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My son, if thou wilt receive my words, and hide my commandments with 

thee, so that thou incline thine ear unto wisdom, and apply thine heart 

to understanding; yea, if thou criest after knowledge, and liftest up 

thy voice for understanding; if thou seekest her as silver, and searchest 

for her as for hidden treasures; then shalt thou understand the fear of 

the Lord, and find the knowledge of God. For the Lord giveth wisdom; 

out of His mouth cometh knowledge and understanding. He layeth up 

sound wisdom for the righteous; He is a shield to those who walk up

rightly. He keepeth the paths of justice, and preserveth the way of 

His saints. Then shalt thou understand righteousness, and justice, and 

equity; yea, every good path. When wisdom entereth into thine heart, 

and knowledge is pleasant unto thy soul, discretion shall preserve thee, 

understanding shall keep thee. 

Proverbs 2: 1- 11 
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CHAPTER I 

INTRODUCTION 

Although discussed by Pascal and Fermat, the negative binomial dis-

tribution was first formulated and published by Montmort (24) in 1714. 

In 1907, Student (36) encountered the negative binomial while 

studying the distributions of yeast cells counted with a haemocytometer. 

He reasoned that if the liquid in which the cells were suspended was 

properly mixed, then a given particle had an equal chance of falling on 

any unit area of the haemocytometer. Thus he was working with the bino-
. 

mial distribution and the fact that the probability a binomial random 

variable X assumes a value x is equal to the (x + l)st term in the ex-

. ,.. ( q)k h d k > 0 d 1 h . pansion or p + w ere p, q, an an p + q = ; t .at is, 

P(X = x) = (~) x 
p 

k-x 
q x = 0, 1, 2, ... , k. 

Student estimated p, q, and k from the first two sample moments. In two 

of his four series, the second moment exceeded the mean, resulting in 

negative estimates of p and k. Nevertheless, these "negative" binomials 

fit his data well. He noted that this may have occurred due to a ten-

dency of the yeast cells "to stick together in groups which was not al-

together abolished even by vigorous shaking" (p. 35 7) . 

There were several other cases that appeared in the literature 

during the early 1900's where estimation of the binomial parameters re-

sulted in negative values of p and k. This phenomenon was explained to 

1 
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some extent by arguing that for small p and large k the variability of 

the estimators would cause some negative estimates to be observed. 

Whitaker (38) investigated the validity of this claim. In addition to 

Student's work, she reviewed that of Mortara (25) who dealt with deaths 

due to chronic alcoholism and that of Bortkewitsch (7) who studied sui-

cides of children in Prussia, suicides of women in German states, acci-

dental deaths in trade societies, and deaths from the kick of a horse 

in Prussian army corps. In view of the estimated errors associated with 

the various estimates of p and the frequency of negative estimates, 

Whitaker found it highly unlikely that all negative estimates of p and k 

could be explained by variability. She, therefore, suggested that a new 

interpretation was needed for the negative binomial, (q - p) -k, where 

p > 0 , k > 0 , and q = 1 + p . By expansion of this expression, we 

find that the probability the negative binomial random variable X will 

assume the values 0, 1, 2, ... is 

(k + x - 1)_L_ 
p (X = x) = k - 1 x+k 

q 
(1.1) 

In 1920, Greenwood and Yule (15) developed an accident proneness 

model. They began by considering a Poisson random variable X; hence, 

P(X = x) x = o, 1, 2, ..• 

where A > 0 represents the expected number of events for an individual 

in the population. If the value of A differs from one individual to the 

next, and if A is distributed according to the cumulative probability 

function F(A) , the probability of observing x events in the total pop-

ulation is given by 

co 'x A 
I _11. 1 e - d F (A ) 

0 x. 
(1. 2) 
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Greenwood and Yule refer to ( 1. 2) as a compound Poisson distribution. 

Upon considering various forms of F(A) , they discovered the negative 

binomial resulted when A varied according to a gamma distribution (12, 

pp. 391-394). 

The negative binomial distribution was also derived in 1923 by 

Eggenberger and Polya (11) as a limiting case of an urn problem in the 

following manner. Suppose an urn contains N balls of which Np are red 

and Nq are white (p + q = 1). There are n successive drawings of a ball 

made from the urn with replacement, and No balls of the color last 

drawn are added to the urn after each drawing. Let X denote the number 

of red balls in n successive drawings. Then the probability X assumes 

the value x is given by 

P (X = x) = (nx) p (p+o) (p+26) ... (p+(x-1) 6 )q (q+o) (q+26) .•. (q+[n-x+l J 0) 
1(1+8)(1+26) ... (l+[n-1]6) 

If we let n-+ co 

' 

(1. 3) 

p -+ 0 , and 6 -+ 0 , while keeping np = A and no = n 

constant, then (1.3) becomes 

P(X = x) 

0 . A k n setting - = 
n 

k (k + 1) •.. (k + x - 1) 
x! 

it is apparent from (1.1) that this is a negative bi-

nomial distribution (16, pp. 1392-1393). 

The negative binomial has come to be applied in many fields includ-

ing accident statistics, population counts, psychological data, and com-

munications. 

Our main interest in this distribution arises from our involvement 

with entomological problems. We hope to develop methods, with a strong 

statistical foundation, that researchers will be able to use easily. 

Some of the procedures presented in this thesis have been field-tested 
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on cotton insects. 

The mean is of primary interest in entomology, as it is in most 

applications. Anscombe (2) reparameterized the distribution in the 

1940's, usingµ = kp and k. A random variable Xis then distributed as 

a negative binomial random variable if the probability mass function is 

given by 

P(X = (k + x -
x) k - 1 

where µ and k 
2 

= 0 

are positive. 

µ )x( k )k 
+k µ+k ' 

x = 0, 1, 2' ... 

(1. 4) 
otherwise 

Here the mean is µ and the variance is 

lL µ + k . It is evident that the variance both exceeds the mean and is 

a quadratic function of the mean. Although various equivalent forms 

exist in the literature, we shall consider Anscombe's which has become 

almost standard. 

In this thesis, our main objective will be to investigate some 

problems of statistical inference related to the negative binomial dis-

tribution. The negative binomial may be viewed as a one-parameter dis-

tribution where either µ or k is unknown or a two-parameter distribution 

where both µ and k are unknown. The two-parameter distribution is dif-

ficult to work with, and many simplifications result when we can assume 

that we know k. However, when k is the unknown parameter, inference is 

only slightly improved over the two-parameter problem. We do not believe 

that this last case arises very often in practice. Thus we shall con-

sider the cases where µ is the unknown parameter and where both µ and k 

are unknown. 

In Chapter II, we shall present some of the properties of the nega-

tive binomial distribution and discuss earlier research in our areas of 
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interest. Sequential procedures for estimation of the mean in the one

parameter case will be developed in Chapter III, and a nonparametric, 

sequential approach to estimation of the mean which is applicable to the 

two-parameter negative binomial distribution is studied in Chapter IV. 

Chapters V and VI focus on inference related to the second parameter 

k. In Chapter V, a multistage procedure for estimating k is presented. 

A proposed, fixed-sample-size estimation and testing procedure for a 

value of k connnon to several populations is developed and compared to a 

standard one in Chapter VI. 



CHAPTER II 

SOME STATISTICAL PROPERTIES AND PRIOR RESEARCH 

ON THE NEGATIVE BINOMIAL DISTRIBUTION 

In this chapter, we shall review some of the properties and pre-

vious work that has been done on the negative binomial distribution. 

Properties of the Negative Binomial Distribution 

It is interesting to note how each parameter affects the shape of 

the negative binomial. In Figures 1- 4, µ and k have a similar effect 

on the shape of the distribution. When one parameter is held fixed, an 

increase in the second one results in a shift of the distribution to the 

right. As the value of the fixed parameter increases, the shape of the 

distribution is more dramatically affected by changes in the second para-

meter. The similarity in the behavior of the parameters is further 

evidenced when we note that both µ and k must approach infinity for 

there to be no skewness or kurtosis. 

The probability generating function is 

( -k 
¢x(t) = µ(1-t)) 

it I 
k + µ 

(2. 1) 1 + k ' < k 

Since ¢x(t) is well-determined for It I k + µ and k + g 1 all mo-< k k > ~ ' 

ments do exist. From (2.1), we can determine that the r-th factorial 

about 0 is 

r 
(r _ l) ! ( k + r - 1)_1-_l _ 

k r-1 · 
k 

6 
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The moment generating function is given by 

(1 

-k 

~(t) = + µ(1 - et)) k + u (2.2) t < ~n k µ 

Using (2.2), it may be shown that the sum of n independent, identically-

distributed negative binomial random variables with parameters µ and k, 

NB(µ, k), is also distributed as NB(nµ, nk). 

The negative binomial distribution with parameter µ belongs to the 
n 

exponential family. It is easily proven · that L x. is a complete, suf-
i=l 1 n 

ficient statistic. Thus, given any sample of fixed size n, X = l L x. 
n i=l i 

is the minimum variance unbiased estimator of µ. 

Previous Sequential Estimation of µ for the 

One-Parameter Negative Binomial 

Suppose we are interested in estimating the mean of a one-parameter 

negative binomial distribution with a prescribed level of precision. 

Let n* be the minimum fixed sample size required to obtain the desired 

precision of the estimate. We shall refer to n* as the optimal fixed 

sample size. Usually, n* depends on unknown parameters and is therefore 

unknown. As a result, samples of random size N are used in the estima-

tion process. When working with sequential or multistage procedures, 

we shall need some notation that indicates the randomness of the sample 

size. Define x. to be the i-th observation from the population of inter-
1 

est. Denote the sum of the first n observations by T and their average 
n 

by X Also, let 
n 

and 

2 
s 

n 

n 
1 L (x. - X )2 

n - 1 i=l 1 n 
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u2 =l(~ (x. -X) 2 +1). 
n n i=l i n 

Oakland (30) was the first to apply Wald's sequential probability 

ratio test to tests of hypotheses about µ for a negative binomial 

distribution. In doing so, he made two assumptions. The first was 

that the value of k would be the same under both hypotheses, and the 

second was that either k would be known or a precise estimate of k 

would be available. Morris (26) employed Oakland's procedures after 

estimating k using methods developed by Anscombe (2). 

