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CHAPTER 

INTRODUCTION 

Overview 

At present, certain finite .element codes can be used in conjunction 

with large computers to produce solutions to virtually all static prob-

lems conceivable in structural analysis. In addition, well-behaved prob-

lems such as those involving small elastic deformations can be solved 

relatively inexpensively and accurately. Computational difficulties do 
I 

not arise until the stiffness of the structure has become a function of 

displacement or of displacement history. The former, known as .geometric 

nonlinearity, occurs under large deflections, and the latter, known as 

material nonlinearity, is inherent to some greater or lesser degree in 

a l l def 1 e ct i on s . 

The problem is termed nonlinear once the stiffness of the structure 

has become a function of displacement because there is no longer a linear 

relationship between the applied forces and the resulting structural de-

formation. This additional complexity may require an iterative solution 

procedure where an attempt to reduce some error term to zero at each 

iteration takes place. Therefore, a nonlinear problem is more expensive 

to solve and can be much more so depending upon the degree of nonlinear-

ity, the solution method employed, and the convergence criteria used. 

Furthermore, there is no way to avoid nonlinear problems where ultimate 

or failure analysis is needed because of the host of accompanying 
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nonlinear effects such as buckling, plasticity, creep, fatigue, fracture, 

etc. The reduction in cost of solution thus becomes a prime consider~­

tion. 

There are at least three major areas in which the cost of solution 

of the nonlinear structural equations may be reduced. They are: 

1. The development of more sophisticated hardware. 

2. The· reduction of the cost per iteration by 1 inearizing some 

terms and neglecting others depending on the problem. 

3. Reduction of the number of iterations. 

This study in no way attempts the first course of action. The second two 

were investigated in detail and the findings constitute the major portion 

of this dissertation. 

Approach to the Problem 

The nonlinear structural equations solved in this study were devel­

oped in incremental form by Jones [1] using the principle of virtual work. 

Large strain expressions were used and allowance was made for the inclu-· 

sion of plastic deformation effects. The iterative procedure used to 

solve the structural equations is of the secant stiffness type, sometimes 

referred to as direct iteration. The convergence criteria used to deter­

mine when iteration should stop was in all cases based on displacements 

because only buckling problems were considered in this study. Only sta­

tic problems were investigated, but as implied above, both geometric and 

material nonlinearities were allowed. 

The finite element codes and computer hardware necessary for solu­

tion of the structural equations were used in three different phases. 
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Phase I: Code--MARCSTRUC 

Computers--CDC 6600/6700 and 6400 

Purpose--To determine validity of linear extrapolation. 

Phase II: Code--AGGIE 1 (see Haisler [2]) 

Computer~-IBM 370/168 

Purpose--To determine validity of individual degree of 

freedom (dof) linear extrapolation. 

Phase Ill: Code--TRAINS (see Roderick et al. [3, 4]) 

Computers--CDC 6400, CYBER 74 

Purpose--To determine validity of multiple search 

extrapolation. 

Computer codes and computer hardware were changed due to a change of loca­
l 

tion in which that phase of the research was performed, which in turn 

affected the availability of both hardware and software. 

Organization 

Chapter I I consists of a literature review of the major procedural 

techniques available for the solution of nonlinear structural equations .. 

Also, it contains the development of the structural equations with refer-

ence to appendices where the background theory is presented. 

Chapter II I presents the theory development in this study. It be-

gins with the motivation for the linear extrapolation development and 

continues through discussion of failure conditions for the multiple 

search extrapolation. Reference is made to appropriate appendices for a 

. more detailed explanation of theory. 

Chapter IV briefly treats the modification of the existing computer 

code and is followed by Chapter V where the results of application to 



specific problems are presented. The problems considered were: 

1. Bar-Spring (1 dof) 

2. Ring with Radial Loading (28 dof) 

3. Ring with Pressure Loading (28 dof) 

4. · Ring-Stiffened Cylinder (94 dof). 

4 

Chapter VI completes the report of the research performed with a· 

statement of pertinent findings and conclusions. A section on recommenda­

tions for future research is also presented. 



CHAPTER I I 

BACKGROUND THEORY 

Solution Techniques 

·Nonlinear structural equation solution techniques belong to one of 

two broad categories, either explicit or implicit. An explicit method 

receives its name from the fact that all displacements calculated are 

done so in terms of known values only, with some error term being moni-

tored at every operational step. The consequence of solving highly non-
1 

linear static str~ctural equations explicitly may well be an increasingly 

larger error.as .shown in Figure 1 since iteration is not performed. The 

method of accuracy control is to monitor some error function, stop the 

solution procedure when the error term becomes unacceptably large, cor-

rect for the error, then restart the procedure. This meihod genefally 

results in less accurate answers than does an implicit scheme and is un-

suitable for the extrapolation techniques presented in this study. There-

fore, an implicit type of solution was selected. 

The implicit solution category may be subdivided once more. The re-

suiting divisions are according to stiffness matrix type, either tangent 

or secant, see Cook [5] or Zienkiewicz [6]. 

The most obv1ous advantage of the tangent stiffness approach over 

the secant stiffness method is that the former offers quadratic conver-

gence while the latter offers at best super linear convergence. However, 

5 
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in spite of this a secant stiffness approach was used. A justification 

for this selection through comparison of the methods fol lows. 

Tangent Stiffness (Newton-Raphson) 

There are many references for the treatment of the Newton-Raphson 

development such as Gerald [2] or Beveridge et al. [7]. Graphically, the 

method iterates to solution as shown in Figure 2. 

Utilizing the notation of Figure 2, the general Newton-Raphson alga-

rithm can be written as 

R.} 
I 

=0,1,2, ..• (2.1) 

where 

h .th . . = t e 1 1terat1on; 

{Au} = incremental displacement; 

{AF}= externally applied incremental force; 

{R} =residual force (out of balance loads); and 

[K] = tangent stiffness matrix. 

In the most general case, [Ki+l], {AFi}, and {Ri} are all functions 

of {Au.}. However, upon assuming {AF} to be a constant and biasing it to 
I 

zero, Equation (2. l) becomes 

which is a common form for expressing the Newton-Raphson method. This 

clearly indicates that the incremental difference between two successive-

ly calculated displacements is due to the stiffness matrix and the resi-

dual force. 

As shown by Tauchert [8], according to Castigliano 1 s first theorem 

written in index notation 
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R = 
q 

au 
ax 

q 
(2. 3) 

where 

q = a particular degree of freedom; 

x =generalized displacement; 

u = internal strain energy; and 

R = residual force after above mentioned biasing. 

Inspection of the above development leads to the observation that there 

is an infinitesimal relationship between the generalized residual a~d 

the generalized displacement which can be expressed as 

where 

K qp 

p = an index independent fr6m q; and 

K =the qp component of the tangent stiffness matrix [KT]. gp 

It can be seen from Figure 2 that the stiffness matrices represented are 

tangent to the equilibrium curve. 

A possible difficulty with buckling problems is illustrated in Figure 

3. If the tangent to the force-displacement curve becomes nonpositive, 

the solution procedure fails. This difficulty and similar ones are like-

ly for the problems of concern in this study. 

The quadratic convergence offered by the Newton-Raphson method is 

the most common single reason for its use. However, the stiffness matrix 

may become ill-conditioned at near-buckling loads or nonpositive in snap-

through problems. Since these are the type problems considered in this 

study, effective use of the Newton-Raphson method depends upon overcoming 

difficulties due to the stiffness matrix. 
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Alteration of step size or the introduction of a modified Newton-

Raphson technique (see Reference [5]) cannot alleviate the difficulty. 

Some accepted methods of maneuvering past the difficult region amounted 

to stiffness matrix averaging from two different points in the solution 

history. This is similar to a secant stiffness approach. Therefore, the 

major theme of this study was to find a way to accelerate the convergence 

rate of a suitably stable secant stiffness solution procedure for the 

class of problems that contain geometric and ma.terial nonlinearities in a 

pre-buckling region. 

Secant Stiffness (Direct Iteration) 

As mentioned before, the secant stiffness matrix is an average stiff-
1 

ness matrix between two points in the solution history. A typical solu-

tion history is shown graphically in Figure 4. An average relationship 

between the residual force and the generalized displacement must exist. as 

shown in Equation (2.3). It can be shown that a secant stiffness approach 

yields only linear convergence. 

The major reason for the solution of the direct iteration procedure 

is its stability in regions where the Newton-Raphson method fails, as 

shown in Figure 5. This stability is apparently due to the recalculation 

of the whole incremental displacement at each iteration. 

There are conditions under which the direct iteration method also 

wi 11 fa i 1. In genera 1, these can be overcome by an appropriate se 1 ect ion 

of incremental step size for the problem at hand. The step size selec-

tion should be such as to render a nonpositive definite stiffness matrix 

h i g h 1 y un 1 i ke 1 y • 

The penalty inherent in using a secant stiffness method with its 
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step size restriction is a large number of iterations for a stiffness re­

laxation problem. Therefore, the development of an algorithm which will 

reduce the number of iterations per increment or reduce the cost of the 

iterations is desirable if a secant stiffness solution procedure is to be 

used. 

Objectives 

The secant stiffness solution procedure was selected in lieu of the 

tangent stiffness procedure because of the ability of the former to solve 

buckling problems at and beyond the buckling load. However, modification 

of the secant stiffness approach was necessary under the following guide-

1 ines to make it cost effective: 

1. Reduce the number of iterations by using the residuals and accom­

panying displacements to extrapolate to a zero residual position. 

2. Reduce the cost per iteration by reducing the complexity of the 

calculation of the next incremental displacement. 

3. Preserve the accuracy inherent in the user's choic~ of finite 

element and finite element program. 

4. Preserve the convergence characteristics inherent in the choice 

of finite element. 

Development of Structural Equations 

The structural equations were developed in incremental form using 

the principle of virtual work with the Kirchhoff stress tensor and the 

Lagrangian strain tensor [l, 9). An abbreviated development of the prin­

ciple of virtual work may be found in Appendix A. 

