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CHAPTEB I
INTRODUCT ION
Overview

At present, certain finite element codes can be used in conjunction
with large computers to produce solutions to virtually all static prob-
lems conceivable in structural analysis. In addition, well-behaved prob-
3lems such as those involving‘smaI] elastic deformations can be solved
relatively inexpensively and accurately. Comqutational difficulties do
" not arise until the stiffness of‘the structure has.become a function of
displacement or of displacement history. The former, known as geometric
honlinearity, occurs under large deflections, and the latter, known as
vmaterial nonlineérity, is inherent to some greéter or lesser degree in
é1l'deflections. |

The problem is termed nonlinear once the stiffness of the structure
has become a function of displacement because there is no longer a linear
relatfonship between the applied forces and the resulting structural de-
formétion. This additional complexity may require an iterative solution
prdcedure where an attempt to reduce some error term to Zero at each
iteratioﬁ ;akes place. Therefore, a non]ineaf problem is more expensive
to solve and can be much more so depending upon the degree.of nonlinear-
ity, tﬁe solution method employed, and the convergence criteria used.
Furthermore, there is no way to avoid nonlinear problems where ultimate

or failure analysis is needed because of the host of accompanying



nonlinear effects such as buck}ing, plasticity, creep, fatigue, fracture,
etc. The reduction in cost of solution thus becomes a prime considera-
tion.

There are at least three majof areas in which the cost of solution
of the nonlinear structural equations mayvbe reduced. 'They are:

1. The development of more sophisticatgd_hardware.

2. The reduction of the cost per iteration by linearizing some
terms and neglecting others depenaing on the problem.

3. Reduction of the number of iterations.
This study in no way attempts the first course of action. The second two
were investigated in detail and the findings constitute the major portion

of this dissertation.
Approach to the Problem

The nonlinear structural equations solved in this.study.were devel-
oped in incremental form by Jones [I]'using the principie of virtual work.
Large strain expressfdns were used and allowance was made for the inclu-
sion of plast}c deformation effects. The iterative proﬁedure used to
solve the structural equations is of the secant stiffness type, sometimes
referred to as direct iteration. The convergence criteria used to deter-
mine when iteration should stop was in all cases based on displacements
because only buckling problems were considered in this study. Only sta-
tic problems were investigated, but as implied above, both geometric and
material nonlinearities were allowed.

The finite élement codes and computer hardware necessary for solu-

tion of the structural equations were used in three different phases.



- Phase |: Code--MARCSTRUC
Computers--CDC 6600/6700 and 6400
Purpose--To determine validity of linear extrapolation.
Phase |1: Code--AGGIE 1 (see Haisler [2])
Computer--1BM 370/168
.Purpose--To determine validity of indfviduél dégree of
freedom (dof) linear exfrabolation;
Phase I11: Code--TRAINS (see Roderick et al. [3, 4])

Computers--CDC 6400, CYBER 74

Purpose--To determine validity of multiple search
extrapolation.

Computer codes and computer hardware were changed due to a change of loca-
|

tion in which that phase of the research was performed, which in turn

affected the availability of both hardware and softwarg.
Organization

Chapter Il consists of a literature review of the major procedural
techniques available for the solution of nonlinear structural equations.,
Also, it contains the developmentbof the structural equations with refer-
ence to appendices where the background theory is presented.

Chapter |11 presents the theory development in this study. It be-
gins with the motivation for the linear extrapolation development ;nd
continues through discussion of failure conditions for the multiple
search extrapolation. Reference is made to appropriate appendices for a
. more detailed explanation of theory.

Chapter {V briefly treats the modification of the existing computer

code and is followed by Chapter V where the results of application to



specific problems are presented. The problems considered were:

1. Bar-Spring (1 dof) |

2. Ring with Radial Loading (28 dof)

‘3. Ring witthreésure.Loading (28 dof)

L. Ring-Stiffened Cylinder (94 dof).

Chapter VI completes the report of the research pgrfofmed wifh a’
statement of pertinent findings and conclusions. A section on recommenda-

tions for future research is also presented.



CHAPTER ||
BACKGROUND THEORY
Solution Techniques

Nonlinear structural equation solution techniques belong to one of
two broad categories, either explicit or impl}cit. An explicit method
receives its name from the fact that all displacements calculated are
done so in terms of known values only, with some error term being moni-
tored at every operational step. The consequ?nce of sdlving highly non-
Iihear static structural equations explicitly may well be an increasingly
larger error.as shown in Figure 1 since iterafion is not performed. The
method of accuracy control is to monitor some error function, étop the
solution proceddre when the efrdr term becomes unacceptably large, cor;
rect for the error, then restart the procedure. This method generally
results in less accurate answers than does an implicit scheme and is un-
suitable for the extrapolation techniques presented in this study. There-
fore, an implicit type of solution was selected.

The implicit solution category may be subdivided once more. The re-
sulting divisions are according to stiffness matrix type, either tangent
or secant, see Cook [5] or Zienkiewicz [6].

The most obvious advantage of the tangent stiffness approach over
the secant stiffness method is that the former offers quadratic conver-

gence while the latter offers at best super linear convergence. However,
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in spite of this a secant stiffness approach was used. A justification

for this selection through comparison of the methods follows.

Tangent Stiffness (Newton-Raphson)

There are many references for the treafment of the Newton-Raphson
development such as Gerald [2] or Beveridge et al. [7]. Graphically, the
me thod fterates to solution as shownAin Figure 2.

Utilizing the notation of Figure 2, the general Newton-Raphson algo-

rithm can be written as

{Bup b= faud + Ik 17 (aF, R i=0,1,2,. .. (2.1)
where
i = the ith iteration;
{Au} = incremental displacement;
{AF} = externally applied incremental force;
{R} =

residual force (out of balance loads); and
[K] = tangent'stiffness matrix.

In the most general case, [K,

'+|]. {AFi}’ and {Ri} are all functions

of {Aui}. However, upon assuming {AF} to be a constant and biasing it to

zero, Equation (2.1) becomes

{au;

} = {au) - [K 17! (R (2.2)

i+]

which is a common form for expressing the Newton-Raphson method. This
clearly indicates that the incremental difference between two successive-
ly calculated displacements is due to the stiffness matrix and the resi-
dual force.

As shown by Tauchert [8], according to Castigliand's first theorem

written in index notation
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R, = - (2.3)
q
“where
g = a particular degree of freedom;
{ x = generalized displacement;
u = internal strain energy; and
R = residual force after above mentioned biasing.

Inspection of the above development leads to the observation that there
is an infinitesimal relationship between the generalized residual and

the generalized displacement which can be expressed as

BRq__ 32u
qu T %% 9x 9x
_ p q p
where
p = an index independent from q; and
qu = the qp component of the tangent stiffness matrix [KT].

It can be seen from Figure 2 that the stiffness matrices represented are
tangent to the equilibrium curve.

A possible difficulty with buckling problems is illustrated in Figure
3. If the tangent to the force-displacement curve becomes nonpositive,
the solution procedure fails. This difficulty and similar ones are like-
ly for fhe problems. of concern in this study.

The quadratic convergence offered by the Newton-RapHson method is
the most common single reason for its use. However, the stiffness matrix
may become ill-conditioned at near-buékling loads or nonpositive in snap-
through problems. Since these are the type problems considered in this
study, effective use of the Newton-Raphson method depends upon overcoming

difficulties due to the stiffness matrix.
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‘Alteration of‘step size or the introducfion of a modified‘Newton-
Raphson technique (see Reference [5]) cannot alleviate the difficulty.
Some accepted methods of maneuvering past the difficult region amounted
to stiffness matrix averaging from two different points in the solution
history. This is similar to a secant stiffness approach. .Therefore, the
major theme of‘fhis study was to find é way to accelerate the convergence
rate of a suitably stable secant stiffness solution_procedure for the
class of problems_that coﬁtain geometric and material ndnlinearities in a

pre-buckling region.

Secant Stiffness (Direct lteration)

As mentioned before, the secant stiffnes? matrix is an average stiff-
ness matrix between two points in the solutioﬁ history. A typical solu-
tion history is shown graphically in Figure'h; An average relationship
between the residual force and the generalized displacement must exist as
shown in Equation (2.3). It can be shown that a secant stiffness approach
yields only linear convergence.

The major reason for tﬁe solution of ;he direct iteration procedure
is its stability in regions where the Newton-Raphson method fails, as
'shown in Figure 5. This stability is apparently due to the recalculation
of the whole incremental displacement at each iterationl

There are conditions under which the direct iteration method also
will fail. In general, these can be overcome by an appropriate selection
'of incremental step size for the problem at hand. The step size selec-
tion should be such as to render a nonpositive definite stiffness matrix
highly unlikely.

The penalty inherent in using a secant stiffness method with its
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step size restriction is a large number of iterations for éhstiffﬁeSS re-
Taxation probleﬁ. Therefore, the development of an algorithm which Will
reduce the number of iterations per increment or reduce the cost of the
iterations is desirable if a secant stiffness solution procedure is to be

used.

Objectives

The secant stiffness solution procedure was selected in iieu of the
tangent stiffness procedure because of the ability of the qumer to solvé
buckling problems at and beyond the buckling load. However, modification
of the secant stiffness approach was necessary under the following guide-
lines to make it cost effective: ‘

1. Reduce the number of ite}ations by using the residuals and accom~
panying displacements to extrapoléte to a zer6 residual position.

2. Reduce the cost per iteration by reducing the complexity of the
calculation of the next incremental displacément.

3. Preserve the accuracy inherent in thg user's choiﬁe dfbfinite
element and finite element program.

L. Preserve the convergence characteristics inherent in the choice

of finite element.
Development of Structural Equations

The structural equations were developed in incremental form using
the.principle of virtual work with the Kirchhoff stress tensor and the
Lagrangian strain tensor [1, 9]. An abbreQiated development of the prin-
ciple of virtual work may be found in Appendix A.

