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When | gave my heart to know wisdom and to see
the task which has been done on the earth .
and | saw every work of God,

| concluded that man cannot discover the work
which has been done under the sun.

Even though man should seek laboriously,

he will not discover;

and though the wise man should say, 'l know,"

he cannot discover.

Ecclesiastes 8:16~17
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CHAPTER |

INTRODUCT ION

A common situation in shrvey sampling, particularly among government
agencies, is for several organizations to collect information on a regu-
lar basis from the same segment of a population. In addition, some iden-
tical units may actually be selected for use in two or more surveys, and
the information to be obtained in the different surveys may be almost
identical. When much of the required data for all the surveys could be
collected simultaneously from the same set of sampling units or from sub-
units of those units, this practice is statistically and cost inefficient.

The procedure of simultaneously collecting data on the same Qnit for
several surveys is referred to as integrated survey sampling. In the
special case of a single population composed of two or more overlapping
subpopulations, the independent surveys of all the subpopulations can be
integrated and the sample designs can be modified to either (1) reduce
or eliminate multiple coverage‘of the overlap domain, or (2) improve the
estimates of the parameters of the individual subpopulations by advan-
tageously combining the information available from all the surveys. This
investigation addresses the general problems of sampling and estimation
in the overlapping subpopulations context, and specifically deals with
both the approaches described above. A basic integrated sample survey
design is proposed which yields a‘more precise estimator of the location

parameters of the individual subpopulations (combining all the available



survey data) than estimators obtained using conventional survey designs.
Alternatively, for fixed levels of precision, the sample sizes of all the
surveys can be decreased to reduce unnecessary coverage of the overlap
domain, resulting in a more cost efficient system of surveys. Finally,
this procedure is compared with an alternative sample size reduction
procedure which is not precision-dependent, but which in many cases leads
to lower costs.

The concept of integrated survey sampling has become particularly
intriguing in recent years as it is applied to real situations arising
in the federal welfare system. This thesis provides the statistical

foundation for solutions to the sampling and estimation problems specif-

ically found in this context.



CHAPTER 11

OVERVIEW OF SURVEY SAMPLING IN THE

FEDERAL WELFARE SYSTEM
2.1 Population of Inference

The ''federal welfare system'" is most generally defined as the
collection of federally funded family nutritional/income support pro-
grams, the agencies and their staffs which administer and govern those
programs, together with the population of all family units receiving at
least one program benefit. Although there are a number of these programs
in existence serving specific interests throughout the countfy, there are
three major programs which collectively support the majority of ''welfare
recipients' nation-wide. 1t is these three programs which are of
specific interest: Aid to Families with Dependent Children (AFDC), the
basic welfare grant program administéred by the Health Care Financing
Administration (HCFA) of the U. S. Department of Health, Education,vand
Welfare (DHEW); the Food Stamp program (FS), administered by the Food
and Nutrition Service (FNS) of the U. S. Department of Agriculture
(USDA) ; and the Medicaid program (Med), administered by the Social
Security Administration (SSA) of DHEW.

Every state directs these three programs within its geographic
boundaries under federal statutes and with the support of publi¢ funds.
In most cases, the programs are managed independently of one another, .

either by different state agencies or by different staffs within the



same agency, and each program supports its own participating constituency.
In this regard the population of welfare recipients in each state actu-
ally consists of three uniquely defined and uniquely governed subpopula-
tions. Under the collective regulations currently in force, it is
possible, and highly likely, that a family unit eligible to participate

in one program may also be eligible to participate in one or both of the
other programs. Consequently, the subpopulations, though uniquely
defined, inherently overlap. A schematic of this geheral overlapping

supopulations situation is provided in Figure 1,
2.2 Evaluating Program Management Practices

Every six moﬁths each state is required to conduct a quality control
survey of a sample of family units residing in the state and participat-
ing in each of the three major welfare programs. There are thrée inde-
pendent samples on which to collect and analyze data; which,'in most
icases, requires the expertise of three separate, trained staffs. The
purpose of these surveys is to validate the management practices of the
state agencies directing the programs by determining the number bf par-
ticipating family units obtaining‘benefits in error. Of particular
interest is the proportion of family units certified to participate in
a given program, but which, because of oversight or fraud by the case-
worker or recipient, are totally ineligible. States with '"ineligibility

rates' exceeding established tolerances are subject to fiscal sanctions.
2.3 Conventional Survey Sampling Practices

The original sample survey design established for use in all states

was a very simple one, and essentially identical for all three programs
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FS
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1. FS only

2. AFDC only
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4. AFDC and FS
5. AFDC and Med

6. FS and Med

7. FS, AFDC, and Med

Figure 1. Schematic of Overlapping Federal Assistance Programs



(although there were as many subtle variations In practice as there are
states). For each program a separate survey organization was retained,
with each organization interested only in its own participating constit-
uency. A continuously updated frame was maintained by each of the
organizations representing its respective caselpad. Due.to the inherent
overlap of the subpopulations, each frame contained an unknown, but esti-
mable, number of 'mixed'' family units--that is, family units participat-
ing in one or more of the other programs. The '"mixed' category in each
frame was historically sUspected to contain more family units receiving
benefits in error than the ''non-mixed'' category. Thé ratios of ''mixed'.
to ""non-mixed'" family units in the frames were non-constant, since the
eligibility of family units to participate in any program may be discon-
tinued or renewed a number of times during the survey time period for a
variety of reasons.

A simple random sample was selected from each frame (not necessarily
at the same time) so that an expected proportionate sample of 'mixed" and
"non-mixed'" families results (sample approximately representative of the
frame from which it is selected). In most states one-sixth of the sample
of the required size was selected from the frame of participating family
units available each month. Sample units were surveyed via home visits
and collateral contacts to determine their correct benefit allotment on
the basis of family income, assets, medical expenses, and other items
that determine a family budget. For each program, estimates of the pro-
portions of family units in the two participation categories receiVing
benefits erroneously were obtained and reported, along with an estimate

of total family units receiving benefits in error.



2.4 Revising the Survey Design

With the phenomenal growth in the number of welfare recipients in
the 1970's, the sizes of all three surveys directly increased, and the
demands on states to provide additional staff and resources to effi-
ctently execute the surveys began to outstrip their other financial com-
mitments. To provide some relief, one suggestion was to somehow take
advantage of the inherent overlap among the constituencies of the pro-
grams in hopes of eliminating duplicate effort and costs. |In 1974,
employees of the federal agencies governing the major welfare programs
became the prime force in a move to merge all the quality control sample
surveys conducted in the states, at the insistence of some reform-minded
congressmen and administration officials. The terms ''integrated sam-

pling'' and "integrated survey'' were coined to describe this sample survey

redesign or merger.

2.5 Practical and Philosophical

Barriers to Survey Redesign

There are several practical and philosophical barriers inhibiting
merger of the surveys and these must be resolved before an effective
redesign can be accomplished. Some of them have already been suggested.
The first problem lies in the original sample survey designs. Since the
numbers of '"'mixed' and ''non-mixed" famfly units contained in the sampling
frames are unknown, the units selected cannot be categorized in this way
prior to sampling. This determination must, in fact, be part of each
survey. What results, of course, is‘a post-stratified sample rather than

one which is proportionally stratified prior to sampling. The precision



of the estimates of the Individual subpopulation p#rameters must be
adjusted to reflect this discrepancy.

A second difficulty lies in the data to be collected. In the kind
of integrated system of surveys being proposed, one must assume that all
surveys obtain equivalent measurements for specific items of interest on
all the units in the overlap. This is not the case in practice, since
the surveys, by definition of the programs for which they are designed,
logically extract different information (for example, the family budget
is computed differently for AFDC and FS). This situation can be remedied
only with a common survey instrument, or with revised program regulétions
allowing common information to be collected. A third complication is
that some identjcal units may be selected into the samples for two or
more of the surveys. This is an undesirable situation, from the stand-
point of economics, if identical or similar information is collected in
multiple surveys. |If duplicate units are not eliminated, the estimates
of the subpopulation parameters must be adjusted to reflect this.

The most serious obstacle facing merger of the surveys is the ab-
sence of a common sampling unit among the three subpopulations--families
are sampled for AFDC, households are sampled for FS, and clusters of paid
claims for given families are sampled for Medicaid. It was Crosley [8]
and Gregory [15] who in 1977 distinguished and championed the need to
redesign the survey practices of all the programs into a single inte-
grated procedure on the basis of a common sampling unit. One way to
avoid pitfalls of inconsistencies among sampling units is to consider
the concept of ultimate and penultimate sampling units. While the ulti-
mate sampling units for the three surveys indeed differ, it may be pos-

sible to define, and initially sample on the basis of, a penultimate



unit (for example, the household consisting of all individuals cohabitat-
ing under one roof). An analogous concept Is the ''overlapping sampling
unit,'" described by Kendall and Buckland [18]:

Usually the population of elementary units or basic cells is

broken up for purposes of sampling into clusters or grids of

units or cells which are mutually exclusive; that is, every

elementary unit or basic cell belongs to one and only one

sampling unit. It is, however, possible to have a system of

sampling units in which the same elementary unit or cell may

occur in more than one sampling unit, in which case we have

an overlapping system., |f properly used, such a system pro-

vides unbiased estimates [p. 210].

There are some other problems of logistics brought about by incom-
patibilities in the regulations goVerning the three programs. For
example, under the original survey design, all sample units selected for
the survey of a particular program were to have equal chance of selection,
and the resulting samples were required to proportionally reflect the com-
position of the subpopulation from which they were selected. Even those

individuals who suggested the earliest survey merger schemes recognized

these kinds of restrictions might have to be modified or abandoned.
2.6 ngistics of Integrated Sampling

""Integrated sampling''-is the term used to describe linking or merg-
ing the physical sampling and survey processes of the three federal
assistance programs to (1) reduce the overall combined sample size a
state must select and survey, (2) minimize or eliminate the duplication
of surveying the same family unit more than once, and (3) maintain the

‘original sample size requirements established for the individual pro-

grams, or alternatively, maintain the precision of the estimates of the
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parameters of individual subpopulations. The purpose behind such a pro-
posed merger was to demonstrate the administration's commitment to stream-
line this facet of the federal bureaucracy, to make all the individual
welfare programs more economically palatable, and to improve the overall
efficiency of the system.

Between 1975 and 1977 there was a flurry of activity to develop the
necessary logistics for integrating the surveys. The idea was to take
advantage of the overlap among the subpopulations to the maximum degree
possible. Because of the large size of the constituency domains of the
three programs and because agency regulations had not previously been
written to accommodate the overlap, the earliest attempts at integratihg
the surveys were crude, at best. In an attempt to demonstrate some
immediate survey economy, an ad hoc approach was to sort of juggle all:
the sample elements selected via the three established survey designs’in
order to circumvent the restrictions imposed by each agency. Some states
attempted to accrue some savings by cross-matching the three samples
selected for their three surveys. In this way duplicate family units
were eliminated. Other states tried to take advantage of prior knowledge
of the size of the overlap with respect to the size of each subpopulation
in order to reduce the actual sample size of family units physically sur-
veyed by each organization. The suggested procedure was to use a frac- }
tion of the sample units (related to the ratio of the size of the overlap
to the size of the total subpopulation) selected for each survey as sample
units for the other two surveys as well, With each organization collecting
enough extra information on those units to satisfy the requirements of all
three surveys. The key to this kind of sample size reduction was forced

cooperation among the three survey organizations. Finally, a complete
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cooperative redesign of all the survey operations was suggested. In
several cases, federal monies were made available to states to encourage
investigation into applications of these approaches to real situations

arising in the federal welfare system (see, for example, Egan and Murray

(1.
2.7 Review of Literature

Discussions of sampling and estimation in the context of overlapping
subpopulations are virtually absent from the literature.’ However, there
are a few references to integrated sufveys, and it will be instructive to
review these., The term 'integrated sufvey“ is not a new one. Although
it was apparently coined prior to 1960, it is difficult to pinpoint the
earliest date that it appeared. The twelfth session of the Statistical
Commission of the United Nations [33] prepared a document for publication

in 1964 to deal "with the technical aspects of sampling processes .in

accordance with the recommended terminology' [33, p. 3]. |In this report
the "integrated survey' was listed as one of six possible types of recog-
nized surveys. However, it is not known whether the term first appeared
here or at some earlier date, since the Commission's report that year was
a revision of documents publiéhed in 1948 and 1949. In a section of his

text entitled Sampling Theory and Methods (1961), Murthy [23] suggested

integration of two or more surveys ''to reduce the cost of survey opera-
tions at the different stages' [23, p. 347]. Murthy noted that 'it may
be beneficial to integrate two or more surveys even when the sampling

units . . . are different" [23, p. 349]. All the early standard sampling
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texts published in the United States apparently ignored the topic. It was
not untll 1970 that an example of an integrated survey appeared in the
literature. That year Murthy and Roy [24] published a paper in which they
discussed their experiences in devising an integrated survey design for
part of the 1968-69 Indian National Sample Survey. The authors proposed
that, without disrupting the established design for all other character-
istics to be measured in the survey, an integrated design would accommo-
date sampling for a particular characteristic if the population elements
possessing that characteristic are unevenly distributed. Des Raj [28]
presented the only other textual reference to an integrated survey.