Due to the importance of the structural equations to the application 
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in Chapter V of the theory developed in Chapter~ II, a detailed reproduc-

tion of the development is shown in Appendix B. Briefly, uti I izing the 

principle of virtu~l work, Equation (A.7), and the various terms indicat-

. ed in Figure 6, Equation (A.7) for the current configuration may be re-

written as 

J (T + AGT +AT) 6(Au )dA + J (p P + p AP ) 6(Au )dV s q q q q v 0 q 0 q q 

= I (S + AS ) 6 (AE ) dV v qp qp qp (2. 5) 

where A is increment of change in magnitude, and AG is increment of 

change in direction. Substituting for the strain as shown in Appendix B, 

Equation (2.5) can be written as 

I AS [2
1 (6(Au ) + 6(Au ) (l)) + u 6(Au ) ]dV 

v qp q ,p p ,q m,q m ,p 

+ f AS (Au ) (2 ). 6 (Au ) dV 
v qp m ,q m ,p 

+ J S (Au ) (3) 6 (Au ) dV 
v qp m ,q m ,p 

- f s AGFq 6(4) (Auq)dS 

J. ( P + p AP(S)) 6(Au )dV 
= v Po q o q q 

+ f (F +AF )(6) 6(Au )dS 
. s q q q 

- f s [2
1 (6 (Au ) + 6 <7l (Au ) ) v qp q ,p p ,q 

+ u o (Au ) ] dV 
m,q ·m ,p 

(2. 6) 

Equation (2.6) is the result of the direct application of the prin-

ciple of virtual work by Jones [I], although many of the terms were pre-

viously identified by others as mentioned by Jones and as shoWn below: 
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Term (1)--Small displacement plus initial displacement matrix by 

Marca l [ 10] . 

Term (2)--lnitial stress or geometric stiffness matrix by Martin 

[ 11 ] . 

Term (3)--Apparently unidentified previously. 

Term (4)--lnitial load matrix by Hibbit et al. [lZ] and Oden and 

Keys [13). 

Term (5)--Body load plus increment of body load. 

Term (6)--Surface traction plus increment of surface traction. 

Term (7)--Equi 1 ibrium load correction of Hofmeister et al. [14] 

and Strick! in et al. [15]. 

The point of expressing the principle of virtual work in the form 
I 

17 

of Equation (2.6) was to show that before the complete variational formu-

lation various terms were overlooked, ignored, or unnecessary, depending 

upon the problem being solved. However, it has been shown that without 

using all terms, problems involving buckling or high nonlinearity of mate-

rial characteristics may be solved incorrectly or with gross misrepresen-

tations due to the ill-conditioning of the stiffness matrix. Terms that 

are normally insignificant may have very significant effects in nonlinear 

regions. The possibi 1 ity of reducing cost by removing the ''insignificant'' 

terms must be viewed with great care for nonlinear problems. 

where 

As shown in Appendix B, the final form of Equation (2.6) is 

(2. 7) 

[K] = symmetric part of stiffness matrix and a function of the 
s 

intermediate configuration; 
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{6V} = unknown incremental nodal displacements; 

{P} = body loads; 

{6P} = increment in body loads; 

{T} = surface loads; 

{6T} = increment in magnitude ·Of surface forces; 

{6G T} = increment in di rec:::tion of surface forces and a function 

of the intermediate configuration; 

{ E} = equilibrium correction vector and a function of the inter-

mediate configuration and the assumed incremental displace-

ments of the current configuration; 

[K]A = skew symmetric part of the stiffness matrix and a function 

of the intermediate configuration; and 

{6V t} = assumed incremental nodal displacement. es 

The major difficulty involved in the solution of nonlinear equations 

is that the stiffness matrix is not a constant and may be a function of 

displacement or displacement history, or a number of other items. See 

Appendix C. 

Literature Survey 

Background History 

The reformulation and the factorization of the stiffness matrix is a 

first order contribution to the cost of solution of nonlinear structural 

equations. Consequently, the quadratic convergence of the Newton-Raphson 

method in its various forms is very popular. 

The most frequently used Newton-Raphson method is the modified 

Newton-Raphson approach depicted in Figure ]. In order to reduce the num-

ber of reformulations of the stiffness matrix, the modified Newton-Raphson 
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uses one stiffness matrix until convergence becomes too slow, as shown 

at position ~u 3 . 

An early paper by Thurston [22] showed that the Newton-Raphson meth-

od could be used to find past-buckled solutions along different branches 

and pre-buckled solutions away from the instability region. Recently the 

cost of solution has be~n the subje6t in a number of papers. Mondkar and 

Powell [23] have used the constant alpha technique to update the stiff-

ness matrix inexpensively for the modified Newton-Raphsoh problem. 

Almroth et al. [24] surveyed the possibilities of reducing the cost of 

solution and state that an automatic choice of solutio~ procedures holds 

promise, see Reference [25]. Schmidt [26] stated that an automatic 

choice of step size is most useful while Almroth et al. [27] included an 
I 

automatic selection of global shape functions. Schmidt (28] also propos-

ed a method of extending the convergence domain of the Newton-Raphson 

method so that a larger step size could be used. Many others sought a 

less expensive solution for particular problems [29, 30, 31, 32, 33]. 

Current State-of-the-Art 

The purpose of this study was, in part, to reduce the number of iter-

ations required for solution and not to develop a finite element expres-

sion. The literature search was for methods concerning iteration reduc-

tion. When this research began in May of 1979, there were no published 

articles, books or reports devoted to solution cost reduction cross-

referenced in the major periodical indices with the single exception of 

a residual (out-of-balance-load) reduction technique proposed by Felippa 

[34]. Felippa 1 s method consists of setting up a functional whose magni-

tude is determined by a pseudo-Euclidean norm of the residual, R, and 
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minimizing it. Unfortunat~ly, the norm, defined as 

= .l_ { R} T [W]{ R} 
2 

(2. 8) 

requires the definition of a weighting matrix, [W], such that nonhomogene-

ous terms in {R} can be converted to some common dimension or to a dimen-

sionless value. Thus the user must interact with the program to an unde-

sirable extent. However, Felippa 1 s work is the starting point for this 

investigation. 

Recently, two papers concerning the reduction in cost of the solu-

tion procedure have appeared and two more have been submitted for publi-

cation. Three of these papers, Geradin et al. [35), Matthies et al. 

[36), and Strang [37] have taken similar approaches to that introduced 
I 

by Dennis, Jorge, and More [38] on Quasi-Newton methods. All of these 

recent works attempt to update the stiffness matrix without going through 

the full process of reformulation and factorization. The most popular 

approach is to update the stiffness matrix by a matrix of rank two, 

(2. 9) 

where [I] is the identity matrix, and {v 1} and {w 1} are vectors dependent 

on displacement and residual values. This calculation requires m by n 

operations, where m is the bandwidth and n is the number of degrees of 

freedom. A normal stiffness update requires m by m by n operations. 

This method involves changing the stiffness matrix slightly and then re-

evaluating the accompanying error. A large number of iterations may be 

required to satisfy convergence within a given load step for highly non-

linear problems. 

Crisfeld [39] combined the above approach and an elementary line 

search, except the stiffness matrix is altered by a matrix of rank one. 
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He restricted his work to-accelerating the iterations in a solution his-

tory obtained from a· modified Newton-Raphson approach·. Young P•O] intro-

duced a more sophisticated line s~arch based on minimizing the contribu-

tion of the re~idual· loads to the total energy of the system. This 

method, which is explained in detail in Chapter I I I~ requires only. n 

operations for a scalar extrapolation term and somewhat more for the mul-

tiple search extrapolation technique. 

The two newest papers in the area are by Pappas [41] and Kamat et al. 

[42]. The procedure of the former searches in different directions for a 

correct solution aMd the latter attempts to minimize the energy of the 

structure. One can see from the above that the methods surfacing for re-

ducing cost are beginning to embody common concepts if not ·similar t;heory. 
I 

Clearly, there is a growing recognition by the technical community for 

the need to modify the solution processes for· nonlinear structural equa-

tions so as to reduce cost. 



CHAPTER 111 

DEVELOPMENT OF EXTRAPOLATION TECHNIQUES 

The modifications for this study to the direct interation method are 

based upon minimizing the work done by the residuals (but-of-balance 

loads). The residual work term is an error in the strain energy expres-

sion. Extrapolation methods are used to minimize this source of error 

more rapidly than is possible with a direct iteration solution. 

Linear Scalar Extrapolation 
I 

Development 

A graphical representation of the direct iteration method is present-

ed in Figure'•· The curve represents the calc.ulated resistance of the 

structure. The original stiffness matrix, [K ], is developed using mate-
o . 

rial properties and assuming linearly elastic deformation; consequently, 

as shown in Figure 4, this stiffness matrix is tangent to the curve at 

the origin. Upon application of the incremental load, 8F, the displace-

- -ment 8u with associated residual, R, is calculated. The displacement 
0 0 

~u0 is used to update the stiffness matrix to yield [K1]. This stiffness 

matrix, when factored and subjected to the incremental load, produces the 

new incremental displacement, 8u 1, with its associated residual, R1. 

This process continues until the convergence criteria are satisfied. 

(See Figure 8 for this method in equation form). 

23 
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{Llu } 
0 

= [K (1 
0 

{LlF} 

[Kl] = K(Ll~ ) Iteration 
0 

{R } = {LlF} - L[k 1 ]{o0 } 
0 

. { Llu 1 } = [ K ]-1 { LlF} 
1 

[K2] = K(Ll~ 1 ) Iteration 2 

{Rl} = { LlF} - L [ k2 ]{ cS l } 

{ Llu2} = [ K ]-1 {LlF} 
2 

[K3] = K(li~2 ) Iteration 3 

{R2} = {LlF} - L[k3]{a2} 

{Llu3} =· [K ]-1 {LlF} 
3 

To Convergence 

where 

[ K] = global stiffness matrix; 

[k] = elemental stiffness matrix; 

{Llu} = global displacements; and 

{o} = elemental displacements. 

Figure 8. Direct Iteration 
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The manner of modification of the direct iteration procedure may be 

seen by comparing Figures 4 and 9 and by comparing the equation forms in 

Figures 8 and 10. The method developed to attempt minimization of the 

work done by the residuals is identical to the direct iteration method 

of Figures 4 and 9 up to. and including the calculation of 4u 1 and R1• It 

-is the manner of determination of the new estimated displacement, ~u2 , 

that is a 1 te red. 