Due to the importance of the structural equations to the application
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in Chapter V of the theory developed in Chapter'lll, aldetailed reproduc-~
tion of the development is shown in Appendix B. Briefly, htilizing the
principle of virtual work, Equation (A.7), and the various terms indicat-
-ed in Figukel6, Equation (A.7) for the current configuration may be re-

written as
fS(Tq +8gTy *+ 8T,) 8(8u )dA + fv(pqu + P AP) §(Auq)dv

= fv(sqp + Aqu) G(AEqp)dV | (2.5)

where A is increment of change in magnitude, and AG is increment of
change in direction. Substituting for the strain as shown in Appendix B,

Equation (2.5) can be written as

] (1) :
jv Aqu[i-(G(Auq),p + G(Aup)’q ) + Yn.q S(Aum)’p]dv

+ [ AS__(Au
TV qp m ,q m,p

e ], s (Aum)(g) $(au,) dv

- (5)
= fv(pqu * 0, APq ) G(Auq)dV

(6)
+ fS(Fq + AFq) a(Auq)ds
1 (7) (x: .
i Iv_sqp[i'(a(Auq),p v o () o)

+uo8(au) lav | (2.6)

Equation (2.6) is the result of the direct application of the prin-
ciple of virtual work by Jones [1], although many of the terms were pre-

viously identified by others as mentioned by Jones and as shown below:
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Termv(l)--SmalI displacement plus initial displacement matrix by
Marcal [10].
Term (2)--Initial stress or geometric stiffness matrix by Martin
[nj.
Term (3)--Apparently unidentified préviously.
Term (h)--lnit}ai load matrix by Hibbit et al. [12] and Oden and
| Keys [13].
Term (5)--Body load plus increment of body load.
Term (6)--Surface traction plus increment of surface traction.
Term (7)--Equilibrium load correction of Hofmeister et al. [14]
and Stricklin et al. [15].
The point of expressing the principle of virtual work in the fdrm
of Equation (2.6) was to show that before the‘complete variational formu-
lation various terms were overlooked, ignored, or unnecessary, depeﬁding
upoh the problem being sélved. However, it has been shown that without
using alf terms, problems involving buckling or high nonliﬁearity of mate;
rial characteristics may be solved incorrectly or with gross misrepresen-
tations due to the ill-conditioning of the stiffness matrix. Terms that
are normally insignificant may have-very significant éffects in nonlinear
regions. The possibility of reducing cost by femoving the "insignificant"
terms must be viewed with great care for nonlinear problemé.

As shown in Appendix B, the final form of Equation (2.6) is

[K] {aV} = {P} + {AP} + {T} + {aT} + {A T} - {E} - [K] {Av__.}

(2.7)
where
[K]S = symmetric part of stiffness matrix and a function of the

intermediate configuration;



{AV} = unknown incremental nodal displacements;
{P} = body loads;
| {AP} = increment in body loads;
{T} = surface loads;
{Af} = increment in magnitude of surface forégs;
{AGT} = increment in direction of surface forces and a function
of the intermediate configuration;
{E} = équilibrium correction vector and a function of the inter-

mediate configuration and the assumed incremen;al displace-
ments of the current configuration;

[K]A = skew symmetric part of the stiffness matrix and a function
of the intermediate configuration; and

_ i .
{avV__.} = assumed incremental nodal displacement.

est
The major difficulty involved in the solution of nonlinear equations
is that the stiffness matrix is not a constant and may be a function of

displacement or displacement history, or a number of other items. See

Appendix C.
Literature Survey

Background History

The reformulation and the factorization of the stiffness matrix is a
first order contribution to the cost of solution of nonlinear structural
equations. Consequently, the quadratic convergence of the Newton-Raphson
method in its various forms is very popular.

The most frequently used Newton-Raphson method is the modified
Newton-Raphson approach depicted in Figure 7. In order to reduce the num-

ber of reformulations of the stiffness matrix, the modified Newton-Raphson
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uses one stiffness matrix until convergence becomes too slow, as shown
at position AG3.

An early paper by Thurston [22] showed that the Newton-Raphson meth-
od could be used to find past-buckled solutions.along different branches
and pre-bﬁckled solutions away.from fhe instability region. Recently the
cost of solufion has been the subject in a number of pabers. Mondkar and
Powell [23] have used the constant alpha technique'to update thexstiff-
ness matrix inexpensively for‘the mo&ified Newton-Raphson problem.
Almroth et al. th]‘surveyed the possibilities of reducing the cost of
solution and state that an automatic choice of solution proce&ures holds
promise, see Reference [25]. Schmidt [26] stated that an automatic
choice of step size is most useful while Almroth et al. [27] included an
automatic selection of global shape functionsl Schmidt [28] also propos-
ed a method of extending the convergence domain of the Newton-Raphson

method so that a larger step size could be used. Many others sought a

less expensive solution for particular problems [29, 30, 31, 32, 33].

Current State~of-the-Art

The purpose of this study was, in pért, to reduce fhe number df iter-
ations required for solution and not to develop a finite element expres-
sion. The literature search was for methodS'coﬁcerning iteration reduc-
tion. When this research began in May of 1979, there were no published
articles, books or reports devoted to solution cost reduction cross-
referenced in the major periodical indices with the single exception of
a residual (out-of-balance-load) reduction technique proposed by Felippa
[34]. Felippa's method consists of setting up a functional whose magni-

tude is determined by a pseudo-Euclidean norm of the residual, R, and
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minimizing it. Unfortunately, the norm, defined as

(R} [WI{R} (2.8)

1
2
requires the definition of a weighting matrix, [W],Hsuch that nonhomogene-
ous terﬁs in {R} can be conQertéd to some common dimension or to a dimen-
sionless value. Thus the user must interact with the program to an unde-
sirable extent. Howevef, Felippa's work is the starting point for this
investigétion.

Recently, two papers concerning the reduction in cost of the solu-
tion procedure have appeared and two more have beeﬁ submitted for publi-
cation. Three of these papers, Geradin et al. [35], Matthies et al.
[36], and Strang [37] have taken similar approaches to that introduced
by Dennis, Jorge, and More [38] on Quasi-Newtgn methods. All of these
recent works attempt to update the stiffness matrix without going through
the full process of reformulation and factorization. The most popular

approach is to update the stiffness matrix by a matrix of rank two,
T -1 T
(K1 = (0 + Gw My 3D IR 70T+ v M) (2.9)

where [1] is the identity matrix, and {Vl} and {w]} are vectors dependent
on displacement and residﬁal values. This calculation requires m by n
operations, where m is the bandwidth and n is the number of degrees of
freedom. A norma]vstiffness update requires m by m by n operations.
This method involves changing the stiffness matrix slightly and then re-
evaluating the accompanying error. A large number of iterations may be
required to satisfy convergence within a given load step for highly non-
linear problems.

Crisfeld [39] combined the above approach aﬁd an elementary line

search, except the stiffness matrix is altered by a matrix of rank one.
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He restricted his work to-accelerating the iterations in a solution his-
tory obtained from a modified Newton-Raphson approach. Young [40] intro-
duced a more sophisticated line search based on minimizing the contribu-
"tion of the residual loads to the total energy of the system. Thisi
method, which is éxp]ained in detail in Chapter 111, requires only;n
operations for a scalar extrapolation term and somewhat more for the mul-
tiple search extrapolation technique.

The two newestvpapers in the area are by Pappas [41] and Kamat et al.
[42]. The procedure of the former searches in different directions for a
correct solution and the latter attempts to minimize the energy of the
structure. One can see from the above that the methods éurfacing for re-
ducing cost are beginning to embody common concepts.if not similar theory.
Clearly, theré'is a growfng recognition by thé fechniéaf community for
the need to modify the solution processes for nonlinear structural equa-

tions so as to reduce cost.



CHAPTER |11
DEVELOPMENT OF EXTRAPOLATION TECHNIQUES

The modifications for this study to the direct interation method are
based upon minimizing the work done by the residuals (out-of-balance
loads). The residual work term is an error in the strain eneréy'expres-
sion. Extrapolation methods are used to minimize this source of error

more rapidly than is possible with a direct iteration solution.

Linear Scalar Extrapolﬁtion

DeveIoEment

A graphical represenfation of the direct iteration method is present-
ed in Figure 4. The curve represents the calculated resistancé of the
structure. The original stiffness matrix, [Ko]’ is developed using mate-
rial properties and assuming linearly elastic deformation; cbnsequent]y,'
as shown in Figure 4, this stiffness matrix is tangent to the curve at
the origin. Upon application of the incremental load, AE, the displace-
ment AGO with associated residual, Ro’ is calculated. The displacement
Aao is used to update the stiffness matrix to yield [K]]. This stiffness
matrix, when fadfored and subjected to the incremental load, produces the
new incremental displacement, Aa], with its associated Eesidual, Rl'

This process continues until the convergence criteria are satisfied.

(See Figure 8 for this method in equation form).

23



{ou} = [Ko]'] {4F}
[K,1 = k(au) " lteration 1
{Ro} = {AF} - E[k]]{éo}

RN RS IRV
[sz = K(AG]) Iteration 2
(R} = (oF) - [k, 1{6,}

{duy} = [kZ]" {F}
(ks = K(au,) Iteration 3
(Ry} = (0F) - 2lk,1(6,)

{Au3} = (K17 aF)

To Convergence

where
[K] = global stiffness matrix;
[k] = elemental stiffness matrix;
{Au} = global displacements; and
{6} = elemental displacements.

