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My son, if thou wilt receive my words, and hide my commandments with
thee, so that thou incline thine ear unto wisdom, and apply thine heart
to understanding; yea, if thou criest after knowledge, and liftest up
thy voice for understanding; if thou seekest her as silver, and searchest
for her as for hidden treasures; then shalt thou understand the fear of
the Lord, and find the knowledge of God. For the Lord giveth wisdom;
out of His mouth cometh knowledge and understanding. He layeth up
sound wisdom for the righteous; He is a shield to those who walk up-
rightly. He keepeth the paths of justice, and preserveth the way of
His saints. Then shalt thou understand righteousness, and justice, and
equity; yea, every good path. When wisdom entereth into thine heart,
and knowledge is pleasant unto thy soul, discretion shall preserve thee,

understanding shall keep thee.

Proverbs 2: 1-11
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CHAPTER I
INTRODUCTION

Although discussed by Pascal and Fermat, the negative binomial dis-
tribution was first formulated and published by Montmort (24) in 1714.

In 1907, Student (36) encountered the negative binomial while
studying the distributions of yeast cells counted with a haemocytometer.
He reasoned that if the liquid in which the cells were suspended was
properly mixed, then a given particle had an equal chance of falling on
any unit area of the haemocytometer. Thus he was working with the bino-
mial distribution and the fact that the ﬁrobability a binomial random
variable X assumes a value x is equal to the (x + l)st term in the ex-
pansion of (p + q)k where p, q, and k > 0 and p + q = 1; that is,

k> x k-x
P 4 s

x=0,1, 2, ..., k.
X

P(x=x)=(

Student estimated p, q, and k from the first two sample moments. In two
of his four series, the second moment exceeded the mean, resulting in
negative estimates of p and k, Nevertheless, these 'megative" binomials
fit his data well. He noted that this may have occurred due to a ten-
dency of the yeast cells '"to stick together in groups which was not al-
together abolished even by vigorous shaking" (p. 357).
There were several other cases that appeared in the literature

during the early 1900's where estimation of the binomial parameters re-

sulted in negative values of p and k. This phenomenon was explained to



some extent by arguing that for small p and large k the variability of
the estimators would cause some negative estimates to be observed.
Whitaker (38) investigated the validity of this claim. In addition to
Student's work, she reviewed that of Mortara (25) who dealt with deaths
due to chronic alcoholism and that of Bortkewitsch (7) who studied sui-
cides of children in Prussia, suicides of women in German states, acci-
dental deaths in trade societies, and deaths from the kick of a horse

in Prussian army corps. In view of the estimated errors associated with
the various estimates of p and the frequency of negative estimates,
Whitaker found it highly unlikely that all negative estimates of p and k
could be explained by wvariability. She, therefore, suggested that a new
interpretation was needed for the negative binomial, (q - p)-k, where
p>0, k>0, and q =1+ p. By expansion of this expression, we

find that the probability the negative binomial random variable X will

assume the values 0, 1, 2, ... is
k+x -1 X
P 0 = (S FFC )—P——qx+k : (1.1

In 1920, Greenwood and Yule (15) developed an accident proneness

model. They began by considering a Poisson random variable X; hence,

R
P(X =x) = el A , x=20,1, 2,

where X > 0 represents the expected number of events for an individual
in the population. If the value of )\ differs from one individual to the
next, and if ) is distributed according to the cumulative probability
function F(\) , the probability of observing x events in the total pop-

ulation is given by

(oo} X -
FAeMary . (1.2)
0 X:



Greenwood and Yule refer to (1.2) as a compound Poisson distribution.
Upon considering various forms of F(A) , they discovered the negative
binomial resulted when A varied according to a gamma distribution (12,
pp. 391-394).

The negative binomial distribution was also derived in 1923 by
Eggenberger and Polya (11) as a limiting case of an urn problem in the
following manner. Suppose an urn contains N balls of which Np are red
and Nq are white (p + q = 1). There are n successive drawings of a ball
made from the urn with replacement, and NS balls of the color last
drawn are added to the urn after each drawing. Let X denote the number
of red balls in n successive drawings. Then the probability X assumes

the value x is given by

P(X=x) = n) p(p+8) (p+28) ... (p+(x=1)8 )q(q+S8) (q+28) ... (q+[n-x+1]8)
=¥ = (x 1(1+8) (1+28) ... (1+[n-118) :
(1.3)

If we let n+*®, p> 0, and 6 > 0, while keeping np = A and nd = n

constant, then (1.3) becomes

A

- k(k+1).}.{§(k+x-1) <12n>x(lin>n |

P(X = x)

On setting A = k, it is apparent from (l1.1) that this is a negative bi-
nomial distribution (16, pp. 1392-1393).

The negative binomial has come to be applied in many fields includ-
ing accident statistics, population counts, psychological data, and com-
munications.

Our main interest in this distribution arises from our involvement
with entomological problems. We hope to develop methods, with a strong
statistical foundation, that researchers will be able to use easily.

Some of the procedures presented in this thesis have been field-tested



on cotton insects.

The mean is of primary interest in entomology, as it is in most
applications. Anscombe (2) reparameterized the distribution in the
1940's, using Y4 = kp and k. A random variable X is then distributed as
a negative binomial random variable if the probability mass function is

given by

_ [k +x - 1)( U > < k ) _
P(X = x) = ( k - 1 TR T+ & , x=20,1, 2, ...

=0 , otherwise

(1.4)

where U and k are positive. Here the mean is U and the variance is

u + %;-. It is evident that the variance both exceeds the mean and is
a quadratic function of the mean. Although various equivalent forms
exist in the literature, we shall consider Anscombe's which has become
almost standard.

In this thesis, our main objective will be to investigate some
problems of statistical inference related to the negative binomial dis-
tribution. The negative binomial may be viewed as a one-parameter dis-
tribution where either u or k is unknown or a two-parameter distribution
where both y and k are unknown. The two-parameter distribution is dif-
ficult to work with, and many simplifications result when we can assume
that we know k. However, when k is the unknown parameter, inference is
only slightly improved over the two-parameter problem. We do nof believe
that this last case arises very often in practice., Thus we shall con-
sider the cases where i is the unknown parameter and where both U and k
are unknown.

In Chapter 1I, we shall present some of the properties of the nega-

tive binomial distribution and discuss earlier research in our areas of



interest. Sequential procedures for estimation of the mean in the one-
parameter case will be developed in Chapter III, and a nonparametric,
sequential approach to estimation of the mean which is applicable to the
two-parameter negative binomial distributioﬁ is studied in Chapter IV,
Chapters V and VI focus on inference related to the second parameter
k. In Chapter V, a multistage procedure for estimating k is presented.
A proposed, fixed-sample-size estimation and testing procedure for a
value of k common to several populations is developed and compared to a

standard one in Chapter VI.



CHAPTER II

SOME STATISTICAL PROPERTIES AND PRIOR RESEARCH

ON THE NEGATIVE BINOMIAL DISTRIBUTION

In this chapter, we shall review some of the properties and pre-

vious work that has been done on the negative binomial distribution.

Properties of the Negative Binomial Distribution

It is interesting to note how each parameter affects the shape of
the negative binomial. In Figures 1l -4, U and k have a similar effect
on the shape of the distribution. When one parameter is held fixed, an
increase in the second one results in a shift of the distribution to the
right. As the value of the fixed parameter increases, the shape of the
distribution is more dramatically affected by changes in the second para-
meter. The similarity in the behavior of the parameters is further
evidenced when we note that both Y and k must approach infinity for
there to be no skewness or kurtosis.,

The probability generating function is

(1 - g\ ,
o(® = (14 2O 8] ] < EEE (2.1)

Since ¢X(t) is well-determined for |t| < > 1, all mo-
ments do exist. From (2.1), we can determine that the r-th factorial

about 0 is

E[X(r)] = (r - 1)! (
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The moment generating function is given by
-k
(1 = e5 k +
MX(t) =\1+ L;——7;~—~— , t < gn =l (2.2)
u
Using (2.2), it may be shown that the sum of n independent, identically-
distributed negative binomial random variables with parameters u and k,
NB(u, k), is also distributed as NB(nu, nk).

The negative binomial distribution with parameter U belongs to the

n
exponential family. It is easily proven  that I X, is a complete, suf-
i=1 _ 1 0
ficient statistic. Thus, given any sample of fixed size n, X = a z X,
i=1

is the minimum variance unbiased estimator of U.

Previous Sequential Estimation of U for the

One-Parameter Negative Binomial

Suppose we are interested in estimating the mean of a one-parameter
negative binomial distribution with a prescribed level of precisiomn.
Let n* be the minimum fixed sample size required to obtain the desired

precision of the estimate. We shall refer to n*

as the optimal fixed
sample size. Usually, n* depends on unknown parameters and is therefore
unknown. As a result, samples of random size N are used in the estima-
tion process. When working with sequential or multistage procedures,

we shall need some notation that indicates the randomness of the sample
size. Define X, to be the i-th observation from the population of inter-

est. Denote the sum of the first n observations by Tn and their average

by iﬁ. Also, let

and
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n
u2 = l( X o(x., - i.)z + 1).
n  n\. i n

i=1

Oakland (30) was the first to apply Wald's sequential probability
ratio test to tests of hypotheses about Y for a negative binomial
distribution. In doing so, he made two assumptions. The first was
that the value of k would be the same under both hypotheses, and the
second was that either k would be known or a precise estimate of k
would be available. Morris (26) employed Oakland's procedures after
estimating k using methods developed by Anscombe (2).

Sequential point estimation of the mean attempts to estimate the
parameter U with a prescribed degree of precision. The choice of an
appropriate procedure depends upon the method used to measure the pre-
cision. One approach attempts to estimate U with a specified coefficient
of variation of the mean, C. Estimation of U within a proportion p of
the mean with confidence 1 - ¢ is the goal of some procedures, and a
third method is designed to estimate the mean within d units with con-
fidence 1 - a.

In 1969, Kuno (19) presented two sequential procedures for the esti-

mation of the mean when the variance is of the form

ap + buz
where a and b are constants. Assuming a and b are known, he estimates
the mean using iﬁ and the variance by aiﬁ + bii .

The first of Kuno's procedures is designed to estimate U with a
specified coefficient of variation of the mean, C. Observations are

taken until the first time the estimated CV(X) is less than or equal to

the desired C; that is, until
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(aX + biz)/n
n n

<C . (2.3)

?{‘2

Then the estimate of the mean is taken to be E& . The advantage of this

rule is that it may be rewritten: Stop the first time that

Thus all major computations may be done before taking the sample, and
only the total needs to be calculated in order to determine whether or
not to stop. In a subsequent paper, Kuno (20) presented an asymptotic
expression of the bias associated with this method of estimation and

found it to be

2
aCy
a + bu

With this exception, the statistical properties of the process have not

been investigated. Therefore, from Kuno's work, we do not know if the

procedure actually achieves the desired coefficient of variation of X.
Allen, Gonzalez, and Gokhale (1) used this process and determined

the values of a and b by regression. From their data on Heliothis zea,

the bollworm, they had 49 estimated mean-variance pairs each based on
seventy-two five-plant samples taken in five different fields over a
three-year period. They determined the least squares estimates of a and
b in the equation,

s? = aX + bX°
Once a and b were estimated, Allen, Gonzalez, and Gokhale employed Kuno's
procedure.

Kuno's secpnd sequential procedure attempts to estimate the mean

with a specified standard deviatiom of i} do . This problem is closely
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related to estimation of U within d units with confidence 1 - 0. He

suggests taking observations until

aig + bii <4

n - 0
The stopping criterion can be written so that all major calculations
may be completed before drawing the sample. Thus we would stop the
first time

n(Va2 + lmbd% - a)
T <

n— 2b

The asymptotic bias for this process is

2
EQ_. a + 2bu
u

B=- a + bu

Again no investigation into whether or not this sequential procedure

actually attains the desired level of precision has been ;ade.

Later, Binns (5) presented a method of estimating the mean of a one-
parameter negative binomial distribution within a proportion p of U with
confidence 1 - a. The optimal fixed sample size required to achieve
this goal is

2
= (&)
PU

where z is the 1 - %—fractile of the standard normal distribution. He

X

also uses iﬁ as a preliminary estimate of U and i& + i;-as the estimate
of the variance. Thus he recommends adding observations to the sample
sequentially until
—2
_ X; 2 2
n>\x +—>(—> . (2.4)
— n k —
pX
2

z . .. . .
Letting a = Er and employing a finite population correction factor on
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nk, we may rewrite (2.4) as stop when

nk > a2 + 1 and Tn > a4y —2 . (2.5)

2 - nk -

N
]
[s5)

Denoting by (t, rt) the point of intersection of the sample path and the
stopping boundary (N - 1 < t f_N), Y is then estimated by

~ krt

Ww=—m—m7 -

tk—E

Note that u is basically the estimated value of X when the sample path
crosses the stopping boundary with the addition of the finite population
correction factor on tk.

