR 2620 Phenolic and AcryIonitrile Butadiene Resin	TGA	0.92	0.484	2.12	39.2	0.37×10^{12}
EPDM/Neoprene	HHR	0.96	0.26	1.56	36.0	0.18×10^{11}
Acrylonitrile Butadiene Resin	HHR	0.93	0.39	1.82	38.5	0.76×10^{12}
BKR 2620 Phenolic and AcryIonitrile Butadiene Resin	HHR	0.89	0.48	2.48	59.0	0.36×10^{18}

[^0]*Data from Ref. [20]
more flexibility, since no prior knowledge of the function is required. This method does, however, require measurement of the weight loss and rate of weight loss as a function of temperature at several different heating rates.

The general form of the rate equation proposed by Friedman is

$$
\begin{equation*}
-\frac{1}{w_{0}} \frac{d w}{d t}=A f\left(w / w_{0}\right) e^{-E / R T} \tag{34}
\end{equation*}
$$

where

$$
f\left(w / w_{0}\right)=\text { undefined function of weight. }
$$

A dimensionless form of Equation (34) can be obtained by multiplying both sides by unit time. Taking the natural logarithm of both sides results in

$$
\begin{equation*}
\ln \left(-\frac{1}{w_{0}} \frac{d w}{d t}\right)=\ln \left[A f\left(w / w_{0}\right)\right]-E / R T \tag{35}
\end{equation*}
$$

A linear equation may be fit to $\ln \left[\left(-1 / w_{0}\right)(d w / d t)\right]$ as a function of $1 / T$ at constant parametric values of w / w_{0}. These equations will have slopes of $-E / R$. Each intercept is the value of $\ln \left[A f\left(w / w_{0}\right)\right]$ at the parametric value of w / w_{0}. Then, by defining

$$
\begin{equation*}
f\left(w / w_{0}\right)=\left[\left(w-w_{f}\right) / w_{0}\right]^{n} \tag{36}
\end{equation*}
$$

and multiplying Equation (36) by A and taking the natural logarithm results in

$$
\begin{equation*}
\ln \left[A f\left(w / w_{0}\right)\right]=\ln A+(n) \ln \left[\left(w-w_{f}\right) / w_{0}\right] . \tag{37}
\end{equation*}
$$

The final ratio, w_{f} / w_{0}, is taken from the original thermograms. Since
$\operatorname{In}\left[A f\left(w / w_{0}\right)\right]$ is known for various w / w_{0} ratios, Equation (37) can be used to obtain values of A and n.

Friedman used this technique to calculate the kinetic parameters for CTL91-LD fiberglass-phenolic. Flaked samples weighing 200 mg were heated at rates of $50,100,180$, and $360^{\circ} \mathrm{C} / \mathrm{hr}$ in a stream of dry nitrogen. The thermograms obtained from these measurements are shown in Figure 9. Rate of weight loss data was calculated from Figure 9 using a derivimeter. One activation energy was calculated for each of the 12 values of weight loss ranging from 0.675 to 0.95 (on a glassfree basis). These data are shown in Figure 10. The average activation energy was calculated from these data. By eliminating the early weight loss ($\approx 4 \%$) and dropping the data points above $w / w_{0}=0.875$ and using $w_{f} / w_{0}=0.61$, the linear curve shown in Figure 11 was fit to the data. Thus, the effective range covered by the curvefit was approximately $0.65 \leq w / w_{0} \leq 0.85$, which accounted for about 50 percent of the total weight loss. This resulted in a rather poor fit of the data at both ends of the weight loss curve. Friedman calculated values of $57.7 \mathrm{kcal} / \mathrm{gm}-\mathrm{mole}, 5.98 \times 10^{18} \mathrm{hr}^{-1}$, and 5.0 for the average activation energy, pre-exponential factor, and order of reaction, respectively.

Friedman's technique was later modified by Henderson, Wiebelt, Tant, and Moore [23], in order to cover a larger percentage of the weight loss curve. Application of this method required calculating an average activation energy for the entire thermal decomposition. The decomposition reaction required two models, one for the initial decomposition and another for the remainder. For these two regions, separate pre-exponential factors and apparent orders of reaction were

Figure 9. Thermogram for CTL91-LD FiberglassPhenolic [2.2]

Figure 11. Plot to Determine the Pre-Exponential Factor and Order of Reaction [22]
calculated by the technique developed by Friedman. This method will be discussed in detail later.

Flynn and Wall [24] developed a convenient method to determine the activation energy from weight loss curves measured at several heating rates. The following relationship is used to calculate the activation energy.

$$
\begin{equation*}
E \approx-(R / C) d \log \beta / d(1 / T) \tag{38}
\end{equation*}
$$

where $\quad \beta=$ heating rate $\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right)$

$$
C=C(E / R T) .
$$

Plotting 1/T versus logß at several weight loss ratios results in a series of straight lines with slope $\Delta \log \beta / \Delta(1 / T)$. Using the slope and the appropriate value of C , the activation energy can be calculated by Equation (38). Since C is a function of $E / R T$, the calculation of E from Equation (38) is an iterative process. Flynn and Wall constructed a table of values for C over the range from $7 \leq E / R T \leq 60$. The varlation of C over this range is approximately ± 3 percent. This method is extremely attractive, since it involves only reading the temperature at a constant weight loss from a series of thermograms at different heating rates. The feasibility of this method was demonstrated using a hypothetical set of data.

Specific Heat Measurements

The rate of energy storage in a pyrolyzable material is a function of both the density and specific heat of the virgin and char components. As is the case with the kinetic parameters, accurate values of these properties are necessary to characterize the thermal response. The
time dependent density of the material is given by the kinetic rate equation. The specific heat may be determined by experimental techniques.

Despite the importance of the specific heat, there is a dearth of experimental data in the literature for all pyrolyzable materials. A limited amount of data are available for both wood and phenolic ablative materials below $400^{\circ} \mathrm{C}$. However, no data were found for residual char or partially pyrolyzed glass- or asbestos-phenolic ablatives. The problem is compounded by the fact that the magnitude of specific heat of both the virgin and char components is sensitive to the type and amount of the filler or fiber. Thus the published data are of limited usefulness for the materials considered in this work.

The specific heat of the phenolic ablatives is a function of the temperature and the decomposition history. Measurement of the temperature dependent specific heat up to incipient pyrolysis and after its completion is a rather straightforward procedure. However, determination of these properties during pyrolysis is somewhat more difficult. This is primarily because the mass of the sample is changing and the energy liberated or consumed, as a result of the decomposition, is difficult to separate from the sensible energy added to the sample.

Several methods have been used to measure specific heats. The two most widely used are drop calorimetry and differential scanning calorimetry. The drop calorimetry method is extremely accurate; however, it is slow and tedious. In contrast, differential scanning calorimetry is quick and reasonably straightforward, but lacks the accuracy of the drop method. Both methods are applicable to the materials of interest in this work.

Drop Calorimetry Method

The drop ice calorimeter consists primarily of a furnace and an ice calorimeter. The method of operation is straightforward. Samples are heated in the isothermal furnace and then dropped into the ice calorimeter. The calorimeter is a sealed vessel which contains a cup surrounded by an ice mantel and an annulus containing an ice water bath. The enthalpy of the specimen is sensed as a change in volume of the water-ice system as the ice melts. The change in the volume of the water-ice system is then related to the change in height of a column of mercury. The temperature dependent enthalpy can be determined by a series of drops at different temperatures. The specific heat can be determined from the slope of the enthalpy curve, that is

$$
\begin{equation*}
C_{p}=\frac{d}{d T}\left(h_{T}-h_{273.15}\right) \tag{39}
\end{equation*}
$$

The overall error in this method is less than ± 1.0 percent.
The specific heat of precharred CCA3/SC1008 carbon phenolic was measured to $5000^{\circ} \mathrm{F}$ by Pears [25] using an ice bath calorimeter. A plot of the data is shown in Figure 12. No details of the measurements were given.

Several values of specific heat of phenolic ablatives below $400^{\circ} \mathrm{C}$ were found in Reference 26. Most of these were measured by Southern Research Institute, a commercial testing laboratory.

Dunlap [27] measured the specific heat of wet and dry woods by ice bath calorimetry. He reported specific heats for 20 different species of wood in the temperature range 0 to $106^{\circ} \mathrm{C}$ with densities ranging from

Figure 12. Specific Heat of a $5000^{\circ} \mathrm{F}$ Precharred Carbon Phenolic [25]
0.23 to $1.10 \mathrm{gm} / \mathrm{cm}^{3}$. The data were fitted to the 1 inear equation

$$
\begin{equation*}
c_{p}=0.266+0.00116 \mathrm{~T} . \tag{40}
\end{equation*}
$$

Differential Scanning Calorimetry Method

The technique of differential scanning calorimetry was developed in the early 1960's and has been used for the measurement of specific heats and enthalpy of fusion for temperatures under $800^{\circ} \mathrm{C}$. The DSC method maintains a sample and reference pan at very nearly the same temperature as it scans a predetermined temperature range. The DSC simply measures the differential energy required to maintain the reference pan and the sample at the same temperature. From this data the specific heat before and after any chemical reactions occur can be extracted, i.e. virgin and char material specific heat. The following equation may be used to calculate the specific heat:

$$
\begin{equation*}
C_{p}=\frac{d q / d t}{m d T / d t} \tag{41}
\end{equation*}
$$

where $\quad d q / d t=$ measured differential heat input (cal/sec)

$$
\mathrm{dT} / \mathrm{d} \dagger=\text { scan speed }\left({ }^{\circ} \mathrm{C} / \mathrm{sec}\right)
$$

$\mathrm{m}=$ mass of sample (gm).
During the decomposition process the combined specific heat and heat of decomposition results. Details of the operation and calibration of a differential scanning calorimeter will be discussed in a later chapter.

Brennan, Miller, and Whitwell [28] developed a technique to separate the sensible energy from the heat effects due to a decomposition reaction. This was accomplished through a DSC scan of both the virgin material, through pyrolysis, and the residual char. These scans are
depicted qualitatively by Figure 13. Lines two and three represent the virgin and char material scans, respectively. Line one represents the empty sample and reference pan baseline scan. The extrapolated line, AE, represents the curve for the reactant as if no thermal decomposition were occurring. The area contained by AMB represents the estimated heat of decomposition based on the assumed sensible energy, $A B$. The sensible energy added to the combination of the active and char components is given by:

$$
\begin{equation*}
\frac{d q}{d t}=f m_{a} C_{p a} \frac{d T}{d t}+(1-f) m_{c} C_{p c} \frac{d T}{d t} \tag{42}
\end{equation*}
$$

where $\quad f=$ fraction reacted $\frac{A_{1}}{A_{1}+A_{2}}$
$m_{a}=$ mass of active material (mg)
$m_{c}=$ mass of char material (mg)
$A_{1}=$ area contained by AMO
$A_{2}=$ area contained by BMO.
The procedure outlined by Brennan is as follows:

1. assume line $A B$ represents the sensible energy component
2. calculate f at any point
3. calculate dq/dt from Equation (42)
4. repeat steps 2 and 3 at increasing values of temperature until decomposition is complete
5. iterate on steps 2,3 , and 4 until convergence is achieved and a new line $A B$ is established.

Once the new baseline, AB, is established, the area contalned by AMB should represent the heat of decomposition of the material.

Figure 13. Qualitative Diagram of a Programmed Temperature Scan for Empty Pan, Virgin and Char Material [28]

The feasibility of this technique was demonstrated by determining the heat of decomposition and specific heat of cotton and poly(methyl methacrylate). No details of the measurements or resulting values from the calculations were given.

This method is unique in that no values for the mass of the virgin material components are required during decomposition. The method does, however, require the assumption that the fraction of mass reacted at a given temperature is equal to the fraction of energy liberated or consumed at the same temperature. Additionally, the assumption that $m_{a} C_{p a} d T / d t$ may be extrapolated along line $A E$ is required.

Havens [12] used the DSC technique to determine the specific heat and estimate the heat of decomposition of wood. Havens measured the specific heat of samples of white pine and oak from 100 to $420^{\circ} \mathrm{C}$. During decomposition the heat of pyrolysis was estimated by extrapolating the specific heat curve through the decomposition region. A plot of the specific heat of oak is shown in Figure 14. Havens' estimates resulted in values of 47.5 and $26.6 \mathrm{cal} / \mathrm{gm}$ for the heat of pyrolysis for white pine and oak, respectively.

Havens was the first researcher to attempt to determine the specific heat and heat of decomposition of wood by the DSC technique. However, the calculated apparent specific heat during pyrolysis was based on the original weight of the sample. This resulted in values of apparent specific heat appearing much lower than the true value. Havens' TGA work shows that $w_{f} / w_{0}=0.2$. If this ratio of initial to final weight were used in Equation (41) after pyrolysis is complete, it would yield a value for the final char speclfic heat of $* 0.5 \mathrm{cal} / \mathrm{gm}-{ }^{\circ} \mathrm{C}$

Figure 14. Specific Heat of Oak Wood as a Function of Temperature in a Nitrogen Atmosphere [12]
rather than the $0.1 \mathrm{cal} / \mathrm{gm}^{\circ}{ }^{\circ} \mathrm{C}$ reported. The area calculated as the heat of decomposition is in error as well.

Determination of Heat of Decomposition

The magnitude of the heat of decomposition or heat of pyrolysis of pyrolyzable materials has eluded researchers for years. Both endothermic and exothermic values have been reported. Brown [29] attrlbutes the lack of agreement to the different experimental methods used to measure these values. Laboratory measurements of the heats of decomposition, using differential scanning calorimetry and differential thermal analysis (DTA), have been largely endothermic, whereas values calculated from in situ measurements have been exothermic. Murty Kanury [6] suggested that the confusion is due largely to secondary exothermic reactions of the pyrolysis gases, catalyzed by the hot outer char layer.

In Situ Measurements

Bamford et al. [1] calculated the heat of decomposition using the sudden rise which occurs in the center of the sample during decomposition. The assumption was made that the sudden rise in temperature was due to the exothermic reaction and that no heat was conducted away. With these assumptions an energy balance can be written as follows:

$$
\begin{equation*}
\rho_{V} C_{P} \Delta T=Q_{P}\left(\rho_{V}-\rho_{C}\right) \tag{43}
\end{equation*}
$$

where $\quad \Delta T=$ sudden temperature rise $\left({ }^{\circ} \mathrm{C}\right)$.
This sudden central temperature rise is apparent in Figure 1. Using a value of $98^{\circ} \mathrm{C}$ for ΔT, Bamford et al. calculated a heat of decomposition for deal wood of $86 \mathrm{cal} / \mathrm{gm}$ exothermic.

Akita [14] used a similar technique to calculate the heat of decomposition for sawdust and cypress. The central transient temperature of spheres was used as input to an approximate solution of the heat conduction equation for a sphere with heat generation.

The heat of pyrolysis was assumed to be liberated at a rate proportional to the rate of change of density, that is:

$$
\begin{equation*}
Q_{p} \frac{d \rho}{d t}=Q_{p} A\left(\rho-\rho_{f}\right) e^{-E / R T} . \tag{44}
\end{equation*}
$$

The value of Q_{p}, the only unknown, was adjusted until there was agreement between the calculated and measured central temperature. Akita calculated values of 32 and $30 \mathrm{cal} / \mathrm{gm}$ exothermic for sawdust and cypress, respectively. Constant thermal properties were assumed.

Murty Kanury [8] proposed that the heat of decomposition could be computed by Equation (9) or (10) using variable thermal and physical properties. Kung [29] used this method to calculate the heat of pyrolysis of the Bamford et al. [1] data. The value which yielded the best fit was $180 \mathrm{cal} / \mathrm{gm}$ endothermic. There is significant disagreement between the results of Kung and Bamford.

Differential Thermal Analysis Method

Differential thermal analysis (DTA) differs from differential scanning calorimetry (DSC) in that both the sample and reference pans are heated by a single source. The difference in temperatures is measured by a differential thermocouple imbedded in the sample and reference material. The temperature difference is defined as:

$$
\begin{equation*}
\Delta T=T_{s}-T_{r} \tag{45}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{s}}=\text { sample temperature }\left({ }^{\circ} \mathrm{C}\right) \\
& \mathrm{T}_{\mathrm{r}}=\text { reference temperature }\left({ }^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

If ΔT is plotted against temperature or time, any type of chemical reaction occurring in the sample will show up as a deviation from a straight line. This is shown qualitatively in Figure 15.

The DTA data can be converted to energy units by comparing the sample thermogram to one for a calibration material which has a well defined heat of fusion.

Sykes [30] measured the heat of decomposition of Union Carbide Corporation BRP5549 phenolic resin using DTA. Samples weighing 60 mg were filed from a molded disk and heated from ambient to $900^{\circ} \mathrm{C}$, at $10^{\circ} \mathrm{C} / \mathrm{min}$, in an helium atmosphere. The results are presented in Figure 16. The exothermal peaks extend above the baseline $\Delta T=0$ and the endothermic peaks extend downward. Section A is a combination of both endothermic and exothermic reactions. Section B is primarily endothermic. Sykes attributed the first endothermic reaction, at $100^{\circ} \mathrm{C}$, to the vaporization of water which remained in the sample after post curing. The exothermic peak, at $265^{\circ} \mathrm{C}$ was $16 \mathrm{cal} / \mathrm{gm}$ exothermic. Gas chromatography identified water vapor again as the major gas constituent. Finally, the $70 \mathrm{cal} / \mathrm{gm}$ endothermic reaction is the energy associated with decomposition of the material.

Tang and Neill [32] studied the effect of flame retardants on α cellulose using DTA. Both the heat of decomposition and heat of combustion were measured. Samples weighing 100 mg were heated to $555^{\circ} \mathrm{C}$ at $12^{\circ} \mathrm{C} / \mathrm{min}$ in both helium and oxygen atmospheres. The heat of pyrolysis measured in an inert atmosphere was found to be $88 \mathrm{cal} / \mathrm{gm}$, endothermic,
TIME

Figure 15. Idealized DTA Scan [29]

Figure 16. DTA Thermogram of BRP5549 Phenolic Resin [30]
while the heat of combustion was $3540 \mathrm{cal} / \mathrm{gm}$, exothermic. Tang and Neill's results are summarized in Table V.

TABLE V
SUMMARY OF HEAT OF PYROLYSIS AND COMBUSTION*

α-Cellulose with:	Heat of Pyrolysis $(\mathrm{cal} / \mathrm{gm})$	Heat of Combustion $(\mathrm{cal} / \mathrm{gm})$
No treatment	88 ± 3.6	-3540 ± 140
$2 \% \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	58 ± 2.4	-3630 ± 146
$2 \% \mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	87 ± 3.4	-3560 ± 142
$2 \% \mathrm{KHCO}_{3}$	72 ± 3.0	-3500 ± 140
$2 \% \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$	78 ± 3.2	-3520 ± 140
$8 \% \mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$	64 ± 2.6	-3520 ± 140

*Data from Ref. [32]

Differential Scanning Calorimetry Method

The use of DSC to measure enthalpies of fusion and vaporization for various substances has been widespread. An excellent discussion of some of these applications is given by McNaughton and Mortimer [33]. The application of DSC to the measurement of heats of decomposition or combustion of a pyrolyzable material is limited. This is thought to be due to the difficulty of separating the sensible energy from that
associated with the chemical reaction. The only references located were the previously discussed work of Havens [12] and Brennan [28].

Temperature Profile Measurements

Abstract

Techniques to measure the surface recession, pyrolysis rate, ignition time, and temperature profiles of combustable materials have been of interest for many years. A variety of experimental devices have been built to accomplish this task. The differences are due, in part, to the type of investigation being undertaken.

Ablation rates of phenolic ablative materials have been of concern in the aerospace industry during recent years. As a result, various types of experimental devices have been bullt which test the capability of materials to withstand severe heating/erosive environments. They consist mainly of devices which simulate re-entry conditions for various types of vehicles and those which simulate direct impingement from solid rocket motors. This particular class of simulators are, in general, extremely high heating rate facilities in which ablative samples are heated by both radiation and convection. Many have the capability of injecting particles into the flow in order to simulate various erosive conditions which range from atmospheric dust or rain to $\mathrm{Al}_{2} \mathrm{O}_{3}$ particles contained in solid rocket motors. In general these devices produce boundary conditions which are not easily quantified. The result is data which are usually not well suited for comparison with analytical solutions. For the sake of completeness, however, some of these experimental devices will be discussed.

