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CHAPTER I 

INTRODUCTION 

Actinomycin D is a cyclic-polypeptide-containing anti­

biotic which has become an important tool in molecular and 

cellular biology because of its binding to deoxyribonucleic 

acid (DNA) and subsequent inhibition of ribonucleic acid 

(RNA) synthesisd As a result, a great amount of research has 

been directed towards el.ucidating the chemical and physical 

nature of its biological activity. Even though actinomycin D 

is highly toxic, this compound has been used in nontoxic 

dosages because of its antineoplastic effect. Actinomycin D 

has been proven to be a highly effective chemotherapeutic 

agent in the treatment of Wilms' tumor, trophoblastic tumors, 

rhabdomyosarcoma and testicular cancers (Heienhofer, 1970). 

The name actinomycin was originated by Waksman, who 

discovered this group of antibiotics in cultures of Actino-

. mx:ees antibioticus in 1940. Less than 10 years elapsed before 

the structure of the actinomycins began to be revealed by the 

investigations of Dagliesh et al. (1949), Brockman et al. 

(1949) and Dagliesh et al. (1950). Actinomycin D was charac­

terized by Waksman (1954) as a brick red, crystalline sub­

stance that melted at approximately 250 C and absorbed light 

strongly at 230, 250 and 450 nm. Waksman observed that 

1 



actinomycin D was highly active against Gram-positive 

bacteria, less active against Gram-negative bacteria and 

almost totally ineffective against fungi. l1anaker et al. 

(1955) crystallized actinomycin D from cultures of Strepto­

tnyce!3 E,arvullus. The molecular weight was determined to be 

1255 daltons and the molecular formula was deduced as 

C60H76015N12'3 H20. 

The actinomycins were recognized very early to contain 

2 

a chromophore, which absorbed visible light, and a peptide 

linked to the chromophore. The actinomycin chromophore was 

isolated and assigned the structure, 3-amino-1,8-dimethyl-2-

phenoxazone-4,5-dicarboxylic acid, Of interest is the fact 

that this same 2-amino•3-phenoxazone ring system is found in 

the ornmochrome insect eye pigments and in several pigmented 

mold metabolites: Next, it was determined that attached to 

the two carboxyl groups of the chromophore were two penta­

peptides, whose sequences were determined by various partial 

hydrolyses. 

Isoactinomycin is used to describe an actinomycin with 

the same two pentapeptide residues, while those with different 

pentapeptides are referred to as anisoactinomycins. L-Threo­

nine is always the amino acid linked by amide bonds to the 

1- and 9-carboxyls of the chromophore and whose hydroxyl 

group always forms a lactone bond with the carboxyl of the 

fifth amino acid. The second amino acid can be either D­

valine or D-allo-isoleucine. The third can be L-proline, 

L-3-hydroxyproline, L-3-ketoproline, pipecolic acid or 
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sarcosine. The fourth is always sarcosine and the fifth can 

be either L-N~methylvaline or L-N-methylisoleucine. Inter­

estingly, the peptide groups contain free NH groups only in 

the two threonine residues since all other amino groups are 

methylated or contained in the ring of an imino acid. In 

addition, the second amino acid, valine or allo-isoleucine, 

has the D configuration. Actinomycin D is an isoactinomycin 

which contains the amino acids L-threonine, D-valine, L-pro­

line, sarcosine and L-N-methylvaline (Figure 1). 

Although the antimicrobial and antineoplastic activities 

of actinomycin D were recognized relatively soon after its 

discovery, it was the early 1960's before its complexation 

with DNA (Kersten et al., 1960; Kirk, 1960) and subsequent 

inhibition of RNA synthesis (Goldberg et al., 1962) became 

known. Actinomycin D binds tightly to double helical DNA, 

but poorly, if at all, to double helical RNA, RNA-DNA hybrids, 

or single stranded forms of DNA or RNA (Kaselkorn, 1964; 

Gellert et al., 1965). The complexation of actinomycin D 

with DNA has been studied using a variety of methods including 

spectrophotometric methods, buoyant density measurements, 

equilibrium dialysis, circular dichroism, optical rotatory 

dispersion, melting temperature and inhibition of DNA tem­

plate controlled P~A synthesis. DNA controlled DNA synthesis 

can also be inhibited when much larger concentrations of 

actinomycin D are utilized, However, the mechanism appears 

to be quite different. Inhibition of RNA synthesis is a 

direct consequence of steric interference by the actinomycin 



Figure 1. Structure of Actinomycin D. The funct·ional 
groups of the antibiotic are the free chromo­
phore amino group, the unreduced quinoidal ring 
system, and the pentapeptide rings. 
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L -THREONINE L -THREONINE 
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I I 
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SARCOSINE SARCOSINE 
I I 

N-METHYL- N-METHYL-- VALINE -VALINE 
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D, while inhibition of DNA synthesis appears to be inhibited 

by stabilization of the DNA (Reich, 1964). Actinomycin D 

also interferes with reactions in which DNA is modified, such 

as methylation (Gold and Hurwitz, 1964)o 

Reich and Goldberg (1964) observed that complexation of 

actinomycin D with DNA required a double stranded helix con­

taining guanine residueso Wells and Larson (1970) showed 

that the number of nucleotide pairs per bound actinomycin D 

molecule differs from 0 at 0% dG (deoxyguanosine) content to 

about 6 at 50% dG in poly-d(G-C). A relative constant number 

of binding sites was reported for DNA containing between 

25-50% G+C. This suggests the possible involvement of more 

than one base pair. Furthermore, in crab poly-d(A-T)·poly­

d(T-A) containing 97% A+T base pairs and 3% G+C base pairs, 

the number of sites available for binding was only 60% of the 

predicted value (Hyman and Davidson, 1971). This agreed with 

earlier studies by Cavalier and Nerrichin (1964) who suggested 

that there were two types of binding sites on calf thymus 

and Escherichia coli DNA for actinomycin D, one of which has 

a binding constant about 50 times greater than the other. 

The distinction between the sites was thought to depend upon 

the helical structure of the DNA. Hyman and Davidson (1970) 

noted that actinomycin D binds to the "strong binding" sites 

on T7 DNA when the actinomycin D concentration is below 

1o-5M. Above this concentration, more actinomycin D is bound 

at other weaker binding sites. 

Goldberg et al. (1962) discovered that the C(Z)-NHz 
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group of dG was essential for actinomycin binding. However, 

there are two exceptions to the dG specificity. The presence 

of dG is not required for binding in the case of single 

stranded poly-dl, The unique conformation of this polymer 

is thought to be responsible for its ability to bind actino­

mycin D (Wells and Larson; 1970). Conversely, in the case 

of poly-d(A-T-C)·poly-d(G-A-T), Wells and Larson observed 

that actinomycin D did not bind to this polymer although dG 

was present. This may also be due to conformation,. or the 

requirement by actinomycin D for a specific base sequence 

not found in this polynucleotideo It was also demonstrated 

in this investigation that actinomycin D would bind more 

tightly to a polydeoxyribonucleotide that contains both 

purines and pyrimidines on both strands than to a polydeoxy­

ribonucleotide containing all purines or pyrimidines on 

complementary strands. 

Krugh and Young (1977) reported that either daunomycin 

or adriamycin cooperatively facilitates the binding of acti­

nomycin D to poly-d(A-T)·poly-d(A-T) as evidenced by circular 

dichroism. Normally, actinomycin D does not bind to this 

double stranded polynucleotide. Daunomycin and adriamycin 

intercalate into double stranded DNA, but in contrast to 

actinomycin D binding, neither of these compounds show any 

requirement for a particular base at the intercalation site. 

The results of this investigation demonstrated that when 

daunomycin or adriamycin bind to poly-d(A-T)·poly-d(A-T), 

a change occurs in the conformation of the polynucleotide 
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at an adjacent region of the double helix which results in 

an increase in the stability of the actinomycin D:poly-d(A-T)· 

poly-d(A-T) complex. The transmission of the distortions 

along the double helix may also be an important component in 

the selective recognition of nucleic acid sequenc~so 

Since 1963, three models have been proposed for the 

complexation of actinomycin D and DNA. The earliest model 

by Hamilton et aL (1963) was an outside binding model in 

which the actinomycin D binds in the minor groove of DNA. 

The model involves hydrogen bonding between the actinomycin 

D C(3)=0 and the C(2)-NH2 group of guanine, the actinomycin 

D C(2)-NH2 and the guanine C(3)-N, and the actinomycin D 

C(2)-NH2 and the deoxyribose ring oxygen. The pentapeptides 

provide stabilization for the complex by forming four addi­

tional bonds between their four NH groups and the phosphodi­

ester oxygens. This type of complex would occupy the minor 

, groove over three nucleotide pairs. 

A second model by Muller and Crothers (1968) involves 

the intercalation of the actinomycin D chromophore between 

two successive base pairs with the pentapeptides projecting 

into the minor groove. One of these base pairs is G-C. The 

proposed complex is stabilized by the ele~tronic interaction 

of the chromophore 1r complex, hydrogen bonding between the 

actinomycin D carboxamide NH and the deoxyribose ring oxygen, 

and the interaction of the pentapeptide rings with each strand 

of the DNA in the minor groove. 

The third and most recent model (Figure 2) by Sobell 



Figure 2. Schematic Representation of Sobell's Model of the 
DNA:Actinomycin D Complex. The circles repre­
sent the pentapeptide rings of actinomycin D. 
(Adapted from Sobell, 1973). 
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(1973) combines the guanine· C(2) -NH2 group specificity of the 

outside binding model with the intercalative features of the 

second model. In this model, which is based on the crystal­

line dGz:actinomycin D complex, the phenoxazone chromophore 

intercalates between adjacent G-C pairs when the guanine 

residues are on opposite strandso This model.is stabilized 

by hydrogen bonds between the C(2)-NHz groups of guanine and 

the threonine C=O of the peptide rings which lie in the minor 

groove (trans with respect to the plane of the chromophore). 

Further stabilization results from hydrogen bonding between 

neighboring cyclic pentapeptide chains connecting the N-H of 

one D-valine residue with the carbonyl oxygen of the other 

D-valine residue. 

A unique feature of Sobell's model is the presence of 

2-fold symmetry in the actinomycin chromophore, as would be 

viewed on either side of a vector connecting the 0 and N 

bridging atoms of the phenoxazone ring. Although the symme­

try is not exact because of the C(2)-NH2 and the C(3)=0 

groups. the pentapeptide chains would closely approximate 
. 

this non-crystallographic 2-fold symmetry. The conformations 

of the peptide linkages would be: L-threonine:D-valine, 

trans; D-valine:L-proline, cis; L-proline:sarcosine, cis; 

sarcosine:L-methylvaline, trans; L-threonine:carboxamide 

carbonyl oxygen and carbon of the chromophore, trans. There­

fore, the DNA:actinomycin D complex, as described, would 

closely mimic the dGz:actinomycin D crystalline complex 

(Jain and Sobell; 1972). Sobell's model predicts that 



actinomycin D shoula bind most efficiently to poly-d(G-C)· 

poly-d(G-C) which contains alternating GpC sequences while 

other sequences would bind actinomycin D less effectively. 

12 

·This model also explains most of the binding data pertaining 

to actinomycin D and DNA. In addition; Sobell states that 

the binding of actinomycin D demonstrates a general principle 

that several classes of proteins may utilize in recognizing 

symmetrically arranged nucleotide sequences on the DNA helix. 

The binding of actinomycin D to DNA and its specificity in 

inhibiting the RNA polymerase reaction suggests a primitive 

repressor-operator character for this complex. If a repressor 

molecule has identical subunits related by 2-fold symmetry 

when it binds to DNA, in which the 2-fold axis coincides with 

the dyad axis of the DNA, then the base sequence in the 

operator must also have 2-fold symmetry. 

In view of this currently accepted mechanism for acti­

nomycin D binding, the potency of this compound results from 

a high degree of specificity requiring a precise and unique 

steric fit between the DNA and actinomycin D. Any modifica­

tion of this sensitive geometry of the binding complex by 

introducing changes in either actinomycin D or the DNA will 

present different parameters to the mechanism. Although the 

activities of natural occurring actinomycins differ very 

little, changes in the different portions of the synthetic 

actinomycins may alter their respective activities to varying 

degreeso Several components of the actinomycin D molecule 

have been found to be indispensable for biological activity. 
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The unreduced quinoidal phenoxazone ring system, the unaltered 

C(2)-NH2 and C(3);:::Q groups, and the intact pentapeptide lac­

tone rings are all significant, For example, the replacement 

of the two pentapeptides by the monocyclic peptide system of 

gramicidin S results in a molecule that does not bind to DNA 

or inhibit RNA synthesis (Mauger and Wade, 1966). Also, 

substitution of the C(2)-NHz group on the phenoxazone with a 

hydroxyl-, chloro- or dimethylene amino group inhibits the 

binding of actinomycin D to DNA (Reich et al.-, 1962; Huller 

and Crothers; 1968), 

As a consequence of its binding to DNA; actinomycin D 

inhibits RNA chain elongation but not template site selection, 

RNA chain initiation or RNA chain termination. Kinetic stu­

dies performed by Hyman and Davidson (1970) have shown that 

actinomycin D inhibits the rates for the incorporation of 

CTP and GTP but not of ATP and UTP. 

Three investigators i Weiss (1960), Hurwitz et al. (1960) 

and Stevens (1960), are credited with independently disco­

vering a DNA dependent enzyme which was capable of forming 

a RNA polymer from ribonucleoside 5'-triphosphates which is 

complementary to the DNA template. Weiss isolated his enzyme 

from rat liver nuclei while Hurwitz and Stevens used cell 

free extracts of E. coli. 

RNA polymerase, as defined by Burgess (1971), cannot 

only efficiently synthesize RNA but can also specifically 

initiate this synthesis on intact DNA templates. Bacterial 

RNA polymerase contains the following polypeptide subunits: 
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one beta prime; one beta, two alpha and one sigma. The 

enzyme is complete or holoenzyme when it has this makeupo 

Direct evidence that the major polypeptide components of the 

RNA polymerase holoenzyme are functional subunits is available 

for only the beta and sigma subunits. The holoenzyme can be 

separated into two functional parts: a core enzyme, consist­

ing of the two alpha, the beta and the beta prime subunits, 

which is able to synthesize RNA but lacks the ability to 

initiate such synthesis with the same specificity as the 

intact holoenzyme; and a sigma factor which acts to allow 

the efficient initiation of RNA synthesis at a specific site. 

The sigma factor is responsible for the accurate and effi­

cient ~nitiation of RNA chains at specific sites on the DNA 

template and is not required after initiation has been com­

pleted. It is not known how the sigma factor functions in 

determining specificity of binding and facilitating initia­

tion. The core enzyme is able to synthesize RNA and thus 

contains the catalytic siteo However, the interactions of 

the separate subunits within the core are not fully under­

stood. 

The holoenzyme from E. coli RNA polymerase is the most 

widely studied RNA polymerase system among bacteriao Other 

bacterial fu~A polymerases are closely related in structure 

to the E. coli holoenzymea The subunits of other Gram­

negative bacteria resemble the E. coli enzyme, although the 

molecular weight values for the sigma and alpha subunits are 

slightly higher. 



15 

The RNA polymerase reaction has the following four re­

quirements. All four ribonucleoside 5'-triphosphates (ATP, 

UTP,GTP and CTP) are required simultaneously as substrates. 

The reaction requires a divalent metal ion. Magnesium or a 

5:1 mixture of magnesium and manganese is usually employed. 

A te~plate is required for the reaction since the nature of 

the template determines the substrate requirementsG Usually, 

double stranded DNA is used although double stranded poly­

nucleotides and single stranded DNA may be used. Hhen the 

previous conditions are met; the ru~A polymerase acts to add 

mononucleotide units to the hydroxyl end of the ~~A chain 

with the elimination of pyrophosphateo As a result, the 

direction of ru~A chain growth is 5' to 3'. 

DNA directed synthesis of RNA by RNA polymerase may be 

separated into four steps (Burgess, 1971): 

1. Template site selection and activation - The RNA 

polymerase holoenzyme attaches to the DNA template, 

locates a specific site at which RNA chain initiation 

can occur, and assumes an active conformation. 

2, RNA chain initiation - The enzyme catalyzes the 

coupling of a purine ribonucleoside 5'-triphosphate 

to eliminate inorganic pyrophosphate and generate 

a diribonucleoside tetraphosphate which remains 

tightly bound to the ~~A polymeraseo 

3. RNA chain elongation - Successive ribonucleoside 

monophosphate residues are added from the substrate 

ribonucleoside 5'-triphosphates to the initial 
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dinucleoside tetraphosphate at its 3' hydroxyl ter­

minus to elongate th<?. nascent RNA chaino 

4. RNA chain te~mination and enzyme release - The newly 

formed RNA chain and the RNA polymerase are released 

from the template 

A variety of ccmpounds, utiU zing a multiplicity of 

mechanisms, have been employed to block or inhibit the first 

three steps of the RNA polymerase reactiono Distamycin Ar 

netropsin; pluramycin; anthramycin and phleomycin block tem­

plate site selection by binding to the DNA to hinder. RNA 

polymerase binding. Heparin and sodium polyethylene sulpho­

nate bind to the Rl\l'A polymerase to prevent this same step. 

RNA ch~in initiation can be blocked by proflavine sulfate or 

kanchanomycin which bind to the DNA to interfere with initia­

tion while streptovaricin; sodium polyethylene sulphonate; 

rifamycin derivatives and streptolydigin bind to the RNA 

polymerase to interfere with this step. Cordycepin 5'-tri­

phosphate binds to the RNA chain to block RNA chain elonga­

tion. In addition to actinomycin D, several compounds 

including ethidium bromide, nogalomycin; daunomycin, adria­

mycin; echinomycin, olivomycin and hedamycin also bind to 

the DNA to inhibit RNA chain elongation. Streptolydigin inhi­

bits RNA chain elongation by binding to the RNA polymerase. 

Most attempts to potentiate actinomycin D action have 

been directed at creating permeability changes in the cell 

which ultimately allow actinomycin D to diffuse more readily 

through the permeability barrier. The decreased sensitivity 
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of the'Gram-negative microorganisms is largely due to their 

outer membrane ultrastructure which was believed to possess 

an exclusion limit of about 600 daltons, as had previously 

been reported for the enterics. However, recent investiga­

tions by Hancock et al. (1979) have demonstrated that this 

value is not ubiquitous for all Gram-negatives·since they 

observed that the exclusion limit of Pseudomonas aeruginosa 

is in the order of 6000 + 3000 daltons. It was concluded 

that a single major outer membrane polypeptide, with an appar­

ent molecular weight of 35,000 daltons; provides a hydrophilic 

pore which is responsible for the size-dependent permeability 

of the outer membrane in this bacterium. Similar proteins 

serve in this same role in the enterics. 

Several different agents have been utilized to potentiate 

the action of actinomycin D by altering the permeability bar­

rier of the cell such that entry of actinomycin D into the 

cell is increased. Leive (1965) reported that treatment of 

E. ·coli with EDTA increased susceptibility to actinomycin D 

and that lipopolysaccharide was released from the cell wall. 