Binns showed that for large a the distribution of the estimate is

approximately log normal with mean log iy and variance-JE . He approx-
a

imated the average sample size and the variance of the sample size and
investigated the adequacy of these approximations using Monte Carlo
methods. The effect of imprecise knowledge of k was also studied. Al-
though Binns showed that the estimate had some nice properties, he did
not determine whether or not the procedure achieved its goal of estima-

ting Y within py with confidence 1 - a.

Research Related to Nonparametric Sequential

Estimation Procedures for U

Other sequential procedures are available when the distribution of
the population is unspecified. Chow and Robbins (9) studied the proper-
ties of a method designed to estimate U within a specified distance d

with confidence 1 - 0. The stopping rule is of the form

{ )
N=m1nnzno > 1): n_>_—a-— .
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Taking §ﬁ as the estimate of {, they proved

lim —% 1 a.s

&0

lim P(JX, - p} <d) =1 -a
&0 g

1im B -y

o

Sproule (33) extended the work of Chow and Robbins to cover the means of
U—statistics.
AlNadéé (29) developed a process for estimating U within a proportion p

of the mean with confidence 1 - a. Using Y = iﬁ and the stopping rule

2
u 2
N = min(? z_no (i l)::(:2> < n(%) >
X
n

. . o . . . .
where again z is the 1 -5 fractile of the standard normal distribution,

he proved

lim ﬁ%-= 1 a.s.
0

lim P(JX - uf <pw) =1 -a
p>0

lim —E——ESN) =1
>0

Sequential point estimation of the mean when the distribution is
normal with parameters | and 0 was studied by Starr (34). He considered

a loss structure,

[ R S t
= A - +
LN ,XN u[ N
where A, s, t > 0. Introducing the term risk efficiency, he showed

that the ratio of the expected loss (or risk) associated with the se-

quential process to the risk associated with the optimal fixed sample



size tends to one as 0 * <,
Mukhopadhyay (28) developed a nonparametric, sequential procedure

for estimating the mean when the loss function is
L =A(‘)§\I—u)2+cN
N
where A and c are known positive constants, c being the cost per obser-
vation. Two assumptions were needed to prove the risk efficiency of the
|2+6

process: (1) 0 < Uo < 0 < for a known 0_ and (2) E(lX

< ©
0 ) for

some § > 0.

Ghosh and Mukhopadhyay (14) further developed this last sequential
method so that the only distributional assumption is the finiteness of
the eighth moment. This process was extended to cover U-statistics by

Sen and Ghosh (32).
Research on the Estimation of k

When considering the two-parameter negative binomial distribution,
the estimation of k poses a problem. The method of moments estimator

(MME) of k for a fixed sample size n is

Since k > 0, this estimate is not reasonable when the estimate of the
mean exceeds that of the variance. Haldane (17) derived the maximum

likelihood estimators (MLE). Using mj to denote the number of times a
j was observed in a sample of size n, the MLE of k is the root of the

~

following equation in k:

X co
n 2n(1+-f¥ = I m, %- = 1 + ... x———l————
k j=1 JI\k k+1 k+3 -1
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Anscombe (3) hypothesized that there is only one positive finite root
when si > §£ and none otherwise. Fisher (13) compared the asymptotic
efficiency of the MME and MLE. Other fixed sample size estimates are
available but seldom used.

Bowman and Shenton (8) presented formulas for computing the bias of
the method of moments and maximum likelihood estimators of k. Tables of
these biases were given for order %—and j§ . Using computer simulation
to draw samples of size 50, 100 and 200,nPieters, Gates, Matis, and Ster-
ling (31) compared methods of estimating k. Their conclusion was that
there appeared to be little difference in the biases under the method of
moments and maximum likelihood. However, both the method of moments and

maximum likelihood were superior to the other estimation procedures

considered.
Estimation and Testing for a Common k

Since insect counts are often fit well by the negative binomial
distribution, there have been a number of attempts to give a meaningful
ecological interpretation of the parameters u and k. | may be defined
as the average density of insects in the area of interest. The defini-
tion of k has been more elusive.

Anscombe (2) stated that k depends on the intrinsic power of a
. species to reproduce itself, while U depends on external factors. This
has led some researchers to search for an inherent value of k associated
with various species.

Waters (37) suggested that k measures the aggregation of insects.
Following his logic, small values of k indicate extreme aggregation

whereas the distribution of counts tendsto be purely random as k
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approaches infinity.

The idea of mean crowding and its relationship to k was explored by
Lloyd (22). Mean crowding, u*, is defined to be the mean number per
individual of other individuals in the same sampling unit., TIf the
underlying distribution is negative binomial, then %; , the ratio of
mean crowding to the population mean, is 1 + % . Assuming that this
ratio is constant for a given species of insect, we would then have
another interpretation for k.

There is no doubt that all of these are valid to some extent. How-
ever, there is a tendency to extend these interpretations to inferences
about the spatial distribution of insects. We believe that this is to-
tally incorrect.

Since there has been a vast amount of work devoted to the meaning
of k, it is important to be able to test for the equality of k's from
populations with differing means and to estimate that common k if it
exists., Let D, Si’ and Ei denote the sample size, estimated standard
deviation, and estimated mean, respectively, of the i-th population,
i=1, 2, ..., t. Anscombe (3) presented some methods of estimating ak

common to several populations with differing means. The most popular

X2
~ - R, . Ce—, 2 — e
approach was to choose k. so that the sum or weighted sum si-in -ir-"
c

was zero. In order to minimize the variance of kc, he suggested using

a weight for the i-th population of

i i
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and

for each of the t populations. The regression line of y‘ on x' passes

through the origin and has slope iL-. In order to increase the precision
k

c
of the estimate, each population may be weighted inversely to the vari-
ance. Hence,

4
.S(ni - Dk

(2 =Dy, 23,2
1 1

1
22z 2
KX + 1

w, =
1

k(k + 1) -

After iteratively performing a weighted regression until the last two
estimates of the common k differ by a negligible amount, a chi-square
test for equality of the k's from each of the t populations can then be
conducted. This testing and estimation procedure is the one most common-

ly employed at present.



CHAPTER III

SEQUENTIAL ESTIMATION OF M FOR THE ONE-PARAMETER

NEGATIVE BINOMIAL DISTRIBUTION

As mentioned in Chapter II, when M is the single unknown para-
meter, the negative binomial family of distributions belongs to the ex-

n
ponential family and has a complete sufficient statistic, z xi. Define

i=1
_ nk = n 2
Vn T ook + 1 Xn * nk + 1 Xn
2 p?
Since E(Vn) =07 = U + i;—and since Vn is a function of the complete suf-

- . s . - . . . 2
ficient statistic, Vn is the minimum variance unbiased estimator of 07,
. = . 2 .
Using Vn and Xn as the estimators of 07 and U, respectively, we shall
develop three sequential procedures for estimating the mean in this

chapter.
Controlling the Coefficient of Variation of X

After n observations, Xy X .y Xn’ suppose the loss incurred by

LR

estimating u by i; is given by

= 2
(Xn—u)
L = —"2—\o
o u

The associated risk is then

g /n
MZ

=
1

E(Ln) =

where C is the coefficient of variation of the mean. If C2 (or equiva-

21



lently C) is specified, then the fixed sample size required to achieve

the desired risk is

2

% (C) =(55) . (3.1)

Since Y and 0 are unknown, no fixed sample size procedure will achieve
the desired risk for all u, o.

Consider a sample of random size N with risk

Using (3.1) as a guide and substituting our estimates of 62 and U,
we would work with samples of random size

vy
N> ——— . (3.2)

T EO 2
In order for the right-hand side of the above equation to be well-defined
and positive almost surely, we will require sampling to continue until
at least one positive value has been observed. Simplifying (3.2) alge-

braically, we obtain

1 Nk N
NZC2< +Nk+1>

(Nk + X
XN (3.3)
> —E__il———_
C°(Nk + 1)
Solving the inequality for N, we find
N> -3 (3.4)
Ck

leading us to a minimum sample size., Therefore, we propose to sample

sequentially until

1 1

\Y
N = min(n z_n0==max<2,[—§— - E]): n z_——:?;i- and at least
Ck (cx)

(3.5)
one nonzero value has been observed)
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where [y] is the largest integer less than or equal to y. Taking advan-
tage of the nature of Vn’ we can rewrite (3.5) as stop when

n>n and T > nk .

o . D=k + 1) - 1

We shall now investigate the properties of this sequential process
by presenting some lemmas and a theorem. The main contribution of the
first lemma is that it assures us that the stopping criterion will be met
with a finite sample size for any fixed, positive C. The fact that the
ratio of the random sample size to the optimal fixed sample size tends
to 1 almost surely as C approaches 0 is proven in Lemma 2, and Lemma 3
states that the procedure is asymptotically efficient.

Lemma 1: N is nonincreasing in C and P(N < «) = 1 for any fixed C > 0.

Yy ' —ZVN
Proof: Let N(C) = — 5 - Then N (c) = —5 3 2 0. Hence N is non-
(XyC) Xy C

increasing in C. Also

P(N < =)

]
oy
|

P(N = )

=1 - 1im P(N > n)

n->o

v
=1-limPn<—_—n—2
> —-(CXn)

=1 - P(lim ni({?ﬁz)

n-—>w
=1
Note that 1lim N = ® a.s. sincen, > as C -+ 0 .
0
c+0
Lemma 2: lim.—§-='1 a.s.
_2=_c < n#*
c+0
Proof:
1 1 .
Case l: Suppose|—— - =| < 2 . 1In this case, n, = 2. So we must
—_— C2k k| — 0
have
\Y)
N - 1< N'12+(2-1).
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This implies

\

v —Eohg
(CXy_¢)
1 1 . 1 1
Case 2: Suppose o T > 2 . In this case, n, = - "%l
Ck Ck

Note: P(N = n.) = 0. The proof of this will be by contradiction.

0

Assume P(N = no) > 0. This implies it is possible to obtain

N2 07
(CX)
L N 1 N
T2\ Nk + 1% Nk + 1
C X
N
_1_<__N_> -
> C2 N+ 1 where N = ng - (3.6)
Substituting ng for N in (3.6) and rewriting the inequality, we have
1 1
n > _ 4L (3.7)
0 C2k k
However,
1 1 1 1
n, =|—S5 -T|<{5 -7 (3.8)
0 [Czk k] C2k k

So (3.7) and (3.8) give a contradiction which implies P(N = nO) = 0.
Hence

VN-—l

(Ciﬁ-l)z

Combining Cases (1) and (2), we have

N-1K< since N>n,  + 1.

0

N V-1

SN<—"73
(CXy_p)
2

—— < +2 .
(X))

Dividing by n® = (ﬁ%) , we obtain
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Using the fact 1lim N = « and invoking the Strong Law of Large Numbers,
Cc+0
we find

lim n—N*- =1 .
0

Lemma 3: 1im E<J%> =1
c>0

Proof: Using Fatou's lemma and Lemma 2, we have

lim inf EC£%>
0 n 0

Iv

E(1im inf 3 )
n

(3.9)
=1.