Davy, Menees, Lundell, and Dickey [34] used experimental data obtained from NASA Ames Giant Planet Pilot Facility to compare with

calculated ablation rates for carbon materials. Carbon-phenolic and ATJ graphite samples of $4.0-\mathrm{cm}$ diameter were heated at rates up to $21.0 \mathrm{~kW} / \mathrm{cm}^{2}$ in a hydrogen-helium atmosphere to simulate Jupiter entry conditions. Davy et al. measured the surface recession for run times of 2.0-5.0 seconds. The surface recession and exposure time data for the tests are given in Table VI. A schematic of the GPPF facility is shown in Figure 17. In-depth temperature profiles were not reported.

TABLE VI
GIANT PLANET PILOT FACILITY TEST RESULTS*

Material	Diameter (mm)	```Test Time (sec)```	Surface Recession (mm)
Carbon-phenolic	45	3.3	0.19
Carbon-phenolic	35	3.3	0.25
Graphite	40	2.0	0.13
Graphite	40	3.3	0.16
Graphite	40	4.9	0.26
Graphite	40	5.0	0.33
Graphite	40	5.0	0.29
Graphite	40	5.0	0.30
Graphite	40	5.0	0.31
Graphite	40	5.0	0.29

[^1]

Figure 17. NASA's Giant Planet Pilot Facility [34]

Schaefer, Dahm, Rodriquez, Reese, and Wool [35] used an arc-plasma generator to study the ablation rates of three types of silica-phenolic materials. Schaefer et al. used a 1-megawatt arc-plasma generator in which the energy was added to the primary gas stream by a steady electric arc discharge.

The heat flux to the ablative samples was measured with a Gardontype calorimeter and the total gas enthalpy was determined by performing an energy balance on the plasma generator. In-depth temperature profiles were measured using $0.005-i n c h$ diameter Tungsten-Rhenium and Chromel-Alumel thermocouples. Surface temperatures were measured with an optical pyrometer. Surface recession rates and char thickness were measured as well. The measured temperature profiles were input into a charring materials ablator (CMA) program which was used to calculate the temperature dependent thermal conductivity. This method produced excellent agreement between the experimental and predicted temperature profiles since the thermal conductivity was varied to force the curve through the experimental data. The results of one of these tests are presented in Figure 18.

More common and less expensive techniques have been developed by researchers whose primary concern has been the pyrolysis of wood and cellulosic materials. These methods have been designed for much lower heating rates and thus create boundary conditions which are easier to quantify.

Bamford et al. [1] heated both 2 and $4-\mathrm{cm}$ thick sheets of deal wood by gas flames from batswing burners. The flames were large enough to cover the entire face of the samples. The results of these measurements are shown in Figures 1 and 2. It is interesting to note

Figure 18. Comparison Between Calculated and Predicted In-Depth Temperature Profiles [35]
that the temperature rise is nearly linear to approximately $550^{\circ} \mathrm{K}$. Then a slight endothermic depression occurs prior to the sharp temperature rise resulting from the exothermic reaction near $600^{\circ} \mathrm{K}$. This phenomenon has been observed by other researchers.

Murty Kanury [36] presented experimental temperature profiles for the interior of cellulose cylinders burning in free convection. The results are presented in Figure 19. Again the depressed temperature profiles are evident near $100^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$, just prior to a large exothermic reaction. Murty Kanury suggests that the $100^{\circ} \mathrm{C}$ depression is due to moisture diffusion, condensation and re-evaporation, as a result of volatile products diffusing into the cooler interior of the material. As they diffuse, they carry energy from the high temperature outer char layer and condense in the cooler region, thus preheating the virgin material. As time progresses, conduction overtakes the preheated zone and re-evaporates the condensed volatiles. The recondensation of the volatiles corresponds to the temperature depressions in Figure 19.

Havens [12] heated cylindrical samples of white pine and oak in a nitrogen atmosphere using a resistance wire heater located at the center of the specimen. Heat fluxes of $0.34 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$ were applied to the samples. Temperature profiles were measured by 36-gauge chromel-alumel thermocouples and the energy input was determined by

$$
\begin{equation*}
p=1^{2} R \tag{46}
\end{equation*}
$$

```
where \(\quad p=\) power per cm of wire length (watts/cm)
    1 = current (amps)
    \(R=\) resistance (ohms/cm).
```


Figure 19. Time-Temperature Profiles at Various Radii of a Cellulose Cylinder Burning in Free Convection [36]

Brown. [29] compared Havens' experimental data to computed values at four different radial positions in samples of white pine. The results are shown in Figure 20 . The $100^{\circ} \mathrm{C}$ temperature depressions are not evident in Havens' data. This is thought to be due primarily to the fact that the samples were preheated for 24 hours at $110^{\circ} \mathrm{C}$, thus removing all traces of water. Havens' experimental technique is extremely attractive because it provides well defined boundary condi- †ions.

Wiebelt and Henderson [37] measured the temperature profiles and pyrolysis rates in $0.145-\mathrm{cm}$ sheets of α-cellulose using two 1000-watt tungsten filament lamps as a heat source. Samples were heated in air from ambient through material decomposition. Heating rates were varied from 0.5 to $0.8 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$.

Martin [38] used the same method to heat α-cellulose samples at much higher heating rates. Samples were irradiated at levels up to $22.0 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$. Martin measured temperature profiles, surface temperatures, and rate of production of volatile pyrolysis products. This method is particularly attractive because of the wide range of irradiances and the radiant boundary conditions which are easily quantified.

Perhaps the most unique method of heating samples was reported by Ulrich [39]. He used $14413.0-\mathrm{cm}^{2}$ solar mirrors to heat $20.0-\mathrm{cm}^{2}$ white pine samples. Lincoln [40] used a helical zenon flash tube which yielded up to $3000 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$ in 30 -millisecond pulses.

Figure 20. Comparison of Havens' Experimental and Brown's Computed Temperature Profiles for White Pine Cylinders [29]

CHAPTER III

THERMAL MODEL

The thermal model proposed by Kung [9] was the most complete of those found in the literature. The basic model is considered appropriate for this work because the following factors were considered in its formulation:

1. the variation in thermal properties during decomposition
2. flow of pyrolysis gases back through the char zone
3. variation in the heat of gasification with decomposition temperature and
4. local heat of gasification using active and char material properties.

The shortcomings of the model are that it does not account for the low temperature endothermic reactions in which no significant mass loss occurs, and no secondary reactions between the char and pyrolysis gases are considered.

Deve lopment

One can gain insight to the relevance of each term in the proposed model if Equation (10) is rearranged. An expanded version of Equation (10) is presented as Equation (47).

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho_{a} h_{a}+\rho_{r} h_{r}\right)=k \frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial k}{\partial x} \frac{\partial T}{\partial x}+h_{g} \frac{\partial \dot{m}_{g}}{\partial x}+\dot{m}_{g} \frac{\partial h_{g}}{\partial x}+Q_{p} \frac{\partial \rho}{\partial t} \tag{47}
\end{equation*}
$$

The energy storage term on the left side of Equation (47) may be rewritten as:

$$
\frac{\partial}{\partial t}\left(\rho_{a} h_{a}+\rho_{c} h_{c}+\rho_{g} h_{g}\right)
$$

where

$$
\begin{aligned}
& \rho_{r} h_{r}=\rho_{c} h_{c}+\rho_{g} h_{g} \\
& \rho_{c}=\text { density of the char material }\left(\mathrm{gm} / \mathrm{cm}^{3}\right) \\
& h_{c}=\text { enthalpy of the char material }(\mathrm{cal} / \mathrm{gm})
\end{aligned}
$$

In general $\rho_{g} h_{g} \ll \rho_{c} h_{c}+\rho_{a} h_{a}$ and the accumulation of energy of the gaseous species can be neglected. Therefore Equation (47) can be rewritten as:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho_{a}^{h}{ }_{a}+\rho_{c}^{h}{ }_{c}\right)=k \frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial k}{\partial x} \frac{\partial T}{\partial x}+h_{g} \frac{\partial \dot{m}_{g}}{\partial x}+\dot{m}_{g} \frac{\partial h_{g}}{\partial x}+Q_{p} \frac{\partial \rho}{\partial t} . \tag{48}
\end{equation*}
$$

Expanding the left side of Equation (48) results in:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho_{a} h_{a}+\rho_{c} h_{c}\right)=h_{a} \frac{\partial \rho_{a}}{\partial t}+\rho_{a} \frac{\partial h_{a}}{\partial t}+h_{c} \frac{\partial \rho_{c}}{\partial t}+\rho_{c} \frac{\partial h_{c}}{\partial t} . \tag{49}
\end{equation*}
$$

Differentiation of Equation (11) results in Equations (50) and (51) for the active and char material, respectively.

$$
\begin{align*}
& \frac{\partial h_{a}}{\partial t}=C_{p a} \frac{\partial T}{\partial t} \\
& \frac{\partial h_{c}}{\partial t}=C_{p c} \frac{\partial T}{\partial t} \tag{51}
\end{align*}
$$

Substituting Equations (50) and (51) into Equation (49) yields:

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho_{a} h_{a}+\rho_{c} h_{c}\right)=\rho C_{p} \frac{\partial T}{\partial t}+h_{a} \frac{\partial \rho_{a}}{\partial t}+h_{c} \frac{\partial \rho_{c}}{\partial t} \tag{52}
\end{equation*}
$$

where

$$
\rho C_{p}=\rho_{c} C_{p c}+\rho_{a} C_{p a} \approx \rho_{r} C_{p r}+\rho_{a} C_{p a}
$$

Substitution of Equations (9) and (52) into Equation (48) and rearranging results in:

$$
\begin{align*}
\rho C_{p} \frac{\partial T}{\partial t}= & k \frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial k}{\partial x} \frac{\partial T}{\partial x}+\dot{m}_{g} \frac{\partial h_{g}}{\partial x}+\frac{\partial \rho}{\partial t}\left(h_{g}+Q_{p}\right) \\
& -h_{a} \frac{\partial \rho_{a}}{\partial t}-h_{c} \frac{\partial \rho_{c}}{\partial t} . \tag{53}
\end{align*}
$$

Differentiation of Equation (13) yields:

$$
\begin{equation*}
\frac{\partial \rho_{a}}{\partial \rho}=\frac{\rho_{0}}{\rho_{0}-\rho_{f}} \tag{54}
\end{equation*}
$$

Combining Equations (13) and (14) and differentiating results in:

$$
\begin{equation*}
\frac{\partial \rho_{c}}{\partial \rho}=-\frac{\rho_{f}}{\rho_{0^{-\rho}}} \tag{55}
\end{equation*}
$$

where $\quad \rho_{C} \approx \rho_{r}$.
Substituting Equations (54) and (55) and the result of $\partial h_{g} / \partial \times$ into Equation (53) gives:

$$
\begin{align*}
\rho C_{p} \frac{\partial T}{\partial t}= & k \frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial k}{\partial x} \frac{\partial T}{\partial x}+\dot{m}_{g} C_{p g} \frac{\partial T}{\partial x} \\
& +\frac{\partial \rho}{\partial t}\left(h_{g}+Q_{p}-\frac{h_{a} \rho_{0}}{\rho_{0} \rho_{f}}+\frac{h_{C^{\rho}}}{\rho_{0}-\rho_{f}}\right) \tag{56}
\end{align*}
$$

Equation (56) is the basic nonlinear partial differential equation which should predict the thermal response of a one-dimensional pyrolyz-
ing slab. The term on the left represents the rate of temperature increase due to the sensible energy added to an element in the solid. The first term on the right is the excess conductive flux into the element. The second term represents the effect of variable thermal conductivity on the conductive flux. The third term represents the energy attenuation as a result of gaseous volatiles flowing through the char structure. The local heat of vaporization of the element is given by the last term.

The third term in Equation (56) represents the convection resulting from the mass flux of volatiles flowing back through the char. This term opposes the conductive flux into an element and attenuates the energy reaching the virgin zone. Local temperature equilibrium between char and gas was assumed.

The last set of terms in Equation (56),

$$
\begin{equation*}
L(T)=h_{g}+Q_{p}+\frac{h_{c}^{\rho_{f}}}{\rho_{0}-\rho_{f}}-\frac{h_{a}^{\rho_{0}}}{\rho_{0}-\rho_{f}}, \tag{57}
\end{equation*}
$$

is the energy per unit mass of generated volatiles of an element at temperature T. The rate of change of the char material with respect to the total density change, that is, the mass of char produced per unit mass of generated volatiles is $\rho_{f} / \rho_{0}-\rho_{f}$. The energy consumed per unit mass of generated volatiles is $h_{c} \rho_{f} / \rho_{0}-\rho_{f}$. Similarly, $\rho_{0} / \rho_{0}-\rho_{f}$ represents the mass of active material consumed per unit mass of total material consumed and $h_{a} \rho_{0} / \rho_{0}-\rho_{f}$ is the energy released as a result of this consumption. The energy consumed as a result of the production of the volatiles is represented by h_{g}. Finally, Q_{p} represents the basic energy supplied to the element.

Equation (57) is extremely sensitive to the enthalpy of the char and active material components. $L(T)$ may increase or decrease with temperature, depending upon the temperature dependence of the specific heats. Therefore, accurate values of these quantities are required.

The first order kinetic rate equation used by Kung does not adequately represent the rate of decomposition of a composite material. As a result, a form similar to that proposed by Friedman was chosen and is presented as Equation (58).

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=-A_{0}\left(\frac{\rho-\rho_{f}}{\rho_{0}}\right)^{n} e^{-E / R T} \tag{58}
\end{equation*}
$$

Equation (58) results in a closer approximation of the actual decomposition, primarily as a result of the addition of the order of reactlon, n. This is discussed more thoroughly in Chapter IV.

The mass flux varies with depth as a function of the rate of gas generation at each spatial location. The magnitude of the flux may be obtained by integrating Equation (9) which yields:

$$
\begin{equation*}
\dot{m}_{g}(x, t)=\int_{l}^{x} \frac{\partial \rho(x, t)}{\partial t} d x \tag{59}
\end{equation*}
$$

Accumulation of gases due to internal pressures is ignored.
Equations (56), (58), and (59) form a set of nonlinear partial differential equations and must be solved numerically. The appropriate boundary conditions are:

$$
\begin{equation*}
T=T_{\infty}, \rho=\rho_{0}, \dot{m}_{g}=0, \text { at } t=0,0 \leq x \leq \ell \tag{60}
\end{equation*}
$$

$$
\begin{align*}
& \alpha_{s} q_{0}-\varepsilon_{s} \sigma T_{s}^{4}-k \frac{\partial T}{\partial x}-\dot{m}_{g} C_{p g} d T+\frac{L(T) \Delta x}{2} \frac{\partial \rho}{\partial t}=\frac{\rho C_{p} \Delta x}{2} \frac{\partial T}{\partial t}, \tag{61}\\
& a t+>0, x=0 \\
& \frac{\partial T}{\partial x}=0, \dot{m}_{g}=0, \text { at } t>0, x=\ell . \tag{62}
\end{align*}
$$

Method of Solution

The set of nonlinear partial differential equations (PDE's) presented as Equations (56), (58), and (59) were solved by finite difference techniques. Both implicit and explicit computer programs were developed.

The Crank-Nicolson method was used to solve the PDE's implicitly. For the case of a linear PDE the implicit technique is stable for any size time step. Nonlinear PDE's, however, require iteration at each interval of time. If the time step chosen is too large, instabilitles will result. Although limited by the nonlinearities, the time interval required for the implicit technique is larger than the explicit method. However, the iterations required at each time interval with the implicit technique offset any savings in computer time. For this reason, the explicit form of the equations and computer program will be presented.

The numerical technique is presented using the notation T_{j}^{j}, where i represents the spatial node and j represents the time node or interval. Time derivative terms are represented by forward difference and the spatial variables by central difference, with the exception of the mass flux term which is represented by backward difference.

Using this notation, each term in Equation (56) can be represented as follows:

$$
\begin{align*}
& \frac{\partial T}{\partial t}=\frac{T_{i}^{j+1}-T_{i}^{j}}{\Delta t} \tag{63}\\
& \frac{\partial^{2} T}{\partial x^{2}}=\frac{T_{i+1}^{j}-2 T_{i}^{j}+T_{i-1}^{j}}{\Delta x^{2}} \tag{64}\\
& \frac{\partial k}{\partial x} \frac{\partial T}{\partial x}=\frac{k_{i+1}^{j}-k_{i-1}^{j}}{2 \Delta x} \frac{T_{i+1}^{j}-T_{i-1}^{j}}{2 \Delta x} \tag{65}\\
& \frac{\partial T}{\partial x}=\frac{T_{i}^{j}-T_{i-1}^{j}}{\Delta x} \tag{66}\\
& \frac{\partial \rho}{\partial T}=\frac{\rho_{i}^{j+1}-\rho_{i}^{j}}{\Delta t} \tag{67}
\end{align*}
$$

Substitution of Equations (63) through (67) into Equation (56) results in:

$$
\begin{align*}
\frac{T_{i}^{j+1}-T_{i}^{j}}{\Delta t}= & \frac{k}{\rho C_{p}}\left(\frac{T_{i+1}^{j}-2 T_{i}^{j}+T_{i-1}^{j}}{\Delta x^{2}}\right) \\
& +\frac{1}{\rho C_{p}}\left(\frac{k_{i+1}^{j}-k_{i-1}^{j}}{2 \Delta x}\right)\left(\frac{T_{i+1}^{j}-T_{i-1}^{j}}{2 \Delta x}\right) \\
& +\frac{\dot{m}_{g} C_{p g}}{\rho C_{p}}\left(\frac{T_{i}^{j}-T_{i-1}^{j}}{\Delta x}\right) \\
& +\frac{1}{\rho C_{p}}\left(\frac{\rho_{i}^{j+1}-\rho_{i}^{j}}{\Delta t}\right)\left(Q_{p}+h_{g}+\frac{h_{c} \rho_{f}}{\rho_{0}-\rho_{f}}-\frac{h_{a} \rho_{0}}{\rho_{0}-\rho_{f}}\right) \tag{68}
\end{align*}
$$

$$
\begin{equation*}
\frac{\rho_{i}^{j+1}-\rho_{i}^{j}}{\Delta t}=-A \rho_{0}\left(\frac{\rho_{i}^{j}-\rho_{f}}{\rho_{0}}\right)^{n} e^{-E / R T_{i}^{j}} \tag{69}
\end{equation*}
$$

Equation (59) is approximated by:

$$
\begin{equation*}
\dot{m}_{(g){ }_{i}^{j+1}}=\sum_{i=N}^{1}\left(\frac{\rho_{i}^{j+1}-\rho_{i}^{j}}{\Delta t}\right) \Delta x_{i} \tag{70}
\end{equation*}
$$

where $\quad N=$ number of spatial nodes.
Equations (68), (69), and (70) form a set of nonlinear algebraic equations in T, ρ, and \dot{m}_{g}. The solution is straightforward and progresses as follows:

1. calculate $\dot{m}_{(g)}{ }_{i}^{j+1}$ and ρ_{i}^{j+1} based on T_{i}^{j}
2. calculate T_{i}^{j+1} using values of $\dot{m}(g){ }_{i}^{j+1}$ and ρ_{i}^{j+1} from step 1 and
3. repeat steps 1 and 2 until maximum time is reached.

The numerical solutions of Equations (68) through (70), using the boundary and initial conditions presented as Equations (60) through (62) were carried out on a digital computer. A listing of the program is shown in Appendix A.

To ensure that the computer program was functioning properly, a set of sample calculations were performed for a $1.0-\mathrm{cm}$ thick slab using Kung's data and boundary conditions. For the comparison run, the Fourier modulus was chosen as 0.1 , with $\Delta x=.01 \mathrm{~cm}$. The net surface heat flux was $0.9 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$. The properties used in the calculations are presented in Table VII. Also, Kung ignored the temperature dependence of the active and char components of the speciflc heat and thermal conductivity. Therefore, $C_{p a}=C_{p 0}, C_{p c}=C_{p f}, k_{a}=k_{0}$, and $k_{c}=k_{f}$.