When in 1974-75 the term "integrated survey' was recoined bY federal
employees to refer to the merger of the major quality control surveys in
the federal welfare system, it was apparently done without knowledge of
the previous feferehces. Most of the work during these years described
the logistics of physically merging or manipulating sampling frames to
arrive at a particular collection of sampling units. Coburn [3], for
example, related several ad hoc approaches to fitting all the original
survey frames and sampling procedures into the framework of a common
interrelated design. Each of the approaches features some kind of sample
size reduction or change in the sample composition with respect to each
subpopulation in question. Heiner, Read, and Whitby [17] discussed a
specific redesign of New York's quality control system and presented
several alternatives for reducing overall combined sample size. Schwartz
[32] proposed a non-linear programming approach for allocating a fixed
sample size among the several overlapping surveys. Finally, Schneider
[31] discussed a procedure for adjusting the original fixed sample sizes

for each survey directly as a function of the overlap.
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Based on Schneider's scheme, the U. S. Department of Health, Educa-
tion and Welfare prepared an operating manual in 1978 for integrating
federal welfare surveys. This manual made almost no reference to the
precision of the estimates of population parameters obtained using
Schneider's procedure (or, for that matter, any other procedure). In
response to the disregard of the precision of the e§timates heretofore
exhibited, Coburn [4] made the first attempt to estimate the parameters
in one subpopulation given some auxiliary information from the survey of
an overlapping subpopulation, aséuming the existence of a common‘sampling
unit. In 1979 a cooperative inter-agency effort resuited in the brepara-

tion of a second handbook, entitled |[nteqrated Quality Control System

[35], which catalogs all the available techniques and variations for
merging the three major quality control surveys. In this text some
emphasis is given to computing the precision of the parameter estimates
obtained using the available sample size reduction techniques. Formulas
for computing the precision, however, are not always provided. More
importantly, the handbook does not provide a comprehensive anéiysis of
the survey precision for each technique from a comparative standpoint,

and no recommendations are made for choosing among the procedures on

this basis.
2.8 Research Problem

The research presented in the remainder of this study, and the
results which are described, are not aimed at further development of the
logistics of integrated surveys. Sufficient work has already been done
in that area to establish acceptable procedures for integrating the qual-

ity control surveys in the federal welfare system. On the other hand,
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there has been preclous little work on the estimation problems which
arise in the overlapping subpopulations context. This thesis is there-
fore devoted to the development of the statistical foundations necessary
to address these problems. A general, overlapping sampie survey design
is proposed. Given this design, procedures are developed for estimating
the parameters of individual subpopulations in a number of sampling situ-
ations. The statistical properties of each estimator are investigated,
with particular emphasis given to evaluating the precision obtained.

The variances of the new estimators are compared to those obtained under
conventional sample designs, and recommendations are made for choosing
among the estimators on the basis of applicability to the sampling situ-
ation and ease of computation, as well as on the basis of increased pre-
cision. Finally, precision-based sample size reduction procedures are
developed, with comparisons made to other techniques on the basis of

achievability, improved precision, and survey economy. .



CHAPTER 111

SOME THEORY FOR AN OVERLAPPING

SAMPLE SURVEY DESIGN
3.1 Introduction

The probleh of surveying overlapping subpopulations, previously

described as '"integrated sampling,' is characterized in Chapter I{ by

the situation arising in the federal welfare system. In this chapter, a
basic sample survey strategy, having minimal administrative restrictions,
is brOposed for dealing with two overlapping subpopulations, and a pro-
cedure is developed for estimating the parameters of an arbitrary sub-
population by combining all the information available from the surveys

of both subpopulations. A contrived example is presented in whi@h the

survey design is applied to the overlapping constituencies of AFDC and

the Food Stamp Program.

3.2 A Basic Overlapping

Sample Survey Design

Suppose a population of size € is composed of two overlapping sub-
populations of sizes N and M, respectively; and suppose two independent
sample surveys are conducted over the population, with each survey aimed
at a particular subpopulation. The staffs of two distinct agencies or
organizations conduct the surveys. Let the survey of subpopulation |

(having size N) be designated as the primary survey (primary subpobulation,.

15
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primary sample, etc.). Let the overlap domain be of size N2 (= M,)), so

2)
that N = N, + N, and M = M, + M,.

] 2 ] 2

Although the subpopulations are known to overlap, it cannot be known
prior to sampling which population elements fall in the overlap domain.
Assume the sampling units for both surveys are identical, and that both
surveys obtain identical measurements on the units for the characteristics
of interest.

Simple random samples of fixed size n and m, respectively, are
selected for the two surveys. The units selected in each sample fall
into two categories--those which belong to the overlap domain and those
which do not (called '"mixed' and ''non-mixed" units, respectively). Assume
no duplicate units are selected in the two samples owing to sampling the
overlap domain twice.

The surveys are conducted by fhe two organizations. Within the con-
text of each survey it is first determined for each sample unit whether
or not it falls in the overlap domain. |If a sample unit is determined to
be a "mixed" unit, it is surveyed with respect to membership in the sub-
population from which it was selected; and within the scope of this inves-
tigation, or subsequent to it, additiona] information is obtained on the
characteristics of interest to the other survey. After the two surveys
are completed, each of the two original samples is post-stratified into
the two categories--''mixed" and '"'"mon-mixed" units. In this matter, four
subsamples of random size are formed: n, "non-mixed" units (with respect
to the primary subpopulation) and n, "mixed'" units in the primary sample;
and my "non-mixed'! units (with respect to the second subpopulation) and

M, "mixed" units in the second sample. Note that n = ny +ny and

m = m+m, OH, m, i=1,2, all non-zero). The two subsamples of ''mixed"
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units are two independent samples from the overlap domain. Estimates of
the parameters of a particular subpopulation for the characteristics of
interest can be computed from the information available in the four sub-

samples.
3.3 A Contrived Example

As an example, conéider the application of the basic survey design
of section 3.2 to the overlapping constituencies of Aid to Families with
Dependent Children (AFDC) and the Food Stamp program (FS). In this
example, it is desired to estimate the proportion of FS households which
ére ineligible to receive their benefits using all the information avail-
able from the surveys of both constituencies.

Suppose State A has an FS constituency of N = 40,000 households
(average monthly caseload) and an AFDC constituency of M = 25,000 families
(average monthly caseload); and suppose it is known that the two constit-

uencies overlap, and that the size of the overlap is N

2 =My

Hence, there are N, = 27,500 non-mixed FS households (N = Ny + N2) and

= 12,500.

M, = 12,500 non-mixed AFDC families (M = My + Mz). Assume that one FS
household is equivalent to one AFDC family. Accordingly, 50% of the

AFDC constituency is presumed to receive FS, and 31.3% of the FS constit-
uencylis presumed to recieve an AFDC grant. Figure 2 portrays this‘
example of overlapping constituencies.

Suppose simple random samples of size n = 1,200 and m = 800 are
selected from the frames representing the FS and AFDC constituencies,
respectively. Assume no units appear simultaneously in both samples.

All sample units are surveyed for eligibility to participate in the pro-

gram for which they were selected. In addition it is determined which
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units in each sample belong to the overlap domain. These unifs are also
surveyed for eligibility to participate in the program for which they were
not selected. For example, the units in the FS sample which are deter-
mined to belong to the overlap domain are surveyed for eligibility to
receive an AFDC grant. It is presumed that the surveys for both programs

obtain identical measurements of program participation on the overlap

units.
overlap N = N] + N2
My = 12,500 N, =M, =
N,= 27,500 M=H M,
12,500 '
AFDC
M = 25,000
FS
N = 40,000

Figure 2. An Example of Overlapping Constituencies of the
FS and AFDC Programs

After the surveys are completed, the two samples are both post-
stratified into two subsamples--those which belong to the overlap domain
and those which do not. The contrived results of post-stratifying the
two samples of size n = 1,200. and m = 800 are displayed in Table | and
Table Il. Note that the marginal totals in the tables are unknown prior

to selecting the samples and conducting the surveys.



TABLE I

AN EXAMPLE OF POST-STRATIFYING AN AFDC *
SAMPLE OF SIZE m = 800

19

APDC/FS Mixed

AFDC FS FS
Only Eligible Ineligible Total
AFDC
Eligible 340 -+« « « 4 w4 . . 260 80 340
AFDC
Ineligible 60 « ¢ v v e e e 16 44 60
Total 400 276 124 400
*Aid to Families with Dependent Children
TABLE II
AN EXAMPLE OF POST-STRATIFYING A FS#*
SAMPLE OF SIZE n = 1,200
FS/AFDC Mixed
FS AFDC AFDC
Only Eligible Ineligible Total
FS '
eligible 742 . 0 0 0 0 0 0 .. 294 25 319
FS
Ineligible 82 ¢ v v 4 e e e e 38 19 57
Total 824 332 44 376

*Food Stamps
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It is now desired to estimate the proportion of FS households which
are ineligible to receive their benefits. As observed in Tables | and
I'l, the data available in the various portions of the samples and sub-
samples described above can be combined in a number of ways to form an
estimate. Usable information is available from both surveys. Candidate
estimates of the proportion of ineligible FS households which may be

extracted from the information in the tables are given below:

g%% -- the fraction of non-mixed FS households which are
ineligible

é?% -~ the fraction of mixed FS households which are
ineligible

%%% -~ the fraction of mixed AFDC families which are
ineligible to receive FS

éﬁ%- -- the fraction of mixed FS households which are

eligible to receive an AFDC grant but ineligible
to receive FS

;%% -- the fraction of mixed AFDC households which are
eligible to receive an AFDC grant but ineligible
to receive FS

%% -~ the fraction of mixed FS households which are

ineligible to receive benefits from either program

%% -~ the fraction of mixed AFDC households which are

ineligible to receive benefits from either program

One way to combine some of the fractions given in the above list to
obtain a single, more precise estimate of the proportion of ineligible

FS households is given by the following equation:

. = 82 + 57 - 124
¥ = s mrasze U - ) Tgg
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137 oy 12k
“ 1200 * {1~ ) 70

where 0 < o < 1. Choosing a = (N])/N,

« - 27,500 137 12,500 124 _
P* = 57000 200 * Go.000 Joo - 7%

For every choice of o this estimator gives more weight to the pro-
portion of ineligible FS households in the overlap domain than is desir-
able. A better estimator, in the sense of desirable weighting of the
estimates for the fractions of ineligible households among the various

segments of the FS constituency, is given by

pr% = QB%+(]“Q)[B'3%ZE+(]'B)W]’

where 0 < a <1, 0 <8 < 1.

In this estimator the two available estimates of the proportion of
ineligible FS households in the overlap domain are first averaged, and
then this average proportion is weighted against the estimate obtained
for the proportion of ineligible FS households in the non-overlapAQomain.

The optimum value of B is shown, in section 3.6 of this thesis, to be

3

S
N, +m

where n, and m, are the subsamples of units in the samples of size n and

m, respectively, which belong to the overlap domain. Using this result

N
and the cell frequencies in Tables | and Il, and choosing a = W @n

estimate of the proportion of FS households which are ineligible is given

by
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e . 27,000 82 376 57 400 124
P¥* = 16600 _'6“117 + 500 376 T 396 + %00 550’
= L1413,

An estimate of the proportion of ineligible FS households which does
not make use of the information about the overlap domain available in the
sample for the second survey is the usual estimate obtained by post-

stratifying the single sample of size n:

P = ogmp* (1 - a) é?% ,

where 0 < a < 1. Choosing a = (N])/N,

_ 500 82 12,500 57 _
P = 6300 52 * Togoo 3k T 5%

Note the comparative values of p*, p**, and p.

Though many other estimators can be formed using various combina-
tions of the available data, estimators of the form of p** are chosen for
development in this thesis because they provide the proper weighting of
all the information available on the segments of the FS constituency (or

some other subpopulation of interest).

3.4 A Note on the Distri-

bution of n, andvm2

Consider the basic overlapping sample surveys design described in
section 3.2. Let N = N] + N2 and M = M] + M2 be the previously defined
sizes of two operlapping subpopulations. Let n and m be independent
simple random samples selected (with replacement) from N and M, respec-
tively. The selection of n and m without regard to the sizes of the

strata in the subpopulations forces the two samples to contain random
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numbers of units from among those strata; that is, n = n +n, and m =
m, + m,, where all the n, and m, (i =1, 2) are random.

if X and Y are independent random variables, where X is the number
of N2 units in a simple random sample of size n, and Y is the number of

M2 units in a simple random sample of size m, then X and Y have the hyper-

geometric probability mass functions . given by

() (=)
n, N n, = o, 1, 2, ..., and

P(X = nz) ’

N + n = n

n M 2

0 otherwise.

() ()
m m m, = 0,1, 2, , and

M m, + m = m

m i 2

0 otherwise.

The mean and variance of X and Y, respectively are npy and npqu(: : n),
and mp, and mquY<: ~ f), where p, = (Nz)/N, Py = (Mz)/M, Py *ay = 1,
and Py + Gy = 1. Now suppose that, on the other hand, the valueé of X
and Y are obtained by two independent sequences of Bernoulli trials--
that is, a sequence of Bernoulli trials from the subpopulation of size N
and second sequence of m Bernoulli trials from the subpopulation of size

M (sampling performed without replacement). Then X and Y have the prob-

ability mass function given by

0 otherwise.
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m m m = 0: ]’ 2: ’
P(Y =m2) - m : Cll, 2
m2 Y Y m, + m = m
1 2 ’
0 . otherwise.

where Py and Py are defined as before. The means of X and Y in this case
are always equivalent to those for the sampling situation given above.
The variances are equivalent if the correction factors (N - ﬁ)/(N- 1) and
(M-m)/(M-1) for sampling without replacement are ignored. What remains
is simply the binomial probability mass function for both X and Y.

For the situation of sampling from overlapping subpopulations in the
Tederal welfare system, it is technically incorrect to assume that X and
Y are binomially distributed unless their variances are corrected for
sampling without replacement (that is, the hypergeometric ﬁodel is the
theoretically correct one, since sample selection does not arisevthrough
Bernoulli trials). However, the assumption that fhe usual binomial dis-
tribution is applicable simply increases the variances of X and Y slightly
beyond their expected values. Throughout the remainder of this report,
unless otherwise noted, the algebraically simpler binomial model has been
assumed (that is, correction factors for sampling without replacement
have been ignored) in order to eliminate some of the effort in deriving
variance formulas. The results are everywhere conservative (in the sense
that the variance is larger than expected).