We shall complete the proof using exponential bounds, a technique

first presented by Mukhopadhyay (27). Let £ > 0 be given. Define

2
B=(L+e)n*=(+e)Z) = (1+e)(ii’.—£)—.
. (uC) uk02
Then E(N) = I n P(N = n) '
n=ng
B »
< I B+ PW=n)+ I nP(N-=n)
n=n0 nZ_B‘I'l
< (B+1)P<B+1)+ T(®)
where T(R) = T n P(N =n). Thus
ni§+l
() < B pace+n + I8 (3.10)

Then for sufficiently small C, if T(B) < L where L is a constant indepen-

dent of B, Lemma 2 together with (3.10) would imply

lim sup E(J%) <1l+ce
n*;, —
c>0

which together with (3.9) gives the desired result.
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Note from (3.5) that

V-1
{n = nlC n—l<—__£l—-—?? . (3.11)
(Cx__;)
V
n-1 . . 2 1 1 ,
Nown - 1K< — 5 implies that C7(n - 1) < — +-E , and this may be
X,y Xo-1
rewritten as
n-1
Eow, < B L (3.12)
i=1 * k(@ -1) -1
Let q(n, ¢) = 5 kn .
Ckn - 1
g\2 2 g2
Then n > B = (1 + €)<EE> implies that C"kn - 1 > (1 + €)<E> k- 1.
Hence
- kn < kn (3.13)
Ckn - 1 g\
(1 + s)(-ﬂ) k-1
kn

Define a(n) 2

a1+ &:)(%) k-1

- nkL
e(w + k) +k

Thus from (3.11), (3.12) and (3.13), we have

[ee]

T(B) = I n P(N = n)

n>B+1

= 2 (n+1)PW=n+1)
n>B
o) 1 2

iz (n+1)Pn<V<—j)
>R o CXn
2 2 nk

< I (@+D P( z Xy < 5 >
n>8 i=1 (1 + €)(%> k-1
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<z (nm+1) P(t
—_n>B

n
I x.>¢t a(n)) for any t < O

n

t 2 ox,
<I @+ P<e'ta(n)e =11, 1> :
n>f8

Therefore, by Chebyshev's inequality, we obtain for any t < O
n

T@) < I (m+1) et E<e =1 ) (3.14)
n>B

n
Since X ~ NB(u, k), I X, ~ NB(nu, nk) and

l"‘l
E *

Hence (3.14) becomes

[ e =)

Xi) £ \ TRk

-nk
@ t
T@) < I (a+1) e—ta(n) G +.E£ljg_2_l> for any t < 0 .
qzﬁ
So . . ok
TR) < & (a+1) inf(e"ta(“) (1 +l4-9——;~e——)—> > (3.15)
n>B t<0

Taking the first and second derivatives, we find that

- a(m)(k + 1)
t=14n U(nk + a(n))

is a minimum, and it can be verified that t is less than 0. Hence (3.15)

becomes
- (utk) (e+l) nk
e (u+k)+k k
T(B) < nEB (n + 1>[<1 + €) TR k)]
= . b, say.

n>R n
- 1

/n

Now bi > 2 <1 since (n + 1)n -~ 1
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and

(M+k) (B+1)
€ (U+k)+k ( k
el + k) + k

k
(1 +€) >] <1 for all € > 0 . (3.16)

To verify (3.16), consider
(U+k) (e+1)

e (U+k)+k k )
€ (U+k)+k/ °

£(€) = (1 +¢)
Note that £(0) = 1. By differentiating %n f, we can show that f is
a strictly decreasing function of €. These two facts give us that

f(e) <1 for € > 0.

i/n +> % < 1 implies that Z bn -+ L, a constant independent of
n>B

[ee]

Then b
B. So

T®Y < Z b *1L.
n>f B

Using Lemma 2 and (3.10) with the above, we have

lim sup E(ﬁ%)_ﬁ 1 +€
c*0
This together with (3.9) gives the desired result.

The preceding lemmas will be used to prove the risk efficiency of
the proposed procedure in the following theorem. The methods used in

proving this theorem were developed by Mukhopadhyay (28).

E(LN)
Theorem 1: 1lim ———— = 1.

o0 Rax(©)

Proof: Note that

- 2 — 2 4
E(L) EX -2 EX. - W
lim Fc) . =N . (3.17)

c*0 Ra ey ? 52

Observe that
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= 2
By =H) = 2 2
n n~
Thus N \2 N
— P z - N T ox. -
(XN _ U)Zn" i=1xi MZ_V i=1xl
= +
o2 o%a® o2n*
= I + J

Using a result due to Anscombe (4), we obtain

: 5 N, 1)}?

as C >~ 0 .

Then from a theorem due to Chow, Robbins, and Teicher (10), we have

o’En) _ EQD

E(I) =
ozn*

Using Lemma 3, we have E(I) - 1 as C - 0.

Il*

Hence the family {I} is uni-

formly integrable in the positive parameter C (23, p. 183).

Now from the stopping rule, we have

Nk 1

1
Nzc_2<Nk+1§N+

This implies

l-< Cz(k + 1)

N
Also
2
n*=(£_> _ utk
uC 2

These give us

L+ Kk +1)

C

S FO W
Nk + 1 2\k + 1

*
n_ .
N — uk

Thus

>2_ 1<(£>2< [(p+k)(k+l) 2

uk
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This, together with the fact that {I} is uniformly integrable im-
plies that {J} is also uniformly integrable. Herce, using Lemma 2, we
have E(J) - 0 as C > 0. Therefore, (3.17) becomes

- 2 %
E(X, - W)
XN n .

3 .
o

We shall also present a theorem closely related to one by Starr and
Woodroofe (35) but given here for completeness. Let {cn} be any sequence

of constants, and let n. be any positive integer. Define a stopping time

0

of the sequence Xis Xy ees by

29

smallest integer m > n

N such that iﬁ >c

0

= o if no such n exists, i.e., if Xn.<cn for every n

n
Oin<°° .
We assume P(N < ®) = 1 so that iﬁ is well-defined.

Theorem 2: If E(iﬁ) exists, then E(iﬁ) z_E(Xl) =Uu .

Proof: Without loss of generality, assume E(Xl) = 0. For any n > n

0
and any 1 = 1, 2, ..., n, we therefore have
oo [0.0] co u
S o x,dP =) ... [ [ [ ... [ [x dF(x)dF(x) ...
(N>n) i A —o o w1 i n
dF(x,,,)dF(x, ) ... dF(x,)
i+1 i-1 1 (3.18)
<0
where A denotes the set of values of Xqys X2’ cees Koo for which N >
K -
i-1and oo = min kck - z x, ).
i=1,3=1 J
It follows that for any n z_no
[/ X dP= [ x I
(w>n) " >n) ™
<0
since x = x, for some 1 < i < n and from (3.18). Also since X is in-
max i - - n

dependent of the event N > n - 1,
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;% ap=2=1 f X .dp

(¥>n-1) © D (yep-1) L
> ;] X dp (n > nn)
Z - 0
(N>n-1) -1
Thus for every n Z_no ,
n-1 - -
[ Eydp= T S X AP+ (N>{1—1)XndP i (Nin)xndP
(N<n) i=1 (N=1i)
n-1 _ _
> I [ X, dp + [/ X dp
i=1 (N=1i) * (x>n-1) T
n-1 _ f i
> 3 7
> { K; 4P+ sn 1y %a1 4P
1=nO(N—1)
n-2 _
= I /o x,dap+ S x 4P
i=n, (N=1) + (¥>n-2)
> > — —
- '—(N_f )X, 4P+ / x_,,dP
=y’ Mo (Wny) "0
i J X dp+ [ X_dP
(N—no) n, (N>n0) n,
> X dp
0
= E(in )y =0
0
Hence, -
E(X) =1lim S X_dP
XN n>® (Nin)XN
> lim E(X_ )
> 0

=0,
The lemmas and the first theorem have a drawback when considering
applications., They are limit results and give us no idea of the behavior

of the sampling procedure for moderate values of C. We used Monte Carlo
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methods to evaluate the process for moderate C and various combinations
of y and k. Random numbers, Yy Yos «ee, Were drawn from a uniform

(0, 1) population, and F—l(yi) was determined for each, where F is the
cumulative distribution function of a NB(Y, k) random variable. Hence
we obtained observations from the appropriate negative binomial distribu-
tions. This method was used in all of the simulations in this thesis.

The values of y and k were each allowed to vary from one to five by
increments of one since this is the range most commonly found in ento-
mology. Five hundred samples were taken for each combination of the
parameters. Observations were added to each sample until the stopping
criterion (3.5) was met.

In Tables I and II, we have presented the results of the simulations
for C= .3 and C = .1 . For each combination of the parameters, the op-
timal fixed sample size (n*), the average random sample size (ﬁ}, and the
estimated standard deviation of E.(Sﬁ) are presented. Also, the average
of the estimates of the mean, ?& , and their estimated standard deviation,

Siﬁ , were used to calculate the estimate of the true CV(E&), CV(%&) =

n|z>é’1

o]
=

It is interesting to note that the optimal fixed sample size is a

symmetric function of y and k. This follows since

0= (%)

1 <1 1)
= — _ + _— .
C2 u k

Thus for C = .3, n* = 13.33 when U =1and k =5 and when ¢t = 5 and k=1,

. . * =
In the simulations, n” and N are close even for a C as moderate as

.3 . The estimated standard deviation of N decreases as the mean in-
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TABLE I

ESTIMATION OF THE MEAN DESIGNED

TO OBTAIN CV(iﬁ) = 3%

k n* N S5 §£ Siﬁ é§(§ﬁ)
1 122.22 |22.74 .17 1.03 .32 .31
2 | 16.67 [17.25 .16 1.08 .33 .31
3 | 14.82 [15.72 .17 1.07 .32 .30
4 | 13.89 |14.94 .16 1.05 .32 .31
5 [13.33]14.21 .15 1.07 .33 .31
1 |16.67 {16.62 .09 2.08 .61 .29
2 [ 11.11 |11.54 .08 2.05 .56 .27
3 9.26 | 9.92 .09 2.07 .61 .29
4 8.33 | 8.94 .08 2.10 .61 .29
5 7.78 | 8.48 .08 2.07 .65 .31
3 1 | 14.82 |14.59 .06 3.15 .95 .30
2 9.26 | 9.70 .06 3.04 .87 .28
3 7.41 1 7.80 .06 3.15 .93 .30
4 6.48 | 6.99 .06 3.17 .87 .28
5 5.93 | 6.45 .05 3.16 .96 .30
4 1 |13.89 |13.70 .05 4,00 | 1.11 .28
2 8.33| 8.59 .04 4,11 | 1.15 .28
3 6.48 | 6.91 .04 4,07 | 1.16 .29
4 5.56 | 6.06 .04 4,10 | 1.17 .29
5 5.00 | 5.52 .04 4,08 | 1.15 .28
5 1 | 13.33]13.03 .04 5.02 | 1.37 .27
2 7.78 | 8.01 .04 5.06 | 1.46 .29
3 5.93 | 6.22 .03 5.21 | l.44 .28
4 5.00 | 5.47 .04 5.13 | 1.52 .30
5 bbb | 4,92 .04 5.18 | 1.50 .29

* Each entry is

based on 500 simulations.
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ESTIMATION OF THE MEAN DESIGNED
TO OBTAIN CV(XN) = 1%

TABLE II

u k n¥ N sy =XN si-N CAV(SC—N)
1 1 {200.00(201.13| .47 1.00 | .10 .10
2 1150.00[150.67| .45 1.01 .10 .10
3 |133.33|134.21| .44 1.01 .10 .10
4 |125.00{126.56| .46 1.00 | .10 .10
5 1120.00|121.44| .45 1.00 | .10 .10
2 1 |150.00{150.01| .24 2.00 .21 .10
2 [100.00{100.70| .23 2,00 | .21 .10
3 | 83.33| 83.85| .22 2.01 | .20 .10
4 | 75.00| 75.75| .22 2.01 .19 .10
5 | 70.00| 70.87| .23 2.00 | .20 .10
3 1 |133.33]133.09| .16 3.01 | .31 .10
2 | 83.33| 83.96| .15 2.98 | .30 .10
3 | 66.67] 67.04| .17 3.02 .33 11
4 | 58.33| 58.96| .16 3.01 | .31 .10
5 | 53.33| 54.02| .15 3.00 | .30 .10
4| 1 |125.00{124.93| .11 3.98 | .39 .10
2 | 75.00| 75.19| .11 4.01 .40 .10
3 | 58.33| 58.82| .12 3.99 | .41 .10
4 | 50.00{ 50.55| .12 4.01 41 .10
5 | 45.00| 45.68| .12 3.99 .39 .10
s | 1 {120.00]119.79 .09 4.99 .49 .10
2 | 70.00| 70.04| .09 5.05 .50 .10
3 | 53.33| 53.68| .09 5.01 .51 .10
4 | 45.00| 45.40] .09 5.02 .51 .10
5 | 40.00| 40.37| .09 5.05 .51 .10
% Each entry is the result of 500 simulations.
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creases, but it is less than one-half for every case considered.

The possible positive bias stated in Theorem 2 is small but notice-
atle when C = .3, but appears to be negligible for C = .1 . Lastly, the
CV(iﬁ) is close to the stated level even for C = .3 . There is a ten-
dency for the estimated CV(?&) to be slightly higher than the stated
C = .3 when the mean is small. However, when rounded to two decimal
places, éﬁ(ﬁﬁ) is equal to the specified C = .1 for all but one of the
combinations of the parameters considered.

There may be times when we are sampling from the negative binomial
distribution and believe we know k, but our knowledge of k is imprecise.
Considering the stopping rule as a function of k, we have

Nk

2k + 1) - 1

f(k) =

Taking the first derivative, we have f'(k) <0 for all Cc < 1. So as k
increases, we may stop with smaller values of Tn . Hence, to be conser-
vative, we would want to underestimate k.

If our value of k is not exact, how much does that affect our esti-
mates? This question was studied some, and the results are in Table III.
The true value of k is 2 and the mean is 1, but we used stopping rules
based on k from 1.1 to 3 by increments of .1 . We specified C = .1,
and thus the optimal fixed sample size is 150. Notice that we do tend
to take more observations when k is less than 2 and fewerrwhenliis great-
er than 2. However, the value of é%(iﬁ) is not affected greatly. Thus
slight misses in the value of k do not seem to invalidate the sampling
process.