Roy and l .. fitra (1970) were also able to release lipopolysac­

charide by infecting E. coli K-12 cell with the small fila­

mentous phage, Hl3, Consequently, an increase in actinomycin 

D inhibition was observed. The nonionic detergent, Tween 80, 

was successfully used in combination with actinomycin D and 

daunomycin to significantly increase the sensitivity of nor­

mally resistant Chinese hamster cells to these antibiotics 

(Riehm and Bieldler, 1972). This effect was observed at less 
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than toxic concentrations of Tween 80. A study by Marks 

and Venditti (1976) demonstrated the ability of DNA to poten­

tiate the activity of actinomycin D with a concomitant 

negation of the cytotoxicity which accompanies treatment by 

this antibiotic, 

Efforts have also been directed at alleviating inhibi­

tion resulting from actinomycin D. Foley (1956) noted the 

ability of pantothenate to compete with and reverse actino­

mycin D inhibition of growth~ Reversal of actinomycin D 

inhibition of Neurospo~a crassa with £-aminobenzoic acid, 

tyrosine and phenylalanine was reported by Rauen and Hess 

(1959)~ The ability of B-vitamins, amino acids of caesin 

hydrolysate, purines, pyrimidines pnd nucleotides to prevent 

growth inhibition of Bacillus subtilis by actinomycin D was 

tested by Slotnick (1960). Addition of actinomycin D im­

mediately inhibited protein and RNA synthesis but not DNA 

synthesis. In several organisms having an exogenous require­

ment for pantothenate, the inhibition of actinomycin D was 

competitively altered by the presence of pantothenate. How­

ever, efforts to restore balanced RNA and protein synthesis 

to the system pro,Jed unsuccessful. Kersten (1961) observed 

that deoxyguanosine and DNA could counteract growth inhibition 

of ~· crassa and Streptococcus faecalis by actinomycin Do 

Prevention of the inhibition of protein synthesis by actino­

mycin D in Sarcoma-37 ascites cells was accomplished by adding 

glucose to the medium (Honig and Rabinovitz, 1965). 

Previous investigation in this laboratory has 
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demonstrated the capacity of selected compounds to modify the 

biological activity of actinomycin D. Durham et al. (1974) 

reported that noninhibitory concentrations of a hydroxypyra­

zole (Figure 3), iO,ll-dihydro ... 3H-napth(1,2g)indazol-7-ol, 

abets the inhibition of actinomycin D when the two were used 

in combination. A very pronounced increase in inhibition was 

observed with Pseudomonas fluorescens while a similar but 

lessened activity was noted with other microorganisms and 

L-M tissue culture cells. Conversely, Durham and Keudell 

(1969) ·observed that low concentrations. of 3.4-dihydroxy­

benzoic acid (protocatechuate) (Figure 4) prevented or re­

versed the inhibition by. actinomycin D of cell viability, 

uracil-z-14c incorporation and leucine-z-14c incorporation 

when Po fluorescens was the test organism. It was also noted 

that protocatechuate did not c.ompete with or otherwise in­

fluence the uptake mechanism of 14c-actinomycin D. 

These data suggested that molecular complexation of the 

hydroxypyrazole or protocatechuate with actinomycin D may be 

an important facet of their respective mechanisms. Durham 

and Ferguson (1971) reported that the inhibition of the syn­

thesis of amidase (acylamide amidohydrolase, EC 3.5ol.4) in 

P. fluorescens by actinomycin D could be prevented or reversed 

by protocatechuateo A number of selected benzoic acid deri­

vatives were tested that influenced actinomycin D inhibition. 

The results revealed that the steric specificity and confor­

mational integrity of the molecule were very important. The 

adjacent dihydroxyl structure, in addition to the occupation 



Figure 3. Structure of 10,11-dihydro-3H-napth(l,2 g) 
indazol-7-ol. The molecule has both polar and 
non-polar properties. The aromatic rings con­
stitute the non-polar portion of the molecule 
while the hydroxyl group and the nitrogens 
contribute polar properties to the molecule. 
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Figure 4$ Structure of Protocatechuate (3,4-dihydroxybenzoic 
acid). The two hydroxyl groups and the carboxyl 
group which are attached to the aromatic ring 
give this compound great potential for molecular 
interaction. 
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of the 3-position on the benzene ring; appears to be critical 

for the interaction of protocatechuate with actinomycin D. 

Molecular models depict that the benzenoid compounds may 

align themselves along the horizontal plane of the unreduced 

quinoidal phenoxazone ring structure of the actinomycin D. 

In this arrangenent 1 a type of complex may be formed between 

the compounds in \vhich there is 'IT (orbital) overlap along 

with H-bonding so that a complex of the two molecules forms. 

These data suggested that the protocatechuate has a greater 

affinity than DNA for actinomycin D. Therefore, a complex 

between protocatechuate and actinomycin D may produce an 

equilibrium which no longer favors the interaction of the 

actinomycin D with the DNA. 

Considerable evidence from UV-fluorescence- UV-absorp­

tion, DNA thermal denaturation and calorimetry studies have 

provided support for a complex between actinomycin D and the 

hydroxypyrazole (Haslam; 1973). Additional evidence for 

complexation between these two compounds was provided by 

lH NMR analysis in DzO (Chestnut et al., 1974), and a later 

lH NMR and l3c NMR analysis in n3coD (O'Donnell et al., 1978). 

Of importance, is that all NMR data from these two investiga­

tions suggested that a molecular complex was formed between 

actinomycin D and the hydroxypyrazole regardless of the con­

centrations or solvents used. Furthermore, the preferred 

arrangement in both models was a 1:1 stacked arrangement 

rather than side by side (Figure 5), even though the proposed 

orientations of the two compounds were not identical. 



Figure 5. Proposed Orientation of the Hydroxypyrazole:Acti­
nomycin D Complex in DzO (A Complex) and in 
D3COD (B Complex)o 
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Blunk (1977) reported that the inhibition of the synthe­

sis of the amidase enzyme of P. fluorescens by actinomycin D 

could also be increased when the hydroxypyrazole was added 

in combination. It was also demonstrated in this study that 

protocatechuate could prevent or reverse the inhibition of 

enzyme synthesis resulting from the combination of these two 

compounds, DNA thermal denaturation studies yielded that all 

three compounds individually interact with the DNA to stabi­

lize the DNA helix and shift the melting curve to higher 

temperatures. The combination of all three compounds almost 

completely stabilized the DNA until the melting temperature 

was elevated to 85 C. Equilibrium dialysis experiments illus­

trated that the combination of all three compounds was dia­

lyzed from the DNA more quickly than the combination of 

actinomycin D and the hydroxypyrazole. From these data, it 

was concluded that protocatechuate may be interacting with 

actinomycin D and the hydroxypyrazole to form a three-way 

complex which does not interact as favorably with DNA as the 

proposed actinomycin D and hydroxypyrazole complex. 

The hydroxypyrazole used in this investigation was syn­

thesized by Dr. K . .0. Berlin and Dr; J. G. Horgan at Oklahoma 

State University (Morgan et al., 1971). This compound has a 

molecular weight of 236 daltons, a melting point of 257-.260 C 

and ultraviolet absorption peaks of 258, 266, 300 and 312 nm. 

The benzene rings of the hydroxypyrazole constitute a large 

nonpolar nucleus with the hydroxyl and the two nitrogen groups 

contributing polar properties to the molecule. B. subtilis, 
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a Gram-positive bacterium, was readily inhibited by the bac­

teriostatic action of the hydroxypyrazole while the Gram­

negative bacterium, P. fluorescens, remained unaffectedo 

Haslam (1973) utilized both sheep red blood cells and B. 

subtilis W23 protoplasts to demonstrate that the hydroxy­

pyrazole exhibited only very subtle action against the mem­

brane. Experiments were also conducted to determine if the 

hydroxypyrazole could increase the antibacterial action of 

selected antibiotics against P. fluorescens. Hith the ex­

ception of actinomycin D, only the two membrane active anti­

biotics, polymyxin and circulin, exhibited an increase in 

inhibition when used in .combination with the hydroxypyrazole. 

No increase in the activity of vancomycin, penicillin, chlo­

ramphenicol, 5-fluorouracil or mitomycin C was demonstrated. 

It is the purpose of this. investigation to relate the 

possible mechanism(s) by which the hydroxypyrazole and proto­

catechuate influence actinomycin D action in selected in 

vitro model systems to those effects which are observed in 

P. fluorescens. Elucidation of these mechanisms will be use­

ful for optimizing the antimicrobial and antitumor applica­

tions of actinomycin D. P. fluorescens provides a useful 

model system for determining the response of Gram-negative 

bacteria to these compounds because this bacterium is resis­

tant to all but higher concentrations of most antibiotics 

and requires only an organic carbon source plus minimal salts 

for growth. Although actinomycin D is a potent antitumor 

agent, clinical usage has been severely limited by its 
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extreme toxicity, Compounds which increase actinomycin D 

action without contributing to its toxicity may allow smaller 

dosages of the antitumor agent to be given without decreasing 

its antitumor activityo Conversely, compounds which negate 

actinomycin D action may allow larger dosages of actinomycin 

D to be given because subsequential treatment with the appro­

priate compound may enhance recovery of normal cells and the 

immune system .. Furthermore, if actinomycin D action can be 

affected by complexation with selected compounds, actinomycin 

D may be more efficiently utilized clinicallyo An under­

standing of molecular complexes formed between actinomycin D 

and compounds which modulate its biological activity would 

be invaluable for designing and synthesizing analogs of 

actinomycin D which may be more effective chemotherapeutic 

agents than the parent compound. 



CHAPTER II 

MATERIALS AND METHODS 

Test Organism 

The microorganism used during the course of these studies 

was a strain of Pseudomonas obtained from the stock culture 

collection of Dr. N. N. Durham, Oklahoma State University. 

The organism was identified by Montgomery (1966) as Pseudo­

monas fluor.escens. Stock cultures were maintained on 0.2% 

succinate-salts agar slants and stored at 4 C. 

Deionize;d Water 

Deionized water was obtained from a Barnstead Nanopure 

water system (model number D 1798) consisting of an organic 

removal cartridge, followed by two mixed resin deionization 

cartridges and one submicron filter. Water with an 18 meg­

ohm-em resistance was used to make all solutions except 

growth medium. Growth medium was made with distilled water 

which was passed through a Barnstead high capacity deioniza­

tion column (model number D 8901). 

Glassware Preparation 

All glassware used in the RNA polymerase, DNA, amidase 

and vesicle investigations was cleaned with RBS 35 concentrate 

30 
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(Pierce) before extensive rinsing with hot tap water followed 

by three rinses of deionized water from the Barnstead Nano­

pure water system. The glassware was then heat treated at 

250 C for 3 hours to eliminate ribonuclease, deoxyribonuclease 

and protease contamination. Glassware utilized for phosphate 

determination was cleaned in a sulfuric acid:dichromate solu­

tion consisting of 125 g of sodium dichromate, 1000 ml of 

tap water and 1600 ml of concentrated sulfuric acid. All 

other glassware was cleaned with Alconox (Scientific Products) 

followed by extensive rinsing with hot tap water and three 

rinses with distilled deionized water from the Barnstead high 

capacity deionization column. 

Media 

The synthetic salts medium used in this investigation 

had the following composition: 0.2% sodium chloride, 0.2% 

ammonium chloride, 0.32% potassium dihydrogen phosphate, 

0.42% dipotassium hydrogen phosphate and 0.2% succinate. The 

pH of the medium was adjusted to 6.8-7.0 with potassium hy­

droxide pellets prior to autoclaving at 121 C with 15 pounds 

pressure per square inch for 15 minutes. After cooling to 

room temperature, Ool ml of a sterile mineral salts solution 

was added to each 100 ml of medium. The mineral salts solu­

tion contained 5.0% magnesium sulfate, 0.1% manganese sulfate, 

1.0% ferric chloride and 0.5% calcium chloride in distilled 

deionized watero This solution had been sterilized by auto­

claving as described,. and was used after the suspension was 
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allowed to settle (Durham, 1958). Agar (Difco) was added to 

give a final concentration of 2o0% when a solid medium was 

requiredo Acetamide was used as the inducer of amidase en­

zyme synthesis by adding acetamide to yield a final concen­

tration of 0.08 M. The term mineral salts buffer was used 

to designate the basal salts medium in the absence of a car-

bon sourceo 

Growth of Cells 

Erlenmeyer flasks (250 ml) containing 50 ml of medium 

were inoculated from a freshly grown stock culture of P. lli­
orescens and incubated at 37 C on a reciprocal shaker (100 

oscillations per minute). The cells were harvested by cen­

trifugation (5000 x g for 10 minutes) and washed twice with 

minimal salts buffer. Sterile tubes (18 x 150 mm) containing 

growth medium and the appropria.te compounds to be tested were 

inoculated with the washed cell suspension to give a final 

volume of 5o0 ml. Tube dilution assays were followed by 

measuring the increase in absorbency of the cultures at 540 

nm on a BCiusch and Lomb Spectronic 70 spectrophotometer. 

Amidase assays were performed in side-arm flasks (250 ml) 

containing a total volume of 25 ml. Larger quantities of 

cells were often needed for various isolations. These cells 

were grown in Fernbach flasks (2800 ml) containing 500 ml 

of growth medium. 
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Chemicals 

Actinomycin D was generously supplied by the Merck, 

Sharp and Dohme Research Laboratoryo The hydroxypyrazole was 

provided byDro K. D$ Berlin, Oklahoma State Universityo 

Stock solutions of these two compounds were prepared in ster­

ile deionized water and stored at 4 C in the darko Stock 

solutions of protocatechuate (Aldrich Chemical Coo, Inc.) 

were prepared and filter sterilized inrrnediately prior to 

usage. All radioactive compounds were purchased from the 

Amersham Corporation and stored at -20 C in the dark. All 

other chemicals used in this investigation were of the highest 

purity available. 

Amidase Enzyme Induction 

Cultures of P. fluorescens were allowed to grow for 9 

hours in succinate medium. At this time, the cells were 

harvested by centrifugation (5000 x g for 10 minutes) and 

washed twice with minimal salts buffer. The pellet was re­

suspended in minimal salts buffer and used to inoculate the 

growth medium containing succinate, acetamide and the com­

pounds of interesto Sidearm flasks (250 ml) containing a 

total volume of 25 ml were inoculated to give an initial 

absorbance of 0.20 at 540 nm. Samples (0.25 ml) were re­

moved from the flasks at the desired time intervals and im­

mediately frozen at -20 C for later determination of enzyme 

activity. At this same time, a A540 nm reading was taken so 

that dry weight could be calculated. 
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Amidase Assay Method 

The assay used in determining amidase enzyme synthesis 

was based on the ability of acyl phosphates to react with 

hydroxylamine at pH 6.5· to 7.0 to form hydroxamic acids 

(Lipmann and Tuttle, 1945)o Quantitation of hydroxamic acid 

which reacts with ferric salts to produce red to violet co-

lored complexes, was easily accomplished with a spectropho­

tometer. 

Preparation of the Standard Curve 

A stock solution of hydroxamic acid was pre.pared by 

dissolving 0 0 5 g of succinic anhydride in 20 ml of freshly 

neutralized 2.0 M hydroxylamine hydrochloride. After allow­

ing the solution to stand for 10 minutes, deionized water 

was added to give a final volume of 50 ml. A 1:40 dilution 

of this stock solution with deionized water was used to pro­

duce the standard solution. Two ml of the standard solution 

was mixed with 1.0 ml of freshly neutralized hydroxylamine 

hydrochlorideo After standing for 10 minutes, 2.0 ml of 

ferric chloride (6% w/v in 2% v/v hydrochloric acid) was 

added and the absorbance read in a Bausch and Lomb Spectronic 

70 at 540 nm. The absorbance from this solution was equiva­

lent to 4 0 0 micromoles of acetohydroxamic acido Dilutions 

of the stock solution were prepared in a total volume of 40 

ml to give the desired concentrations of acetohydroxamateo 

A standard curve for acetohydroxamate was plotted from the 

absorbencies of the different solutions. 



35 

Amidase As;tiyity 

The Brammer and Clarke (1964) modification of the Lip­

mann and Tuttle (1945) method for hydroxamic acid determin­

ation was used in this investigationo This modification 

utilizes the quantitation of acetohydroxamate which is one 

of the products of the translocase reaction catalyzed by the 

amidase enzyme. The amidase catalyzes the transfer of the 

acyl group of the substrate amides to hydroxylamine to form 

acylhydroxamates (Kelly and Kornberg, 1962). The nature of 

this reaction is described below. 

CH3-co-NH2 + NH2-0H -------.:.-> CH3~cO-NH-OH + NH3 

The frozen samples were thawed and 0.75 ml of a sub­

strate mixture containing equal volumes of 0.4 M acetamide, 

freshly neutralized 2. 0 J1 hydroxylamine hydrochloride and 

0.1 M 2-amino-2-(hydroxymethyl)-1-3-proanediol (Tris-HCl) 

buffer (pH 7.2) was added. The tubes containing the reaction 

mixture were incubated at 37 C for 15 minutes. Termination 

of the reaction was achieved by.the addition of 2.0 ml of 

ferric chloride (6% w/v in 2% v/v hydrochloric acid). A red 

to violet color appears immediately and the absorbance at 

540 nm was determined using a Bausch and Lomb Spectronic 70. 

The amount of acetohydroxamate was calculated from the ace­

tohydroxamate standard curve. Specific activity was calcu­

lated by defining one unit of amidase as the amount of enzyme 

that would produce one micromole of acetohydroxamate per mg 

dry cell weight per 15 minutes. 
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Isolation and Purification of Amidase 

Growth of P. fluorescens 

Aliquots (25 ml) from a liquid culture which had been 

incubated for 9 hours on a reciprocal shaker were used to 

inoculate 6 Fernbach flasks (2800 ml) containing 475 ml of 

medium. These flasks were incubated for.9 hours before har­

vesting. At this time, the cells were in the late log phase 

of growth and had a cell density between Oa400 and 0,425 mg 

dry weight per ml. The cells were harvested and washed twice 

with minimal salts buffer by centrifugation at 4 C and 5000 

x g for 10 minutes. The yield was between 25-30 g wet weight. 

Harvested cells were stored as a thick paste at -20 C without 

any significant loss of amidase activity. 

Preparation of Ultrasonic Extracts 

The method of Kelly and Kor.nberg (1964) was used to iso­

late and purify the amidase enzyme. Approximately 15 g of 

cells (wet weight) were suspended at 4 C in 200 ml of 0.5 M 

potassium phosphate buffer (pH 7.2). Twenty ml ~ortions were 

exposed for 90 seconds (30 second bursts) to the output of 

a Branson Model S75 sonifier operating at 8.0 A~ The sus­

pensions of broken cells were combined and centrifuged at 

4 C and 15,000 x g for 15 minuteso The supernatant was de­

canted and retained. The sediment was suspended in 200 ml 

of 0.2 M potassium phosphate buffer (pH 7.2) and the ultra­

sonic treatment and centrifugation procedures were repeated. 
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The supernatant from this treatment was combined with the 

initial supernatant. One or two crystals of bovine pancreas 

deoxyribonuclease I was added to the combined supernatants 

before allowing the suspension to incubate at 25 C forlS 

minuteso 

Heat Treatment 

The combined supernatant solutions were divided between 

2 thin-walled flasks (500 ml) and both flasks were incubated 

in a water bath at 60 C for 10 minuteso Then the flasks 

were rapidly cooled in an i:ce-water bath for 5 minutes. All 

subsequent operations were performed at 4.C. The 2 batches 

were combined and centrifuged at 4. C and 25,000 x g for 1 

hour. The supernatant was decanted and the sediment was re­

suspended in 50 ml of 0.1 M potassium phosphate buffer (pH 

7.2) and centrifuged at 4 C and 25,000 x g for 1 hour. 