A difficulty arises in either model if n, or m, is zero. For large
n and m (say, greaterbthén 20), this difficulty can effectively be ig-
nored, since the probability of n, or m, being zero is very small. In

the situation of many-stratum subpopulations, which may yield some zero
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values for n, or m (h is the stratum number), some of the strata could
be collapsed before proceeding in order to eliminate the zeros. The gen-
eral effect of collapsing strata, however, is to increase the variance of

the estimate (see Cochran [6]).

3.5 Some Remarks on the Choice

for Sampling Error

For conventional sample survey strategies, the variances of the
resulting estimates are well known and frequently cited in the statisti-
cal literature (e.g., simple random sampling, stratified sampling).
Before a change in legislation and federal agency regulations produced
the overlapping subpopulations situation in the federal welfare system,
described in Chapter |1, surveys for the indiv}dual programs historically
were conducted using simple random sampling. For the Food Stamp Program,
additional estimates of proportions of family units falling in several
participation categories (''public assistance,' ''non-public assistance,"
etc.) were frequently computed using the data available in the simple
random sample. There is no evidence to indicate the estimate of the
variance attached to these estimates was ever adjusted to reflect the
randomness of the numbers of sample units falling in the several pupula-
tion categories. Since the samples were not stratified in advance, the
proper error term for use in these situations is that associated with
the technique of post-stratificétion. It is well known that estimates
obtained via post-stratification are almost as precise as those obtained
with proportional stratification, and for large sample sizes, use of the
error associated with proportional stratification is recommended. Using

the error associated with simple random sampling is inappropriate unless
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an unweighted estimate covering the total sample is desifed. In light

of these remarks, and because the strategies for sampling overlapping
subpopulations require post-stratification, the error associated with

the estimates developed in this report is compared with the usual error
terms obtained for post-stratification and proportional stratification.
Recommendations are made for choosing among these three for various situ-

ations of sampling from overlapping subpopulations.

3.6 Estimating the Parameters of a Subpopulation

of Interest When the Total Overlap is Known

Assume the total size of the overlap domain of the two subpopulations
is known. Let W = (N])/N and W, = (Nz)/N, N, + N, = N, be the weights
attached to strata | and 2 of the primary subpopulation, respectively,
which are appropriate for proportional stratified sampling. Let y be a
characteristic of interest in the primary survey, and let Yihi be the
value of y on the ith unit in stratum h of the primary sample (h =1, 2).
Then an unbiased estimate of ?l’ the mean of the primary subpopulation
(the subscript 1 refers to the first or primary subpopulation) obtained

via proportional stratification of a single sample size n selected from

the primary subpopulation, is given by

_st 2 -
y©o© hzl “h Yin - (3.6.1)
where
"h
- 1
Yih n, Z Yihi

a—
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Var(??t) = il—%—il ) Wh Sﬁ , (3.6.2)
h=1
where
N
h
2 IRy
S e NI TY R

is the within-stratum variance, f = n/N is the finite population correc-
tion factor (fpc), and ?Ih is the true mean of stratum h in the primary

subpopulation.
If the sample of size n is post-stratified into n and n, units,
respectively, rather than proportionally stratified in advance, then

Var(§7t) may be adjusted to reflect the randomness of nhe Hence,

W S

2 .2
h "h

L

2
Var(y?slnh) = )

--‘-Ews2 (3.6.3)
X N L Y Sh

The average value of Var(§?s) over all ny, must be obtained. Ignoring the

case n, =0 (see Cochran [6]),

=ps ] - f 2 2 1 2 2
By War(yy"In)] & —=— T Wy sp+— 10 -wW) s,
~h h=1 n~ h=1
(3.6.4)
where
=n
f=r (3.6.5)
given that
ey 2 L
h M n W, nZWf‘
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Ignoring the fpc, f, in Equation (3.6.4), one obtains

Var(??s) = E [Var(§?5|nh)]
h

: 1
n

N

2 2
Lo(h-w) s (3.6.6)

h

2 1
Wo Syt g
] n

h=1

Now suppose additional information via a sample from the second subpopu-

lation is available on stratum 2 (overlap domain). Let Yihi and Yohi be

values of the characteristic y obtained on the ith units is strata h from
subpopulations 1 and 2, respectively. As estimate of the mean of the

primary subpopulation for the characteristic y is given by

—~%

y] = w] Y}1 + wz[BY]z + (] - B) y22], (3'6'7)
where

- ] nh

LAT Y ! Y1hi? h=1,2,

i=1

are independent, unbiased estimates of the means of the hth stratum in

subpopulation 1,

- ] m2
Y22 T E’izl Y12i

is an independent, unbiased estimate of the mean of the second stratum

in subpopulation 2 (independent of 911 and 912), and 0 < B < 1. When B

o= -e

=1, Y] reduces to ;?s. Then Y] is an unbiased estimate of 7] fqr any

value of B by virtue of the following lemma and theorem.

Lemma 3.6.1 E- (y..,) = Y,.. (3.6.8)
T Yoo 22 12 ‘



29

Proof: Take a simple random sample of size m from the second sub-
population and post-stratify m into m, and my (m = m, + m2) units from

the first and second strata, respectively. Let the second stratum be the
Ylh

populations 1 and 2, respectively.

overlap domain. Let and Véh be the true means of strata h in sub-

1 if the ith element of stratum 2 in sub-

population 2 is in the subsample of size
Let 6223 = m,

0 otherwise.

Then
m M,
— 1 _ 1
Yaz = 737 izl Y21 = W iZ] %221 Yazi
Hence
E= (y = E —_— S Yol .
y22 22 622['“2 =1 22i 221]

But M, = N,, and each of the elements Yy9; is one (and only one) of the

elements of YlZi’ so that
= (7..) = E [__ 6. Y ]
Y22 22 S22 My =y 221 12
: NZ m
1= -—1—- z Y ....2_ = V
m, gLy 120 12

-3tk

Theorem 3.6.1 Y is unbiased for Y independent of the value of B.

1
(3.6.9)




Proof: Let 7} be the mean of the primary subpopulation.'

y.{lv(((y’ " = E [E >¢7‘clB Y] IB)]

= EB[W] E7”(y”) + sz Evlz(ylz)

2

By Lemma 3.6.1, E;éz(yzz) = Y,, so that

Ve (Vi 18) = EglWy ¥yp + 8w, Ty + (1 - 8) Wy V)]

Ignoring the fpc's, the variances of ;}] and ?}2 are

2 N
~ 55 ! ] ] 2
Var (y;)) = = w=T.L U -V
1 i 1 i=1
and
- Sg 1 1 sz T 12
Var(y,,) = 2 = L1 (yy,: - ;)2
12 n2 n2 N2 1 pp 121 12

Var(?éz) also depends on Sg as demonstrated in the following lemma.

Lemma 3.6.2 Ignoring the fpc's,

2
s2

30

Var(y,,) = —= \ - (3.6.10)

N
=z
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Theorem 3.6.2 Ignoring the fpc's,

S

"

2 2
! 52
m, :

NN

+ wg(l - )2 (3.6.11)

:| w

Yoot — 2 2 2
v(y| |8) = W) + W, B

N

Proof: '711 and ;&2 are independent estimates of the stratum means
of the primary subpopulatioh (based on subsamples of sizes n, and m, ,
respectively), and ;52 is a second, independent estimate of the mean of
the overlap stratum with respect to the second subpopulation (based on a

subsample of size mz).

v(y;“ls) = VW) vy + W08y, + (- 8) Y,

2 . - 2.2 - 2 .2 -
W) V(y]]) + BT, V(ylz) + (1 -R) W5 V(Yzz)

(%]

2
]

NN
3] »n
NN

n

N
N

by virtue of Lemma 3.6.2.

Theorem 3.6.3 Ignoring the fpc's, V(;?*|B) is minimum when

)
B = (3.6.12)
n2 + m2
2 2 2
S : S )
Proof: V(y¥*|B) = w2 1y 82 w2 2 4 (1 - 8)2 w2 —Z-, ignoring
— 1 ] n] 2 n2 2 m2

the fpc's. Differentiating with respect to 8,

NN
NN

2
2

8V(§?*|B)
3R

3! [72]
1
N
—~
—
]
w
A
=

= 28 W

N
“?I w

which, when equated to zero and solved for g, yields
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Now if the values of Ny Ny, and m, are determined as the result of
post-stratification, then Ny Nys My, and hence B, are random variables.
Then the average of V(??#|B) over all values of g must be determined.

- 2
1

vk = : 2 —
E LV(yix[8)] B |1 7,

w
w

!

N

2 §2
2,2 72 2 2 72
W 87 ==+ W (1 - 8) ﬁz]

w2
S 2 2
= gy (Wi Ll 52 (B (- 8) )]
L™ W) M2
2 2
I I SN I ny = 2ny8+ (n,+m,)8
T e 2 72 n.m :
1 22
n, |
Let B = T (the optimum choice). Then
E [var (yix|g = 2 )] E [wz S%+w2 Sg ]
Ny sMy T n2+'-m2 nysm, 1 n, 2 n2+m2
(3.6.13)
= wste (Y
171 n
|
2 .2 1
+ WS S2E ( )
2 72 nz,m2 n, + m,

As noted in Equation (3.6.5),

m
0
R
+
]
+.._
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l — ) can similarly be evaluated via the technique of statis-

En m (n
22M M2t ™

tical differentials, as described in Kempthorne and Folks [19].

Lemma 3.6.3
! . nwzw] + mVZVT

]
(= )
NysMy Ny * My Won + Vom (W

E
2n,+ VZm)3

(3.6.14)

Proof: Let n, and m, be random variables, distributed respectively
N
. - ; - = 2
as Bl[wzn,wz(l wz)n] and B|[V2m,V2(l Vz)m], where as before, W, N

M M
= _.-.l = 2 = 1
V]- M and V2 N (M] + M2 M) are the weights attached to strata 1

and 2 of the second subpopulation, respectively, which are appropriate

for proportional stratification.

]

Ny * My

entiable with respect to both N, and my. Expanding U in a Taylor series

Let U = f(nz, m2) = , where both Ny, my > 0 and U is differ-

about Mo and Moy o
2 2

3f(n,, m,)
U = flu ,u ) +—2 20 N (n =y )
n, m, n, 2 n,
um’un
of ,
(n2 mz) o - ) s l.‘af(nz, mz) " .
5 -
m, 2 m, 2 3n, am, 2" m,
um2’ Unz ]_lmz, unz
( ) | azf(nz, mz) (
*n, - u + n, = u_ )(m, = u_)
2 m, 2 3m2 3n2 2 n, 2 m2
H_o 5 UM
my” “n,




,
P f(nz, mz) n. -
7 |\Mm T ¥

1
+ —
i e M

2
3 f(nz,mz)
2

] m2

]
ta

+ higher order terms.

Ignoring the higher order terms, and noting the independence of n

2
and m,
(u) ( ) + LTI ( )2
EW) = flu ,u ) +g— L lE (n, - w
u n, m2 2 an n, 2 n,
H 5 U
My M2
2
;@ f(nz, mz) 2
* 7 B (my = w07,
3" m 2 2
2
Moo, W
My M2
so that
. 1 nwz(] - WZ) sz(] - V2)
B0 2 gasve t 7t 3
2 2 (Wzn + Vzm) (Wzn + Vzm)
1 nWZW] + mV2V]
W, n + V2m * (W 3
2 Nt V2m)
An additional lemma is also needed.
Lemma 3.6.4
Var (yi+) EB[Var(V‘f*IB)]- (3.6.15)

Proof: Let X and Y be any two (possibly uncorrelated) random vari-

ables. Then
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Var(¥) = g [ar(Y[X)] + Var,[Ey |, (V]X)]

(see Mood, Graybill, and Boes [22]). Applying this result, the uncondi-

tional variance of ?ﬁ* is given by

Var(??*) = E [Var y] *|B) + Var [E “*!B Yl <|8)].

But E— 8 y“<!8) is a constant, as shown in Theorem 3.6.], so that

yx'r]

— ek =
VarB[Ey?*IB(yl 18)] 0.

The result follows.

Now it is possible to find an approximate formula for the uncondi-

-k
tional variance of Y1

Theorem 3.6.4

Var (-y_;'n':) = +
] n n(l + A) n2 n2(1 + A)3

where

Proof: Use E (ELJ and the results of Lemma 3.6.3 in Equation
1 1
(3.6.13). Then

W, s w2 g2 W s2 w2 sZ(nW.W, +mV )
— L WSy 2 52 2 51 Wy Sp(nWoW, ]
Var(yT") = + W.n + V.m + 2 3
n 2 2 n (Wn+Vm)
2 2 2 2
W) S Wy Sy w2 57 (W +AV))s;

Y SR N 21+ )3
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where

If a simple random sample of size n is selected from the primary

2
subpopulation and post-stratified into N (n = Z nh) units, respec-
h=1
tively, then an unbiased estimate of Si, based on a sample of size n is
given by
n
h
2 1 o= 32
Sth T AT iZ] Wini = vin) ™ (3.6.17)
Simitarly, if a simple random sample of size m is selected from the
2
second subpopulation and post-stratified into my (m= Z mh) units, re-
h=1
spectively, and measurements of the characteristic y are obtained for
each unit in b then a second estimate of S% is given by

2
2 1 o= 42
522 m, - ] ;Z] (Va2i = V22) (3.6.18)
This second estimate of Sg is also unbiased as shown in the following
lemma.
Lemma 3.6.5
2, 2
E(szz) = 82.
. .th . .
1 if the i unit of stratum 2 in subpopula-
Proof: Let 622; = tion 2 is in m,

0 otherwise
and recall that M2 = N2' Then the lemma follows from the usual steps

needed to prove E(sz) = S2 for simple random samplinqn
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Using the immediately preceding results, an unbiased estimate of the

approximate variance of ;#* can be obtained.