PROPERTIES USED IN SAMPLE CALCULATIONS

Pre-exponential factor	$A=5.25 \times 10^{7} \mathrm{sec}^{-1}$
Activation energy	$E=30 \mathrm{kcal} / \mathrm{mole}$
Ambient temperature	$T_{\infty}=300^{\circ} \mathrm{K}$
Thermal conductivity (virgin)	$\mathrm{k}_{0}=3 \times 10^{-4} \mathrm{cal} / \mathrm{cm}-\mathrm{sec}-{ }^{\circ} \mathrm{C}^{\mathrm{C}}$
Final thermal conductivity (char)	$\mathrm{k}_{\mathrm{f}}=7.5 \times 10^{-5} \mathrm{cal} / \mathrm{cm}-\mathrm{sec}-{ }^{\circ} \mathrm{C}$
Specific heat (virgin)	$C_{p 0}=0.6 \mathrm{cal} / \mathrm{gm}^{\circ}{ }^{\circ} \mathrm{C}$
Final specific heat (char)	$C_{p f}=0.6 \mathrm{cal} / \mathrm{gm}^{\circ}{ }^{\circ} \mathrm{C}$
Specific heat (volatiles)	$C_{p g}=0.24 \mathrm{cal} / \mathrm{gm}^{\circ}{ }^{\circ} \mathrm{C}$
Density (virgin)	$\rho_{0}=0.5 \mathrm{gm} / \mathrm{cm}^{3}$
Final density (char)	$\rho_{f}=0.125 \mathrm{gm} / \mathrm{cm}^{3}$
Heat of decomposition	$Q_{p}=125 \mathrm{cal} / \mathrm{gm}$

Figure 21 depicts the temperatures and active material densities as a function of depth. The symbols represent the values calculated in the present work, while the lines represent Kung's computations. The calculated temperatures and densities agreed to within 15\% in the worst case and were generally within 7%. These variations are thought to be due primarily to the difference in the boundary conditions and the method of calculating the mass flux of volatiles.

Figure 21. Comparison of the Results of Kung's and Henderson's Computations for a $1.0-\mathrm{Cm}$ Thick Slab of Pyrolyzing Wood

CHAPTER IV

DETERMINATION OF KINETIC PARAMETERS

The thermal model is sensitive to the density, ρ, and the rate of decomposition, $\partial \rho / \partial t$, predicted by the kinetic rate equation. This is due to three factors; (1) the contribution of the heat of gasification, $L(T),(2)$ the mass flux of the volatiles, and (3) the density dependent thermal properties of the char and active material components. The combination of these can completely change the character of the predicted thermal response of the material. It is therefore of paramount importance that the kinetic parameters used in the rate equation be determined as accurately as possible. Further, the materials of interest in this work may be exposed to a wide range of heat fluxes. Therefore, the effect of the heating rate on the kinetic parameters must be known as well.

Brown [29] showed that the kinetics of decomposition for wood are independent of heating rate up to $160^{\circ} \mathrm{C} / \mathrm{min}$. Therefore, the only effect of increasing the heating rate is to displace the weight loss curve to higher temperatures. As a result, kinetic parameters calculated based on lower heating rates are applicable to the higher values. Friedman's work [22] substantiated Brown's findings for phenolic ablative materials at much lower heating rates. In contrast, Baer et al. [20] showed that kinetic parameters of phenolic ablatives calculated from data taken at a single heating rate are not reliable when
used for high heating rates. Although the experimental technique used by Baer et al. is not well proven, their assessment is at least partially correct. There is an upper limit of heating rates in which the kinetics of decomposition are governed by the heat transfer rate to the sample. The limit is a function of the sample geometry and the thermal properties of the material. Regardless, it is advisable to calculate the kinetic parameters based on as wide a range of heating rates as possible. For this reason, the multiple heating rate technique was chosen for this study.

Experimental Method

Equipment

The data required for extraction of the kinetic parameters by the dynamic heating method are temperature, weight loss, and the rate of weight loss. These data were obtained with a Perkin-Elmer TGS-2 Thermogravimetric System, with temperature control provided by a Perkin-Elmer System 4 microprocessor. Figure 22 is a photograph of the instrument.

The TGS-2 system consists of an analyzer, balance control unit, heater control, first derivative computer, and System 4 controller. The sample pan, microbalance, and heater are housed in the TGS-2 analyzer unit. The electronic microbalance employs a platinum-nickel torque motor in a high gain servo system which amplifies the current required to balance the sample weight. The balance generates a continuous signal proportional to the sample weight during a test. The unit is capable of weighing samples ranging from $1.0 \times 10^{-4} \mathrm{mg}$ to 5.0 g , with an accuracy of $0.1 \mu \mathrm{~g}$ at 2 mg . The $50.0 \mu \ell$ sample pan is immersed in a

Figure 22. Perkin-Elmer TGS-2 Thermogravimetric System
platinum wound furnace which is capable of heating rates up to $160^{\circ} \mathrm{C} /$ min to a maximum temperature of $1000^{\circ} \mathrm{C}$. Apparent sample temperatures are measured with a chromel-alumel thermocouple located inside the furnace, directly under the sample pan. These components are contained in a sealed unit which can be purged with one or more Inert gases. A schematic of this arrangement is shown in Figure 23.

The System 4 microprocessor controls the temperature limits, heatIng rate, and gas switching valves. The controller can be programmed for a variety of tasks ranging from simple heat-cool mode to multiple heat-hold cycles. It also has a permanently programmed temperature calibration routine which matches the furnace temperature to the apparent sample temperature.

The output from the system is plotted as temperature, fraction weight remaining, and rate of weight loss on a Soltec Model VP-6432P $x-y_{1}-y_{2}$ plotter.

The TGS-2 system proved to be relatively trouble free with the exception of the furnace. Volatiles condensing on the furnace walls caused the platinum heater to fail. It was found that burning the condensates off after each run extended the furnace life. This was accomplished by switching to oxygen at the end of the programmed temperature scan.

Temperature Calibration

Due to the physical separation of the thermocouple and sample pan, the indicated and actual sample temperatures differ. This required calibration of the instrument. Norem, $0^{\prime} N e l l l$, and Gray [41] developed a calibration method based on the use of ferromagnetic metals. The

Figure 23. Schematic of TGS-2 Analyzer Unit
magnetic domains in these metals become disoriented over certain temperature ranges where the materials sharply transform to the paramagnetic state. This transformation occurs at a well defined temperature or Curle point where the apparent welght drops to zero. These materials and their Curle points are shown in Table VIII.

TABLE VIII
MAGNETIC STANDARDS USED FOR
TGS CALIBRATION

Standard	Curie Point $\left({ }^{\circ} \mathrm{C}\right)$
Alumel	163
Nickel	354
Perkalloy	596
Iron	780
Hisat 50	1000

The calibration procedure is simple. A small sample weight of each material is placed in the sample pan. A permanent magnet is placed around the furnace tube to create an apparent "magnetic mass". The furnace is then heated at the desired rate. As the Curie point of each material is reached, the sample undergoes an apparent weight loss. From these data, the difference between the indicated and actual temper-
atures may be determined. A typical calibration run at $80^{\circ} \mathrm{C} / \mathrm{min}$ is shown in Figure 24. A plot of the temperature correction for this run is presented as Figure 25.

The calibration procedure was carried out each time the heating rate was changed and at the beginning of each day. If the temperature correction at any Curie point was more than $\pm 10^{\circ} \mathrm{C}$, the limits on the temperature control unit were changed, the System 4 calibration routine was rerun, and the Curie standard calibration repeated. This was seldom necessary, except when new thermocouples were installed. Generally this required adjusting the location of the thermocouples in addition to the above procedure.

Sample Preparation and Procedure

Powdered samples were used in order to minimize errors resulting from heat transfer effects. The samples were obtained from cuttings while machining larger slabs for the temperature profile measurements. After the baked outer crust was machined off, the machine was cleaned and clear plastic sheets were placed under the sample. Cuttings were removed from the plastic, screened through a 20 -mesh sieve, and stored in sealed glass containers. The day before testing, samples were placed in an open beaker and stored in a vacuum oven at $30^{\circ} \mathrm{C}$ for $12-24$ hours. If the samples were not run within 24 hours after being placed In the oven, they were discarded. This procedure was adapted after observing "aging" of the samples left in the oven over a period of time. This aging significantly altered the decomposition characteristics of the materials.

Figure 24. Magnetic Standard Temperature Calibration for TGS at $80^{\circ} \mathrm{C} / \mathrm{Min}$

Figure 25. Magnetic Standard Temperature Correction for TGS at $80^{\circ} \mathrm{C} / \mathrm{Min}$

At the beginning of each day the balance was calibrated using the standard recommended techniques. Additionally, the recorder was checked using a Leeds and Northrup Model 8686 Millivolt Potentiometer. As discussed previously, the temperature calibration was checked at least once daily. After completion of the calibrations, powdered samples weighing $7.5 \pm 0.5 \mathrm{mg}$ were placed in the sample pan. The system was sealed, held at $40^{\circ} \mathrm{C}$, and purged with nitrogen at $100 \mathrm{ml} / \mathrm{min}$ to remove all traces of air. This condition was maintained at least 10 minutes prior to initiating the run. The programmed temperature scan was then run at the desired heating rate to approximately $950^{\circ} \mathrm{C}$. At the end of the programmed scan the temperature was held at $950^{\circ} \mathrm{C}$ and the purge gas was automatically switched to oxygen to oxidize the remaining resin. This condition was held until the resin had completely oxidized. If the ratio of initial to final weight, w_{f} / w_{0}, varied more than $\pm 2 \%$ for any of the six heating rates, the data were discarded and a new sample was run.

Experimental Results

Six types of ablative materials containing various amounts and types of fillers and resins were tested. A wide cross section of the low cost ablatives are represented by these selections. The materials and their compositions are shown in Table IX.

Thermogravimetric data for the six materials were obtained at heating rates of $10,20,40,80,100$, and $160^{\circ} \mathrm{C} / \mathrm{min}$. The original thermograms contained temperature, fraction of weight loss, and derivative of weight loss. These data were digitized at 0.01 intervals of the fraction of weight remaining. The experimental temperatures were

TABLE IX
COMPOSITION OF MATERIALS TESTED

Contents	Material Composition (percent)					
	Haveg Ind. H41NE	Haveg Ind. H41D	Fiberite Corp. MXBE-350	$\begin{gathered} \text { Fiberite } \\ \text { Corp. } \\ \text { MXB- } 360 \end{gathered}$	Fiber Materials, Inc. FR-1	Fiber Materials, Inc. FR-2
Asbestos	--	52.0	--	--	--	--
Glass Powder (SiO_{2})	--	--	15.5	14.5	--	--
Glass Fiber $\left(\mathrm{SiO}_{2}\right)$	61.0	--	--	--	42.0	--
Talc (Magnesium Silicate)		--	--	--	--	--
Fiberglass	--	--	41.0	59.0	--	--
Carbon	--	--	--	--	--	40.0
Total Filler Content	61.0	52.0	56.5	73.5	42.0	40.0
Phenol-Formaldehyde Resin	39.0	48.0	--	26.5	58.0	60.0
Acrylonitrile-Butadiene Resin	--	--	43.5	--	--	--

corrected using the Curie standard temperature calibration for each heating rate. For temperatures between the calibration points, a linear interpolation was used to obtain the correction factor. The thermograms were reproduced from the digitized data using Calcomp plotting routines on a CDC 6700 computer. Figures 26 through 31 show the fraction of weight remaining as a function of the corrected sample temperature for all six heating rates. Rate of weight loss data are depicted by Figures 32 through 37. The digitized data.for all six materials are shown in Appendix B.

Method of Data Analysis

The method of friedman was chosen to calculate the kinetic parameters. However, the technique was altered in order to cover a larger portion of the weight loss curve. As previously discussed, this was accomplished by calculating the pre-exponential factor and order of reaction for each of two regions of weight loss. For comparison, the average activation energy for each material determined by this method was compared to the value obtained by the method of Flynn and Wall.

From Equation (35) a plot of $\ln \left[\left(-1 / w_{0}\right)(d w / d t)\right]$ as a function of $1 / T$ yields a straight line for each value of weight loss. The slope of each line is $-E / R$ and the intercept is $\ln \left[A f\left(w / w_{0}\right)\right]$. These plots are shown in Figures 38 through 43 for all six materials. The slope of each line was determined by a least squares fit of the data. Figure 44 shows the corresponding activation energy and intercept at each value of weight loss from $0.84 \leq w / w_{0} \leq 0.98$ for H41NE. Figure 45 presents the same information for MXBE-350 over the range from $0.73 \leq w / w_{0} \leq 0.99$. The range of each data point in Figures 44 and 45 is the range of error

Figure 26. Fraction of Weight Remaining for Six Heating Rates for H41NE

Figure 27. Fraction of Weight Remaining for Six Heating Rates for H41D

Figure 28. Fraction of Weight Remaining for Six Heating Rates for MXBE-350

Figure 29. Fraction of Weight Remaining for Six Heating Rates for MXB-360

Figure 30. Fraction of Weight Remaining for Six Heating Rates for FR-1

Figure 31. Fraction of Weight Remaining for Six Heating Rates for FR-2

Figure 32. Derivatives of Weight Loss for Six Heating Rates for H41NE

Figure 33. Derivatives of Weight Loss for Six Heating Rates for H41D

Figure 34. Derivatives of Weight Loss for Six Heating Rates for MXBE-350

Figure 35. Derivatives of Weight Loss for Six Heating Rates for MXB- 360

Figure 36. Derivatives of Weight Loss for Six Heating Rates for FR-1

Figure 37. Derivatives of Weight Loss for Six Heating Rates for FR-2

Figure 38. Plot of Slopes Used to Determine the Activation Energy for H41NE

Figure 39. Plot of Slopes Used to Determine the Activation Energy for 4410

Figure 40. Plot of Slopes Used to Determine the Activation Energy for $11 \times B E-353$

Figure 41. Plot of Slopes Used to Determine the Activation Energy for MXB- 360

Figure 42. Plot of Slopes Used to Determine the Activation Energy for FR-1

Figure 43. Plot of Slopes Used to Determine the Activation Energy for FR-2

Figure 44. Activation Energy and Intercept as a Function of Degree of Conversion for H41NE

Figure 45. Activation Energy and Intercept as a Function of Degree of Conversion for MXBE-350
based on the least squares fit of the slopes. From Equation (37), plotting $\ln \left[\operatorname{Af}\left(w / w_{0}\right)\right]$ versus $\ln \left[\left(w-w_{f}\right) / w_{0}\right]$ yields a straight line with slope n and intercept InA. These values were plotted for all six materials and are shown in Figures 46 through 51. These figures depict the separation of the reaction into the two regions of weight loss and the corresponding least squares fit over each region. The range of each data point is the range of each intercept resulting from using the average activation energy. A pre-exponential factor, A, and order of reaction, n, were determined for each of these two regions. The average activation energies determined from Figures 38 through 43 were used for both regions. Using the Flynn and Wall method described in Chapter II, the average activation energy for all six materlals was calculated based on plots of $\log \beta$ versus $1 / T$. The plots for H41NE and MXBE-350 are shown in Figures 52 and 53. The results of all the calculations are summarized in Table X.

The kinetic parameters calculated by the modified version of Friedman's method were used in the appropriate form of Equation (34) to calculate the fraction of weight remaining versus temperature. That is:

$$
\begin{equation*}
\frac{d w}{d t}=-w_{0} A\left[\left(w-w_{f}\right) / w_{0}\right]^{n} e^{-E / R T} \tag{71}
\end{equation*}
$$

Each set of parameters was applied to that portion of the weight loss curve from which it was determined. A comparison of the results of these calculations and the experimental data for $10^{\circ} \mathrm{C} / \mathrm{min}$ and $160^{\circ} \mathrm{C} / \mathrm{min}$ heating rates for H4INE and MXBE-350 are shown in Figures 54 and 55, respectively. The average error, standard deviation of errors, and the 95 percent confidence interval were calculated for the experimental

Figure 46. Plot to Determine the Pre-Exponential Factor and Order of Reaction

Figure 47. Plot to Determine the Pre-Exponential Factor and Order of Reaction

Figure 48. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for MXBE-350

Figure 49. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for MXB-360

Figure 50. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for FR-1

Figure 51. Plot to Determine the Pre-Exponential Factor and Order of Reaction for Two Regions of Weight Loss for FR-2

Figure 52. Plot of Slopes Used to Determine the Activation Energy for H41NE by the

Figure 53. Dlot of Slopes Used to Determine the Activation Energy for MXEE-35 b, the "lethod of Flynn and Wall

TABLE X
RESULTS OF THERMOGRAVIMETRIC ANALYSIS

Material	w_{f} / w_{0}	Range of w / w_{0}	$E_{\text {avg }}$ (kcal/gm-mole)			n	$w^{*} w_{0}$
			Friedman	Flynn \& Wall			
Haveg H4 1NE	0.795	. $98-.84$	62.13	62.15	1.19×10^{31} 4.90×10^{20}	$\begin{array}{r} 17.33 \\ 6.30 \end{array}$	$\frac{\geq .91}{<.91}$
Haveg H4 ID	0.760	. $97-.79$	74.97	71.52	2.71×10^{35} 3.87×10^{23}	$\begin{array}{r} 19.46 \\ 5.12 \end{array}$	$\frac{\geq .89}{<.89}$
Fiberite MXBE-350	0.660	. $99-.73$	52.11	50.22	4.07×10^{46} 7.77×1017	$\begin{array}{r} 55.40 \\ 3.81 \end{array}$	$\frac{\geq .94}{<.94}$
Fiberite MXB-360	0.840	. $98-.87$	56.87	53.70	2.74×10^{38} 1.15×10^{23}	$\begin{array}{r} 22.10 \\ 7.60 \end{array}$	$\frac{2.93}{<.93}$
Fiber Materials FR- 1	0.650	. $99-.67$	94.62	88.49	3.05×10^{94} 5.65×10^{35}	$\begin{aligned} & 92.43 \\ & 11.88 \end{aligned}$	$\frac{\geq .84}{<.84}$
Fiber Materials FR-2	0.675	. $99-.83$	49.05	45.38	1.71×10^{55} 2.00×10^{28}	$\begin{aligned} & 59.50 \\ & 19.10 \end{aligned}$	$\frac{\geq .89}{<.89}$

Figure 54. Comparison of Calculated Versus Experimental Weight Loss for H41NE

Figure 55. Comparison of Calculated Versus Experimental Weight Loss for MXBE-350
versus calculated points for all six materials. These results are presented in Table XI.

TABLE XI
STATISTICAL ANALYSIS OF ERRORS IN COMPUTED VERSUS EXPERIMENTAL w / w_{0}

Material	Average Error (percent)	Standard Deviation (percent)	95 Percent Confidence Interval	Number of Data Points
H41NE	0.33	0.58	$0.22-0.44$	90
H41D	0.28	0.84	$0.14-0.42$	114
MXBE-350	1.36	1.41	$1.17-1.55$	162
MXB-360	0.18	0.48	$0.08-0.29$	72
FR-1	0.50	1.22	$0.38-0.72$	198
FR-2	1.07	2.30	$0.74-1.41$	90

CHAPTER V

MEASUREMENT OF SPECIFIC HEAT AND HEAT OF DECOMPOSITION

Both the specific heat and heat of decomposition are required as input to the thermal model. The specific heat of the char and active components are important from the standpoint of energy storage in the element. Equally important is their impact on Equation (57) which represents the local heat of gasification of the material. The energy released as a result of the consumption of the active material is a function of the active material specific heat. Similarly, the char component specific heat substantially affects the energy consumed as a result of the char production. As with the kinetic parameters, the character of the predicted thermal response of a material is altered by these values. Both the magnitude and sign of the heat of decomposition are important as well.

Differential scanning calorimetry (DSC) was chosen for this work. This was primarily because of the ease of measuring both the specific heat and heat of decomposition simultaneously.

Experimental Method

Equipment

The specific heat of a nonvolatile sample can be calculated by Equation (41). The data required are the energy input to the sample,
the mass of the sample, and the heating rate. The temperature dependent specific heat can be calculated if $d q / d t$ is measured as a function of temperature. In this work, these data were obtained with a PerkinElmer Differential Scanning Calorimeter Model DSC-1B. The unit consists of an analyzer module and control unit. A photograph of the instrument is presented as Figure 56.