Figure 8. Direct Iteration

24
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The manner of modification of the direct iterationAprocedure may be
seen by comparing Figures 4 and 9 and by comparing the equation forms in
Figures 8 and 10. The method developed to attempt minimization of the
work done by the residuals is identical to the direct iteration method

of Figures 4 and 9 up to and including the calculation of 451 and RI' It

is the manner of determination of the new estimated displacement, Aaz,
that is altered.
The linear extrapolation method is illustrated for a single-degree-

of-freedom in Figure 9. Linear extrapolation using the residuals Ro’ and

R] and the distance between them, d, results in an estimated position,

Aaz. However, Aaz is not the exact solution and a residual, §3, can be

calculated. The residuajs ﬁl and RZ

and the distance between fhem, 82,
supply the necessary fnformation'for a second extrapolation when it is
needed because of unsatisfied convergence crjteria. This procedure is
continued until some stopping criteria have been met as shown in Figure
1.

The development of the procedure for calculating the scalar w is not

as simple as Figure 9 may suggest. In a one-dimensional case it is a

simple matter to determine that:

W= o . | ‘ 3 (3.1)

However, since in general, the vectors Ro and R] are heterogeneous in
dimensional form, a division as shown above is impossible because this
vector space is not Euclidean. Thus vector lengths haVe no meaning even
though the inner products do exist. The solution to this difficutly was
obtained by considering the commonality of work done by generalized

forces moving through generalized displacements.
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To Convergence

Figure 10. Direct Iteration

{Aul}- {Auo}
{R }+{d,}
o 1
[u%}-{m}]- .
‘ Iteration 3
{Auo} + w{d]} '(Extrapolated)
K(AGZ)
{AF} - Z[k3]{5 }
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Referring folFigure 9,.it can be seen that by considering areas as
quantities of work, the extrapolation may take place without concern for
units. In other words, equating the work represented by the area of the
trapezoid ABDE plus the work represented by the area of the triangle BCD

to that of the trianglé ACE yields,

Ascp = Aa ’ (3.2)

Anspe * Paco T Mace

Next, substituting prbper values for the work leads to:

DR o+ R) A LR detRed |
-2-(R0+R])-d * 5 R (w-1) d=7R -wd. (3.3)
which reduces to:
R-d
W = e ; (3.4)
(Ro- Rl)'d

Comparison of Equation (3.4) with (3.1) shows that no difference exists for
a one degree-of-freedom problem and that the difficulty of generalized

units has been removed. -
Discussion

From Figure 10 it should be clear that by_éxtrapoiating'to obtain‘

the deflection Aaz, a major éource of solution expense, factoring of

thé stiffness matrix, is eliminated. Furthermore, as seen in Figure 11,
a possible savings in the total number of iterations may result from use
of the linear scalar extrapolation. The reason is that the linear scalar
extrapolation is a method which resembles a trangent stiffness solution
procedure without the stability problems. The earliest that program
logic in a Newton-Raphson procedure may detect a buckling péint is when

the stiffness matrix becomes very ill-conditioned. The linear scalar
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extrapolation program logic will recognize the same point when the scalar
w multiplied by the deflection d becomes very large; however, this had
not been observed to be a frequent occurrence. The condition is easily
recognized and can be compensated when it does occur.

Although nof“apparent from the previous devélopmént,'the linear

scalar extrapolation is a line search in the direction of d If the

1
convergence criteria are treated as a performance function, an optimiza-
tion technique such as the golden section search [7] could be used to
determine w. This approach is not attempted in this dissertation.

When the need exists for highly accurate deformations, the conver-
gence criteria is altered so as to require more iterations as illustrated
in Figure 12, because, in general, more accurate results occur with each
successive iteration. With this increased réquirement position 5 must be
reached before convergence can be satisfied whereas posiﬁion h.was suf-
ficient for the original convergence criteria. |In fact, if the conver-
gence criteria are reduced to the inner circle, then.thé direction of
seérch would not intersect the n-dimensional sphere of convergence, and
position 6 would be the closest the procedure could approach to the exact
solution at position A.

If the convergence criteria were such as to disallow convergence to
solution, a new search direction would need to be established. This
‘could be done in one of many ways. Two that could be used are:

1. Rename position 6 in Figure 12 as Aab and then fepeat the pro-
cedure listed in Figure 8. That is, calculate a new stiffness matrix as
a function of Aao; factor it, multiply by the load, obtain AG]; then

the difference between Aao and AG] would be the new search direction.

2. Through a means described in the following text, determine a
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Figure 12. Effect of Convergence Criteria
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séarch direction orthogonal to the.original search direction without fac- .
toring a global stiffness matrix. The solution procedure would then be
the same as before.

The second of the two possibilities mentioned above was selected
for investigation because it confinues in the mainstream of cosf reduc~
tion procedures. In fact,.if this method could solve all problems of
interest, only two global stiffness matrices will have been used for the

entire solution procedure at an incremental load step.
Multiple Search Extrapolation

Develogment

The development of the multiple search extrapolation procedure be-
gins with a close inspection of the linear scalar extapolation. Repro-

ducing part of Figure 10 for convenience,

tu} = [k 17" (oF)

[K]] = K(AGO) ' Iteration 1

{Ry} = {aF} = zlk,1{6 }
(a3 = [K17" {oF)

[K,] = Kau)) Iteration 2

{Ry} = {aF} - zlk,I{s,}

{d|} = {Au, -Au} | (3.5)

{R}-{d} Iteration 3 (3.6)

o [{RO} '{R]}]-{d]} (Extrapolated)

{duy} = {au ) + wid;} ' (3.7)
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Inspection of Equation (3.5) reveals that vector d] is a correction

direction to the vector Auo, as determined by the vector AG]. The change

in residual from ﬁo to R] is an indicator of the accuracy of the change
in displacement. The step size, Wis along a search direction is deter-

mined by calculation from the change in two successive residuals and

from the distance, d between the residuals.

'I,
An inspection of Equation (3.6) shows that the entire work done by

RO and R] in moving through the distance d] is considered without regard
to the amount of work contributed by each generalized force in the cal-
culation of Wy Consequently, this lumping of terms requires the a]ter~
ation of .each generalized displacement by the same multiplier, w, even
though some are greater contributors to the energy expression than
others. |

A method to select a new direction of search based on appropriately
weighting the scalar w for each degree of freedom must consider the
effect of that particular degree of freedom on the calcujation of Wy
This is done in a reverse fashion by removing the energy ‘terms due to an
individual degree of freedom from Equation (3.6). This results in the
equation,

(R }+{d} - (R_)d) 65.5)

w =
p [{Ro} - {R]}]'{d]} - (de - R]p)dlp

where the subscript, p, represents the individual component of the vari-

ous vectors associated with the pth degree of freedom and w: represents

a new scalar without the effect of the pth degree of freedoﬁ being used.
The term wz provides a means by which to determine whether the orig-

inal w extrapolation of Equation (3.6) is appropriate, relative to the

other degrees of freedom. Therefore, Equation (3.8) is the additional
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information necessary to help determine a new direction of search in the
event that the old direction fails.

Ideally, the search history would proceed as shown in Figure 13.

The original search direction, d, is as shown in Figure 13. . Position 4

represents the closest point of approach to the exact solution at posi-

V3
-

tion A . After reaching position 4 , a new search direction, d , is
found. Once fhe new direction has been established, convergence is sat-
isfied when position 5 or any other position inside thé convergence
criteria sphere is reached. |

A loss of effectiveness will result from searching in the direction

passing through the position 6 . This unnecessarily poor direction of

o

search could result from failure to insure that the direction d be or-

- I
thogonal to the original direction, d, and all prior search directions.

The manner of calculating the new search direction is as follows:

{Ro}'{dl} (5.6)
w = ~ - 3.
[{Ro} {Rl}] {dl}

L {R }+{d,}- (Rop)d]p (5.8)
p [{Ro}-{R]}T'{dI}-(Rop-R]p)d]p

Awpp =w - wp (3.9)
® _- _ | (Taw]{d}) -{d}

{d}" = [aw]{d;} [ TaT-Td] ] {d} - (3.10)

where the matrix [Aw] is a diagonal matrix consisting of Awpp diagonal
terms and zeros as the off-diagonal terms. The term in brackets in Equa-
tion (3.10) represents the scalar term that defines the portion of the
vector iAw]{d} that is in the d direction. This term is subtracted to
preserve an orthogonal search pattern.

The entire solution procedure is presented in Figure 14. Iteration



Figure 13.

~CONVERGENCE
CRITERIA

Direct Iteration With Multiple
Search Extrapolation
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{R }-{d }
[{R } -{ R, }] {d}
lteration 3
{Auo} + o, {d]} (Extrapolated)
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w -
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Figure 14, Direct Iteration With Multiple Search Extrapolation
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L through iteration n are represented as three dots to indicate a con-

tinuity pattern. Once the new search direction, d , has been determin-
-ed, an arbitrary magnitude in that direction is necessary to start the
solution procedure forward again. Care in this step size selection,

Wl is required because an excessively large one might cause éccuraéy

or convergence problems.
Discussion

The multiple search extrapolation procedure is extremely sensitive
to the calculation of the residuals; therefore, the residuals must be
calculated as accurately as possible. One requirement is that all per-
tinent data be updated at the end of each iteration rather than‘at the
end of the load steﬁ. However, the method ig fail-séfe. If an incor-
rect direction of search is determined, the method simply returns the
solution for the incremental displacement to zero because of the large

residuals which result.



CHAPTER IV
MODIFICATION OF COMPUTER PROGRAM

The major finite element programs used in this study are mentioned
in Chapter | and referenced in the Bibliography. All three codes are
very large multi-purpose programs used for solving nonlinear structural
equations withAboth geometric and material nonlinearities and possessing
both static and dynamic capabilities. In all three cases, in order to
implement the algorithms presented in Chapter Ill, it was necessary to
identify the subroutine in which the increnental displacements are cal-
culated. |If the residual loads were nof previously availanle a.signifi-
cant change in sevefal subroutines was necessary for their determination.