-k
Theorem 3.6.5 An unbiased estimate of the approximate variance of y;’

is given by
2 2 2 2 2
var (Fi#) = M, Mtz M s o Misin T Y o
Yi n n(1 ¥ ) 2 20+ m3
(3.6.19)
where
"

] 2 _ - .2
12 5 " ) S2VTRRRATY
2 i=]
m
2 ] f ( VRY
%22 m, - 1 L Ya2i T Va2

Proof: Let s%], 5%2, and 5%2 be defined as above. Recall that

Var(?%*) is approximately given in Theorem 3.6.4 as

W, s2 w2 s2 W, s nwiw, §2
— N 1 71 2 72 2 71 2 1 72
Var(yfn) = et 5+
n 2" 2" n (Wzn + Vzm)3
mwg V2 V] Sgr
+ . (3.6.20)

(Wzn + Vzm)3

To form an unbiased estimate of Var(?%*), use the results of Lemma 3.6.5
and replace S? and Sg in the first four terms of the above expréssion

with 5%] and Sﬁz: respectively. Replace Sg in the final terms by s%z.
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Then write

2 2 .2 3 2
var (Fik) = Wi sy M2 512 Yo s, nWy Wy sy
1 n Wzn + Vzm n2 (Wzn + Vzm)3
2 2
mW, V, Vi sy,
* 3
(wzn + Vzm)
2 2 2 2
Wposyy Wy sy, Wysyp o Wpsy, + AV sy,
= Y O R Y 3 ,
n n n n“ (1 + 4)
where
sz
A= 2
)

A minimum variance unbiased estimate of the approximate variance of

?T* can be obtained by first pooling the two estimates of S%, s?z ~and

52 , and then replacing S; in Equation (3.6.20) with this pooled esti-

22

mate. Hence

B T A A N U AV])sz
var (y{*) = Py g ey M A 3
n n“ (1 + A)
where
2 2
g (g = sy, + (my - 1)sy,
s n, +m, -2

An unbiased estimate of the proporation of the primary subpopula-

tion elements which possess a particular attribute is given by

pi* = Wy pyy + WylBpy, + (1 - 8)py,l, (3.6.21)
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where P1h (h =1, 2) is the proportion of subsample Ny which possesses a
particular attribute. Pag is similarly defined with respect to m, .

Theorem 3.6.6

Elp*) = Py, (3.6.22)

where P] is the true proportion of the total of all elements, N, in the
primary subpopulation possessing a particular attribute.

Proof: Replace 7]], ?}2, and ?éz in Theorem 3.6.1 by Piye Pig» and
Pyos respectively.

Theorem 3.6.7

Wy NP (- P]) Wy N, Py (1 - Py)

varlef®) & — =R T Y W, - R D)

. W, N, P](] - P]) . (w] + AV])NZ P2(l - P2)

(N] - 1)n2 (N2 - 1)n2(1 + A)3

(3.6.23)
2 2 Ny P - Py)
Proof: Replace S] and S2 in Theorem 3.6.4 by N1 and
1

N, P2(1 - Pz) .

N , respectively, where Ph is the proportion of Nh which
2

possesses a particular attribute, and the result follows.

P
Kk

Theorem 3.6.8 An unbiased estimate of the approximate variance of Py

given by

sk Wiy p (=) Wy ng p, (1 - pyy)
var(p?™) —_—
1 n ny - 1 n(n2 - 1)(1 + A)

]

Wy ngy Pl = pyy) . P12(1 = pyy)

nz(nz - 1) n2(

+

n, = (1 + a)

is
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V., m, p,, (1 = p,,)
+ ; 2 722 223 (3.6.24)
n (m2 - 1)1 + A)
Proof: Replace s2 52 and 52 in Theorem 3.6.5 b
— 11’ "12° 22 T Y
np Py (1= pyy) np g (1= pgy) my poy (1= py)) el
= , — , —— , respectively. Now

1 -1 2 2

Nys Ny, and m, are random variables arising from post-stratification; so

the average value of var(p *) must be determined over all values of n]

Ny» and m, . Now,

Ep?*lnh’ mh[Var(P] )l nhr mh] =

M [”1 Py = pyy) ' ]
n pll|n] n - | 1

R S Ny Pra(l = pyp) n
n(1 + A) plzln2 -1 2

i)

Yy C[ng Prg{l - pyy)
+—E n., = | |n2

N2 plzl 2

W, ny, P11 = pyy)

* 2 Ep n n, - 1 ln2

n2(1+4) Pr2|"2 2

AV, my Pyy (1 = Pyy)

T3 5 & Im =1 [m,y ] -

n2(1 + A) zzl 2 2

E(pll) =P, E<p12) = P,, and E(p,,) = P,.

E ek [Var(p**)‘n » M ]
P11 ™ boohh
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+

But N2 = MZ’ so the final term on the right hand side of the above equa-
o . AV Ny Py (1 - Py)

tion is equivalent to 5 3

n“ (1 + 4) (M2 - 1)

Now,

E ek

E { Var (p**|n_, m ]} =
nn,lmh P Inh, m, TP R g

Wy Ny Pr(h = P) Wy Ny Po(T - Py)

L .22
n(N] - 1) n(l + A)(N2 - 1)
. W, N, P2(1 - Pz) . (w] + AV])NZ PZ(I - P2)
nz(Nz - 1) n(1 + A)3(N2 - 1)

and var(pT*) is unbiased for the approximate variance.
A minimum variance unbiased estimate of the variance of p?* can be
obtained by using si instead of 5%2 and sgz in the above theorem, where

2 Ny a1 = pyp) +my poy(l = pyy)

s =
p n, + m 2

2

3.7 Analytical Comparison of the Precision of

Three Estimates of a Subpopulation Mean

Recall that
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Var(;**) W, S . W,y S5 . w:Z 5] . (w‘ + AV]) .
] n n(l + 4) n2 n2(1>+ A)3
(3.7.1)
where
sz
b= o
2

As Cochran [6] indicates, it can be easily shown that ;?s is almost

. -5 .
as precise as y]t; that is,

Var(;?t) < var(y{?), (3.7.2)
where
-st 1 2 2
Var(y] ) = v ) Wh Sh , ignoring the fpc.

e

The following three theorems establish the relationship between yY'
and the two conventional single-sample estimators, ;?t and 9?5, in terms
of brecision. Note that results are derived in this section on the basis
of compariing pairs of approximate values; that is, only approximate
expressions for Var(?T*) and Var(??s) are available, while for Var(??t)
an exact formula is known. To the order of approximation used, there is
no difficulty'wfth these comparisons so long as the sample sizes are
large.

Theorem 3.7.1 To the order of approximation,

Var(;T*) < Var(?Ts)J ' (3.7.3)

Proof: Let n, and m, both be positive, non-zero random variables.

- - .
Suppose Var(y{ ) > Var(y?s). Then
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2 2 .2 2 2 2, ..
W, s] . W, s2 . w2 s] . w2 sz(nw2 wl + mv2 v]) X
n Wzn + Vzm n2 (Wzn +V m)3
: 2
2 2 2 2
W, S . Wy S5 W, ST W S
+ +
n n 2 2
n n
nzw nZW(nww+mV V,) W
e 2 2V M 2 V.
nWy + mV, (nW. + mv.)3 W,
2 2 -
nW, + W n2 W nZ W (nW, W, + mV, V.)
2 1 2 2V M 2 1 <0
Y, nW, + mV, (r, + mv2)3

Removing a factor of n2 W, and recalling Lemma 3.6.3 and

2
W
‘ . ‘ ]
E () 2 o :
N, n2 wzn wg n2

it follows that

]
E (—) - E
)

Then,

2
n2, m2 n2 n2 + m2

A

0,

which is a contradiction. Hence,

- el ~Ds
Var(y] ) < Var(y?s) .

) - -
Theorem 3.7.2 To the order of approximation, Var(y‘ ) < Var(y?t), if and

only if
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b

_Sj_+,\i‘_<n2w[ (L) - (—-1-——)] (3.7.4)
si Y, 2| nyny Ng» My Ny *m,
(only if): Suppose Var(y] ) < Var(y] ). Then
2 2 .2 22
wl sI W, S5 w2 sI 2 2(nw W, o+ mV, V )
Wn+ vm  h 3
n 2 2 2 (Won + V,m)
2 2
Wi Sp o Wy S,
< +
n n
2 .2 2 2 2 2
Wy S5 , Wy So(nWy W, + mV, V) w2 s . W, S
Won + Vom (Wyn + v m)3 n nZ
W W. (AW, W, + mV, V,) 52
2 My M T W a1
W,n + V_m * 3 n 2 g2
2 2 (Wzn-+V2m) n" S
n? W n2 W,(nW, W, + mV, V,) 52
2 2 \MWy Wy 2 V2 1
" WonF Vom 3 >z (3.7.5)
2 2 (wzn + Vzm) S,
§2 AW, W, 4+ mV. V
Loy, ( 1 2 1 2 1)
2 2\W.n + V. m 3 ’
S2 2 2 (Wzn + Vzm)
Ei < n - n2 W, E ( ] )
52 2 "ny, My, +m,
2
2
¢ W W ,
1 ] ] 2 B
4 =— < pn+—-=-n W, E ( )
sg Y, Y, 2 ny, My, +om,
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2
E—'2-+;-‘— « nzwz[E () - € (o )]
55 ', Ny My Ng» My Ny ¥ My
(if): Suppose
S 2 1 |
——+ = < n° W '[E (=) - E (——-————J]
Sg W2 2 n, n2 Nys My N, + m,

Reverse the order of the steps above, and the fheorem follows. End of
proof.

Note that the»cbndition in Theorem 3.7.2 almost always holdswhen

2 2
(sl)/(Sz) < n.

~dedey -5t
Theorem 3.7.3 If Var(y] ) is larger than Var(y] } (to the order of apprax-

imation), the decrease in precision relative to proportional stratification

is smaller if ;TH is used instead of'??s. (3.7.6)

Proof: Suppose Var(&?t) < Var(??h). Then

2
](1 wh) S

e~

0 < Var(?Tx) - Var(??t) < EL'
2 h

where

2 .

i

is the bias in the variance of an estimate of the mean of the primary
subpopulation obtained with a single stratified sample when the technique

of post-stratification is used. Hence, when Var(Q?t) < Var(?T*), the

difference in the two variances is smaller than the difference between

Var(??t) and Var(??s).v

Finally, the foregoing results may be adapted to estfmate the mean

of the second subpopulation, using the additional information available
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in a sample from the primary subpopulation. The techniques may also be
extended to the situation of three or more overlapping subpopulations,

each having two or more strata.

3.8 Empirical Investigation of the Precision of
-

y Relative to Conventional Single-Sample

Post-Stratification

3.8.1 The Role of Relative Precision

-k

By virtue of Theorem 3.7.1 it is known that Yy is more precise than
- mV -k -
y?s, so long as A = ng >0. If A =0 then Var(y} ) = Var(y?s) (to the

2
-tk

order of approximation). In order to assess how much more precise Y is

than ;?s’ let

Var(;?s)
RP = ——— , (3.8.1.1)
Var(y] ) '
be the relative precision of ;IS to §T*. Henceforth, without loss of
generality, the approximate nature of the expression for Var(§T*), as
noted in section 3.6, will be ignored; and the formula, for simplicity
of computation, will be taken to be exact.

Two numerical studies were undertaken to investigate the performance
of ;T* in terms of relative precision (RP). In the first study small
values of both n and m were used. In the second study substantially
larger values were used. The objectives of these studies were to numeri-
caily explore how much more precisev;?* is than ;?s for a variety of com-
binations of values for n, m, WZ, Vz, to observe the effect of the ratios

m/n and Vz/w2 on relative precision for those same combinations of param-

eter values, and to determine under what general conditions for sampling
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two overlapping subpopulations it Is particularly advantageous, in terms
of gains in precision, to use ;T*.

The numerical value of RP depends on the values assigned to the six
parameters in the expression for Var(?T*) - n, m, wz, V2, S%, and S%.
In order to reduce the number of parameters to be considered simultan-
eously, the values of S% and S% were pre"spécified. RP was subsequently
evaluated by assigning a number of values to n, m, wz, and V2 for fixed
values of S? and S%. Three particular situations describing the possible

relationship between S% and Sg were considered: Case 1 -- S2 = S%; Case

2
2 ..2 2 1.2 o

2 -- S, = 25]; and Case 3 -- S, = 5 S|. For both studies it was deter-
mined to let W, and V, range from .2 to .8 in steps of .2 (i.e.,

.2( .2) .8). Values of RP computed for the second study are given in

Tables 11l through V of Appendix C.

3.8.2 An lInvestigative Study Using Small Sample

Sizes

For this first study n = 2(2)20 and m = 2(2)10. Figures 3 through 5
in Appendix D are examples of families of curves of the variance equa-
tions for ;Tx and 9?5 that can be obtained by varying the parameters n,

-9
m, WZ, and V2 in the expression for Var(y;c). Figure 3 illustrates a

family of curves obtained when S§'= S%. Likewise, Figures 4 and 5 show
the curves obtained when Sg = 25% and Si = %-S?, respectively. Otherwise

the values of the parameters used for illustrative purposes are identi-

cal.
By observing the figures one may conclude immediately that, regard-

less of the values of the other parameters, the variance of Yy is

always driven down when information about the overlap domain available
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in a second sample of size m is included in the estimate. The.reduction
in variance may be substantial when n is small, but when n is large
relative to the size of m, the reduction will be much smaller and usu-
ally inconsequential. Therefore little is gained in terms of precision
by using the two-sample post-stratified estimator instead of the alge-
braically simpler single-sample post-stratified estimator. The remainder
of this section and the next section are devoted to investigating the
size of the reduction in variance that may be achieved for various com-
2 VZ' S%, and Sg

term '"precision of the estimate' will everywhere be taken to mean the

binations of values for the parameters n, m, W . The

reciprocal of the variance of the estimate.