Inspection of the proofs will show that all of the lemmas and

theorems proven hold when Kuno's procedure is applied to the negative
P



36

TABLE III

STUDY OF THE EFFECT OF IMPRECISE KNOWLEDGE OF
k WHEN THE GOAL IS TO CONTROL CV(X&) = .1%

u TruifV;lue Vaiizuﬁzdk N sy XN Siﬁ CV(XN)
1 2 1.1 191.74 | .42 1.00 .09 .09
1.2 183.69 | .41 1.00 09 .09
1.3 177.33 | .40 1.00 .09 .09
1.4 172.47 | .43 1.00 .09 .09
1.5 167.57 | .43 1.00 .10 .10
1 2 1.6 163.10 |.44 1.01 .10 .10
1.7 160.18 |.47 1.00 .10 .10
1.8 155.88 |.45 1.01 .10 .10
1.9 153.88 | .44 1.00 .10 .10
2.0 150.33 |.45 1.01 .10 .10
1 2 2.1 149.19 |.47 1.00 .10 .10
2.2 146.30 |.45 1.01 .10 .10
2.3 144 .43 | .45 1.00 .10 .10
2.4 142.87 | .47 1.00 .10 .10
2.5 140.99 |.47 1.01 .10 .10
1 2 2.6 139.68 |.47 1.00 .10 .10
2.7 138.58 |.50 1.00 .11 .11
2.8 136.19 |.47 1.01 .11 .11
2.9 135.81 |.47 1.00 .11 .11
3.0 133.81 |.47 1.01 .11 .10

* Each entry is based on 500 simulations.
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binomial distribution. Lemmas 1 and 2 and Theorem 2 are also wvalid
when considering any distribution where the variance is a quadratic
function of the mean. However, the proof of Lemma 3, and consequently
the one for Theorem 1, involve the moment generating function of the
negative binomial, and we have been unable thus far to extend it to the
more general case stated by Kuno.

Upon examination of the stopping rules, we can see that our proce-
dure may require slightly fewer observations than Kuno's. In Table IV,
we have presented the results of simulations based on Kuno's stopping
rule for the negative binomial. Each entry is the result of 500 simu-
lations, and the desired C is .3 . We do note that the average sample
sizes are consistently higher, and as a result, the éﬁ(ﬁﬁ) tends to be
smaller than with our procedure.

A few attempts were made to simulate the methods used by Allen,
Gonzalez, and Gokhale (l). We considered the variance as a quadratic
function of the mean, all + buz .  Drawing samples from the negative bi-
nomial, we estimated a and b by regression, and then employed Kuno's
procedure. The estimates of a and b generally proved to be very poor,

and consequently, the goal of obtaining a desired C was missed.
Estimation of W Within p{ with Confidence 1 - a

We shall again be considering the one-parameter negative binomial
distribution. Nadas (29) speaks of proportional accuracy when estimating
U by

= ol -yl
3= e (X -l <eluly . (3.19)

If for a given p, we want Jn to cover U with probability 1 - ¢, then upon

invoking the Central Limit Theorem, the required fixed sample size is



KUNO'S SEQUENTIAL ESTIMATION OF THE MEAN
DESIGNED TO OBTAIN CV(XV) = 3%
I\

TABLE IV

U k n* N sg =xN s—iN cv (EN)
1 1 [22.22 |23.69 .16 1.02 .29 .29
2 |16.67 |17.82 .16 1.06 .32 .30
3 [14.82 {15.92 .15 1.06 .31 .29
4 113.89 |14.97 .16 1.07 .32 .30
5 113.33 |14.24 .15 1.09 .33 .31
5 1 |16.67 {17.50 .08 2.07 .58 .28
2 |11.11 |11.92 .08 2.12 .61 .29
3 | 9.26 | 9.98 .08 2.12 .60 .28
4 | 8.33 | 9.39 .08 2.05 .60 .29
5 | 7.78 | 8.61 .08 2.10 .62 .29
3 1 |14.82 |15.75 .06 2.95 .85 .29
2 | 9.26 | 10.01 .06 3.11 .89 .29
3 | 7.41 8.11 .05 3.13 .90 .29
4 | 6.48 | 7.35 .06 3.07 .98 .32
5 | 5.93| 6.68 .05 3.10 .87 .28
4 1 {13.89 | 14.58 .04 4.08 |1.19 .29
2 | 8.33| 9.04 .04 4.13 |1.21 .29
3 | 6.48| 7.18 .04 4.16 |1.23 .30
4 | 5.56 | 6.24 .04 4.10 |1.09 .27
5 | 5.00| 5.64 .04 4.18 |1.14 .27
5 1 |13.33|14.01 .04 5.07 | 1.45 .29
2 | 7.78| 8.49 .03 5.05 | 1.43 .28
3 | 5.93| 6.60 .03 5.14 | 1.54 .30
4 | 5,00 5.66 .03 5.07 | 1.46 .29
5 | 4.44| 5.04 .03 5.28 | 1.47 .28

* Each entry is based on 500 simulations.
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%00y = EE)
n” (p) (pu
If 0 or U is unknown, then we cannot determine n* . Again using Vn'and

iﬁ to estimate O and M, respectively, we shall .consider the stopping rule

2

2
N = min(; z_no = max(2,[i%—-— %}): n z_Vn(:E—) and at least one
L oPk X,P (3.20)

nonzero value has been observed) .
The minimum sample size requirement follows from algebra similar to that
demonstrated in (3.3) and (3.4). Sampling is not allowed to stop before
observing one positive quantity, assuring us that VN_(E?;)Z is well-

defined and positive almost surely. The stopping time N is well-defined,

and we can rewrite (3.20) as stop when

nkz2
n>n and T > .

0 n —-(nk + 1)p2 - 22

The following lemma indicates N tends to increase as p becomes
smaller, and the stopping criterion will be met with a finite sample
size for any positive p. Since the proof has only minor differences
from that of Lemma 1, we shall not include it here.

Lemma 4: N is nonincreasing in p and P(N < ®) = 1 for any fixed p > 0 .
Note that 1lim N = ® a,s. éince n, - ® a5 p >0.
p>0

The properties of this sequential process will be further explored

in the following theorem. Since the proofs of (3.21) and (3.23) closely

parallel those of Lemmas 2 and 3, they will be omitted.

Theorem 3: Consider the interval estimate of U by Jn in (3.19). Then

lim & =1 a.s. (3.21)
p>0 "
lim P(H E Jn) =1 -0 "asymptotic consistency" (3.22)

p~0
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lim E<£%> =1 Masymptotic efficiency" (3.23)
p0 7
ZO'2

Proof of (3.22): Since n*(p) = <5ﬂ> , we can rewrite (3.21) as
lim Npi _ z. Now

(o
=0

P(u € = P(|X - <

we ) =2(x -ul <plub
+X, + ... +X -
e )
ovN -9
Since pi:ﬁ-+ z and ﬁ%-* 1 in probability as p = 0, it then follows

from a result of Anscombe (4) that as p =+ O,

X, + X, + ... XN - Nu

LS . N, 1) .
%Y
Hence 2
u
A
lim P ET ) = f — e - du
p>0 n -z V21
=l—a

which proves (3.22).

We should note that Theorem 2 is also applicable to this sequential
process.

This procedure was investigated, using simulation, to determine its
behavior for moderate values of p. Tables V and VI present the results
for p = .3 and p = .2 where the stated level of confidence is .95.

As was the case when our goal was to attain a specified CV(§5, the
optimal fixed sample size is a symmetric function of M and k. Notice
that n*, the optimal fixed sample size, and N, the average random sam-—
ple size, are close. The estimated standard deviation of ﬁ; sy is
less than one-half in every instance.

Although our goal is to estimate U within py, we believe that in



TABLE V

SEQUENTIAL ESTIMATION OF U DESIGNED TO ESTIMATE

U WITHIN .3 WITH 957% CONFIDENCE* -

41

k n¥* N sy Estimated Estimated
P(|Rg-ul<ew) | PR -u|<pRY
1| 85.37 |86.17| .30 .954 .952
2 | 64,03 |64.30] .29 .952 .950
31 56.19 |57.45| .30 .934 .958
4 | 53.36 |54.29] .29 .952 .952
5| 51.22 |51.99] .29 .928 .944
1| 64.03 |64.20| .16 .942 .926
2 | 42,68 |43.07] .15 .964 .948
3 | 35.57 |35.82f .14 . 944 .954
4 | 32.01 |32.77( .14 .960 .962
5 | 29.88 |30.59| .16 .936 .948
1| 56.91 |56.44| .10 .930 .952
2 | 35.57 |35.70| .10 . 944 .958
3 | 28.46 |28.83| .11 .932 .932
4 | 24.90 125,48 .10 .962 .966
5| 22.76 [23.33] .11 .934 .948
1| 53.36 [53.07| .08 .950 .950
2 | 32.01 (32,18} .08 .950 .956
3 | 24,90 |25.21} .07 .952 .960
4 21.34 |21.89| .08 .948 .948
5} 19.21 [19.72} .07 .954 .956
1 ] 51.22 {50.90| .06 .968 .950
2 | 29.88 [30.05{ .06 .954 .940
3| 22,76 (23.18| .06 .968 .938
4 | 19.21 |19.66| .06 . 946 .936
5 | 17.07 [17.57} .06 .952 .964

* Fach entry is the result of 500 simulations.
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SEQUENTIAL ESTIMATION OF U DESIGNED TO ESTIMATE

U WITHIN .2y WITH 95% CONFIDENCE#

k n#* N sy Estimated Estimated
P(|Xg-ul<pw) | PR -u] <pXY)
1 |192.08]192.34 | .46 942 .948
2 | 144.06| 144.61 | .44 .950 .950
3 |128.05{128.80 | .44 .944 .962
4 1120.05/120.67 | .43 944 .952
5 |115.25{116.85 |.43 .964 .954
1 |144.06|143.80 |.23 .944 .936
2 96.04| 96.51 |.23 942 944
3 80.03| 80.38 |.23 .952 . 948
4 72.03} 72.68 |.21 .954 .964
5 67.23| 67.96 |.22 .960 .950
1 ]128.05{128.01 |.15 .956 .946
2 80.03| 80.50 |.15 .952 .940
3 64.03| 64.42 |.15 .952 944
4 56.02f 56.67 |.15 .956 .954
5 51.22} 51.66 |.1l4 .956 .960
1 1120.05{119.76 |.11 .952 .950
2 72.03} 72.17 |.11 .956 .950
3 56.02} 56.09 |.11 .956 .962
4 48,02 48.45 |.12 .934 .944
5 43.22| 43.88 |.11 .950 .952
1 |115.25|115.03 |.09 .932 .932
2 67.23| 67.32 }.09 .956 .950
3 51.22} 51.56 |.09 .950 .954
4 43.22) 43.72 1.09 .932 .926
5 38.42| 38.90 |.09 .938 942

* Each entry is

based on 500 simulations.



43

practice many will state the conclusions as having estimated U within
piﬁ . Thus we computed the observed level of confidence for both state-
ments. There are some differences, but they are not consistent and may
be due to variability in the estimates. Both vary about the desired
level of .95.

We studied Binns' procedure using simulation. Again each entry is
based on 500 simulations, and the results for p = .2 and o = .05 are pre-
sented in Table VII. Slightly higher sample sizes are consistently re-
quired when using his method than when using ours, but the levels of
confidence differ only in a random fashion.

The disadvantage in Binns' process is the interpolation required
to obtain the final estimate, and the benefit is the asymptotic log
normality of the estimate for large a. Using the univariate procedure
in the Statistical Analysis System (S.A.S.), we considered the normality
of the logs of the estimates for the two methods. We found that for
u=1, k=2, p=.2and a = .05, we were unable to reject the null
hypothesis of normality for either procedure after drawing 500 samples.
The observed significance level was slightly smaller for our procedure,

however.
Estimation of U Within d with Confidence 1 - ¢

Suppose now we want to estimate U by

L= [X -yl <d | (3.24)
when sampling from a one-parameter negative binomial distribution. If,
for a given d, we want In to cover U with probability 1 - o, then after
invoking the Central Limit Theorem, we determine the fixed sample size

to be



BINNS'

TABLE VII

SEQUENTIAL PROCEDURE DESIGNED TO ESTIMATE

U WITHIN .2y WITH 95% CONFIDENCE *

k n* N sy Estimated Estimated _
P(|xg-ul <pow) (X -ul <pXp)
11 192,08(195.43| .46 .940 .950
2 144.06|146.60| .44 .950 .948
3 | 128,05|130.48} .44 .948 . 964
4 | 120.051122,19| .43 .952 .950
5 115.25|118.27| .43 .960 .952
1 144.06(146.63) .23 .942 .942
2 96.04| 98.04% .23 .948 .946
3 80.03| 81.50| .22 .948 .954
4 72.03) 73.73| .21 .958 .958
5 67.23| 68.84) .22 .954 «952
1 128.05{130.62| .14 .952 .950
2 80.03| 81.92} .15 .950 .948
3 64,03| 65.46| .15 .950 . 948
4 56.02| 57.53] .15 .954 .954
5 51.22| 52.39| .14 .960 .962
1 120.05{122.37] .11 .952 .956
2 72.03¢ 73.55] .11 .956 .956
3 56.02] 57.08| .11 .950 .968
4 48.02| 49.201 .12 .938 . 944
5 43,22 44.47| .11 .946 .952
1 115.25}117.59| .09 .942 .936
2 67.23) 68.68] .09 .956 .956
3 51.22§ 52.46] .09 .952 .954
4 43,22} 44,471 .09 .938 .926
5 38.42| 39.48( .09 .948 .948
* Each entry is the result of 500 simulations.