Ammonium Sulfate Precipitation 

The supernatant solutions were combined and the bulk 

of their protein content precipitated by the addition of 

ammonium sulfate at a concentration of 300 g per 450 ml of 

supernatant to give 90% (w/v) saturation. After standing for 

30 minutes; the precipitate was collected by centrifugation 

at 4 C and 25;000 x g for 15 minutes. The precipitate was 

dissolved in a minimum volume of the initial column buffer 

(pH 7.2) consisting of 5 w1 potassium phosphate, 1 mM diso­

dium ethylenediaminetetraacetate (EDTA) and 1 mM cysteine. 
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This mixture was placed in dialysis tubing having an exclu­

sion limit of 12,000 daltons and dialyzed against 4 changes 

of 2 liters of this buffer for 12 hours. 

Column ChroruatograE.bz 

DEAE-cellulose (Sigma Chemical Company, fine mesh-0.89 

meq/g) was prepared by suspending 10-20 g of the cellulose 

in 500 ml of the initial column.buffer contained in a 1000 

ml beakero This mixture was allowed to settle for 15 minutes 

before decanting and discarding the supernatant. An addi­

tional 400 ml of buffer was added to the DEAE-cellulose, 

stirred gently and allowed to settle for 15 minutes. This 

process was repeated until the supernatant no longer became 

cloudy. After the final washing, the DEAE-cellulose was 

resuspended in a small amount of the buffer and adjusted to 

pH 7.2 with phosphoric acid. A 2x20 em column was poured 

and packed by washing with 2 lit~rs of the initial column 

buffer at a flow rate of 40 ml per hour. The dialyzed pro-

tein was applied to the column at the rate of 15 ml per hour . 
. 

The loaded column was developed with the initial column buf-

fer and subsequently with a linear phosphate gradiento A 

Pharmacia gradient mixer was used to form the gradient by 

allowing 300 ml of 0.4 M potassium phosphate buffer (pH 7.2) 

containing 1 mH EDTA and 1 mH cysteine to flow with constant 

stirring, into a vessel containing 300 ml of 5 mM potassium 

phosphate buffer (pH 7.2) containing lmM EDTA and 1 mM cys-

teine. The gradient was allowed to flow through the column 
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at the rate of 20 ml per hour. Fractions (10 ml) were col­

lected and analyzed for amidase activity and protein content 

(Lowry et al.; 1951). 

Storage of Purified Amidase 

The fractions making up the central portion of the peak 

of enzyme activity were combined and precipitated by the 

addition of ammonium sulfate (5.2 g per 8.3 ml of eluate) to 

give 90% (w/v) saturation. This mixture was centrifuged at 

25,000 x g for 15 minutes. The precipitate was collected 

and stored as a slurry at -20 C. For subsequent experiments, 

small aliquots of the enzyme slurry were dissolved in 50 mH 

potassium phosphate buffer (pH 7.2) containing 1 mH EDTA and 

1 mH cysteine and dialyzed extensively against this buffer 

prior to experimentation. All in ~itro investigations were 

performed in this buffer. 

Deoxyribonucleic Acid Isolation 

Growth of P. fluorescens 

Three Fernbach flasks (2800 ml) containing 500 ml of 

medium were inoculated from a liquid culture and incubated 

at 37 Con a reciprocal shaker. After 9 hours, the cells 

were harvested and washed twice with minimal salts buffer 

by centrifugation at 4 C and 5000 x g for 10 minutes. The 

w~t weight yield was between 12-15 g. The cells were re­

suspended in 0.15 M sodium chloride and 0.1 M EDTA at a con­

centration of 1 g (wet weight) per rnl. This suspension may 
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be used immediately or frozen at -20 C for later use. 

Isola.tion of DNA 

DNA from P. fluorescens was isolated utilizing the Saito 

and Hiura (1963) modification of the method described by 

Marmur (1961). Lysozyme (egg white) was added to a 6 g of 

resuspended cells to give a final concentration of 2 mg per 

mlo Incubation of this mixture at 37 C was carried out for 

a period of 10-20 minutes with careful monitoring, by the 

addition of dilute sodium hydroxide, to maintain a pH of 8.0.· 

Just as the cells began to lyse, they were quickly frozen in 

an acetone-dry ice bath.. At this time, 50 ml of Tris-SDS 

buffer (pH 9.0) consisting of 0.1 M Tris-HCl, 1% (w/v) sodium 

dodecyl sulfate (SDS) and Ool M sodium chloride was added to 

the frozen cells. Resuspension of the cells was accomplished 

by stirring with a glass rod. While lysis was still incom­

plete, the freezing and thawing were repeated. The cell sus­

pension was then mixed with an equal volume of redistilled 

phenol and the mixture was shaken by hand in a glass-stop­

pered round bottom flask for 20 minutes in an ice-water bath. 

The resulting emulsion was separated into 2 phases by low 

speed centrifugation at 4 C and 650 x g for 10 minutes. 

Clarification of the upper aqueous phase by high speed cen­

trifugation at 4 C and 16,300 x g for 10 minutes was used to 

remove any remaining cell debris. The nucleic acids were 

precipitated by gently mixing the clarified suspension with 

2 volumes of cold 95%. (v/v) ethanol. The thread-like 
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precipitate was collected on glass rods and dissolved in 

20-40 ml of dilute saline-citrate (pH 7.0) consisting of 15 

mM sodium chloride and 1.5 mM trisodium citrate. Two to four 

ml of concentrated saline-citrate (pH 7.0) consisting of laS 

M sodium chloride and Oal5 M trisodium citrate was then added 

to this solution, To remove RNA, ribonuclease I (bovine 

pancreas) which had been dissolved in 0.15 H sodium chloride 

and previously heated to 80 C for 10 minutes was added to the 

solution to give a final concentration of 50 ~g per ml. Af­

ter incubation for 30 minutes at 37 C, the digest was cooled 

and mixed with an equal volume of redistilled phenol, This 

was followed by shaking of the mixture for 10 minutes in an 

ice-water bath. The two phases were once again separated by 

centrifugation at 4 C and 650 x g for 10 minutes. As was 

done previously, the upper aqueous phase was clarified by 

centrifugation at 4 C and 16,000 x g for 10 minutes. The 

DNA was precipitated by the addition of 2 volumes of cold 

95% (v/v) ethanol and collected on glass rods, Next 1 the 

DNA was dissolved in 20 ml of dilute saline-citrate. To 

this mixture; 2~2 ml of acetate-EDTA (pH 7.0) consisting of 

3 M sodium acetate and 1 mM EDTA was added. While the solu­

tion was rapidly stirred, Oo54 volumes of cold isopropanol 

was slowly added to eliminate RNA. The precipitated DNA 

was subjected to the acetate-EDTA and isopropanol steps a 

second time using one-half the previous volumeso After this 

step, the DNA was washed by stirring successively in 70, 

80 and 90% (v/v) aqueous ethanol before storage at 4 C in 
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95% (v/v) ethanol and 1% (v/v) chloroform. 

Stock solutions of DNA were prepared by allowing the 

DNA to gently disperse in a small volume of the appropriate 

buffer over a period of 1-2 days at 4 C. Aliquots of this 

solution were removed and dialyzed against the experimental 

buffer to remove the remaining ethanol and chloroform. DNA 

concentration was determined by using either the diphenyla­

mine reaction (Burton, 1955), or by using a nomograph dis­

tributed by the California Corporation for Biochemical Re­

search, 3625 Hedford St., Los Angeles 63, California. The 

260/280 nm absorbencies were measured in a Beckman DU-2 

spectrophotometer using ~uartz cuvettes with a 1 em light 

path. RNA contamination was estimated using the orcinol 

method of Ogur and Rosen (1950). 

RNA Polymer'ase Assays 

Standard Assay of RNA Pol)"E:erase 

RNA polymerase activity was determined by measuring the 

amount of radioactive precursor rendered acid insoluble in 

the test system.. The standard assay procedure of McConnell 

and Bonner (1972) was used throughout the course of this 

investigation. ID~A polymerase (EC No. 2.7.7 .. 6), Type III 

from ~· coli K-12 (Sigma Chemical Company) was assayed in a 

total volume of 0.25 ml. The components of the assay con­

sisted of Tris-HCl buffer (pH 7.9), 50 mM; magnesium chloride, 

8 mH; dithiothreitol,· 0.1 ml1; ATP, GTP and CTP, each Oo2 !11M:; 

UTP, 0.19 mH; 5-3H-UTP (Amersham Corporation, specific 
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activity:2 curies per mmol), 0.01 mH; either calf thymus 

DNA (Sigma Chemical Company, Type I) or P .. fluorescens DNA 

(isolated and purified as previously described), 30 ~g; 3 

units of RNA polymerase. As defined by Sigma, one unit of 

RNA polymerase will incorporate 1 nanomole of labeled ATP 

into acid insoluble product in 15 minutes at pH 7. 9 at 37 C, 

using calf thymus DNA as the template. In this assay, acti­

nomycin D, protocatechuate and/or the hydroxypyrazole were 

added to the combined salt and ribonucleoside 5'-triphosphate 

solution before the DNA and &~A polymeraseo The reaction 

mixture was incubated at 37 C for 15 minutes. In some exper­

iments, 0.05 ml aliquots. of the reaction mixture were re­

moved at the desired time intervals and used to plot the 

radioactivity incorporated \vith time. The reaction was 

stopped by rapid cooling of the reaction mixture in an ice­

water bath followed by the addition of 75 ~g of RNA (Sigma 

Chemical Company, Type III from yeast) as a carrier and 2 

ml of 10% (w/v) trichloroacetic acid (TCA) in succession. 

After standing for 30 minutes in the ice-water bath. acid 

precipitable counts i.vere collected on glass fiber filters 

(Whatman GF/C, 2.4 em diameter) and washed 5 times with 10 

ml of cold 5% (w/v) TCA containing 0.1 H sodium pyrophosphate 

and 0.05 ml1 ATP. The filters were placed in scintillation 

vials and dried under a heat lamp. After cooling, 10 ml 

of Quantofluor (Hallinckrodt) was added to the vials and the 

vials were counted for 20 minutes in a Beckman LS-3133P 

scintillation counter, Controls lacking either RNA 
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polymerase or DNA were routinely included in each experiment. 

Time-Course Addition of Actinomycin Dt 

· Protocatechuate and the Hydroxypyrazole 

Time-course addition of actinomycin D, protocatechuate 

and the hydroxypyrazole was studied by using a slight modifi­

cation of the standard assay method, One of the compounds 

of interest was added to the complete reaction mixture lack­

ing CTP and incubated for 15 minutes at 37 C to establish a 

binding equilibrium with the template. This incubation \vill 

allow an initiation complex to form, At the end of this 

incubation period, the other compound of interest was added 

and elongation of the RNA chain may be started by the addi­

tion of CTP, or the incubation of the reaction mixture and 

the two compounds may be extended for another 15 minutes to 

establish a binding equilibrium between the two compounds 

and the template. Then, CTP was. added to start elongation. 

Controls incubated over these same periods were routinely 

included to insure that no loss of RNA polymerase activity 

was incurred. 

Effect on RNA Chain Elongation 

The high salt method of Hyman and Davidson (1970) was 

used to study the effect of the hydroxypyrazo1e on actino­

mycin D inhibition of fu~A chain elongation. The complete 

assay mixture lacking CTP was mixed in the low salt buffer 

of the standard assay. and incubated at 37 C for 15 minutes. 
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At this time, ammonium sulfate was added to give a final 

concentration of 0,4 H. This high salt concentration washes 

any non-initiated polymerase off the DNA; leaves the initia-

tion complex intact and severely slmvs the rate of reinitia-

tion. At this point, after initiation has occurred, 

actinomycin D and the hydroxypyrazole were added. Thus, only 

the effect of the compounds on ru~A chain elongation was 

measured. CTP may be added at this time, or after incubation 

at 37 C for an additional 15 minutes to allow the compounds 

to establish a binding equilibrium with the template. 

Treatment of Cells with 

Surface-Active Agents 

Four surface-active agents, Triton X-100, Tween 80, 

1-hexadecylpyridinium chloride and SDS, were investigated to 

determine the effect, if any, that these compounds might have 

on actinomycin D activity. Cultures of P. fluorescens were 
. -

grown for 9 hours at 37 C. The cells were harvested, washed 

twice with minimal salts buffer and resuspended in minimal 

salts buffer to give an optical density of 0,4 at 540 nm. 

Two 20 ml aliquots were removed and placed in Erlenmeyer 

flasks (250 ml). Five ml of the surface-active agent was 

added to one flask while 5 ml of sterile deionized water was 

added to the second flask. The two flasks were then incu-

bated on a slowly shaking water bath for 5 minutes at 37 C. 

At the end of this time period, the cells from the two 

flasks were harvested by low speed centrifugation at room 
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temperature, washed twice with minimal salts buffer and re­

suspended in minimal salts buffer to give an optical density 

of 0. 2 at 540 nm. These two suspensions v7ere then used to 

inoculate culture tubes containing the appropriate medium. 

Growth in the presence and absence of actinomycin D was fol­

lowed spectrophotometricallyo 

Uptake of Radioactive Substrates 

Cultures of P. fluorescens were grown for 9 hours at 

37 C. One ml of this growth suspension was used to inoculate 

24 ml of succinate medium contained in a side-arm flask (250 

ml). At the end of 3 hours, these cells were harvested, 

washed twice with minimal salts buffer and resuspended in 

minimal salts buffer to give an optical density of 0.3 mea­

sured at 540 nm. This cell suspension was equilibrated with 

gentle shaking for 20 minutes at 37 C in a shaking water 

batho Three ml of the cells were added to tubes containing 

the 14c-labeled substrate (0.2 pCi per ml final concentra­

tion), unlabeled substrate (10:1 molar ratio relative to 

the radioactive substrate) and the appropriate compounds of 

interest. Samples (Oo5 ml) were removed at the desired 

time intervals and immediately filtered through 11illipore 

filters (type HA, 0,45 micron pore size, 1 em diarneter) and 

washed 3 times with 1 ml of cold minimal salts buffer. The 

filters were placed in scintillation vials containing 10 ml 

of Aquasol (New England Nuclear), After 5 hours to insure 

complete digestion of the Hillipore filter, the samples were 



counted in a Beckman LS-3133P scintillation counter for 20 

minutes. 

Isolation, Purification and Reconstitution 

of Vesicles from Outer Hembrane 

Components of E.· fluorescens 

Extraction, Quantitation and 

Qualitation of Phospholipids 

Phospholipids were prepared by the method of Folch et 

al. (1957). After growth in succinate medium for 9 hours; 
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a 100 ml culture of P. fluorescens was harvested, washed 

twice with minimal salts buffer and resuspended in 5 ml of 

methanol contained in a screw-cap tube. The tube containing 

the suspension #as flushed with nitrogen and capped with a 

teflon lined screw-capo . The sealed tube was incubated for 

30 minutes in a 55 C water bath. After cooling to room tem­

perature, 10 ml of chloroform was added and the extraction 

was continued at 25 C fo~ 12 hours under a nitrogen atmos­

phere, Insoluble material was r.emoved from the sample by 

passing the suspension through a Hillipore filter (type HA, 

0.45 micron pore size). The chloroform-methanol suspension 

was then washed twice with 15 ml of 2 M potassium chloride 

and once with 10 ml of deionized water. After the water 

wash, the chloroform and water layers were separated by low 

speed centrifugation at room temperature, The resulting 

chloroform solution was passed through a freshly prepared 

sodium sulfate column (O.Sxl4 em) and dried down to about 
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0.5 ml under a steady stream of nitrogen. The phospholipid 

solution was maintained in chloroform at -20 C under a nitro­

gen atmosphere<) 

Since it is known that approximately 90% of the lipids 

of Pseudomonas aeruginosa and closely related species are 

phospholipids, the lipid phosphate content may be used as an 

assay of lipid levels (Hancock and Headow, 1969). Lipid 

phosphate was determined by the method of Ames and Dubin 

(1960) . 

The phospholipids were qualitatively identified by 

spotting microliter volumes of the chloroform-phospholipid 

solution on 5x20 em silica gel G chromatography plates 

(Quantum Industries) which had been activated at 100 C 

immediately before useo Chromatograms were developed in a 

solvent system of chloroform-methanol-water (65:25:4 by 

volume) after allowing the solvents to equilibrate for 1 

hour. Rhodamine· G spray reagent was used to detect lipid 

containing substances (Rouser et al.t 1961). The detection 

of phosphate esters was determined using the ferric chloride­

salicylsulphonic acid spray_reagent (Wade and Morgan, 1953). 

Ninhydrin spray reagent was used ·to detect lipids containing 

free amino groups (Marinetti et al., 1962). Phosphatidyl­

glycerol was detected by the Periodate-Schiff's test for 

vicinal hydroxyl groups (Shaw, 1968). Conclusive identifi­

cation of the extracted phospholipids was accomplished by 

chromatography with known standards. These standards in­

cluded phosphatidylethanolamine and phosphatidylglycerol 
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(Sigma Chemical Company). 

Lipopolysaccharide (LPS) from: P. fluorescens was ex­

tracted and purified by the method of Johnson and Perry 

(1976). Bacteria (5 g) were placed in 50 ml of 50 mM sodium 

phosphate buffer (pH 7.0) containing 2 rnM EDTA and Oo05% 

(w/v) sodium azide. This mixture was stirred with a magnetic 

stirrer at top speed for 1 minute. Lysozyme was added to 

give a final concentration of 100 pg per ml, and the suspen­

sion was slowly stirred at 4 C for 16 hours. After this 

incubation, the suspensi.on was then incubated at 37 C for 

20 minutes before stirring at top speed on a magnetic stirrer 

for 3 minutes. The volume of the suspension was adjusted to 

100 ml with 20 rnM magnesium chloride. Bovine pancreas ribo­

nuclease I and deoxyribonuclease I were added to give a final 

concentration of 1 pg per ml. This mixture was incubated 

for 10 minutes at 37 C and then for 10 minutes at 60 C. If 

a gelatinous mixture was obtained 1 the suspension was stirred 

for 3 minutes at top speed on a magnetic stirrer before 

phenol extractiono Equal volumes of disrupted bacteria and 

redistilled 90% (w/v) phenol were added to a glass-stoppered 

round bottom flask which was shaken by hand for 15 minutes 

in a water bath at 70 C. Both the bacterial suspension and 

the phenol were preheated to 70 C. After extraction, the 

suspension was rapidly cooled by shaking in an ice-water bath. 