In orderlto nrovide a better undefstanding of the computer code
modi fication, only the TRAINS (Transient Analysis of Nonlinear Systems)
code is discussed. The major portion of the modifications are in sub-
routine ITERCK (see Table I).

Prior to modification subroutine ITERCK performed the dual roles of
determining if convergence had been satisfied and of updating the total
displacements so that terms dependent upon displacement could be calcu-
lated. In the modifiee form the subroutine ITERCK performs.all of the
following: |

1. Checks for Convergence and maximum iteration limit.

2. Initializes almost all variables needed for extrapolation.

3. Calculates the residuals.
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TASLE 1

SUBROUTINE I TERCK

SURROUT INE ITERCK (TF;DF;rﬁvanNAPRHvNPPHySthNHIGrNUMNPv
1IHIR, IXLOADD)
DIMENSION TF (NDEGyNUMNP) » IF (NDEG» NUMNP )Y « TACNLIEG » NUMNP ) »
IDD(NDEGyNUMNP)vNAFhH(NUMNP)raﬂh(NanyNDFle)rUAha(l)
COMMON/CDC/DUML (1) » STEF yIIUMA (A)
COMMON/MINRBAK/IGy ITEMIT» ITEM2T» ITEM3T
COMMON/VECOUT/NUMOUT ]
COMMON/VECRAN/ITEMP1 y ITEMP2, ITEMP3yNDS4A y NSZCRD
COMMON/NEWVEC/TIOMEGA» ITFSAVy INCF » KOUNT » IFMULT » IBUFFR
COMMON/NEWVCT/ITEMKL » TTEMK2
COMHON/RLMLMB/IRLMI;IRLMQ;IPEMS;IRLMQ:IREN
COMMON/NEWFAC/XPFMULT
COMMON/CYCLE/MINCYC yMAXCYCy TOLERy ICYC» IFSAVEy IR0y IRy
1IDDSAVy IOKyENERFR
1, ITERATE
COMMON/STATIC/ISTAT
COMMON/NZR/NEQST y NSTRIEES » LONCOR
COMMON/ARRAY2/DUM2S(25) » IRES1 » DUMS (S)
COMMON/MONDEG/ITREGy ITNODUZ
COMMON/SEQFIL/KFILE
COMMON/SPACE/INTS(1)
EQUIVALENCE (VARS (1) vy INTS(1))
Chxkxx  INITIALIZE VARIOUS TERMS NEEDRED WITH DUE REGARD TO WHEN
Cxkxkx  THEY ARE NEEXED. eksekdoioksdckkokRsokkkskokkrkdokikkrkkokddkoks
IOK = 0 ’
ND=NDEGXNUMNI
IDIR1=IRUFFR
IDIR2=IDIR1-END
INDIRI=TINTIR24+ND
IDIRA=IDIRI NG
IDIRS=TDIR4+ND
IRUFS1=INTRS
IRUFS2=TRUFS1+1
DWoUD1=0.0
nuwounN2:=0.0
DunuD3=0.0
nwoun4=0.0
Uint=1.0
D2n2=1.0
n3an3=1.0
n4n4=1.0
IFCICYCWNE.O) GO TO 9220
XPMULT=0.0
CALL SCLAVARS(IRIRL) v Q.09 NGy NUMNF«0)
CALL SCLA(VARS(IDIR2)y0.0yNDEG NUMNF»0)
CALL SCLA(VARS(IDIR3) »O.0sNDEGyNUMNF»0)
CALL SCLA(VARS(IDIRA)»0.0yNIEGs NUMNF »Q)
IREM1=1
IREM2=0
220 CONTINUE
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TABLE | (Continued)

9220 CONTINUE :
> KOUNT IS A VARIARLE INITTALIZED IN SURROUTINE MARC.
KOUNT=KOUNT 1
WRITE(551021) KOUNT
1021 FORMAT(X KOUNT=%,110)
ROD=0.0 ‘ .
R1D=0.0
FACT = (1.0/STEPXX2)
CALL READMS(3,yIyND»3)
ENERGY = ID(ITDEGs ITNODE)
IFC(IHIRLEQ.O) ENERPR=ENLIRGY
FERCH=ARS ( (ENERGY-ENERFR) /ENERFR)X100.0
WRITE (62100) ENERGY
100 FORMAT (X INCREMENT OF DISFLACEMENT IN THIS ITERATIONX,E15.7)
WRITE (6+105) ENERPR . :
105 FORMAT (k  INCREMENT OF DISFLACEMENT IN PREVIOUS ITERATIONX,E15.7)
WRITE (69110) FPERCH ‘
110 FORMAT (% FPERCENTAGE DIFFERENCEXyE135.7)
- ENERFR = DOCITDEGy ITNODE)
IF(PERCH.LELTOLER) IOK = 1
IF(IHIB.EQ.0) GO TO 900
IF(IOKJNE1.ANDLICYC . EQ.MAXCYC) I0UT=1
IF(IOUTLEQ.1) WRITE(S94600) .
600 FORMAT(/////7y 20X»%X MAXIMUM SPECIFIED ITERATTONS EXCEEDEDX)
IF(IOUT.EQ.1) IOK=1 : ' '
IF(IOUT.EQ.1) GO TO 900
IF(IOK.NE.1) GO TO 200
GO TO 200
00 CONTINUE
C % % Xx COMPUTE RESIDUALS
CALL WRITMS(8yVARS(IDNSAV) »NDS4A»7y-1)
IFCICYC.EQ.O) CALL UWRITMS(8yVARS(TINSAV) »ND&4»8y—-1)
CALL WRITMS (8yVARS(IXLOAD) »NUMOUT,1y~1)
IF(ISTAT.EQ.1) GO TO 800
Calll. WRITMS(B8yTAYNDS497»-1)
CALL READMS(8yVARS(ITEM2T) yND&A»7)
C %X % X COMPUTE MASS TIMES ACCELERATION
KFILE = 22 :
CALL UPTX(SXKsNPRHyVARS(ITEMIT) »VARS(ITEM2T) y NDEG y NDEG » NUMNP »
INDEG sy NAFRH y NDEG » NDEG)
O CONTINUE
X % STRESS PART OF RESIDUAL COMPUTED IN STRAIN» IN VARS(ITEMP3)
¥ X RBRING BACK B2TSIGMA VECTOR (LODCOR)
IF(LLOBCOR.EQ.2) GO TO 803
IF(ISTAT.EQ.0) CALL GMADDN(VARSC(ITEM2T) »VARSCITEM1T) »VARS(ITEM2T)
X y NDEG » HUMNP)
805 CONTINUE
CALL READMS(3,VARG(IXLOAD) yNUMOUT,1)
CALL GMADD (LA » TF o VARG CITIEMIP2) y NDEG y NUMNP )
IF(LODCORLEQ.2) CALL GMADD(VARS(ITEMP2) »VARS(IRESL) »VARS(ITEMP2)

[

80
C x
C x
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o oon
* I ¢ e

a0
3% ¥

880

Cxxxkx
C
c

245
47

248

252

X

X

IF(LODCOR.EQ.2) CALL GMADD(VARS(ITEMP2) yVARS(IRES1) yVARSC(ITEMPZ2) »
' NDEG » NUMNF)

IFC(ISTAT.EQ.0) CALL SMPY(VARS(ITEMP2) yFACT»VARS(ITEMP2) »NLIEG,

. NUMNP» 0)

CALL GMADD(VARS(ITEMP2) » VARS (ITEMP3) »VARS (ITEMP2) » NOEG » NUMNP )

X X THE RESINUAL FOR THE ITERATION JUST COMPLETED

X X IN VARSCITEMP2) '

X X NOW PUT THE RESIDUAL FOR THE PREVIOUS ITERATION IN RO

CALL MCPY(VARS(IR1) yVARS(IRO) yNIEGyNUMNP,O)

X X AND PUT THE CURRENT RESIOUAL IN R1

CALL - MCFY (VARS(ITEMP2) »VARS(IR1) yNDEGyNUMNIP»O)

ICYC=ICYC+1

¥ % IF TWO RESIDUAL VECTORS HAVE NOT REEN COMPUTEDSs

¥ % CANNOT EXTRAFOLATE

IF(ICYC.LE.1) GO TO 900

X X COMPUTE THE INCREMENT OF DISPLACEMENT IN THE ITERATION

CALL READMS(8yIDyNDy3) '

IF(ICYC.GT.2) GO TO 880

CALL MCPY(VARS(IDDSAV) » DDy NDEG » NUMNPyO)

CALL READMS(8yVARS(IDDSAV) yND»8)

CALL GMSUR (DD, VARS (INNSAV) » VARS (ITEMP2) y NDEG » NUMNP)

CALL WRITMS(8yDD,NDS4A»3y—1)

CALL MCPY(VARS(IDDSAV) yVARS(ITEMML) » NDEG » NUMNF»O)

GO TO 8835 ’

CONTINUE

- CALL READMS (8yVARS(ITEMP1) yND64,8)

X

CALL WRITMS(8»VARS(IDDSAV) »NIS4r8s—1)

CONTINUE , .