The control module contains the electronics associated with the system. This includes the scan speed, range, and slope control. The sensitivity of the range, $d q / \mathrm{dt}$, can be adjusted from $1 \mathrm{mcal} / \mathrm{sec}$ to 32 $\mathrm{mcal} / \mathrm{sec}$ full scale on a $10-\mathrm{mv}$ recorder. Heating rates can be varied from 0.625 to $80^{\circ} \mathrm{C} / \mathrm{min}$ with an upper limit of $500^{\circ} \mathrm{C}$.

The analyzer module contains the sample holder and the average and differential temperature control. The sample holder assembly is shown schematically in Figure 57. This unit forms the basis of the system. The DSC operates on a "null balance" principle. That is, the sample and reference pans are maintained at very nearly the same temperature. The differential power required to maintain this equality is calibrated directly in millicalories per second, dq/dt. The "null balance" is accomplished by a platinum heater and resistance thermometer located in the floor of both the sample and reference holders. As the system temperature is increased at a predetermined rate, any difference in sample and reference temperatures is sensed by the platinum thermometers. A closed loop control system then adjusts the power input to remove this difference. This is shown qualitatively by the DSC thermogram presented as Figure 58. The departure of the thermogram from the baseline represents an endothermic event requiring additional energy to maintain the sample temperature.

Figure 56. Perkin-Elmer DSC-1B Differential Scanning Calorimeter

Figure 57. Schematic of DSC-1B Sample Holder

Figure 58. Idealized DSC Thermogram [33]

The DSC output was recorded as temporature and differentlal onorgy on a Linear Instruments Model 598 3-channel strip chart recorder. Calibration

Two calibrations are required for the DSC-1B. These are temperature and differential temperature. Additionally, a power calibration is required if the instrument is to be used for heat of fusion measurements.

The differential temperature calibration is required to ensure that the sample and reference pans are maintained at approximately the same temperature over the temperature range of interest. This is accomplished through the use of a set of four standards, each with a well defined melting point and heat of fusion. These standards are listed in Table XII. The procedure is to place a sample of one of the standards in both sample holders. The isothermal temperature is set $25^{\circ} \mathrm{C}$ below the melting point. The standard is then heated at $10^{\circ} \mathrm{C} / \mathrm{min}$ through its melting point. If two peaks occur (exothermic and endothermic) the differential temperature calibration is adjusted and the process repeated. When the correct setting is reached only one peak will occur. It should be noted that it is all but impossible to get the differential temperatures to coincide over the entire temperature range of the instrument. Therefore, the calibration should be optimized over the temperature range of interest. In this work, the calibration was optimized over the range of $156^{\circ} \mathrm{C}$ to $420^{\circ} \mathrm{C}$. The differential temperatures over this range were within $\pm 2^{\circ} \mathrm{C}$.

This particular calibration procedure was carried out when a new sample holder assembly was installed. Initially the calibration was
checked regularly. However, it was found that only slight variations occurred and frequent calibration was not necessary.

TABLE XII

CALIBRATION STANDARDS USED FOR DSC CALIBRATION

Standard	Melting Point $\left({ }^{\circ} \mathrm{C}\right)$	Heat of Fusion $(\mathrm{cal} / \mathrm{gm})$
Indium	156.60	6.80
Tin	231.88	14.45
Lead	327.47	5.50
Zinc	419.47	25.90

Because of nonlinearities in the platinum sensors, the actual and indicated temperatures differ. The necessary corrections may be determined using the standards listed in Table XII. The procedure is similar to the differential temperature calibration. The isothermal temperature is set approximately $25^{\circ} \mathrm{C}$ below the melting point of the standard. The scan speed is set at the rate to be used in the actual measurements. A standard is then placed in the sample pan holder and is heated through the melting point of the standard. If the indicated temperature and melting point of the standard (actual temperature) do not coincide, the average temperature calibration must be adjusted.

Again, it is virtually impossible to get perfect agreement between the indicated and actual temperatures over the entire range of the instrument.

This calibration was carried out more frequently than the differential temperature calibration. However, little change occurred over the course of the measurements, except when a new sample holder was installed. A plot of a temperature calibration is shown in Figure 59.

Sample Preparation and Procedure

Obtaining a straight and reproducible baseline over the entire temperature range of the $D S C-1 B$ is virtually impossible. For this reason, the experiments were run over three separate temperature ranges with overlap occurring at each interface. The following ranges were selected: (1) $50^{\circ} \mathrm{C}$ to $190^{\circ} \mathrm{C}$, (2) $170^{\circ} \mathrm{C}$ to $320^{\circ} \mathrm{C}$, and (3) $300^{\circ} \mathrm{C}$ to $470^{\circ} \mathrm{C}$.

Because three temperature ranges were used, some difficulty in preparing the samples was encountered. Testing virgin material samples at the two higher temperature ranges required using samples which had been "prerun" up to the lower limit of the temperature range of interest. These samples were obtained by preheating the material in the TGS-2 system in a nitrogen atmosphere at $20^{\circ} \mathrm{C} / \mathrm{min}$. When the temperature limit had been reached, the samples were quenched in a flowing nitrogen atmosphere. The samples were removed from the TGS-2 and placed directly in the DSC. If they were not run within 30 minutes, they were discarded and a new sample prepared.

The powdered samples of virgin material were prepared the same as for the thermogravimetric analysis. The char material samples were

Figure 59. Temperature Calibration for DSC
obtained by precharring powdered samples of the virgin material in the thermogravimetric system. Samples were run at $160^{\circ} \mathrm{C} / \mathrm{min}$ heating rate in a nitrogen atmosphere to $950^{\circ} \mathrm{C}$. The pre-experimental handing of both the virgin and char material was identical to that used in the thermogravimetric analysis, described in Chapter IV.

Four scans were necessary for each material over each temperature range. The virgin and char materials required one scan each. Empty sample pan scans were run in order to establish a baseline and a sapphire standard was run with each set of data. The use of the sapphire standard will be discussed later.

Before running a sample, the baseline was established. This was accomplished by scanning through the temperature range of interest with empty sample pans in both the sample and reference side. The procedure was to raise the isothermal temperature to $10^{\circ} \mathrm{C}$ below the lower temperature limit of the temperature range of interest. Empty sample and reference pans were then placed in the sample holder. The radiation domes were placed over the pans and the sample cover was replaced. The purge gas was allowed to flow for $3-5$ minutes at $60 \mathrm{~m} \mathrm{\ell} / \mathrm{min}$ before initiating the run. The program temperature scan was run at $20^{\circ} \mathrm{C} / \mathrm{min}$ to the upper limit of the temperature range of interest. The unit was then cooled down to the initial temperature and the process repeated for the sapphire, char, and virgin materials. The DSC run for the lower temperature range for $M X B E-350$ is shown in Figure 60.

Sample weights ranged between 5 and 15 mg and were weighed on a Perkin-Elmer AD-2Z microbalance. The accuracy of this unit is the same as the TGS-2 microbalance. The balance is shown in Figure 61.

Figure 60 . $20^{\circ} \mathrm{C} / \mathrm{Min}$ DSC Scan for MXBE- 350

Figure 61. Perkin-Elmer AD-2Z Microbalance

Several points regarding the operation of the DSC-1B are in order. First, the system is extremely sensitive to the radiation exchange between the sample pans, sample holder, and radiation domes. A slight change in the position of one of these components will result in large discrepancies between the isothermal baselines. Once the baseline is run, each component must be replaced as closely as possible to the original position. This can be accomplished by marking the pans and lids and taking care to realign them. This procedure cannot be over emphasized. Also, care must be taken to match radiation domes as closely as possible. This results in much flatter and more reproducible baselines.

Second, the sample head must be kept clean. Any deposits of volatiles or soil will render the data useless. This was found to be a major problem at the higher temperatures where volatiles were condensing on the heating unit and radiation dome. To overcome this difficulty, the sample head was cleaned with acetone between each run. Additionally, the radiation domes were stored in containers of acetone to remove the condensates.

Havens [12] showed the importance of the radiative characteristics of the sample holder. He calculated that a 0.1 change in the surface emissivity of a sample pan surface containing a matorial with a specific heat of $0.35 \mathrm{cal} / \mathrm{gm}^{\circ}{ }^{\circ} \mathrm{C}$ would result in differential power inputs of 23 times those normally required.

Finally, the mass of the sample and reference pans should be matched as closely as possible. The baseline shown in Figure 60 could have been inverted by more closely matching the empty pan weights. This can be accomplished by adding or removing sample pan lids to the
reference pan. The baseline can be more closely reproduced if the weights are evenly matched.

Also, the range of the DSC-1B was insufficient to get completely through the decomposition of the ablatives. Therefore, the high temperature range scan was stopped at an indicated temperature of $470^{\circ} \mathrm{C}$ and held isothermally until the sample had completely degraded. This event was evidenced by the return to the isothermal baseline.

Data Analysis and Results

The specific heat of a volatile sample can be determined by the method proposed by Brennan [28]. This requires the assumption that the fraction of mass reacted is proportional to the fraction of energy liberated at the temperature of interest. An alternate technique involves using Equation (41), where the temperature dependent mass of the sample is known. These data were obtained by decomposing samples in the TGS system at the same heating rate used in the DSC measurements. Equation (41) may be rewritten with the temperature dependent mass as:

$$
\begin{equation*}
C_{p}=\frac{d q / d t}{m(T) d T / d t} \tag{72}
\end{equation*}
$$

Equation (72) could be used to calculate the specific heat directly. However, any errors in $d q / d \dagger$ or $d T / d \dagger$ would reduce the accuracy of the results. By using data obtained from a known mass of sapphire in conjunction with sample data, the need for accurate calibration of $d q / d \dagger$ is eliminated. Further, any errors in $d T / d \dagger$ will be cancelled out. Writing Equation (72) for the sapphire standard results in:

$$
\begin{equation*}
c_{p s t d}=\frac{(d q / d t){ }_{s t d}}{m_{s t d}(d T / d t)} \tag{73}
\end{equation*}
$$

where the subscript std indicates sapphire standard.
Taking the ratio of Equations (72) and (73) yields:

$$
\begin{equation*}
\frac{C_{p s}}{C_{p s+d}}=\left(\frac{(d q / d t)_{s}}{m(T)_{s} d T / d t}\right) /\left(\frac{(d q / d t)_{s+d}}{m_{s+d}(d T / d t)}\right) \tag{74}
\end{equation*}
$$

where the sample is indicated by the subscript s. Rearranging and eliminating dT/dt results in Equation (75):

$$
\begin{equation*}
C_{p s}=\frac{(d q / d t)_{s}}{(d q / d t)_{s+d}} \frac{m_{s t d}}{m(T)_{s}} c_{p s t d} . \tag{75}
\end{equation*}
$$

Equation (75) may be used to determine the temperature dependent specific heat directly from the thermogram. Only the two ordinate deflections, $d q / d t$, and $m(T)$, from the thermogravimetric data are required. The temperature dependent specific heat of artificial sapphire is well defined and is given by Ginnings and Furukawa [42]. The ordinate deflections for the sapphire and sample are shown as y and y^{\prime} respectively, in Figure 60.

This technique was applied to the six materials listed in Table |X. DSC data were obtained at a heating rate of $20^{\circ} \mathrm{C} / \mathrm{min}$ from $50^{\circ} \mathrm{C}$ to $470^{\circ} \mathrm{C}$. These data were digitized at $10^{\circ} \mathrm{C}$ intervals. The temperatures were corrected using temperature calibration data similar to those presented in Figure 59. As with the thermogravimetric data, temperatures were corrected by a linear interpolation between the calibration points. For the materials, $m(T)$ was taken from the $20^{\circ} \mathrm{C} / \mathrm{min}$ thermogravimetric
runs presented in Figures 26 through 31. Equation (75) was used to convert the data to temperature dependent specific heat and heat of decomposition. The results of these calculations for all six materials are presented as Figures 62 through 67.

The range of the DSC-1B was not sufficient to cover the entire decomposition process. Therefore, the curves had to be extrapolated over the last 50 to $200^{\circ} \mathrm{C}$. The remainder of the curves were completed using a technique similar to that proposed by Brennan [28]. The area enclosed by the char and apparent specific heat was numerically integrated up to approximately $500^{\circ} \mathrm{C}$, i.e., the upper limit of the experimental data. The fraction of the mass reacted at this point was known and the total heat of decomposition was calculated by:

$$
\begin{equation*}
Q_{p}=Q_{R} /\left(\frac{1-\gamma_{R}}{1-\gamma_{f}}\right) \tag{76}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q_{R}=\text { total heat of pyrolysis up to } \gamma_{R} \\
& \gamma_{R}=\text { fraction of pyrolyzable material reacted } \\
& \gamma_{f}=\text { final fraction remaining. }
\end{aligned}
$$

Using the calculated value for Q_{p} and the shape of the thermogravimetric weight loss and derivative of weight loss curves, the apparent specific heat curves were completed. The char specific heat was extrapolated from a linear least squares fit of the experimental data. The average specific heat of the virgin material was calculated over a temperature range of 200 to $390^{\circ} \mathrm{C}$. A summary of the DSC measurements for all six materials is given in Table XIII.

Figure 62. Specific Heat and Heat of Decomposition of H4INE

Figure 63. Specific Heat and Heat of Decomposition of H41D

Figure 64. Specific Heat and Heat of Decomposition of MXBE-350

Figure 65. Specific Heat and Heat of Decomposition of MXB-360

Figure 66. Specific Heat and Heat of Decomposition of FR-1

Figure 67. Specific Heat and Heat of Decomposition of FR-2

TABLE XIII
RESULTS OF SPECIFIC HEAT MEASUREMENTS

Material	Average Specific Heat of Virgin Material (cal/gm- ${ }^{\circ} \mathrm{C}$)	Linear Temperature Dependent Specific Heat of Char Material (cal/gm- ${ }^{\circ} \mathrm{C}$)		Estimated Heat of Pyrolysis (cal/gm)
		Intercept at $0^{\circ} \mathrm{C}$	Slope	
Haveg 41 NE	0.307	0.173	3.53×10^{-4}	158.0
Haveg 410	0.331	0.289	-2.56×10^{-6}	254.0
$\begin{aligned} & \text { Fiberite } \\ & \text { MXBE- } 350 \end{aligned}$	0.332	0.185	2.78×10^{-4}	73.0
Fiberite MXB-360	0.303	0.165	3.68×10^{-4}	53.0
```Fiber Materials FR-1```	0.294	0.145	$4.17 \times 10^{-4}$	42.0
```Fiber Materials FR-2```	0.360	0.156	$5.96 \times 10^{-4}$	56.0

CHAPTER VI

TEMPERATURE MEASUREMENTS

Abstract

The temperature measurement portion of this study was undertaken to provide sufficient experimental data to evaluate the accuracy of the predictions of the model. An experiment was designed to measure the in-depth temperature profiles in a one-dimensional slab of pyrolyzing material exposed to a radiative heat flux.

Apparatus

Two banks of water cooled tungsten lamps capable of producing heat fluxes up to $50 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$ were used to irradiate the samples. Power to the lamps was controlled by a Robicon Corporation Model 401-328-5 power controller. A photograph of the lamps and sample holder is presented as Figure 68.

Each bank of lamps contained 21 tungsten filament bulbs connected for three-phase delta, 480-volt operation. Each lamp was equipped with a water cooled copper shroud. The $15-\mathrm{cm}$ long shroud reduced the outlet to $15.24 \mathrm{~cm} \times 15.24 \mathrm{~cm}$. Both the inside of the shrouds and lamp reflectors were coated with gold to increase the heat flux and improve the energy distribution. The cooling water flow rate was approximately 55 l/min through each unit. The outlet of each shroud was covered with a quartz lens to prevent volatiles from coating the inside surfaces of the lamp unit. The entire unit was mounted on a 110-cm long, 12-cm

Figure 68. Tungsten Lamps and Sample Holder
diameter aluminum shaft to allow the distance between the sample and lamps to be varied. Also, the lamps could be rotated around the tube to allow easy access.

The sample holder was constructed to rotate around the same shaft on which the lamps were mounted. The holder consisted of a tantalum strap mounted on an aluminum block. The strap was 2 cm wide and covered approximately 5 cm on each vertical edge of the sample. This is depicted in Figure 68.

The power to the lamps was monitored with a Weston Model 2044 iron vane meter used in conjunction with a current transformer. Temperatures were monitored using 40-gage chromel-alumel thermocouples. The thermocouples were contained in 15-cm long, $0.10-\mathrm{cm}$ diameter 304-stainless steel sheaths. The thermocouples were referenced to $0^{\circ} \mathrm{C}$ using Omega Model CJ-K cold junctions. The thermocouple output was recorded on two Linear Instruments Model 598 3-channel strip chart recorders.

Calibration

The lamps were calibrated using a Medtherm Model 64-50-20 Gardon type heat flux transducer. The calibration of the Gardon transducer was performed with a Thermogage, Inc. blackbody standard capable of producing 0-100 cal/cm²-sec. The instrument operates by heating a $4-\mathrm{cm} \times 7.5-\mathrm{cm}$ pyrolytic graphite plate held between two water cooled copper blocks. The instrument is pictured in Figure 69. The blackbody temperature of the graphite plate was measured with a Leeds and Northrup Model 8630 optical pyrometer. The calibration for the heat flux transducer is shown in Figure 70.

Figure 70. Calibration Curve for Gardon Heat Flux Transducer

The lamps were calibrated with the heat flux transducer mounted in a copper block held by the sample holder. The dimensions and position of the copper block were identical to the material samples. The energy distribution over the surface of the sample is important. Therefore, the copper block was constructed to allow the heat flux transducer to be mounted in five locations. The mounting positions were located in each corner and in the center of the block. The calibration curves for the heat flux transducer located in the center position are shown in Figure 71. The difference in the heat flux due to the hot and cold lenses is depicted by this figure as well.

The energy distribution over the surface of the sample was determined by measuring the heat flux at five different locations. The results are listed in Table XIV. The distribution is within 9 percent with the exception of the lower right corner which is off by 15 percent. Distribution and center position calibrations were performed for both lamps to ensure an equal heat flux to each surface.

Sample Preparation and Procedure

> In-depth temperature profiles were measured for three of the six materials previously discussed. Samples were machined to $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ $\times 2 \mathrm{~cm}$ from larger blocks of material. The samples were machined on both sides and the edges. Tolerances were held to within $\pm 0.1 \mathrm{~cm}$. Either two or three $0.118-\mathrm{cm}$ diameter holes were drilled approximately 7.5 cm deep to accomodate the thermocouples. Figure 72 depicts the sample dimensions and approximate locations of the thermcouples.
> The exact location of the thermocouple was determined from \times-rays of the samples with tungsten rods imbedded in the thermocouple holes.

Figure 71. Calibration Curve for Tungsten Filament Lamps

Figure 72. Sample Dimensions and Thermocouple Locations

If the sample and x-ray dimensions differed, the thermocouple locations were scaled according to the true sample dimensions.

TABLE XIV
HEAT FLUX DISTRIBUTION RELATIVE TO CENTER POSITION

Location	Magnitude of Heat Flux Relative to Center Position
Center	1.0
Upper Left	0.948
Upper Right	0.917
Lower Right	0.848
Lower Left	0.910

The sample dimensions were determined with a Brown and Sharpe Hite-Tronic height gauge at five locations on the $15-\mathrm{cm} \times 15-\mathrm{cm}$ surface and two locations on each of the edges. The average values were used for all calculations. Samples were weighed on a Mettler Model P5N balance. The dimensions and density of each of the samples tested is shown in Table XV. A photograph of a virgin sample of MXBE-350 with thermocouples inserted is shown in Figure 73.

The emissivity of each material is different. For this reason, after machining, the surfaces were coated with lamp black. After

Figure 73. Sample of MXBE-350 Virgin Material with Thermocouples
coating, the samples were placed in a vacuum oven at $30^{\circ} \mathrm{C}$ for two days prior to testing in order to remove moisture. This resulted in weight losses of less than one percent. However, this procedure was continued throughout the work. After running, the samples were weighed again to determine their fraction of weight loss. Figure 74 is a photograph of a pyrolyzed sample of $\mathrm{MXBE}-350$. The results of the temperature measurements are presented in Chapter VII.