For the case of equal stratum variances; the relative precision of

-ps ~ %k 2 2
y; toy, ranged from 1.0187 to 2.0377. When S2 = ZSI’ the low value was
1.0212 and the high value was 2.7516. For Sg = %-S? the low value was

1.0137 and the high value was 1.5717. In Cases 1 and 2, the low and high

values occurred, respectively, at n = 20, m = 2, Wz = .8, V, = .2 and

n=2,m=10, w2 =V, = .8. For Case 3, the low and high values

occurred at n = 20, m = 2, W, = v, = .2 and n =2, m= 10, W,=V, = _.8.
For all combinations of values for n, m, wz, and V2,
2 _ 1 2 2 _ 2 2,2
RP(52 =5 s]) < RP(52 = s]) < RP(SZ = zs]). (3.8.2.1)

For each of Cases 1, 2, and 3, the effect of varying a single param-
eter, while all others ére fixed, was noted. With n, m, and w2 fixed,

increasing V2 always caused an increase in RP, With n, W,, and Vz'fixed,

2
increasing m also always caused in increase in RP. On the other hand,
for fixed m, wz, and V2, an increase in n always caused RP to decrease..

These three patterns were stable throughout the range of parameter values
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investigated. The effect of the size of wz on the behavior of RP is not

so easily explained. When the other parameters were fixed, an increase
in w2 was observed to sometimes cause an increase in RP, and to some-
times cause a decrease. More often there was an up-and-down fluctuation
as w2 was increased through the range of its assigned values. Fluctua-

tions were often found to occur in the middle of the range, say .4 5_w2

< .6. On the basis of these observations,'V

2 is apparently the more

ot

important of the two overlap parameters affecting the precision of ;;A
relative to ;75. The above trends and patterns were observed to hold
true in each of the three cases of differing stratum variances.

Not only do the values of the four parameters n, m, WZ’ and'V2
individually affect the size of the relative precision of ;]s to 9?*,
but there is an effect on RP due to the interaction among the values of
all the parameters simultaneously. To some degree this intera;tfon dis-
torts the effects of individual parameters. Generally speéking, in each

oo oo
-

of Cases |, 2, and 3, the greated gains in preci;ion of y; over ??S were
obtained for large m, small n, and w2 and V2 both large and of the same
magnitude (with respect to the ranges of parameter values used in this
study). Some more specific findings are available. For Case 1, as long
as m > 2, a 50% increase in precision over ;?5 was almost always obtained
using ;T* if n <5 and v, > 4. In Case 2, if v, = b and m> 6, or if
V. = .6and m> L, or if v, = .8 and m > 2, the gain in precision of
.y]; over 9?5 was as much as 50% or more when n<6. This finding indi-
cates that the effects of increasing/decreasign the values of V2 and m
are, as might be expected, mutually compensating to some degree. Fof

larger n in these same ranges the gain in precision was 25% or more. For

very small n (say, 2 < n < 4) and large values of V2 the increase in
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precision was more than 100%. In Case 3, if n > 18 and V, < .2, the

gain in precision using ;T“ was always less than 15%. For smaller n,

and m larger than 4-6, the gain was at least 15% and sometimes as large
as 30%. Gains of 15% were frequent when V2 and m were both large, but

became less frequent as n increased. Gains of 30% were never obtained

when n 3_18.

Four extreme overlap situations were investigated for each of four

cases of differential stratum variances: (a) w2 = V2 = .8 (N=M, with

substantial overlap); (b) w2 = .2, V2 = .8 (N >> M, overlap domain

large relative to N but small relative to M); (c) W, = 8. V, = .2
(N << M, overlap domain small relative to N but large relative to M);

and (d) wz =V, = .2 (N =M, small overlap).

In Case 1 (Sg = S?) if m> 2, RP always obtained the largest values
at all respective increasing values of n when wz = V2 = .8. In other
-%%

words, the largest gaihs in the precision of vy over ;ps Were obtained
when the two subpopulations were the same size and substantially over-
lapped. When the two subpopulations were not the same size, more preci-
sion was gained usingiff"c instead of 9?5 when N >>M; and less precision
was gained when N<<M. In the former situation the overlap domain is
small relative to N and large relative to M, so that (1) the overlap
domain is sampled more heavily with respect to the second populaiion, and
(2) m provides more of the information in the estimator about the overlap
than does n. On the other hand, when N <<M the overlap domain is less
heavily sampled from the second subpopulation so that not much additional
information is obtained over what is already available in the first

sample.
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=%k

In Case 2, if m> 6 the largest gains in precision of y, over 9?5
were again obtained when W, = V, = .8 (N = M, with substantial overlap).
For smaller values of m, the largest gains in precision occurred when

wz = .2, V2 = .8 (N >>M). Since Sg = 255, the overlap domain is the

more variable stratum, and ;?* becomes most precise relative to 9?5 when
maximum information is obtained there. The results just noted indicate
this occurs for larger values of m when the two populations are about the
same size and the overlap is substantial. In this instance the oveflap
domain is sampled at about the same rate with respect to both subpopula-
tions, and the amount of information on the overlap domain available in
both samples is large. For smaller values of m, the findings noted above
indicate that maximum information on the overlap domain is obtained.when..
the composition of m is more heavily weighted towards that strafum (i.e.,

w2 = ,2; V2 = .8).
In Case 3, when n > 2 and m > 6 is the largest gains in the preci-

sion of QTH over that of QTS at all other increasing values of n were

obtained, once again, when W, =V, = .8 (N =M, with substantial over-
lap). Also as before, the second largest gains occurred when w2 = 0.2,
v, = .8 (N »> M). For smaller values of m, the largest and second

largest gains occurred when these two situations were reversed. Now, in

this situation Sg = % S%, and the non-overlap domain is the more variable

stratum. ;T“ becomes more precision relative to ;$s when this is the
more heavily sampled stratum. However, for larger values of m and n the
effect of their sizes along with the effect of ''double' sampling the

overlap domain apparently compensates for having the composition of n

more heavily weighted towards the non-overlap domain. The largest gains
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in precision might ordinarily be expected when N >> M, This does, in
fact, hold true, as indicated, for smaller values of n and m.

All. the foregoing findings. support one general conclusion: unless
the size of the second sample is large (relative to the size éf the pri-
mary sample) or unless the size of the overlap with respect to the second
subpopulation is large (sampling rate from the overlap domain with re-
spect to the second subpopulation is large), not much is gaingd in terms

of precision by using ;T" instead of the simpler estimate ;?S. There
just is not enough additional information about the overlap domain being
added to the estimate. |If the overlap domain happens to be the most

. » 3 -7"* -
variable stratum, there is incentive to use Y regardless, since any

additional information will improve the estimate.

3.8.3 An Investigative Study Using Large Sample

Sizes

For this second study n = 100(100)1,100 and m = 100(100)1,100.
Figures 6 through 8 in Appendix D illustrate families of curves of the
variance equations for QT* and QTS that can be obtained by varying the
parameters n, m, W,, and'V2 in the expression for Var(§?*). As in the
case of Figures 3 through 5, Figures 6 through 8 depict the relationship
between Var(QT*) and Var(??s) for three pbssible situations of differen-

2 2. &2 _ .2 2 _

: ; ) = 2. - ) ’ 1 <2 . -
tial stratum variances: S2 = S], 52 281, and S2 =5 SI (see the de

scription in section 3.8.2).
The ranges of values of the relative precision of ;]s to ;;H
obtained in this study were wider in each of Cases 1 through 3 than in

the first study. Due to the larger values assigned to n and m, there

were both some smaller values and some larger values of RP. For the
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case of equal stratum variances, Sg = S%, the relative precision of ;Is

to ;T* ranged from 1.0171 to 3.6770. When Sg = 25?’ the Tow value was

1.0287 and the high value was 5.3082. For S% = %-S% the low value was

1.0094 and the high value was 2.5234. In each of the three cases the

high value occurred at n = 100, m = 1,100, wz = V2 = ..8 and the low
value occurred at n = 1,100 m = 100, wz = V2 = 2. For each respective
combination of values of n, m, wz, and Y
2 1 .2y 2 _ .2 2 .2
RP(SZ =5 s]) < RP(s2 = s]) < RP(s; = 2s]) (3.8.3.1)

As in Study | the effect of varying a single parameter when all
others were fixed was observed. The general trends noted here are iden-
tical to those found in Study | except that,xfor Cases 1 aﬁd 3, RP in-
creased everywhere as Wz was increased. The up-and-down fluctuation in
the values of RP noted in Study | were again observed in Case 2 when W2
was increased and n and m were approximately the same size. This infor-
mation indicates that as long as the overlap domain is at most as vari-
able as the non-overlap domain, any increase in the amount of oveflap
yields increased precision of ;T* relative to ;]s_

in Case 3, when wi is small, increased precision arises from the
more variable stratum being sampled more heavily with respect to the pri-

~-%%

mary sample. As w2 is increased the precision of y; 9goes up relative to
;?S because more information is available on the overlap domain (the com-
position of n is more heavily weighted towards that stratum). Outside
the fact that one stratum is being ''double'' sampled, the usual effect of

increasing the sample size is playing a role in lowering the variance,

up to a point.
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Also in Case 2, the more variable stratum is being sampled so heav-
ily (simply due to the large sample sizes) that increasing the amount of
overlap does not add that much additional information to the estimator.

A peak in improved precision is reached in the .4 to .6 area of the
range of values for w2 when n and m are approximately the same size.

Given the ranges of values assigned to n, m, WZ, and V2 in this
investigation, an empirical examination of the computed values of rela-
tive precision (RP) leads to the following general rules-of-thumb (note
that these rules apply in most cases, but not in all). In Case | (S? =
Sg), as noted in Table lil, the gains in precision of QT* over.§?s ranged
from about 2 percent to about 268 percent. Nowhere did a series of com-
binations of parameter values yield gains in precision which were predom-
inantly less than 10 percent. Gains of precision of less than 10 percent
sometimes did occur, however, when n was greater than about 900; and the
values of m and V2 were both small. The value of wz apparently had
little effect on producing this result. Excluding the cases when W2 =
.2, the increases in the precision of ;T* over 9?5 were predominantly

greater than 25 percent when n was about 800 or less. In this same

range of n values, the increased precision was always about 20 percent

so long as m < —— . Increases of 50 percent or more (in some cases,
IOVZW2
200-300 percent) predominated when n was less than about 600 and V2 was
greater than about .6.
In Case 2‘(S§ = 25%) increases of 15 percent or less in the preci-
-%% -
sion of y, over that of y?s were obtained when m j_léb . For the cases
2

when w2 > .2, gains of approximately 75 percent were observed when m >

n . .
n+ IOW;V; , as long as m=n % 1,000 and the values of V, and W, were

large.
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In Case 3 (Sg = % S%), when the value assigned to n was bigger than

-k -
about 700 and w2 was small, the gains in precision of y, over y?s were

predominantly less than 10 percent. Excluding the case W2 = .2, the
increases were approximately 10 percent or less when m < TTﬁFTT— . For

272
bigger values of m, the increases were 15 percent to 20 percent when wz

= .4, 15 percent to 30 percent when w2 = .6, and 15 percent to 50 per-
cent when w2 = .8. With values of n smaller than about 700, increases
greater than 10 percent predominated. For wz = .4, the gains ranged
from 15 percent to 40 percent; for W2 = .6, the range was 15 percent to
50 percent; and for w2 = .8, there were increases of 15 percent to 70
percent.

The four extreme overlap situations were again investigated for each
of the four cases of differential stratum va}iances. In Cases 1 and 3,

when n > 2, RP always obtained its largest values at all other respective

increasing values of n when W, = V, = .8 (N = M, substantial overlap).

2 2
RP always obtained its smallest values when W, =V, = .2 (N =M, small
overlap). In Case 1, when n < m, the second largest and third largest

values for RP were obtained, respectively, when w2 = .8, V2 = .2 (N >>
M) and when wz = .2, V2 = .8 (N << M); but when n > m the positions of
the sizes of RP values in these two situations were reversed. The same
results were noted in Case 3 when n < 2m and n>2m. In Case 2bthe‘pattern

was not so stable. The largest values were obtained by RP at each respec-

tive increasing value of n either when wz = V2 = .8 (N =M, substantial
overlap) or when Wy = .2, ¥, = .8 (N >> M). Likewise, the smallest
values of RP were obtained either when W2 = V2 = .2 (N =M, small over-
lap) or when w2 = .8, V2 = .2 (N << M). The trends in the computations

were not so consistent as to be generalizable.
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As in Study | all the foregoing findings support the conclusion that
;T* should not be used solely to improve precision unless m >> n and/or
the overlap is large with respect to the second subpopulation. The use
of y;** instead of ;?s is strongly encouraged, however, if these condi-
tions can be met, particularly if the overlap domain is the most variable
stratum. With regard to large sample sizes, in the usual sense there is
a point beyond which increasing the sizes of the samples has little
effect on the precision of the estimates. This notion is evident from

the remarks above.

In this study a relationship between the ratio m/n and the ratio
S%/S] for various combinations of Wz‘and V2 was observed that apparently
does not exist for the ranges of values assigned to the parameters in

|

Study |. In Tables Ill through V of Appendix C, note that, regardless
of the actual values of n and m, RP remains approximately constant for
each combination of values of W, and V, (apart from rounding), as long

as the ratio n/m remains constant. Apparently the variances associated

with values of n and m less than 20 are not sufficiently stabilized to

yield such a result.