% % COMFUTE THE ROD AND R1D SCALARS

NUMEER=NIEGXNUMNP

CALL GMPRI(VARS (IRO) yMARSCITEMP2) yROD, 1 NUMBER 1)

CALL GMFPRD(VARS (IR1)»VARS(ITEMP2) yR10y1 s NUMBER 1)

OMEGA=RON/ (RODI-R1D) .
KEEP TRACK OF HOW FAR WE EXTRAFOLATE IN A GIVEN DIRECTION
BY DETERMINING THE MULTIFLE OF THE ORIGINAL INCREMENT IN
THAT DIRECTION AND SFECIFYING IT AS XFMULT. KKK AKK

IREM2=IREM2+1

IN=1

INN=0 ,

GO TO (947,949)5IN

IF (VARS ( ITEMF2+INN) +EQ.O0.) GO TO 948

IN=IN+H1

IF (IREM2.EQ.1) VARS(IBUFS1)=VARS (ITEMP2+TNN)

XFMULT=XPMUL T +VARS ( I TEMF2+INN) /VARS ( IBUF51)

INN=INN+1

IF (CINN.GT.NUMEER) GO TO 952

GO TO 946

WRITE(&,951)

FORMAT (X GARBAGE1%)

CALL COMSUR(VARS(IDDGAV) yVARS(ITEMP1) » VARSCITEMP2) » NDEG » NUMNP)
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TABLE | (Continued)

?51 FORMAT (X GARBAGE1X)
STOP

249 CONTINUE
"WRITE(6y950) OMEGA» IREM1y XPMULT

250 FORMAT (X OMEGA=%yE15,.7,5XyXFOR DIRECTION ¥»I3y% XPMULT=XrE15.7)
CALL GMPRD(VARS(ITEMP2) »VARS (ITEMP2) »DUDU Y 1 NUMEER»1)

Cxxkxkk DETERMINE IF A NEW SEARCH DIRECTION. IS NEEDED. Xkksxdkekkdkkxkskkxx

IF (ARS ((XPMUL. T-VARS (IRUFS2) ) /XPFMULT) o GE.1.0E~-2.0R.

X IREM2.LT+4.0R.IREM1.GT.4) GO TO 1010
Ckxkkx CALCULATE THE NEW SEARCH DIRECTION BASED ON THE RESIDUALS
C AND HOW MUCH THEY AFFECT THE DETERMINATION OF OMEGA. Xkkkkkk

00 1000 I=1,NUMEER

NOMEGA=IOMEGA+I~-1

VARS (NOMEGA)=0.0

IF (ABS(VARSC(ITEMP24I-1)).LT.1.0E~-60) GO TO 1000
FROI=VARS (IRO+I~1)XVARS(ITEMF2+I-1)
PRIEVARS(IR1IHI-1)KVARS (I TEMP24+I-1)

FOMEGA= (ROD-FROL) / (ROU~-R10-FRODFFRID)

VARS (NOMEGA) = (OMEGA-FOMEGA ) XVARS (ITEMP2+I-1)

1000 CONTINUE . . .
Ckkkxx DUEFINE THE TERMS NECESSARY TO INSURE THE NEW SEARCH DIRECTIONS
(™ ARE IN FACT ORTHOGONAL. xx

CALL .GMFRI(VARS (IOMEGA) y VARS CITEMF2) »IWOUDU » 1y NUMBER 1)
GO TO (Sy4y35291)yIREM1 '

1 CALL OGMPRIDN(VARS(IOMEGA) yVARSC(IDIRA) »DUWNDUDA, 1 yNUMRERY 1)
IF(DAD4.EQ.1,) CALL OMPRO(VARS(IDIRA) yVARSC(IDIRA) yD404» 1 NUMBERY 1)
CALL GMFRI(VARS(IOMEGA) »y VARS(IDIRS) »OWDUD3 » 1y NUMBER 1)

IF(D3N3 506142 CALL GMPRIVARS(IDIRS) yVARSC(IDIR3) y D3N3y 1 s NUMBERY 1)

3 CALL GMPRD(VARS (IOMEGA) yVARSC(IDIR2) »DWDUN2y 1 y NUMBER» 1)

IFCO2D2,EQ.1.) CALL OGMPRO(VARS(IDIR2) yVARSC(IDIR2) y D202y 1 yNUMBERY 1)

4 CALL GMPRI(VARS(IOMEGA) yVARSC(IDIRL) »DWOUDNL » 1y NUMRER» 1)

IF(OID1.EQ.1.) CALL GMPRO(VARS(IDIR1)»VARS(IDIR1) »D1D1,1yNUMBER»1)

S CONTINUE
CkxkxkX CALCULATE THE NEW SEARCH DIRECTION. ¥ekckkR R KRR KK KRR KK KKKk
Do 1005 I=1yNUMRER
NOMEGA=TIOMEGA+I-1
DWNL=VARS (IOMIZGA+I~1) ~(DWIUDU/DUDY ) XSVARSCITEMP2+I~1)

=~ (IWODL /70101 XVARSCIDIRIFI-1)
~(OWHUN2/0202) XVARS(INIR24+I-1)
= (OWRUL3/N303) XVARS(IDIR3+I-1)
=~ (RWDUDA/D404) XVARSC(IDIRALI~1)
CXXkkkX SAVE THE NEW DIRECTION FOR FUTURE USE. XXxkkdokiokkkxsekskkokkxkkk
NIDIR=C(IBUFFRY (IREM1-1)XNO) +I-1
IFCIREMLILLTWG) VARS(NIDIR) =DUWNL
VARS (NOMEGA ) =DWNL
1005 CONTINUE
IREM1=IREM1+1
CkXxxXX SAVE THE FIRST DIRECTION FOR FUTURE USF.  XXXXXRKKRKKK
IF(IREM1I.EQ.2) CALL MCPY(VARSC(ITEMF2) »VARSC(IDIR1) »
X NUEG y NUMNF»0) :

t3

3 ¥ I *
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TABLE | (Continued)

1046
1047

1048
1050
1051

1049

1010

1011

1784

NDEG » NUMNP»0O)
IREM2=0 . ‘
CALL MCFY (VARS(IOMEGA) y VARS (ITEMF) y NDEG y NUMNFP»0O)
IN=1 ' ' .
INN=0

GO TO (1047,1049)s 1IN

IF (VARS(ITEMP2+INN) JEQ.0.) GO TO 1048

IN=INt1

OMEGA= (0,001 XXFMULT) X (VARS(TRUFS51) /VARS(TTEMP2+INN))
INN=INN+1

IFCINNJGT.NUMBER) GO TO 1050

GO TO 1044

WRITE(651051)

FORMAT (X GARRBAGE2X)

STOP

CONTINUE

XFMULT=0.0

CALL MCFY(VARS(IRO) yVARS(IR1) ¢y NDEG» NUMNP»O)

CONT INUE

CALL SMPY(VARS(ITEMFR) yOMEGAy VARS(ITEMP2) y NDEG» NUMNFF»O)
VARS (TRUFS2) =XPMULT 1 :
WRITE(651011) XFMULT

FORMAT (X PMULT=XsE15.4)

WRITE(Sy1784) VARS(IRL) vWARS(IR111)sVARS(TIRL+2),
X VARS(IR1+3) yVARS(IRT4+43 y VARS(IR148) »

X VARS(IR1HND 45) s VARG CIRTANI-5) »WARS (IR1END-4) »
* ‘ VARS(IR14NII-3) y VARS CIR14HND-2) s VARG (IR1HND-1)
FORMAT (¥ TR1= Xy4(E11.4)s/+X% IR1(LAST SIX NNOFY= X»6(E11.4))

CALL GMADD(VARS(ITEMP2) »yVARSCITEMP1) » DD NNEG y NUMNF)
ENERFR=DDC(ITOEGy ITNODIE)
CALL WRITMS(8yDlsNIS64y3y—-1)

900 RETURN

END




Ll

L. Determines the scalar w.

5. Determines the new search directions and ingures orthogonality
to all previous search directions.

6. Updatesithe total displacements with the incremental displace-
ments. 4
Subroufine ITERCK is listed in Table 1.

Almost all large nonlinear structural programs use.dynamic alloca-
tion. Because of dynamic allocation, the implementation of the algorithms
présented in this study may be tedious. There are a number of subtle
special cases at branch points, particularly in the transition from one

search direction to another. However, the effort will be cost effective.



CHAPTER V
APPLICATION EXAMPLES

This chapter contains two examples verifying the uSeFuIness of the
linear scalar extrapolation, two examplés of application of the mujtiple
search extrapolation, and a discussion of é problem involving méterial
and geometric nonlinearities. The first two examples are a bar-spring
buckling problem with one degree of freedom and a pressure loaded ring
with twenty-four degrees of freedom. The second two examples are a radi-
ally loaded ring with twenty-eight degrees of freedom and a p;essure
loaded ring with twenty-eight degrees of freedom. The final problem is
a ring-stiffened cylinder under pressure loading. This chapter also con-
tains a discussion of the ability df the proposed algorithms to facili-

tate the solution of each problem as indicated by the results.
Linear Scalar Extrapolation

Bar-Spring Problem

To demonstrate the validity of the linear scalar extrapolation pro-
cedure, the one degree-of-freedom bar-spring problem which was previously
solved by Jones [1] is presented. The bar-spring problem is illustrated
in Figure 15. The length of the spring is unimportant if nonlinear
effects do not enter into the calculations for the deflection of the
spring. The bar was modeled so as to allow only a change in length and

no flexural or shear deformation.
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A varying load, P,was.applied at the end of the bar where the spring
is attached as shown in Figure 15. Clearly, the problem has only a sin-
gle degree of‘freedom with a highly nonlinear deflection response to the
applied load, as can be seen in Figure 16 in which the exact response is
graphically illustrated. The bucklfng load for this problem with the
statgd parameters is exact]y six pounds.

In determining the results (Table Il), three forms of calculation
were used. The exact values were determfned analytically. The ''old"
values were calculated using the direct iteration procedure without the
linear scalar extrapolation. The ''new' values were calculated with the
linear scalar extrapolation modification included. The parameter used
for comparison in Table Il is the number of iterations (small raised
superscript) required to satisfy‘the~convergegce criteria indicated at
the column heading. The convergence criteria represent a ratio of two
successive incremental displacements in the solution history.