The linear extrapolation method is illustrated for a single-degree-

of-freedom in Figure 9. Linear extrapolation using the residuals R , and 
0 

R1 and the distance between them, d, results in an estimated position, 

-
~u2 • However, ~u2 is not the exact solution and a residual, R3, can be 

calculated. The residuals R1 and R2 and the distance between them, d2 , 
. I 

supply the necessary information for a second extrapolation when it is 

needed because of unsatisfied convergence criteria. This procedure is 

continued until some stopping criteria have been met as shown in Figure 

11. 

The development of the procedure for calculating the scalar w is not 

as simple as Figure 9 may suggest. In a one-dimensional case it is a 

simple matter to determine that: 

( 3. l) 

-However, since in general, the vectors R0 and R1 are heterogeneous in 

dimensional form, a division as shown above is impossible because this 

vector space is not Euclidean. Thus vector lengths have no meaning even 

though the inner products do exist. The solution to this difficutly was 

obtained by considering the commonality of work done by generalized 

forces moving th rough genera 1 i zed di sp 1 acemen ts. 
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Figure 9. Direct Iteration With Linear Scalar Extrapolation 



{Au } = [K ]-l {AF} 
0 0 

[Kl] = K(~~o) 

{R } = {AF} - E[k 1){8 } 
0 0 

{Au 1} = [K1]-l {AF} 

[K2 ) = K(A~l) 

{Rl} = {AF} - E[k2){8l} 

[ KJ) = K(A~2 ) 

{R2} = {~F} - E[k3]{82} 

{Au3} = {~u 1 } + w{d 2 } 

[K4) = K(~~3) 

{RJ} = {AF} - E[k4]{83} 

To Convergence 

Iteration 

Iteration 2 

Iteration 3 
1 (Extrapolated) 

Iteration 4 
(Extrapolated) 

Figure 10. Direct lter~tion 

2_7 
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. Referring to Figure 9, it can be seen that by considering areas as 

quantities of work, the extrapolation may take place without concern for 

units. In other words, equating the work represented by the area of the 

trapezoid ABDE plus the work represented by the area of the triangle BCD 

to that of the triangle ACE yieids, 

(3.2) 

Next, substituting proper values for the work leads to: 

..!..(R + R )·d + ..!.. R · (w - 1) ci = ..!.. R ·wd. 
2o l 21 · 2o (3. 3) 

which reduces to: 

Comparison of Equation (3.4)with (3.1) shows that no difference exists for 

a one degree-of-freedom problem and that the difficulty of generalized 

units has been removed. 

Discussion 

From Figure 10 it should be clear that by extrapolating to obtain 

the defl~ction Au2 , a major source of solution expense, factortng of 

the stiffness matrix, is eliminated. Furthermore, as seen in Figure 11, 

a possible savings in the total number of iterations may result from use 

of the linear scalar extrapolation. The reason is that the linear scalar 

extrapolation is a method which resembles a trangent stiffness solution 

procedure without the stability problems. The earliest that program 

logic in a Newton-Raphson procedure may detect a buckling point is when 

the stiffn~ss matrix becomes very ill-conditioned. The linear scalar 
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extrapolation program logic will recognize the same point when the scalar 

w multiplied by the deflection d becomes very large; however, this had 

not been observed to be a frequent occurrence. The conditio~ is easily 

recognized and can be compensated when it does occur. 

Although not apparent from the previous development, the linear 

scalar extrapolation is a line search in the direction of d1. If the 

convergence criteria are treated as a performance function, an optimiza-

tion technique such as· the golden section search [7] could be used to 

determine w. This approach is not attempted in this dissertation. 

When the need exists for highly accurate deformations, the conver-

gence criteria is altered so as to require more iterations as illustrated 

in Figure 12, because, in general, more accurate results occur with each 
I 

successive iteration. With this increased requirement position 5 must be 

reached before convergence can be satisfied whereas position 4 was suf-

ficient for the original convergence criteria. In fact, if the conver-

gence criteria are reduced to the inner circle, then the direction of 

search would not intersect the n-dimensional sphere of convergence, and 

position 6 would be the closest the procedure could approach to the exact 

solution at position A. 

If the convergence criteria were such as to disallow convergence to 

solution, a new search direction would need to be established. This 

could be done in one of many ways. Two that could be .used are: 

-1. Rename position 6 in Figure 12 as flu. and then repeat the pro­
o 

cedure listed in Figure 8. That is, calculate a new stiffness matrix as 

a function of ~u0 , factor it, multiply by the load, obtain ~u 1 ; then 

' - -
the difference between ~u0 and ~u 1 would be the new search direction. 

2. Through a means described in the following text, determine a 
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Figure 12. Effect of Conver~nce Criteria 

VJ 



32 

s~arch direction orthogonal to the original search direction without fac-

to.ring a global stiffness matrix. The solution procedure would then be 

the same as before. 

The second of the two possibilities mentioned above was selected 

for investigation because it continues in the mainstream of cost ·reduc-

ti on procedures. In fact, if this method could solve all problems of 

interest, only two global stiffness matrices will have been used for the 

entire solution procedure at an incremental load step. 

Multiple Search Extrapolation 

Development 

The development of the multiple search extrapolation procedure be-

gins with a close inspection of the linear scalar extapolation. Repro-

ducing part of Figure 10 for convenience, 

{ u } = [ K fl {AF} 
0 0 

,,. K(Au ) 
0 

{Au 1} = [K r 1 
1 

{AF} 

[K2] = K(Au 1) 

{R } = 
2 

{AF} - I: [k2]{01} 

{d } = 
1 {Aul - llU } 

0 

wl = 
{Ro}·{dl} 

[{Ro} - {Rl }] •{dl} 

Iteration 1 

Iteration 2 

Iteration 3 
(Extrapolated) 

(3 • .s) 

(3.6) 

(3. 7) 
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Inspection of Equation (3,5) reveals that vector d1 is a correction 

-direction to the vector ~u0 , as determined by the vector ~ul' The change 

- -in residual from R0 to R1 is an indicator of the accuracy of the change 

in displacement. The step .size, w1 , along a search direction is deter­

mined by calculation from the change in two successive ·residual~ and 

from the distance, d1, between the residuals. 

An inspection of Equation (3.6) shows that the entire work done by 

- - -
R0 and R1 in moving through the distance d1 is considered without regard 

to the amount of work contributed by each generalized force In the cal-

culation of w1• Consequently, this lumping of terms requires the alter~ 

at ion of .each generalized displacement by the same multiplier, w, even 

though some are greater contributors to the energy expression than 

others. 

A method to select a new direction of search based on appropriately 

weighting the scalar w for each degree of freedom must consider the 

effect of that particular degree of freedom on the calculation of w1• 

This is done in a reverse fashion by removing the energy ·terms due to an 

individual degree of freedom from Equation (3.6). This results in the 

equation, 

1: {R }•{dl} - (R )d 1 w = o op p 
p [{R}-{R1}]·{d 1}-(R- -R 1 )d 1 o op p p 

(3. 8) 

where the subscript, p, represents the individual component of the vari-

th * ous vectqrs associated with the p degree of freedom and w represents 
p 

a new scalar without the effect of the pth degree of freedom being used. 
"J': 

The term w provides a means by which to determine whether the orig­
P 

inal w extrapolation of Equation (3.6) is appropriate, relative to the 

other degrees of freedom. Therefore, Equation (3.8) is the additional 
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information necessary to help determine a new direction of search in the 

event that the old direction fails. 

Ideally, the search history would proceed as shown in Figure 13. 

The original search direction, d, is as shown in Figure 13 .. Position 4 

represents the closest point of approach to the exact solution at posi­

tion A. After reaching position 4 , a ne~ search direction,~*, is 

found. Once the new direction has been established, convergence is sat-

isfied when position 5 or any other position inside the convergence 

criteria sphere is reached. 

A loss of effectiveness will result from searching in the direction 

passing through the position 6 . This unnecessarily poor direction of 
-i~ 

search could result from failure to insure that the direction d be or-
1 

thogonal to the original direction, d, and all prior search directions. 

The manner of calculating the new search direction is as follows: 

(3. 6) 

'" {R }•{d 1} - (R )d 1 w = o · op p 
p [{R }-{R1}]•{d 1} - (R - R1 )d 1 o · op p p 

(3. 8) 

l:!.w w - w 
PP P 

(3.9) 

{d}i~ = L6WJ{d 1} _ [(~1:!.~~!~n 5 {d}J {d} (3.10) 

where the matrix L!:!.wJ is a diagonal matrix consisting of l:!.w diagonal 
PP 

terms and zeros as the off-diagonal terms. The term in brackets in Equa-

tion (3. 10) represents the scalar term that defines the portion of the 

vector t!:!.w]{d} that is in the d direction. This term is subtracted to 

preserve an orthogonal search pattern. 

The entire solution procedure is presented in Figure 14. Iteration 
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{l'lu } = 
0 

[Kl] = 

{R } = 
0 

{l'lu 1} = 

[K2] = 

{ R 1 } = 

{ d 1 } 

WI = 

fou 2} = 

[K3] = 

{R2} = 

l'lw = 
PP 

;'~ 

{d} = 

[K ]-1 
0 

{l'IF} 

K(l'I~ ) 
0 

{l'IF} - E[k 1]{o0 } 

[ K ] -1 
1 

{ l'IF} 

K ( l'lu l ) 

{l'IF} - E[k2Jfo.J} 

{l'lul -. l'lu } 
0 

{Ro}·{dl} 

({Ro} -{Rl}]•{dl} 

{l'luo} + wl { d 1 } 

K(l'lu2) 

{l'IF} - L[k3Ho2} 

Iteration 1 

Iteration 2 

Iteration 3 
(Extrapolated) 

1 Iteration 4 
Iteration n 

w n+ 1 Some arbitrary constant 
;~ 

{l'luri+l} = {l'lun} + wn+l {d} 

[Kn+2] = K(l'lun+l) 

{Rn+l} {l'IF} - E[kn+2]{on+l} 

{dn+l} {l'lun+l - l'lun} 

{Rn}·{dn+l} 

To Convergence 

Iteration n+l 
(Extrapolated) 

Direction 
Change 

Figure 14. Direct Iteration With Multiple Search Extr~polation 

36 



37 . 