Centrifugation at 4 C and 18,000 x g for 15 minutes permits 
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sharp definition of aqueous; phenol and interfacial layers, 

and occasionally sediment, The aqueous and phenol phases 

were carefully removedo The aqueous phase was retained while 

the phenol phase was discarded. Material remaining after 

removal of the aqueous and phenol phases was resuspended in 

three volumes of deionized water and stirred on a magnetic 

stirrer for 5 minutes. This suspension was centrifuged at 

4 C and 18,000 x g for 15 minutes, and the resultant super­

natant fraction was removed and combined with the aqueous 

phase. The pooled aqueous phases were dialyzed against de­

ionized water until no detectable phenol odor remained. The 

samples were lypholized and stored at -20 C. 

Quantitation of LPS was determined by the L-glycero-D­

mannoheptose assay of Osborn (1963) and the 2-keto-3-deoxyoc­

tonate (KDO) assay of Weissbach and Hurwitz (1958). LPS 

concentrations were calculated by assuming that each mole of 

LPS contained 2 moles of heptose. 

Outer Hembrane Protein Isolation 

and Purification 

The method of Hancock and Nikaido (1978) was used to 

prepare outer membranes of P. fluorescenso Nine liters of 

cells were grown in succinate medium for 9 hours and har­

vested by centrifugation at 4 C and 5000 x g for 10 minutes. 

The cells were washed with 30 mH Tris-HCl buffer (pH 8.0) 

artd resuspended in 20 ml of 20% (w/v) sucrose in Tris-HCl 

buffer containing l mg each of bovine pancreatic 
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deoxyribonuclease I and ribonuclease I. The cells were 

passed twice through a French pressure cell at 15,000 pounds 

per square inch, after which 2 mg of egg white lysozyme were 

addedo Ten minutes later, a·protease inhibitor (alpha-tolu­

lenesulfonyl fluoride) was added to give a final concentration 

of 1 ml-fo Cell debris was removed by centrifugation at 4 C 

and 1000 x. g for 10 minuteso The supernatant was decanted, 

diluted by the addition of Tris-P.Cl buffer and layered onto 

sucrose step gradients containing 1 ml of 70% (w/v) sucrose 

and 6 ml of 15% (w /v) sucrose in 30 m}f Tris-HCl buffer. 

These tubes were centrifuged at 4 C and 183,000 x g for 1 

hour in a BeckiT~n SW 41 rotor. The bottom 2 ml of each gra­

dient was removed, pooled, diluted and applied to sucrose 

density gradients containing steps of 5 ml 70%, 10 ml of 64%, 

10 ml of 58%, and 10 ml of 52% (w/v) sucrose in 30 mN Tris­

ECl buffer. These tubes were centrifuged at 4 C and 96,000 

x g for 18 hours in a Beckman SW 27 rotor. The four bands 

which were observed were removed by dropwise collection from 

the bottom of the centrifuge tube and assayed for protein 

(Lowry et al 0 , 1951), succinate dehydrogenase (Kasahara and 

Anraku, 1974-), KDO (Weissbach and Hurwitz; 1958) and lipid 

phosphate (Ames and Dubin, 1960). 

Fractionation of outer membrane proteins was performed 

according to the procedure of Hancock et alo (1979)o The 

lower 2 bands were pooled, diluted with sterile deionized 

water and centrifuged at 4 c· and 177,000.x g for 1 hour in 

a Beckman SW 41 rotor. The resulting pellet was solubilized 
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at a protein concentration of 10 mg per ml in 20 mH Tris-HCl 

buffer.(pH 7.4) containing 2% (v/v) Triton X-100 with soni­

cation for 2 minutes in a bath type sonicator (Laboratory 

Supplies ·company, Inc,)o Insoluble protein was sedimented 

by centrifugation at 4 C and 177,000 x g for 1 hour, and the 

supernatant was set aside as Triton X-100 soluble protein. 

Triton X-100 insoluble protein was resuspended in 20 rnM Tris­

HCl buffer (pH 7.4) containing 2% (v/v) Triton X-100 and 10 

mM EDTA at a protein concentration of 8 mg per ml with soni­

cation as above to assist solubilization. Triton X-100/EDTA 

insoluble protein was remDved by centrifugation at 4 C and 

177,000 x g for 1 hour ~n a Beckman SW 41 rotor. The super­

natant, containing Triton X-100/EDTA soluble outer membrane 

proteins was applied to a column (2o7x40 em) of DEAE-Sephacel 

(Pharmacia Fine Chemicals) which had been equilibrated with 

20 rrM Tris-HCl buffer (pH 7.4) containing 0.1% (w/v) Triton 

X-100 and 10 mH EDTA, The proteins were eluted at a linear 

flow rate of 8 em per hour by using a Pharmacia gradient 

mixer to form a concentration gradient of sodium chloride 

(0 0 1 to 0.6 M). Fractions of 7 ml were collected, assayed 

for protein content (Lowry et al;, 1951), and appropriate 

fractions were pooled. The pooled fractions were concentrated 

to about 3-5 ml by dialysis against a 30/o (w/v) solution of 

polyethylene glycol 6000o Triton X-100 was remDved from the 

protein samples by treatment with Bio-Gel SM-2 copolymer 

beads (Bio-Rad Laboratories)' by the method of Holloway (1973). 

·The assay procedure of Garewal (1973) was used to determine 
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Triton X-100 concentrations. After removal of Triton X-100, 

the protein fractions were divided into 0.5 ml aliquots and 

stored at -20 C in polypropylene micro test tubes. 

Vesicle Preparation 

Outer membrane vesicles were reconstituted by the tech­

nique described by Hancock and Nikaido (1978). Phospholipids 

(0.5 micromole)·were dried down under a stream of nitrogen 

in disposable borosilicate tubes before placing the tubes in 

an evacuated dessicator for 30 minutes. LPS (0.08 micromole), 

with or without outer membrane protein (125-140 ~g) derived 

from the outer w.embrane .band material, was added to the tube 

and mixed on a Vortex mixer for 30 seconds. This mixture 

was then sonically disrupted in a bath type sonicator for 

60 seconds to thoroughly randomize the components. The sus­

pension was dried down under a stream of nitrogen at 45 C. 

The tubes were then placed in an evacuated dessicator for 

30 minutes. A 100 microliter volume of a solution containing 

1 mM N-2-hydroxyethylpiperazine-li'-2-ethanesulfonic acid 

(HEPES) buffer (pH 7.4), 100 ~~sodium chloride, 10 mM 

magnesium chloride and 4.4 x 105 cpm of u-14c-sucrose was 

added. The vesicle components were resuspended with a teflon 

spatula, followed by mixing for 30 seconds on a Vortex mixer 

and 30 seconds of sonic disruption in a sonicating water 

bath. The tubes were then incubated in a water bath at 45 C 

for 30 minutes. At the end.of this time period, the water 

bath was turned off and allowed to come slm,rly, over the 
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course of approximately 2 hours, to room temperatureo Ali~ 

quots of the vesicle solution were diluted 100 fold into a 

solution containing l rrM HEPES buffer (pH 7.4), 100 rnM sodium 

chloride, 10 mM magnesium chloride and 3 mM sodium azide. 

The effect of selected compounds on 14c-sucrose retention 

was determined by exposing reconstituted vesicles to the 

compounds which were included at the desired concentration 

in this buffer. After 20 minutes at 25 C, the diluted ves­

icle suspension was filtered slowly, over the course of 

about 20 seconds, through a Hillipore filter (type HA, 0.45 

micron pore size, 1 em diameter). The filter was washed 

six times with 1. 5 ml of the buffer previously described, 

The washed filters were placed in scintillation vials con­

taining 10 ml of Aquasol (New England Nuclear). After 5 

hours to insure complete digestion of the Hillipore filter; 

the amount of radioactivity retained in the vesicles was 

determined by liquid. scintillation ·counting in a Beckman 

LS-3133P scintillation counter for 50 minutes. The amount 

of 14c-sucrose retained in the.-vesicles was divided by the 

14c-sucrose content of the reconstitution medium to calculate 

the% 14c-sucrose retained within the vesicles. 

SDS Polyacrylamide Gel Electrophoresis 

of Outer Hembrane Proteins 

SDS polyacrylamide gel electrophoresis was performed by 

the method of Lugtenberg et'al. (1975). The discontinuous, 

·.vertical slabs used in this investigation had a thickness of 
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1 mm and a running length of 9 cmo The following stock so­

lutions were used for .the preparation of the running and 

stacking gels. Stock solution I contained 44 g of acrylamide 

plus 0.8 ·g of methylene bisacrylamide while stock solution 

II contained 30 g of acrylamide plus 0.8 g of methylene bis­

acrylamide. ·The volumes of both solutions were adjusted to 

100 ml with sterile deionized water, filtered through Whatman 

No. 1 paper and stored at 4 C in the darko- A fresh solution 

of ammonium persulphate was prepared for each slab gelo 

Polymerization was initiated by the addition of N,N,N' ,N'­

tetramethylethylenediamine (TEMED) to yield a final concen­

tration of 0.2% (v/v). The running and stacking gel solutions 

were degassed before the gel was poured and polymerized. 

The running gel contained 3.125 ml of stock solution I, 

0.315 ml of ammonium persulphate (10 mg per ml), 0.25 ml of 

10% (w/v) SDS, 6.25 ml of Oo75 H Tris-HCl buffer (pH 8.8), 

2.56 ml deionized water and 0.025 ml of TEMED. The stacking 

gel contained 0.5 ml of stock solution II, 0.12 ml of ammonium 

persulphate (10 mg per ml), 0.05 ml of 10% (w/v) SDS, 2~5 

ml of 0.25 M Tris-HCl buffer (pH 6.8), 1~83 ml of deionized 

water and 0.01 ml of TEHED. The buffer (pH8.3) for both 

electrodes contained 0.025 M Tris-HCl, 0.19 M glycine and 

0.1% (w/v) SDS. 

Protein samples were prepared in 0.0625 H Tris-HCl buf­

fer (pH 6.8) containing 2% (w/v) SDS, 10% (v/v) glycerol, 

0~001% (w/v) bromophenol blue and 5% (v/v) 2-rnercaptoethanol. 

·Protein was added to .give a. final concentration of 0.5-1 mg 
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per ml, and the samples were boiled for 5 minutes. 

·Routinely, 20 microliters (20 pg protein) of the samples 

were applied per slot. Samples containing a mixture of 1 pg 

each of standard proteins (Sigma Chemical Company) were pre­

pared and applied as described. Electrophoresis was performed 

at room temperature using a constant current of 20 mAo The 

electrophoresis was stopped when the tracking dye had migrated 

to within 1 em from the bottom of the gel. Gels were stained 

overnight in 0.1% (w/v) Coomassie Blue in 50% (v/v) methanol 

and 10% (v/v) acetic acid. The slabs were destained in 50% 

(v/v) methanol and 10% (v/v) acetic acid. In order to store 

the gels, they were soaked for additional 24 hours in a solu­

tion containing 50% (v/v) methanol and 5% (v/v) glycerol. 

After this treatment, the gels were spread on Hhatman 311M 

chromatography paper and drie4 in a glazing dryer. 



CHAPTER III 

RESULTS AND DISCUSSION 

Influence of the Hydroxypyrazole and 

Protocatechuate on the Actinomycin D 

Inhibition of P. fluorescens 

Effect of Actinomycin D on 

Growth of P. fluorescens 

Waksman (1954) reported that Gram-positive microorgan­

isms were very susceptible to actinomycin D action while 

Gram-negative microorganisms were less affected. The effect 

of the antibiotic can be both bacteriostatic and bactericidal, 

depending upon the concentrations utilized. 

Tube dilution assays were performed in succinate medium 

to determine the sensitivity of E_. fluorescens to actinomycin 

D. The response of this bacterium to actinomycin D concentra­

tions of 3.2 x lo-6, 8.0 x lo-6, 1.6 x lo-5 and 2.4 x lo-5 M 

demonstrated that inhibition of grm11th was concentration de­

pendent (Figure 6). Only slight inhibition of growth was 

observed when the concentration of actinomycin D was 3.2 x 

10.;_6 M, while growth was completely inhibited when t~1.e con­

centration was increased to '2a4 x lo-5 M. Nearly 1-2 hours 

· of growth in the presence of actinomycin D was required 
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Figure 6. Effect of Actinomycin D on Grmvth of Po fluores­
cens. e , succinate control; 0 , -actinomycin 
n;-3.2-x 10'"'6 H; 0 ; actinomycin D, 8.0 x lo-6 
M; 6 , actinomycin D, 1. 6 x lo-5 M; 0 , acti­
nomycin n. 2,4 x lo-s.M. 
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before any of the concentrations produced a discernible 

degre'e of inhibitiono · This period is assumed to represent 

the time required for actinomycin D to pass into the cell, 

reach its primary site of action (the DNA) and inhibit RNA 

synthesis. 
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Microscopic examination of cells exposed to the higher 

concentrations of actinomycin D revealed that these cells 

exhibited increases in both length andwidth. 

Effect of the Hydroxypy~azole on 

Growth of P. fluorescens 

Haslam (1973) reported that the hydroxypyrazole was a 

potent growth inhibitor of B. subtilis H23. A concentration 

of 8oS x 10-6 H completely inhibited growth of this organism 

for 6 hours. LM tissue culture cells were also sensitive to 

the hydroxypyrazole. However, a concentration of 8.5 x lo-5 

M was necessary to decrease the .number of viable tissue 

culture cells by 60%. 

In contrast, tube dilution assays demonstrated that P. 

fluorescens was not inhibited byhydroxypyrazole concentra­

tions as high as 1. 3 x lo-4 M. The inability of the 

hydroxypyrazole to inhibit growth of P. fluorescens is in 

agreement with the report by Smith et al. (1963) which noted 

that the spectrum of activity of steroids was almost totally 

confined to Gram-positive microorganisms. 



Effect of the Hydroxy:E;:razole on 

Actinomlcin D Inhibition of 

P. fluorescens 
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Actinomycin D inhibition of P. fluorescens was increased 

by approximately 70% when the hydroxypyrazole was added in 

combination to the medium (Figure 7)o The concentrations of 

actinomycin D and the hydroxypyrazole used in this study 

were 3.2 x lo-6 and 4.2 x lo-S M, respectively. The very 

significant increase in actinomycin D inhibition resulting 

from the addition of the hydroxypyrazole appears to be bac­

tericidal in nature. Neither prolonged incubation, nor 

washing and resuspension of the cells in fresh medium in the 

absence of actinomycin D was sufficient to reinitiate growth 

after exposure for 10 hours to the combination of these 

compounds. This is interesting since the concentration of 

actinomycin D used in this investigation was bacteriostatic. 

Furthermore, increases in cell iength and width were observed 

microscopically which were customarily observed only for 

cells exposed to higher concentrations of the antibiotic. 

Cell viability experiments utilizing the same concentra­

tions which were used in the tube dilution assays revealed 

that there was a steady decline in the number of viable 

cells exposed to the combination of actinomycin D and the 

hydroxypyrazole, while the control cells and actinomycin D 

treated cells' increased in viable cell number (Figure 8). 

These data suggest that a molecular interaction between 

actinomycin D and the hydroxypyrazole may participate in the 



Figure 7 .. Effect of the Hydroxypyrazole on Actinomycin D 
Inhibition of Growth of P. fluorescens. e , 
succinate control and hydroxypyrazole, 4.2 x 
10""'5 11; e , actinomycin D, 3. 2 x lo-o M; • , 
hydroxypyrazole plus actinomycin D. 
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Figure 8o Effect of the Hydroxypyrazole on Actinomycin D 
Inhibition of P, fluorescens Cell Viability. 
e , succinate-contro 1 and liydroxypyrazole, 
4.2 x. lo-5 M; .& , actinomycin D, 3.2 x 10-6M. 
• , hydroxypyra.zole plus actinomycin D. 
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mechanism(s) by which actinomycin D action is increased. 

Previous investigation in this laboratory by Haslam (1973) 

initially provided evidence supporting the complexation of 

actinomycin D and the hydroxypyrazole. Further evidence 

from lH NMR analysis in DzO (Chestnut et al., 1974), and 
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lH NMR and 13c ffi1R analysis in n3con (O'Donnell et al., 1978) 

augment this investigation. 

Most attempts to potentiate actinomycin D action have 

utilized agents such as EDTA, detergents and bacteriophage 

to create permeability changes in the cell which allow more 

actinomycin D to diffuse into the cell. Although this type 

of action cannot be completely ruled out for the hydroxy­

pyrazole, growth experiments have shown that the hydroxy­

pyrazole appears to neither inhibit cell growth or cause 

aberrant changes in cell size at the concentrations used in 

this investigation. Furthermore, studies have shown that 

exposure of P. fluorescens to only the hydroxypyrazole does 

not result in an increase in actinomycin D action, P. 

· fluorescens was grown for 8 hours in the presence of the 

hydroxypyrazole, washed t\vice with minimal salts buffer and 

resuspended in succinate medium containing actinomycin D. 

No difference was observed between the cells grown in the 

presence of the hydroxypyrazole and cells grown in succinate 

medium \vhen both batches of cells were exposed to actinomycin 

D. Therefore, it appears from these data that the hydroxy­

pyrazole and actinomycin D must both be present and act 

together, possibly via a molecular complex, to inhibit growth 
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of P. fluorescens. 

'It is interesting to note that it was also approximately 

1-2 hours after exposure to the combination of the hydroxy­

pyrazole and actinomycin D before noticeable inhibition of 

growth was observed. This was not unlike the inhibition 

which was observed for a corresponding concentration of ac­

tinomycin D. 

Prevention and Reversal of Actinomycin D 

Inhibition bx Protocatechuate 

Durham and Keudall (1969) observed that protocatechuate 

could prevent or reverse the inhibition by actinomycin D of 

P. fluorescens without interfering with the diffusion of 14c­

actinomycin D into the cell. Protocatechuate, at a concen­

tration of 6.5 x lo-4 M, was observed to prevent or reverse 

the inhibition of growth of ~· fluorescens resulting from 

an actinomycin D concentration of 1.6 x lo-5 M (Figure 9). 

Cell viability studies have shown that increases in viable 

cell number accompany the increases in absorbance which have 

been observed for P. fluorescens grown in the presence of 

protocatechuate and actinomycin D. The specificity that 

appears to be involved in the ability of the protocatechuate 

to alleviate actinomycin D action in this organism suggests 

that molecular complexation between these compounds probably 

plays an integral role in the mechanism(s) which may be 

employed. Also, it is important to note that the concentra­

tion of protocatechuate which was used i"n this study did not 



Figure 9. Prevention and Reversal of Actinomycin D 
Inhibition of Growth of P. fluorescens by Proto­
catechuateo e , succinate control and proto­
catechuate, 6.5 x lo-4 M; ~ , actinomycin D, 
1. 6 x 10 ... 5 M; • , actinomycin D plus protocate­
chuate added at 0 hours; tt , actinomycin D 
plus protocatechuate added at 2 hours. 
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affect growth of the cells. 

Prevention and Reversal of Inhibition 

Resulting from the Combination of 

Actinomycin D and the Hydroxypyrazole 

by Protocatechuate 
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Experiments were conducted to determine if protocate­

chuate would prevent or reverse the inhibition resulting from 

the combination of actinomycin D and the hydroxypyrazole. 