Sequential point estimation of the mean attempts to estimate the 

parameter µ with a prescribed degree of precision. The choice of an 

appropriate procedure depends upon the method used to measure the pre-

cision. One approach attempts to estimate µ with a specified coefficient 

of variation of the mean, C. Estimation of µ within a proportion p of 

the mean with confidence 1 - a is the goal of some procedures, and a 

third method is designed to estimate the mean within d units with con-

fidence 1 - a. 

In 1969, Kuno (19) presented two sequential procedures for the esti-

mation of the mean when the variance is of the form 

aµ + bµ 2 

where a and b are constants. Assuming a and b are known, he estimates 

the mean using x and the variance by ax + bx2 
n n n 

The first of Kuno's procedures is designed to estimate µ with a 

specified coefficient of variation of the mean, C. Observations are 

taken until the first time the estimated CV(X) is less-than or equal to 

the desired C; that is, until 
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x2 < c (2.3) 

n 

Then the estimate of the mean is taken to be ~ The advantage of this 

rule is that it may be rewritten: Stop the first time that 

T 
n 

a 
> 

c2 - .£ 
n 

Thus all major computations may be done before taking the sample, and 

only the total needs to be calculated in order to determine whether or 

not to stop. In a subsequent paper, Kuno (20) presented an asymptotic 

expression of the bias associated with this method of estimation and 

found it to be 

2 aC µ 
a + bµ 

With this exception, the statistical properties of the process have not 

been investigated. Therefore, from Kuno's work, we do not know if the 

procedure actually achieves the desired coefficient of variation of X. 

Allen, Gonzalez, and Gokhale (1) used this process and determined 

the values of a and b by regression. From their data on Heliothis zea, 

the bollworm, they had 49 estimated mean-variance pairs each based on 

seventy-two five-plant samples taken in five different fields over a 

three-year period. They determined the least squares estimates of a and 

b in the equation, 

2 - -2 
s = aX + bX 

Once a and b were estimated, Allen, Gonzalez, and Gokhale employed Kuno's 

procedure. 

Kuno's second sequential procedure attempts to estimate the mean 

with a specified standard deviation of X, d0 . This problem is closely 



.... 

related to estimation ofµ within d units with confidence 1 - a. He 

suggests taking observations until 

< d 
- 0 

The stopping criterion can be written so that all major calculations 

may be completed before drawing the sample. Thus we would stop the 

first time 

n(~a2 + 4nbd; - a) 
T < 

n - 2b 

The asymptotic bias for this process is 

B 
a + 2b]l 
a + bµ 

Again no investigation into whether or not this sequential procedure 

actually attains the desired level of precision has been made. 

14 

Later, Binns (5) presented a method of estimating the mean of a one-

parameter negative binomial distribution within a proportion p of µ with 

confidence 1 - a. The optimal fixed sample size required to achieve 

this goal is 

n* = (~~) 
2 

where z is the 1 - ~2 fractile of the standard normal distribution. He 
-2 

+ ~ as the estimate 
k 

also uses X as a preliminary estimate of µ and X 
n n 

of the variance. Thus he recommends adding observations to the sample 

sequentially until 

n > (x 
- n 

Letting a = 

+ ~)(z_)2 
pX 

2 

(2.4) 

z and employing a finite population correction factor on 
p 
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nk, we may rewrite (2.4) as stop when 

2 1 2 4 
nk > and T 

a (2.5) a +- > a + 1 2 . 2 n- nk - 2 
- a 

Denoting by (t, rt) the point of intersection of the sample path and the 

stopping boundary (N - 1 < t < N), µis then estimated by 

kr 
t µ = ----''--

1 
2 

tk 

Note that µ is basically the estimated value of X when the sample path 

crosses the stopping boundary with the addition of the finite population 

correction factor on tk. 

Binns showed that for large a the distribution of the estimate is 

approximately log normal with mean log µ and variance ~ . He approx
a 

imated the average sample size and the variance of the sample size and 

investigated the adequacy of these approximations using Monte Carlo 

methods. The effect of imprecise knowledge of k was also studied. Al-

though Binns showed that the estimate had some nice properties, he did 

not determine whether or not the procedure achieved its goal of estima-

ting µ within pµ with confidence 1 - a. 

Research Related to Nonparametric Sequential 

Estimation Procedures for µ 

Other sequential procedures are available when the distribution of 

the population is unspecified. Chow and Robbins (9) studied the proper-

ties of a method designed to estimate µ within a specified distance d 

with confidence 1 - a. The stopping rule is of the form 

N = min(n > n (> 1): 
- 0 

2 

n~(u~z) ). 



Taking~ as the estimate ofµ, they proved 

lirn i-:.. = 1 
n" 

d-+0 
a.s. 

lim P ( I ~ - µ I < d) = 1 - a 
d+O 

1 . E(N) _ l 
im ~ -

d-+0 n 
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Sproule (33) extended the work of Chow and Robbins to cover the means of 

U-statistics. 

Nadas (29) developed a process for estimating ]J within a proportion p 

of the mean with confidence 1 - a. Using ]J = ~ and the stopping rule 

where again z is the 1 - I fractile of the standard normal distribution, 

he proved 

1 . N 1 
im~= a.s. 

p-+O n 

lim P ( I~ - JJ I .::_ pµ) = 1 - a 
p-+O 

lim E(~) = 1 
n" 

p-+O 

Sequential point estimation of the mean when the distribution is 

normal with parameters ]J and 0 was studied by Starr (34). He considered 

a loss structure, 

where A, s, t > 0. Introducing the term risk efficiency, he showed 

that the ratio of the expected loss (or risk) associated with the se-

quential process to the risk associated with the optimal fixed sample 
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size tends to one as 0 + 00 

Mukhopadhyay (28) developed a nonparametric, sequential procedure 

for estimating the mean when the loss function is 

- 2 
LN =A(~-µ) + cN 

where A and c are known positive constants, c being the cost per obser-

vation. Two assumptions were needed to prove the risk efficiency of the 

process: (1) 0 < 0 0 < 0 < 00 for a known 0 0 and (2) E(!xl 2+Q) < 00 for 

some 6 > 0. 

Ghosh and Mukhopadhyay (14) further developed this last sequential 

method so that the only distributional assumption is the finiteness of 

the eighth moment. This process was extended to cover U-statistics by 

Sen and Ghosh (32). 

Research on the Estimation of k 

When considering the two-parameter negative binomial distribution, 

the estimation of k poses a problem. The method of moments estimator 

(MME) of k for a fixed sample size n is 

x-2 
k 

n 

s 2 - x 
n n 

Since k > 0, this estimate is not reasonable when the estimate of the 

mean exceeds that of the variance. Haldane (17) derived the maximum 

likelihood estimators (MLE). Using m. to denote the number of times a 
J 

j was observed in a sample of size n, the MLE of k is the root of the 

following equation in k: 

n 9-n (1 + x;i-) = ~ m. (~ + _l_ + . . . " 1 ) 
k j=l J k k + 1 k + j - 1 



Anscombe (3) hypothesized that there is only one positive finite root 

when s 2 > X and none otherwise. Fisher (13) compared the asymptotic 
n n 

efficiency of the MME and MLE. Other fixed sample size estimates are 

available but seldom used. 
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Bowman and Shenton (8) presented formulas for computing the bias of 

the method of moments and maximum likelihood estimators of k. Tables of 

1 . 1 
these biases were given for order n and -z- . Using computer simulation 

n 
to draw samples of size 50, 100 and 200, Pieters, Gates, Matis, and Ster-

ling (31) compared methods of estimating k. Their conclusion was that 

there appeared to· be little difference in the biases under the method of 

moments and maximum likelihood. However, both the method of moments and 

maximum likelihood were superior to the other estimation procedures 

considered. 

Estimation and Testing for a Common k 

Since insect counts are often fit well by the negative binomial 

distribution, there have been a number of attempts to give a meaningful 

ecological interpretation of the parameters µ and k. µ may be defined 

as the average density of insects in the area of interest. The defini-

tion of k has been more elusive. 

Anscombe (2) stated that k depends on the intrinsic power of a 

species to reproduce itself, whileµ depends on external factors. This 

has led some researchers to search for an inherent value of k associated 

with various species. 

Waters (37) suggested that k measures the aggregation of insects. 

Following his logic, small values of k indicate extreme aggregation 

whereas the distribution of counts tendsto be purely random ask 
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approaches infinity. 

The idea of mean crowding and its relationship to k was explored by 

Lloyd (22). Mean crowding , µ *, is defined to be the mean number per 

individual of other individuals in the same sampling unit. If the 

* underlying distribution is negative binomial, then }:'.___ , the ratio of 
]J 

mean crowding to the population mean, is 1 + t Assuming that this 

ratio is constant for a given species of insect, we would then have 

another interpretation for k. 

There is no doubt that all of these are valid to some extent. How-

ever, there is a tendency to extend these interpretations to inferences 

about the spatial distribution of insects. We believe that this is to-

tally incorrect. 

Since there has been a vast amount of work devoted to the meaning 

of k, it is important to be able to test for the equality of k's from 

populations with differing means and to estimate that common k if it 

exists. Let n., s., and X. denote the sample size, estimated standard 
1 1 1 

deviation, and estimated mean, respectively, of the i-th population, 

i = 1, 2, ... , t. Anscombe (3) presented _some methods of esti_:U_~ting a k 

common to several populations with differing means. The most popular 

A • ·-· ..• • ·-·· 2· -
approach was to choose kc so that the sum_ or_ weighted sum si - Xi 

A 

-2. x. . l. 

was zero. In order to minimize the variance of kc' he suggested using 

a weight for the i-th_population of 

n - 1 
i 

w. = 
i ex. + k ) 2 

1 c 

In 1958, Bliss and Owen (6) recommended computing 

2 
l 

x. 
1 

x. 
1 

s. 
1 

n. 
1 



and 

2 
s. 

1 
x. 