4 through iteration n are represented as three dots to indicate a con­

tinuity pattern. Once the new search direction, ~*~has been determin-

ed, an arbitrary magnitude in that direction is necessary to start the 

solution procedure forward again. Care in this step size se]ection, 

w l' is required because an excessively large one might cause accuracy 
n+ 

or convergence problems. 

Discussion 

The multiple search extrapolation procedure is extremely sensitive 

to the calculation of the residuals; therefore, the residuals must be 

calculated as accurately as possible. One requirement is that all per-

tinent data be updated at the end of each iteration rather than at the 

end of the load step. However, the method i~ fail-safe. If an incor-

rect direction of search is determined, the method simply returns the 

solution for the incremental displacement to zero because of the large 

residuals which result. 



CHAPTER IV 

MODIFICATION OF COMPUTER PROGRAM 

The major finite element programs used in this study are mentioned 

in Chapter I and referenced in the Bibliography. All three codes are· 

very large multi-purpose programs used for solving nonlinear structural 

equations with both geometric and material nonlinearities and possessing 

both static and dynamic capabilities. In all three cases, in order to 

implement the algorithms presented in Chapter Ill, it was necessary to 

identify the subroutine in which the incremental displacements are cal­

culated. If the residual loads were not previously available a signifi­

cant change in several subroutines was necessary for their determination. 

In order to provide a better understanding of the computer code 

modification, only the TRAINS (Transient Analysis of Norilinear Systems) 

code is discussed. The major portion of the modifications are in sub­

routine ITERCK (see Table I). 

Prior to modification subroutine ITERCK performed the dual roles of 

determining if convergence had been satfsfiedand of updating the total 

displacements so that terms dependent upon displacement could be calcu­

lated. In the modified form the subroutine ITERCK performs all of the 

following: 

1. Checks for convergence and maximum iteration limit. 

2. Initializes almost all variables needed for extrapolation. 

3. Calculates the residuals. 
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TAGLE 

SUBROUTINE ITERCK 

SUBROUTINE ITEF"\CK. < TF, DF, TA, f.ID,NAPRH•NPRHrSXl\r NDEGrNIJMNP • 
lIHIBr IXLOAD> 

DIMENSION TFCNDEGrNUMNP>rDFCNDEGrNUMNP>•TA<NnEGrNUMNP>r 
1ItD( NDEG rNlJMNP) ,NAPRH<NUMNP> 'SXK<NDElhNDFG' 1), VAli:S( 1) 
COMMON/CDC/DUM1Cl>•STEP,DUM4C4> 
COMMON/MINDnK/IG,ITEM1T,ITEM2T,ITEMJT 
COMMON/UECOUT/NUMOUT 
COMMON/VECRAN/ITEMP1rITEMP2rITEMP3rND64r~SZCRD 
COMMON/NEWUEC/IOMEGA, ITFSAU, INCF .KOllNT, IPMl.Jl .. T, IBUFFR 
COMMON/NEW\,ICT / ITEMK 1, tTEMK2 
COMMON/REMEMB/IREMlrIREM2,IREM3rlREM4,IREM5 
COMMON/NEWFAC/XPMULT 
COMMON/CYCLE/MINCYCrMAXCYC,TOLERrICYCrIFSAVErIROrIRlr 

llDDSAUrIOK,ENERPR 
1 r ITERATE 

COMMON/STATIC/I STAT 
COMMON/NZl:UNEQST, NSTm::s, l ... oncor~ 
COMMON/ARRAY2/DUH25<25)rIRES1rDUM5C5> 
COMMON/MONDEG/ITDEGrITNODE 
COMMON/SEQFIL/KFILE 
COMMON/SPACE/INTSCl> 
EOUIVALENCECVARSC1>rINTSC1J> 

C***** INITIALIZE VARIOUS TEl~MS NEEDED WITH DUE REGAl:W TO WHEN 
C***** THEY ARE NEEDED. ************************************* 

IOK :: 0 
ND=NDEGJICNUNtff• 
IDIR1=IE!IJFFR 
IIIH~2==IDIR1 +ND 
I [I u~:3= I [I rn2+ND 
IDIR4=IDI 1:~;·~·l·Ntr 
Ir•IR5=1 nrn4·f ND 
IBUF51=rnrn~ 

I Bl.JF52= T nt.JF51 +:I 
DWDUD1=0.0 
DWillJD2:=0 • 0 
DWDUD3=0.0 
DWUl.JD4=<>. 0 
01.Dt=t .O 
D2D2=1.0 
D3D3=1.0 
D4D4=1.0 
IFCICYC.NE.O> GO TO 920 
XPMULT=O.O 
CALL SCLACVARSCIDIR1),Q.O,NDEGrNUMNP·O> 
CALL SCLACUARSCIDIR2),0.0rNDEGrNUMNPr0) 
CALL SCLACVARSCIDIRJJ,o.o,NDEG,NUMNP•O> 
CALL SCLACVARSCIDIR4>rO.OrNDCG,NUMNPr0) 
IREM1=1 
IREM2=0 

920 CONTINUE 
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TABLE I (Continued) 

920 CONTINUE 
C KOUNT IS A VARIABLE INITTALIZED IN SUBROUTINE MARC •. 

l'\OIJNJ::::KOUNT ft 
WRITEC6,1021> KOUNT 

1021 FORMAT<* KOUNT=*•IlO> 
FWD=O.O 
IUD=O.O 
FACT = (1.0/STEP**2) 
CALL READMS(8,DD,ND,3> 
ENERGY = DDCITDEG,ITNODE) 
IF< IHI B. EO. () > ENEl:O:Pl:O:===l::NERGY 
PERCH=ABS<<ENERGY-ENERPR>IENERPR>*lOO.O 
WRITE (6,100) ENERGY 

100 FORMAT <* INCREMENT OF DISPLACEMENT IN THIS ITERATION*•E15+7> 
WRITE <6•105) ENERPR 

40 

105 FORMAT <* INCREMENT OF DISPLACEMENT IN PREVIOUS ITERATION*•E15.7> 
WRITE (6,110> PERCH 

110 FORMAT <* PERCENTAGE DIFFERENCE*•E15 • .7> 
ENEm~R = DDCITDEG,ITNODE> 
IF< PERCH• LE. TOLEI~ > IOI< ::: 1 
IFCIHIB.EQ.0) GO TO 900 1 

IF<IOK.NE.1.AND.ICYC.EQ.MAXCYC> IOUT==1 
IFCIOUT.EQ.1) WRITEC6,600~ 

600 FORMAT(/////, 20Xr* MAXIHUM SPECIFIED'ITERATTONS EXCEEDED*> 
IF<IOUT.E0.1> IOK=l 
IFCIOUT.E0.1) GO TO 900 
IFCIOK.NE.1> GO TO 200 
GO TO 900 

200 CONTINUE 
C * * * COMPUTE RESIDUALS 

CALL WRITMSC8rVARSCIDDSAV>,ND64•7r-1) 
IFCICYC.EQ.0) CALL WRJTMSC8,VARSCIDDSAV>rND64,8,-1) 
CALL WR I TMS C 8, t..!Al:O:S < IXLOAD > , NUMOUT, 1, -1) 
IFCISTAT.EQ.1) GO TO 800 
CALL WRITMSC8rTArND64r7,-1) 
CALL READMSCS,VARS<ITEM2T)rND64r7) 

C * * * COMPUTE MASS TIMES ACCELERATION 
KFILE ::: 22 
CALL UPTXCSXKrNPRH~VARS<ITEM1T>,VARSCITEM2T),NDEG,NDEG,NUMNP, 

lNDEGrNAPRH,NDEGrNDEG> 
800 CONTINUE 

C * * * STRESS PART OF RESIDUAL COMPUTED IN STRAINr IN VARS<ITEMP3> 
C * * * BRING BACK ~2TSIGMA VECTOR CLODCOR> 

IFCLODCOR.E0.2> GO TO 805 
IFCISTAT.EO.O> CALL GMADDCVARSCITEM2T>,VARSCITEM1T>rVARS<ITEM2T> * rNDEGrNUMNP> 

805 CONTINUE 
CALL READMSCBrVARSCIXLOAD>rNUMOUTrl) 
CALL GMADDC~~rTF,VARSCITEMP2>rNDEGrNUMNP> 
IF<LODCOR.E0.2> CALL GMADD<VARSCITEMP2>rUARSCIRES1)rVARSCITEMP2>r 
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TABLE I (Continued) 

IF< LODCOR. EG • 2 > CALL GMADD < VAl~S C I TEMP2 > , 'JARS C I RES 1 > r VARS C I TCMP2 > r 
* NDEGrNUMNP> 

IF<ISTAT.EQ;O) CALL SMPYCVARS<ITEMP2>rFACTrVARSCITEMP2>rNDEG, * NUMNPrO> 
CALL GMADD< VAr<SC ITCMP2 > rVAl~S CI TE MP3> 1VARS< ITEMP2 > rNDEG1NUMNP) 

C * * * THE RESIDUAL FOR HIE ITERATION ,JU!JT COMPLETCD 
C * * * IN VARS<ITEMP2) 
c * * * NOW PUT THI: RESHIUAL r·rn~ TllE rm:vrous ITERATION IN RO 

CALL MCPYCVARSCIRl>rVARSCIRO>rNDEGrNUMNPrO> 
C * * * AND PUT THE CURRENT RESIDUAL IN R1 

CALL MCPY <VARSCITEMP2>rVARSCIRl)rNDEGrNUMNPrO> 
ICYC==ICYCH 

C * * * IF TWO RESIDUAL VECTORS HAVE NOT DEEN COMPUTEDr 
C * * * CANNOT EXTRAPOLATE 

IFCICYC.LE.1> GO TO 900 
C * * * COMPUTE THE INCF(EMENT OF DISPLACEMENT IN THE ITERATION· 

CALL READMSC8rDDrNDr3> 
IFCICYC.GT.2> GO TO 880 
CALL MCPYCUARSCIDDSAV>rDDrNDEGrNUMNPrO) 
CALL READMSCBrVARSCIDDSAV>rNDr8) 
CALL GMSUBCDDrVARS<IDDSAV>rVARSCITEMP2)rNDEGrNUMNP> 
CALL WRITMSC8rDDrND64,8r-1) 
CALL MCPYCUARSCIDDSAU>rUARSCITEMPl)rNDEGrNUMNPrO> 
GO TO 885 