It should be noted that at the buckling load the tolerance required
to obtain two significant digits accuracy, 1.001, the jinear scalar ex-
trapolation required five iterations as compared to twenty-six iterations
for the unmodified approacH. However, the new method required three
iterations more than the four performed by the unmodified procedure in
the post-buckled regfon because the linear extrapolation does not follow
the hardening stiffness of the structure very well. For buckling analy-
sis where displacements are required, the greatest interest is generally
in the pre-buckled region which is where the greatest savings in the num-
ber of iterations occurred, since not only were fewer iterations made,
but each iteration was less expensive due to the linear extrapolation by-

passing the factorization of the global stiffness matrix.
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Figure 16. Load Versus Displacement forrBar-Spring Problem
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BAR-SPRING PROBLEM

TABLE 11

Convergence Criteria

Load Exact :
(1b) Method (in.) 2.0 1.5 1.1 1.01 1.001 1.0001 1.00001
0.1 old 0.0062506
: New 0.0062506
0.23536 '
3.0 0ld 0.224580 0.224580  0.23288!  0.234792 0.23534% 0.23537%  0.235377
New 0.224589 ' 0,224580 0.23288! 0.234813 0.235355 0.23537° 0.235377
1.0000 .
6.0% 0ld 0.593550 0.681921  0.794363 0.9663413 0.9968526 (0.999703°% 1.00005!
New 0.593559 0.681921 0.879112 0.98498% 0.99892°> 1.0000° 1.0000°
1.7646
9.0 old 1.79571 1.7910! 1.7690! 1.76401 1.76461 1.76461  1.76L461
New 1.7957! 1.79101 1.76331 1.76441 1.76461 1.76L46! 1.76L463
2.0000 )
12.0 01d ‘ 1.93990 . 2.00401 1.99972_  2.00003 2.00004 2.0000" 2.0000°
New 1.93990 2.00401 2.00113 2.00015 2.00007 2.00008 2.0000°
2.1617 -
15.0 0ld 2.17520 2.15400 2.16311 2.16173 2.1617" 2.1617% -~ 2.16176
New 2.17520 2.15400 2.1633!1 2.16185 2.16177 2.1617° 2.161710
2.2891 .
18.0 old 2.26860 2.28630 2.2904! 2.28923 2.2891% 2.28916 2.28917
New . 2.26860 2.28630 2.29041 2.28935 2.28927 2.2891°9 2.289111

Note:

*Buckling load.

difference between the new and old methods.

When the number of iterations (displayed as superscripts) is

less than (?), there is NO

64
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Pressure Loaded Ring

The problem of a pressure loaded ring is presented to demonstrate
that with the linear scalar extrapolation, deflectfons in a pre-buckled
region can be calculated less expénsively and more éccurately than with-
out the extrapolation. The uniformly applied external bressure is allow- -
ed to vary up to the buckling load of 60 psi (pounds per square inch).
The fing is modeled through 90 degrees at shown in Figure 17. The 90-
degree arch is divided into two substructures. The degrees of freedom
per node are:

1. Z--Lateral translation

2. R--Vertical translation

3. dZ/ds--Rotation

L., drR/ds--Rotation.

The rotations are defined as positive in the direction indicated byve
shown in Figure 17. The ring is modeled with a modulus of elasticfty of
30 x 106 psi and a radfus of 20 inches. A kicker force is applied at
node 1 of substructure 1 in the negative R direction with a magnifude of
3.4 x 10_6 pounds. The purpose of the kicker load is to force the ring
into a buckled mode shape without significantly affecting the magnitude
of the deflections.

As there was no exact solution other than the known coilapse load
of 60 psi, the tolerance chosen is 1.001. This is the tolerance that
yielded two significant digits accuracy for the bar-spring problem. The
results obtained are shown in Table I11.

As can be seeﬁ from the results in Table |11, the reduction in itera-
tions realized by using the linear scalar extrapo]ation is excellent. In

fact, for the 59.5 psi load, the unaltered version did not satisfy the



Figure 17.

Finite Element Model of a Ring
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TABLE 111

RING PROBLEM (1.001)

Substructure 1 (in.) Substructure 2 (in.)
Node 1 Node 1
Load D.0O.F. R D.0.F. Z
(psi) Method Iterations (x 10 in.)
7 0ld 2 -309.24 -162.98
New - L -309.27 v -162.98
21 old 5 -1005.40 -412.13
New L -1005.70 -411.79
35 0ld 9 -1946.40 ' -417.61
New 4 -1947.70 -416.36
49 old 23 --4027.60 715. 44
New 3 -4030.40 718.24
56 - 0ld 54 -8839.00 5050.00
New 3 -8896.30 5107.10 .
0ld “149% -34785.00 30700.00
59f5 New L

-37665.00 33570.00

*Maximum number of iterations allowed. Convergence not yet satisfied.

4]
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convergence criteria after 150 iterations. Probably, many more itera-
tions would have been required to satisfy convergence. Clearly, the

linear scalar extrapolation is very powerful under such circumstances.
Multiple Search Extrapolation

fAs explained in Chapter 11l and illustrated in Figﬁre 12, there are
conditions under which the convergence criteria cannot be satisfied by
use of the linear scalar extrapolation. Thus the ﬁeed exists for a mul-
tiple searcH extrapolation method. Ideally, the multiple search extrap-
olation will locate the closest point of approach to an exact solution
along a line search, change the direction of search, and then locate a
new closest point of approach. Eventually, the convergence criteria
should be satisfied. However, it is importanL that the residuals be cal-

culated in as accurate a manner as possible since the new search direc-

tion is highly sensitive to variations in the residuals.

Pressure Loaded Ring

The first test for the multiple search extrapolation became neces-
sary bécause of a possible need to decrease the convergence criteria of
the earlier mentioned pressure loaded ring to a tolerance of 1.0001. As
shown in Figure 12, this has the result of withdrawing the sphere of con-
vergence to a position where the line passing through d does not inter-
sect the convergence region. It is not possible to satisfy the conver-
gence criteria without selecting a new search directidn and proceeding as
before. The ideal situation is depicted in Figure 13.

The solution procedure used earlier in the linear scalar extrapola-

tion increased the load to 59.5 psi gradually by passing through load
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values.of 7 psi, 14 psi, 21 psi, 35 psi, 49 psi, 56 psi, and finally 59.5
psi. Due to the unavailability of an exact'solutionvfor this problem,
it was decided that the above mentioned SQIQtion would be used as a
""Base'' value against which to compare the linear scalar‘éxtrapolation
and the multiple'search extrapolation. In order to proVide é‘stringent
test for thése two methods, the series of load values.was selected so as
to pass through 7 psi, 14 psi, and 59.5 psi. The step sizes were chosen
so as to increase the effect of the nonlinearity as much as possible
without introduﬁing plasticity effects. The results for the final dis-
placements at 59.5 psi are shown in Table IV.

As can be seen from the results in Table |V, the ﬁultiple search ex-
trapolation was slightly better than the linear scalar extrapolation at
every degree of freedom shown. Thé rotationslare not shown in the inter-
est of brevity. ltiwas apparentlfrom the entfre solution hisfory_output
that an improvement toward the correct solution was ﬁade after the selec-
tion of the second search direction but no significant gain was made
thereafter in any of the following three search directions. In fact,
from an inspection of the residuals it was apparent that a source of
error was obscuring the true residuals from the multiple search extrapo-
lation procedure to such an extent that superfluous directions were be-
ing determined and then searched with the net resuit of zero progress
after the second direction.

One reason for this difficulty may be seen by inspecting Equation
(2.7). The next to last term on the right-hand side is a function of
both the intermediate and current configurations and_the stjffness matrix
is a function of the current configuration as is the‘fifth term on the |

right-hand side. Until this observation, the stress was only updated at
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TABLE IV

PRESSURE LOADED RING (59.5 PS1)

Displéceménts ' Percent
Substructure (x 106 in.) Closer
‘and DOF _ DOF
Node Method R i R Z.
Base -37665.0 0.0
1,1 Multiple Search -24643.0 0.0 0.18 0.00
Linear -24619.0 0.0
Base -34061.0 | 104.96
1,2 Multiple Search -22311.0 -117.15 0.20 0.15
Linear -22288.0 -117.49
Base © -24870.0 3461.50
1,3 Multiple Search -16375.0 1853.20 0.20 0.17
Linear -16358.0 1850.40
Base -13999.0 11180.00
1,4 Multiple Search -9355.2 6609.70 0.19 0.19
Linear -9346.2 6600.90 ’
Base -5443.5 21384.0
2,3 Multiple Search -3795.4 12950.0 0.19 0.19
Linear -3792.3 12934.0
Base -1130.3 30128.0
2,2 Multiple Search -901.2 18390.0 0.19 0.19
Linear -900.8 13368.0
Base 0.0 33570.0
2,1 Multiple Search 0.0 20531.0 0.00 0.19
0 20506.0

Linear 0.
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the end of each load step and»not at the énd of each iteration. Since
the multiple search extrapolation is very dependent on correct residuals,
a modification was made to update the stresses at the end of each itera-
tion. The pressure ring problem was run once more and the results are
shown in Table V.

Clearly, the results ére hore accﬁrate overall and the multiple
search extrapolation has increésed its advantage over the linear scalar
extrapolation. However, the advantage is still only maréinél, which is
far short of the expected results. The problem'with the feéiduals men-
tioned earlier waslstill apparent in the solution history; therefore, a
critical review of Equation (2.7)vis necessary. |

in Equation (2.7) all terms on the right-hand side are taken to be
applied forces even though some came origina]%y from the left-hand side.
as per Appendices A and B. The key term of interest is the last which
came from sepafating the stiffness matrix into a symmetric matrix and a
skew symmetric matrix and placing the skew symmetric part on the right-
hand side so as to take advantage of the efficiency of a symmetric equa- .

tion solver. But, notice that the term {A\7eS } is not equal to {AV}

t
excebt in ]inéar problems. This is clearly an important source of error
in the residua]s, albeit the approximation has been verf we]l.justified
in the past for cost considerations. Consequently, if a problem not as
nonlinear as the pressure ring problem were solved, a greater advantage

of the multiple search extrapolation over the linear scalar extrapolation

is to be expected.