44
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rw - ()

. i %
Since U, and therefore g, is unknown, we cannot determine n . So con-

sider the sequential procedure with a random sample size

2

z
—) and at least one nonzero value

0 d
has been observed | . (3.25)

N = min(n >n. > 2): n > Vn(

The stopping time N is well-defined, and (3.25) may be restated as stop

when

2 2
k nk
LI,
t

n>n >
- 2 =~ n

and ol (nk + 1) i
Vo (2)

0
Since the following lemma and theorems are proven, with only minor

changes, as earlier ones, we shall omit the proofs.

Lemma 5: N is nonincreasing in d and P(N < ») = 1 for any fixed d > O.

Theorem 4: Consider the interval estimate of u by In in (3.20). Then

lim -E% =1 a.s. (3.22)
a0 ©

lim P(u € IN) =1-q "asymptotic consistency" (3.23)
a0

lim E(J%)'= 1 "asymptotic efficiency" (3.24)
Fo ¢

Theorem 5: Let {cn} be any sequence of constants, and let n. be any

0

positive integer. Define a stopping time of the sequence X5 X

SRR by

N smallest integer n > n, such that Xn <c

0

= © if no such n exists, i.e., if Xn > Cn for every n. < n < o .

n

We assume P(N < ») = 1 so that iﬁ is well-defined. If E(i&) exists,
E(ﬁﬁ) f.E(Xl) = 1. Theorem 5 is due to Starr and Woodroofe (35).
Simulation results for d = .5 and o = .05 are in Table VIII. No-

tice that the estimated confidence level is far below the stated one



TABLE VIII

SEQUENTIAL ESTIMATION OF U DESIGNED TO ESTIMATE u
WITHIN .5 UNITS WITH 95% CONFIDENCE *

K k n* N Sy Estimated
P(|xg -yl <)
1 1 30.73 | 23.12 | .62 .732
2 23.05 | 19.38 | .41 .818
3 20.49 | 17.95 | .37 .812
4 19.21 | 17.15 | .31 .832
5 18.44 | 16.44 | .31 .806
2 1 92.20 | 82.68 |1.28 .858
2 61.47 | 57.41 | .67 .916
3 51.22 | 50.04 | .48 .924
4 46.10 | '45.20 | .38 .948
5 43,03 | 42.56 | .36 .928
3 1 184.40 |179.35 |1.62 .934
2 115,25 [112.87 | .75 .926
3 92.20 | 91.30 | .56 .942
4 80.67 | 80.50 | .45 . 946
5 73.76 | 73.02 | .41 .932
4 1 307.33 |305.12 {1.69 .942
2 184.40 |183.61 | .92 .954
3 143.42 |142.73 | .65 .934
4 122.93 {122.57 | .55 .936
5 110.64 |109.59 | .48 .960
5 1 460.99 |444.19 [2.00 .950
2 268.91 [268.76 [1.00 . 964
3 204.88 |204.26 | .82 924
4 172.87 |172.38 | .71 .948
5 153.66 [154.13 | .52 .966

* Each entry is the result of 500 simulations.
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when U4 = 1, and it tends to be below the stated level for other values
of u as well. This is due, at least in part, to the fact that N is
consistently lower than n* .

In Table IX, we have the results when 4 = 1, d = ,2, and & = .05 .
For smaller values of d, the observed confidence level is much closer
to the stated one. N and n* are closer together in this case than they

were when d = .5 .

TABLE IX

SEQUENTIAL ESTIMATION OF u DESIGNED TO ESTIMATE
U WITHIN .2 UNITS WITH 957% CONFIDENCE#*

u k n* N Y Estimated
P(|Xg -ul<d)
1 1| 192,08 | 187.65 |1.34 .952
2 | 144,06 | 142.62 | .91 .940
3| 128.05 | 128.27 | .72 .958
4 1 120.05 | 119.61 | .69 .932
5| 115.25 | 114.72 | .61 .948

* Each entry is based on 500 simulationms.



CHAPTER IV

NONPARAMETRIC, SEQUENTIAL ESTIMATION OF U
APPLIED TO THE NEGATIVE BINOMIAL

DISTRIBUTION

Three different sequential procedures were studied in Chapter III.
In the two cases where the goal is an interval estimate of U with spec-
ified closeness and confidence, parallel procedures exist in the liter-
ature to cover the case where the distribution is unspecified. We have
found no reference to a nonparametric process for estimating U with pre-
scribed coefficient of variation of the mean, although this is similar
to the problem considered first by Mukhopadhyay (28). Such a procedure
would be beneficial if there is some doubt as to the adequacy of the fit
of the negative binomial to the population of interest or if k is unknown.

Following the same notation used in Chapter III, assume the loss
incurred by estimating U by i; is given by

X -w?
L = —2—
n u2

The associated risk is then

Gz/n

2
v

o
1

E(L) =
n

=C2

where C is the coefficient of variation of the mean. If C is specified

in advance, the required fixed sample size is

48
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2
a*(0) = (55) -

Since no knowledge of the distribution is assumed, U and G are unknown,
*
and thus n cannot be determined.

First assume that O <gb <p<w for a known positive constant p

2 _ (o)
where p~ = (a) . It is not necessary for pO

lower bound is required. If p is unknown, then pO may be chosen to be

0

to be close .to p, but a

arbitrarily small. Now consider a sample of random size N with risk

E(_XN -3
—_—— .
u

E(LN) =

We propose to use iﬁ as the estimate of Y where

2
DAr2 u .
N = min{n > n. = max(2, {(—9) }): n > -L-max :2) , p2 A (YD)
-0 C —-CZ X 0

n
Here {y} denotes the smallest integer less than y. The stopping time N
is well-defined.
The proofs of Lemmas 6 and 7 correspond closely to those of Lemmas
1 and 2 and will, therefore, be omitted.
Lemma 6: N is nonincreasing in C and P(N<») = 1 for any fixed C > 0.

Lemma 7: 1im(£&>= 1 a.s.
¢

The asymptotic efficiéncy of the sequential procedure is considered
in the next lemma. The second case of the proof differs only slightly
from the one for proportional accuracy given by Nadas (29), but we have

included it here for completeness.

Lemma 8: 1lim E(£%> =1
cro P

Using Lemma 7 and Fatou's lemma, we have
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éfg inf E(;N;) > E(J;rg inf f;)

(4.2)
=1,

To prove the lim sup part, we shall consider two cases.

2

u

Case l: Suppose max(;é , <§E> ) = pg . Then from (4.1) we have
n

poz
O<N<<—é— + 2, (4.3)

2
Dividing through by n* =<§%) , (4.3) becomes

2
No_fuy 2
0 < o < (0) (po + 2) .

N . .
Since o* is dominated by an integrable function, we have

lim sup E<£%> <1
n —_
c~+0

by Lemma 2 and the Lebesque Dominated Convergence Theorem.
2 Y un .
Case 2: Suppose max Pp » \ = =| =) . Then our stopping rule

Xa Xy

is of the from

a 2
N > (fgL>
With no loss of generality, we assume y > 0. Now forn =1, 2, ...,
define
o 2
Q =1+ T (x -1
n k=1 k

For this case, the random variable
* - i ( M > u * )
N(n¥%) minin Tn __Svn Qn

is well-defined and no smaller than N.

Now for r =1, 2, ..., define
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R = min(N(n*), r) and B = (1 < N(n%*) §_r>.

We shall now apply Wald's theorem of cumulative sums to each of TR’

2 2 2 .
QR - 1, and X7 + X, + ... + xp to obtain

MER) = E(T.)

= [ x + [T
(;\"‘l) 1 B R-

I A

Elx. | + E—f/B*Q . F 3 I Ya*qQ + [|x. |
1 o] B R-1 © N(£)>T) r 3

1 1

= =/ R

Ez(xi') + Ep(varq) + E2< 5 x,2>
ag R k=1 K

I

1
<40l + 12+ Eyut + 2B ®) +4o” + 7 EER)
1

ngz + 02+ }é /¥ + <u/rF+\/c’2 + u2> E2(R)

This implies

1
ER) < \/pz + 1+ é /nk + (/E; +-\/p2 + 1) £ (R)
Thus

E2(R) €

x: x° -</F+sz + 1>x—(%/§+'Vp2+ 1>i0

From the set of x values above, we have

x f_/E; + o(/ﬁ;)

Hence

E(R) < </IT*' + o(fn_*)>2 .

Since R > N(t) as r >~ ®, E(R) > E(N(t)) by the monotone convergence
theorem. Thus

E[N(n*)] < (vaF + o(‘/ﬁ?))2

which implies
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E(M.Eﬂ) < (1 + O‘/n—*>2

n* Vn*
Therefore,
*
1im sup E(ﬁS%;2> <1
n -
n¥»o

Since N < N(n%*),

1lim sup E(i%) <1.
c>0

From Cases (1) and (2), we have

. N '
lim sup E(;;ﬁ <1. (4.4)
>0

(4.2) and (4.4) then yield the desired result,

. N
éig E(;;) =1.

The following theorem states that the sequential process is risk
efficient. The proof is the same as that fog Theorem 1 with the excep-

%
tion that the upper bound on %r is now <—%—) . Thus the proof will
0
not be given.
E(LN)

— = 1.
R, (O)

Theorem 7: lim
c>0

Monte Carlo techniques were used to evaluate the sequential pro-

cedure, and the results for C = .3 and C = .1 are presented in Tables

~r

X and XI, respectively. When C = .3, the average random sample size

A

tended to be noticeably smaller than n* and the CV(i&) was greater than
stated. Although there was some improvement when C = .1, CV(iﬁ) is

still greater than the specified C.



TABLE X

NONPARAMETRIC, SEQUENTIAL ESTIMATION OF M DESIGNED

TO OBTAIN CV(X&) = .3 WHEN THE UNDERLYING

DISTRIBUTION IS NEGATIVE BINOMIAL*

k n* N s 1=<N SiN cv X))
1 {22.22 |19.98 | .42 1.13 | .50 b
2 |16.67 |15.60 | .36 1.13 | .46 .40
3 |14.82 [14.86 | .32 1.13 | .48 42
4 |13.89 |13.29 | .31 1.17 | .47 41
5 [13.33 {13.33 | .29 1.13 | .47 Y
1 [16.67 [13.09 | .32 2.23 | .90 .40
2 |11.11 | 9.44 | .25 2.25 | .88 .39
3 | 9.26 | 8.11 | .22 2.20 | .84 .38
4 | 8.33 | 7.70 | .20 2.18 | .82 .38
5 | 7.78 | 6.95 | .19 2.22 | .77 .35
1 [14.82 [11.34 | .33 3.24 | 1.42 b
2 | 9.26 | 7.28 | .20 3.31 | 1.37 41
3 | 7.41 | 6.38 | .18 3.18 | 1.07 .34
4 | 6.48 | 5.26 | .15 3.30 | 1.13 .34
5 | 5.93]5.03 | .14 3.28 | 1.15 .35
1 {13.89 [10.34 | .30 4.27 | 1.99 47
2 | 8.33 | 6.35 | .19 4,16 | 1.66 .40
3 | 6.48 | 4.99 | .14 4.15 | 1.60 .38
4 | 5.56 | 4.44 | .13 4.24 | 1.58 .37
5 | 5.00 | 4.15 | .11 4.20 | 1.39 .33
1 |13.33 | 9.66 | .28 5.25 | 2.41 .46
2 | 7.78 | 5.58 | .17 5.05 | 1.98 .39
3 | 5.93| 4.68 | .14 5.28 | 1.96 .37
4 | 5.00 | 3.99 | .11 5.32 | 1.89 .36
5 | 4.46 | 3,71 | .10 5.32 | 1.95 .37

* Each entry is based on 500 simulations.
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TABLE XI