TABLE XV

SUMMARY OF DIMENSIONS AND DENSITY OF MATERIALS USED IN TEMPERATURE PROFILE MEASUREMENTS

Material	Dimensions (cm)	Virgin Material Density $\left(\mathrm{gm} / \mathrm{cm}^{3}\right)$	Number of Thermocouples
H4 1NE	$15.08 \times 15.00 \times 1.99$	1.81	3
MXBE- 350	$15.00 \times 15.02 \times 2.01$	1.71	3
MXBE- 350	$15.00 \times 15.02 \times 2.05$	1.70	2
FR- 1	$14.96 \times 14.84 \times 1.97$	1.47	3

Figure 74. Sample of MXBE-350 After Pyrolysis

COMPARISON OF CALCULATED AND EXPERIMENTAL
 TEMPERATURE PROFILES

Temperature profiles were measured for the materials listed in Table XV. With the exception of FR-1, these temperatures were compared to values calculated by the thermal model. Experimentally determined values for the kinetic parameters, specific heat, and heat of decomposition were used as input to the model. The thermal conductivity of the virgin material was estimated using published values. The thermal conductivity of the char was calculated by Equation (3). The thermal and kinetic properties used in the model are listed in Table XVI.

In-depth temperatures were measured for pyrolyzing. H4 1NE exposed to a radiant heat flux of $2.2 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$. The sample was heated for 600 seconds, at which time ignition occurred. Thermocouples were located at depths of $0.44,0.60$, and 0.64 cm . The results of these measurements are presented as data points in Figure 75. The solid Iines represent the calculated values of the temperature, while the broken lines represent the nondimensional active material density, ρ_{a} / ρ_{0}, at the same depths. Figure 76 depicts both the calculated temperatures and nondimensional active material density as a function of spatial location at $10,150,300,450$, and 600 seconds. The Fourier number used in the computer simulation was 0.24 , with $\Delta x=0.01 \mathrm{~cm}$.

TABLE XVI
PROPERTIES USED IN TEMPERATURE CALCULATIONS FOR H4 INE AND MXBE-350

Property	H4 1NE	MXBE-350
Virgin Density ($\mathrm{gm} / \mathrm{cm}^{3}$)	1.81	1.70
Final Char Density ($\mathrm{gm} / \mathrm{cm}^{3}$)	1.44	1.12
Virgin Thermal Conductivity (cal/cm-sec- ${ }^{\circ} \mathrm{C}$)	7.25×10^{-4}	5.00×10^{-4}
Final Char Thermal Conductivity (cal/cm-sec- ${ }^{\circ} \mathrm{C}$)	5.76×10^{-4}	3.30×10^{-4}
Virgin Specific Heat (Average) (cal/gm)	0.307	0.332
Final Char Specific Heat (at $0^{\circ} \mathrm{C}$) (cal/gm)	0.173	0.185
Specific Heat of Volatiles (cal/gm)	0.24	0.24
Heat of Decomposition (cal/gm)	158.0	73.0
Average Activation Energy (kcal/gm-mole)	62.13	52.11
$\begin{aligned} & \text { Pre-Exponential Factor } \\ & \left(\mathrm{sec}^{-1}\right) \end{aligned}$	$\begin{aligned} & 1.98 \times 10^{29} \\ & 8.16 \times 10^{18} \end{aligned}$	$\begin{aligned} & 6.78 \times 10^{44} \\ & 1.30 \times 10^{16} \end{aligned}$
Order of Reaction	$\begin{array}{r} 17.33 \\ 6.30 \end{array}$	$\begin{array}{r} 55.40 \\ 3.81 \end{array}$
Emissivity	0.90	0.90

Figure 75. Calculated and Experimental Temperatures and Calculated Active Material Densities for H41NE

Figure 76. Calculated Spatial Dependent Temperatures and Active Material Densities for H41NE

The trends in the experimental data presented in Figure 75 are similar to those exhibited for wood at the lower temperatures. A low temperature endothermic reaction resulted in a temperature depression near $200^{\circ} \mathrm{C}$. This same endothermic reaction is evident in the specific heat data shown in Figure 62. Unlike wood, however, after the initial temperature depression the temperatures are reasonably linear with time. The sharp temperature rise which usually accompanies the passage of the pyrolysis interface is not present. This is primarily a result of the high endothermic heat of decomposition of H41NE.

There is reasonably good agreement between the calculated and experimental temperatures for H41NE. The variations are thought to be due primarily to the lack of accurate temperature dependent thermal conductivity data for both the virgin and char components and the endothermic reaction which is not considered in the model. In order to evaluate the accuracy of the calculated temperatures, a statistical analysis of the data was performed for each thermocouple location. Additionally, overall errors were calculated based on the data from all three locations. The results of these computations are presented in Table XVII.

Two samples of MXBE- 350 were run using heat fluxes of 4.7 and 2.3 $\mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$. The sample irradiated at $4.7 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}$ contained thermocouples at depths of $0.40,0.44$, and 0.96 cm . The test was terminated upon ignition of the sample at approximately 255 seconds. The results of the calculated and experimental temperatures and calculated nondimensional active material densities are shown in Figure 77. The calculated spatial dependence of temperature and nondimensional active

Figure 77. Calculated and Experimental Temperatures and Calculated Active Material Densities for MXBE-350, 255-Second Run
material density at $40,75,150,225$, and 300 seconds are presented in Figure 78. The Fourier number for this run was 0.11 , with $\Delta x=0.01 \mathrm{~cm}$.

TABLE XVII

```
STATISTICAL ANALYSIS OF CALCULATED VERSUS
``` EXPERIMENTAL TEMPERATURES FOR H4INE
\begin{tabular}{ccccc}
\hline \begin{tabular}{c}
Thermocouple \\
Depth \\
\((\mathrm{cm})\)
\end{tabular} & \begin{tabular}{c}
Average \\
Error \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
Standard \\
Deviation \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
\(95 \%\) Confidence \\
Interval \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
Number \\
of
\end{tabular} \\
\hline 0.44 & -2.48 & 14.0 & \(-7.0-2.03\) & 40 \\
0.60 & 13.66 & 22.0 & \(6.68-20.65\) & 40 \\
0.64 & 0.96 & 29.0 & \(-8.37-10.29\) & 40 \\
Total & 4.05 & 23.67 & \(-0.27-8.37\) & 120 \\
\hline
\end{tabular}

As with H 41 NE , the temperature depressions near \(200^{\circ} \mathrm{C}\) are present in MXBE-350. These depressions are not as evident in this data because of the short duration of the test. Again, there is reasonable agreement between the calculated and experimental temperatures. Table XVIII contains the statistical calculations for the MXBE-350 255-second run.

The second sample of MXBE-350 was irradiated at \(2.3 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}\). Thermocouples were located at depths of 0.40 and 0.44 cm . Since no ignition occurred, the test was continued through completion of pyrolysis. The Fourier number for the computer run was 0.16 , with

Figure 78. Calculated Spatial Dependent Temperatures and Active Material Densities for MXBE-350, 255-Second Run
\(\Delta x=0.01 \mathrm{~cm}\). The results of the experimental and calculated data are presented in Figure 79. The contents of Figure 79 are the same as for the two previous samples, with the exception of the addition of the calculated center temperature and active material density. Figure 80 shows the calculated spatial dependence of temperature and nondimensional active material density at \(150,300,600,900\), and 1200 seconds.

TABLE XVIII

STATISTICAL ANALYSIS OF CALCULATED VERSUS EXPERIMENTAL TEMPERATURES FOR MXBE-350, 255-SECOND RUN
\begin{tabular}{ccccc}
\hline \begin{tabular}{c}
Thermocouple \\
Depth \\
\((\mathrm{cm})\)
\end{tabular} & \begin{tabular}{c}
Average \\
Error \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
Standard \\
Deviation \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
\(95 \%\) Confidence \\
Interval \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
Number \\
of
\end{tabular} \\
\hline 0.40 & 16.2 & 23.83 & \(4.63-27.74\) & Data Points \\
0.44 & 3.79 & 21.18 & \(-6.47-14.07\) & 17 \\
0.96 & -27.55 & 23.63 & \(-39.01--16.09\) & 17 \\
Total & -2.52 & 29.14 & \(-10.68-\) & 5.64
\end{tabular}

The temperature depressions are more evident in this particular test because of the longer duration and lower heating rate. Also, the effects of the pyrolysis of the center of the sample are apparent in the calculated temperatures. The experimental and calculated temperatures appeared to be approaching steady state near 600 seconds. When

Figure 79. Calculated and Experimental Temperatures and Calculated Active Material Densities for MXBE-350, 1200-Second Run

Figure 80. Calculated Spatial Dependent Temperatures and Active Material Densities for MXBE-350, 1200-Second Run
the pyrolysis interface approached the center of the sample, the exothermic reaction caused a sharp increase in the center temperature. This increase was propagated back through the char zone causing the inflection point in both the experimental and calculated temperatures near 600 seconds. The sample reached true steady state upon completion of the reaction at approximately 1200 seconds. The calculated temperatures were somewhat lower than the experimental values between 400\(500^{\circ} \mathrm{C}\). This is probably a result of inaccurate char thermal conductivity data. A much closer fit of the experimental data could have been obtained by modifying the estimated thermal conductivity. However, the results of the computations using the available data are within reason. The results of the statistical analysis for this particular run are presented in Table XIX.

TABLE XIX
STATISTICAL ANALYSIS OF CALCULATED VERSUS EXPERIMENTAL TEMPERATURES FOR MXBE-350, 1200-SECOND RUN
\begin{tabular}{ccccc}
\hline \begin{tabular}{c}
Thermocouple \\
Depth \\
\((\mathrm{cm})\)
\end{tabular} & \begin{tabular}{c}
Average \\
Error \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
Standard \\
Deviation \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
\(95 \%\) Confidence \\
Interval \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \begin{tabular}{c}
Number \\
of
\end{tabular} \\
\hline 0.40 & -3.48 & 25.48 & \(-9.11-2.29\) & Data Points \\
0.44 & -6.20 & 18.27 & \(-10.28--2.11\) & 80 \\
Total & -4.84 & 22.13 & \(-8.30--1.30\) & 80 \\
\hline
\end{tabular}

A sample of \(F R-1\) was irradiated at \(2.2 \mathrm{cal} / \mathrm{cm}^{2}-\mathrm{sec}\). Thermocouples were located at depthr of \(9.4 \%, 0.42\), and 0.87 cm . Ignition of the sample occurred at approximately 150 seconds, however, the test was continued through complete decomposition. The results of this run are shown in Figure 81. Although these data were not compared to calculated values, they are included here because they exemplify the sharp temperature rise near the center of the sample which is frequently observed in wood. This is primarily because of the low heat of decomposition which is more typical of wood. This phenomenon is not generally observed in any type of ablative materials since they are generally exposed to levels of heat flux which overshadow the effects of the pyrolysis.

\section*{DISCUSSION AND RECOMMENDATIONS}

\section*{Kinetic Parameters}

\section*{Experimental Technique and Data}

All six of the materials tested have individual weight loss characteristics. However, with the exception of FR-2, they generally exhibit expected behavior. As the heating rate is increased, the fraction of weight remaining is shifted to the higher temperatures. At lower temperatures, FR-2 exhibits the same trends. After the temperature reaches approximately \(400^{\circ} \mathrm{C}\), however, the curves cross and the higher heating rate weight loss is less than the weight loss at slower heating rates. Figure 31 depicts this phenomenon. This behavior apparently is a result of the effects of pitch fiber on the reaction kinetics since FR-1 and FR-2 are identical with the exception of the fiber type. As shown in Figure 30, FR-1 exhibits expected characteristics.

As a result of the abnormal behavior of FR-2, application of Friedman's method led to negative activation energies for fractions of weight loss less than 0.83. This is clearly not realistic in the view of the physical meaning of activation energy. Therefore, activation energies calculated for values of weight loss less than 0.83 were not used. The end result was a rather poor correlation between the experi-
mental and calculated thermogravimetric data at the lower end of the weight loss curve.

With the exception of FR-2, the experimental data were extremely well behaved. The kinetic parameters calculated based on the data were well within the expected range. They closely reproduced the experimental thermograms.

Any changes in the experimental technique should be directed toward obtaining data at higher heating rates. However, as the heating rates are increased, the heat transfer rates to the sample become important. Sample geometry and thermal properties begin to play a major role in the rate of decomposition and thus affect the kinetic parameters. As a result, the task of developing a technique to produce reliable high heating rate data is a major undertaking in itself.

Data Analysis and Results

The average activation energies calculated by the methods of Flynn and Wall [24] and Friedman [22] agree within 7.5 percent in the worst case. There was less scatter of the data using the Flynn and Wall method. This was thought to be due primarily to the errors in measuring the derivatives of the weight loss used in Friedman's method.

With the exception of FR-2, the kinetic parameters were calculated based on data that represented at least 68 percent of the total weight loss. In contrast, Friedman's technique covered approximately 50 percent. As a result, large values of the order of reaction and preexponential factor were calculated for the first region. However, Friedman's results would have been similar had he considered the same range of decomposition.

In order to evaluate the effect of separating the reaction into two parts, a thermogram for H41NE was calculated using only the kinetic parameters for \(w / w_{0} \leq 0.91\). This corresponded approximately to the region of weight loss considered by Friedman. As shown by the broken lines in Figure 82, the calculated versus the experimental thermograms are in poor agreement.

By dividing the reaction into two separate weight loss regions, the reaction order and pre-exponential factor become empirical parameters that provide a "best fit" of the data. However, this method yields an extremely accurate reproduction of the thermograms over a wide range of heating rates. This is the desired result for kinetic parameters used in thermal models.

The technique of separating the weight loss curve into two regions results in kinetic parameters which reproduce the weight loss curves accurately. The only exceptions were \(\mathrm{FR}-2\), in which the activation energies for weight losses below 0.83 were not used. The other extreme was \(\operatorname{FR}-1\), for which the kinetic parameters were calculated based on over 91 percent of the total weight loss. As a result, FR-1 could have been fit with three sets of pre-exponential factors and orders of reaction to more accurately model the thermograms.

If the kinetics of decomposition of the materials of interest are independent of the rate of heating, the proposed method is valid. As stated previously, future work in this area should be directed toward obtaining experimental data at higher heating rates.

Figure 82. Comparison of Thermograms for H41NE Calculated Using Two Methods

\section*{Specific Heat and Heat of Decomposition}

The method devised to measure specific heat and heat of decomposition during pyrolysis using differential scanning calorimetry is unique. Thermogravimetric data obtained at the same heating rate were used to calculate the instantaneous weight of the sample during the DSC scan. In addition, the effective range of the DSC-1B was extended by using a relationship similar to that proposed by Brennan [28]. This extension allowed the heat of decomposition to be calculated for materials in which completion of pyrolysis was past the temperature range of the instrument.

The accuracy of using TGA data to determine the temperature dependent weight of the DSC sample was determined by comparing the weights of H41NE heated by TGS and DSC at the same rate. The fraction of weight remaining was determined by weighing samples run in the DSC at \(20^{\circ} \mathrm{C} / \mathrm{min}\) to final temperatures of 189,322 , and \(482^{\circ} \mathrm{C}\). The DSC sample weights were compared to TGA sample weights heated at the same rate and to the same final temperature. The maximum error between the two methods was \(\pm 0.02\) fraction weight remaining. This results in \(\pm 2-\) percent error in the specific heat as well.

The accuracy of the DSC has been estimated for nonvolatile materials to be \(\pm 0.3\) percent by McNaughton and Mortimer [33]. This estimate seems extremely optimistic. However, if the accuracy were \(\pm 3.0\) percent for standard DSC measurements, the maximum error in the calculated data would be approximately \(\pm 5.0\) percent. For volatile materials this seems to be well within reason.

The greatest possible source of error is in the extrapolated char specific heat out to the intersection of the apparent virgin material
specific heat. Based on a linear least squares curve fit, the char specific heat was extrapolated 50 to \(175^{\circ} \mathrm{C}\) past the experimental data. Therefore, any future work in this area should focus on measuring specific heat and heat of decomposition at temperatures up to at least \(1000^{\circ} \mathrm{C}\). Comparison of the heat of decomposition calculated in this work with data obtained at higher temperatures would be worthwhile.

\section*{Theoretical Model and Temperature Measurements}

The thermal model satisfactorily predicts the time dependent temperatures in a pyrolyzing composite ablative material. The important physical phenomena which occur during pyrolysis were considered in its formulation. The most apparent omission was the modeling of the low temperature endothermic reaction near \(200^{\circ} \mathrm{C}\). As a result, the model does not closely represent the thermal response of the material through this temperature range. Differences between calculated and experimental temperatures of up to \(40^{\circ} \mathrm{C}\) were observed. However, since this phenomenon occurred over a rather short temperature range, it had little effect on the overall accuracy of the calculations.

The accuracy of this model, like all thermal models, depends on the quality of the thermal and kinetic properties and the boundary conditions. With the exception of the virgin and char material thermal conductivity, all of the pertinent thermal properties and boundary conditions were measured and used as input to the model. Best estimates for the values of the virgin material thermal conductivities were obtained from reference [26]. The accuracy of the predictions of the model could have been greatly improved by using accurate temperature dependent thermal conductivities. The thermal conductivity of the
char is equally as important. It not only affects the magnitude of the temperature profiles, but the entire character of the predicted thermal response is changed as well.

The char thermal conductivity is perhaps the most elusive of the thermal properties. Values have been estimated ranging from a fraction of the virgin material thermal conductivity by Panton and Rittman [2] to many times the original value by Murty Kanury [6]. Part of the uncertainty is due to the diathermancy (combined conduction and radiation) of the materials being studied. The extent of this phenomenon is a function of the density of the char and the spectral distribution of the incident radiation. For low density chars exposed to short wavelength radiation, the effective thermal conductivity could increase significantly over the measured value. In fact, for some ablatives the diathermancy could become significant enough to change the requirements of the thermal model. If the interior of the sample reaches higher temperatures than the surface due to combined conduction and radiation, the present model is not adequate.

Future work on the model should include addition of a term to account for the endothermic reaction near \(200^{\circ} \mathrm{C}\), and efforts to model the secondary reactions between the char and pyrolysis gases. However, it is felt that the most significant errors in the present work are a result of the lack of accurate virgin and char thermal conductivities. As a result, temperature dependent thermal conductivities should be measured for the materials of interest. Also, significant efforts should be made to determine the effects of diathermancy on the char thermal conductivity of low density materials.

The experimental method was adequate to provide the needed temperature data to compare with predicted values. However, several small changes could improve the method. First, the sample holder should not contact the sample except at selected points. This would remove heat transfer effects resulting from the contact between the sample and the holder. Also, the sample should be smaller to improve the heat flux distribution over the surface. In addition, the in-depth temperatures should be measured at more locations to improve the thermal record for each material.