880 CONTINUE 
CALL READMS<BrVARSCITEMP1>rND64r8) 
CALL GMSUB<VARSCIDDSAV>rVARSCITEMP1)rUARSCITEMP2>rNDEGrNUMNP> 
CALL WRITMS<8rUARSCIDDSAV>rND64r8r-1> 

885 CONTINUE 
C % * * COMPUTE THE ROD ANn R1D SCALARS 

NUMBER=NDEG*NUMm~ 

CALL GHPRD<VARG<IRO>rVAR3CITCMP2>rROD.1rNUMDERr1) 
CALL GMPRD<VARSCIR1>rUARSCITEMP2>rR1DrlrNUMDERr1) 
OMEGA=ROD/CROD-RlD) 

C***** KEEP TRACK OF HOW FAR WE EXTRAPOLATE IN A GIVEN DIRECTION 
C BY DETERMINING Tl-IE MULTIPLE OF TllE OIUGINAL INCREMENT IN 
C THAT DmECTION AND SPECIFYING IT AS XPMIJLT • ******* 

IREM2= IREM2+1 
IN=1 
INN=O 

946 GO TO <947r949)1IN 
947 IF<VARSCITEMP2+INN>.Ea.o.> GO TO 948 

IN=IN+l 
IFCIREM2.EQ.1) VARS<IBUF51)=VARS<ITEMP2+INN> 
XPMULT=XPMULTtVARSCITEMP2+INN>/UARSCIDUF51) 

948 INN,==INNH 
IFCINN.GT.NUMDER> GO TO 952 
GO TO 946 

952 WRITEC6r951) 
951 FORMAT<* GARDAGE1*> 



951 FORMAT<* GARBAGE1*> 
STOP 

949 CONTINUE 

TABLE I (Continued) 

. WRITE<6,950) OMEGA,IREM1,XPMULT 
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950 FORMAT<* OMEGA=*'El~.7,5x,*FOR DIRECTION *rI3'* XPMULT=*rE15.7> 
CALL GMPRDCVARSCITEMP2>1VARSCITEMP2>rDUDU,lrNUMBERr1) 

C***** DETEl~MINE IF A NEW SEARCH Dil~ECTION IS NEEDED. *************** 
IFCABSCCXPMULT-VARSCIBUF52))/XPMULT>.GE.1.0E-2.0R. * IREM2.LT.4.0R.IREM1.GT.4> GO TO 1010 

C***** CALCULATE THE NEW SEARCH DIRECTION BASED ON THE RESIDUALS 
C AND HOW MUCH THEY AFFECT THE DETERMINATION OF OMEGA. ******* 

DO 1000 I=lrNUMDER 
NOMEGA=IOMEGAtI-1 
VARSCNOMEGAJ=O.O 
IFCABSCVARS<ITEMP2+I-1>>.LT.1.0E-60) GO TO 1000 
PROD=VARSCIROtI-1>*VARSCITEMP2tI-1) 
PR1D=VARSCIR1+I-1>*VARSCITEMP2tI-1> 
POMEGA=CROD-PROD)/CROD-R1D-PROD+PR1D> 
VARSCNOMEGA>=COMEGA-POMEGA>*VARSCITEMP2tI-1> 

1000 CONTINUE 
C***** DEFINE THE TERMS NECESS1~RY TO INSUR~ THE NEW SEARCH DIRECTIONS 
C ARE IN FACT ORT•«JGONAL. ** 

CALL .GMF~D<VARSCIOMEGA>,UARS<ITEMP2>rQWDUDUr1rNUMBERrl) 
GO TO c5,4,3,2,1>,IREM1 . 

1 CALL GMPRDCUARSCIOMEGA>,VARSCIDIR4)rDWDUD4•lrNUMBER,1> 
IFCD4D4.EQ.1.> CALL GMPRDCVAR8CIDIR4>,VARSCIDIR4),D4D4r1rNUMDERr1) 

2 CALL GMF'fW < l.'Af<S C IOMEGA> , '.JARS C IDrn3 > .X.lWDUD3, 1, NUt1DER r 1) 
IF<D3DJ.EQ.1.> CALL GMPRDCVARSCIDIRJ),VARS<IDIR3J,D3D3r1rNUMBERr1) 

3 CALL GMPRDCVARS<IOMEGA>1VARSCIDIR2>rDWDUD2,lrNUMDER,1> 
IFCD2D2.EQ.1.> CALL GMPRD<VARS<IDIR2>rVARSCIDIR2>1D2D2r1rNUMBERrl) 

4 CALL GMPRD<VARSCIOMEGAJ,VARSCIDIR1>rDWDUD1rlrNUMDERr1> 
IFCD1Dl.E0.1.> CALL GMPRDCVARSCIDIR1),VARS<IDIR1>rD1Dlr1rNUMDER,1> 

5 CONTINUE . 
C***** CALCULATE THE NEW SEARCH DIRECTION. ************************* 

DO 1005 I=l1NUMDER 
NOMEGA=IOMEGA+I-1 
DWNL=VARSCIOMEGA+I-1>-<DWDUDU/DUDU>*VARSCITEMP2tI-1> * .. -CDWDUD1/DH11 JIVARSC IDHU+I··-1) 

* -<DWDUD2/D2D2>*VARSCIDIR2+I-1> 
* -CDWDUD3/D3D3>*VARSCIDIR3tI-1) * ·-< ItWUIJD4/D4D4 > :t:1 .. IAl~S ( IDIR·l'IH-1) 

C***** SAVE THE NEW DIRECTION FOR FUTURE USE. ********************** 
NIDIR=CIBUFFRtCIREMl-l>*ND>+I-1 
IFCIREM1.LT.5> VARSCNIDIR>=DWNL 
VARSCNOMEGA>=DWNL 

1005 CONTINUE 
rnEM1=IREM1t1 

C***** SAVE THE FrnST DIRECTION FOi~ 1::unmE USF. *********** 
IF<IREMl.E0.2> CALL MCPYCVARSCITEMP2>rVARSCIDIRl>r 

* NDEGrNUMNP•O> 



TABLE ·1 (Continued) 

* NDEGrNUMNPrO) 
IREM2=0 . 
CALL MCPY<VARS(IOMEGA>rVARSCITEMP2>rNDEGrNUMNPrO> 
IN=l 
INN=O 

1046 GO TO C1047r1049)rIN 
1047 IFCVARSCITEMP2+INN>.E0.0.) GO TO 1048 

IN=INH 
OMEGA=<O.OOl*XPMULT>*CVARSCIBUF51)/VARSCtTEMP2+INN>> 

1043 INN=INN+1 
IFCINN.GT.NUMBER> GO TO 1050 
GO TO 1046 

1050 WRITEC6r1051) 
1051 FORMAT<* GARBAGE2*> 

STOP 
1049 CONTINUE 

XPMIJLT=O.O 
CALL MCPYCVARS<IRO>rVARSCIR1>rNDEGrNUMNPrO> 

1010 CONTINUE 
CALL SMPYCVARS<ITEMP2>rOMEGArVARSCITEMP2>rNDEGrNUMNPr0) 
UARS<IBUF52>=XPMULT 
WRITEC6r1011> XPMULT 

1011 FORMAT<* PMULT=*•E15.6) 
WRITEC6r17B4> VARS<IR1>~VARSCIR1•1>r0ARSCtRt+2>• * wmsc HH+3> rVAmH IR1+4) •1.'ARSC IRH.S> • * VARS<IRltND ~>.UARSCIRt·•Nn-5>•VARSCIR1•ND-4)r * VARSCIR1+ND-3>rVARS<IR1+ND-2>rVARSCIR1tND-1> 

1784 FORMAT<* IR1= *•6<Et1.4)r/•* IR1<LAST SIX nOF>~ *•6CE11.4>> 
CALL GMADDCVARSCITEMP2>rVARSCITEMP1>rDD·NnEGrNUMNP) 
ENERPR=DDCITDEGrITNODE> 
CALL WRITMSC8rDDrND64r3,-1) 

900 RETURN 
END 

43 
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4. Determines the scalar w. 

5. Determines the new search directions and insures orthogonality 

to all previous search directions. 

6. Updates the total displacements with the incremental displace­

ments. 

Subroutine ITERCK is listed in .Table I. 

Almost all large nonlinear structural programs use dynamic al l.oca­

tion. Because of dynamic allocation, the implementation of the algorithms 

presented in this study may be tedious. There are a number of subtle 

special cases at branch poin~s, particularly in the transition from one 

search direction to another. However, the effort will be cost effective. 



CHAPTER V 

APPLICATION EXAMPLES 

This chapter contains two examples verifying the usefulness of the 

linear scalar extrapolation, two examples of application of the multiple 

search extrapolation, and a discussion of a problem involving material 

and geometric nonlinearities. The first two examples are a bar-spring 

buckling problem with one degree of freedom and a pressure loaded ring 

with twenty-four degrees of freedom. The second two examples· are a radi-

I 

ally loaded ring with twenty-eigrt degrees of' freedom and a pressure 

loaded ring with twenty-eight degrees of freedom. The final problem is 

a ring-stiffened cylinder under pressure loading. This chapter also con-

tains a discussion of the ability of the proposed algorithms to facili-

tate the solution of each problem as indicated by the results. 

Linear Scalar Extrapolation 

Bar-Spring Problem 

To demonstrate the validity of the linear scalar extrapolation pro-

cedure, the one degree-of-freedom bar-spring problem which was previously 

solved by Jones [l] is presented. The bar-spring problem is illustrated 

in Figure 15. The length of the spring is unimportant if nonlinear 

effects do not enter into the calculations for the deflection of the 

spring. The bar was modeled so as to allow only a change in length and 

no flexural or shear deformation. 

45 
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A varying load, P, was applied at the end of the bar where the spring 

is attached as shown in Figure 15. Clearly, the problem has only a sin-

gle degree of freedom with a highly nonlinear deflection response to the 

applied load, as can be seen in Figure 16 1n which the exact response is 

graphically illustrated. The buckling load for this problem with the 

stated parameters is exactly six pounds. 