Radially Loaded Ring

The difference between the radially loaded ring and the pressure



TABLE V

PRESSURE LOADED RING (59.5 PSI)

- 57

Displacements Percent
Substructure (x 106 in.) Closer
and DOF DOF
Node Method R+ Yiad R Z
Base -37665.0 0.00
1,1 Multiple Search -28315.0 0.00 0.32 0.00
Linear -28285.0 0.00
Base -34061.0 104.96
1,2 Multiple Search @ =-25618.0 ' -53.45 0.33 0.28
: Linear -25590.0 -53.90
Base -24870.0  3461.50
1,3 Multiple Search -18754.0 2312.00 0.31 0.31
Linear -18735.0 2308.40
Base -13999.0 11180.00
1,4 Multiple Search -10648.0  7904.50 0.30 0.33
Linear -10638.0  7893.60 .
Base -5443.5 21384.00
2,3 Multiple Search -4251.6 15324.00 0.28 0.33
Linear -4248.2 15304.00
Base -1130.3 30128.00
2,2 Multiple Search -964.4 21680.00 0.27 0.32
Linear -964.0 21653.00
. Base 0.0 0.00
2,1 Multiple Search 0.0 24179.00 0.00 0.31
Linear ' 0.0 24150.00
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loaded ring is that the applied loéd for the radialfy loaded ring never
changes direction, and the applied load for the pressure ioaded ring is
always normal to the surface. The resbonse of the radially loaded ring
is slightly nonlinear and buckles at approximately 90 psi while the pres-
sure loéded ring is highly nonlinéar and buckles at 60 psi. |

The results obtained from the pressure loaded ring are shown in
Table VI. The ''Base' load steps in psi were 7, 14, 21, 35, 49, 56, 59.5, 63,
66.5, 70, and 73.5. The multiple search extrapolation and linear scalar
extrapolation load steps in psi were 7, 14, and 73.5. The tabulated re-
sults are for the 73.5 psi condition.

Clearly, the multiple search extrapolation converged closer to the
base solution than did the linear scalar extrapolation. The manner in.
which the residuals behaved in the solution h%story also indicated that
‘more accurate residuals were being used. Once again reviewing Equation
(2.7), it can be seen that the third term from the end is identically
zero, the first and second terms from the end have less effect on the

solution due to the estimated displacement being very nearly correct.

Plasticity

Ring-Stiffened Cylinder

The only problem investigated which dealt with plésficity effects
was a ring-stiffened cylinder with 94 degrees of freedom. Due to a lack
of an exact solution against which to compare the results no detailed de-
scription can be made. However, due to the manner of convergence of the
problem there is little reason to believe that plasticity will present
larger difficulties for the extrapolation procedures described in this

study under a static load consideration.



TABLE VI

"RADIALLY LOADED RING (73,5 PSt)
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Displagements ~ Percent
Substructure (x 10° in.) Closer
and . DOF ~ DOF
Node Method R Z R Z
Base -10075.0 0.00
1,1 Multiple Search  -10070.0 0.00 16.67  0.00
Linear v -10069.0 0.00
Base - -9216.8 | -h98.92
1,2 Multiple Search ! -9209.0 -498.45 8.24 0.00
Linear -9208.3 ~498.45
Base -7029.3 -260.54
1,3 Multiple Search -7017.6 -258.48 3.31 0.00
Linear -7017.2 -258.48
Base : -4387.4 969.26
1,4 * Multiple Search -4376.8 969.90 1.85 0.00
Linear -4376.6 969.90
Base -2159.0 2806.3
2,3 Multiple Search -2153.8 2800.0 0.00 7.35
Linear -2153.8 2799.5
Base -763.1 Lih2 1
2,2 Multiple Search -762.3 h425.5 0.00  3.49
Linear -762.3 Lhoh 9
Base 0.0 5093.8
2,1 Multiple Search 0.0 5072.3 0.00 2.71
Linear 0.0 5071.7




CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

It is ﬁossible to accelerate the rate of cénvergence‘to solution for
nonlinear structural equations in the pre-buckled regioﬁ by attempting to
extrapolate to a “2ero residual' position. In accelerating the rate of
convergence, it is also possible to reduce the cost of each iteration
through bypassing the factorization of the global stiffnessvmatrix. Fur-
thermore, the total number of iterations can be reduced dramatically.

In the event that the Iinear scalar extrépolation is not accurate
enough to satisfy the convefgence criteria,aahew search direction ortho-
gonal to the first can be selected by considering the effect of each
residual individually on the calculation.of the scaling constant, w. By
extrapolating along the new.direction, a solutién closer to the exact
sé]ution is possible. However, in order t6Aobtain éignificantly better
results with the new dire;tfon of search, the residuals must be calculat-
ed in as accurate a manner as possible. This accuracy may require a
local increase in the cost of computation, but should be more than offset
by the allowance of larger step sizes, a reduction in the number of iter-
ations, and the omission of the factorization of the global stiffness
matrix.

There are basically three approaches to reducing the cost of solu-
tion of nonlinear structural equations. They are as follows:

1. Reduce the cost of all iterations by placing as many terms on

60
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the_right—hénd side as possible. (All displacements on the right-hand
side are assumed thereby simplifying calculations.)

2. Reduce the number of iterations by use of a linear scalar ex-~
trapolation if convergence is possible.

3. Increase the load step size ana reduce the average cost per
iteration and perhaps the number of iterations byvuse of the multiple
search extrapolation.

Unfortunately, the first and third methods are mutually exclusive but

the second can be ‘'used to complement efther. Which of the above combina-
tiong would be most effective is problem dependent and warrants further
investigation.

The recommendations for future study aré as follows:

1. Complété the modifications necesséryito calculate fhe residuals
as accurately as possible so as to determine &ore fully the .advantage
available through the multiple search extrapolation.

2. Investigate the possibility of using extrapolations on indivi-
dual degrees of freedom. This investigation could result in an addition-
al cost savings and might better enable the extrapolation procedures to
solve strain-hardening problems (see Appendix D).

3. Complete the investigation of the ability of the extrapolation
procedures to solve problems with plasticity effects.

L, Expand all procedures as necessary to reduce the cost of solu-

tion of dynamic problems.
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APPENDIX A
PRINCIPLE OF VIRTUAL WORK

An excellent reference for the principle of virtual work is Tauchert
[8]. Considering the law of conservation of energy, meaning dissipative
effects are nég]ected, it may be stated that the work done by all exter-
nally applied forcés is equal to the change in strain energy of the struc-

ture. This may be written as

|
which becomes for a single degree of freedom,

ot ™ Lo g deqY e
where
q = a particular degree of freedom;
F = externally applied force at q;
u = displacement at q;
V = volume; |
eqp'= the qp component pf the strain tensor; and
qu = the qp component of the stress tensor.

If the structure is in equilibrium and remains in equilibrium through
a virtual displacement Guq, then the force, Fq’ remains constant, the
stress, qu’ remains constant, and the actual work done by the externally

applied force in moving through the virtual displacement may be written as
s, = J's T, Sug dA+ fv Py Pq SuqdV (A.3)
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where
Tq = surface traction at q;
A = area;
Py = mass per unit volume; and
Pq'= body forée_at q.

Using the equilibrium expression,

T =0__n S (A.4)
q “ap p

where np is the unit normal in the p direction at q, and the divergence

theorem,
[,Veodv=[ 0c-nds (A.5)

where V is the Laplacian operator. Equationl(A.3) can be rearranged to

show that

SW_ = fv Iap S€qp 9 (A.6)

or

T 6Su_dA + P su dV=1[ o se dV A.
[ Tq 84 Iy 6 Pq q Iu %4 Sqp (A.7)
where Equation (A.7) may be taken to be written in index notation with
application of the rule of summation on repeated subscripts.

Tauchert [8] has restated Equation (A.7) in words as:

If a structure is in equilibrium and remains in equilibrium

while it is subject to a virtual distortion, the external vir-

tual work SWg done by the external forces acting on the struc-

ture is equal to the internal work SU done by the internal

stresses. ' :

This is, of course, a variational calculus expression of the law of
conservation of energy as shown in Equation (A.2), the only difference

being that in Equation (A.2) the stresses and externally applied forces
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are functions of displacement, whereas in Equation (A.7) the stresses
and externally applied forces are not functions of the virtual displace-

ments.