NONPARAMETRIC, SEQUENTIAL ESTIMATION OF p DESIGNED

TO OBTAIN CV(iﬁ) = .1 WHEN THE UNDERLYING
DISTRIBUTION IS NEGATIVE BINOMIAL*

K n* N S5 ?{N s—}% cv(X)
1 1200.00 [197.42 | 1.29 | 1.00 | .10 .10
2 [150.00 |149.31 | 1.03 | 1.01 | .10 .10
3 133.33 [133.33 | .98 | 1.0l | .11 .11
4 |125.00 |125.67 | .92 | 1.01 | .10 .10
5 [120.00 {118.68 | .90 | 1.02 | .11 .10
1 |150.00 |145.79 | 1.24 | 2.03 | .40 .20
2 [100.00 | 97.49 | .87 | 2.02 | .28 .14
3] 83.33 | 81.18 | .75 | 2.02 | .33 .16
4| 75.00 | 72.61 | .76 | 2.04 | .27 .13
5] 70.00 | 69.43 | .70 | 2.03 | .30 .15
1 [133.33 |126.49 | 1.20 | 3.04 | .54 .18
2| 83.33 | 79.60 | .87 | 3.08 | .62 .20
3] 66.67 | 63.09 | .73 | 3.09 | .44 .14
4| 58.33 | 55.75 | .63 | 3.05 | .46 .15
5| 53.33 | 50.68 | .65 | 3.07 | .48 .16
1 |125.00 [118.19 | 1.29 | 4.15 | .96 .23
2| 75.00 | 70.29 | .86 | 4.10 | .75 .18
3| 58.33 | 53.76 | .85 | 4.14 | .90 .22
4| 50.00 | 45.78 | .70 | 4.19 | .89 .21
5| 45.00 | 40.94 | .65 | 4.16 | .80 .19
1 [120.00 |112.37 | 1.19 | 5.10 | .98 .19
2 | 70.00 | 63.66 | .95 | 5.17 | .90 .17
31 53.33 | 47.91 | .79 | 5.16 | .92 .18
4 | 45.00 | 40.18 | .67 | 5.20 | .97 .19
5 | 40.00 | 33.60 | .67 | 5.18 | .90 17

* Each entry is based on 500 simulations.
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Although we do not have an analytical proof of its existence, in-
spection of the tables shows that iﬁ has a definite positive bias under
this nonparametric procedure. It is greater than what was observed
under the corresponding method based on the negative binomial distribu-
tion.

Viewing these tables in light of the results presented in Table
I1I, we believe that if a fairly reliable estimate of k is available,
it would be better to use that than to turn too quickly to the nonpara-

metric approach presented here.



CHAPTER V
ESTIMATION OF THE PARAMETER k

We shall now focus our attention on the estimation of k for the
two-parameter negative binomial distribution. The distribution will
be examined for completeness. We shall present a multistage procedure
for estimating k and compare it to the method of moments (MME) and max-

imum likelihood (MLE) estimators.

Complete Sufficient Statistic for Samples

of Fixed Size n

A common procedure in statistical inference is to determine the
minimal sufficient statistic for a family of distributions and examine

the faﬁily for completeness. If it is complete, then we are ready

to search for minimum variance unbiased estimators of the parameters.
However, we shall prove invthe next theorem that there is no complete
sufficient statistic for the negative binomial family of distributioms.
Theorem 8: The order statistics, x(l)’ X(Z)’ e X(n)’ are minimal
sufficient but not complete for the negative binomial family of distri-
butions when the sample size exceeds n = 3.

Proof: We shall use the 1950 Lehmann-Scheffé theorem (21) to determine
the minimal sufficient statistic. For any point §o, D(go) is defined
as the set of all points X for which there exists a function k(x, go) #
0, not depending on U or k, and such that Pu k(i{) = k(§, §°)Pu, (fo)

b
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for all U, k in the parameter space; that is,

D(§°) = x| Pu,k(’f) = k(x, §°)Pu’k(§°) for all u, k} .

lo) P k(’z)
Roughly speaking, D(x ) consists of all x for which the ratio 5
~ PU’k(X )
is independent of U and k. The minimal sufficient statistic, T, is

the statistic of lowest dimension such that T(x) = T(xo) if x € D(xo)

and T(x) # T(x°) if §$ D(x°) . We have
n
X Xi
P _ ]
P(x) k+u U+k k-1 T x, !
> - i=1 1
") e
nk i=1 * n n (xo+k-1)!
) ) (&) =
k+u/ \i+k G-y 0T o
i
) gx - ;Xo .1
i=1 * 4=1 1 0 i(x, +k-1)!
™ T
u+k

i=1 x_!(x(,)+k-l)!
i1

-

k(x, x0) .
In order to obtain k(§, }50) independent of u and k in (5.1), we
must have

n n o
¥ X, = L %,
i=1 *  i=1 1t

and
n x(,)!(x, +k -1)!
i i

T S =c (5.2)
i=1 x, ! (x. +k -1)!
1 1

for some constant c. We find that for equality to hold in (5.2), there

. . (¢} .
must be an x,, j =1, ..., n, corresponding to each x;, 1= 1, ..., n,
J

such that xy = X(i) . Thus the order statistics of x must equal those of



x° for x € D(x9) . Therefore,

ficient statistic.

We shall now prove the order statistics are not complete

this, we shall show that there exists a nontrivial function g(x
= 0. That is,

) such that E(g(x(l), X(Z)’ cees X(n)))
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To do

s X(n)
mc
o rik+3-1)1 3
- n' j
0= f 81y Fayr 0 X)) T m, (““‘)
j=0 ‘ 33 -0 ® n{ind
3
n
z Xi
( " >1=1
H+k

where m,
J

size n. To simplify notation, let p = Ll‘l'fk and q = TR
o o™ [{(k- Dy 0 ¢°
_. 1 , LIC Y
{-1)1" e
1
{(k D1 g(o,-.-,O,l)q1

(n-1)!

k-1)! k+1)!
(DUl 6, o, 2

2 .
{(k—l)'} (k') g(O, co ey 0, 1, 1)> qz

(n 2)!2!
(k -1)! k+2)!
(L (31_}1)'39 )L o0, ..., 0, 3)
Lk - 1)(;1 2)1'(;'(1(4-1)' g(O, veey 0, 1, 2)

+ 1k - nn- (k!)3 g0, ..., 0, 1, 1, 1)> q3

(n-3)!3!

Then

.

nk

the order statistics form the minimal suf-

(1)’ Xy

represents the number of times a j was observed in a sample of

—H

(5.3)

Viewing (5.3) as a polynomial in q, equality can hold if and only
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the coefficients of each of the powers of q are zero. After considerable
algebra, we find the coefficients of qo, ql, q2, and q3 are zero.

. . . c
Consider now the coefficient of q where ¢ <n and n > 4. We have

k- D1 P ke 1)t

(1’1—1)!(’:! g(os ey Os C)

+ {(k-l)!}n—zk!(k+c-2)!
(n-2)t(c-1!

8(0, ey O’ 1) C—]-)

k= D) P2 kA1) (ke —3) !
(n=-2)121(c=-2)!

g0, ..., 0, 2, c=-2)

+

(k=D P2 +2) 1 (k+c-0)!

(n=-2)!31(c=-3)!

g(0, ..., 0, 3, c-3) + ...

-2 c e
(- Rk + 151 -2k +e-[5])!
+ s 2 2 g(0, ...,0, [-;—]-1,c_[.§_]+1)
(m-2)1([5] - D! -[5]+1)!

L - DI D™ Mk 1)1k + - m)!

*e @-m!@-1)!(c-m+1)! g0,...,0,1,...,

1, c-m+1)
=D TP Ak D (ktemm- 1)
¢ K '}(n-(m))!(m-(z)sz)z(é-m():! m-D! o0,...,01,...,1,2,c-m
=D - DD e - @- D ] - D1

+ ... + —T ¢
(m-m!@-DHEDD (- @-1)ED!
80, «oey 0, [Z1s -oes [Z], = (= DISD)

. an-c+l . . .c-2
b Qe DY G REDY o0o 1 2)

(n-c+1)!(c-2)!2!

L Ak-1 DI

o oyTel g(0, ..., 0, 1, ..., 1) =0.

We can now factor out {(k -1) !}n_lk! Considering the resulting equation

as a polynomial in k, we have g(0, ..., 0, ¢c) = 0. We can then remove
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a common k. Hence we obtain

(k+c-2) ... (k+1)
(n=-2)!1(c-1)!

8(0, vy O, 19 C"l)

k+D(k+c-3)... (k+1)

+ (m-2)121(c=2)1

g0, ..., 0, 2, c=-2)

Lkt kD) te-4) ... (k+1)
(n-2)131(c-23)1! g

0, ..., 0, 3, c=-3)

(k+[5]=2) o (kD Gete=[5]) oo (k1)
+ ...+

(@=-2)1([5] - D= [5]+1)!
g(O, cees 0, [—%]-ls C—[%]'i'l)

K2t e-m) ... (k+1)
(n-m)!(@m-1)!(c-m+1)!

+ g0, «.., 0, 1, ..., 1, c-m+1)

e+ Dkk+c-m=1) ... (k+1)

+ S 19T (o 8(0, ..v’ 0,1, .00, 1,2, c=m)’
K20 e+ [£1-1) ... (et 1)}m;1(k+ e=m-1)[] - 1) ... (k+1)
M (a-m 1= DHED DT (- -1 IED! |
g(0, ..y 0, 21, ..o, [=1, c= (m-1[ZD)
+oa o+ (n-iii)ﬂz{al-)z)!z! g0, vory 0, 1, ooy 1, 2)
Tn—kzcg-'—(; g(0, +vuy 0, 1, .0y 1) =0 .

Here we note that from the polynomial in k, we obtain ¢ - 1 con-
straints on the g's. If there are more than (c-1) g's, then there will
be an infinite number of solutions. As an example, we shall consider

the case of ¢ = 4. From the general expansion, we have

(k+2)(k+1)
(n-2)!3!

(k+1)(k+1) g

2(0, ..., 0, 1, 3) +
(k- 2) 12! )

(0, ..., 0,2,2)
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k(k + 1
e E 3)!232: g0, ..., 0, 1, 1, 2)
12
+ z;f:TZjTZT'g(O, ees, 0, 1, ..., 1) =o0.

The coefficients of the polynomials in k produce three constraints on
the four g's. Hence we have a homogeneous system of three equations

in four unknowns, and there are an infinite number of ways that the
function g can be defined that will satisfy these equations. Therefore,
there exists a nontrivial function g(x(l), X(gys wees X(n)) such that
the expectation of g is zero. This proves the order statistics are not

complete.

Method of Moments and Maximum Likelihood

Estimation of k

For a sample of fixed size n from a negative binomial distribution

with parameters U and k, the likelihood function is

n '(k+xi—l)! Kk k L X
P A SIS
;=1L xi.k. k+u k+]_17
n
X X,
- ~ 1)1 § =
_ 7rrl (k+xi l).] 1 < K >nk< u )1 1
= T
;=1L x,° (k!)n u+k ut+k

Hence the natural logarithm of the likelihood function is
n n

falL= L Q,n(k+xi-1)! - Z n xi! -n 2n k!+nk 20 k
i=1 i=1

n n

+ Gnu) z x, - <nk+ T x,> gn(k+1yu) .

. i . i
i=1 i=1

As noted in Chapter II, no closed form solution exists for the max-

imum likelihood estimate of k which is the root of the following equation
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in k:

X, Z /1 1 1
nonll+-2)= ¥ nfx+ = R ] I (5.4)
k 3=1 A\k  k+1 k+3-1

Although it has been proven that there is at least one root of (5.4)
when 52 > i; we do not know if it is unique. Furthermore, there has
been no proof that a solution does not exist if s2 < X.

In order to better understand the likelihood function, we plotted
some contours of the natural logarithm of the likelihood function using
S.A.S. TFour of these are shown in Figures 5-8. Although we have viewed
only a few plots, we note there is a basic similarity in the contours.
The dominant characteristic is the appearance of long, narrow ridges.
The narrowness of the ridges indicates U can be estimated with precision,
using f, the MLE of yu. However, we believe the long length of the ridges
is an indication that maximum likelihhod estimation of k is not precise.

We computed the estimated biases of the MME and MLE of k in much the
same manner as Pieters, Gates,'Matis, and Sterling (31). In additionm,
we estimated the standard deviation of the estimates and combined the
estimates of the bias and standard deviation in estimating the mean
square error (MSE). Results for fixed sample sizes of 50, 100, and 200
are presented in Tables XII, XIII, and XIV.