In determining the results (Table I I), three forms of calculation 

were used. The exact values were determined analytically. The 11old 11 

values were calculated using the direct iteration procedure without the 

linear scalar extrapolation. The 11new11 values were calculated with the 

1 inear scalar extrapolation modification included. The parameter used 

for comparison in Table I I is the number of iterations (small raised 
I 

superscript) required to satisfy the convergence criteria indicated at 

the column heading. The convergence criteria represent a ratio of two 

successive incremental displacements in the solution history. 

It should be noted that at the buckling load the tolerance required 

to obtain two significant digits accuracy, 1.001, the linear scalar.ex-

trapolation required five iterations as compared to twenty-six iterations 

for the unmodified approach. However, the new method required three 

iterations more than the four performed by the unmodified procedure in 

the post-buckled region because the linear extrapolation does not follow 

the hardening stlffness of the structure very well. For buckling analy-

sis where displacements are required, the greatest interest is generally 

in the pre-buckled region which is where the greatest savings in the num-

ber of iterations occurred, since not only were fewer iterations made, 

but each iteration was less expensive due to the linear extrapolation by-

passing the factorization of the global stiffness matrix. 
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TABLE I I 

BAR-SPRING PROBLEM 

Load Exact Convergence Criteria 

( 1 b) Method (in.) 2.0 l.5 1. 1 1. 01 1 . 001 1 . 0001 1. 00001 

0. 1 Old 0.0062506 
New 0.0062506 

0.23536 
- ---- --

3.0 Old 0.22458° 0.22458° 0.23288 1 0.234792 0.235344 0.235376 . 0.235377 

New 0.22458° . 0.22458° 0.232881 0.23481 3 0.235355 0.23537 6 0.235377 

1. 0000 
6. o~" Old 0.59355° 0.68192 1 0.79436 3 0.96631~ 13 0.99685 26 0.99970 39 1. 0000 51 

New 0.59355° 0.68192 1 0.87911 2 0.98498 4 0.99892 5 1. 0000 6 1 . 00006 
l. 7646 -

9.0 Old 1. 7957 1 1. 7910 1 1. 7690 1 1. 7640 1 1.76461 1. 7646 1 1.76461 
New 1. 79571 1 . 7910 1 1.7633 1 1. 7644 1 1.7646~1 ~~1_:16461 1. 7646 3 

2.0000 
12.0 Old 1 ~ 9399o 2.0040 1 1 . 9-997 2- 2.00003 2.00004 2.00004 2.0000 5 

New 1.9399° 2.00401 2. 0011 3 2.00015 2.0000 7 2.00008 2.00009 
2.1617 

15.0 Old 2. 17520 2.15400 2.1631 1 2.16173 2.16174 2.1617 6 2.16176 
New 2.1752° 2. 15400 2. 16331 2.1618 5 2.1617 7 2.1617 9 2.1617 10 

2.2891 
--- --

18.o Old 2.26860 2.28630 2.2904 1 2.28923 2.2891 4 2.28916 2.2891 7 

New 2.26860 2.28630 2.2904 1 2.28935 2.2892 7 2.28919 2. 2891 11 

7<Buck ling 1 oad. 

Note: When the number of iterations (displayed as superscripts) is less than (2 ), ~here is NO 
difference between the new and old methods. .::-

\.0 
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Pressure Loaded Ring 

The problem of a pressure loaded ring ls presented to demonstrate 

that with the linear scalar extrapolation, deflections in a pre-buckled 

region cah be calculated less expensively and more accurately than with-

out the extrapolation. The uniformly applied external pressure is allow-

ed to vary up to the buck1 ing load of 60 psi (pounds per square inch). 

The ring is modeled through 90 degrees at shown in Figure 17. The 90-

degree arch is divided into two substructures. The degrees of freedom 

per node are: 

1. z--Lateral translation 

2. R--Vertical translation 

3. dZ/ds--Rotation 

4. dR/ds--Rotat ion. 

The rotations are defined as positive in the direction indicaied by e 

shown in Figure 17. The ring is modeled with a modulus of elasticity of 

30 x 106 psi and a radius of 20 inches. A kicker force is app]ied at 

node of substructure 1 in the negative R direction with a magnitude of 

-6 3.4 x 10 pounds. The purpose of the kicker load is to force the ring 

into a buckled mode shape without significantly affecting the magnifude 

of the deflections. 

As there was no exact solution other than the known collapse load 

of 60 psi, the tolerance chosen is 1.001. This is the tolerance that 

yielded two significant digits accuracy for the bar-spring problem. The 

results obtained are shown in Table I I I. 

As can be seen from the results in Table I I I, the reduction in itera-

tions realized by using the linear scalar extrapolation is excellent. In 

fact, for the 59.5 psi load, the unaltered version did not satisfy the 
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Load 
(psi) 

7 

21 

35 

49 

56 

59.5 

TABLE 11 I 

RING PROBLEM (1.001) 

Substructure 1 (in. ) Substructure 2 (in.) 
Node l Node 1 

D.O.F. R D.O.F. Z 
Method Iterations (x 106 in.) 

Old 2 -309.24 -162.98 
New 4 -309.27 -162.98 

Old 5 -1005.40 -4 12. 13 
New 4 -1005. 70 -411. 79 

Old 9 -1946.40 -417.61 
New 4 -1947.70 -416.36 

Old 23 . -402:7. 60 715. 44 
New 3 -4030.40 718.24 

Old 54 -8839.00 5050.00 
New 3 -8896.30 5107.10. 

Old . 149~·~ -34785.00 30700.00 
New 4 -37665.00 33570.00 

~'rMaxirnurn number of iterations allowed. Convergence not yet satisfied. 

u:i 
N 
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convergence criteria after 150 iterations. Probably, many more itera-

tions would have been required to satisfy convergence. Clearly, the 

linear scalar extrapolation is very powerful under such circumstances. 

Multiple Search Extrapolation 

As explained in Chapter I I I and illustrated in Figure 12, there are 

conditions under which the convergence criteria cannot be satisfied by 

use of the linear scalar extrapolation. Thus the need exists for a mul-

tiple search extrapolation method. Ideally, the multiple search extrap-

olation will locate the closest point of approach to an exact solution 

along a line search, change the direction of search, and then locate a 

new closest point of approach. Eventually, the convergence criteria 
I 

should be satisfied. However, it is important that the residuals be cal-

culated in as accurate a manner as possible since the new search direc-

tion is highly sensitive to variations in the residuals. 

Pressure Loaded Ring 

The first test for the multiple search extrapolation became neces-

sary because of a possible need to decrease the convergence criteria of 

the earlier mentioned pressure loaded ring to a tolerance of 1.0001. As 

shown in Figure 12, this has the result of withdrawing the sphere of con-

vergence to a position where the line passing through d does not inter-

sect the convergence region. It is not possible to satisfy the conver-

gence criteria without selecting a new search direction and proceeding as 

before. The ideal situation is depicted in Figure 13. 

The solution procedure used earlier in the linear scalar extrapola-

tion increased the load to 59.5 psi gradually by passing through load 
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values of 7 psi, 14 psi, 21 psi, 35 psi, 49 psi, 56 psi, and finally 59.5 

psi. Due to the unavailability of an exact solution for this problem, 

it was decided that the above mentioned solution would be.used as a 

''Base" value against whieh to compare the linear scalar extrapolation 

and the multiple search extrapolation. In order to provide a stringent 

test for these two methods, the series of load values was selected so as 

to pass through 7 psi, 14 psi, and 59.5 psi. The step sizes were chosen 

so as to increase the effect of the nonlinearity as much as possible 

without introducing plasticity effects~ The results for the final dis-

placements at 59.5 psi are shown in Table IV. 

As can be seen from the results in Tabl~ IV, the multiple search ex-

trapolation was slightly better than the linear scalar extrapolation at 

every degree of freedom shown. The rotations are not shown in the inter-
'. 

est of brevity. It was apparent from the entire solution history output 

that an improvement toward the correct solution was made after the selec-

tion of the second search direction but no significant gain was made 

thereafter in any of the following three search directions. In fact, 

from an inspection of the residuals it wa~ apparent that a source of 

error was obscuring the true residuals from the multiple search extrapo-

lation procedure to such an extent that superfluous directions were be-

ing determined and then searched with the net result of zero progress 

after the second direction. 

One reason for this difficulty may be seen by inspecting Equation 

(2.7). The next to last term on the right-hand side is a function of 

both the intermediate and current configurations and the stiffness matrix 

is a function of the current configuration as is the fifth term on the 

right-hand side. Until this observation, the stress was only updated at 
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TABLE IV 

PRESSURE LOADED RING (59.5 PSI) 

Displacements Percent 
Substructure (x 106 in.) Closer 

and DOF DOF 
Node Method R z R z 

Base -37665.0 0.0 
1 , 1 Multiple Search -24643.0 0.0 0. 18 0.00 

Linear -24619.0 0.0 

Base -34061.0 104. 96 
1 ,2 Multiple Search -22311.0 -117.15 0.20 0. 15 

Li near -22288.0 -117.49 

Base -24870.0 3461.50 
1 , 3 Multiple Search -16375.0 1853.20 0.20 0.17 

Linear -16358.0 1850.40 

Base -13999.0 11180. 00 
1 , 4 Multiple Search -9355.2 6609.70 0. 19 0. 19 

Li near -9346.2 6600.90 

Base -5443.5 21384.0 
2,3 Multiple Search -3795.4 12950.0 o. 19 o. 19 

Linear -3792.3 12934.0 

Base -1130.3 30128.0 
2,2 Multiple Search -901.2 18390.0 o. 19 0. 19 

Linear -900.8 18368.0 

Base 0.0 33570.0 
2, 1 Multiple Search 0.0 20531.0 0.00 0. 19 

Linear 0.0 20506.0 
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the end of each load step and not at the end of each iteration. Since 

the multiple search extrapolation is very dependent on correct residuals, 

a modification was made to update the stresses at the end of each itera-

tion. The pressure ring problem was run once more and the results are 

shown in Taple V. 

Clearly, the results are more accurate overall and the multiple 

search extrapolation has increased its advantage over the linear scal~r 

extrapolation. However, the advantage is still only marginal, which is 

far short of the expected results. The problem with the residuals men-

tioned earlier was still apparent in the solution history; therefore, a 

critical review of Equation (2.7) is necessary. 