The results demonstrated that protocatechuate could prevent 

or reverse the increased inhibition which was observed when 

the hydroxypyrazole and actinomycin D were added in combina­

tion to the medium (Figure 10). The concentrations of pro­

tocatechuate, the hydroxypyrazole and actinomycin D were 

6.5 x lo-4, 4.2 x lo-S and 3.2 x 10-6M, respectively. The 

ability of protocatechuate to relieve this inhibition appears 

to be similar to its. capacity to alleviate the inhibition 

resulting from only actinomycin D. The trends which were 

observed by following the growing cultures spectrophotometri­

cally were supported by cell viability experiments which 

showed that prevention and reversal of the inhibition re­

sulting from these two compounds was the consequence of 

increases in viable cell number (Figure 11). These data 

suggest that protocatechuate may be interacting with acti­

nomycin D or the proposed hydroxypyrazole:actinomycin D 

complex to decrease its ability to inhibit the growth of 

P. fluorescens. 



Figure 10. Prevention and Reversal of Inhibition of Growth 
of P. fluorescens Resulting from the Combina­
tLon of ActLnomycin D and the Hydroxypyrazole 
by Protocatechuate. e , succinate control, 
hydroxypyrazole (4.2 x lo-S M), protocate­
chuat§ (6.5 x lo-4 M), and actinomycin D (3.2 
x lo-b M) plus hydroxypyrazole plus protocate­
chuate added at 0 hours; • , actinomycin D 
plus hydroxypyrazole; A , actinomycin D plus 
hydroxypyrazole plus, protocatechuate added 
at 2 hours. 
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Figure llo Prevention and Reversal of Inhibition of P. flu­
orescens Cell Viability Resulting from the-­
Combination of Actinomycin D and the Hydroxy­
pyrazole by Protocate.chuate. e , succinate 
control, hydroxypyrazole (4.2 x lo-S H), pro­
tocatechuate (6.5 x lo-4 M)t and actinomycin 
D plus hydroxypyrazole plus protocatechuate 
add~d at 0 hours; • , actinomycin D (3. 2 x 
10- 11); • ; actinomycin D plus hydroxypy­
razole; 4t , actinomycin D plus hydroxypyra­
zole plus protocatechuate added at 2 hours. 
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Influence of the Hydroxypyrazole and 

Protocatechuate on Actinomycin D 

Inhibition of Amidase Synthesis 

by P. ·fluor esc ens 

Effect of Acti~mycin D on 

Amidase Synthesis 

75 

Actinomycin D inhibition of amidase synthesis was com­

parable to actinomycin D inhibition of growth in this organism 

since inhibition of both amidase synthesis and growth are 

concentration dependent. However, amidase synthesis is about 

10 times more sensitive·to the antibiotic. Actinomycin D at 

concentrations of 3.2 x lo-7 and 3.2 x 10-6 M inhibited 

amidase synthesis by approximately 5% and 100%, respectively 

(Figure 12). Thus, the monitoring of amidase synthesis 

provides a more sensitive and direct method for determining 

changes in actinomycin D action. 

Effect of the Hydroxypyrazole on 

· Amidase Synthesis 

Several concentrations of the hydroxypyrazole were tested 

to determine if this compound could inhibit amidase synthesis 

by P.· fluorescens. No inhibition of amidase synthesis was 

observed; even at concentrations as high as 1.3 x lo-4 H. 



Figure 12. Effect of Actinomycin D on Amidase Synthesis. 
e , succinate plus acetamide control; 4t , 
actinomycin D, 3. 2 x lo-7 M~ • , actinomycin 
D, 1.6 x 10-6 M; A 1 actinomycin D, 3.2 x 
to-6 M. 
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Effect of the Hydroxlp¥razole on 

Actinomycin D Inhibition of 

Amidase Synthesis 

The inhibition of amidase synthesis by actinomycin D, 
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at a concentration of 3.2 x lo-7 11, was increased by nearly 

50% when the hydroxypyrazole, at a concentration of 4.2 x 

lo-S M, was added in combination to the medium (Figure 13). 

These results agree with those of Blunk (1977), although it 

was determined in this investigation that the hydroxypyrazole 

concentration required to achieve this degree of inhibition 

was one-half the amount which was previously reported. The 

increase in actinomycin D inhibition of amidase synthesis 

when the hydroxypyrazole was present in the medium provides 

further evidence that a molecular interaction between the 

hydroxypyrazole and actinomycin D may function to increase 

actinomycin D action. Regardless of the mechanism(s) in­

volved, an important circumstance which results from growth 

in the presence of the hydroxypyrazole and actinomycin D is 

a decrease in protein synthesis~ 

Effect of the Hydroxz12yrazole and 

Actinomycin D on Amidase Activitz 

In order to eliminate the possibility that the hydroxy­

pyrazole, actinomycin D or combinations of these compounds 

inactivate the amidase enzyme rather than its synthesis, in 

vitro investigations were performed with amidase which was 

isolated from P. fluorescens. Amidase is a hexameric protein 



Figure 13. Effect of the Hydroxypyrazqle on Actinomycin D 
Inhibition of Amidase Synthesis. 8 , succi­
nate plus acetamide control and hydroxypyrazole 
(4.2 x 10'"'5 H); e , actinomycin D (3.2 x l0-7 
H); • • actinomycin D plus hydroxypyrazole. 
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with identical subunitso The molecular weight of the oligomer 

was found to be 200,000 daltons while the subunits have mole­

cular weights between 33.000 and 35,000 daltons (Brown et 

al. • 1973). 

The method of Kelly and Kornberg (1964) was used to 

isolate and purify amidaseo Ultrasonic extracts of P. flu­

orescens were prepared and treated with deoxyribonuclease I 

before ammonium sulfate precipitation was used to recover 

the bulk of the protein content. After extensive dialysis, 

the dialyzed protein was applied to a DEAE-cellulose column 

and a phosphate gradient was used to elute the amidase from 

the DEAE-cellulose. Fr~ctions (10 ml) were collected and 

analyzed for amidase activity and protein content (Figure 

14). Most of the amidase activity was eluted between 40 and 

80 mM phosphate. Fractions cqmprising the central portion 

of the peak of enzyme activity were combined and precipitated 

by addition of ammonium sulfate. The resulting slurry was 

stored at -20 C and prepared for in vitro investigation by 

dialysis to remove ammonium sulfate. 

Experiments were designed to study the effect of the 

hydroxypyrazole, actinomycin D or combinations of these com­

pounds on amidase activity. Amidase was added to tubes 

containing the appropriate compounds to yield a protein con­

tent of 0.233 mg per mlo The tubes were incubated at 37 C 

and 0.25 ml aliquots were removed at the designated time 

intervals. These aliquots were immediately assayed to de­

termine enzyme activity. None of the concentrations or 



Figure 14. Elution of Amidase of Po fluorescens from DEAE­
Cellulose. e e , specific activity; A--& , 
protein. 
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combinations of the hydroxypyrazole and actinomycin D affected 

amidase activity-over this time-course (Table I). Identical 

experiments utilizing either higher or lower concentrations 

of amidase provided the same results. It is important to 

note that the concentrations of thehydroxypyrazole and 

actinomycin D (4.2 x lo-5 and 3.2 x lo-7 M respectively) 

which were responsible for the increase in actinomycin D 

inhibition of amidase synthesis (Figure 13) had no effect on 

amidase activity. Also, actinomycin D at a concentration of 

3.2 x 10-6 H had no effect even though this concentration 

completely inhibited amidase synthesis. In addition, the 

proposed complex of the hydroxypyrazole and actinomycin D 

did not inactivate amidase since neither of the tubes con­

taining 1:1 molar ratios of these compounds at 3.2 x lo-7 

and 3.2 x lo-6 differed from the control. 

Prevention and Reversal of Actinomycin D 

Inhibition of Amidase Synthesis 

b~ Protocatechuate 

Prevention and reversal of actinomycin D inhibition of 

amidase synthesis by protocatechuate was first reported by 

Ferguson (1970). A study by Durham and Ferguson (1971) of 

selected benzoic acid derivatives reported that protocate­

chuate exhibited the greatest potential for mitigating acti­

nomycin D inhibition of amidase synthesis. Protocatechuate 

at a concentration of 6.5 x lo-4 H can completely prevent 

and almost totally reverse the inhibition of amidase synthesis 



TABLE I 

EFFECT OF THE HYDROXYPYRAZOLE 
AND ACTINOMYCIN D ON 

AMIDASE ACTIVITY 

Specific Activity 

Concentration of Compounds umoles acetohydroxamate Eroduced 
(Molarity) 15 minutes/mg protein 

Actinomycin D Hydroxypyrazole 0.0 hrs 1.0 hrs 2.0 hrs 3.0 hrs 

0.0 0.0 3128 3117 3154 3138 

3.2 x Io-7 0.0 3117 3092 3097 3092 

0.0 3.2 x lo-7 3154 3143 3159 3164 

0.0 3.2 x 1o-6 3148 3179 3169 3190 

0.0 4._2 x 1o-s 3138 3097 3128 3128 

3.2 x lo-7 3.2 X lo-7 3117 3169 3148 3128 

3.2 x Io-7 4.2 x 1o-s 3092 3086 3138 3086 

3.2 x 1o-6 o.o 3117 3117 3107 3148 

0.0 3.2 x 1o-6 3169 3092 3174 3107 

0.0 4.2 x 1o-s 3076- 3128 3117 3097 

3.2 x 1o-6 3.2 x 1o-6 3107 3169 3148 3148 

3.2 X 10-6 4.2 X 10-5 3154 3138 3128 3097 

*The amidase concentration was 0.233 mg/ml. 
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resulting from 3.2 x 10-6M actinomycin D (Figure 15). The 

ability of protocatechuate to relieve the inhibition of 

amidase synthesis by a concentration of actinomycin D which 

produced 100% inhibition provides additional support that 

the efficacy of this compound to diminish actinomycin D 

action may involve molecular interaction between these com­

pounds. 

Prevention and Reversal of Inhibition 

of Amidase Synthesis Resulting froin the 

Combination of Actinomycin D and t£~ 

Hydroxypyrazole by Protocatechuate 

In a manner similar to that observed for growth inhibi­

tion of P. fluorescens, protocatechuate (6.5 x lo-4 H) 

prevents and reverses the inhibition of amidase synthesis 

resulting from the combination of the hydroxypyrazole (4.2 

x lo-5 M) and actinomycin D (3.2 x lo-7 M) (Figure 16). 

These data confirm the earlier report by Blunk (1977) even 

though slightly different concentrations of the hydroxypyra­

zole and protocatechuate were used in this investigation. 

Therefore, it appears that an important element of protoca­

techuate's circumvention of either actinomycin D, or actino­

mycin D and hydroxypyrazole action may involve molecular 

complexations. 



Figure 15. Prevention and Reversal of Actinomycin D Inhi-
bition of Amidase Synthesis by Protocatechuate. 
e , succinate plus acetamide control; proto­
catechuate (6o5 x lo-4 M)t and actinomycin D 
(3,2 x 10~6 M) plus protocatechuate added at 0 
hours; A , actinomycin D; • 1 actinomycin D 
plus protocatechuate added at 2 hours. 
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Figure 16o Prevention and Reversal of Inhibition of Amidase 
Synthesis Resulting from the Combination of 
Actinomycin D and the Rydroxypyrazole by Pro­
tocatechuate. e 1 succinate plus acetamide 
control; hydroxypyrazole (4.2 x 10""5 11), pro­
tocatechuate (6.5 x lo-4 M), and actinomycin 
D (3.2 x lo-7 11) plus protocatechuate added 
at 0 hours; • ~ actinomycin D plus hydroxy­
pyrazole; A. , actinomycin D plus hydroxypy­
razole plus protocatechuate added at 2 hours. 
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Influence of the Hydroxypyrazole and 

Protocatechuate on Actinomycin D· 

Inhibition of the RNA 

Polyrr~rase Reaction 

91 

Actinomycin D binds to DNA and subsequently inhibits 

RNA chain elongation by affecting the rates at which CTP and 

GTP are incor~orated (Hyman and Davidson 1 1970). On the 

macroscopic level; the overall incorporation of the four 

ribonucleoside 5'-triphosphates is decreased equally. Trans­

cription still proceeds linearly along the template, so that 

the base composition of the fu~A is complementary to the 

transcribing strando The steps at which CTP and GTP are 

incorporated are slowed down while the steps at which ATP 

and UTP are incorporated are not. A precise mechanism 

accounting for this inhibition has not been elucidated. In 

vitro RNA polymerase assays were designed and conducted to 

study the influence of the hydroxypyrazole and protocate­

chuate on actinomycin D inhibition of this reaction because 

it is the primary biological site of action for actinomycin 

D. In addition, the data from the amidase investigations 

have revealed that both the hydroxypyrazole and protocate­

chuate function to modulate actinomycin D inhibition of 

amidase synthesis. The sensitivity of the RNA polymerase 

reaction to actinomycin D provides a useful system for 

detecting subtle differences in actinomycin D binding. 



Effect of Actinomycin D on 

!;he RNA Polymerase Reaction 

92 

Actinomycin D does not bind to the Rl~ polymerase, or 

interfere with its binding to the DNA template and subsequent 

initiation of RNA synthesis. For a given concentration of 

DNA, the actinon:ycin D inhibition of the RNA polymerase 

reaction is concentration dependent. This was observed in 

the course of this investigation. Utilizing the standard 

assay, increasing concentrations of actinomycin D were added 

to reaction mixtures containing 30 ~g of calf thymus DNA 

(Figure 17). Very small increases in the concentration of 

actinomycin D resulted in very large increases in inhibition. 

This behavior was observed until approximately 70% inhibition 

was achieved, whereupon the degree of inhibition was only 

slightly increased with increasing concentrations of actino­

mycin D. Regardless of the actinomycin D concentration, 

some RNA was always synthesized. 

Effect of the Hydroxypyrazole on 

the RNA Polymerase Reaction 

The hydroxypyrazole was observed to inhibit the ruqA 

polymerase reaction when assayed utilizing the same assay 

conditions as were used for actinomycin D (Figure 18). This 

result was not unexpected since Blunk (1977) demonstrated 

that the hydroxypyrazole binds to DNA to stabilize the DNA 

helix and shift the melting curve to higher temperatures. 

However, the concentration of the hydroxypyrazole which was 



Figure 17. Effect of Actinomycin Don the ru{A Pol~nerase. 
Reaction, e 1 actinomycin D. 
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Figure 18. Effect of the Hydroxypyrazole on the ID~A Polymer­
ase Reaction. e , hydroxypyrazole. 
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necessary to establish inhibition was more than 10 fold 

greater than the corresponding concentration of actinomycin 

D. Moreover, only 30-35% inhibition was achieved with higher 

concentrations of the hydroxypyrazole. 

The mechanism by which the hydroxypyrazole binds to DNA 

and inhibits the RNA polymerase reaction is not known. It 

is of interest that the steroidal diamine, irehdiamine A, 

also stabilizes DNA from thermal denaturation at low concen-

trations. Sobell (1973) reported that irehdiamine A may bind 

to DNA by an intercalative mechanism. In an intercalative 

model, the steroid nucleus fits between base pairs in the 

DNA helix resulting in local denaturation of base pairs im­

mediately above and below the intercalation site. The 

binding may be stabilized by electrostatic interactions 

between the protonated amino groups of irehdiamine A and 

opposite DNA chains. Although the hydroxypyrazole has no 

protonated amino groups to stabilize its binding, an inter­

calative binding mechanism may explain its unusual effects 

on RNA synthesis. 

A unique observation was noted when the hydroxypyrazole 

concentration was decreased to 3.2 x lQ-7 M. This concen-

tration, which was 10 fold less than the concentration re-

quired to establish inhibition, produced a significant 

stimulation of the RNA polymerase reaction. The rationality 

of this stimulation will be discussed in following sections. 



Effect of the Hydroxypyrazole on 

Actinomycin D Inhibition of the RNA 

Pol~erase Reaction 
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The effect of a 1:1 molar ratio (3o2 x lo-7 M) of the 

hydroxypyrazole and actinomycin D on RNA synthesis was in­

vestigated using the standard assay method. This combination 

of the hydroxypyrazole and actinomycin D produced approxi­

mately 21% more inhibition than the actinomycin D control 

when calf thymus DNA was used as the template (Table II). 

As was mentioned in the previous section, the hydroxypyrazole 

stimulated total RNA synthesis by nearly 13%. A time-course 

experiment demonstrated that both the hydroxypyrazole and 

complete controls synthesized RNA at a linear rate over this 

time period (Figure 19). These results also showed that both 

the actinomycin D control and the combination of the hydroxy­

pyrazole and actinomycin D synthesized RNA at approximately 

the same rate as the complete control for the first few 

minutes of the reaction before declining with time. 

Similar results were obtained when DNA isolated from 

P. fluorescens was used as the template (Table III). There­

fore, the increase in actinomycin D inhibition of RNA syn­

thesis by the hydroxypyrazole is not limited to one template. 

However, P. fluorescens DNA appears to be less efficient as 

a template than calf thymus DNA. This dissimilarity is pro­

bably the result of preparation rather than differences in 

base composition. 



T~LE II 

EFFECT OF THE HYDROXYPYRAZOLE ON ACTINOMYCIN D 
INHIBITION OF THE RNA POLYMERASE REACTION 

WHEN CALF THYMUS DNA WAS THE TEMPLATE 

UMP Incorporation 

System pmoles % Control 

Complete 238.41 100.00 

Plus Hydroxypyrazole 269.37 112.99 

Plus Actinomycin D 202.96 85.13 

Plus Hydroxypyrazole and Actinomycin D 151.92 63.72 

Minus RNA Polymerase 1.80 0.76 

Minus DNA 3.73 1.56 

*A 1:1 molar ratio (3.2 x lo-7 M) of the hydroxypyrazole and 
actinomycin D was used in this investigation in which the 
results were determined by the standard assay method. 
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Figure 19. Time-Course: Effect of the Hydroxypyrazole on 
Actinomycin D Inhibition of the RNA Polymerase 
Reaction when Calf Thymus DNA Was the Template. 
e 1 complete control; tt , hydroxypyrazole~ 
3.2 x lo-7 H; •, actinomycin D, 3.2 x 10-1M; 
~ , actinomycin D plus hydroxypyrazole. 
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TABLE III 

EFFECT OF THE HYDROXYPYRAZOLE ON ACTINOMYCIN D 
INHIBITION OF THE RNA POLYMERASE 

WHEN P. FLUORESCENS DNA 
WAS THE TEMPLATE 

UMP Incorporation 

System pmoles % Control 

Complete 168.33 100.00 

Plus Hydroxypyrazole 186.27 110.66 

Plus Actinomycin D 146.63 87.11 

Plus Hydroxypyrazole and Actinomycin D 116.91 69.45 

Minus RNA Polymerase 0.92 0.55 

Minus DNA 2.49 1.48 

* A 1:1 molar ratio (3. 2 x lo-7 M) of the hydroxypyrazole and 
actinomycin D was used in this investigation in which the 
results were determined by the standard assay method. 
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gfect of the Hydroxypyrazole on 

Actinomycin D Inhibition of RNA 

Chain Elongatiop 

103 

In order to study the effect of the hydroxypyrazole on 

actinomycin D inhibition of RNA chain elongation, experiments 

were performed using the high salt method of Hyman and 

Davidson (1970). Under these conditions 1 the 1:1 molar ratio 

(3o2 x lo-7 M) of the hydroxypyrazole and actinomycin D 

inhibited RNA chain elongation by an amount which was more 

than 15% greater than the actinomycin D control (Table IV). 