ﬁpon inspection of the tables, it appears that there is less bias
and a smaller standard deviation under MLE than under MME. Even though
the estimated mean square error is smaller for MLE, it is still large.
It is interesting to note that for a fixed U, the estimates of the bias,
standard deviation, and mean square error all tend to increase as k in-
creases. For a fixed k, they all tend to decrease as U increases. Thus

estimation is most difficult when y is small and k is large.
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TABLE XIT

METHOD OF MOMENTS AND MAXIMUM LIKELIHOOD ESTIMATION
OF k BASED ON SAMPLES OF SIZE 50%*

67

Method of Moments Maximum Likelihood
H k = A A = ~ ~
k Bias s{; MSE k Bias s;{ MSE
1 1.967 | .967 8.597| 74.850|1.549| .549 | 2.616 7.146
2 | 4.946 12,946 | 17.790| 325.15413.622{1.622 | 5.406 | 31.849
3 | 8.329 |5.329 | 25.012| 653.999{5.307{2.307 | 7.249 | 57.874
4 110.195 |6.195 | 29.089| 884.532/6.363|2.363 | 8.529 | 78.318
5 |12.356 |7.356 | 32.788/1129.165/7.078|2.078 | 9.016 | 85.600
1 1.240 | .240 .630 L45411.194) (194 .680 .500
2 | 2.833 .833 3.359| 11.980(2.845| .845 | 3.580 | 13.533
3| 5.164 |2.164 | 11.283| 131.978|5.085|2.085 | 7.363 | 58.556
4 | 8.293 |4.293 | 22.147| 508.924{7.197[3.197 | 9.955 [109.319
5 112.771 {7.771 | 41.584|1789.587|8.502|3.502 |10.468 |121.851
1] 1.173 .173 .451 .234)1.134( .134 .400 .178
2| 2.458 .458 1.934 3.949{2.331] .331 1.145 1.421
3| 4.689 |1.689 | 14.853 223.480 4.069(1.069 | 3.529 | 13.597
4 | 6.517 |2.517 | 12.408| 160.295({5.996{1.996 | 6.648 | 48.179
5 110.242 |5.242 | 31.370{1011.574{8.011|3.011 | 9.345 | 96.390
1] 1.137 .137 . 406 .18411.101} .101 .322 114
2 | 2.369 .369 1.081 1.305{2.316| .316 .995 1.091
3] 3.707 .707 2.452 6.5113.612| .612 1.777 3.532
4 | 7.493 [3.493 | 52.857/2806.050{5.502|1.502 | 5.220 | 29.504
5| 7.652 |2.652 | 16.090| 265.930/6.956|1.956 | 6.457 | 45.525
1 1.141 141 .353 .14511.088| .088 .309 .103
2 | 2.319 .319 .892 .897|2.254| .254 .815 .728
3 | 3.477 477 1.886 3.783{3.491} .491 | 1.567 2.698
4 | 5.083 |1.083 4.854| 24.73515.020{1.020 | 3.489 | 13.217
5| 7.236 |2.236 | 18.397| 343.456|6.511|1.511 | 4.791 | 25.238

* Each entry is based on 1000 simulations.



TABLE XIII

METHOD OF MOMENTS AND MAXIMUM LIKELTHOOD ESTIMATION
OF k BASED ON SAMPLES OF SIZE 100%*

68

Method of Moments Maximum Likelihood

k ~ A ~ 'S ~ ~

k Bias si MSE k Bias si MSE
1 1.189 .189 .659 .47011.168 .168 640 438
2 3,111 J1.111 7.325 54.889|3.212 j1.212 5.230( 28.817
3 9.354 |6.354 {52.466]2793.056|5.098 |2.098 7.169| 55.792
4 9.432 [5.432 |25.021] 655.542|6.930 |2.930 9.472| 98.303
5 112.487 |7.487 |44.59412044.66217.986 {2.986 |11.023|130.430
1 1.107 .107 .321 .115/1.076 .076 277 .082
2 2.282 .282 .937 .957{2.265 .265 .853 .797
3 3.766 .766 3.057 9.930(3.932 .932 4,066 17.399
4 5.350 }1.350 4.550 22.53015.956 11.956 7.917| 66,499
5 8.569 [3.569 16.267 277.361(7.785 }2.785 8.614) 81.953
1 1.079 .079 .279 .084]1.050 .050 .229 .055
2 2.221 .221 .707 .549)2.,198 .198 .707 540
3 3.481 . 481 1.483 2.432(3.370 .370 1.488 2.349
4 4,796 .796 2.557 7.17314.821 .821 3.478{ 12.774
5 6.185 j1.185 4,468 21.366|6.376 |1.376 4,852 25.433
1 1.080 .080 .261 .07411.050 .050 .213 .048
2 2.164 164 .619 .40912.123 .123 .508 274
3 3.337 .337 1.174 1.491(3.329 .329 1.012 1.133
4 4,583 .583 1.822 3.660{4.610 .610 2.410 6.180
5 6.024 |1.024 3.451 12.96115.996 .996 2.998 9.979
1 1.090 .090 242 .067]1.051 .051 .196 .041
2 2.125 .125 .529 .29512.146 146 494 .265
3 3.263 .263 .865 .81713.210 .210 .821 717
4 4.339 .339 1.382 2.02514.347 .347 1.420 2.136
5 5.539 .539 2.113 4.75615.554 .554 2.036 4,453

* FEach entry is the result of 1000 simulations.



METHOD OF MOMENTS AND MAXIMUM LIKELIHOOD ESTIMATION

TABLE XIV

OF k BASED ON SAMPLES OF SIZE 200%

69

Method of Moments Maximum Likelihood
U T | aias sp | MSE % | Bias s | MSE
11| 1.097 .097 .374 .1491/1.060 | .060 .297 .092
2 | 2.354 .354 1 1,310 1.840]2.400 | .400 | 1.473| 2.329
3| 4.364 [1.364 | 9.200| 86.498{4.190 [1.190 | 5.238| 28.851
41 9.927 |5.927 {64.621{4211.008(6.428 |2.428 | 7.846| 67.463
5 112.586 [7.586 [40.730|1716.490{8.119 [3.119 | 9.554{101.010
1] 1.057 § .057 .218 .05111.044 .044 .195 .040
21 2,139 .139 .599 .37812.125 .125 .539 .306
3| 3.309 | .309 | 1.308 1.80613.308 .308 | 1.153| 1.425
4 1 4.628 .628 | 3.298] 11.2714.729 .729 | 3.204| 10.800
5 | 6.489 [1.489 |15.041| 228.437)5.940 | .940 | 3.307| 11.821
1 1.035 .035 .184 .03511.027 .027 .155 .025
2 | 2,100 | .100 445 .20812.086 .086 .385 .156
3| 3.166 .166 .788 .648{3.170 | .170 757 .603
4 | 4,346 .346 | 1,280 1.75814.312 .312 | 1.220] 1.586
5| 5.507 .507 | 1.914 3.919}5.554 .554 | 2,561 6.868
1] 1.039 | .039 .179 .033!/1.020 | .020 .137 .019
2 | 2.077 .077 .395 .162|2.051 .051 .333 .113
3 ] 3.149 | .149 .706 .52143,128 | .128 .613 .392
41 4,219 | ,219 | 1.022 1.09314.223 .223 .957 .965
5| 5.368 | .368 | 1.59 2.675(5.509 | .509 | 1.975| 4.162
1] 1.039 | .039 .158 .02611.028 .028 .125 .017
2 | 2.081 .081 .377 .148|2.056 .056 .321 .106
313,129 | .129 .590 .36413,107 .107 .533 .296
4 | 4.230 | .230 .910 .88114.,230 | .230 .853 .780
51 5.268 .268 | 1.240 1.610(5.286 .286 | 1.299| 1.770

* Each entry is the result of 1000 simulations.
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Multistage Estimation of k

We suggest that a multistage procedure may be useful in the esti-
mation of k. Suppose five observations are taken at random from the
population and the method of moments estimate of k is computed. Then
another five observations are added to the sample and the MME of k re-
computed. The process of adding five more values to the sample and
determining the MME of k continues until the last two estimates differ
by less than .05. Then the last MME of k would be taken as the esti-
mate of k.

Table XV contains the results of the computer simulation for this
procedure. Notice that the estimated bias, standard deviation, and MSE
of k all tend to be reduced over comparable fixed sample size estimates.
The values ynder the "Stopping Criterion Not Met'" column represent the
number of times the stopping rule was not satisfied after taking 400 ob-
servations. These samples were excluded from the computation of the
other quantities in the table.

Since there are times when we might need to stop sampling before
meeting the stopping criterion, we considered two truncation rules. We
assumed we would take as many as one hundred observations per sample.

If we had not stopped, then we would either take the estimate based on
the hundred observations or determine the two successive estimates
closest together and take the second one of these as our estimate of k.
Tables XVI and XVII present the results of 1500 computer simulations for
these two procedures., Although inconclusive and contrary to intuition,
it appears that the second truncation rule may be the better omne.

Further simulations have been conducted on the effects of increasing

the number of observations between points where the MME of k are calcu-



TABLE XV

MULTTSTAGE ESTIMATION OF k*

k St?ppiFg N sy .i Bi;s s% MSE
Criterion
Not Met
1 1 0 43,28 | 1.08 1.12 .12 .74 .56
2 0 77.18 12,17 |2.25 .25 1.40 2.04
3 10 110.36 | 3.65 ;3.12 12 72,021 4.09
4 27 125.06 | 4.07 |3.67 | -.33 |2.21| 5.01
5 65 142.63 | 4.82 | 4.33 -.67 | 2.42} 6.32
1 0 39.14 .81 1.14 14 .61 .39
2 0 57.57 {1.36 |2.13 .13 1.01 1.04
3 0 80.08 | 1.96 |3.22 .22 {1.57 2.51
4 0 94.77 | 2.55 1| 4.40 40 13,03 9.32
5 4 114.58 1 3.27 |5.40 .40 | 3.17 | 10.18
1 0 34.13 .71 1.09 .09 .51 .27
2 0 51.25 }1.21 |2.14 14 1.01 1.04
3 0 70.30 | 1.66 | 3.14 A4 | 1.32 4 1.75
4 0 85.10 | 2.11 |4.25 .25 12,09 | 4.44
5 0 100.44 | 2.58 |5.16 .16 | 2.54 | 6.47
1 0 32.79 .71 1.11 .11 .48 .24
2 0 48.23 |1 1.08 |2.17 .17 .93 .89
3 0 62.71 | 1.46 | 3.22 22 11,227 1.54
4 0 77.83 11,92 14.23 .23 1.66 | 2.82
5 0 88.85]2.20 |5.05 .05 |2.25; 5.05
1 0 32.48 .62 1 1.12 .12 .51 .28
2 0 46,29 { 1.02 | 2.15 .15 .94 .90
3 0 60.57 | 1.37 | 3.27 .27 1.26 | 1.67
4 0 69.93 [ 1.68 | 4.14 .14 1.80 | 3.26
5 0 86.67 | 2.18 |5.17 .17 |2.65 | 7.07

* Each entry is based on 500 simulatioms.
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EFFECT OF USING ESTIMATE BASED ON 100 OBSERVATIONS

TABLE XVI

IF STOPPING CRITERION FOR MULTISTAGE ESTIMATION

OF k NOT MET#*

72

u k Number of Tiges N sy k Bias £ MSE
100 Observations
Taken

1 1 58 44,960 |.609 |[1.232 .232 .811 711
2 368 63.663 |.778 |3.074 11.074 8.634 | 75.698
3 624 73.703 |.768 [5.943 1{2.943 | 25.926| 680.815
4 765 78.987 |.723 |9.549 |5.549 | 56.282|3198.427
5 866 80.700 |.725 |9.489 |4.489 | 46.759|2206.542
2 1 9 37.813 [.488 |1.166 .166 .598 .385
2 144 55.810 |.689 2.280 .280 1.253 1.648
3 369 66.607 [.729 |3.610 .610 4,005, 16.408
4 591 75.460 |.710 |5.609 [1.609 | 10.444| 111.67&4
5 695 78.357 |.690 |7.710 {2.710 | 17.964| 330.038
3 1 0 34.870 |.420 |1.156 .156 .500 .274
2 73 50.867 |.633 12.243 .243 .988 1.034
3 249 63.010 |.706 {3.355 .355 1.665 2.897
4 471 72.080 {.710 |4.693 .693 3.664| 13.903
5 622 76.693 |.704 |6.392 (1.392 6.911| 49.696
4 1 1 33.383 |.405 (1.139 .139 .498 .267
2 44 48.060 |.606 [2.229 .229 .997 1.046
3 197 59.947 .690 |3.284 .284 1.517 2.381
4 382 69.210 |.711 |4.447 447 1.996 4,185
5. 540 75,220 |.690 }5.595 .595 2.964 9.141
5 1 0 33.253 | .400 |1.169 .169 .488 . 267
2 36 46.043 | .577 |2.191 .191 .839 . 740
3 144 58.137 | .660 |3.224 .224 1.248 1.608
4 315 65.550 | .716 |4.364 .364 1.824 3.459
.5 455 72,023 | .711 |5.483 .483 2.632 7.161