In Equation (2.7) all terms on the right-hand side are taken to be 
I 

applied forces even though some tame originally from the left-hand side 

as per Appendices A and B. 
I , 

The key term of interest is the last which 

came from separating t.he stiffness matrix into a symmetric matrix and a 

skew symmetric matrix and placing the skew symmetric part on the right-

hand side so as to take advantage of the efficiency of a symmetric equa-. 

tion solver. But, notice that the term {6V t} is not equal to {6V} es 

except in linear problems. This is clearly an important source of error 

in the residuals, albeit the approximation has been very well justified 

in the past for cost considerations. Consequently, if a problem not as 

nonlinear as the pres~ure ring problem were solved, a greater advantage 

of the multiple search extrapolation over the 1 inear scalar extrapolation 

is to be expected. 

Radially Loaded Ring 

The difference between the radially loaded ring and the pressure 
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TABLE V 

PRESSURE LOADED RING (59.5 PSI) 

Displacements Percent 
Substructure (x 106 in.) Closer 

and DOF DOF 
Node Method R+ Z+ R z 

Base -37665.0 0.00 
l ' l Multiple Search -28315.0 0.00 0.32 0.00 

Linear -28285.0 0.00 

Base -34061.0 104.96 
l ,2 Multiple Search -25618.0 I -53.45 0.33 0.28 

Linear -25590.0 -53.9a 

Base -24870.0 3461 . 50 
l '3 Multiple Search -18754.0 2312,00 0.31 0.31 

Li near -18735.0 2308.4a 

Base -13999.a lll8a.ao 
l '4 Multiple Search -1a648.0 79a4.5a a. 3a 0.33 

Linear -1a638.a 7893.60 

Base -5443.5 21384.00 
2,3 Multiple Search -4251.6 15324.00 0.28 0.33 

Li near -4248.2 153a4.00 

Base -1130.3 30128.oa 
2,2 Multiple Search -964.4 2168a.ao 0.27 a.32 

Li near -964.0 21653.00 

Base o.a o.aa 
2' l Multiple Search a.a 24179.aa a.oo a.31 

Linear 0.0 2415a.oo 
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loaded ring is that the applied load for the radially loaded ring never 

changes direction, and the applied load for the pressure loaded ring is 

always normal to the surface. The response of the radially loaded ring 

is slightly nonlinear and buckles at approximately 90 psi while the pres-

sure loaded ring is highly nonlinear and buckles at 60 psi. 

The results obtained from the pressure loaded ring are shown in 

Table VI. The "Base'' load steps in psi were 7, 14~ 21, 35, 49, 56, 59.5, 63, 

66.5, 70, and 73.5. The multiple search extrapolation and linear scalar 

extrapolation load steps in psi were 7, 14, and 73.5. The tabulated re-

suits are for the 73.5 psi condition. 

Clearly, the multiple search extrapolation converged closer to the 

base solution than did the linear scalar extrapolation. The manner in 

I 

which the residuals behaved in the solution history also indicated that 

·more accurate residuals were being used. Once again reviewing Equation 

(2.7), it can be seen that the third term from the end is identically 

zero, the first and second terms from the end have less effect on the 

solution due to the estimated displacement being very nearly correct. 

Plasticity 

Ring-Stiffened Cylinder 

The only problem investigated which dealt with plasticity effects 

was a ring-stiffened cylinder with 94 degrees of freedom. Due to a lack 

of an exact solution against which to compare the results no detailed de-

scription can be made. However, due to the manner of convergence of the 

problem there is little reason to believe that plasticity will present 

larger difficulties for the extrapolation procedures described in this 

study under a static load consideration. 
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TABLE VI 

RADIALLY LOADED RING (73,5 PSI) 

Displagements Percent 
Substructure (x 10 in. ) Closer 

and DOF DOF 
Node Method R z R z 

Base -10075.0 0.00 
1 ' 1 Multiple Search -10070.0 0.00 16.67 0.00 

Linear -10069.0 0.00 

Base -9216.8 -498.92 
1 '2 Multiple Search , -9209.0 -498.45 8.24 0.00 

Linear -9208.3 -498.45 

Base -7029.3 -260.54 
1 '3 Multiple Search -7017.6 -258.48 3.31 0.00 

Linear -7017.2 -258.48 

Base -4387.4 969.26 
1 '4 Multiple Search -4376.8 969.90 1.85 0.00 

Li near -4376.6 969.90 

Base -2159.0 2806.3 
2,3 Multiple Search -2153.8 2800.0 0.00 7,35 

Linear -2153.8 2799.5 

Base -763.1 4442. l 
2,2 Multiple Search -762.3 4425.5 0.00 3,49 

Linear -762.3 4424.9 

Base 0.0 5093.8 
2' 1 Multiple Search 0.0 5072.3 0.00 2.71 

Li near 0.0 5071 . 7 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

It is possible to accelerate the rate of convergence to solution for 

nonlinear structural equations in the pre-buckled region by attempting to 

extrapolate to a "zero residual" position. In accelei;ating the rate of 

convergence, it is also possible to reduce the cost of each iteration 

through bypassing the factorization of the global stiffness matrix. Fur­

thermore, the total number of iterations can be reduced dramatically. 

In the event that the linear scalar extr~polation is not accurate 

enough to satisfy the convergence er i ter i a, a new search di re ct ion ortho­

gonal to the first can be selected by considering the effect of each 

residual individually on the calculation of the scaling constant, w. By 

extrapolating along the new direction, a solution closer: to the exact 

solution is possible. However, in order to obtain significantly better 

results with the new direction of search, the residuals must be calculat­

ed in as accurate a manner as possible. This accuracy may require a 

local increase in the cost of computation, but should be more than offset 

by the allowance cif larger step sizes, a reduction in the number of iter­

ations, and the omission of the factorization of the global stiffness 

matrix. 

There are basically three approaches to reducing the cost of solu­

tion of nonlinear structural equations. They are as follows: 

1. Reduce the cost of all iterations by placing as many terms on 

60 



the right-hand side as possible. (All displacements on the right-hand 

side are assumed thereby simplifying calculations.) 

2. Reduce the number of iterations by use of a linear scalar ex-

trapolation if convergence is possible. 

3. Increase the load step size and reduce the average cost per 

ite~ation and perhaps the number of iterations by use of the multiple 

search extrapolation. 

Unfortunately, the first and third methods are mutually exclusive but 
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the second can be used to complement either. Which of the above combina-

tions would be most effective is problem dependent and warrants further 

investigation. 

The recommendations for future study are as follows: 
I 

1. Complete the modifications necessary to calculate the residuals 

as accurately as possible so as to determine more fully the advantage 

available through the multiple search extrapolation. 

2. Investigate the possibility of using extrapolations on indivi-

dual degrees of freedom. This investigation could result in an addition-

al cost savings and might better enable the extrapolation procedures to 

solve strain-hardening problems (see Appendix D). 

3. Complete the investigation of the ability of the extrapolation 

procedures to solve problems with pl~sticity effects. 

4. Expand all procedures as necessary to reduce the cost of solu-

tion of dynamic problems. 

. ' 
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APPENDIX A 

PRINCIPLE OF VIRTUAL WORK 

An excellent reference for the principle of virtual work is Tauchert 

[8]. Considefing the law of conservation of energy, meaning dissipative 

effects are neglected, it may be stated that the work done by all exter-

nally applied forces is equal to the change in strain energy of thestruc-

ture. This may be written as 

w = u e 

which becomes for a single degree of freedom, 

where 

e 

0 

.!_ F u 
2 q q 

e 
= f ( qp a de ) dV 

v 0 qp qp 

q = a particular degree of freedom; 

F = e~ternally applied force at q; 

u = displacement at q; 

V = volume; 

= the qp component of the strain qp 

= the qp component of the stress qp 

tensor; 

tensor. 

and 

If the structure is in equi 1 ibrium and remains in 

(A. 1) 

(A. 2) 

equ i1 i bri um through 

a virtual displacement ou , then the force, F , remains constant, the 
q q 

stress, a , remains constant, and the actual work done by the externally qp 

applied force in moving through the virtual displacement may be written as 

oW = I T OU dA + f po pq ouqdV e s q q v 
(A. 3) 
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where 

T = surf ace traction at q; q 

A = area; 

Po = mass per unit volume; and 

p = body force at q. q 

Using the equ i lib r i um expression, 

(A.4) 

where n is the unit normal in the p direction at q, and the divergence 
p 

theorem, 

J v • a dv = I ; . n d s 
v s 

(A. 5) 

where V is the Laplacian operator. Equation (A.3) can be rearranged to 
' I 

show that 

(A.6) 

or 

J T ou dA + J p 0 Pq ou dV = f cr oe dV s q q v q v qp qp (A.7) 

where Equation (A.7) may be taken to be written in index notation with 

application of the rule of summation on repeated subscripts. 

Tauchert [8] has restated Equation (A.7) in words as: 

If a structure is in equilibrium and remains in equilibrium 
while it is subject to a virtual distortion, the external vir­
tual work owe done by the external forces acting on the struc­
ture is equal to the internal work oU done by the internal 
stresses. 

This is, of course, a variational calculus expression of the law of 

conservation of energy as shown in Equation (A.2), the only difference 

being that in Equation (A.2) the stresses and externally applied forces 
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are functions of displacement, whereas in Equation (A.7) the stresses 

and externally applied forces are not functions of the virtual displace­

ments. 