This suggests that the maj:or effect of the hydroxypyrazole 

on actinomycin D action is at the level of RNA chain elonga­

tion. Of importance; is the observation that the hydroxy­

pyrazole control exhibited no stimulation. Thus, the 

hydroxypyrazole most likely stimulates RNA synthesis by 

affecting template site selection and activation by the RNA 

polymerase holoenzymeo 

Effects of Time-Course Addition on the 

Increase in Actinomycin D Inhibition 

of the RNA PolY}I!Brase Reaction 

· by the Hydroxypyrazole 

Time-course addition of the hydroxypyrazole and actino­

mycin D was investigated to determine if the hydroxypyrazole 

acts alone to increase actinomycin D inhibition of the RNA 

polymerase reaction, or if the proposed complex of the hy­

droxypyrazole and actinomycin D is responsible for this 



System 

TABLE IV 

EFFECT OF THE HYDROXYPYRAZOLE ON ACTINOMYCIN D 
INHIBITION OF RNA CHAIN ELONGATION 

WHEN CALF THYMUS DNA 
WAS THE TEMPLATE 

UMP Incorporation 

pmoles % Control 

Complete 89.77 100.00 

Plus Hydroxypyrazole 90.89 101.25 

Plus Actinomycin D 74.95 83.49 

Plus Hydroxypyrazole and Actinomycin D 61.27 68.25 

Minus RNA Polymerase 1.15 1.28 

Minus DNA 0.83 0.92 

*A 1:1 molar ratio (3.2 x lo-7 M) of the hydroxypyrazole and 
actinomycin D was used in this investigation in which the 
results were determined by the RNA chain elongation assay. 
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action. The results reveal that the inhibition of actinomy­

cin D was increased the greatest when the hydroxypyrazole 

was added first to the reaction mixture (Table V)., When the 

actinomycin D was added first, a significant but slightly 

smaller increase was observed" Quite surprisingly, a 1:1 

molar ratio (3 0 2 x lQ-7 M) which had been preincubated for 

15 minutes at 37 C failed to inhibit RNA synthesis when this 

mixture was added inunediately beforeCTP was added to start 

the reaction. However, if this preincubated mixture was 

added to the reaction mixture and incubation was continued 

for another 15 minutes at 37 C before CTP was added to start 

the reaction. an increase in inhibition was observed which 

was comparable to the increase demonstrated by the addition 

of the hydroxypyrazole first., Therefore, it appears that 

the action of the proposed hydroxypyrazole:actinomycin D 

complex, which is readily formed in an aqueous environment, 

may not be completely responsible for the increase observed 

in actinomycin D inhibition of the RNA polymerase reaction. 

Two alternatives may be used to explain this. One possibi­

lity is that conformational changes may be required in the 

hydroxypyrazole:actinomycin D complex or the DNA before the 

hydroxypyrazole:actinomycin D complex can successfully .bind 

to the DNA and inhibit RNA synthesis. For example, the 

unreduced quinoidal phenoxazone ring system of actinomycin D 

has an integral role in both the DNA:actinomycin D and 

hydroxypyrazole:actinomycin D models as they are presently 

depictedo Thus, it is reasonable to assume that some 



TABLE V 

EFFECTS OF TIME-COURSE ADDITION ON THE INCREASE 
IN ACTINOMYCIN D INHIBITION OF THE RNA 

POLYMERASE REACTION BY 
THE HYDROXYPYRAZOLE 

UMP Incorporation 

System 

Complete 

Plus Hydroxypyrazole 

Plus Actinomycin D 

Plus Hydroxypyrazole and Actinomycin D 
Added Simultaneously 

Plus Hydroxypyrazole; Actinomycin D 
Added After Incubation for 
15 Minutes at 37 C 

Plus Actinomycin D; Hydroxypyrazole 
Added After Incubation for 
15 Minutes at 37 C 

Plus Hydroxypyrazole and Actinomycin D 
Which Have Been Preincubated for 
15 Minutes at 37 C and Added just 
Prior to CTP 

Plus Hydroxypyrazole and Actinomycin D 
Which Have Been Preincubated for 
15 Minutes at 37 C 

Minus RNA Polymerase 

Minus DNA 

Minus CTP 

pmoles % Control 

275.30 100.00 

312.66 113.57 

234.39 85.14 

188.64 68.52 

175.48 63.74 

199.26 72.38 

284.32 103.27 

179.03 65.03 

5.25 1.91 

7.65 2.78 

21.53 7.82 

*A 1:1 molar ratio (3.2 x lo-7 M) of the hydroxypyrazole and 
actinomycin D was used in this investigation in which the 
results were determined by the time-course addition assay. 

** Calf thymus DNA was used as the template. 
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conformational changes may be required before the hydroxypy­

razole:actinomycin D complex effectively binds to DNA and 

inhibits RNA synthesis. In the second possibility, the 

hydroxypyrazole may bind to DNA in such a manner that subtle 

conformational changes are introduced in the DNA helix which 

alloW's actinomycin D to bind more efficiently., Regardless 

of the mechanisms employed, both alternatives may involve 

the binding of actinomycin D at secondary sites which nor­

mally bind actinomycin D only weakly. Several reports have 

noted the existence of at least two types of binding sites 

for actinomycin D, one of which has a binding constant that 

is many times greater tqan the other (Cavalier and Nemchin, 

1964; Wells and Larson, 1970; Hyman and Davidson, 1971). 

The distinction between these sites is thought to depend 

on the helical structure of the DNA. 

More recently. Krugh and Young (1977) reported that two 

intercalating agents, daunomycin and adriamycin, coopera­

tively facilitate the binding of actinomycin D to poly-d(A-T)· 

poly-d(A-T)., Since actinomycin D does not normally bind to 

this double-stranded polynucleotide, the results of this 

investigation demonstrated that when daunomycin or adriamycin 

bind to poly-d(A-T)·poly-d(A-T), a change occurs in the con­

formation of the polynucleotide which results in an increase 

in the stability of the poly-d(A-T)apoly-d(A-T):actinomycin 

D complex. 

The second alternative may also account for the stimula­

tory effect which was observed for the hydroxypyrazole., 
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Richardson (1966) reported that there are two kinds of asso­

ciation between P~A polymerase and the DNA. There is an 

interaction with a high binding affinity that keeps the 

enzyme bound to the DNA even though the concentration of free 

enzyme is very low, and there is an interaction with a much 

lower affinity that requires very high concentrations of 

free enzyme~ If the hydroxypyrazole does produce conforma­

tional changes in the DNA helix, it would be logical to 

assume that the binding of RNA polymerase may be affected. 

Effect of Protocatechuate on the 

Actinomycin D Inhibition of the 

RNA Polymerase Reaction 

Data obtained utilizing the standard assay method re­

vealed that 1:1 molar ratios (1. 3 x lo-6 M) of protocatechuate 

and actinomycin D prevented actinomycin D inhibition of RNA 

synthesis by nearly 31%, as compared to the complete control 

when calf thymus DNA was the template (Table VI). Protoca­

techuate had no effect on RNA synthesis at this concentration. 

A time-course experiment demonstrated that protocatechuate 

began to alleviate actinomycin D inhibition shortly after 

the first few minutes of the reaction (Figure 20). Compara­

ble results were obtained when P. fluorescens DNA was used 

as the template (Table VII). 



TABLE VI 

EFFECT OF PROTOCATECHUATE ON THE ACTINOMYCIN D 
INHIBITION OF THE RNA POLYMERASE REACTION 

WHEN CALF THYMUS DNA WAS 
THE TEMPLATE 

UMP Incorporation 

System pmoles % Control 

Complete 229.24 100.00 

Plus Protocatechuate 227.33 

Plus Actinomycin D 83.76 

Plus Protocatechuate· and Actinomycin D 154.87 

Minus RNA Polymerase 1.26 

Minus DNA 3.15 

*A l:l.molar ratio (1.3 x lo-6 M) of protocatechuate and 
actinomycin D was used in this investigation in wh:lch the 
results were determined by the standard assay method. 

99.17 

36.54 

67.56 

0.55 

1.37 
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·Figure 20o Time-Course: Effect of Protocatechuate on the 
Actinomycin D Inhibition of the RNA Polymerase 
Reaction when Calf Thymus DNA ~~ras the Template. 
e 1 complete control and protocatechuate (1.3 
x 10-6 H); 8 t acti!f.omycin D (1. 3 x lo-6 M) ; 
• , actinomycin D plus protocatechuate. 
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TABLE VII 

EFFECT OF PROTOCATECHUATE ON THE ACTINOMYCIN D 
INHIBITION OF THE RNA POLYMERASE 
REACTION WHEN P. FLUORESCENS DNA 

WAS THE TEMPLATE 

UMP Incorporation 

Sys·tem pmoles % Control 

Complete 176.73 100.00 

Plus Protocatechuate 177.88 100.66 

Plus Actinomycin D 69.35 39.24 

Plus Protocatechuate and Actinomycin D 117.30 66.37 

Minus RNA Polymerase 0.83 0.47 

Minus DNA 2.24 1.27 

*A 1:1 molar ratio (1.3 x 10-6M) of protocatechuate and 
actinomycin D was used in this investigation in which the 
results were determined by the standard assay method. 
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Effects of Time-Course Addition on the 

Decrease in Actinomvcin D Inhibition of . . 

the RNA Polymerase Reaction 

by Protocatechuate 

113 

Time-course addition of protocatechuate and actinomycin 

D was performed to determine if protocatechuate could reverse 

actinomycin D inhibition of RNA synthesis, in addition to its 

ability to partially prevent this inhibition. The results 

of this investigation revealed that a 1:1 molar ratio (1. 3 

X ro-6 11) of protocatechuate. and actinomycin D which had 

been preincubated for 15 minutes at 37 C prevented actinomy­

cin D inhibition of RNA-synthesis by the greatest amount 

(Table VIII). vfuen either ~rotocatechuate or actinomycin D 

was added to the reaction mixture and incubated for 15 min­

utes at 37 C before the second compound and CTP were added 

to start the reaction, the inhibition which was observed 

was almost identical to the actinomycin D control. This 

suggests that protocatechuate, which binds to DNA (Blunk, 

1977), is not readily available for interaction with the 

actinomycin D. However, if protocatechuate was added to 

the reaction mixture and incubation was continued for an 

additional 15 minutes at 37 C before CTP was added to start 

the reaction, a significant decrease in actinomycin D inhi-

bition was demonstrated. Thus, the alleviation of actino­

mycin D inhibition of RNA synthesis by protocatechuate is a 

consequence of molecular interaction between these compounds. 

Both the prevention and reversal may be explained if the 



TABLE VIII 

EFFECTS OF TIME-COURSE ADDITION ON THE DECREASE 
IN ACTINOMYCIN D INHIBITION OF THE RNA 

POLYMERASE REACTION BY 
PROTOCATECHUATE 

UMP Incorporation 

System 

Complete I 

Plus Protocatechuate 

Plus Actinomycin D 

Plus Protocatechuate and Actinomycin D 
Added Simultaneously 

Plus Protocatechuate and Actinomycin D 
Which Have Been Preincubated for 
15 Minutes at 37 C 

Plus Protocatechuate; Actinomycin D 
Added After Incubation for 15 
Minutes at 37 C 

Plus Actinomycin D; Protocatechuate 
Added After Incubation for 
15 Minutes at 37 C 

Complete II 

Plus Actinomycin D; Protocatechuate 
Is Added and Another Incubation 
for 15 Minutes at 37 C Is Carried 
Out Before CTP Is Added 

Minus RNA Polymerase 

~nus DNA 

Minus CTP 

pmoles % Control 

307.78 100.00 

303.31 98.55 

126.76 41.19 

204.30 66.38 

219.63 71.36 

120.23 39.06 

128.07 41.61 

312.85 101.64 

166.91 54.23 

2.59 0.84 

6.34 2.06 

23.91 7. 77 

*A 1:1 molar ratio (1.3 x 10-6M) of protocatechuate and 
actinomycin D was used in this investigation in which the 
results were determined by the time-course addition assay. 

** Calf thymus DNA was used as the template. 
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equilibrium favors the protocatechuate:actinomycin D species 

rather than the DNA:actinomycin D complex. Because the bind­

ing of actinomycin D to DNA is reversible, protocatechuate 

may be interacting solely with unbound actinomycin D, or 

perhaps, protocatechuate may function to facilitate there­

lease of actinomycin D from the DNA. 

Influence of the Hydroxypyrazole 

on Membrane Permeability 

Effect of _Surface-A!=!tive Agents 

on Actinomycin D Inhibition 

of P<> fluorescens 

Haslam (1973) demonstrated that the hydroxypyrazole 

exhibited subtle membrane action against sheep red blood 

cells and B. subtilis 't-J23 protoplasts. Further investiga­

tion revealed that the hydroxypyrazole potentiated the in­

hibition produced by two membrane active antibiotics, 

polymyxin and circulin, against P. fluorescens. Because 

previous investigation in this laboratory has revealed 

that the hydroxypyrazole may also have a site of action at 

the membrane, experiments were conducted with selected 

surface-active agents to compare increases in actinomycin 

D action produced by these compounds with the increase 

resulting from the hydroxypyrazole,. 

Triton X-100, Tween 80, 1-hexadecylpyridinium chloride 

and SDS were tested to determine if non-inhibitory concen­

trations of these compounds could increase the action of 
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.actinomycin D against P. fluorescens. No increases in acti­

nomycin D action were observed with either the non-ionic 

detergents, Triton X-100 and Tween 80, or the anionic deter­

gent, SDS. Only cells treated with the cationic detergent, 

1-hexadecylpyridinium chloride, exhibited moderate increases 

in susceptibility to actinomycin D (Table IX)o The inability 

of the 1-hexadecylpyridinium chloride to produce large in­

creases in actinomycin D inhibition provides added support 

that the hydroxypyrazole does not increase actinomycin D 

inhibition solely by its action on the membrane. For example, 

the hydroxypyrazole increases the inhibition of actinomycin 

D at a concentration of 3.2 x lo-6 M by approximately 70%. 

The prevention of actino.mycin D inhibitio.n in both the 

1-hexadecylpyridinium chloride treated and untreated cells 

by protocatechuate further demonstrates that molecular inter­

action between protocatechuate and actinomycin D may be re­

sponsible for this compounds action. 

Effect of the Hydroxypyrazole 

and Actinomycin D on Uptake of 

Labeled Substrates 

Uptake experiments with P~ fluorescens were performed 

to measure the capacity of the hydroxypyrazole, actinomycin 

D, or combinations of·these compounds to affect uptake of 

selected substrates. The substrates included 14c-2,3-suc­

cinate, D-14c-l-alanine, DL-14c-3-phenylalanine, DL-14c-3-

aspartate and 14c-2-uracil. Only the uptake of DL-aspartate 



TABLE IX 

EFFECT OF 1-HEXADECYLPYRIDINIUM CHLORIDE ON 
ACTINOMYCIN D INHIBITION OF P. FLUORESCENS 

AND PREVENTION OF THIS INHIBITION 
BY PROTOCATECHUATE 

Concentration of Compounds (Molarity) 

1-Hexadecylpyridinium 
Actinomycin D Protocatechuate Chloride 

3.2 X 10-6 0.0 0.0 

8.0 X 10-6 0.0 0.0 

0.0 6.5 x lo-4 0.0 

0.0 0.0 1.0 x lo-5 

3.2 X 10-6 0.0 1.0 x lo-5 

8.0 x 1o-6 0.0 1.0 X 10-5 

3.2 X 10-6 6.5 x lo-4 0.0 

8.0 X 10-6 6.5 x lo-4 0.0 

3.2 X 10-6 6.5 x lo-4 l.Ox lo-5 

8.0 X 10-6 6.5 x lo-4 l.Ox 10-5 

% Untreated Succinate 
Control at 

6 hours 

91.0 

72.5 

100.0 

98.5 

82.5 

54.0 

100.0 

99.5 

100.0 

98.0 

1-' 
1-' 
-...,J 
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was affected by any of the concentrations or combinations of 

the hydroxypyrazole and actinomycin D. Even so, the uptake 

of DL-aspartate was only slightly affected by the hydroxypy­

razole arid not at all by actinomycin D (Table X), Combina­

tions of the hydroxypyrazole and actinomycin D inhibited 

DL-aspartate uptake to the same degree as the hydroxypyrazole, 

These results indicate that the proposed hydroxypyrazole: 

actinomycin D complex apparently does not alter membrane 

permeability of these substrates; and that the hydroxypyra­

zole inhibition of uptake is not comprehensive. This sub­

stantiates earlier reports that the hydroxypyrazole action 

at the membrane is slight. 

Effect of the Hyd~?XYEYrazole and 

A,ctinomy:cin D on Membrane Permeability 

of Reconstituted Outer Membrane Vesicles 

The outer membrane of several Gram-negative bacteria 

constitutes a permeability barrier which allows only hydro­

philic molecules below a given molecular weight to passively 

diffuse through the membrane. Outer membrane exclusion 

limits of 550-650 daltons have been reported for the enteric 

bacteria E.· coli K-12 and B, Salmonella typhimurium, Proteus 

mirabilis and Proteus mor~anii (Nakae and Nikaido, 1975; 

Decad and Nikaido, 1976; Nixdorf£ et al., 1977). Outer mem­

brane proteins, which have been named porins, have been 

demonstrated to be responsible for these exclusion limits, 

These porins are reported to have molecular weights between 



TABLE X 

EFFECT OF THE HYDROXYPYRAZOLE AND ACTINOMYCIN D 
ON UPTAKE OF Dt-14c-3-ASPARTATE 

BY P. FLUORESCENS 

Concentration of Compounds CPM/mg Cell Dry Weight x lo-3 
(Molarity) 

Actinomycin D Hydroxypyrazole 1 min 2 min 3·min 5 min 

0.0 0.0 4.41 7.69 13.60 26.34 

3.2 x 1o-6 0.0 4.47 8.07 13.16 27.23 

0.0 3.2 x 1o-6 4.37 8.23 13.44 28.87 

0.0 4.2 x lo-5 4.28 7.45 12.73 21.48 

3.2 X 10-6 3.2 x 10-6 4.59· 8.11 14.25 27.54 

3.2 X 10-6 4.2 x lo-5 4.33 7.34 12.97 21.02 

7 min 

35.48 

36.88 

34.60 

29.89 

37.31 

30.56 
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35,000 to 40,000 daltons. In contrast to the enterics, 

Hancock et al. (1979) reported that the exclusion limit of 

P. aeru&inosa was in the order of 6000 ± 3000 daltons; and 

that a major outer membrane polypeptide of approximately 

35,000 daltons was responsible for the size-dependent per­

meability of the outer membrane in this bacterium. 

Vesicles reconstituted from outer membrane components 

(including phospholipids, LPS and proteins) provide useful 

systems for detecting small changes in membrane permeability. 