APPENDIX B
DEVELOPMENT OF THE STRUCTURAL EQUATIONS

Starting with the virtual work Equation (A.7) expressed in terms of

the notation in Figure 6, it can be seen that
T +4a, T + 4T ) &(Au)ds + P +p_ AP ) &(Au)dv
J( q % T q) ( q) fv(po atPo q) ( q)

= jv(sqp + Aqu) G(AEqp)dV : (B.1)

Furthermore, the Lagrangian or Green strain in the current configuration
can be written as
C

'I . '
E = (U + Au + = (u_ + Au
ap 2 ( q q),p 2 ( P p),q

’ ’

+ %—-(um + Aum) ; (um + Aum) . | : (B.2)i

so that the variation in strain, G(AEqp), due to a variation in incremen-

tal displacement, G(Auq), is given by

N —

§(AE_ ) = 6E_ =

] .
§{Au + = §{Au
qp qp ( q),p 2 ( p).q

1
2

N|—

+

3

u §(Au ) +
m’,p

. u G(Aum)’

sP q

(A’um)’p <S(Aum)’q (B.3)

N}j—

]
+ E-(Aum)’q G(Aum)’p +

Substituting Equation (B.3) into Equation (B.1), the result is

I (s

cS(Aum)’p

] |
+ A — (8 (A + A
Sqp [ (8(8ug) o+ 8(Buy) o+ o

ap
+ (Bup) q 8(auy) 1AV = f (g Py + oy APg) 6 (Aug)dv

+ [§(Tq + 8Tq + Ag Tq) 6(Aug)ds | (B.4)
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Equation (2.6) resulted from a rearrangement of Equation (B.4). How-
ever, a differeent rearrangement was necessary to put the equation in a
form suitable for development into a computer algorithm. This arrange-

ment is as follows:

I

] .
AS = (8(A + §{A
v 5qp [2 (’( uq),p} ( up?’q

+
+ (um,q Aum,q) 6(Aum),p]dV

fv(po Pa* %o qu) G(Auq)dV

+

T + AT +A.T) &(Au )ds
! q q ¥ B Tq) 8(bu)

l |
[y Sqp Iz (8(aug) o+ sau) )

+ (um’q + Aum’q) 6(Aum)’p]dv (B.5)
|

Reviewing the definition of these terms, we have -

qu = known state of stress at intermediate configuration;
AS = unknown;
qp
uq = known displacement at intermediate configuration;
Au_ = unknown;
q _
P Pq = known body force at intermediate configuration;
po APq = known increment in body force;
Tq = known surface force at intermediate configuration;
A. T_ = unknown; and
G q
ATq = known increment in surface force magnitude.

Since the incremental stress, Asqp’ is a function of displacement, the

constitutive relationship is needed and may be expressed as

Aqu = quab AEab (B.6)

where quab is a material tensor, a known function of the current
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configuration, and

1 ]
E, = E—(Au + Au, ) + 7 u Au

ab a,b b,a m,a m,b

= Au Au (B.7)

+ = +
7 Mna Ymb T 7 88 Anb

Substituting Equation (B.7) into Equation (B.6) and then into Equation

(B.5), the result is

[ D

]
v gpab [5'(Aua,b * Aub,a) * (um,a Aum,b

by Iz (8(8u) o+ 8(au) )

1
* E-Aum,a m, 2 P’,q

+ (un,q + Aun,q) G(Aun)’p]

]
—
—~
©

v Pq + 0, APq) 5(Auq)dV

+

[T+ ot + Ag T,) G(Auq)dé

| | ‘
"1y Spq [z (8(au) o+ s(au) o
+ (um q " bu_ p) G(Aum q)]dv (B.8)

Equation (B.8) is now in a form suitable for developing the computer
algorithm. Without great explanation it is simply stated that the old
form of finite element analysis with basis functions instead of shape

functions was used to develop the algorithm which apbéars as
T T -
([a1" [, [82]" [p] [BI1] dv [A]) {av}
= (A1 [, [r1T (o, P} + o {AP})dV

+ [A]T fs [r]T ({T} + {AT} + {AGT})dS

(17 J, (8217 {S}dv (B.9)

where

[r] = basis function matrix;



[A] = conversion matrix of constants;
[BZ]T = first bracketed term in Equation (B.8);

[B1] = second bracketed tefm in Equation (B.8); and
{Av} = vector of generalized disblacements of node;.

All other terms are as previously defined.b

The entire left side of Equation (B.9) may also be written as [K]{AV}.
However, it can be seen that the left éide of the equatiohiis nonsymmet-
ric. Since the efficiency of a symmetric equation<sdlver ig very much
desired, the stiffness magfix was_broken doﬂn‘fnfo;é‘symmetric part and

a skew symmetric part as shown,

t _ 1 ‘ , _]_ » _ ‘ '
lfqp‘— 5 (qu. LR (qu. _‘I‘<pq) | - (B.10)
or »
K] = [kl + Ik, | (B.11)

so that Equation (P.IO) can finally be written as

[Kl, {av} = {P} + {aP} + {T} + {AT} + {A.T}

- (B} - K], (av__ ) (B.12)
where | | |
[K]s = symmetric part of sffffness matrix;
\[E] = equilibrium correction term or the last line o% Equation
(8.9) or (B.8); =
[K]A = skew symmetric part of stiffness matrix; and
{A;est} = estimated nodal displacements.v

All other terms are as previously defined.
Equation (B.12) is the .final form in which the structural equations

exist before solution. A point of interest is that the right side of the
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equation is either known or assumed, and the only unknown or unassumed
term in the entire equation is the displacement of the nodes on the left

side; therefore, solution and iteration are possible.



APPENDIX C
NONLINEAR ANALYSIS .

In the finite element solution of the nonlinear structural equations
(see References [5, 6, 16]), the displacement of any point is interpolat-
ed between the nodes using shape functions, [N]. For plane problems this

may be written as

{ulx,y)} = INGGY)T L ) (c.1)
or in terms previously used
u = v (c.2)

a” "ap ek Yk
From the plane theory of elasticity (see References [8, 9, 17]), the non-

linear strain is written as

+ (Vv x)]

(€)= dv o+ Liw )2+ v y)2] (c.3)

Substituting Equation (C.1) into Equation (C.3) and simplifying, the fol-
lowing may be obtained,

{e} = [B] {u } (C.4)

node

where [B] is a matrix of derivative terms of the shape function [N] and

of the nodal displacements {unode}'

As can be seen from Equation (C.3), when the nonlinear terms are
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used to express the strain tensor, factoring out the nodal displacements

still leaves nodal displacements in the expression for the [B] matrix.

This, of course, is what makes the [B] matrix a fuﬁction of displacement.
It is stated, without derivation, that the elemental stiffness ma-

trix may be expressed as
[ = f (81" 0] [B] av | | (c5.)

(see References [5, 6, 16]). The fact that the stiffness matrix isa func-
tion of displacement makes the problem nonlinear. The faet that.the [B]
matrix is a function of displacement makes the problem geometfically non-
linear.

The material nonlinearity is due to the [D] matrix being a fuﬁction
of displacement, displacement histofy, load, or whatever else the parti-
.cular program in use may dictate. For a thorpugh explanation of the con-
stitutive relationships of plastic deformation, see Jones [1], Mendelson
[18], Bushnell [19], Anand [20], or Hibbitt [21]. This study dealt only

with the nonlinear stiffness matrix; therefore, it made no difference

whether the nonlinearity was material or geometric in nature.



APPENDIX D
PARABOLIC EXTRAPOLATION

As can be observed from Table Il, the linear scalar extrapolation is
not as effective as the unmodified direct iteration procedure in the post-
buckled region. The reason for this is as stated earlier. The stiffness
is changing too rapidly for a linear extrapolation to be effective. Hence,
the motivation for a parabolic extrapolation is established.

In the development of the expression for w, two different forms of
the parabolic eduation were used, The first is for a stiffness relaxa-

tion (softening) condition and is shown as
2
(x-a) = p(y-b) (D.1)
The second is for the strain-hardening case and may be viewed as
(y-b) = p(x-a) (D.2)

where

y incremental force;

X incremental_displacement; and

a,b,p = pafabolic parameters.
Furthermore, two major assumptions were necessary Eefore the final devel-
opment of the w scalars for the cases.mentioned. The ffrst is

1. To extend parabolic extrapolation to multiple dimensions, it
must be assumed that A; to be a direct result of Ax.

Under this assumption, Equations (D.1) and (D.2) may respectively be writ-

ten as
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- _—_—_]___ -
Ay = [Zp-(§ -E)] Ax (D.3)
Ay = [2p (x-a)] Ax : (D.4)

~The second assumption is

2. In the same spirit of the éarlier madé assumption, it must be
assumed that the generalized forces as well as the generalized displace-
menté may be completely uncoupled.
With much algebra and manipulation, the two cases may be summarized as

shown in the following two figures (see Figures 18 and 19).



1. Locate the points

(X], Yl) = (AUO, F"Ro)———;——~——>(Linearly'Elastic)

(XZ’ Yz) = (Auo +d, F"R]) >(Direct Iteration)

(X3, Y3) = (AUO + wd, F-R,) >(Linear Extrapolation)

2
*{Save w}

2. Calculate the Parabolic Parameters by Components

,(y? - Y%) (x; = x3) - (x, -xz)‘(yf - y;)

b, = iz[(y] -yz)(x] -x3) - (= x,) (v, ._y3)]§i

) (xI - xz? ‘ o
P [y, + y3) -2b](y, -y3) ;

3. Calculate the Constants Kj, Kg, K3

1
' 125 (F-, -b)]

1

2 [2p - (F-R, -B)]

1
3 [2p- (F-b)]

L. Calculate the Parabolic Extrapolation Constant, w*

. ﬁo+ wa-U§]+(w-ﬂRﬂ.a-+%[N+(w-U2%+w%]

w - - -
[Ro-§]°q+—;—(w-l)K

2 3

Figure 18. Stiffness Relaxation



1.

Locate the Points

(;], Y]) = (Au_, F - Ro) >(Linearly Elastic)

(;2, 92) = (AGO +d, F - ﬁl) >(Direct Iteration)

(;3, 93) = (AGo + od, F - EZ)———>(Linear Extrapolation)
Calculate the Parabolic Parameters by Components

o (3 = x5) (v =¥5) = (v = ¥,) (<] = x3)

i 200y = %)) byq = y3) = vy =yp) (g = x0) I
pi=iﬁx +:?-;30<-x)
] 3 ]. 3 .

Calculate the Constants Cj, C2, C3

c, = -2(p - d)

c, = [(R, -Eo) «d-2p- (AGO-Q) + p - d]

¢, = [(Ro+§]) «d+2p- (AGO-Q) + p-d]
Calculate the Parabolic Extrapolation Constants, w*

2 3
o -Gy + (€ -4 ¢ Cy)

2C]

Choose the Desired (w) by Comparison With (w)

Figure 19. Strain Hardening
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