1 
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for each of the t populations. 
I I 

The regression line of y on x passes 

1 through the origin and has slope ~ In order to increase the precision 
kc 

of the estimate, each population may be weighted inversely to the vari-

ance. Hence, 

w. = 
1 k(k + 

4 
.S(n. - l)k 

1 

l) _ (2k - 1)/n. 
1 

1 

x:cx. + k) 2 
1 1 

After iteratively performing a weighted regression until the last two 

estimates of the connnon k differ by a negligible amount, a chi-square 

test for equality of the k's from each of the t populations can then be 

conducted. This testing and estimation procedure is the one most common-

ly employed at present. 



CHAPTER III 

SEQUENTIAL ESTIMATION OF JJ FOR THE ONE-PARAMETER 

NEGATIVE BINOMIAL DISTRIBUTION 

As mentioned in Chapter II, when JJ is the single unknown para-

meter, the negative binomial family of distributions belongs to the ex
n 

ponential family and has a complete sufficient statistic, ~ x .. Define 
i=l l. 

v 
n 

= 
__ nk __ X + n -2 
nk + 1 n nk + 1 Xn 

Since E(V ) = 0 2 
n 

µ2 
= 11 + k and since V is a function of the complete suf

n, 

ficient statistic, V 
n 

is the minimum variance unbiased estimator of 0 2 . 

Using V and X as the estimators of 0 2 
n n 

and JJ, respectively, we shall 

develop three sequential procedures for estimating the mean in this 

chapter. 

Controlling the Coefficient of Variation of X 

After n observations, x 1 , x2 , .•. , 

estimating µ by X is given by 
n 

(x - µ) 2 
L = __ n __ _ 

n µ2 

The associated risk is then 

R = E(L ) 
n n 

x ' n 
suppose the loss incurred by 

where C is the coefficient of variation of the mean. 
2 

If C (or equiva-

21 
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lently C) is specified, then the fixed sample size required to achieve 

the desired risk is 

n*(C) =(µere )2 (3. 1) 

Since µ and er are unknown, no fixed sample size procedure will achieve 

the desired risk for allµ, er. 

Consider a sample of random size N with risk 

- 2 
E(~ - µ) 

E(LN) = 2 
µ 

2 Using (3.1) as a guide and substituting our estimates of er andµ, 

we would work with samples of random size 

N > (3. 2) 

In order for the right-hand side of the above equation to be well-defined 

and positive almost surely, we will require sampling to continue until 

at least one positive value has been observed. Simplifying (3.2) alge-

braically, we obtain 

N > _l_I Nk + Nk N+ 1) 
- c2 \CNk + l)~ 

N >-----
c2(Nk + 1) 

Solving the inequality for N, we find 

leading us to a minimum sample size. 

sequentially until 

N = min( n ?_ n0 = Ilru{( 2, [)k - ~])= 
one nonzero value has been 

(3. 3) 

(3 .4) 

Therefore, we propose to sample 

n > 
v 

n 
- 2 

(CX ) 

observe~) 

and at least 

(3. 5) 
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where [y] is the largest integer less than or equal to y. Taking advan-

tage of the nature of V , we can rewrite (3.5) as stop when 
n 

and T > nk 
n - c2 (nk + 1) - 1 

We shall now investigate the properties of this sequential process 

by presenting some lemmas and a theorem. The main contribution of the 

first lemma is that it assures us that the stopping criterion will be met 

with a finite sample size for any fixed, positive C. The fact that the 

ratio of the random sample size to the optimal fixed sample size tends 

to 1 almost surely as C approaches 0 .is proven in Lemma 2, and Lemma 3 

states that the procedure is asymptotically efficient. 

Lemma 1: N is nonincreasing in C and P(N < 00 ) = 1 for any fixed C > 0. 

Proof: Let N(C) 
VN , -2VN 

Then N (C) = _ 2 3 < 0 • Hence N is non-
(XNC)2 . 

increasing in C. Also 

P(N < oo) = 1 - P(N = oo) 

= 1 - lim P(N > n) 
n-+oo 

= 1 - lim 
n-+oo 

P n < n ~ v ) 
- (ex )2 

n 

= 1 - P(lim n .::_ (ccr )2) 
n-+oo µ 

= 1 

XNC 

Note that lim N = 00 a.s. since n0 + oo as C + 0 . 
C+O 

Lemma 2: N lim-= l a.s. 
c+O n* 

Proof: 

have 

Case 1 : Suppose [-1- - l] < 2 
C2k k -

v 
N - 1 < _N-l 2 + (2 - 1) , 

(CXN-1) 

In this case, n0 = 2. So we must 



This implies 

N < 

Case 2: Suppose [ C;k - ~] > 2 • In this case, n0 = [ C;k - ~] · 

Note: P(N = n0) = 0. The proof of this will be by contradiction. 

Assume P(N = n0) > 0. This implies it is possible to obtain 

24 

> l ( N 1) where N = n0 . 
C2 Nk + 

(3. 6) 

Substituting n0 for N in (3.6) and rewriting the inequality, we have 

1 1 
n >----

0 C2k k 
(3. 7) 

However, 

n = [-1- - l) < _l_ - l (3.8) 
0 C2k k - C2k k 

So (3.7) and (3.8) give a contradiction which implies P(N n0) = O. 

Hence 

since N .:::_ n0 + 1 . 

Combining Cases (1) and (2), we have 

_v_N_ < N < _v_N_-_l_ 
2 2 + 2 • 

(C~) - (C~_ 1 ) 

2 
* Dividing by n = ( µCTC) , we obtain 



25 

Using the fact lim N = oo and invoking the Strong Law of Large Numbers, 
G+O 

we find 

1 . N 
im -

C-+O n* 
1 . 

Lemma 3: lim E(n~) = 1 . 
C-+O 

Proof: Using Fatou's lemma and Lemma 2, we have 

lim inf E( ~) .:_ E( lim inf ; ) 
C-+0 n C-+0 

= 1 . 
(3. 9) 

We shall complete the proof using exponential bounds, a technique 

first presented by Mukhopadhyay (27). Lets> 0 be given. Define 

S = (1 + s)n* = (1 + s)(µcrc)2 
= (1 + E) (k + µ) 

ukc2 

Then E(N) 

00 

I: n P (N = n) 
n=no 

s 00 

< L: CS + 1) P (N = n) + L: n P (N = n) 
n=n0 n>S+l 

< (S + 1) P(N _::. S + 1) + T(S) 
00 

where T(S) = z 
n>S+l 

n P(N = n). Thus 

(3.10) 

Then for sufficiently small C, if T(S) < L where L is a constant indepen-

dent of S, Lerrnna 2 together with (3.10) would imply 

lim sup E( N*) _::. 1 + E 
C-+0 n ' 

which together with (3.9) gives the desired result. 



26 

Note from (3.5) that 

(3 .11) 

v 
n-1 Now n - 1 < ----

( CXn-1) 2 

2 1 1 implies that C (n - 1) < :::..---- + k , and this may be 

xn-1 

rewritten as 

n-1 k(n - 1) 
E x. < 2 

(3.12) 
i=l l. 1 C k(n - 1) -

Let q(n, c) = kn 
2 . 

C kn - 1 

Then n ..:_ S = (1 + E:)( µcrC) 2 implies that c2kn - 1 > (1 + E:) (~ )2 
k - 1. 

Hence 

kn < kn 
(3. 13) 2 2 C kn - 1 

(1 + E:)(~) k - 1 

Define a(n) kn 

(1+ s)(~) 2k - 1 

nkµ =------
s(µ + k) + k 

Thus from (3.11), (3.12) and ( 3 . 13) , we have 

00 

T(S) = E n P(N n) 
n.:ft+l 

00 

E (n + 1) P (N = n + 1) 
n>S 

00 

P(n < vn(~/) < L: (n + 1) 
n>S 

00 (n + 1) P( ~ x. < J < E nk 

n>S . 1 l. 2 
i= (1 +s)(~)k-



< ~ (n + 1) P (t ~ x.. > t a (n)) for any t < 0 
- n>S i=l 1 

< L: 
n>S 

n 

Therefore, by Chebyshev's inequality, we obtain for any t < 0 
n 

(n + 1) e-ta(n) Ect iEl xi). 
co 

T(S) < L: 
n>S 

Since x. - NB(µ, k), 
1 

n 

n 
L: x. - NB(nµ, nk) and 

i=l 1 

E(eti:lxi) • (i + µ(1 ~et) )-nk' t < 9,n k + µ 
µ 

Hence (3.14) becomes 
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(3.14) 

-nk 

T(i3) < ~ (n + 1) e-ta(n) (1 + µ(l; et)) for any t < 0. 

n>S 

So 
co 

T(S) < L: 
n>S 

Taking the first and second derivatives, we find that 

t = 9,n a(n)(k + µ) 
µ(nk + a(n)) 

(3. 15) 

is a minimum, and it can be verified that t is less than 0. Hence (3.15) 

becomes 

T (13.) < 
co [ (µ+k)(i:::+l)( + k)~nk 
L: (n + 1) (1 + i:::) s(µ+k)+k E:(µ + ~) 

n>S 

co 

L: 
n>S 

b , say. 
n 

Now bl/n + Q, < 1 
n 

since 

1 

(n + l)n + 1 
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and 

[ 
(µ+k) (E:+ 1) k 

(1 + E:) e: (µ+k)+k ( k + k) ] < 1 for all e: > 0 . qµ + k) (3.16) 

To verify (3.16), consider 

f (E:) 

(µ+k) (E+l) 
= (1 + E:) E(µ+k)+k ( k ) 

E(µ+k)+k . 

Note that f(O) = 1. By differentiating in f, we can show that f is 

a strictly decreasing function of E. These two facts give us that 

f(E) < 1 for E > 0. 

Then bl/n + i < 1 implies that 
n 

b + L, a constant independent of 
n 

f3. So 

T(f3) < L: 
n>S 

b + L • 
n 

Using Lenuna 2 and (3.10) with the above, we have 

lim sup E( N*) ~ 1 + E . 
c+o n 

This together with (3.9) gives the desired result. 

The preceding lenunas will be used to prove the risk efficiency of 

the proposed procedure in the following theorem. The methods used in 

proving this theorem were developed by Mukhopadhyay (28). 

Theorem 1: 
• E (LN) 

11.m R . (C) = 1. 
c+o n* 

Proof: Note that 

. E(~) 

lim R (C) = 
c+o n* 

Observe that 

E(X - µ) 2 * N . n 
(3.17) 
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Thus 

( ~ x. - NJJ)2 
_i_=_l_cr_~_n_* _ __,__ ((~*)2 1) 

I + J , say. 