Outer membrane components of P. fluorescens were isolated, 

purified and reconstituted into vesicles to further inves­

tigate any action which the hydroxypyrazole, or combinations 

of the hydroxypyrazole and actinomycin D may exert on mem­

brane permeability. 

gualitative Analxsis of Isolated PhospholiE,ids from 

P, fluorescens. Phospholipids from P. fluorescens -.;v-ere pre­

pared by the method of Folch et al. (1957). The two major 

phospholipids of P, fluorescens, phosphatidylethanolamine 

and phosphatidylglycerol, were conclusively identified by 

thin layer chromatography with known standards (Table XI). 

Detection was accomplished with the appropriate spray re­

agent. In addition to the phospholipids, two lipid contain­

ing compounds were included in the phospholipid preparation 

which were not identified. 

Outer Hembrane Protein Isolation and Purification. 

Outer membranes of P, fluorescens were prepared by the method 



Identification Rf 

Phosphatidyl- 0.456 
glycerol 

Phos ph a tidy 1- 0.563 
ethanolamine 

Unknown o. 906 

Unknown 0.969 

TABLE XI 

QUALITATIVE ANALYSIS OF ISOLATED 
PHOSPHOLIPIDS FROM P. 

FLUORESCENS 

FeCl3-Salicyl-
Rhodamine sulphonic Acid Ninhydrin 

+ + 

+ + + 

+ 

+ 

Periodate-
Schiff's 

+ 

I-' 
N 
I-' 
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of Hancock and Nikaido (1978). After two passages through 

a French pressure cell at 15,000 pounds per square inch, the 

disrupted cells were treated with deoxyribonuclease I, ribo­

nuclease I and lysozyme. Cell debris was removed by low 

speed centrifugation, and the supernatant was decanted, di­

luted and layered onto sucrose gradients containing steps of 

70 and 15% (w/v) sucrose in Tris-HCl bufferg These tubes 

were centrifuged at 4 C and 183,000 x g for 1 hour in a 

Beckman SH 41 rotor. The bottom 2 ml of each gradient was 

removed, pooled, diluted and applied to sucrose density gra-

clients containing steps of 70, 64, 58 and 52% (w/v) sucrose 

in Tris-HCl buffer. These tubes were centrifuged at 4 C and 

96,000 x g for 18 hours in a Beckman SW 27 rotor. The four 

bands which were observed (Figure 21) were removed by drop-

wise collection from the bottom of the centrifuge tube and 

assayed for succinate dehydrogenase, KDO, lipid phosphate 

and protein. 

The results of the analysis of the four bands are shown 

in Table XII. Comparison of the relative amounts of succi-
. 

nate dehydrogenase and KDO contained in bands I and IV re-

vealed that these bands consist of purified outer and inner 

membranes, respectively. The two most dense bands (I and II) 

were enriched with outer membrane components while the least 

dense band (IV) was purified inner membrane. Band II con-

tained a small amount of the inner membrane marker, succinate 

dehydrogenase, while band III contained a slightly larger 

amount of this enzyme. Both these bands contained moderate 



·Figure 21. Relative Running Positions of the Four Visible 
Bands from the Second Sucrose Density Gradient. 
The size of the bands is represented by the 
width while the amount of protein is repre­
sented by the height of the bars. 
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TABLE XII 

ANALYSIS OF THE OUTER MEMBRANE FRACTIONS 

% of Protein SDH 
Fraction Recovered Activity* KDO** Lipid Phosphate*** 

I 12.3 10.24 213.37 0.203 

II 36.5 27.45 59.14 0.393 

III 23.9 50.51 93.75 o. 717 

IV 27.3 162.04 3.81 0.290 

* SDH, Succinate dehydrogenase; Activity is expressed as 
micromoles of dichloroindolephenol reduced per 
minute per milligram of protein. 

** KDO, 2-keto-3-deoxyoctonate; Amount is expressed as 
nanomoles per milligram of protein. 

*** Expressed as micromoles of lipid phosphate per milligram 
of protein. 
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amounts of LPS. Band III contained both inner and outer 

membrane markers. 

Outer membrane proteins were fractionated by the method 

of Hancock et al. (1979). The lower two bands ,..vere pooled, 

diluted with sterile deionized water and centrifuged at 4 C 

and 177,000 x g for 1 hour in a Beckman SW 41 rotoro As 

described, the resulting pellet was solubilized in Tris-HCl 

buffer containing 2% Triton X-100 and Triton X-100 insoluble 

protein was sedimented by ultracentrifugation. This Triton 

X-100 insoluble protein was then solubilized in Tris-HCl 

buffer containing 2% Triton X-100 and 10 mH EDTA. Triton 

X-100/EDTA insoluble protein was removed by ultracentrifuga­

tion and the supernatant containi11g Triton X-100/EDTA soluble 

outer membrane proteins was applied to a DEAE-Sephacel col­

umn. The proteins were eluted from the column with a sodium 

chloride concentration gradient (0.1 to 0.6 M) and fractions 

(7 ml) were collected and analy~ed for protein content by 

the method of Lowry et al. (1951) (Figure 22). Appropriate 

fractions were pooled and concentrated to about 3-5 ml by 

dialysis in polyethylene glycol. Triton X-100 was removed 

from the protein samples with Bio-Gel SM-2 copolymer beads by 

by the method of Holloway (1973). This treatment removed 

Triton X-100 to a sufficiently low level (less than 0.05%) 

such that vesicle reconstitution was not affectedo After 

Triton X-100 removal, the protein fractions were divided 

into 0.5 ml aliquots and stored at -20 C. 



Figure 22. Elution of Outer Hembrane Proteins from DEAE­
Sephacel. e e , protein. 
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SDS Polxacrylamfde Gel' Electrophoresis of Outer Membrane 

Proteins. SDS polyacrylamide gel electrophoresis of the 

pooled column fractions was performed by the method of Lug­

tenberg et al, (1975) to locate fractions containing outer 

membrane proteins having molecular weights of approximately 

35,000 daltons. These gels were compared to gels of Triton 

X-100/EDTA soluble protein (which was loaded onto the column), 

Triton X-100/EDTA insoluble protein, Triton X-100 soluble 

protein and molecular weight standards (Figure 23). 

Hancock and Nikaido (1978) reported that the outer mem­

brane of P, aerusinosa PAOl contained four major outer mem­

brane proteins having molecular weights of 17, 21, 35 and 

37 K. The Triton X-100 soluble protein contained no signi­

ficant amounts of any of the major outer membrane proteins. 

The Triton X-100/EDTA insoluble material contained signifi­

cant amounts of the 17, 35 and 37 K proteins while the 

Triton X-100/EDTA soluble fraction contained these three 

proteins plus the 21 K protein. However, in both the Triton 

X-100/EDTA soluble and insoluble fractions, the 35 K protein 

appeared as two closely spaced bands. Whether this repre­

sents two very similar proteins or a partial breakdown of 

the 35 K protein is not known, since this pattern was ob­

served in three separate outer membrane preparations. In 

addition, the Triton X-100/EDTA soluble material contained 

substantial amounts of two other proteins between the approx­

imate molecular weights of 30 to 33 K. Comparison with the 

report by Hancock et al. · (1979), indicates that these 



Figure 23. SDS Polyacrylamide Gel Electrophoresis of Outer 
Hembrane Proteins. A, protein standards: 
ovalbumin (45 K) 1 pepsin (34. 7 K), trypsinogen 
(24 K)- and lysozyme (14.,3 K), 1 p.g of each; 
B, Triton X-100/EDTA soluble proteins (20 J.lg); 
C, Triton X-100/EDTA insoluble proteins (20 
}lg): D; Triton x ... lQO soluble proteins (20 J.lg); 

·E, fractions 65-66 from DEAE-Sephacel column 
(5 ).lg) • 
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proteins remained in the Triton X-100/EDTA insoluble mater­

ial in their preparations. Despite these differences, the 

Triton X-100 soluble fraction contained substantial amounts 

of the four major outer membrane proteins which were pre­

viously reported for P, aeruginosa PAOl. 

SDS electrophoresis of the column fractions revealed that 

fractions 65-66 contained substantial amounts of only those 

proteins between the molecular weights of 33-37 K. The gel 

from this fraction demonstrated a complete separation of the 

protein bands at approximately 35 K. 

Effect of theHydroxypyrazole and Actinomycin Don 

MembranePerme<3,bility: of Reconstituted Outer Vesicles from 

P. fluorescens. Outer membrane vesicles were reconstituted 

from outer membrane components of P. fluorescens by the 

technique of Hancock and Nikaido (1978). Electron micro­

scopy was used to observe vesicles reconstituted from P. 

fluorescens phospholipids arid LPS (Figure 24). Spherical 

vesicular structures were clearly demonstrated in all vesicle 

preparationso 

Vesicles reconstituted· from phospholipids and LPS, with 

or without outer membrane proteins, were used to investigate 

the effect of the hydroxypyrazole, actinomycin D, or combi­

nations of these compounds on retention of 14c-sucrose within 

closed vesicles. ~~en vesicles reconstituted from phospho­

l~pids and LPS were exposed to the hydroxypyrazole for 20 

minutes at 25 C, a slight decrease in 14c-sucrose retention 

was demonstrated (Table XIII). However. the hydroxypyrazole 



Figure 24o Electron Micrograph of Vesicles Reconstituted 
from: P. fluorescens Phospholipids and LPS. 
The vesicle preparation was placed on a Formvar 
grid and negatively stained with uranyl acetate 
for 30-45 seconds. A, magnification; 76,000 
X; B, magnification, '170.000 X. 
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TABLE XIII 

EFFECT OF THE HYDROXYPYRAZOLE ON THE 
RETENTION OF 14c-SUCROSE BY 

RECONSTITUTED OUTER 
MEMBRANE VESICLES 

Vesicle Hydroxypyrazole 
(Molarity) Components* % 14c-Sucrose Retained 

0.0 PL, LPS 1.644 

2.1 X 1o-s PL, LPS 1.542 

4.2 X 10-5 PL, LPS 1.411 

8.5 x lo-5 PL, LPS 1. 396 

* PL, phospholipid; LPS, lipopolysaccharide. 
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did not appear to perturb the vesicle components to any great 

extent since most of the 14c-sucrose was still retained 

within the vesicles, Vesicles containing phospholipids, LPS 

and outer membrane proteins (either Triton X-100/EDTA soluble 

proteins or proteins from fractions 65-66) were not signifi­

cantly affected by the hydroxypyrazole, actinomycin D, or 

combinations of these compounds (Table XIV). Apparently 

the proteins stabilize the phospholipid arid LPS components 

of the vesicular membrane and negate the subtle effect of 

the hydroxypyrazole on these components. These results de­

monstrate that the hydroxypyrazole or the combination of the 

hydroxypyrazole and act~nomycin D does not influence the 

permeability functions of the outer membrane proteins because 

the amount of 14c-sucrose which diffused from the exposed 

vesicles was essentially the s.ame as the controls. This 

substantiates other data which has demonstrated that the 

effect of these compounds, alone or in combination, on mem­

brane permeability is very smallv 

It is important to note that vesicle preparations 

containing either Triton X-100/EDTA soluble proteins or pro­

teins from fractions 65-66 exhibited significant decreases 

in 14c-sucrose retention, as compared to vesicle preparations 

lacking outer membrane proteins, Therefore, both these 

protein· sources appeai;"ed to possess porin activity. 



TABLE XIV 

EFFECT OF THE HYDROXYPYRAZOLE AND 
ACTINOMYCIN D ON THE RETENTION OF 

14c-SUCROSE BY RECONSTITUTED 
OUTER MEMBRANE VESICLES 

Compounds (Molarity) 

Actinomycin D Hydroxypyrazo1e Components* 

0.0 0.0 PL,LPS 

0.0 4.2 x lo-5 PL,LPS 

3.2 x 1o-6 o.o PL,LPS 

3.2 x 10-6 4.2 x 10-5 PL,LPS 

0.0 0.0 PL,LPS,PRl 

o.o 4.2 x 1o-5 PL,LPS,PRl 

3.2 x 10-6 0.0 PL,LPS,PRl 

3.2 x 10-6 4.2 x 10-5 PL,LPS,PRl 

0.0 0.0 PL,LPS,PR2 

o.o 4.2 x lo-5 PL,LPS,PR2 

3.2 x 1o-6 o.o PL,LPS,PR2 

3.2 x 1o-6 4.2 x 1o-5 PL,LPS,PR2 

% 14c-Sucrose 
Retained 

.1.565 

1.360 

1.596 

1.487 

0.204 

0.209 

0.214 

0.'217 

0.293 

0.279 

0.298 

0.274 

* PL, phospholipid; LPS, lipopolysaccharide; PRl, Triton 
X-100/EDTA soluble protein; PR2, fraction 65-66 protein. 
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CHAPTER IV 

CONCLUSIONS 

The inhibition of P, fluorescens by actinomycin D was 

greatly increased when a non-inhibitory concentration of the 

hydroxypyrazole was added in combination to the medium. De-

creases in viable cell number and alterations in cell size 

were demonstrated which were customarily observed only for 

cells treated with highe·r concentrations of the antibiotic. 

Furthermore, the inhibition of cells exposed for 10 hours to 

the combination of the hydroxypyrazole and actinomycin D was 

bactericidal, although this concentration of actinomycin D 

was bacteriostatic when administered alone. Since actinomy-

cin D inhibition of ~· fluorescens is concentration depen­

dent; these results suggest that the hydroxypyrazole either 

facilitates entry of the antibiotic into the cell, or its 

ability to inhibit once it reaches a site of action within 

the cell. Investigations have revealed that exposure of 

growing cultures to the hydroxypyrazole was not sufficient 

to increase actinomycin D inhibition if the cells were 

washed and resuspended in fresh medium containing actinomy-

cin Do This suggests that both the hydroxypyrazole and 

actinomycin D must be present and act together, possibly 

via a molecular complex, to inhibit growth of P. fluorescens. 
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Protocatechuate prevents and reverses the inhibition of 

P. fluorescens by actinomycin D without interfering with its 

diffusion into the cell (Durham and Keudell, 1969). Results 

have demonstrated that protocatechuate also prevents and re-

verses the increased inhibition which was observed when the 

hydroxypyrazole and actinomycin D were added in combination 

to the medium, The manner in which protocatechuate relieves 

this inhibition appears similar to the alleviation of inhi­

bition resulting from only actinomycin D. These data augment 

previous investigations and provide further support that 

molecular complexations may have an important role in the 

mechanism(s) which may ~e involved. 

The amidase system of Po fluorescens provided a more 

sensitive and direct method for determining changes in acti­

nomycin D action since inhibition of amidase synthesis by 

actinomycin D is also concentration dependent. At actinomy-

cin D concentrations which were 10 fold less than those used 
.. 

for growth studies, significant increases in actinomycin D 

inhibition of amidase synthesis were observed when the hy­

droxypyrazole was added in combination to the medium. Inac­

tivation of the amidase we.s eliminated since none of the 

concentrations or combinations of the hydroxypyrazole and 

actinomycin D produced any changes in amidase activity when 

in vitro experiments were performed with purified amidaseo 

Protocatechuate readily prevents and reverses inhibition of 

amidase synthesis by actinomycin D or the combination of the 

hydroxypyrazole and actinomycin D. Because both the 
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hydroxypyrazole and protocatechuate function to modulate ac­

tinomycin D inhibition of amidase synthesis, these data 

suggest that both compounds may affect the binding of acti­

nomycin D to DNAo In view of the low concentration of 

actinomycin D used in combination with the hydroxypyrazole, 

this is particularly noteworthy. 

The IDJA polymerase reaction is the primary biological 

site of action for actinomycin D. For a given concentration 

of DNA, the actinomycin D inhibition of the RNA polymerase 

reaction was concentration dependent. Very small increases 

in actinomycin D concentration resulted in very large in­

creases in inhibition, This behavior was observed until 

approximately 70% inhibition was achieved. Then the degree 

of inhibition was only slightly increased with increasing 

concentrations of actinomycin D. 

Depending on the concentration, the hydroxypyrazole can 

both inhibit and stimulate the RNA polymerase reaction. The 

concentration which was necessary to establish inhibition 

was more than 10 fold greater than the corresponding con­

centration of actinomycin D. The maximum inhibition achieved 

by higher concentrations of the hydroxypyrazole was limited 

to 30-35%. Stimulation of RNA polymerase was observed when 

the concentration of the hydroxypyrazole was 10 fold less 

than the concentration required to establish inhibitiono 

The hydroxypyrazole probably stimulates RNA synthesis by 

affecting template site selection and activation by the 

RNA polymerase holoenzymeo A stimulation of this nature may 



involve low affinity binding sites which do not normally 

bind RNA polymerase effectively at low concentrations. 
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When this stimulatory concentration of the hydroxypyra­

zole was added in combination with a 1:1 molar ratio of 

actinomycin D, a significant increase in actinomycin D inhi­

bition of RNA synthesis was observed. The major effect of 

the hydroxypyrazole on actinomycin D inhibition of RNA syn­

thesis is at the level of RNA chain elongation. 

The role that the proposed hydroxypyrazole:actinomycin 

D plays in increasing actinomycin D inhibition of RNA syn­

thesis is uncertain. Conformational changes may be required 

in the complex or the D~A before the complex can effectively 

bind DNA and inhibit RNA synthesis. The hydroxypyrazole 

may bind to DNA and introduce subtle conformational changes 

in the DNA helix which allow actinomycin D to bind more 

efficiently. This alternative would help explain the stimu­

lation of RNA polymerase by the hydroxypyrazole. The in­

crease in actinomycin D inhibition of RNA synthesis by the 

hydroxypyrazole may involve the binding of actinomycin D 

at secondary sites which normally bind actinomycin D only 

weakly; regardless of the mechanism(s) utilized. 

Protocatechuate partially prevented and reversed the 

inhibition of RNA synthesis resulting from a 1:1 molar ratio 

of actinomycin D. This provides further support that the 

alleviation of actinomycin D inhibition by protocatechuate 

is a consequence of molecular interactions between these 

compounds. Both the prevention and reversal may be explained 
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if a protocatechuate:actinomycin D complex is favored over 

the DNA:actinomycin D complex. Protocatechuate may be in­

teracting solely with unbound actinomycin D or it may act to 

facilitate the release of actinomycin D from DNA. 

Little or no effect on membrane permeability was ob­

served with the hydroxypyrazole, actinomycin D, or combina­

tions of these compounds during this investigationo This 

substantiates the report by Haslam (1973) that hydroxypyra­

zole action at the membrane is subtle, 

A model depicting possible mechanisms by which the hy­

droxypyrazole and protocatechuate may influence actinomycin 

D action is shown in Figure 25o 

In the simplest mechanism, the hydroxypyrazole acts 

alone to increase diffusion of actinomycin D into the cell. 

This is the least likely alte~native because all investiga­

tions to date have revealed that membrane action by the 

hydroxypyrazole was minor, Furthermore, growth of cells in 

the presence of the hydroxypyrazole was not sufficient to 

increase actinomycin D action when the cells were washed and 

resuspended in medium containing actinomycin D. 