APPENDIX B 

DEVELOPMENT OF THE STRUCTURAL EQUATIONS 

Sta~ting with the virtual work Equation (A.7) ~xpressed in terms of 

the notation in Figure 6, it can be seen that 

J (S + L'IS ) o(L'IE )dV v qp qp qp (B. 1) 

Furthermore, the Lagrangian or Green strain in the current configuration 

can be written as 

1 . . ' 1 
E = - (u + L'lu ) + -2 (up + L'lu ) qp 2 q q ,p p ,q 

+ -21 (u + L'lu ) . (u . + L'lu ) . 
m . m , 1 m m ,J 

(B. 2) · 

so that the variation in strain, o(L'IE ), due to a variation in incremen­qp 

tal displacement, o(L'lu ), is given by 
q 

o (L'IE ) qp 
1 1 

= oE = - o(L'lu ) + -2 o(L'lu ) qp 2 q ,p p ,q 

1 1 
+ - u o(L'lu ) + - u o(L'lu ) 2 m,q m ,p 2 m,p m ,q 

+-21 (L'lu) o(L'lu) +-21 (L'lu) o(L'lu) (B.3) m ,q m ,p m ,p m ,q 

Substituting Equation (B.3) into Equation (B.l), the resuli is 

J (s + L'IS )[21 (o(L'lu) + o(L'lu) + u o(L'lu) v qp qp q ,p p ,q m,q m ,p 

+ (L'lum) ,q o(L'lum) ,p]dV = f v(p 0 Pq + p0 L'IPq) o(L'luq)dV 

+ fs(Tq + L'ITq + L'IG Tq) o(L'luq)dS (B.4) 
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Equation (2.6} resulted from a rearrangement of Equation (B.4). How-

e~er, a differeent rearrangement was necessary to put the equation in a 

form suitable for development into a computer algorithm. This arrange-

ment is as follows: 

1 JV ASqp [T (o(Auq),p + o(Aup),q 

+ (u + Au ) o(Au ) ]dV m,q m,q m ,p 

= J (p p + p AP ) o(Au )dV v 0 q 0 q q 

+ J (T + AT +AG T ) o(Au )dS s q q q q 

- J . s [2
1 (o(Au ) + o(Au ) ) v qp q ,p . p ,q 

+ (u + Au ) o(Au ) ]dV m,q m,q m ,p 

Reviewing the definition of these terms, we have · 

S =known state of stress at intermediate configuration; qp 

AS = unknown; qp 

u =known displacement at intermediate configuration; 
q 

Au = unknown; 
q 

p0 Pq = known body force at intermediate configuration; 

p0 APq = known increment in body force; 

T = known surface force at intermediate configuration; 
q 

AG Tq = unknown; and 

AT = known increment in surface force magnitude. 
q 

(B.5) 

Since the incremental stress, AS , is a function of displacement, the qp 

constitutive relationship is needed and may be expressed as 

AS = D AE qp qpab ab (B.6) 

where D is a material tensor, a known function of the current qpab 



71 

configuration, and 

1 1 
+ -2 L'iu u b + -2 L'iu t.u b m,a m, m,a m, (B.7) 

Subsiituting Equation (B.7) into Equation (B.6) and then into Equation 

(B.5), the result is 

J I 
D [-2 (Aua,b + Aub ) + (u L'iu b v qpab ,a m,a m, 

I I 
+ 2 Aum,a Aum,b)) [2 (o(Auq) ,p + o(L'iup) ,q) 

+ (u +Au ) o(L'iu ) ] n,q n,q n ,p 

= Jv(po p q + Po L'iP ) o(L'iu )dV q q 

+ f (T + AT + L'iG T ) o(tiu )dS s q q q q 
' I 

I + o(Au ) - J s r2 (o(tiu ) v pq q 'p p ,q 

+ (u m,q 
+ Au ) m,p o(Au )]dV 

m,q (B.8) 

Equation (B.8) is now in a form suitable for developing the computer 

algorithm. Without great explanation it is simply stated that the old 

form of finite element analysis with basis functions instead of shape 

functions was used to deve I op the a Igor i thm which appears as 

where 

([A)T f [B2]T [D] [Bl) dV [A]) {L'i~} 
v 

= [A]T f [r]T (p {P} + p {AP})dV 
v 0 0 

+ [A]T f 

- [A]T f 
s 

v 

[r]T ({T} + {L'iT} + {ti6T})dS 

[B2]T {S}dV 

[r] =basis function matrix; 

(B.9) 
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[A] conversion matrix of constants; 

[B2]T =first bracketed term in Equation (B.8); 

[Bl]= second bracketed term in Equation (B.8); and 

{A~} = vector of general1zed displacements of nodes. 

All other terms are as previously defined. 

The entire left side of Equation (B.9) may also· be written as [K]{L\;}. 

However, it can be seen that the left side of the equation ·is nonsymmet­

ric. Since the efficiency of a symmetric eqt:1~tion solver is very much 

desired, the stiffness matrix was_ broken down into a symmetric part and 

a.skew symmetric part as shown, 

or 

K qp 

[K] = [K]s + [K]A 

so that Equation ~P· JO) can finally be written as 

where 

[K]s {A;} = {P} + {AP} + {T} + {AT} + {AtT} 

- {E} - [K]A {Avest} 

[K] =symmetric part of sti'ffness matrix; s 

(B. 10) 

(B.11) 

(B.12) 

[E] ~equilibrium correction term or the last line of Equation 

(B.9) or (B.8); 

[K)A = skew symmetric part of stiffness matrix; and 

{A; t} = e~timated nodal displace~ents. es 

All other terms a~e as ~reviously defined. 

Equation (B.12) is the final fofm in Which the structural equations 

exist before solution. A point of interest is that the right side of the 
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equation is either known or assumed, and the only unknown or unassumed 

term in the entire equation is the displacement of the nodes on the left 

side; therefore; solution and iteration are possible. 



APPENDIX C 

NONLINEAR ANALYSIS . 

In the finite element solution of the nonlinear structural equations 

(see References [5, 6, 16]), the displacement of any point is interpolat-

ed between the nodes using shape functions, [N]. For plane problems this 

may be written as 

{u(x,y)} = [N(x,y)] {u } node 
( c • l ) 

or in terms previously used 

(C.2) 

From the plane theory of elasticity (see References [8, 9, 17]), the non-

linear strain is written as 

l 2 (V ) 2] u + 2 [(u ) + ,x ,x ,x 

{E} 
l 2 ( v ) 21 (C. 3) = v + - [ (u ) + ,y 2 ,y ,y 

u + v + u • v 
,y ,x ,y ,x 

Substituting Equation (C. 1) into Equation (C.3) and simplifying, the fol-

lowing may be obtained, 

{ E} = (B] {u . d } 
no e 

(C.4) 

where [B]· is a matrix of derivative terms of the shape function [N] and 

of the nodal di sp I a cements {u d } . no e 

As can be seen from Equation (C.3), when the nonlinear terms are 
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used to express the strain tensor, factoring out the nodal displacements 

still leaves nodal displacements in the expression for the [B] matrix. 

This, of course, is what makes the [B] matrix a function of displacement. 

It is stated, without derivation, that the elemental stiffness ma-

trix may be expressed as 

[K] = f [B]T [D] [B] dV 
v 

(CS.) 

(see References [5, 6, 16]). The fact that the stiffness matrix is a func-

tion of displacement makes the problem nonlinear. The fact that the [B] 

matrix is a function of displacement makes the problem geometrically non-

linear. 

The material nonlinearity is due to the [D] matrix being a function 

of displacement, displacement history, load, pr whatever else the parti-

. cular program in use may dictate. For a thorough explanation of the con-

stitutive relationships of plastic deformation, see Jones [1], Mendelson 

[18], Bushnell [19], Anand [20], or Hibbitt [21]. This study dealt only 

with the nonlinear stiffness matrix; therefore, it made no difference 

whether the nonlinearity was material or geometric in nature. 



APPENDIX D 

PARABOLIC EXTRAPOLATION 

As can be observed from Table II, the linear scalar extrapolation is 

not as effective as the unmodified direct iteration procedure in the post-

buckled region. The reason for this is as stated earlier. The stiffness 

is changing too rapidly for a linear extrapolation to be effective. Hence, 

the motivation for a parabolic extrapolation is established. 

In the development of the expression for w, two different forms of 

the parabolic equation were used~ The first is for a stiffness relaxa­

tion (softening) condition and is shown as 

(x-a) = p(y-b) 2 

The second is for the strain-hardening case and may be viewed as 

where 

2 (y-b) = p(x-a) 

y = incremental force; 

x = incremental displacement; and 

a, b, p = parabolic parameters. 

(D. 1) 

(D.2) 

Furthermore, two major assumptions were necessary before the final devel-

opment of thew scalars for the cases mentioned. The first is 

l. To extend parabolic extrapolation to multiple dimensions, it 

-must be assumed that ~y to be a direct result of ~x. 

Under this assumption, Equations (D.l) and (D.2) may respectively be writ-

ten as 
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- 1 -
t, y = [ - - ] t;x 

2p·(y-b) 
(D.3) 

t, y = [ 2 p ( x -a) ] f;x {D.4) 

The second assumption is 

2. In the same spirit of the earlier made assumption; it must be 

assumed that the generalized forces as well as the generalized displace-

ments may be completely uncoupled. 

With much algebra and manipulation, the two cases may be summarized as 

shown in the following two figures (see Figures 18 and 19). 



1. Locate the points 

= (~u , F - R )---->(Linearly Elastic) 
0 0 

= (~u0 + d, F-R1)-----'>(Direct Iteration) 

(x3 , y 3) = (~u0 + wd, F - R2)-->(Linear Extrapolation) 

~·~{Save w} 

2. Calculate the Parabolic Parameters by Components 

3. Calculate the Constants K1, Kz, K3 

[2p·(F-R -b)] 
1 

[2p·(F-R -b)] 
2 

1 
K = -----
3 [2p~(F-b)] 

4. Calculate the Parabolic Extrapolation Constant, w* 

[R. + (w + 
0 

- - 1 2 
1 ) R l + (w - 2) R2 ] • d + z [ K1 + (w - 1 ) K2 + wK3] 

w = --~---~--------~---------
[ R - R ] • d + .!_ (w - 1) K 

0 2 2 3 

Figure 18. Stiffness Relaxation 
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1. Locate the Points 

(~1 • y 1 ) = (l'.u • F - R ) :> (Li near 1 y Elastic) 
0 0 

(~2. Yz) = (l'.u + a. F - R1 )--:>(Direct Iteration) 
0 

(~3' y 3) = (l'.u + wd, F - R2 )-:> ( L i near Extrapolation) 
0 

2. Calculate the Parabolic Parameters by Components 

3. Calculate the Constants c 1 • C2, C3 

cl - -2(p•d) 

c2 - [ (Rl - Ro) .a-2;:;. (L'.u -a) + p . d] 
0 

c3 - r (R + R1) • a+ 2i) • (L'.u - a) + p • Ci] 
0 0 

4. Calculate the Parabolic Extrapolation Constants, w* 

5. Choose the Desired (w*) by Comparison With (w) 

Figure 19. Strain Hardening 
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