Using a result due to Anscombe (4), we obtain 

r ~- foco, 1) l 2 as C + 0 . 

Then from a theorem due to Chow, Robbins, and Teicher (10), we have 

E(I) 

Using Le1Illl1a 3, we have E(I) + 1 as C + O. Hence the family {I} is uni-

formly integrable in the positive parameter C (23, p. 183). 

Now from the stopping rule, we have 

This implies 

Also 

_!_ < c2 (k + 1) 
N 

*-(..Q...)2-~ 
n - µC - µkG2 

These give us 

Thus 

n* 
-< 
N -

(µ + k)(k + 1) 
µk 

-1 < (n * )2 - 1 < (n * )2 < [ (µ + k) (k + 1) ] 2 • 
- N - N - µk 
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This, together with the fact that {I} is uniformly integrable im-

plies that {J} is also uniformly integrable. Hen:e, using Lemma 2, we 

have E(J) + 0 as C + O. Therefore, (3.17) becomes 

- 2 * E(~ - µ) n 

cr2 
= 1 . 

We shall also present a theorem closely related to one by Starr and 

Woodroofe (35) but given here for completeness. Let {c } be any sequence 
n 

of constants, and let n0 be any positive integer. 

of the sequence x1, x2, .•• by 

Define a stopping time 

N = smallest integer n ~ n0 such that Xn ~ en 

=co if no such n exists, i.e., if X <c for every n0 ~n<oo. n n 

We assume P(N < oo) = 1 so that ~ is well-defined. 

Theorem 2: If E(~) exists, then E(~) ~ E(X1) = µ • 

Proof: Without loss of generality, assume E(X1) = O. For any n ~ n0 

and any i = 1, 2, ..• , n, we therefore have 

J x. d p = 
(N>n) i 

CXl CXl 

J ... J J J 
A _oo -oo 

< 0 

CXl a. 
J f x. d F(x.)dF(x ) 

_ 00 i i n 

(3. 18) 

where A denotes the set 

i - 1 and a. = minjkck -

of ~alues o\f x 1, x2 , ... , xi-l' for which N > 

L: x. 
i=l ,j=l J 

It follows that for any n 2:_ n0 

J x 
(N>n) n 

since x max 

dP = J x 
(N>n) max 

< 0 

dP 

x. for some 1 < i < n and from (3.18). Also since X is in-
i n 

dependent of the event N > n - 1, 



f X dP = 
(N>n-1) n 

n - 1 
n 

f X l dP 
(N>n-1) n-

> f xn-l dP 
(N>n-1) 

Thus for every n ~ n0 , 

Hence,· 

n-1 + f X dP - f X dP 
L: f X. d P (N>n-1) n (N>n) n 

i=l (N=i) 1 

n-1 
> L: f X.dP+ 

lim 
n~ 

i=l (N=i) 1 

n-1 
> L: f X. dP 

i=n0 (N=i) l 

n-2 
= L: f X. dP 

i=n (N=i) l 

0 

> > 

> 

= E(X ) = 0 • 
no 

f ~dP 
(N<n) 

> lim E(X ) 
n-?<X> no 

= 0 . 

+ 

+ 

f X dP 
n (N>n-1) 

f X dP 
(N>n-1) n-1 

f X dP 
(N>n-2) n-l 
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The lemmas and the first theorem have a drawback when considering 

applications. They are limit results and give us no idea of the behavior 

of the sampling procedure for moderate values of C. We used Monte Carlo 
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methods to evaluate the process for moderate C and various combinations 

ofµ and k. Random numbers, y 1 , y 2 , .•• ,were drawn from a uniform 

(O, 1) population, and F-1(y.) was determined for each, where F is the 
l 

cumulative distribution function of a NB(µ, k) random variable. Hence 

we obtained observations from the appropriate negative binomial distr:ibu-

tions. This method was used in all of the simulations in this thesis. 

The values of µ and k were each allowed to vary from one to five by 

increments of one since this is the range most commonly found in ento-

mology. Five hundred samples were taken for each combination of the 

parameters. Observations were added to each sample until the stopping 

criterion (3.5) was met. 

In Tables I and II, we have presented the results of the simulations 

for C .3 and C = .1 • For each combination of the parameters, the op-

timal fixed sample size (n*), the average random sample size (N), and the 

estimated standard deviation of N (sN) are presented. Also, the average 

of the estimates of the mean, ~ , and their estimated standard deviation, 

SXN, were used to calculate the estimate of the true CV(~), CV(~) = 

x 
N 

It is interesting to note that the optimal fixed sample size is a 

symmetric function of µ and k. This follows since 

n * ( C) = (µ<JC ) 2 

=J_(l+l). 
c2 µ k 

Thus for C = .3, n* = 13.33 whenµ= 1 and k = 5 and whenµ= 5 and k=l. 

In the simulations, n* and N are close even for a C as moderate as 

.3 • The estimated standard deviation of N decreases as the mean in-



µ 
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TABLE I 

SEQUENTIAL ESTIMATION OF THE MEAN DESIGNED 
TO OBTAIN CV(~) = .3* 

- = I 
k n* N s- ~ I s-

N ~ 

1 22.22 22.74 . 17 1.03 . 32 

2 16.67 17.25 .16 1.08 .33 

3 14.82 15. 72 .17 1. 07 .32 

4 13.89 14.94 .16 1. 05 .32 

5 13. 33 14.21 .15 1.07 .33 

1 16.67 16.62 .09 2.08 .61 

2 11.11 11.54 .08 2.05 .56 

3 9.26 9.92 .09 2.07 .61 

4 8.33 8.94 .08 2.10 .61 

5 7.78 8.48 .08 2.07 .65 

1 14.82 14.59 .06 3.15 .95 

2 9.26 9.70 .06 3.04 .87 

3 7.41 7.80 .06 3.15 .93 

4 6.48 6.99 .06 3.17 .87 

5 5.93 6.45 .05 3.16 . 96 

1 13.89 13.70 .05 4.00 1.11 

2 8.33 8.59 .04 4.11 1.15 

3 6.48 6.91 .04 4.07 1.16 

4 5.56 6.06 .04 4.10 1.17 

5 5.00 5.52 .04 4.08 1.15 

1 13. 33 13.03 .04 5.02 1. 37 

2 7.78 8.01 .04 5.06 1.46 

3 5.93 6.22 .03 5.21 1.44 

4 5.00 5.47 .04 5.13 1.52 

5 4.44 4. 92 .04 5.18 1.50 

* Each entry is based on 500 simulations. 
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TABLE II 

SEQUENTIAL ESTIMATION OF THE MEAN DESIGNED 
TO OBTAIN CV(~) = .l* 

-
k n* N 8N ~ ~ 

1 200.00 201.13 .47 1.00 .10 

2 150 .oo 150.67 .45 1.01 . 10 

3 133.33 134. 21 .44 1.01 .10 

4 125.00 126.56 .46 1.00 .10 

5 120.00 121. 44 .45 1.00 .10 

1 150.00 150.01 .24 2.00 .21 

2 100.00 100.70 .23 2.00 .21 

3 83.33 83.85 .22 2.01 .20 

4 75.00 75. 75 .22 2.01 .19 

5 70.00 70.87 .23 2.00 .20 

1 133.33 133. 09 . 16 3.01 .31 

2 83.33 83.96 .15 2.98 .30 

3 66.67 67.04 .. 17 3.02 .33 

4 58.33 58.96 .16 3.01 .31 

5 53.33 54.02 .15 3.00 .30 

1 125.00 124.93 .11 3.98 .39 

2 75.00 75.19 .11 4.01 .40 

3 58.33 58.82 .12 3.99 .41 

4 50.00 50.55 .12 4.01 .41 

5 45.00 45.68 .12 3.99 .39 

1 120.00 119. 79 .09 4.99 .49 

2 70.00 70.04 .09 5.05 .50 

3 53.33 53.68 .09 5.01 .51 

4 45.00 45.40 .09 5.02 .51 

5 40.00 40.37 .09 5.05 .51 

* Each entry is the result of 500 simulations. 
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creases, but it is less than one-half for every case considered. 

The possible positive bias stated in Theorem 2 is small but notice-

able when C = .3, but appears to be negligible for C = .1 . Lastly, the 

CV(~) is close to the stated level even for C = .3 . There is a ten

dency for the estimated CV(~) to be slightly higher than the stated 

C = .3 when the mean is small. However, when rounded to two decimal 

places, CV(~) is equal to the specified C = .1 for all but one of the 

combinations of the parameters considered. 

There may be times when we are sampling from the negative binomial 

distribution and believe we know k, but our knowledge of k is imprecise. 

Considering the stopping rule as a function of k, we have 

f(k) = 2 
C (Nk + 1) - 1 

Nk 

I 

Taking the first derivative, we have f (k) < 0 for all C < 1. So as k 

increases, we may stop with smaller values of T 
n 

vative, we would want to underestimate k. 

Hence, to be censer-

If our value of k is not exact, how much does that affect our esti-

mates? This question was studied some, and the results are in Table III. 

The true value of k is 2 and the mean is 1, but we used stopping rules 

based on k from 1.1 to 3 by increments of .1 . We specified C = .1, 

and thus the optimal fixed sample size is 150. Notice that we do tend 

to take more observations when k is less than 2 and fewer whenkis great

er than 2. However, the value of CV(XN) is not affected greatly. Thus 

slight misses in the value of k do not seem to invalidate the sampling 

process. 