Continuation of this work should include as its first priority a study of the thermal conductivity of both the virgin and char materials and the addition of a term in the thermal model to account for the endothermic reaction observed in the experimental data.
1. Bamford, C. H., J. Crank, and D. H. Malan, "The Combustion of Wood, Part I." Cambridge Phil. Soc. Proc., 42 (1946), pp. 166-182.
2. Panton, R. L. and J. G. Rittmann, Analytical Study of Pyrolysis Including Effects of Mass Loss and Competing Reactions. (Paper presented at Fall meeting of the Western States Section of the Combustion Institute, La Jolla, California, October 1969.)
3. Weatherford, W., Jr., "Mathematical Theory of Woodburning Mechanisms." (Unpublished paper prepared for the AIChE Journal, 1962.)
4. Thomas, P. H. and P. C. Bowes, "Some Aspects of the Self-Heating and Ignition of Solid Cellulosic Materials." British Journal of Applied Physics, 12 (1961), pp. 222-229.
5. Murty Kanury, A., "A Study of Translent Heat and Mass Transfer in Pyrolyzing Cellulose." (Unpublished M.S. thesis, University of Minnesota, Minneapolis, Minnesota, 1963.)
6. Murty Kanury, A. and P. L. Blackshear, Jr., "Some Considerations Pertalning to the Problem of Wood-Burning." Combustion Science and Technology, 1 (1970), pp. 339-355.
7. Munson, T. R. and R. J. Spindler, Transient Thermal Behavior of Decomposing Materials - Part 1: General Theory and Application to Convective Heating. Avco Corporation RAD-TR-61-10, 1961.
8. Murty Kanury, A., "An Evaluation of the Physico-Chemical Factors Influencing the Burning Rate of Cellulosic Fuels and a Comprehensive Model for Solid Fuel Pyrolysis and Combustion." (Unpublished Ph.D. dissertation, University of Minnesota, Minneapolis, Minnesota, 1969.)
9. Kung, H.-C., "A Mathematical Model of Wood Pyrolysis." Combustion and Flame, 18 (1972), pp. 185-195.
10. Kratsch, K. M., L. F. Hearne, and H. R. McChesney, Theory for the Thermophysical Performance of Charring Organic Heat-Shield Composites. Lockheed Missile and Space Company Report No. LMSC-803099 2-60-63-7, October 1963.
11. Arai, N., "Transient Ablation of Teflon in Intense Radiative and Convective Environments." AlAA Journal, 17, No. 6 (1979), pp. 634-640.
12. Havens, J. A., "Thermal Decomposition of Wood." (Unpublished Ph.D. dissertation, University of Oklahoma, Norman, Oklahoma, 1969.)
13. Stamm, A. J., "Thermal Degradation of Wood and Cellulose." Industrial and Engineering Chemistry, 48, No. 3 (1956), pp. 413-417.
14. McNaughton, G. C., "Ignition and Charring Temperature of Wood." Wood Products, 50, No. 2, pp. 21-22.
15. Akita, K., Studies on the Mechanism of Ignition of Wood. Fire Research Institute of Japan, Report No. 9, 1959.
16. Flynn, J. H. and B. Dickens, "Steady State Parameter - Jump Methods and Relaxation Methods in Thermogravimetry." Thermochimica Acta, 15 (1976), pp. 1-16.
17. Freeman, E. S. and B. Carroll, "The Application of Thermoanalytical Techniques to Reaction Kinetics. The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate." J. Phys. Chem., 62 (1958), p. 394.
18. Anderson, D. A. and E. S. Freeman, "The Kinetics of the Thermal Degradation of Polystyrene and Polyethylene." Journal of Polymer Science, 54 (1961), pp. 253-260.
19. Mickelson, R. W. and I. N. Einhorn, "The Kinetics of Polymer Decomposition Through Thermogravimetric Analysis." Thermochimica Acta, 1 (1970), pp. 147-158.
20. Baer, A. D., J. H. Hedges, J. D. Seader, K. M. Jayakar, and L. H. Wojcik, "Polymer Pyrolysis Over a Wide Range of Heating Rates." AIAA Journal, 15, No. 10 (1977), pp. 1398-1404.
21. Burningham, N. W. and J. D. Seader, "Determination of Kinetic Parameters for the Thermal Degradation of Polymers by the Quasilinearization Technique." Thermochimica Acta, 5 (1972), pp. 59-69.
22. Friedman, H. L., "Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry. Application to a Phenolic Plastic." Journal of Polymer Science: Part \(\mathbb{C}\), 6 (1965), pp. 183-195.
23. Henderson, J. B., J. A. Wiebelt, M. R. Tant, and G. R. Moore, "Determination of the Kinetic Parameters for the Thermal Decomposition of Phenolic Ablative Materials by a Multiple Heating Rate Method." (Accepted for publication in Thermochimica Acta, 1980.)
24. Flynn, J. H. and L. A. Wall, "A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data." Polymer Letters, 4 (1966), pp. 323-328.
25. Pears, C. D., "Boxing Values for Thermal Conductivity and Heat Capacity of a CCA3/SC1008." (Letter to Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio, Contract No. F33615-76-C-5088, May 1978.)
26. "Intermetallics, Cerments, Polymers, Composite Systems (Vol. 6)." Thermophysical Properties of High Temperature Solid Materials. Ed. Y. S. Touloukian, 1967.
27. Dunlap, F., The Specific Heat of Wood. U.S. Department of Agriculture, Forest Service Bulletin No. 110, 1912
28. Brennan, W. P., B. Miller, and J. C. Whitwell, "An Improved Method of Analyzing Curves in Differential Scanning Calorimetry." I8EC Fundamentals, 8 (1969), pp. 314-318.
29. Brown, L. E., "An Experimental and Analytic Study of Wood PyroIysis." (Unpublished Ph.D. dissertation, University of Oklahoma, Norman, Oklahoma, 1972.)
30. Kung, H.-C., "The Burning of Vertical Wooden Slabs." (Paper presented at the 15th Combustion Institute Symposium on Combustion, Tokyo, Japan, August 1974.)
31. Sykes, G. F., Jr., Decomposition Characteristics of a Char-Forming Phenolic Polymer Used for Ablative Composites. NASA Technical Note No. TN D-3810, 1967.
32. Tang, W. K. and W. K. Neill, "Effect of Flame Retardants on Pyrolysis and Combustion of \(\alpha\)-Cellulose." Journal of Polymer Science: Part C, 6 (1964), pp. 65-81.
33. McNaughton, J. L. and C. T. Mortimer, Differential Scanning Calorimetry. (Reprinted from IRS: Physical Chemistry Series 2, 10 (1975).
34. Davy, W. C., G. P. Menees, J. H. Lundell, and R. R. Dickey, "Hydrogen-Helium Ablation of Carbonaceous Materials: Numerical Simulation and Experiment." (Paper 78-866 presented a† the Second AIAA/ASME Thermophysics and Heat Transfer Conference, Palo Alto, California, May 1978.)
35. Schaefer, J. W., T. J. Dahm, D. A. Rodriquez, J. J. Reese, Jr., and M. R. Wool, Studies of Ablative Material Performance for Solid Rocket Nozzle Applications. Final Report prepared for NASA Lewis Research Center, Cleveland, Ohio, March 1968.
36. Murty Kanury, A. and P. L. Blackshear, Jr., "An X-Ray Photographic Study of the Reaction of \(\alpha\)-Cellulose Decomposition." Pyrodynamics, 4 (1966), pp. 285-298.
37. Wiebelt, J. A. and J. B. Henderson, Techniques to Predict Temperature Profiles in Pyrolizing Alpha-Cellulose. Final Report, USAF, Eglin Air Force Base, Florida, 1973.
38. Martin, S., "Diffusion-Controlled Ignition of Cellulosic Materials by Intense Radiant Energy." Tenth Symposium (International) on Combustion Proceedings. The Combustion Institute, 1965, p. 877.
39. Ulrich, R. D. and A. G. Butcher, Post-Ignition Burning of Horizontal Wood Surfaces. Naval Weapons Center Report No. TP5271, 1971.
40. Lincoln, K. A., "Flash Pyrolysis of Solid Fuel Materials by Thermal Radiation." Pyrodynamics, 2 (1963), p. 133.
41. Norem, S. D., M. J. O'Neill, and A. P. Gray, "The Use of Magnetic Transitions in Temperature Calibration and Performance Evaluation of Thermogravimetric System." Thermochimica Acta, 1 (1970), pp. 29-38.
42. Ginnings, D. C. and G. T. Furukawa, "Heat Capacity Standards for the Range 14 to 1200 K." Journal of the American Chemical Society, 75 (1953), pp. 522-527.

APPENDIX A

LISTING OF COMPUTER PROGRAM
```

    PFOGRAY PYRCIINPLT,OUTFUT,TAPES=INPUT,TAPEG=OUTPUTI
    REAL LTI,LT2,LT3,LT4,LT5
    REAL K,KA,KC,KVICPT,KVSLP,MG,MGTEMP
    OIHENSICN TH(205),T(205),RHO(205),RHOH(205),RHCA(205),RHOC(205)
    DIMENSICN RHCAH(205)
    OIMENSION TSTAT(4.90),TEX(4,90),TMEX(90),TME(90)
    OIMENSICN LT1(205),LT2(205),LT3(205),LT4(205),LT5(205)
        OIMENSICN CFA(205),CPC(205),CPS(205),ROCP(205),HA(205),HC(205)
        OIMEASICN HG(205),K(205),KA(205),KC(205),X(205),HG(205).
    1 21(205),22(205),23(205),24(205)
        CIMEASICN A(105),RO(10S)
        OIMENSICN IRLFF(800),RFLOT(5),PLT(300), PLTI(300), PLT2(300),
    1 PLT3(300),PLT4(300),PLT5(300), PLT6(300),PLT7(300),PLTA(300),
    1 FLTC(300),PLT10(300),PLT11(300),NOPLT(4)
    101 FCRMAT(1H1)
102 FORMAT//////.50X.*TIME=*.F10.5.4X.*ONET=*.F10.5.//////)
103 FCEMAT (40X,I4,5X,F6.3,5X,F6.2,5X,F7,4,5X,F4,.1)
104 FCRMATI3X,I4, 2X,F6.3,2X,F8.2,2X,F7,4,2X,F7.4.1X,1PE12.3,1X,
1 1FE12.3,1X,1PE12.3,1X,1PE12.3,1X,1PE12.2,2X,1PE12.4)
105 FORMAT(////,60X,*INPUT DATA*,////1)
106 FCFMAT(20X,*NX=*,I 4, 4X,*NT=*,I5,4X,*XMAX=**
1FF6.2,4X,*TMAX=*,F6.1,4X,*TI=*,F6.1,4X,*ORAO=*,F6.2.////1/
107 FOKMAT (2X,*KVICPT=*,1PE12.3,4X,*KVSLP=*,1PE12.3.4X,
1 *VICPT=*,1PE12.3,4X,*VSLP=**
1 1PE12.3.4X,*CICPT=*,1PE12.3.4X,*CSLP=*,1PE12.3.1/1/.35X,
1 *CPE=*,1PE12.3.4X,*RHOV=\#,1PE13.4.4X,*RHOF=*,1PE13.4.1/1/1)
108 FORMAT(40X,*EC=*,F4.2,5X,*EV=*,F4.2,5X,*AV=*,F4.2,5X,*AC=*,
1F4.2.1/1/1
10 G FORMAT(10X,*OPZ*,FG.1,4X,*RO1=*,FG.2,4X,*RO2=*,F6.2,4X,*CHNG=*
1,F5.2,5X,*E=*,1PE1404,4X,*A1=*,1PE11.2,4X,*A2=*,1PE11..2)
110 FORMAT (////,54x,*CALCULATED CONSTANTS*./////)
111 FCRMAT (E3X,*CX=*,FE.3,EX,*OT=*,F6.3,5x*/1/,35X,*C2=**

```

```

    DATA SIG,F/1.3E9E-12,1.986/
    REAC (5,*)PTMX,RPLOT,NPRINT,NOPLT
    WFITE(G,*)PTMX,RFLCT,NFRINT,NOPLT
    WFITE(E,101)
    REAC (5,*)NX,NT,XMAX,TMAX,TI,QRAD
    REAC(5,F)KVICPT,KVSLP,VICPT, VSLP,CICPT,GSLP,CPG,RHOV,RHOF
    REAC (5,*)EC,EV,AV,AC
    REAO(5,*)E,RO1,RO2,A1, A2,CHNG,QP
    WRITE(E.105)
    WGITE(E,1OEINX,NT, XHAX,TMAX,TI,QRAD
    WRITE(E,107IKVICPT,KVSLP,VICPT,VSLP,CICPT,CSLP,CPG,RHOV,RHOF
    WRITE(E,108)EC,EV,AV,AC
    WFITE(E,10GIOP,RC1,RO2,CHNG,E,A1,A2
    the following are set in a data statememt.
    SIG = STEFAN-BOLT2NIN CCNSTANT (CAL/SEC-CM**2-K**4)
    R = GAS CCNSTANT (CAL/GH-MOLE-K)
    the fCLloning are read in cN oata caros
    ptmx = maxImum temperature to be plotteo
    RPLOT = VECTOR CONTAIAING THE TIMES AT WHICH THE SPATIAL
        tEmfegature and density profiles are to be flotteo
    ```
NPGIMT = INTERVAL IN WNICH CALCULATEO VARIABLES ARE PRINTEO
NOPLCT = VECTOR CONTAIAING NODE NUMBERS TO BE PLOTTEO
NX = NUMBER OF SPATIAL NODES (INTEGER)
NT E NUMEER CF TIME NODES (INTEGER)
XMAX = HALF THICKNESS OF MATERIAL (CM)
TMAX = MAXIPUN RUN TIME (SEC)
TI = INITIAL SLAB TEMPERATURE (C)
QRAD = INCIOENT RAOIANT HEAT FLUX (CAL/CPF*2-SEC)
KV = THERMAL CONCUCTIVITY OF VIRGIN MATERIAL (CAL/CM-SEC-C)
VICPT = SPECIFIC HEAT OF VIRGIN MATERIAL AT T=O (CAL/EM-C)
VSLP = SLCPE OF TEMPERATURE DEPENOENT SPECIFIC HEAT OF VIRGIN
 MATERIAL (CAL/GH-C**2)
CICPT = SPECIFIC HEAT OF FINAL CHAR MATERIAL AT T=O (CAL/GM-C)
CSLP = SLCFE OF TEMPERATURE DEPENDENT SPECIFIC HEAT OF FINAL
 CHAR FATERIAL (CAL/GH-C**2)
CPG = SPECIFIC HEAT OF GASEOUS PROOUCTS (CAL/GM-C)
RHCV = CENSITY OF VIFGIN MATERIAL (GM/CC)
RHCF = FIAAL DENSITY OF CHAR (GM/CC)
AV = AESCRPTIVITY CF VIRGIN MATERIAL
EV = EMISSIVITY CF VIRGIN MATERIAL
AC = ABSCRPTIVITY CF CHAR MATERIAL
EC = EMISSIVITY CF CHAR MATERIAL
E I AVERAGE ACTIVATION ENERGY (CAL/GM-MCLE)
A1 = PRE-EXPCNENTIAL FACTOR FOR FIRST PART OF WEIGHT LOSS
 REGICA (1/SEC)
A2 = PRE-EXPCNENTIAL FACTOR FOR SECOND PART OF WEIGHT LOSS
REGICN (1/SEC)
RO1 = ORCER OF REACTICN FOR FIRST PART OF WEIGHT LOSS REGION
RO2 = ORCER OF REACTICN FOR SECONO PART OF WEIGHT LCSS REGICN
CHNG = FRACTION OF WEIGHT LOSS DIVIDING THE THO REGIONS
GP & HEAT OF PYROLYSIS (CAL/GM)
THE FOLGOWING ARE CALCLLATED IN THE PROGRAM
T = TIME CEFENOENT TEMPERATURE IN PYROLYZING MATERIAL (C)
K = TIME OEFENCENT THERMAL CONDUCTIVITY (CAL/CM-SEC-C)
RHO = TIME CEFENDENT OENSITY (GM/CC)
RHOA = TIME CEFENCENT CENSITY OF ACTIVE MATERIAL (GM/CC)
RHOC = TIME CEFENCENT CENSITY OF CHAR MATERIAL (GH/CC)
CPS = TIME OEFENOENT SPECIFIC HEAT (CAL/GM-C)
CPA = TIME CEFENOENT SPECIFIC HEAT OF ACTIYE MATERIAL
(CAL/(M-C)
CPC = TINE DEFENOENT SPECIFIC HEAT OF CHAR PATERIAL ICAL/GM-CD
RCCP = TOTAL ENEFGY CAPACITY (CAL/CC-C)
HA = ENTHALPY CF ACTIVE MATERIAL (CAL/GM)
HC = ENTHALPY OF CHAR PATERIAL (CAL/GM)
HG = ENTHALPY OF GASEOUS PRODUCTS (GAL/GM)
GALCULATING TIPE STEP (SEC)
OT=TMAX/FLCAT(MT-1)
Calculating space betheen nodes
OX=XMAX/FLCAT (NX-1)
C
```

```
C
C
C
 TIME=0.0
 OC 10I=1,NX
 X(I) =OX*FLCAT(I-1)
 T(I)=TI
 TH(I)=TI
 RHC(I)=RHCV
 RHOH(I)=RHCV
 KमOA(I)= KHCV
 RHOAH(I) = RHCV
 HG(I)=0.0
 HA(I)=0.0
 HC(I)=0.0
 HG(I)=0.0
 A(I)=A1
 RC(I)=RO1
 10 CONTINUE
 T(NX+1)=TI
 Tr(NX+1)=TI
 RHC(NX+1)=RHCV
 RHOH(NX+1)=RHCY
 RHOA (NX*1)= RHCV
 RHOAH(AX+1)=RHCV
 X(NX+1) = X (NX) +CX
 ONET=0.0
 WRITE(E,101)
 WRITE(E,102)TIPE,QNET
 NXLxAX+1
C
C WFITING CCNCITIONS AT TIME=0
 DO 20 I=1,NXL
20 WFITE(6.103)1,X(I).T(I),RHO(I),MG(I)
C
C
C
PLCT RCLTINES
PLT(NX+1) =0.0
P&T(AX+2)=XMAX/5.0
PLTA(NX+1)=0.0
PLT& (NX+2)=FTMX/5.0
PLTG(NX+1)=0.0
PLTG(NX+2)=1.0/5.0
CALL PLCTS(IBUFF,800,1)
CALL CCIDNT(O..3,3HJBH)
CALL PLCT(1.0.1.0.03)
CALL AXIS(0.0,0,0,8HDEFTH-CM, -0,5,0,0,0,PLT(NX+1),PLT(NX+2))
CALL AXIS(0.0.5.0.1H,1,5.0,0.0.PLT(NX+1),PLT(NX+2))
```

```
 CALL AXIS(0.0,0.0.13HTEMPERATURE-C.13,5,0,90.0,PLT8(NX+1).
 1 FLT&(NX+2))
 CALL AXIS(5.0,0.0,7HDEASITY,-7.5.0,90.0,PLTG(NX+1),PLTG(NX+2))
 KFLT=0
C
C STARTING TIME LOCP
 IIST=15.0/0T
 KKST=0
 JJST=0
 OO 30 J=1;NT
 GALCULAIING MATERIAL PROPERTIES
 OC 40 I=1,NX
 C=A(I)*OT*RHOV*EXP(C3/(T(I) +273.15))
 GrC(I)=-C*((RHOH(I)-RHOF)/RHOV) **RO(I) +RHCH(I)
 RHO&(I)=(RH(II)-RHOF)/C2
 FHOC(I)=RHC(I)-RHCA(I)
 FAT=RHO(I)/RHOV
 IF(FAT.LE.CrNG)A(I)=AZ
 IF(FAT.LE.CHNG)RC(I)=RC2
 CFC(I)=CICPT+CSLP*T(I)
 IF(TII).GT.700.)CPC(I)=CICPT+700.*CSLP
 CFA(I)=VICPT+VSLP*T(I)
 IF(T(I).GT.700.)CPA(I) =VICPT+700.*VSLP
 HC(I)=CPC(I)*(T(I)-TI)
 HA(I)=CPA(I)*(T(I)-TI)
 HG(I)=CPG*(T(I)-TI)
 KA(I)=KVICPT+KVSLP*T(I)
 IF(T(I).GT.E OO.0)KA(I)=KVICFT+KVSLP*600.0
 KC(I)=RHOF*KA(I)/RHCV
 IF(T(I).GT.225.0)KC(I)=RHOF*(KVICPT+KVSLP*225.0)/RHOV
 KC(I)=0.7*KA(I)
 K(I)=(RHOA(I)/RHCV) *KA(I) +((1.-RHO(I)/RHOV)/C2) *KC(I)
 RCCF(I)=RHOA(I)*CFA(I)*RHOC(I)*CPC(I)
 CFS(I) =RCCP(I)/RHC(I)
 -0 CCNTINLE
 RHO(NX+1)=RHC(NX-1)
 RHCA(NX+1)=RHCA(NX-1)
 K(NX+1)=K(NX-1)
C
C CALCLLATING GAS MASS flUX
C
 MGTEMP=0.0
 OO 50 A=1,NX
 I=NX-N+1
 FLNC=-(OX/OT)*(RHC(I)-RHOH(I))
 IF(A.EO.1.CF.N.EO.NX)FUNC=FUNC/2.O
 MGTEPF=HGTEPP+FUNC
 HG(I)= MGTEMF
 50 CCNTINLE
 MG(NX)=0.0
 CALCULATING EOLNOARY CCNOITIONS
 O=(GFAC/4.0)*(TIME+.OT)
```

```
 IF(TIME.GE.4.0) O=QRAO
 QG=(0.80/225.0)*(TINE+CT)
 IF(TIFE.GT.225.0)OG=0.80
 O=OG&O
 QNET=AV*G-EV*SIG*(TH(1)+273.0) **4
 TEMP=ONET+K(1)*(TH(2)-TH(1))/OX
 TEMP=TEPF+MG(1)*CPG*(TH(2)-TH(1))
 TENP=TEMP + (CX/(2.*OT))*(FG(1) + OP +C4*HC(1)-C5*HA(1))*
 1(EHC(1)-RHOH(1))
 C6=RHO(1)*CFS(1)*OX/(2.0*OT)
 T(1)=(TEMP+C6*TM(1))/CE
C
C CALCULATING NEM TEMFERATURES
 0060 I=2.NX
 Z1(I)=(K(I)*OT)/(AOCP(I)*OX**2)
 Z2(I)=0T/(4.0*OX**2*ROCP(I))
 Z3(I)=(NG(I)*CPG*DT)/(RCCP(I)*OX)
 Z4(I)=(RHC(I)-RHCH(1))/ROCP(I)
 LT1(I)=Z1(I)*(TH(I+1)-2.0*TH(I)+TH(I-1))
 LT2(I) =22(I)*(K(I+1)-K(I-1))*(TH(I+1)-TH(I-1))
 LT3(I)=Z3(I)*(TH(I)-TH(I-1))
 LT4(I)=24(I)*(HG(I)*QP-HA(I)*C5*C4*HC(I))
 T(I)=TH(I)+LTI(I)+LT2(I)+LT3(I)+LT4(I)+LT5(I)
 jO CONTINUE
 OC }45I=1,N
 TH(I)=T(I)
 RHCAH(I)=RHCA(I)
 EHOF(I)= KrC(I)
 T(NX+1)=T(NX-1)
 RHCAF(AX+1)=RHCA(NX-1)
 TH(NX+1)=T(NX-1)
 RHOH(NX+1)= RHC(NX-1)
 TIME=TIME+DT
 JJST=JUST +1
 IF(IIST.NE.JNSTIGO TO 25
 KKST =KKST+1
 TME(KKST)=TIME
 TSTAT(1,KKST)=T(NOPLT(2))
 TSTAT(2,KKST)=T(NOFLT(J))
 TSTAT(3,KKST)=T(NOPLT(4))
 TSTAT(4,KKST) =T(NDPLT(4))
 JJST=0
25 CCNTINUE
 KPEINT=KPRINT +1
 IF(KFRIAT.LT.APRINTIGO TO 45
 KFLT=KFLT $1
 WFITE(6,101)
 WFITE(E,102)TIPE,ONET
 OO OD I=1,AXL
 WRITE(G,104)I,X(I),I(I),RHO(I), RHOA(I),MG(I), HG(I),HA(I), MC(I)
 1 OK(I),RCCP(I)
80 CCNTINUE
 KPRIAT=0
LOACING TIME, TEMPERATLRE ANO NON-OIMENSIONAL CENSITY INTO PLCTIING VECTCRS AT SPECIFIED DEPTHS
```

```
 PLTI(KFLT)=TIME
 PLT2(KFLT)=T(NOPLT(1))
 PLT3(KFLT)=RHOA(NOPLT(1))/RHOV
 PLT4(KFLT)=T(NDPLT(2))
 PLT5 (KFLT)= FHCA(NCPLT(2))/RHOV
 PLTG(KFLT)=T(NCPLT(3))
 PLTT(KFLT)=RHCA(NOPLT(3))/RHOV
 PLT10(KPLT)=T(NDPLT(4))
 PLT11(KPLT) =RHCA(NOPLT(4))/RHOV
 -5 CCNTINUE
 0070 I=1,5
 IF(J.EG.IFIX(RPLCT (I)/CT))GO TO 65
 7 CONTINLE
 GC TO 30
 55 CONTINLE
 00 75 I=1,NX
 PLT(I)=X(I)
 PLTE(I)=T(I)
 PLTG(I)=RHCA(I)/RHOV
 75 CCNTINCE
 CALL LINE (PLT,FLTO,NX,1,0,0)
 CALL LINE(PLT,FLTG,NX,1,0,0)
30 CONTINCE
C
C PLCT RCUTINES
C
 PLT1(KFLT+1)=0.0
 PLT1(KFLT+2)=TMAX/8.0
 PLT2(KFLT+1)=0.0
 PLT2(KFLT+2)=FTMX/5.0
 PLT3(KPLT+1)=0.0
 PLT3(KFLT+2)=1.0/5.0
 CALL PLCT (10.0.0.0.-3)
 CALL AXIS(0.0.0.0,8HTIME-SEC,-8,0.0,0.,PLT1(KFLT+1),PLT1(KPLT+2))
 CALL AXIS (0.0,5.0,1H ,1,0.0,0.0,PLTI(KPLT+1),PLTI(KPLT+2))
 CALL AXIS (0.0,0.0.13HTEMPERATURE-C,13,5,0,90.0.PLT2(KPLT+1),
 1 PLT2(KPLT+2))
 CALL AXIS(0.0,0.0,7HDENSITY,-7,5,0,90.0,PLT3(KFLT+1),PLT3(KPLT+2))
 CALL LINE(PLT1,PLT2,KPLT,1,0,0)
 CALL LINE(PLT1,PLT3,KPLT,1,0,0)
 00 co I=1,KPLT
 PLT2(I)=PLT4(I)
30 PLT3(I)=PLT5(I)
 CALL LINE(PLT1,PLT2,KPLT,1,0,0)
 CALL LINE(PLT1,PLT3,KPLT,1,0,0)
 OC &5 I=1,KPLT
 PLT2(I)=PLTE(I)
95 PLT3(I)=PLT7(I)
 CALL LINE (PLT1,PLT2,KPLT,1,0,0)
 CALL LINE(PLTI.PLT3,KPLT,1,0.0)
 00 55 I=1,KPLT
 PLT2(I)=PLT10(I)
55 PLT3(I)=PLTII(I)
 CALL LJAE(PLT1,PLT2.KPLT,1,0,0)
 CALL LINE (PLT1,PLT3,KPLT,1,0,0)
 CALL PLCT(0.,O..999)
 CALL STAT(TSTAT,TME)
 STOP
 END
```

```
 SUQRCUTIME STATITSTAT.TME)
 DIMENSION TSTAT(4,90),TEX(4,90),THEX(90),TME(90)
 10 FORMAT (30X,F10.5.5X,F10.5.5X,F10.5.5X,F10.5)
C N = NUFBER CF DATA PCIATS FOR EACH NOOE
 m = NUMBER OF NODES OF DATA
 REAC(5,*)N.M
 HRITE(E,F)N,M
 OO 1 J=1,N
 REAO(5,*)(TMEX(J),(TEX(I,J),I=1,M))
 WRITE(E,10) (TMEX(J),(TEX(I,J),I=1,M))
 1 WEITE(E,1O)(TME(J),(TSTAT(I,J),I=1,M))
 STAT7=0.0
 STAT8=0.0
 H=M-2
 OO 3 I=1.M
 STAT2=0.0
 STAT3=0.0
 OC 2 J=1,N
 STATG=TSTAT(I,J)-TEX(I,J)
 STAT7=STATG+STATT
 STATA=STAT6**2*STAT8
 STAT1=TSTAT(I,J)-TEX(I,J)
 STAT2=STAT1*STAT2
2 STAT3xSTAT1**2+STAT3
 STAT4=STAT2**2/FLOAT(N)
 VAR=(STAT3-STAT4)/FLCAT(N-1)
 SC=SORT(VAR)
 XBAE=STAT2/FLCAT (N)
 SX=SGRT(VAR/FLCAT(N))
 CCF1=XEAR-2.*SX
 CCF2=XEAR+2.*SX
 WEITE(E,*)STATZ,STAT3,STAT4,VAR,SO,XBAR,SX,COF1,COF2
 3 CONTINLE
 STATGxSTAT7**2/FLCAT(N*M)
 VAR=(STA18-STATG)/FLOAT(N*M-1)
 SC=SGRT (VAR)
 XEAR=STAT7/FLOAT(N*M)
 SX=SGRT(VAR/FLCAT(N*H))
 CCF1=XEAR-2.*SX
 COF2=XEAG+2.*SX
 HEITE(E,F)STAT7,STAT&,STATG,VAR,SO,XBAR,SX,COF1,COFZ
 RETURN
 ENO
```