3.9 Empirical Investigation of the Precision of
~J%

y Relative to Conventional Single-Sample

Proportional Stratification

3.9.1 Cases When 9T* is More Precise Than ;?ﬁ

It is already known that

Var(QT*) < Var(??s).

In addition, Theorem 3.7.3 demonstrates that, under certain condi-

tions,



Var(?T“) < Var(??t).

When those conditions are met,

Var(??x) < Var(??t) < Var(??s). (3.9.1.1)

Rather than evaluating the numerically unwieldly condition on Theo-
rem 3.7.3,‘an empirical rule-of-thumb is available which virtually
assures the relationship in Equation (3.9.1.1). In numerous computa-
tions of the quantities Var(&T*), Var(??t), and Var(??s) performed for
this research effort, each with a different combination of parameter
values, the relation in Equation (3.9.1.1) never failed to hold as long
as n and m were both larger than about 20 and wz and V2 were bofh greater
than about .1. These constraints are easily manageable in the context
of overlapping subpopulations in the federal welfare system. Values of
tHe parameters n, m, W2, and V2 obtained in such applications rarely
fall outside these limits. Some care must be exercised, however, if it

is known that S% and Sg are extremely disparate (S2 > 52)

1 27

3.9.2 Using Var(??t) as a Basis of Comparison

An empirical study was conducted to investigate the performance of
-

Y] relative to ;?t. For this study the same set of parameter values
was used as for previous simulations: n = 100(100)1,100; m =

100(100)1,100; W, = .2( .2) .8; and v, = .2( .2) .8. The relative

- -st =k .
precision of Y to Yy » given by

o var (77°)
RP = = _ (3.9.2.])
Var(y] )
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was computed for every combination of values of the parameters, and for
the three cases of differential stratum variances described in section

3.8.1. For the case of equal stratum variances, Sg = S%, RP' ranged from

1.0161 to 3.6L406. When S% = 25?, the low value was 1.0273 and the high

value was 5.2730. For Sg = %-S%, the low was 1.0088 and the high value
was 2.4861. In each of these cases, as in Study |l (section 3.8.3), the
high value occurred when n = 100, m = 1,100, wz = V2 = .8, and the low
value occurred when n = 1,100, m = 100, wz = V2 = ,2.

Tables |1l through V of Appendix C display some of the vaiues of

RP (apart from rounding) computed in Study Il. The tables were arranged
so as to depict the relationship between the ratios m/n and S%/S% noted
at the end of section 3.8.3. Tables VI through VIl of Appendix C corre-
spondingly display some of the values of RP' (apart from rounding) com-
puted in this study. Note that the entires in corresponding tables are
nearly identical, excepﬁ for the case when m > 3n and Sg < S?. As in
Study Il, regardless of the actual sizes of n and m, RP' remains approx-
imately constant for each combination of values of w2 and V2 (aparf from
rounding), as long as the ratio m/n remains constant.

Though for every b4-tuple (n, m, W, s VZ) of assigned values RP' is
slightly less than RP since Var(§?t) < Var(??s) by an amount equal to
the bias in single-sample poét-stratification, it is significant to
note that RP = RP', within rounding. Observing all the values of RP'
verifies that every trend and relationship occurring among the values of
RP in Study !l also occurs here. This is,'perhaps, to be anticipated

given the result in Theorem 3.7.1.
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3.9.3 Conclusions About Using Var(§?il

In the context of overlapping subpopulations in the federal welfare
system it is desired to reduce the primary sample size_by taking advan-
tage of the overlap and still maintain at least as much precision as
available when only the information in a single sample is used. The
theoreticallybcorrect target precision level is that associated with con-
ventional single-sample post-stratification. However, the analysis of
the preceding section indicates that the more easily computed precision
of conventional proportional stratification may be used without appreci-
able variation in the resulting sample sizes.

With regard to the true variance of ;T*, it is noteworthy that, in
most cases simulating applications in the context of this research prob-
lem, not only is Var(;T*) < Var(}?s), but also Var(?T*) < Var(??t).
Though it seems a statistical fluke that a post-stratification-type‘
estimator can be more precise than a porportional stratification-type
estimator, the increased precision can predominantly be attributed to
the addiitonal units making up the total combined sample size from théh

Y‘ is estimated (n] +n, + mz). Increasing the total sample size by

virtue of sampling the overlap domain twice compensates for the bias in
the variance of the stratified sampling estimator which is introduced

through the technique of post-stratification. The expression given for
=%k

. . . =%k -st
Var(y] ) remains valid, and the demonstration that Var(yl ) < Var(yl )

only suffices to illustrate how much precision may be improved by using
-k '

Y| instead of the competitor single-sample estimators.
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3.10 Summary of Recommendations for Choosing an

Estimator on the Basis of Precision

. =%k, .
In the context of two overlapping surveys, y]t is an estimate of

the mean of the primary subpopulation obtained by combining information

oot
-

in samples of size n and m selected from the two subpopulations. Yy is
always more precise than ;75, the estimate of the mean obtained by post-
stratifying the single sample of size n. The difference in the prgcisioh
of ;T* and the precision of ;15 is greateSt for any combination of strat-
um variances when m is large relative to the size of n, and w2 and Vz/are
both large and about the same size. Even larger gains in precision are
to be obtained using §T* if Sg > S%. Therefore, if (1) the two subpopu-
lations are about the same size and are substantially overlapped, and

(2) m > n, then 9T“ should be used to estimate the primary subpopulation
mean. Otherwise ;?S is about as precise as ;T*, and its use is recom-
mended if the additional administrative costs of operating in the over-
lapping surveys mode are substantial (though this is not likely when.
using the basic strategy described here). These recommendations apply

for small absolute values of n and m as well as for large values, though

the findings reported here are likely to be more prounounced when n and

m are both relatively large (say, 3_100). In addition, for most choices
- -
of n, m, wz, VZ’ S%, and Sg, y;“ is also more precise than y?t, the

estimate of the mean obtained by proportional allocation of the single

sample of size n among the strata of the primary subpopulation.



CHAPTER 1V
ESTIMATING TOTAL OVERLAP
4.1 Introduction

When the total amount of overlap between two or more subpopulations
is actually unknown (as is the case among the constituencies of the
sevéral federal income/nutritional support programs) a reliable estimate
of the size of the overlap must be obtained before the subpopulation
parameters can be estimated with precision. The values of the estimates
of the subpopulation parameters and the values of the estimates of their
precision will vary depending on the choice of estimator for total over-
lap. This chapter is devoted to presenting several of the available data
collection procedures which lead to estimates of total overlap among sub-

populations, and to discussing some of the properties and the applicabil-

ity of the resulting estimates.

4L.,2 Methods Relying on Complete Frames

As previously noted, the agencies in the federal welfare system have
historically relied on a screening or cross-matching mechanism to deter-

mine the total overlap among their constituencies. For two or more over-

lapping subpopulations the general procedure was to obtain or prepare a
sampling frame representing each subpopulation, and to cross-match the

lists on the basis of some common identification. The number of matches

is the total overlap.

61
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Though this census method, on the surface, appears to be the moét
accurate procedure for determining total overlap, there are some disad-
vantages and pitfalls. Non-matches, mismatches, or multiple matches may
occur if (1) entries appearing in both frames do not carry the same
unique identification, (2) entries appear more than once within a list,
or (3) entries appearing in both lists do not represent the same unit
(household, family, etc.). It is no secret that all three of these dis-
advantages are prevalent when dealing with large numbers of individuals
and families receiving benefits from multiple federal assistance programs.
In addition, wheﬁ the sampling frames are large, as they are for these
programs, any kind of matching or screening process is expensive and
time-consuming at Eest, even when the process is automated. The costs
of manual searches are, in fact, prohibitive. Since the frame construc-
tion process itself is an enormous task, it can always be argued that
discrepancies will arise, leading to an inaccurate count for total over-
lap.

A large body of literature in the field of record linkage deals with
the issues encountered in combining and/or crossmatching large lists.
Kestenbaum [20], Belloc and Arellano [1], ‘and Scheuren and Oh [30] have
discussed some interesting developments in areas related to federal assis-
tance programs. Numerous other applications are found in the field of
library science (for example, see Wood, Flanagan, and Kennedy [37], Buck-
land, Hindle, and Walker [2], or Nugent [25]). Radner and Muller [26]
discuss some alternative types of record matching from the standpoint of
costs and benefits. Because of the problems encountered when relying on

the accuracy of complete sampling frames, any procedure which primarily
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relies on this technique will be among the least practical and economi-

cal ways for estimating total overlap.
4.3 Methods Relying on Samples: Matching

There are a number of sampling procedures which, apart from non-
sampling errors, lead to reliable estimates for the total overlap among
two or more subpopulations. Discussion of these techniques will be
limited to the situation of two overlapping subpopulations. In this
section techniques are described which rely on cross-matching of samples.

Goodman [14] first described a procedure for estimating the number
of names common to two lists by counting the number of duplicate units
in samples from those lists. The development of his technique is de-
scribed below.

Using the notation of Deming‘and Glasser [9], suppose there are
two long lists of names, the first given by Ay @9, +-:, of size N

N

and the second given by bl’ b2, ceay bM of size M. Let N2 be the number

of names common to both lists. Assume no name appears more than once

per list. Let

N N

= -—2- nd = .—g-
Pa N @ Py Mo

If the two lists could be cross-matched, then for

1 if entry i in the first list is identical to
entry j in the second list (i =1, ..., N;
a. b = _j:]y ree M)’

0 otherwise

(4.3.1)

the number of names common to both lists is given by
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M
E a, b, = M,. (4.3.2)

Let Xps Xos wees X be a simple random sample of size n selected without
replacement from list 1, and let Yo Yor +ees Yo be a simple random sam-
ple of size m similarly selected from list 2. Let the samples be com-

pletely cross-matched. Then when

] if unit i in the first sample is identical
to unit j in the the second sample (i = 1,
X,y = e, Ny J =1, (oo, m)

0 otherwise

(4.3.3)
“he number of names common to both samples is given by
n m .
d = 1 1 %y (4.3.4)
=1 j=1 J
The probability distribution of d is given by
N
(dz) No Ny - d\ M- N\ [N - d
m/\n

The following two lemmas establish that (NM/nm)d is an unbiased estimate
of N2’ the true number of names common to both lists, and lead to an
expression for the variance of d.

nmN

2
NM °

Lemma 4.3.1 E4(d) =

Proof: Using Equations (4.3.1) through (4.3.4), and the indepen-

dence of the xi's and yj's,



n o m
Ed(d) = EX,Y .Z _z X, yJ]
i=1 j=1
e
= —a, — b,
iz g NP M
Am g g
= = a. b,
N2y =
= om
NMNZ
Lemma 4.3.2
2y _ nm n(n = Dm(m = 1) 2 _
Egld™) = g N+ miv=Twm =Ty (N2 - Np)

Proof: Using Equations (4.3.1) through (4.3.4), Lemma 4.3.1, and

the independence of the xi's and y.'s,

2 C n m 2
33 0y
= E (x, y.)
OATHIR RS
n n m m
A N R R PRy
P21 il j=1 ji=]
[ R A
2 _
But (x »yj) =X So,
) n m
flT = gy ;Zu jle' ’J



By virtue of Lemmas 4.3.1 and

Var (d)
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nm nm n-1 m-1
=N+ T ] ) —— a,b, 1t 5, b,
NM 2 2] j=1 i'=l =] NM 71 JN -I.M T =it "
T RUBEPL
N M N M
nm n(n=-1"m(m-1)
- N - ~ D) ) Y a.b,a. b,
NM NIN=-T)M(M-T) i1 g=1 iim] jim [ R
AT #EG
nm n(n - Vm(m - 1) 2
w N2t N =Ty (Vg TN

4.3.2, the variance of d is given by

2
(h - Dmlm - 1) .2 nmN,
R CER TR SR fu

(n - 1)(m - 1) NNy
Ny [‘ M e s SCPR P ‘ﬁﬁ“] '

(4.3.6)

Based on the foregoing results, several interesting and useful estimators

can be obtained.

The following theorem demonstrates how P> Py and N2

may be estimated without bias. In the subsequent theorem an expression

for the variance of the estimate of N2 is given.

Theorem 4.3.1 Unbiased estimators of Pas Ppo and d are given by:
- Md
(a) Py ® on
= Nd
(b) pb = nm
S _ NM
(C) N2 = B-n-; d
. k Ni
(d) For more than two lists, N2 =d I = where k is the number

of lists.

i=l i
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Theorem 4.3.2 The variance of N, is given by:

Var(ﬁz) = NZ{%[E - } E — } (N2 -1) + l] - Nz}
(4.3.7)
Proof: Var(ﬂz) = Var (2%-d> = E;—E; Var(d).
Then, by combining the results in Lemma 4.3.1 and Lemma 4.3.2,
var (R,) = Nz{%%[%-}-—}—%—:—-%- (N, = 1) + 1] - Nz}.

Goodman restricted his work to the situation where no entry appears more
than once per list, and every common entry can be identified without
error. He hastened to point out that the estimators obtained sometimes

yield unreasonable results. In fact, it is easily shown that unless

Tl (4.3.8)

ﬁz will always exceed either N or M, or both. For this reason use of
this approach is suspect.