Inspection of the proofs will show that all of the lemmas and 

theorems proven hold when Kuno's procedure is applied to the negative 
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TABLE III 

STUDY OF THE EFFECT OF IMPRECISE KNOWLEDGE OF 
k WHEN THE GOAL IS TO CONTROL CV(~) = .l* 

- -
True Value Assumed N s-

N XN 8X of k Value of k N 

2 1.1 191.74 .42 1.00 .09 

1. 2 183.69 .41 1.00 .09 

1. 3 177.33 .40 1.00 .09 

1.4 172.47 .43 1.00 .09 

1.5 167.57 .43 1.00 .10 

2 1.6 163.10 .44 1. 01 .10 

1. 7 160.18 .47 1.00 .10 

1.8 155.88 .45 1. 01 .10 

1. 9 153.88 .44 1.00 .10 

2.0 150.33 .45 1. 01 .10 

2 2.1 149.19 .47 1.00 .10 

2.2 146.30 .45 1.01 .10 

2.3 144.43 .45 1.00 • 10 

2.4 142.87 .47 1.00 .10 

2.5 140.99 .47 1. 01 .10 

2 2.6 139.68 .47 1.00 .10 

2.7 138. 58 .so 1. 00 .11 

2.8 136 .19 .47 1.01 .11 

2.9 135.81 .47 I 1.00 .11 

3.0 133.81 .47 1. 01 .11 

* Each entry is based on 500 simulations. 
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binomial distribution. Lemmas 1 and 2 and Theorem 2 are also valid 

when considering any distribution where the variance is a quadratic 

function of the mean. However, the proof of Lemma 3, and consequently 

the one for Theorem 1, involve the moment generating function of the 

negative binomial, and we have been unable thus far to extend it to the 

more general case stated by Kuna. 

Upon examination of the stopping rules, we can see that our proce-

<lure may require slightly fewer observations than Kuno's. In Table IV, 

we have presented the results of simulations based on Kuno's stopping 

rule for the negative binomial. Each entry is the result of 500 simu-

lations, and the desired C is .3 . We do note that the average sample 

A -

sizes are consistently higher, and as a result, the CV(~) tends to be 

smaller than with our procedure. 

A few attempts were made to simulate the methods used by Allen, 

Gonzalez, and Gokhale (1). We considered the variance as a quadratic 

function of the mean, aµ + bµ 2 . Drawing samples from the negative bi-

nomial, we estimated a and b by regression, and then employed Kuno's 

procedure. The estimates of a and b generally proved to be very poor, 

and consequently, the goal of obtaining a desired C was missed. 

Estimation of µ Within pµ with Confidence 1 - a 

We shall again be considering the one-parameter negative binomial 

distribution. Nadas (29) speaks of proportional accuracy when estimating 

µ by 

J = (µ: Ji - µI..::_ p)µ[) . 
n n 

(3.19) 

If for a given p, we want J to cover µ with probability 1 - a, then upon 
n 

invoking the Central Limit Theorem, the required fixed sample size is 
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TABLE IV 

KUNO'S SEQUENTIAL ESTIMATION OF THE MEAN 
DESIGNED TO OBTAIN CV(~) = .3* 

I - I -
n* N s- ~ s-

N ~ 

22.22 23.69 .16 1.02 .29 

16.67 17.82 .16 1.06 .32 

14.82 15. 92 .15 1.06 .31 

13.89 14.97 .16 1.07 .32 

13.33 14.24 .15 1.09 .33 

16.67 17.50 .08 2.07 .58 

11.11 11. 92 .08 2.12 .61 

9.26 9.98 .08 2.12 .60 

8.33 9.39 .08 2.05 .60 

7.78 8.61 .08 2.10 .62 

14.82 15. 75 .06 2.95 .85 

9.26 10.01 .06 3.11 .89 

7.41 8.11 .05 3.13 .90 

6.48 7.35 .06 3.07 .98 

5.93 6.68 .05 3 .10 .87 

13.89 14.58 .04 4.08 1.19 

8.33 9.04 .04 4.13 1.21 

6.48 7.18 .04 4.16 1.23 

5.56 6.24 .04 4.10 1. 09 

5.00 5.64 .04 4.18 1.14 

13.33 14.01 .04 5.07 1.45 

7.78 8.49 .03 5.05 1.43 

5.93 6.60 .03 5.14 1.54 

5.00 5.66 .03 5.07 1.46 

4.44 5.04 .03 5.28 1.47 

·~ Each entry is based on 500 simulations. 
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n*(p) = (;~ )2 . 

If a or µ is unknown, then we cannot determine n* • Again using V and 
n 

X to estimate a and µ, respectively, we shall .consider the stopping rule 
n 

N = min(n ~ n0 = max(2,[z: - iJ): n ~ vn(-:!--)
2 

\
1 

' pk Xp 

nonzero value has been observed) , n 

and at least one 

(3.20) 

The minimum sample size requirement follows from algebra similar to that 

demonstrated in (3.3) and (3.4). Sampling is not 

observing one positive quantity, assuring us that 

allowed to stop before 

V /_!:_) 2 is well-
R. \XNI' 

defined and positive almost surely. The stopping time N is well-defined, 

and we can rewrite (3.20) as stop when 

n > n 
- 0 

and nkz 2 
T > ~~~~~~~-

n 2 2 • (nk + l)p - z 

The following lemma indicates N tends to increase as p becomes 

smaller, and the stopping criterion will be met with a finite sample 

size for any positive p. Since the proof has only minor differences 

from that of Lemma 1, we shall not include it here. 

Lemma 4: N is nonincreasing in p and P(N < 00) = 1 for any fixed p > O • 

Note that lim N = 00 a.s. since n0 + 00 as p +Q, 

p+o 
The properties of this sequential process will be further explored 

in the following theorem. Since the proofs of (3.21) and (3.23) closely 

parallel those of Lemmas 2 and 3, they will be omitted. 

Theorem 3: Consider the interval estimate ofµ by J in (3.19). Then 
n 

lim 1L = 1 
p+O n* 

a.s. 

lim P(µ E J ) = 1 - a 
n p+o 

(3.21) 

"asymptotic consistency" (3. 22) 
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lim E( ~) = 
n·~ 

1 "asymptotic efficiency" (3.23) 
p+O 

2 
Proof of (3.22): Since n*(p) ( ;~) , we can rewrite (3.21) as 

1. Npµ im = z. Now 
p+O a 

P(µ E J ) = P(jX 
n n 

+ x2 + . . . + ~ - Nµ I < pµ/N) 

cr./N - a 
,--

s · pµYN ~ d N -~ 1 . b b · 1 · ~ 0 . h f 11 ince ~ z an ~ ~ in pro a i ity as p ~ , it t en o ows 
a n 