APPENDIX B

THERMOGRAVIMETRIC DATA

TABLE XX
WEIGHT LOSS AND RATE OF WEIGHT LOSS DATA FOR H41NE

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{mln}$$w_{0}=7.9306$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.4272$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{mln}$$w_{0}=7.8858$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.6769$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.1357$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.4106$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) |
| 0.98 | 403.0 | 0.0203 | 390.0 | 0.0106 | 400.0 | 0.0151 | 371.7 | 0.0051 | 370.6 | 0.0042 | 363.3 | 0.0026 |
| 0.97 | 436.0 | 0.0496 | 432.3 | 0.0312 | 430.0 | 0.0304 | 412.2 | 0.0146 | 398.6 | 0.0083 | 392.0 | 0.0047 |
| 0.96 | 460.0 | 0.0683 | 454.9 | 0.0436 | 452.0 | 0.0384 | 437.1 | 0.0195 | 423.6 | 0.0105 | 415.6 | 0.0059 |
| 0.95 | 480.0 | 0.0786 | 476.5 | 0.0498 | 472.0 | 0.0415 | 456.9 | 0.0215 | 441.2 | 0.0112 | 430.0 | 0.0062 |
| 0.94 | 500.0 | 0.0827 | 497.1 | 0.0517 | 492.0 | 0.0415 | 479.7 | 0.0215 | 460.9 | 0.0110 | 452.5 | 0.0061 |
| 0.93 | 521.0 | 0.0815 | 421.9 | 0.0504 | 514.0 | 0.0393 | 495.3 | 0.0203 | 481.7 | 0.0102 | 469.9 | 0.0058 |
| 0.92 | 544.0 | 0.0773 | 543.5 | 0.0479 | 539.0 | 0.0378 | 521.2 | 0.0191 | 504.6 | 0.0097 | 492.5 | 0.0054 |
| 0.91 | 566.0 | 0.0773 | 565.1 | 0.0470 | 561.0 | 0.0382 | 542.0 | 0.0193 | 528.4 | 0.0099 | 514.0 | 0.0054 |
| 0.90 | 586.0 | 0.0808 | 586.7 | 0.0485 | 581.0 | 0.0413 | 563.8 | 0.0206 | 548.2 | 0.0107 | 531.4 | 0.0058 |
| 0.89 | 605.8 | 0.0866 | 608.4 | 0.0533 | 602.9 | 0.0445 | 584.6 | 0.0223 | 567.9 | 0.0112 | 556.0 | 0.0062 |
| 0.88 | 623.5 | 0.0922 | 627.6 | 0.0571 | 620.7 | 0.0465 | 604.1 | 0.0234 | 587.6 | 0.0116 | 571.4 | 0.0063 |
| 0.87 | 640.3 | 0.0953 | 645.8 | 0.0580 | 639.5 | 0.0462 | 621.3 | 0.0236 | 606.9 | 0.0112 | 591.9 | 0.0063 |

TABLE XX (Continued)

| w/wo | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{m} / \mathrm{n}$$w_{0}=7.9306$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{m} / \mathrm{n}$$w_{0}=7.4272$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8858$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.6769$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.1357$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.410 \epsilon$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $\left.T^{( }{ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ $(1 / \min )$ | $\left.T^{( }{ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \left(-1 / w_{0}\right)(d w / d t) \\ (1 / \mathrm{m} / \mathrm{n}) \end{gathered}$ | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) |
| 0.86 | 659.0 | 0.0934 | 664.0 | 0.0567 | 659.3 | 0.0426 | 640.5 | 0.0221 | 627.5 | 0.0097 | 612.8 | 0.0054 |
| 0.85 | 676.7 | 0.0831 | 687.0 | 0.0482 | 686.0 | 0.0332 | 665.7 | 0.0176 | 651.1 | 0.0083 | 635.6 | 0.0049 |
| 0.84 | 705.2 | 0.0657 | 717.7 | 0.0380 | 720.6 | 0.0259 | 698.1 | 0.0140 | 685.6 | 0.0059 | 668.2 | 0.0038 |

TABLE XXI
WEIGHT LOSS AND RATE OF WEIGHT LOSS DATA FOR H41D

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{m} / \mathrm{n}$$w_{0}=7.3061$ |  | HeatIng Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8094$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.0392$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.9664$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.5368$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.6958$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \left(-1 / w_{0}\right)(d w / d t) \\ (1 / \mathrm{m} / \mathrm{n}) \end{gathered}$ | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{mln}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{mln}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) |
| 0.97 | 400.0 | 0.0160 | 407.1 | 0.0190 | 397.7 | 0.0125 | 382.7 | 0.0060 | 380.6 | 0.0038 | 367.1 | 0.0019 |
| 0.96 | 437.0 | 0.0454 | 437.7 | 0.0385 | 431.3 | 0.0303 | 418.6 | 0.0152 | 412.4 | 0.0086 | 397.4 | 0.0040 |
| 0.95 | 461.0 | 0.0682 | 459.2 | 0.0507 | 451.6 | 0.0405 | 440.1 | 0.0210 | 431.9 | 0.0114 | 418.6 | 0.0057 |
| 0.94 | 480.0 | 0.0825 | 478.6 | 0.0580 | 468.9 | 0.0465 | 456.5 | 0.0240 | 450.3 | 0.0127 | 436.7 | 0.0064 |
| 0.93 | 497.0 | 0.0913 | 495.9 | 0.0613 | 486.2 | 0.0497 | 474.0 | 0.0254 | 466.7 | 0.0131 | 449.8 | 0.0065 |
| 0.92 | 516.0 | 0.0944 | 513.3 | 0.0618 | 504.5 | 0.0500 | 491.4 | 0.0255 | 483.1 | 0.0130 | 467.0 | 0.0064 |
| 0.91 | 534.0 | 0.0958 | 529.6 | 0.0608 | 522.8 | 0.0492 | 508.8 | 0.0250 | 498.5 | 0.0126 | 486.1 | 0.0062 |
| 0.90 | 552.0 | 0.0958 | 548.0 | 0.0607 | 539.0 | 0.0483 | 525.2 | 0.0245 | 516.0 | 0.0123 | 499.2 | 0.0061 |
| 0.89 | 568.0 | 0.0965 | 567.4 | 0.0616 | 557.3 | 0.0492 | 542.7 | 0.0246 | 534.4 | 0.0125 | 519.4 | 0.0062 |
| 0.88 | 587.0 | 0.1010 | 582.7 | 0.0645 | 573.6 | 0.0509 | 561.1 | 0.0256 | 548.8 | 0.0131 | 533.5 | 0.0066 |
| 0.87 | 601.0 | 0.1063 | 600.0 | 0.0691 | 589.9 | 0.0546 | 575.5 | 0.0274 | 566.2 | 0.0142 | 549.7 | 0.0071 |
| 0.86 | 616.7 | 0.1143 | 613.9 | 0.0731 | 606.1 | 0.0581 | 592.9 | 0.0291 | 580.6 | 0.0149 | 562.8 | 0.0074 |

TABLE XXI (Continued)

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{mln}$$w_{0}=7.3061$ |  | HeatIng Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8094$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{mln}$$w_{0}=7.0392$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.9664$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.5368$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.6958$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{m} / \mathrm{n}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{m} / \mathrm{n}$ ) | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{m} / \mathrm{n}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{m} / \mathrm{n}$ ) | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | T( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} \left(-1 / v_{0}\right)(d \ln / d t) \\ (1 / \mathrm{min}) \end{gathered}$ |
| 0.85 | 632.4 | 0.1196 | 627.8 | 0.0759 | 620.2 | 0.0607 | 605.8 | 0.0303 | 595.9 | 0.0154 | 577.9 | 0.0075 |
| 0.84 | 645.2 | 0.1230 | 640.8 | 0.0755 | 635.4 | 0.0609 | 617.5 | 0.0299 | 608.7 | 0.0150 | 591.0 | 0.0073 |
| 0.83 | 658.0 | 0.1224 | 656.7 | 0.0718 | 649.5 | 0.0581 | 634.2 | 0.0281 | 625.1 | 0.0138 | 608.4 | 0.0064 |
| 0.82 | 674.7 | 0.1150 | 672.6 | 0.0639 | 665.7 | 0.0519 | 647.9 | 0.0247 | 638.7 | 0.0118 | 626.8 | 0.0053 |
| 0.81 | 692.4 | 0.0983 | 697.5 | 0.0501 | 686.9 | 0.0418 | 670.4 | 0.0201 | 661.9 | 0.0096 | 649.1 | 0.0043 |
| 0.80 | 715.1 | 0.0787 | 727.3 | 0.0379 | 714.2 | 0.0317 | 697.8 | 0.0154 | 689.0 | 0.0073 | 676.2 | 0.0032 |
| 0.79 | 753.5 | 0.0560 | 768.1 | 0.0250 | 751.6 | 0.0224 | 732.1 | 0.0112 | 722.9 | 0.0052 | 715.9 | 0.0021 |

TABLE XXII
WEIGHT LOSS AND RATE OF WEIGHT LOSS DATA FOR MXBE-350

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8020$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8451$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{mln}$$w_{0}=7.9097$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8589$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{mln}$$w_{0}=7.9766$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8000$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \left(-1 / w_{0}\right)(d \mathrm{w} / \mathrm{dt}) \\ (1 / \mathrm{min}) \end{gathered}$ | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) |
| 0.99 | 255.9 | 0.0172 | 242.6 | 0.0121 | 234.0 | 0.0094 | 217.7 | 0.0046 | 212.2 | 0.0023 | 200.2 | 0.0010 |
| 0.98 | 305.5 | 0.0352 | 288.3 | 0.0245 | 284.0 | 0.0204 | 268.5 | 0.0104 | 257.5 | 0.0055 | 247.2 | 0.0329 |
| 0.97 | 334.4 | 0.0565 | 316.2 | 0.0388 | 314.0 | 0.0322 | 298.3 | 0.0168 | 284.5 | 0.0085 | 272.7 | 0.0042 |
| 0.96 | 356.1 | 0.0728 | 341.1 | 0.0482 | 335.0 | 0.0388 | 317.2 | 0.0197 | 304.8 | 0.0097 | 295.2 | 0.0049 |
| 0.95 | 376.1 | 0.0793 | 360.0 | 0.0507 | 355.0 | 0.0403 | 337.1 | 0.0201 | 326.0 | 0.0097 | 313.8 | 0.0050 |
| 0.94 | 391.9 | 0.0875 | 379.1 | 0.0553 | 374.1 | 0.0436 | 357.0 | 0.0219 | 345.3 | 0.0105 | 330.5 | 0.0053 |
| 0.93 | 407.7 | 0.1015 | 393.2 | 0.0704 | 388.1 | 0.0559 | 373.8 | 0.0277 | 362.3 | 0.0143 | 349.1 | 0.0068 |
| 0.92 | 419.2 | 0.1318 | 404.2 | 0.0905 | 401.2 | 0.0742 | 385.7 | 0.0382 | 373.7 | 0.0186 | 363.3 | 0.0092 |
| 0.91 | 428.7 | 0.1702 | 412.2 | 0.1120 | 408.2 | 0.0931 | 393.7 | 0.0463 | 385.2 | 0.0244 | 373.6 | 0.0114 |
| 0.90 | 432.9 | 0.1965 | 417.3 | 0.1370 | 415.3 | 0.1085 | 399.6 | 0.0550 | 390.4 | 0.0278 | 379.7 | 0.0132 |
| 0.89 | 439.2 | 0.2152 | 425.3 | 0.1546 | 423.3 | 0.1236 | 406.6 | 0.0615 | 397.6 | 0.0298 | 388.0 | 0.0145 |
| 0.88 | 444.5 | 0.2587 | 431.3 | 0.1706 | 427.3 | 0.1379 | 413.5 | 0.0667 | 407.0 | 0.0325 | 395.2 | 0.0156 |