A number of people have extended the work of Goodman. Deming and
Glasser [9 ] developed an estimator for the situation where an entry may
appear more than once within a list. |In some reiated work, Hayashi [16]
invented a scﬁeme for optimum allocation of a fixed sample size among k
lists having common entries in order to minimize the variance of the
estimate of the total of N + M. Frank [12] provided a simple version of
Hayishi's work and showed how to obtain his results in general. About
the time that Frank's paper appeared Fuller and Burmeister [13] re-

derived Goodman's original estimator, apparently without knowledge of
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the earlier work. They provided the alternate expression for the vari-

ance of ﬂz, given in Equation (4.3.9) below.

var(R.) = N ~-n Nl N2 + M ~m Ml M2
2 N - n M -1 m
N-n M-m NM R )
S e WL VR L v Y
(4.3.9)
<N-anN2+M- MIM2+N-n M-m NM
N -1 n M= m N-1T M~-1 nm 2
N, N, M, M
« NpNg My M
P o+ p +mN2 (“.3.]0)

in addition to this result,Fuller and Burmeister suggested an alternative
approach based on the principle of maximum likelihood.

As an alternative way to collect the data the size of total overlap,
it has been suggested that all the lists be concatenated, or randomized
in some way, and that a single sample be selected from the combined list.
The number of duplicate entries in the sample would be used to extrapo-
late to a Qalue for total_overlap. This procedure presumes physical
access to both lists and that they can be economically combined in some
way. Des Raj [27] considered this situation for the case of two lists.

A synopsis of his development fojlows.

Let two long lists of sizes N and M, respectively, be merged into
one consisting of R names. A simple random sample of r names is selected
without replacement, and it is determined to which of the original lists
each sample unit belongs (listing of sample cross-matched with both

frames). Let N2 be the number of names common to both lists and let d
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be the number of names in the sample which belong to both lists. Using

the notation of Des Raj [27], if

1 if sample unit i occurs in both original lists
(i=l,2,...,R-N2)
Si =
0 otherwise
then
R-—N2
d = ] 5.
i=1
(r> r
. ? 2 W) .
Now P(6i =1) = TRC = E(Bi) = E(Gi), and E(6i6j) = Jme | # j. Hence,
(2) (1)
ﬂR - R(R - 1) d is unbiased for N.,, and
2 r(r - 1) 2

war @) = 28w, [1e o -0 GBS ]

(4.3.11)

Des Raj showed this variance to always be greater than the variance
of the original estimator devised by Goodman. Hence, this alternative
data collection approach (combining lists before sampling) does not lead

to an optimum estimate of total overlap within the class of all possible

estimates.

L.L Methods Relying on Samples: No Matching

From the standpoint of obtaining estimators of the total overlap of
participation in the various federal assistance programs, it is highly
desirable not to have to rely on cross-matching of any lists, including

lists of sample elements. Pertinent information on participation in the
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several programs often is not physically housed in the same location, is
not the same format, or is not available at the same time. Sampling
methods which do not rely on cross-matching are the most practical in

this situation. This section describes some procedures which are avail-
able for estimating total overlap knowing only the numbers of ''overlapping
units' obtained in samples selected from multiple overlapping subpopula-
tions. Each method described leads to a post-stratification-type esti-
mator of total overlap.

Consider the case of two overlapping subpopulations of size N and M,
respectively. Let N2 be the number of units in the first subpopulation
which also belong to the second subpopulation. M2 is similarly defined.
Now, N2 = MZ’ N] + N2 = N, and M] + M2 = M, where N] and M] are the num-
bers of units in the non-overlapping portions of the two subpopulations,
respectively. Take a simple random sample of size n from the first sub-

. population. By some mechanism determine the number of elements, Nys in
the sample of size n which also belong to the second subpopulation.
Similarly determine M, Assume neither of Ny, M, is zero, and that one
may not know prior to sampling which units belong to both subpopulations.
5 Let n, ~ s;[nwz, nwz(l - Wz)], m, ~ Bi[sz, mV2(l - VZ)]’ where W,
= TT-and V2 = 5 and let n, and m, be independent (alternatively, Ny and
m, may be regarded as hypergeémetric random variables, ignoring the cor-

rection factor for sampling without replacement). Then a simple estimate

of the total overlap between the two subpopulations is given either by

Nn Mm
~ M .M ,
N2 = — or M2 = —. (4.4.1)

Both estimators are unbiased, and their variances are established in the

following theorem.
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N, N

) M

1 M

m

Theorem 4.4,1 Var(&z) - and Var(gz) -

Proof: Let N = Nl + N2. Then

R an N2
Var(Nz) = Var —=) = ——-Var(nz)

= e ————

The proof is similar for Var(ﬁz).
Since there are two different, independent estimators of the same
quantity, it is reasonable to combine them in some way in order to

improve the overall precision of estimation. A simple linear combination

is given by

é = p—+q—, (4.4.2)

where for any p, p + g = 1. Like the estimates in Equation (4.4.1),

Né is unbiased for N.,.

2
Theorem L. 4,2 Né is unbiased for NZ’ and
A p2 N2 N] q2 N2 M]
Var(N,) = - = + = , (4.4.3)

where p + g = 1 for any p.

Proof: Recall that N2 = MZ' Then, for any p, 0 < p < 1, the inde-

pendence of n, and my along with Theorem 4.4.1 gives the result immedi-
diately.
Cochran [5] has shown that the optimum values of p and g are given

by:
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nM mN
Ry I B e (h-4.4)

Fuller and Burmeister [13] note that, as in the case of Goodman's esti-
mator, if p and q are any fixed constants other than the optimum values,
some values of ﬁz' may be unreasonable. In Theorem 4.4.3, an expression

for Var(ﬁz‘) is derived using the optimum values of p and q given in

Equation (4.4.3).

= . NH =1 -
Theorem 4.4.3 Let p = T r— and g=1-p
Then
. nMZ N, N, + mN2 M, M
2 1 2 1
Var t(NZ') = 5
P (nM + mN)

Proof: Let NZ' be given as in Equation (4.4.2), where p and q are

defined as in Equation (4.4.3). Then

2 2
2 N 2 M
T Var(nz) + q —E-Var(mz)

n m

2 N M, 2 M, M

(nM + mN)2 n (nM + mN)? m

2 2
nM N’2 N] + mN Mz M]

(nM + mN) 2

Williams [36] considered a maximum likelihood estimator of NZ' Let

the likelihood function in the case of the two overlapping subpopulations

described above be given by
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L(n], Nys My, mlez)

t
TN
33
N
N
=
N
N
=
N
3 3
N
S
<<
N
N
<

]
(e}
—
=
]
=z

N
~
—
=
i
=z

(4.4.5)
where ¢ is a constant. To maximize the likelihood function, take its

partial derivative with respect to N, and equate to zero.

2

aL(n], Nys My, m2|N2)

W - Ng(nm) - Nz[(n+m)(NfM)
-0 N - M] M] + NM(n2 +‘m2) 0
(4.4.6)

Under the regularity conditions given in Mood, Graybill, and Boes

[22], the maximum likelihood estimator is asymptotically minimum variance

)
A

unbiased. The maximum likelihood estimate of N2, N;, is the positive
real root of the above quadratic equation. Using the quadratic formula,

this root may be obtained from

2 +mI [+ m)(N+M) -n N- m, Ml

1

+ \/[(n + M)(N + M) - ng N - m, M]2 - 4NM(n + m)(n2 + mz)

g
w

The algebraic expression for ﬂ; is difficult to evaluate and ﬁz is not

unbiased. Appealing to large sample theory, Cochran [5] shows the vari-

ance of N; to be

)

ORI (A ) (h.4.7)

~ ¢

. (N + M)N] M
Var(N2

and demonstrates that, whenever (M-N)(nM-mN) > 0O, Var(ﬁ;n) < Var(ﬁ;).
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The two variances are equal when N = M or when (n/N) = (m/M).

kS

Hence N2 does not in general achieve minimum variance. See the remark

in Mood, Graybill, and Boes [22] relating minimum variance unbiased esti-
mators and maximum likelihood estimators.

A modified minimum Chi-square estimator of N2’ as presented by King

[21], is given as

2, omt
N, = m (4.4.8)
S A ST N O S o
W (”1 "2)' F(ml mz)

ﬂz is likewise not unbiased. Cochran [5] presents an approximation to

Var(Nz), but notes that the expression does not lend itself to analytical

comparison.
4.5 A Combined Estimator Relying on Samples

Fuller and Burmeister [13] suggested as an estimator for total over-
lap, a linear combination of the two estimators given in Equation (4.4.1),
developed without cross-matching of samples, and their estimator, which
does employ cross-matching (see section 4.3). For two overlapping sub-
populations of size N and M, respectively, let independent simple random
samples of size n and m be selected, as in section 3.3. Let n2 be the
number of sample units in the sahp]e of size n which also belong to the
second subpopulation. Similarly define my . Assume both n, and m, are
non-zero. In addition, let the two samples be completely cross-matched,
and let d be the number of matches (distinct units common to both sam-

ples), where d = 0, 1, 2, ..., min (n,m). Assume entries appear in the

sample lists at most once. Then an estimate of the total overlap between
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the two subpopulations is given by

"

oF N
Nz n

p

S|i=
3|

d, (4.5.1)

where p + g+ r = 1.
ﬁﬁ is a linear combination of three unbiased, but not mutually

independent, estimates. This combined estimator is unbiased for N2, and

its variance is given by

N, N M; M N, N M, M
~ - 2 1 2 21 72 2 172 12 NM
N. N M, M
+ 2pr 2 + 2qr Im 2 R (4.5.2)

where the approximation to Var(ﬁz) in Equation (4.3.10) has been taken,
and the correction factors for Bernoulli sampling without replacement
have been ignored. Writing r =1 - p - g, the optimum values of p, gq,
and r are found by d}fferentiating Var(ﬁg) with respect to p and g:

nM](mN] + NM)

p = nmN.IM] + mNMN,I + nNMM] ’ (’4.5.38)

le(nM] + NM)

T T NN M F mNEN, + nNee and (4.5.3b)
-nmN]M]
F T ENM. + mNMN. + nNMM. (4.5.3c)

1 ] 1

The expression for Var(ﬂg) obtained by substituting the values of P, q,

and r into Equation (4.5.2) is

4 N]M]NMN2
Var o (N3) = AN M F NN+ nNee (4.5.4)
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L.6 Choosing Among the Available

Estimators of Total Overlap

Because of the large number of available data collection procedures
which lead to estimates of total overlap, the task of choosing among
them is sometimes overwhelming. There are undoubtedly other methods
which are not presented here. The best approach for selecting a proce-
dure is to first determine what resources are available--that is, do
complete sampling frames exist, are they up-to-date, does their form
lend itself to merger or cross-matching, can sampling processes be auto-
mated, etc. Secondly, it must be determined what technique for obtaining
the data best fits the situation at hand from a practical standpoint--
that is, are some methods more quickly and easily executed, do barriers
exist which cannot be easily overcome (such as physical location of files
or lack of funds for automation), etc. Thirdly, the statistical proper-
ties of the estimators of total overlap which arise out of each data
collection procedure must be evaluated. Some data collection procedures
lead to more precise estimators than others, and it must be determined
whether the practicality of a particular procedure is more important or
whether the precision of the estimate of total overlap is more important.
Ideally a technique will be available that is practical and, at the same
time, gives rise to a precise estimator.

0f all the estimators of total overlap presented in this chapter,
the one originally devised by Goodman [14] is the best one, from a purely
statistical viewpoint, in terms of largest precision. However, it arises
out of the technique of cross-matching samples: a frequently impractical

or infeasible means of collecting the data, particularly in the context
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of the overlapping constituencies of federal welfare programs (cross-
matching of samples presumes that samples in the same format are selected
from all the lists, and that all the samples are physically accessible
at the same time and location).

The second best estimator of those presented in this chapter, is
the one devised by Cochran [5]. This estimator combines all the infor-
métion available in independent samples from the available lists and does
not rely on cross-matching. Cochran's estimator fits most easily into
the logistics of integrating sample surveys in most instances, and it is
almost as precise as the estimator devised by Goodman. For the reasons,
it is specifically recommended for use in the context of integrating the

surveys of the overlapping constituencies of federal welfare programs.



CHAPTER V

SOME THEORY FOR AN OVERLAPPING SAMPLE SURVEY

DESIGN WHEN THE TOTAL OVERLAP 1S UNKNOWN
5.1 Introduction

In Chapter IV several estimators for total overlap were presented
along with a discussion of their properties and usefulness in applica-
tions. Not all of the resulting estimates are convenient choices when
estimating the parameters of a single subpopﬁlation of interest. Because
of the complexity of the algebraic expressions for these parameter esti-
mates and their variances, it is desirable to choose an estimator for
total overlap which does not inordinately increase that complexity, and
at the same time, one which is reliable.

It is fmportant to remember that, because N] + N2 = N, estimating
N2 automatically determines one estimate for N]; that is, ﬂ] =N - ﬁé.
However, there are other estimators of N] that are not necessarily 1inked
to estimates of N2 by the above relationship. In most cases ﬁ] =N - ﬂz
will be used in order to preserve the unbiasedness of estimates of the
subpopulation parameters, when it exists.

For applications to overlapping subpopulations in the federal wel-
fare system it is desirable to choose estimators of total overlap such
that E(ﬁ]‘+ &2) = N, In addition, since cross-matching of lisfs is
sometimes administratively infeasible, it is desirable to have alterna-

tive estimators which do not depend on matching.

78
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The remainder of this chapter is devoted to estimating the param-
eters of one of two overlapping subpopulations when the total overlap
is unknown (and must, itself, be estimated). Parameter estimates
based on three different estimates of N2 are presented, along with

expressions for their variances. An analytical comparison of the pre-

cision of the resulting estimates is also provided.

5.2 Estimating a Subpopulation Mean and

~

Proportion, Subject to w] + QZ =1

Consider the basic overlapping sample surveys désign given in sec-
tion 3.2. Assume the total size of the overlap domain of the two sub-
pcpulations is unknown; or equivalently, assume the stratum weights
w‘ = :}-and W2 = 7%—(w] + w2 = 1) of the primary subpopulation are un-

known. Let ﬁz be any unbiased estimator of the total overlap, N2' Then

unbiased estimators of w] and w2 are given by

~ _ ] ~ _ -—2-

W] = -‘N— and W2 = N (5.2.])
where

N, = N-N, and W, +W, = 1.