from a result of Anscombe (4) that as p + 0, 

x1 + x2 + ~ - Nµ 
~~~~~~~~~- ~ N(O, 1) 

cr/N 
Hence 

lim P(µ EJ) 
p+O n 

which proves (3.22). 

z 
f 1 

-z rz:rr 
1 - a 

2 
u 

-2 
e ·du 

We should note that Theorem 2 is also applicable to this sequential 

process. 

This procedure was investigated, using simulation, to determine its 

behavior for moderate values of p. Tables V and VI present the results 

for p = .3 and p = .2 where the stated level of confidence is .95, 

As was the case when our goal was to attain a specified CV(X), the 

optimal fixed sample size is a symmetric function of µ and k. Notice 

that n*, the optimal fixed sample size, and N, the average random sam-

ple size, are close. The estimated standard deviation of N, 5N, is 

less than one-half in every instance. 

Although our goal is to estimate µ within pµ, we believe that in 
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TABLE V 

SEQUENTIAL ESTIMATION OF µ DESIGNED TO ESTIMATE 
µ WITHIN .3µ WITH 95% CONFIDENCE* 

-
n* N 5N Estimated Estimated 

r < I~ - µI ~ pµ) P < I~ - µI ~ p~) 

85.37 86.17 .30 .954 .952 

64.03 64.30 .29 .952 .950 

56 .19 57.45 .30 .934 .958 

53.36 54.29 .29 .952 .952 

51.22 51.99 .29 .928 .944 

64.03 64.20 .16 .942 .926 

42.68 r,3. 07 .15 .964 .948 

35.57 35.82 .14 .944 .954 

32.01 32. 77 .14 .960 .962 

29.88 30.59 .16 .936 .948 

56.91 56.44 .10 .930 .952 

35.57 35.70 .10 .944 .958 

28.46 28.83 .11 .932 .932 

24.90 25.48 .10 .962 . 966 

22.76 23.33 .11 .934 .948 

53.36 53.07 .08 .950 .950 

32.01 32.18 .08 .950 .956 

24.90 25.21 .07 .952 .960 

21.34 21.89 .08 .948 .948 

19.21 19.72 .07 .954 .956 

51.22 50.90 .06 .968 .950 

29.88 30.05 .06 .954 .940 

22.76 23.18 .06 .968 .938 

19.21 19.66 .06 .946 .936 

17 .07 17.57 .06 .952 • 964 

*Each entry is the result of 500 simulations. 
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TABLE VI 

SEQUENTIAL ESTIMATION OF µ DESIGNED TO ESTIMATE 
µ WITHIN .2µ WITH 95% CONFIDENCE* 

-
n* N 8N Estimated Estimated 

P( I~ - µj ~pµ) P(!~-µj ~p~) 

192.08 192.34 .46 .942 .948 

144.06 144.61 .44 .950 .950 

128.05 128.80 .44 .944 .962 

120.05 120.67 .43 .944 .952 

115 .25 116.85 .43 .964 .954 

144.06 143.80 .23 .944 .936 

96.04 96.51 .23 .942 .944 

80.03 80.38 • 23 .952 .948 

72.03 72.68 .21 .954 .964 

67.23 67 .96 .22 .960 .950 

128.05 128.01 .15 .956 .946 

80.03 80.50 .15 .952 .940 

64.03 64.42 .15 .952 .944 

56.02 56.67 .15 .956 .954 

51.22 51.66 .14 .956 .960 

120.05 119. 76 .11 .952 .950 

72.03 72.17 .11 .956 .950 

56.02 56.09 .11 .956 .962 

48.02 48.45 .12 .934 .944 

43.22 43.88 .11 .950 .952 

115 ~25 115 .03 .09 .932 .932 

67.23 67.32 .09 .956 • 950 

51.22 51.56 .09 .950 .954 

43.22 43. 72 .09 .932 .926 

38.42 38.90 .09 .938 .942 

* Each entry is based on 500 simulations. 
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practice many will state the conclusions as having estimated µ within 

p~ • Thus we computed the observed level of confidence for both state-

ments. There are some differences, but they are not consistent and may 

be due to variability in the estimates. Both vary about the desired 

level of .95. 

We studied Binns' procedure using simulation. Again each entry is 

based on 500 simulations, and the results for p = .2 and a= .05 are pre-

sented in Table VII. Slightly higher sample sizes are consistently re-

quired when using his method than when using ours, but the levels of 

confidence differ only in a random fashion. 

The disadvantage in Binns' process is the interpolation required 

to obtain the final estimate, and the benefit is the asymptotic log 

normality of the estimate for large a. Using the univariate procedure 

in the Statistical Analysis System (S.A.S.), we considered the normaJity 

of the logs of the estimates for the two methods. We found that for 

µ = 1, k = 2, p = .2 and a = .05, we were unable to reject the null 

hypothesis of normality for either procedure after drawing 500 samples. 

The observed significance level was slightly smaller for our procedure, 

however. 

Estimation of µ Within d with Confidence 1 - a 

Suppose now we want to estimate µ by 

I = (µ: Ii - µj < d) 
n n -

(3.24) 

when sampling from a one-parameter negative binomial distribution. If, 

for a given d, we want I to cover µ with probability 1 - a, then after 
n 

invoking the Central Limit Theorem, we determine the fixed sample size 

to be 
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TABLE VII 

BINNS' SEQUENTIAL PROCEDURE DESIGNED TO ESTIMATE 
µ WITHIN .2µ WITH 95% CONFIDENCE* 

-
n* N s- Estimated Estimated 

N P(i~-µI ~pµ) P(j~-µ,~p~) 

192.08 195.43 .46 .940 .950 

144.06 146.60 .44 . 950 .948 

128.05 130 .48 .44 .948 . 964 

120.05 122.19 .43 .952 .950 

115 .25 118.27 .43 . 960 .952 

144.06 146.63 .23 .942 .942 

96.04 98.04 .23 .948 .946 

80.03 81.50 .22 .948 .954 

72 .03 73.73 .21 .958 .958 

67.23 68.84 .22 .954 .952 

128.05 130.62 . 14 .952 .950 

80.03 81.92 .15 .950 .948 

64.03 65.46 .15 .950 .948 

56.02 57.53 .15 .954 .954 

51.22 52.39 .14 .960 • 962 

120.05 122.37 .11 .952 .956 

72 .03 73.55 .11 .956 .956 

56.02 57.08 .11 .950 . 968 

48.02 49.20 • 12 .938 .944 

43.22 44.47 .11 .946 . 952 

115 .25 117 .59 .09 .942 .936 

67.23 68.68 .09 .956 .956 

51.22 52.46 .09 .952 .954 

43.22 44.47 .09 .938 .926 

38.42 39.48 .09 .948 .948 

* Each entry is the result of 500 simulations. 
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* Since µ, and therefore cr, is unknown, we cannot determine n . So con-

sider the sequential procedure with a random sample size 

2 
N = min(n ..::_ n0 (..::_ 2): n ..::_ vn(t) and at least one nonzero value 

has been observed) . (3. 25) 

The stopping time N is well-defined, and (3.25) may be restated as stop 

when 

n > n 
- 0 

Since the following lenuna and theorems are proven, with only minor 

changes, as earlier ones, we shall omit the proofs. 

Lenuna 5: N is nonincreasing in d and P(N < oo) = 1 for any fixed d > O. 

Theorem 4: Consider the interval estimate of µ by I in (3.20). Then 
n 

lim 
d->-0 

N 
n* = 1 a.s. 

lim P(µ E IN) = 1 - a 
d+O 

lim E( N*) = 1 
a+O n 

(3. 22) 

"asymptotic consistency" (3. 23) 

"asymptotic efficiency" (3.24) 

Theorem 5: Let {en} be any sequence of constants, and let n0 be any 

positive integer. Define a stopping time of the sequence x1, x2 , •.• by 

N = smallest integer n ..::_ n0 such that Xn 2_ en 

00 if no such n exists, i.e., if Xn > en for every n0 _::. n < oo 

We assume P(N < oo) = 1 so that XN is well-defined. If E(~) exists, 

E(~) 2_ E(X1) = µ. Theorem 5 is due to Starr and Woodroofe (35). 

Simulation results for d = .5 and a = .05 are in Table VIII. No-

tice that the estimated confidence level is far below the stated one 
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TABLE VIII 

SEQUENTIAL ESTIMATION OF µ DESIGNED TO ESTIMATE µ 
WITHIN . 5 UNITS WITH 95% CONFIDENCE * 

- I k n* N s- Estimated 
N 

P <I~ - µI .2. d) 

1 30.73 23·.12 .62 .732 

2 23.05 19.38 .41 .818 

3 20.49 17~95 .37 .812 

4 19.21 17.15 .31 .832 

5 18.44 16.44 .31 .806 

1 92.20 82.68 1.28 .858 
I 

2 61.47 57.41 .67 .916 

3 51.22 50.04 .48 • 924 

4 46.10 45.20 .38 .948 

5 43.03 42 .. 56 .36 .928 

1 184.40 179.35 1.62 .934 

2 115 .25 112 .87 .75 .926 

3 92.20 91. 30 . 56 .942 

4 80.67 80.50 .45 .946 

5 73.76 73. 02 .41 .932 
I 

1 307.33 305 .12 1.69 .942 

2 184.40 183.61 .92 .954 

3 143.42 142 .73 .65 .934 

4 122.93 122.57 .55 .936 

5 110. 64 109 .59 .48 .960 

1 460.99 444 .19 2.00 .950 

2 268.91 268.76 LOO .964 

3 204.88 204.26 .82 .924 

4 172.87 172. 38 .71 .948 

5 153. 66 154 .13 .52 • 966 

* Each entry is the result of 500 simulations. 
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when µ = 1, and it tends to be below the stated level for other values 

of µ as well. This is due, at least in part, to the fact that N is 

consistently lower than n* . 

In Table IX, we have the results whenµ = 1, d = .2, and a = .05. 

For smaller values of d, the observed confidence level is much closer 

to the stated one. N and n* are closer together in this case than they 

were when d = .5 . 

µ 

1 

TABLE IX 

SEQUENTIAL ESTIMATION OF µ DESIGNED TO ESTIMATE 
µ WITHIN .2 UNITS WITH 95% CONFIDENCE* 

-
k n* N 8N Estimated 

P(J~-µ\.s_d) 

1 192.08 187.65 1.34 .952 

2 144.06 142.62 .91 .940 

3 128.05 128.27 • 72 .958 

4 120.05 119.61 .69 .932 

5 115. 25 114. 72 .61 .948 

* Each entry is based on 500 simulations. 



CHAPTER IV 

NONPA..lU\METRIC, SEQUENTIAL ESTIMATION OF µ 

APPLIED TO THE NEGATIVE BINOMIAL 

DISTRIBUTION 

Three different sequential procedures were studied in Chapter III. 

In the two cases where the goal is an interval estimate of µ with spec-

ified closeness and confidence, parallel procedures exist in the liter-

ature to cover the case where the distribution is unspecified. We have 

found no reference to a nonparametric process for estimating µ with pre-

scribed coefficient of variation of the mean, although this is similar 

to the problem considered first by Mukhopadhyay (28). Such a procedure 

would be beneficial if there is some doubt as to the adequacy of the fit 

of the negative binomial to the population of interest or if k isunknown. 

Following the same notation used in Chapter III, assume the loss 

incurred by estimating µ by X is given by 
n 

ex - µ)2 
L = __ n __ _ 

n 2 
µ 

The associated risk is then 

R = E(L ) 
n n 

c2 

where C is the coefficient of variation of the mean. If C is specified 

in advance, the required fixed sample size is 

48 



2 
n * ( C) = ( .!L) µC 

49 

Since no knowledge of the distribution is assumed, µ and a are unknown; 

* and thus n cannot be determined. 

First assume that o < Po .::_ p < oo for a known positive constant p0 

where 2 ( q_) 2 It is necessary for p0 to be close but a p = not to p, 
µ 

lower bound is required. If p is unknown, then p 0 may be chosen to be 

arbitrarily small. Now consider a sample of random size N with risk 

E(~ - µ)2 

2 
µ 

We propose to use ~ as the estimate of µ where 

( 4. 1) 

Here {y} denotes the smallest integer less than y. The stopping time N 

is well-defined. 

The proofs of Lemmas 6 and 7 correspond closely to those of Lennnas 

1 and 2 and will, therefore, be omitted. 

Lennna 6: N is nonincreasing in C and P(N«:o) = 1 for any fixed C > 0. 

Lemma 7: lim(~)= 1 a.s. 
c+O n 