## TABLE XXII (Continued)

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8020$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8451$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{mln}$$w_{0}=7.9097$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8589$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.9766$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8000$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | T ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) |
| 0.87 | 450.8 | 0.2775 | 435.3 | 0.1807 | 434.3 | 0.1440 | 418.5 | 0.0714 | 411.1 | 0.0342 | 401.4 | 0.0165 |
| 0.86 | 454.0 | 0.2947 | 440.4 | 0.1917 | 438.3 | 0.1508 | 424.4 | 0.0751 | 418.4 | 0.0365 | 408.6 | 0.0176 |
| 0.85 | 461.3 | 0.3111 | 444.4 | 0.1980 | 444.4 | 0.1560 | 429.4 | 0.0772 | 425.7 | 0.0390 | 412.7 | 0.0187 |
| 0.84 | 464.5 | 0.3233 | 451.4 | 0.2038 | 448.4 | 0.1602 | 435.3 | 0.0803 | 429.8 | 0.0409 | 418.9 | 0.0197 |
| 0.83 | 470.8 | 0.3298 | 455.4 | 0.2080 | 454.4 | 0.1644 | 440.3 | 0.0827 | 436.1 | 0.0433 | 423.0 | 0.0209 |
| 0.82 | 476.1 | 0.3397 | 460.4 | 0.2126 | 458.4 | 0.1679 | 444.3 | 0.0853 | 439.2 | 0.0450 | 430.2 | 0.0224 |
| 0.81 | 481.3 | 0.3454 | 465.5 | 0.2175 | 464.5 | 0.1702 | 447.2 | 0.0881 | 444.4 | 0.0464 | 433.3 | 0.0238 |
| 0.80 | 484.5 | 0.3495 | 471.5 | 0.2208 | 470.5 | 0.1741 | 453.2 | 0.0905 | 449.6 | 0.0469 | 439.5 | 0.0249 |
| 0.79 | 490.8 | 0.3527 | 474.5 | 0.2227 | 474.5 | 0.1757 | 457.2 | 0.0925 | 452.7 | 0.0464 | 442.6 | 0.0251 |
| 0.78 | 495.0 | 0.3561 | 478.5 | 0.2240 | 478.5 | 0.1757 | 463.1 | 0.0933 | 458.9 | 0.0449 | 448.7 | 0.0251 |
| 0.77 | 499.2 | 0.3561 | 484.5 | 0.2231 | 484.5 | 0.1735 | 466.1 | 0.0930 | 463.1 | 0.0419 | 450.8 | 0.0250 |
| 0.76 | 504.5 | 0.3552 | 487.6 | 0.2191 | 488.6 | 0.1663 | 472.0 | 0.0905 | 469.3 | 0.0374 | 457.0 | 0.0241 |

TABLE XXII (Continued)

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8020$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8451$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.9097$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8589$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.976 \epsilon$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8000$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | T ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (i/min) | T ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | T ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $7\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) |
| 0.75 | 512.9 | 0.3486 | 494.6 | 0.2116 | 495.6 | 0.1546 | 476.0 | 0.0853 | 475.5 | 0.2598 | 460.1 | 0.0226 |
| 0.74 | 516.0 | 0.3356 | 501.6 | 0.1967 | 5.02 .6 | 0.1363 | 482.9 | 0.0763 | 484.9 | -. $01 \pm 8$ | 464.2 | 0.0200 |
| 0.73 | 523.4 | 0.3126 | 506.6 | 0.1628 | 510.6 | 0.1033 | 490.9 | 0.0616 | 498.4 | 0.0115 | 472.4 | 0.0158 |

TABLE XXIII
WEIGHT LOSS AND RATE OF WEIGHT LOSS DATA FOR MXB-360

| $w / w_{0}$ | Heating Rote $160^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.7894$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.3376$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{mln}$$w_{0}=7.1716$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.2935$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.5151$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.5213$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / m / n$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(\mathrm{dw} / \mathrm{d} t)$ <br> ( $1 / \mathrm{m} / \mathrm{n}$ ) | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> $(1 / \mathrm{min})$ | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{m} / \mathrm{n}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) |
| 0.98 | 320.0 | 0.0333 | 317.2 | 0.0245 | 314.2 | 0.0224 | 297.6 | 0.0111 | 298.6 | 0.0067 | 277.2 | 0.0027 |
| 0.97 | 351.0 | 0.0560 | 347.0 | 0.0379 | 343.1 | 0.0329 | 325.3 | 0.0162 | 326.3 | 0.0086 | 306.0 | 0.0043 |
| 0.96 | 377.3 | 0.0659 | 370.9 | 0.0407 | 368.2 | 0.0351 | 349.1 | 0.0173 | 348.1 | 0.0082 | 329.0 | $0.004 i$ |
| 0.95 | 402.6 | 0.0610 | 404.6 | 0.0308 | 394.5 | 0.0277 | 376.3 | 0.0130 | 382.4 | 0.0055 | 355.0 | 0.0029 |
| 0.94 | 439.1 | 0.0497 | 438.3 | 0.0313 | 429.9 | 0.0255 | 410.7 | 0.0125 | 418.5 | 0.0072 | 391.3 | 0.0029 |
| 0.93 | 469.4 | 0.0605 | 466.1 | 0.0397 | 454.2 | 0.0332 | 439.1 | 0.0167 | 442.0 | 0.0084 | 422.6 | 0.0040 |
| 0.92 | 493.7 | 0.0668 | 491.9 | 0.0413 | 482.6 | 0.0361 | 466.4 | 0.0175 | 469.5 | 0.0082 | 445.8 | 0.0041 |
| 0.91 | 521.1 | 0.0629 | 518.6 | 0.0357 | 505.9 | 0.0323 | 489.7 | 0.0151 | 497.1 | 0.0068 | 473.0 | 0.0035 |
| 0.90 | 553.5 | 0.0561 | 553.4 | 0.0319 | 535.2 | 0.0282 | 519.0 | 0.0134 | 527.7 | 0.0064 | 506.3 | 0.0031 |
| 0.89 | 589.9 | 0.0523 | 587.1 | 0.0313 | 565.7 | 0.0271 | 555.5 | 0.0130 | 562.5 | 0.0063 | 537.5 | 0.0031 |
| 0.88 | 624:2 | 0.0503 | 622.1 | 0.0304 | 598.9 | 0.0259 | 588.9 | 0.0122 | 001.3 | 0.0056 | 575.8 | 0.0029 |
| 0.87 | 660.3 | 0.0463 | 664.4 | 0.0249 | 635.3 | 0.0231 | 628.0 | 0.0106 | 647.2 | 0.0041 | 615.7 | 0.0024 |

TABLE XXIV

WEIGHT LOSS AND RATE OF WEIGHT LOSS DATA FOR FR-1

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.6956$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8715$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.6218$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.7786$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.4357$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.5964$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{mln}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \left(-1 / w_{0}\right)(d w / d t) \\ (1 / m / n) \end{gathered}$ | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / m i n$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) |
| 0.99 | 133.1 | 0.0472 | 125.5 | 0.0338 | 118.8 | 0.0297 | 108.0 | 0.0164 | 100.6 | 0.0106 | 93.7 | 0.0051 |
| 0.98 | 150.5 | 0.0830 | 142.3 | 0.0593 | 136.5 | 0.0546 | 125.7 | 0.0286 | 117.7 | 0.0169 | 110.0 | 0.0083 |
| 0.97 | 162.0 | 0.1089 | 156.1 | 0.0760 | 149.3 | 0.0678 | 137.5 | 0.0378 | 128.8 | 0.0207 | 120.2 | 0.0107 |
| 0.96 | 174.2 | 0.1292 | 166.9 | 0.0897 | 161.0 | 0.0773 | 146.3 | 0.0411 | 138.9 | 0.0221 | 129.4 | 0.0113 |
| 0.95 | 186.4 | 0.1403 | 177.8 | 0.0941 | 169.9 | 0.0794 | 156.1 | 0.0424 | 148.9 | 0.0218 | 138.6 | 0.0113 |
| 0.94 | 198.6 | 0.1420 | 188.6 | 0.0930 | 182.7 | 0.0773 | 166.0 | 0.0410 | 160.0 | 0.0199 | 150.8 | 0.0103 |
| 0.93 | 211.8 | 0.1361 | 204.4 | 0.0859 | 195.5 | 0.0706 | 177.8 | 0.0371 | 170.9 | 0.0175 | 162.0 | 0.0090 |
| 0.92 | 225.0 | 0.1245 | 217.1 | 0.0753 | 208.3 | 0.0613 | 191.5 | 0.0315 | 183.8 | 0.0147 | 173.7 | 0.0076 |
| 0.91 | 244.3 | 0.1055 | 232.9 | 0.0633 | 224.0 | 0.0513 | 207.3 | 0.0256 | 199.6 | 0.0114 | 190.1 | 0.0058 |
| 0.90 | 266.6 | 0.0807 | 255.5 | 0.0457 | 244.7 | 0.0375 | 227.0 | 0.0191 | 222.4 | 0.0081 | 212.4 | 0.0038 |
| 0.89 | 298.1 | 0.0561 | 286.1 | 0.0306 | 273.3 | 0.0248 | 254.6 | 0.0119 | 258.0 | 0.0046 | 252.2 | 0.0021 |
| 0.88 | 329.6 | 0.0617 | 317.6 | 0.0351 | 307.7 | 0.0255 | 294.9 | 0.0113 | 295.6 | 0.0066 | 288.1 | 0.0032 |

TABLE XXIV (Continued)

|  | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{m} / \mathrm{n}$$w_{0}=7.6956$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8715$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{m} / \mathrm{n}$$w_{0}=7.6218$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.7786$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.4357$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.5964$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \left(-1 / w_{0}\right)(d w / d t) \\ (1 / m / n) \end{gathered}$ | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{gathered} \left(-1 / w_{0}\right)(d w / d t) \\ (1 / \mathrm{min}) \end{gathered}$ | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / m / n$ ) | $7\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) |
| 0.87 | 346.9 | 0.0750 | 342.2 | 0.0470 | 333.3 | 0.0358 | 320.5 | 0.0171 | 319.4 | 0.0087 | 313.3 | 3.0042 |
| 0.86 | 368.1 | 0.0816 | 361.2 | 0.0490 | 353.0 | 0.0386 | 344.1 | 0.0184 | 341.1 | 0.0089 | 335.6 | 2.0042 |
| 0.85 | 387.3 | 0.0816 | 379.9 | 0.0485 | 375.4 | 0.0380 | 365.4 | 0.0181 | 365.1 | 0.0090 | 357. | 0.0043 |
| 0.84 | 407.4 | 0.0816 | 404.7 | 0.0492 | 394.8 | 0.0386 | 386.1 | 0.0188 | 381.4 | 0.0094 | 378.7 | 0.0047 |
| 0.83 | 425.6 | 0.0839 | 424.3 | 0.0516 | 416.3 | 0.0409 | 407.8 | 0.0200 | 408.7 | 0.0104 | $40: .4$ | 0.0051 |
| 0.82 | 445.8 | 0.0886 | 440.9 | 0.0556 | 436.7 | 0.0440 | 426.4 | 0.0217 | 426.9 | 0.0114 | 419.9 | 0.0055 |
| 0.81 | 460.9 | 0.0959 | 460.5 | 0.0601 | 454.1 | 0.0470 | 445.0 | 0.0238 | 441.1 | 0.0121 | $43 \mathrm{Co}$. | 0.0057 |
| 0.80 | 479.0 | 0.1019 | 477.1 | 0.0638 | 471.4 | 0.0509 | 460.5 | 0.0248 | 459.3 | 0.0124 | 454.3 | 0.0057 |
| 0.79 | 493.2 | 0.1055 | 493.6 | 0.0652 | 487.8 | 0.0520 | 479.2 | 0.0253 | 476.5 | 0.0118 | 475.5 | 0.0053 |
| 0.78 | 511.3 | 0.1059 | 510.2 | 0.0639 | 504.1 | 0.0512 | 496.7 | 0.0244 | 491.7 | 0.0113 | 494.: | 0.0049 |
| 0.77 | 527.4 | 0.1016 | 529.8 | 0.0593 | 520.4 | 0.0479 | 513.3 | 0.0226 | 514.0 | 0.0101 | 510 . 0 | 0.0045 |
| 0.76 | 547.6 | 0.0929 | 548.4 | 0.0544 | 541.9 | 0.0433 | 536.0 | 0.0203 | 535.2 | 0.0093 | 542.5 | 0.0043 |

TABLE XXIV (Continued)

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.6956$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.8715$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{m} / \mathrm{n}$$w_{0}=7.6218$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.7786$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.4357$ |  | HeatIng Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$\omega_{0}=7.5964$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{m} / \mathrm{n}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) |
| 0.75 | 567.8 | 0.0837 | 571.2 | 0.0488 | 563.3 | 0.0392 | 558.8 | 0.0188 | 559.5 | 0.0089 | 564.1 | 0.0043 |
| 0.74 | 592.0 | 0.0754 | 596.0 | 0.0447 | 588.9 | 0.0361 | 582.6 | 0.0171 | 582.8 | 0.0087 | 20\%.8 | 0.0043 |
| 0.73 | 620.0 | 0.0694 | 621.7 | 0.0427 | 612.6 | 0.0344 | 609.3 | 0.0175 | 609.3 | 0.0087 | 014.0 | 0.0043 |
| 0.72 | 645.0 | 0.0664 | 647.4 | 0.0415 | 639.1 | 0.0337 | 631.3 | 0.0173 | 634.8 | 0.0089 | 637.0 | 0.0042 |
| 0.71 | 673.0 | 0.0647 | 676.1 | 0.0412 | 665.5 | 0.0335 | 657.0 | 0.0173 | 657.3 | 0.0086 | 662.0 | 0.0039 |
| 0.70 | 702.0 | 0.0641 | 703.8 | 0.0409 | 690.0 | 0.0331 | 682.8 | 0.0168 | 687.0 | 0.0077 | 6806.0 | 0.0036 |
| 0.69 | 737.0 | 0.0615 | 740.4 | 0.0381 | 724.2 | 0.0314 | 711.4 | 0.0153 | 719.7 | 0.0065 | 715.0 | 0.0033 |
| 0.68 | 770.0 | 0.0564 | 770.1 | 0.0334 | 758.5 | 0.0270 | 745.7 | 0.0130 | 754.4 | 0.0054 | 747.0 | 0.0030 |
| 0.67 | 811.1 | 0.0495 | 810.9 | 0.0295 | 794.3 | 0.0240 | 781.0 | 0.0113 | 794.6 | 0.0046 | 783.9 | 0.0025 |

TABLE XXV
WEIGHT LOSS AND RATE OF WEIGHT LOSS DATA FOR FR-2

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{m} / \mathrm{n}$$w_{0}=7.3750$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.3284$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{m} / \mathrm{n}$$w_{0}=7.5891$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.7749$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.6085$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.7427$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $1\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | T( ${ }^{\circ} \mathrm{C}$ ) | $\begin{gathered} \left(-1 / w_{0}\right)(d w / d t) \\ (1 / \mathrm{min}) \end{gathered}$ | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $\left.10^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{m} / \mathrm{n}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d \omega / d t)$ (1/min) |
| 0.99 | 139.9 | 0.0450 | 130.4 | 0.0322 | 128.6 | 0.0290 | 115.9 | 0.0139 | 109.1 | 0.0085 | 101.9 | 2.0043 |
| 0.98 | 156.2 | 0.0748 | 151.1 | 0.0554 | 147.3 | 0.0472 | 134.5 | 0.0242 | 127.8 | 0.0138 | 121.2 | 0.0068 |
| 0.97 | 173.2 | 0.0974 | 166.9 | 0.0680 | 164.0 | 0.0571 | 148.3 | 0.0293 | 139.9 | 0.0154 | 134.5 | 0.0077 |
| 0.96 | 187.4 | 0.1087 | 180.7 | 0.0730 | 178.8 | 0.0577 | 164.0 | 0.0300 | 153.9 | 0.0150 | 149.8 | 0.0074 |
| 0.95 | 203.6 | 0.1094 | 196.5 | 0.0708 | 193.5 | 0.0535 | 177.8 | 0.0270 | 169.9 | 0.0133 | 164.0 | 3.0063 |
| 0.94 | 222.9 | 0.1014 | 210.3 | 0.0643 | 209.3 | 0.0453 | 196.5 | 0.0221 | 186.8 | 0.0110 | 183.4 | 0.0049 |
| 0.93 | 243.3 | 0.0866 | 230.9 | 0.0542 | 230.9 | 0.0364 | 219.1 | 0.0167 | 209.5 | 0.0084 | 209.5 | 2. 0035 |
| 0.92 | 270.7 | 0.0675 | 255.5 | 0.0423 | 260.5 | 0.0262 | 253.6 | 0.0113 | 242.2 | 0.0057 | 242.5 | 0.0023 |
| 0.91 | 300.2 | 0.0588 | 285.1 | 0.0356 | 296.9 | 0.0269 | 284.1 | 0.0117 | 279.8 | 0.0062 | 279.3 | 0.0032 |
| 0.90 | 323.5 | 0.0679 | 307.7 | 0.0413 | 320.5 | 0.0353 | 312.6 | 0.0163 | 306.5 | 0.0083 | 302.6 | U. 0040 |
| 0.89 | 344.9 | 0.0793 | 328.4 | 0.0498 | 342.2 | 0.0377 | 335.3 | 0.0176 | 330.2 | 0.0085 | 326.9 | 0.0039 |
| 0.88 | 363.1 | 0.0796 | 349.1 | 0.0504 | 363.2 | 0.0345 | 358.2 | 0.0161 | 354.0 | 0.0080 | 349.2 | 0.0039 |

TABLE XXV (Continued)

| $w / w_{0}$ | Heating Rate $160^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.3750$ |  | Heating Rate $100^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.3284$ |  | Heating Rate $80^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.5891$ |  | Heating Rate $40^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.7749$ |  | Heating Rate $20^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.6085$ |  | Heating Rate $10^{\circ} \mathrm{C} / \mathrm{min}$$w_{0}=7.7427$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-i / w_{0}\right)(d w / d t)$ <br> (1/min) | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{m} / \mathrm{n}$ ) | T( ${ }^{\circ} \mathrm{C}$ ) | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> (1/min) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) | $T\left({ }^{\circ} \mathrm{C}\right)$ | $\left(-1 / w_{0}\right)(d w / d t)$ <br> ( $1 / \mathrm{min}$ ) |
| 0.87 | 386.3 | 0.0731 | 372.6 | 0.0461 | 385.7 | 0.0339 | 384.0 | 0.0165 | 378.3 | 0.0034 | 375.6 | 0.0041 |
| 0.86 | 406.4 | 0.0738 | 394.3 | 0.0458 | 411.2 | 0.0364 | 405.7 | 0.0117 | 399.6 | 0.0091 | 398.3 | 0.0045 |
| 0.85 | 428.6 | 0.0776 | 415.0 | 0.0486 | 432.6 | 0.0401 | 429.5 | 0.0199 | 419.8 | 0.0100 | 420.9 | 0.0050 |
| 0.84 | 448.8 | 0.0835 | 435.7 | 0.0524 | 449.0 | 0.0441 | 448.1 | 0.0219 | 439.1 | 0.0110 | 439.5 | 0.0052 |
| 0.83 | 465.9 | 0.0904 | 455.4 | 0.0574 | 467.3 | 0.0476 | 466.7 | 0.0233 | 459.3 | 0.0113 | 461.1 | 0.0052 |

$$
\begin{gathered}
\text { VITA } \\
\text { Jack Bradford Henderson } \\
\text { Candidate for the Degree of } \\
\text { Doctor of Philosophy }
\end{gathered}
$$

Thesis: AN ANALYTICAL AND EXPERIMENTAL STUDY OF THE PYROLYSIS OF COMPOSITE ABLATIVE MATERIALS

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Caney, Kansas, July 29, 1943, the son of Mr. and Mrs. H. J. Henderson.

Education: Graduated from Copan High School, Copan, Oklahoma in May, 1961; received Bachelor of Science in Mechanical Engineering degree from the University of Tulsa in 1972; received Master of Science degree from Oklahoma State University in 1973; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1980.

Professional Experience: Junior Engineer, Butler-Culvern and Associates, summer 1972; graduate research assistant, School of Mechanical Engineering, Oklahoma State University, 19721973; mechanical engineer, Naval Surface Weapons Center, 1974; mechanical engineer, Army Corps of Engineers, 1974-1976; research associate, School of Mechanical and Aerospace Engineering, Oklahoma State University, 1976-1978; mechanical engineer, Naval Surface Weapons Center, 1978 to present.


[^0]:    ${ }^{\dagger}$ TGA refers to test using the Mettler thermoanalyzer at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. HHR refers to high heating rate tests.
    ${ }^{*}$ For TGA tests, $T_{\text {max }}$ was $1000^{\circ} \mathrm{C}$. For the HHR tests, $T_{\text {max }}$ was $700^{\circ} \mathrm{C}$ achieved at a heating rate of
    $170^{\circ} \mathrm{C} / \mathrm{min}$.

[^1]:    *Da†a from Ref. [34]