] 2 1 2

An estimate of the mean of the primary subpopulation for the character-
istic y is given by
~desk

where 9Ih’ §2h (h =1, 2) are defined as in section 3.6, and g may or

may not be constant. That QT' is unbiased for 7] is established in the

following theorem.
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Theorem 5.2.1 y] is unbiased for 7], where 7] is the mean of the pri-

mary subpopulation for the characteristic vy.

A

Proof: Let Y;7 be given as in Equation (5.2.2), where w] = —%

Qz = T%" and w] + w2 = |. Expanding the expression,
A%k

Yioo= Wyyppr By + (1-B)yyy = Wiy + W (T-8)yy, .

(5.2.3)
Then

B (7)) = EglE, [E“Tflwz y,[W,) 1|8}

AL ‘*|w2,e( U

i}

BQ[wvl+s?]2+(1-e)V/]2—wsY

- W, (1 -s)?lz]

Yip t v

EBEQ W, 2712)

Consider the following two lemmas.

Lemma 5.2.1 For a fixed value of B, and ignoring the fpc's,
2 2 2
~dek 2 ~9 S ~
Var”'nc|"(y; W) W =L 4 Wa s2 <-§-— + U . B) ),
2 ] 2 2
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where S% and S% are defined as in section 3.6.

Proof: Let y?x be given as in Equation (5.2.2), where

A

R w] =1 - w2 , and B is a constant.

Noting the duality of w] and wz, and the independence of Y110 Yi20 Yoo

(see section 3.6),

Adede A

~dedle ” = A2 v "2 2 v
’Vary] th(yl |w2) W) Var(y]]) + Wy B Var(ylz)

2 2 2
ny S N S a S
= wfﬁl+w§ 32—3+w2(1-5)2r—n—%
1 2 2
2
~p S . 2 RY
LR 53(5—*‘(-‘*—]“18) )
1 2 2

where S% and S% are defined as in section 3.6, ignoring the fpc's.

~kk

Lemma 5.2.2 Ignoring the fpc's, Var(y] lwz) is minimum when B =

Proof: Use the results of Lemma 5.2.1 and apply Theorem 3.6.3.
Employing the two preceding lemmas, Some classical results for post-
stratified sampling, and the properties of conditional expectation and
conditional variance, it is possible to obtain an expression for the
Jo

approximate variance of 9% given a single primary sample of size n and

a single secondary sample of size m.
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. . ~ n
Theorem 5.2.2 Ignoring the fpc's, the variance of y]+ when B = S

and n, and m, are non-zero, Is given by

var(y') = .si E(WS) + ' EVWZ) + (Y2, + ¥2)) var(w,)
Y g TR e m, 2 11T Tyl Yariy g

(5.2.5)

Proof: Let n and m be independent single samples selected, as
described in séction 3.2, from overlapping subpopulations of size N and
M, respectively. Partition n and m into n and No» and m, and m,, re-

~dk

spectively. Assume both n, and m, are non-zero. Let Yy be given as in

n
Equation (5.2.2), and let g = —%—  Then by Lemmas 5.2.1 and 5.2.2,

n2 + m2
2 2
. “" "2 S] ~2 s2
Vargsny (W) = WY ot Wy e (5.2.6)
1 2 2

At At

For the random variables y‘” and wz, the unconditional variance of y]
is given, according to Lemma 3.6.4, as

ATk AT Add A
= ~ desk St ™
Var(y] ) sz[Var ‘w (y] |w )1 +Vvar) z[Ey] lwz(y] IWZ)]’

To evaluate this expression the following quantfties are needed:

2 2
. ‘ ST~ S5 .
[Var (v " w = — E(W]) + —=—— E(W),
2 |w 1 ny 1 ny, +m, 2
(5.2.7)
ok 3 A - ~
Ey:ﬁlwz(y‘ Wa) = MY Y (5.2.8)

and
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LIS (32 =2 ~
Var), [Ey. I (y] |w2)] (Yl] + le) Var(w]). (5.2.9)

Hence, for single independent samples of size n and m (n2 and m, fixed,

2
oo
non-zero), the unconditional variance of y]‘ is given by

2 2
Var(y'®) = El-s(ﬁ ) + >2 EMWZ) + (Y2 + ¥2 ) var(W.)
Y n ] P 2 11 11/ Variwgl.
1 2T M
To evaluate E(Q?), i =1, 2, recall that

Var(w;) = E(wf) - [E(wi)]2 .

End of proof.

The average of Var(yTN) for repeated independent primary and second-
ary samples of size n and m, respectively, must now be obtained. The

following proposition, given by Rao [29] is required, and the expression

A,

for Var(y?d) is established in the subsequent theorem.

Lemma 5.2.3

Let X, Y, and Z be random variables. Then
v (Y) = EX[EZ{VYIZ(YIX)}IX] + EX[VZ{EY|Z(Y]Z)}|X]
+ vx[EZ{EYIZ(le)}Ix]

(see Rao [29], p. 152).
Proof: Using the properties of conditional expectation and condi-
tional variance, expand the results of Lemma 3.6.4 in the following man-

ner:

Uy (V) = Ey [y 01+ VyLEy ¢ (Y]X)]

Ex[inx(le)] + VX[EZ{ (v|z)}|x]

Ey|z
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= EX([EZ{VY‘Z(YIZ)}]X] + [vZ{EYlZ(le)}lx])
+ vX[EZ{EYIZ(le)}!x]
= EX[EZ{VY‘Z(YlZ )| X311 + Ey( Y|z (Y|2)}|x]
vx[EZ{EY|Z(Y|z)}lx]

Theorem 5.2.3 lgnoring the fpc's, the average value of the variance of

;T* over all independent samples of size n and m is given by

~ e I = 2 2 _1_ 2 2 1
Varyl (y] ) Sl E(w]) E(n]) + S2 E(wz) E(FZ-:—EEJ
-2 2 ¢
+ (Y - YIZ) Var(wl). (5.2.10)
~ %k ~ ~
Proof: Let Y, be given as in Equation (5.2.2), where wz, WI, and
R are given as in Theorem 5.2.2. Assume n, # 0, m. #0 (i =1, 2). For

single independent primary and secondary samples of sizes n and m (n2
and m, fixed, non-zero), the conditional variance of ;T* is given in
Theorem 5.2.2. Now suppose repeated independent samples of size n and

m are partitioned, respectively, into " and Nys and m and m, . Assume
none of the n, or m, (i =1, 2) are zero. Then the unconditional vari-

ance of yTN over all values of n, and m, is obtained by applying Lemma

5.2.3.

Var’ (y;n) = EB[EQé{Var“’*‘Q (y?wlwz)ls]

+ E [Var {E"%*l :*IQZ)}IB]

R W, w,

7':7': ~
+ VarB[E {E"“*Iw Yy IWZ)}‘B].
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To evaluate this expression the following quantities are required

~

Var;k ;;(|W , given in Equation (5.2.6),
]

ok TN . . .‘
EWZ{Vary¥"|w (y] IW,)} , given in Equation (5.2.7),

Ey?xlw (v | 2) , given in Equation (5.2.8)

~ (y ‘W )} , given in Equation (5.2.9), and

Vary, {E" ="‘w yl

2
e ~ - ~ -
Ey) Z{E lW (y lwz)} = W, Y+ W, V]
= WYt WYy,
= Y]’
since W2 = ﬁg, and N2 is any unbiased estimate of Nz. Then, since
1
Var(\?]) = 0,
Var x5 (57) E [S$ Er (W) + Sg Ex (W2)]
ar‘,\'/-n y - ——— e ———_———nas———
1 Ney moony w] 1 n, + m, wz 2

+ B [(V2 + ¥2,) var(W)], (i =1, 2)

2 ~
ST E(W]) E (—-—)+s E(w)E
1 ] nyn 2, m,"n,

22, g2 y
+ (Yll + YIZ) Var(w])

(— o
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~ e ' -
It is easy to show that Var(yT‘) is different from Var(y] ) by a
multiple of the variance of wz. Recall the definition for Var(X), where

X is any random variable. . Then, if Var(w]) = E(W%) - [E(Q])]z,

Var(y'T) = sZ[var(W,) + Wl E_ () +
1 1 1 1 n] n]

2 " ~2 1
+ S-[var(w,) + W1 E ()
2 2 2 Nys m2 Ny + m2

<2 =2 - ,
+ (Yll + Yiz) Var(wz),

A~

where wl is any unbiased estimator of W]. Because of the duality of w]

~

and Wy s Var(w]) = Var(wz), and

~ 2 1 2 1
Var (y = [STE (=) + S, E ()
1 1 NNy 2 n], m2 n, + m,
+ ?2 + ¥2 j Var(@ ) + Var(_**) (5.2.11)
11 12 2 4! i
= C Var(@z) + Var(;;")
-k
= Var(yI ) + K,
where
2 1 2 1 -2 o2
Cc = STE (=) +STE () + Y7, + Y
1 N,y 1 Nys My Ny +’m2 11 12
is a constant. - (5.2.12)

"JC

Var(wz) is known, and Var(??') is given in Theorem 3.6.4. Expres-

sions for E, (ELJ and E, ( ) are provided in Equation (3.6.5)

1 M 2> My M

2 T My
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and Lemma 3.6.3, respectively. Substituting these into Equation (5.2.11)

above, an approximate formula for C may be obtained:

L 2T Wy 2T 1 nWy Wy +mVy Yy
C‘{51 CA Y IR A i 3]
. 1 Wl n 2 2 (W,n +.V,_m)

i 2 2
2 =2
+ 72 s Y]Z} | (5.2.13)
) s 3
- Won + W) + [W,n(1 + A)
wf n2 | 2 wg nz(l +a)3 2

, =2 =2
+ w] + AV]] + Y]] + le ,

mV2
where A = —— |,
nw2

An approximate expression for Var(;T*) is obtained by substituting
the approximate expression for C into Equation (5.2.11). One may observe
that Var(;T*) is dependent upon knoW]edge of the true stratum means in
the primary subpopulation. This result is somewhat disconcerting in that
none of the foregoingianalyses would be necessary if these means were, in
fact, known. An estimate of the approximate variance of ;T* based on

estimates of these means can be found in the following manner.

First find an estimate of C by expanding the expression in Equation

(5.2.13).

2 ‘
. nW.W .
¢ = S% wln M 2 22 ] + S% W.n l V.m + L2 3
] w]n 2 2 (W.n + vV, m)
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Now replace S% and S% by s?] and si, respectively, where 5%1 and sﬁ are

defined as in Chapter 3. Then

PO 2 2 - -2
c = [a]sll + azsp + a3sp + (y]] + ylZ)]’ (5.2.14)
where
W
1 2
o = ot ’
] W.n w2 n2
1 1
W, W
a, = = ] —t — j % 7 and
Wyn + Vom (Wzn + Vzm)
mV2 V]
(x =
3 " Y 37
(Wzn + V2m)

~

and ;ll and 912 are unbiased estimates of V]] and 712, respectively. C

[l P 3
WK

is unbiased for C. A biased estimate of the approximate variance of Y,

can be written down by substituting C for C in Equation (5.2.11), as
shown in Equation (5.2.15). An unbiased estimate is difficult to express
algebraically without adding unnecessary complexity to the forgoing anal-

ysis.
var(;T“) = var(?Tﬁ) + C var(wz) = var(?T“) + K. (5.2.15)
An estimate of the true proportion of the primary subpopulation

elements which possess a particular attribute is given by

Al

Yool

A St
iy

Pin and Poh (h =1, 2) are defined as in section 3.6. Py is shown to be
an unbiased estimate of P], where P] is the true subpopulation proportion,

by replacing 911, 9]2’ and 922, in Theorem 5.2.1 by Pi1» Pygo and Pros
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respectively. Expressions for Var(pT7) and var(;?ﬂ) can be obtained by
making the appropriate substitutions for S? (i =1, 2) and s?j (i =1, 2;

j =1, 2) in Theorem 5.2.3 and Equation (5.2.15), respectively. See the

analogous results in Theorems 3.6.7 and 3.6.8.

5.3 Effects of the Choice for N2

A bl
WK

on the Precision of y

In this section algebraic expressions are obtained for the approxi-

mate variance of yY" with three different choices of W,.

5.3.1 Estimating W, with the Primary Sample

Information Alone

wz may be estimated using information obtained in the sample from
n

the prihary subpopulation alone. Let &2 = 7%~N, as given in Equation
(4.4.1), where n, Ny» and N are defined as in section 3.2. Assume n, ~
N
. _ 2 _ a .
B|(nw2, nwzw]), where W, = % W, + w2 =1, N2 is ﬁnblased for NZ'
Hence an unbiased estimate of w2 is given by wé‘) = 7%-, where wé]) ~
W. W
. 172
Bi (W,, — ). Let
L B D S0 ez -\l
yyo= Wy H Wy TRy, (- By, (5.3.1.1)
ny . n, _ -
where N + n, =n.

Applying the results of the foregoing remarks, yT] is seen to be

unbiased for 9], according to Theorem 5.2.1. An expression for the

APONON

w

approximate variance of yT is easily written using Equation (5.2.]1):
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~ :]) -k w]wz

Var(y,") = Var(y,") +

C, (5.3.1.2)
where an approximate expression for C is given in Equation (5.2.13).

5.3.2 Estimating wz,by Combining Information in

Both Samples

w may be estimated by combining the information in both the pri-
n N
mary and secondary samples. Let N(]) ~—E— be an estimate of total

2
overlap obtained using primary sample information alone; and let N(Z)

sz

— be a second, independent estimate of total overlap obtained using

< (2)
2 2 be

Cochran's [5] weighted average of these two estimates, descri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>