The asymptotic efficiency of the sequential pro,cedure is considered 

in the next lemma. The second case of the proof differs only slightly 

from the one for proportional accuracy given by Nadas (29), but we have 

included it here for completeness. 

Lemma 8: lim E(:*) = 1 . 
C-+0 

Using Lemma 7 and Fatou's lemma, we have 



50 

(4.2) 
1 

To prove the lim sup part, we shall consider two cases. 

Case 1, Suppose max~~ , (;:)
2
) • p~ • Then from (4.1) we have 

( p0)2 
O<N< C +2 (4.3) 

2 
Dividing through by n* =(:c) , (4.3) becomes 

N ( ) 2 2 0 < n* < ~ (po + 2) . 

S . N 
ince n* is dominated by an integrable function, we have 

lim sup E (:*) .:::_ 1 
C+O 

by Lemma 2 and the Lebesque Dominated Convergence Theorem. 

Case 2: ( .. 2) 2 
Suppose max p~ , (~n) = ( :n) • 

~ xn 
Then our stopping rule 

is of the from 

2 

N > ( ! ) 
- CXN 

With no loss of generality, we assume µ > O. Now for n 1, 2, ... , 

define 

n 2 Q = 1 + 2: (x - µ) . n 
k=l 

"k 

For this case, the random variable 

N(n*) = min(n: T >~) 
n - cr n 

is well-defined and no smaller than N. 

Now for r = 1, 2, ... , define 



R = min(N(n*), r) and B = (1 < N(n*) .:::_ r). 

We shall now apply Wald's theorem of cumulative sums to each of TR, 

2 2 2 QR - 1, and x1 + x2 + ... + xR to obtain 

f x + JT 
(R=l) 1 B R-1 

! T + !x 
+ (N(t)>r) r B R 

2_ El x1 J + E_ f h*Q + E. f ln*Q + f \ x I 
cr B R-1 cr (N(t)>r) r B R 

1 

::_~0 2 + µ 2 + ~~n* + n*0 2E(R) +~02 + µ 2 E2 (R) 

.:::. ~02 + µ 2 +~In* + (w'n* +~02 + µ 2 ) Et(R) . 

This implies 

E(R) :'._ ~P 2 + 1 + ~ ru* + ( /n* +·~p2 + 1) J(R) . 

Thus 

1 

Ez(R) E \x: x2 - (in.*" +~P2 + 1)x - (~+ ~p 2 + 1) .:::_ o ! 
From the set of x values above, we have 

Hence 

E(R) 2_ (!;i* + o(~)) 2 . 
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Since R + N(t) as r + 00 , E(R) + E(N(t)) by the monotone convergence 

theorem. Thus 

E[N(n*)] <(In*+ o(ln*)) 2 

which implies 



Therefore, 

Since N < N (n*) , 

Hence 

lim sup E(~) < 1 . 
n*-+«> 

lim sup E(~) .:_ 1 . 
C-+0 

From Cases (1) and (2), we have 

lim sup E ( ~) .::_ 1 . 
C-+0 n 

(4.2) and (4.4) then yield the desired result, 

lim E ( :* ) = 1 • 
C-+0 

52 

(4. 4) 

The following theorem states that the sequential process is risk 

efficient. The proof is the same as that for Theorem 1 with the excep-
2 

tion that the upper bound on n* is now (-2._) Thus the proof will 
N µpO 

not be given. 

Theorem 7: lim 
c-+o 

= 1. 

Monte Carlo techniques were used to evaluate the sequential pro-

cedure, and the results for C = .3 and C = .1 are presented in Tables 

X and XI, respectively. When C = .3, the average random sample size 

tended to be noticeably smaller than n* and the CV(~) was greater than 

stated. Although there was some improvement when C = .1, CV(~) is 

still greater than the specified C. 



µ 

1 

2 

3 

4 

5 

TABLE X 

NONPARAMETRIC, SEQUENTIAL ESTIMATION OF µ DESIGNED 
TO OBTAIN CV(~) = .3 WHEN THE UNDERLYING 

DISTRIBUTION IS NEGATIVE BINOMIAL* 

" - - -
k n* N s- ~ s- CV(~) .N 

~ 

1 22.22 19.98 .42 1.13 .50 .44 

2 16.67 15.60 .36 1.13 .46 .40 

3 14.82 14.86 .32 1.13 .48 .42 

4 13.89 13.29 .31 1.17 .47 .41 

5 13. 33 13. 33 .29 1.13 .47 .42 

1 16.67 13.09 .32 2.23 .90 .40 

2 11.11 9.44 .25 2.25 .88 .39 

3 9.26 8.11 .22 2.20 .84 .38 

4 8.33 7.70 .20 2.18 .82 .38 

5 7.78 6.95 .19 2.22 • 77 .35 

1 14.82 11.34 .33 3.24 1.42 .44 

2 9.26 7.28 .20 3.31 1.37 .41 

3 7.41 6.38 .18 3.18 1.07 .34 

4 6.48 5.26 .15 3.30 1.13 .34 

5 5.93 5.03 .14 3.28 1.15 .35 

1 13.89 10.34 .30 4.27 1.99 .47 

2 8.33 6.35 .19 4.16 1.66 .40 

3 6.48 4.99 .14 4.15 1.60 .38 

4 5.56 4.44 .13 4.24 1.58 .37 

5 5.00 4.15 .11 4.20 1.39 .33 

1 13.33 9.66 .28 5.25 2.41 .46 

2 7.78 5.58 .17 5.05 1.98 .39 

3 5.93 4.68 .14 5.28 1.96 .37 

4 5.00 3.99 .11 5.32 1.89 .36 

5 4.44 3.71 .10 5.32 1. 95 .37 

* Each entry is based on 500 simulations. 
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µ 

1 

2 

3 

4 

5 

TABLE XI 

NONPARAMETRIC, SEQUENTIAL ESTIMATION OF µ DESIGNED 
TO OBTAIN CV(~) = .1 WHEN THE UNDERLYING 

DISTRIBUTION IS NEGATIVE BINOMIAL* 

" - -
CV(~) k n* N 8N ~ 5\ 

1 200.00 197.42 1.29 1.00 .10 .10 

2 150.00 149.31 1.03 1.01 .10 .10 

3 133.33 133. 33 .98 1.01 .11 .11 

4 125.00 125.67 • 92 1.01 .10 .10 

5 120.00 118. 68 .90 1.02 .11 .10 

1 150.00 145.79 1.24 2.03 .40 .20 

2 100.00 97.49 .87 2.02 .28 .14 

3 83.33 81.18 .75 2.02 .33 .16 

4 75.00 72.61 .76 2.04 .27 .13 

5 70.00 69.43 .70 2.03 .30 .15 

1 133.33 126.49 1.20 3.04 .54 • 18 

2 83.33 79.60 .87 3.08 .62 .20 

3 66.67 63.09 .73 3.09 .44 .14 

4 58.33 55.75 .63 3.05 .46 .15 

5 53.33 50.68 .65 3.07 .48 .16 

1 125.00 118.19 1.29 4 .15 .96 .23 

2 75.00 70.29 .86 4.10 .75 .18 

3 58.33 53.76 .85 4.14 .90 .22 

4 50.00 45.78 .70 4.19 .89 . 21 

5 45.00 40.94 .65 4.16 .80 .19 

1 120.00 112.37 1.19 5.10 .98 .19 

2 70.00 63.66 .95 5.17 .90 .17 

3 53.33 47.91 .79 5.16 .92 .18 

4 45.00 40.18 .67 5.20 .97 .19 

5 40.00 33.60 .67 5 .18 .90 .17 

* Each entry is based on 500 simulations. 
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Although we do not have an analytical proof of its existence, in

spection of the tables shows that ~ has a definite positive bias under 

this nonparametric procedure. It is greater than what was observed 

under the corresponding method based on the negative binomial distribu-

tion. 

Viewing these tables in light of the results presented in Table 

III, we believe that if a fairly reliable estimate of k is available, 

it would be better to use that than to turn too quickly to the nonpara

metric approach presented here. 



CHAPTER V 

ESTI11ATION OF THE PARAMETER k 

We shall now focus our attention on the estimation of k for the 

two-parameter negative binomial distribution. The distribution will 

be examined for completeness. We shall present a multistage procedure 

for estimating k and compare it to the method of moments (MME) and max-

imum likelihood (MLE) estimators. 

Complete Sufficient Statistic for Samples 

of Fixed Size n 

A common procedure in statistical inference is to determine the 

minimal sufficient statistic for a family of distributions and examine 

the fam~ly for completeness. If it is complete, then we are ready 

to search for minimum variance unbiased estimators of the parameters. 

However, we shall prove in the next theorem that there is no complete 

sufficient statistic for the negative binomial family of distributions. 

Theorem 8: The order statistics, X(l)' X(Z)' .•• , X(n)' are minimal 

sufficient but not complete for the negative binomial family of distri-

butions when the sample size exceeds n = 3. 

Proof: We shall use the 1950 Lehmann-Scheffe theorem (21) to determine 

the minimal sufficient statistic. For any point x0 , D(x0 ) is defined - -
as the set of all points x for which there exists a function k(e, e 0 ) ! 

0, not depending onµ or k, and such that Pµ,k(~) 
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k( 0) ( 0. x, x p k x ) 
µ, -
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for all µ, k in the parameter space; that is, 

0 
D(x ) = {x I P k(x) = k(x, x0 )P k(x0 ) for all µ, k} . 

- µ, - - - µ, -
pµ,k(:~) 

Roughly speaking, D(x0 ) consists of all x for which the ratio ----~-~~ 
Pµ, k (~O) 

is independent of µ and k. The minimal sufficient statistic, T, is 

the statistic of lowest dimension such that T(x) = T(x0 ) if x ED(x0 ) 

and T(x) ~ T(x0 ) if~·~ D(x0 ) • We have 

P(x) 

n 
E x. 

( k )nk( )i=l 
1

( 1 )n ~ 
k+µ m (k- 1)! i=l 

(x. + k - l)! 
l. 

n 
L: 

( k )nk( )i=l 
k+µ m 

n 
L: 

n 
0 

x. - L: x. 

= (µ ~kt=l 
l. i=l l. 

? 
0 = k(x, x ) . 

n 
1T 

i=l 

n 
1T 

i=l 

0 
(x. + k- 1) ! 

l. 

o, x .. 
l. 

0 
x. ! (x. + k - 1) ! 

l. l. 

0 
x. ! (x. + k - 1) ! 

l. l. 

(5 .1) 

In order to obtain k(~, ~0 ) independent ofµ and kin (5.1), we 

must have 

and 

for 

must 

such 

n 
L: x. = 

i=l l. 

n 
0 E x. 

i=l l. 

n 
1T 

i=l 

0 x.!(x.+k-1)! 
_::;l.;.._--=l.'--~~~ = c 

x.!(x~+k-1)! 
l. l. 

some constant c. We find 

be an x., 
J 

j = 1, ... ' n, 

that Xj 
0 Thus the = Xi• 

(5.2) 

that for equality to hold in (5. 2)' there 

corresponding to each 0 i = 1, x. ' ... ' n, 
l. 

order statistics of x must equal those of -
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x0 for x E D(xO). Therefore, the order statistics form the minimalsuf-- - -
ficient statistic. 

We shall now prove the order statistics are not complete. To do 

this, we shall show that there exists a nontrivial function g(x(l)' x( 2), 

... , x(n)) such that E(g(x(l)' x(2)' ... , x(n))) = 0. That is, 

m. 

00 
rr { (k + j - 1) !} J nk 

__.__ ___ m_. Ci~ k) · 
{ (k - 1) ! }n TI{j 1}J 

0 
n! 

L- g(x(l)' x(2)' ... , x(n)) 'ITm. 
j=O j J 

j 

n 
E x. 

(µ~kt=l l 

where m. ~epresents the number of times a j was observed in a sample of 
J 

size n. To simplify notation, let p = _k_ and q - _JJ_ µ+k - µ+k 

n!pnk [{(k-l)!}n o 
0 = 1 g (0, ••• , 0) q 

{ (k - 1 ) ! } n n . 

+ {(k-1) !}n-lk! 1 
(n-l)! g(O, ... ,O,l)q 

({(k-l)!}n-l(k+l)! (O 
+ (n-1)!2! g ' 

+ { (k - 1) ! } n-2 (k ! ) 2 
(n - 2) ! 2 ! 

g(O, 

.•. ' 0' 2) 

... ' 

+({(k-l)!}n-l(k+2)! (O 0 3) 
(n-1)!3! g ' ... , ' 

+ {(k - l)!}n-2k!(k+l)! 
(n- 2) 121 g(O, ... , 0, 1, 2) 

Then 

+ { (k - 1) ! } n-3 (k ! ) 3 ) 3 ] 
(n- 3)! 3 ! g(O, ... , O, 1, 1, 1) q + ... 

(5.3) 

Viewing (5.3) as a polynomial in q, equality can hold if and only 
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the coefficients of each of the powers of q are zero. After considerable 

0 1 2 3 
algebra, we find the coefficients of q , q , q , and q are zero. 

c 
Consider now the coefficient of q where c < n and n > 4 . We have 

· {(k- l)!}n-l(k+c -1)! 
(n-l)!c! 

g(O, .•. , 0, c) 

+{(k-l)!}n-2k!(k+c-2)! a(O 0 1 1) 
(n - 2) ! (c - 1) ! "' ' · · ·' ' ' c -

+ {(k - 1) ! }n-2 (k + 1) ! (k + c - 3) ! 
(n -2) !2! (c-2) ! 

g(O, ... , 0, 2, c-2) 

+ {(k - 1) ! p-2 (k + 2) ! (k + c - 4) ! 
(n - 2) ! 3 ! (c - 3) ! 

g(O, ... , 0, 3, c-3) + ... 

n~2 c · c 
{(k-1)!} (k+[z]-2)!(k+c-[z-])! c c 

+ c c g(O, .. .,0, [2] -1, c- [z] +l) 
(n - 2) ! ( [z] - 1) ! (c - r2J + 1) ! 

· {(k-1)!}!1-m(k!)m-l(k+l)!(k + c - m)! 
+ ' ' ' + (n - m) ! (m - 1) ! ( c - m + 1) ! g (O' · · • ' O, 1 • · • · • 

1, c-m+l) 

+ {(k-l)!}n-m(k!)m-2 (k+l)!(k+c-m- l)! 
(n-m)!(m-2)!2!(c-m)! g(O, ... , 0,1, ... ,1,2,c-m) 

n-m c m-1 c 

+ ... 
{(k-1)!} {(k+[m:J-1)!} (k+c-(m-l)[m:J-1)! 