The hydroxypyrazole and actinomycin D may enter the cell 

separately. Once inside the cell, the two compounds may com­

plex before binding DNA or they may interact with the DNA 

individually. If the.,hydroxypyrazole binding to DNA intro­

duces changes in the DNA helix, actinomycin D binding may be 

facilitated resulting in an increase in inhibition, This 

would be consistent with the RNA polymerase data; it would 



Figure 25. Hodel Depicting Possible Hechanisms by Which the 
Rydroxypyrazole and Protocatechuate Hay Influ­
ence. Actinomycin D Action. ~ , DNA; • , 
actinomycin D; e , hydroxypyrazole; * , pro­
tocate.chuate a• , hydroxypyrazo le: actinomycin 
D corr~lex; ~ , conformational change in 
the hydroxypyrazole:actinomycin D complex or 
in the DNA. 
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explain both the increase in actinomycin D inhibition and 

the stimulation of RNA synthesis. Although this mode of 

entry cannot be ruled out, it also appears unlikely, since 

the cells grown in the presence of the hydroxypyrazole were 

not inhibited to a greater extent than control cells when 

both sets of cells were exposed to the antibiotic. A re­

verse of this situation yielded the same result when cells 

were grown in actinomycin D and then exposed to the hydroxy­

pyrazole. 

All data to date suggests that the hydroxypyrazole and 

actinomycin D must both be present and act together to in­

crease actinomycin D action. A molecular complex of the 

·two compounds, formed outside the cell; would explain most 

of the present data. The proposed hydroxypyrazole:actino­

mycin D complex may increase passage of these compounds into 

the cell, although it has not demonstrated any capacity for 

altering membrane permeability. A complex of the hydroxy­

pyrazole and actinomycin D may be responsible for the·in­

creases observed in actinomycin D action, provided the 

complex has a greater affinity for DNA than does actinomycin 

Do If secondary sites are involved, a hydroxypyrazole: 

actinomycin D complex may bind effectively to DNA at sites 

which bind actinomycin D only weakly. This model is con­

sistent with most of the present data. However, the RNA 

polymerase data indicated that conformational changes in the 

hydroxypyrazole:actinomycin D complex or the DNA may bene­

cessary before RNA synthesis is inhibited. 
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Protocatechuate prevents and reverses actinomycin D 

action without interfering 1.vith its entry into the cello 

Apparently, the ability of protocatechuate to alleviate in­

hibition produced by either actinomycin D or the combination 

of the hydroxypyrazole and actinomycin D is a consequence 

resulting from an interaction of protocatechuate with these 

compounds. In both cases, protocatechuate may be interacting 

with either the unbound molecules to decrease their affinity 

to bind DNA or with the bound molecules to facilitate their 

release from the DNA. 



LITERATURE CITED 

Ames, B. N., and D. T. Dubin. 1960. The role of polyamines 
in the neutralization of bacteriophage deoxyribonucleic 
acid. J. Biol. Chern. 235: 769-775. 

Blunk, J. D. 1977. Effects of hydroxypyrazole and protoca­
techuate on the biological activity of actinomycin D 
using Pseudomonas fluorescens. M.S. Thesis. Oklahoma 
State ITniversity. 

Brammer, W. J. and P. H. Clarke. 1964. Induction andre­
pression of Pseudomonas aeru&inosa amidase. J. Gen. 
Hicrobiol. 37: 307-~ 

Brockmann, H., and N. Grubfofer. 1949. Actinomycin C. 
Naturwissenschaften. 36: 376-377. 

Brown, P. R., M. J. Smith, P. H. Clarke, and M.A. Rosemeyer. 
1973. The subunit structure of the aliphatic amidase 
from Pseudomonas aeruginosa. Eur. J. Biochem. 34: 
177-187. 

Burgess, R. R. 1971. RNA polymerase. Ann. Rev. Biochem. 
40: 711-740. 

Burton, K. 1955. A study of the conditions and mechanism 
of the diphenylamine reaction for the colorimetric 
estimation of deoxyribonucleic acid. Biochem. J. 52: 
315-323. 

Cavalieri, L. F., and R. G. Nemchin. 1964. The mode of 
interaction of actinomycin D with deoxyribonucleic acid. 
Biochim. Biophys. Acta 87: 641-652. 

Chestnut, R. W., N. N. Durham, E. A. Mawdsley, G. X. Thyveli­
kakath, K. D. Berlin, and B. M. Fung. 1974. Biologi­
cal, proton-magnetic-resonance and ultraviolet-spectro­
scopic evidence for a complex of actinomycin D and 10, 
11-dihydro- 3H-napth (1, 2 g) indaz-7 -ol. Biochem. J. 143: 
789-792. ---

Dagliesh, C. E., A. W. Johnson, A. R. Todd, and L. C. Vining. 
· 1950. Actinomycin. Part I. Amino acid content. J. 

Chern. Soc. Part IV: 2946-2952. 

147 



Dagliesh, C. E., and A. R. Todd. 1949. Actinomycin, 
Nature (London). 164: 830 .. 

148 

Decad, G. M.; and H, Nikaido. 1976. Outer membrane of gram­
negative bacteria, XII, Molecular sieving function 
of cell wall. J. Bacterial. 128: 325-326. 

Durham, N. N. 1958, Studies on the metabolism of p-nitro­
benzoic acid. Can. J. Hicrobiol. 4: 141-148,-

Durham, N. N., R. W. Chestnut, D. F. Haslam, and K. D. 
Berlin. 1974, Hydropolar molecules as effectors in 
molecular complex-membrane interactions. Proc. Okla. 
Acad, Sci. pp, 77-86, 

Durham, N. N. , and D. V. Ferguson, 19 71. Molecular speci­
ficity associated with alleviation of actinomycin D 
inhibition of protein synthesis. Biochem. J. 123: 
291-292. 

Durham, N. N.; and K. C. Keudell. 1969, Synthesis of pro­
tocatechuate oxygenase by Pseudomonas fluorescens in 
the presence of actinomycin D. Antimicrob. Agents 
Chemother. p, 67. 

Ferguson, D. V. 1970. The effect of actinomycin D on 
amidase induction in Pseudomonas fluorescens. Ph.D. 
thesis. Oklahoma State University. 

Folch, J., M. Lees, and G. H. S. Stanley. 1957. 
method for the isolation and purification of 
lipides from animal tissues .. J. Biol. Chern. 
497-509, . 

A simple 
total 
226: 

• Foley, G. E. 1956. Preliminary observations on the mechan-
ism of action of actinomycin D in microbiological 
systems. Antibiotics Annual: 432-436. 

Garewal, H. S. 1973. A procedure for the estimation of 
microgram quanti ties of Triton X-100. Anal. Biochem, 
54: 319-324. -

Gellert, M., C. E. Smith, D. Neville, and G. Felsenfeld. 
1965. Actinomycin Binding to DNA: Mechanism and spe­
cificity. J. Mol. Bioi. 11: 445-447. 

Gold, M., and J, Hurwitz. 1964. The enzymatic methylation 
of ribonucleic acid and deoxyribonucleic acid, VI, 
Further studies on the properties of the deoxyribonu­
cleic acid methylation reaction, J. Biol, Chern. 239: 
3866-3874. 



149 

Goldberg, I. H., M. Rabinowitz, and E. Reich. 1962. Basis 
·of actinomycin action. I. DNA binding and inhibition 
of RNA polymerase synthetic reaction by actinomycin. 
Proc. Natl. Acad. Sci. 48: 2094-2101. 

Hamilton, L. D., W. Fuller, and E. Reich. 1963. X-ray 
diffraction and molecular model building studies of the 
interaction of actinomycin with nucleic acids. Nature 
198: 538-540. -

Hancock, I. C., and P. M. Meadow. 1969. The extractable 
lip~ds of Pseudomonas aeruginosa. Biochim. Biophys. 
Acta 187: 3G6-379. 

Hancock, R. E. W., G. M. Decad, and H. Nikaido. 1979. 
Identification of the protein producing transmembrane 
diffusion pore in the outer membrane of Pseudomonas 
aeruginosa PAOl. Biochim. Biophys. Acta 554: 323-331. 

Haslam, D. F. 1973. Studies on the biological action of a 
hydroxypyrazole compound. Ph.D. thesis. Oklahoma 
State University. 

Holloway, P. W. 1973. A simple procedure for removal of 
Triton X-100 from protein samples. Anal. Biochem. 
53: 304-308. 

Honig, G. R., and M, Rabinowitz. 1965. Actinomycin D: In­
hibition of protein synthesis unrelated to effect on 
template RNA synthesis. Science. 149: 1504-1505. 

Hurwitz, J., A. Bresler, and R. Diringer. 1960. The enzymic 
incorporation of ribonucleotides in polyribonucleotides 
and the effect of DNA. Biochem. Biophys. Res. Commun. 
3: 15-19. 

Hyman, R. W., and N. Davidson. 1970. Kinetics of the in 
vitro inhibition of transcription by actinomycin. 
J. Mol. Biol. 50: 421-438. 

Hyman, R. W., and N. Davidson. 1971. The binding of acti­
nomycin D to crab poly d(A-T) •poly d(T-A) . II. On 
the nature of the DNA binding site. Biochim. Biophys. 
Acta 228: 38-48. 

Jain, S. C., and H. M. SobelL 1972. Stereochemistry of 
actinomycin binding to DNA. ·I. Refinement and further 
structural details of the actinomycin-deoxyguanosine 
crystalline complex. J. Mol. Biol. 68: 1-20. 

Johnson, K. G., and M. B. Perry, 1976. Improved techniques 
for the preparation of bacterial lipopolysaccharide. 
Can. J. Microbial. 22: 29-34. 



150 

Kasahara, M., and Y. Anraku. 1974. Succinate dehydrogenase· 
of Escherichia coli membrane vesicles : activation and 
properties of the enzyme. J. Biochem. 76: 959-9660 

Kelly, H., and H. L. Kornberg. 1962. Amidase from Pseudo­
monas aeruginosa : A multi-headed enzyme. Bioch1m. 
Biopliys. Acta 64: 190-196. . 

Kelly, M., arid H. L. Kornberg. 1964. Purification and pro­
perties of acyltransferases from Pseudomonas aerug·inosa. 
Biochem. J. 93: 557-5660 

Kersten, W. 1961. Interaction of actinomycin D with consti­
tuents of nucleic acids. Biochim. Biophys. Acta 47: 
610-611. 

Kersten, W., H. Kersten, and H. M. Rauen. 1960. Action of 
nucleic acids on the inhibition of growth by actinomycin 
of Neurospor~ crassa. Nature (London). 

Kirk, J. M. 1960. The mode of action of actinomycin D. 
Biochim. Biophys. Acta 42: 167-169. 

Krugh, T. R., and H. A. Young. 1977. Daunorubicin and 
adriamycin facilitate actinm.nycin D binding to poly (dA­
dT)•poly(dA-dT). Nature. 269: 627-628. 

Leive, L. 1965. Release of lipopolysaccharide by EDTA 
treatment of E. coli. Biochem. Biophys. Res. Commun. 
21: 290-296. --

Lipmann, F., and L. C. Tuttle. 1945. A specific micro 
method for the determination of acyl phosphates. J. 
Bio1 Chern. 159: 21-28 . 

. Lowry, 0. H., N.J. Rosebrought A. Farr, andR. J. Randall. 
1951. Protein measurement with the £olin phenol rea­
gent. J. Biol. Chern. 193:. 265-275. 

Lugtenberg, B. , J. Meijers, R. Peters , P. van der Hoek, and 
L. van Alphen. 1975. Electrophoretic resolution of 
the major outer membrane protein of Escherichia coli 
K-12 into four bands. FEBS Letters. 58: 254-258~ 

Manaker, R. A., F. J. Gregory, L. C. Vining, and S. A. 
Waksman. 1955. Actinomycin. III. The production and 
properties of a new actinomycin. Antibiotics Annual. 
pp. 853-857. 

Marinetti, G. V •. 1962. Chromatographic separation, identi­
fication and analysis of phophatides. J. Lipid Res. 
3: 1-20. 



151 

Marks, T. A., and J. M. Venditti. 1976. Potentiation of 
actinomycin D or adriamycin antitumor activity with 
DNA. Cancer Res. 36: 496-504. 

Marmur, J. 1961, A procedure for the isolation of deoxyri­
bonucleic acid from microorganisms. J. Mol. Biol. 3: 
208-218. 

Mauger; A. B., and R. Wade, 1966. The synthesis of actino­
mycin analogues. Part II. Actinocyl-gramicidin S. 
J. Chem. Soc. Sec, C: 1406-1408. 

McConnell, D. J., and J. Bonner, 1972, Preparation of 
highly purified ribonucleic acid polymerase; separation 
from polynucleotide phosphorylase and polyphosphate 
kinase. Biochem, 11: 4329-4336 

Meienhofer, J. 1970, Synthesis of actinomycin and analogs. 
III. A total synthesis of actinomycin D (Cl) via 
peptide cyclization between proline and sarcosine. J. 
Amer. Chern. Soc. 92: 3771-3777. 

Montgomery, K. 1966. Influence of Q-nitrobenzoic acid on 
the protocatechuate oxygenase system of Pseudomonas 
fluorescens. M.S. thesis. Oklahoma State University. 

Morgan, J. G., K. D. Berlin, N. N. Durham, and R. W. Chest­
nut. 1971. Synthesis of some indazoles structurally 
related to equilenin. J. Heterocyclic Chern. 8: 61-63. 

Muller, W.; and D. H. Crothers. 1968. Studies of the bind­
ing of actinomycin and related compounds to DNA. J. 
Mol, Biol. 35: 251-290. 

Nakae, T., and H. Nikaido. 1975. Outer membrane as a diffu­
sion barrier in Salmonella typhimurium : penetration of 
oligo- and polysaccharides into isolated outer membrane 
vesicles and cells with degraded peptidoglycan layer. 
J. Biol. Chern. 250: 7359-7365. 

Nixdorf£, K., H. Fitzer, J. Gmeiner, and H. H. Martin. 1977. 
Reconstitution of model membranes from phospholipid and 
outer membrane proteins of Proteus mirabilis. Role of 
proteins in the formation of hydrophilic pores and pro­
tection of membranes against detergents. Eur. J. Bio­
chem. 81: 63-69. - .. 

O'Donnell, D. J., K. Ramalingam, A. S, Radhakrishna, R. S. 
Fischer, N. N. Durham, and K. D. Berlin. 1978. Carbon-
13 and proton nuclear magnetic resonance spectroscopic 
evidence for a molecular complex of actinomycin D and 
10,11-dihydro-3H-napth(l,2g)indazol-7-ol, J. Org. Chern. 
43: 4542-4545. 



152 

Ogur, H., and 
tissues. 
acid and 
262-276. 

G. Rosen. 1950. The nucleic acids of plant 
I, The extraction of desoxypentose nucleic 

pentose nucleic acid. Arch. Biochem. 25: 

Osburn; M. J, 1963. Studies on the gram-negative cell wall. 
I. Evidence for the role of 2-keto-3-deoxyoctonate in 
the lipopolysaccharide of Salmonella typhimurium. Proc. 
Natl. Acad. Sci. 50: 499-506. · 

Rauen, H. 11., and G. Hess. 1959. 
D and C on Neurospora crassa. 
70-71. . 

The effect of actinomycin 
Z. Physiol. Chern. 315: 

Reich, E. 1964. Actinomycin : Correlation of structure and 
function of its complexes with purines and DNA. Sci­
ence. 143: 684-689. 

Reich, E.; and I. H. Goldberg. 1964. Actinomycin and nu­
cleic acid function. Progr. Nucl. Acid Res. Mol. Bio1. 
3: 183-234. 

Reihm, H., and J. L. Biedler. 1972. Potentiation of drug 
effect by Tween so· in chinese hamster cells resistant 
to actinomycin D and daunomycin. Cancer Res. 32: 1195-
1200. 

Richardson, J. P. 1966. The binding of RNA polymerase to 
DNA. J. Mol. Biol. 21: 83-112. -' 

Rouser, G., A. J. Bauman, N. Nicolaides, and D. Heller. 
1961. Paper chromatography of lipids : methods, appli­
cations, and interpretations. J. Am. Oil Chern. Soc. 
38: 565-581. 

Roy; A., and s. Mitra. 1970. Susceptibility of E. coli 
K-12 to actinomycin D after infection with phag~13. 
Nature (London). 228: 365-366. 

Saito, H., and K. Miura. 1963. Preparation of transforming 
deoxyribonucleic acid by phenol treatment. Biochim. 
Biophys. Acta 72: 619-629. 

Shaw, N. 1968. The detection of lipids on thin-layer chro­
matograms with the periodate-schiff reagents. Biochim. 
Biophys. Acta 164: 435-436. · 

Slotnick, I. J. 1960. Mechanism of action of actinomycin D 
in microbiological systems. Anal. N. Y. Acad. Sci. 89: 
342-347. 

Smith, R. F., D. E. Shay, and N.J. Doorenbos. 1963. Anti­
microbial action of nitrogen-containing steroids. J. 
Bacterial. 85: 1295-1299. 



153 

Sobell, H. M. 19736 The stereochemistry of actinomycin 
binding to DNA and its implications in molecular bio­
logy. Progr. Nucl. Acid Res. Mol. Biol. 13: 153-190. 

Stevens, A. 1960. Incorporation of the adenine ribonucleo­
tide into RNA by cell fractions from E. coli B. 
Biochem. Biophys. Res. Commun. 2_: 92-96.-

Wade, H. E., and D. E. Morgan. 1953. Detection of phos­
phate esters 0:1. paper chro"natograms. Nature. 171: 
529-5306 

Waksman, S. A. 1954. Actinomycin I. Historical nature and 
cytostatic action. Antibiotics and Chemotherapyo 4: 
502-5100 

'Haksman, S. A., and H. B. \-Joodruff. 1940. 'The soil as a 
source of microorganisms antagonistic to disease pro­
ducing b'acteria, J. Bacterial. 40: 581-600. 

Weiss. S. B. 1960. 
side phosphate 
of ribonucleic 
1030. 

Enzymatic incorporation of ribonucleo­
into the interpolynucleotide linkages 
acid. Proc. Nat. Acad. Sci. 46: 1020--

Weissbach, A., and J. Hurwitz. 1958. The formation of 2-
keto-3-deoxyheptonic acid in extracts of Escherichia 
coli B. I. Identification. J. Biol. Chem,""2'34: 705-
709:"" 

Wells; R. D., and J. E. Larson. 1970. Binding of actinomy­
cin D to deoxyribonucleic acid and deoxyribonucleic 
acid model polymers. J. Mol. Biol. 49: 319-342. 



'l 

VITA 

Randy Scott Fischer 

Doctor of Philosophy 

Thesis: INTERACTIONS OF A HYDROXYPYRAZOLE AND PROTOCATECHU­
ATE HITH ACTINOHYCIN D IN PSEUDOMONAS FLUORESCENS 
AND SELECTED IN VITRO SYSTEMS 

Major Field: Microbiology 

Biographical: 

Personal Data: Born in Cherokee, Oklahoma, March 5, 
1953; the son of S. C. and Jennie A. Fischer. 

Education: Graduated from Jet-Nash High School, Jet, 
Oklahoma,in May, 1971; received the Bachelor of 
Science degree in Chemistry and Biology from 
Northwestern Oklahoma State University, Alva, 
Oklahoma, in May; 1975; completed the require­
ments for the Doctor of Philosophy degree in 
July, 1980. 

Professional Experience: Graduate Teaching and/or 
Research Assistant, School of Biological Sciences, 
Oklahoma State University, 1975-1980. 

Professional Organizations: Member of the American 
Society for Microbiology. 