* Each entry is based on 1500 simulations.
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TABLE XVII

MINIMUM DIFFERENCE TRUNCATION RULE APPLIED IF
STOPPING CRITERION OF MULTISTAGE ESTIMATION
OF k NOT MET BY 100 OBSERVATIONS*

u k Number of Times N sy Q Bi;s s§ MEE
100 Observations
Taken
1 1 47 45.393 |.605 |1.255 .255 .857 .799
2 362 64.593 |.756 {2.646 .646 | 2,988 9.347
3 652 74.393 }.770 |5.082 {2.082 |27.307}749.992
4 773 78.533 {.730 {5.991 {1.991 |23.197|542.070
5 888 82.183 (.701 {6.117 |1.117 {13.357{179.656
2 1 3 37.257 !.468 11,155 .155 .602 .387
2 141 55.590 |.675 |2.347 .347 1.4947 2.352
3 352 66.420 |.728 |3.642 642 1 3,563 13.106
4 621 74,870 |.741 {5,184 [1.184 | 8.142| 67.692
5 741 79.860 1.688 |6.651 ;1.651 |11.089}125.694
3 1 0 35.183 {.416 |1.153 .153 494 .267
2 80 50.783 |.632 |2.178 .178 1.009 1.051
3 247 63.470 {.707 |3.306 .306 1.696| 2.969
4 470 71.230 |.723 |4.673 .673 3.535| 12.948
5 586 75.610 |.697 |5.962 .962 | 6.360| 41.377
4 1 0 33.017 }.410 |1.123 .123 .505 .270
2 33 48.223 |.571 |2.219 .219 .887 .834
3 180 59.717 {.692 |3.334 .334 1.611 2.706
4 363 ’ 67.990 |.718 |4.385 .385 2.163 4.829
5 524 73.653 |.709 |5.899 .899 | 4.851) 24.343
5 1 1 32.620 }.385 |[1.147 147 455 .229
2 38 46.700 |.580 |2.200 .200 .938 .920
3 116 56.840 |.659 |3.240 .240 | 1.355 1.893
4 302 66.923 |.691 -14.404 404 1.841 3.552
5 488 74.250 |.679 |5.618 .618 2.752 7.957

% Each entry is based on 1500 simulations.
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lated and of requiring a smaller difference in the last two estimates.
Both tend to rapidly increase the average sample size while continuing

to reduce the mean square error.



CHAPTER VI
TESTING AND ESTIMATION OF A COMMON k

In this chapter, we shall determine the maximum likelihood estima-
tor of a k common to several negative binomial populations which may
have different means. The likelihood ratio test (LRT) is then developed.
Some comparisons in the precision of the estimate of the common k and
the power of the tests when using the likelihood procedure and that due
to Bliss and Owen  (6) are also made. All of the work in this chapter
is based on samples of fixed size.

Consider a random sample of size n, from population i, i =1, 2,
R Whereig1 n, = n. Let Xib be the b-th observation from the i-th
population. Denote the number of observations in population i with the
value j by mij' Define Ui to be the mean of the i-th population.
Assume that k is constant for each population but the means may vary.
Then the natural logarithm of the likelihood function is

t o

fnL=% I m,, &n P(Xi = 3)
i=1 j=0 *J

t j-1
= - s .
: _Z .Z m, z ln(kc-+s) n j! + kc n kC + i n My
i=1 j=0 s=0
- : Fx) .
<kC + J) /Qn(lii kc/]
Taking the derivative of L with respect to ui, we determine that
the MLE of ui islié . Using this fact and differentiating nL with re-

spect to k. , we have that the MLE of the common value of k is the root
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of the following equation in kc

t —_— A ~ t @ j 1
Zn nX, +k)-nfnk =3I I m I = .
i=1 * oo € 4=13=0 M g=0 ko ts
Suppose now we want to test
HO: kl = k2 = ... = kt (6.1)
versus
Hl: not HO .

~

Let w be the restricted parameter space under H

0’ and L(w) the maximum
value of the likelihood function of the sample where the parameters are
restricted to w; hence,

n,
1
I x
~ —_ - ib A
. el Gk +x, - D! X, \°F B \%K
L(w) = TT id c l/\ - 1 ~ _—"—C';\—‘ .
i=1{tp=1  =ip'ke! Xi. Tke Xi. tke

Defining L(ﬁ) to be the maximum value of the likelihood function of the

of H0 and H

sample where the parameters may take on any value specified in the union
1° we have

n A — gilxib R n.k,
. efr™ G +x, - DY X, ke o\

L) = 7 T . S =R —_—

i=1{lb=1  xiplki! Xj. Tki Xi.tky

where Qi is the maximum likelihood estimate of k based on the observa-

tions from the i-th population.

The likelihood ratio is then denoted by

L(®
>\ = TR .
L(Q)
If H is true, -2 times the natural logarithm of A is approximately a
2
X

random variable with t degrees of freedom for large value of n.
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We propose to use the maximum likelihood estimate of the common k
and to test the hypothesis in (6.1) using the X2 approximation of -2 gn A
under H .

0

Monte Carlo methods were employed to study the properties of our
proposed estimation and testing procedure and to compare it with the
standard one developed by Bliss and Owen (6). However, we can only pre-
sent our work in this area as a preliminary step to future endeavors.

We believe it gives some insight into the two procedures, but much more
must be done before either method is fully understood or a comparison
of the two is complete.

In our simulations, we worked with two populations, and we took a
sample of fixed size thirty from each one. Both populations had the
same mean of one although we did not make this assumption when obtaining
our estimates.

We began by running 1,000 simulations based on Bliss and Owen's
weighted regression procedure. A sample was drawn from each of the two

populations. If either one of them resulted in si <X, , it was dis-
carded and a new sample drawn. A weighted regression was performed
iteratively until the last two estimates of ic differed by less thamn .0l.
The test for equality of the two k's was based on the two-tailed chi-
square test statistic with one degree of freedom. The test was conducted
with a stated significance level of ,05.

In Table XVIII, the fraction of the 1,000 simulations in which HO
was rejected is presented for each of the combinations of k's. The dia-
gonal entries represent the cases where the two valueé of k are equal
and H. is true. In the off-diagonal entries, the k's in the underlying

0

populations are not equal, and HO is false. 1In many cases, we reject a
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true HO more often than a false one, leading us to believe the test may

be biased.

TABLE XVIII

ESTIMATED SIGNIFICANCE LEVEL OF THE WEIGHTED
REGRESSION TEST OF A COMMON k

Value of k in Population 1

1 2 3 4 5

1 .036 .038 .030 .039 .028

Value of 2 .043 .032 .028 .035
k in

Popula- 3 041 .029 .044
tion

2 4 .033 .049

5 .048

For those cases where we failed to reject H we proceeded to ob-

0°
tain an. estimate of the common k. As a measure of the precision of the
estimate, we computed the estimated bias, the estimated standard devia-
tion, and the estimated MSE. These are presented in Table XIX. Con-
sidering the high MSE associated with MME and MLE estimation of k from
samples of fixed size, this process seems to give good estimates of the
common k.

Next we turned to the proposed estimation and testing procedure

based on the likelihood function. Again we ran 1,000 simulations for
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. . 2 . . .
each parameter combination. The X" approximation is apparently not good
for samples of this size since we seldom rejected the null hypothesis.

Therefore, we decided to reject H, if -2 n A\ was greater than two. The

value two was chosen so that the estimated significance levels of the two

tests would be about the same.

TABLE XIX

ESTIMATION OF A COMMON k BASED ON THE WEIGHTED
REGRESSION PROCEDURE

u k_ 1A<c Bias s MSE

1 1 1.287 .287 .981 1.045

) 2 2.526 .526 2.978 9.144
3 3.528 .528 3.799 | 14.714

4 4.069 .069 5.308 | 28.182

5 4,774 -.226 5.483 | 30.117

Results of these simulations are presented in Table XX. Although
there are some exceptions, we are more likely to reject HO if it is
false than if it is true, indicating this may be an unbiased test. Notice
that as we go down the diagonal, the estimated significance level de-
creases. This is somewhat disturbing since it implies the significance
level may depend on the value of the unknown, but equal parameters.

If we failed to reject HO , an estimate of a common k was computed.

The estimated bias, estimated standard deviation of the estimate, and
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the estimated MSE are given in Table XXI. 1In each case the estimated
MSE is less than the corresponding one computed under the Bliss and

Owen process.

TABLE XX

ESTIMATED SIGNIFICANCE LEVEL OF THE LIKELIHOOD
RATIO TEST OF A COMMON k

Value of k in Population 1

1 2 3 4 5

1 .126 .154 .194 .248 .221

Value of 2 .067 .086 .078 .070
k in

Popula- 3 .059 .051 .051
tion

2 4 .043 .033

5 .030

From these simulations, there is an indication that the testing
procedure based on the likelihood ratio is more powerful than the one
based on the weighted regression although neither can be considered
"good" for a mean of one and samples of size 30 from each of two popu-
lations. Also the maximum likelihood estimates are a little more pre-
cise than the regression estimates.

In another attempt to study the comparative power of the two tests,

we tried the following approach. A sample of size thirty was drawn from



81

each of two populations having the same values of the parameters y and
k, and the test statistic for the regression test computed. This was

done one thousand times and

2
a = >
P(T Xcalc)
estimated for each of the one thousand observed X2 values, where T

calc

represents the possible values of the test statistic. This produced
significance levels under the null hypothesis. Then various alterna-
tives were considered. For each alternative, two samples were drawn,
one from each population. The test statistic was computed, and the
observed significance level, %(&), determined. A plot of §(&) against

0 .was made with three alternatives plotted on each graph.

TABLE XXI

MAXIMUM LIKELTIHOOD ESTIMATION OF A COMMON k

u kc .Eé Biés si MgE
1 1 1,307 .307 .835 .791
2 2.544 544 2.162 4,972
3 3,465 .465 3.565 12.927
4 3.997 -.003 3.609 | 13.025
5 4,254 ~-.746 3.645 | 13.845
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This procedure was repeated for the likelihood ratio test, and the
plots based on the two tests compared. Some of these plots are pre-
sented in Figures 9~ 16. When the mean is five, both tests are more
powerful than when the mean is one. This is reasonable since k affects
the shape of the distribution more as U increases. The plots of the
alternatives under the likelihood ratio are slightly higher than the
corresponding ones in the regression procedure, indicating more power.

The plots in Figures 15 and 16 have the significance levels based
on ul = u2 = 5 and kl = kz = 1. The alternatives have ul = uz =35
and kl = k2' We would hope that %(&) = & in these cases. There is

a marked tendency for F(a) > o for the regression test statistic, but

a rough equality appears to hold for the likelihood ratio test statistic.
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CHAPTER VII
SUMMARY

Our study is devoted to the negative binomial distribution. Se-
quential procedures to estimate the mean with a prescribed degree of
precision are developed.‘ A multistage method of estimating the second
parameter k is presented and compared to the method of moments and max
imum likelihood estimates. Further, a proposed, fixed-sample-size es-
timation and testing procedure for a k common to several populations
with differing means is devéloped and compared with the standard onme.

When presented a sample from a negative binomial distribution with
a single unknown parameter U, we know the minimum variance unbiased
estimator of y is X . However, if we want to collect a sample so that
the estimate of u has a specified degree of precision, then we need to
take a sample of optimum fixed size n* . Generally, n® depends on the
unknown parameter and is thus unknown. Three sequential procedures
designed to obtain a desired level of precision are developed. One aims
at estimating y with a specified coefficient of variation of the esti-
mate, C. Another estimates y within a proportion p of U with confidence
1 - o, and the last attempts to estimate Y within d units with confi-
dence 1 - oo. One of the features of each of these methods is that all
major computations may be completed before taking the observations, and
only the total needs to be considefed in deciding whether or not to

stop. The limiting behavior of the procedures is investigated, and
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> methods are used to study the results for moderate C, p,

>arametric, sequential procedure is developed to estimate the
1 specified coefficient of variation of the estimate, C. 1In

> proving some limit results, the behavior for moderate values

che negative binomial is the underlying distribution is con-

1e two-parameter negative binomial distribution, we show that
> complete sufficient statistic. It is shown by use of simu-
¢ a proposed multistage procedure for estimating k tends to

aificantly the bias, the standard deviation of the estimate,

Jently the MSE when compared to fixed-sample-size MME and MLE

ly, we compared the MLE of a k common to several populations
r1ave differing means with the estimates obtained by Bliss and
procedure of weighted regression. We also considered the
2 power of the two tests for equality of the k's. Since we

1 with two populations, each having the same mean, and samples
irty were drawn from each, we can view this work as only a

y step to a more detailed comparison. There are indicatioms,

aat the likelihood-based procedure produces more precise

and has greater power.
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