+ ~~~~~~~~~~~~~.--~~~~~~~~-
c m- c 

+ ... + 

(n -m) ! (m - 1) ! {( [-]) !} (c - (m - 1) [-]) ! m m 

g(O, .. ., O, [~], .•. , [;], c - (m - l)[~]) 

{(1<.- l)!}n-c+l(k!f-2(k + 1) ! 
(n - c + 1) ! (c - 2) ! 2 ! 

g(O, ..• , 0, 1, ... , 1, 2) 

+ {(k- l)!}n-c(k!)c 
(n-c)!c! 

g(O, •.. , 0, 1, ..• , 1) = 0. 

We can now factor out {(k -l)!}n-lk! Considering the resulting equation 

as a polynomial ink, we have g(O, ..• , O, c) = O. We can then remove 
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a co!lllllon k. Hence we obtain 

(k+c -2) ... (k+ 1) (O 
(n-2)!(c-1)! g' ... ' 0,1,c-1) 

(k + 1) (k + c - 3) . . . (k + 1) 
+ (n-2)!2!(c-2)! g(O, ... , 0, 2, c-2) 

(k+ 2) (k+ 1) (k+ c - 4) ... (k+ 1) 
+ (n-2)!3!(c-3)! g(O, ••. , 0, 3, c-3) 

+ ... + 
c c 

(k+ r21 - 2) ... Ck+ 1) (k+ c - r2n ... (k+ 1) 

c c 
(n - 2) ! cr21 - 1) ! (c - r2J + 1) ! 

c c 
g(O, ... , 0, [z]-1, c-[2]+1) 

m-2 
+ k (k + c - m) .•. (k + 1) ( 

+ ... (n-m)!(m- l)!(c-m+l)! g 0, .•• , O, 1, ... , 1, c-m+l) 

m-3 
+k (k+l)k(k+c-m-1) ••• (k+l) (O 0 c-m)' 

(n - m) ! (m - 2) ! 2 ! (c - m) ! g ' · · ·' ' l, • • ·' 1, 2, 

km- 2{ (k + [£] - 1) .•. (k + l)}m-l (k+ c- (m - 1) [£] - 1.) (k+l) 
m m + ••. + ~~~~-~~~~~~~c~--m--~1~---~~---c~~~~--

(n-m)!(m-1)!{([-])!} (c- (m-1)[-])! 
m m 

c 
(0 0, [£]' g , ••• ' ... ' c - (m- 1) [-]) 

m m 

kc-3 (k+l) 
+ · · · + _(_n ___ c_+_l_,,)_! ""'"(c__. __ 2_)_!_2_! g (O' · · ·' 0' 1, • .. ' 1, 2) 

kc-2 
+ (n-c)!c! g(O, ... , 0, 1, ... , 1) = 0 

Here we note that from the polynomial in k, we obtain c - 1 con-

straints on the g's. If there are more than (c-1) g's, then there will 

be an infinite number of solutions. As an example, we shall consider 

the case of c = 4. 

(k + 2) (k + 1) 
(n - 2) ! 3 ! 

From the general expansion, we have 

(k+ 1) (k+ 1) 
g ( 0' •.. ' 0' 1, 3) + g ( 0, ... , 0' 2' 2) 

(k- 2) !(2!)3 
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+ k(k + 1) (n _ 3) !2 !2 ! g(O, ... , O, 1, 1, 2) 

k2 
+ (n _ 4)! 4 ! g(O, .. ., 0, 1, .. ., 1) = 0. 

The coefficients of the polynomials in k produce three constraints on 

the four g's. Hence we have a homogeneous system of three equations 

in four unknowns, and there are an infinite number of ways that the 

function g can be defined that will satisfy these equations. Therefore, 

there exists a nontrivial function g(x(l)' x( 2)' ... , x(n)) such that 

the expectation of g is zero. This proves the order statistics are not 

complete. 

Method of Moments and Maximum Likelihood 

Estimation of k 

For a sample of fixed size n from a negative binomial distribution 

with parameters µ and k, the likelihood function is 

n [(k+x. - 1) ! ( k )k( )x] 
L(µ, k) = i:l xi ~k! k+µ ~ 

n 

_ n [(k+xi-1)!] 
- 'If I 

i=l Xi• 

L: x. 

1 ( k )nk( )i=l 
1 

(k ! ) n µ + k µ ~ k • 

Hence the natural logarithm of the likelihood function is 

Q,n L = 
n 
L: 

i=l 
Q. n (k + x. - 1) ! -

1 

n 
L: Q. n x . ! - n Q. n k ! + nk Q, n k 

i=l 1 

+ (X,n µ) ~ x. -(nk+ ~ xi) ,Q.n(k+µ) . 
i=l 1 i=l 

As noted in Chapter II, no closed form solution exists for the max-

imum likelihood estimate of k which is the root of the following equation 
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in k: 

n 2,n (1 +~)l) = ; m.(J:. + :;.._1__. + ... + " 1 ) 
k j=l J k k + 1 k + j -1 

(5.4) 

Although it has been proven that there is at least one root of (5.4) 

when s 2 > X, we do not know if it is unique. Furthermore, there has 

been no proof that a solution does not exist if s 2 < X. 

In order to better understand the likelihood function, we plotted 

some contours of the natural logarithm of the likelihood function using 

S.A.S. Four of these are shown in Figures 5-8. Although we have viewed 

only a few plots, we note there is a basic similarity in the contours. 

The dominant characteristic is the appearance of long, narrow ridges. 

The narrowness of the ridges indicates µ can be estimated with precision, 

using X, the MLE ofµ. However, we believe the long length of the ridges 

is an indication that maximum likelihhod estimation of k is not precise. 

We computed the estimated biases of the MME and MLE of k in much the 

same manner as Pieters, Gates, Matis, and Sterling (31). In addition, 

we estimated the standard deviation of the estimates and combined the 

estimates of the bias and standard deviation in estimating the mean 

square error (MSE). Results for fixed sample sizes of 50, 100, and 200 

are presented in Tables XII, XIII, and XIV. 

Upon inspection of the tables, it appears that there is less bias 

and a smaller standard deviation under MLE than under MME. Even though 

the estimated mean square error is smaller for MLE, it is still large. 

It is interesting to note that for a fixed µ, the estimates of the bias, 

standard deviation, and mean square error all tend to increase as k in-

creases. For a fixed k, they all tend to decrease as µ increases. Thus 

estimation is most difficult when µ is small and k is large. 
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Figure 6. Contour of the Maximum Likelihood Function Based on a 
Sample of Size 30 Drawn from NB(l, 2) and Having a 
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TABLE XII 

METHOD OF MOMENTS AND MAXIMUM LIKELIHOOD ESTIMATION 
OF k BASED ON SAMPLES OF SIZE 50* 
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Method of Moments Maximum Likelihood 
µ k A" A A· - .A A 

A 

k Bias " MSE k Bias A MSE sk sk 

1 1. 967 . 967 8.597 74.850 1.549 .549 2.616 7.146 

2 4.946 2.946 17.790 325.154 3.622 1.622 5.406 31.849 

3 8.329 5.329 25.012 653.999 5.307 2.307 7.249 57.874 

4 10.195 6.195 29.089 884.532 6.363 2.363 8.529 78.318 

5 12.356 7.356 32.788 1129.165 7.078 2.078 9.016 85.600 

1 1.240 .240 .630 .454 1.194 .194 .680 .500 

2 2.833 .833 3.359 11. 980 2.845 .845 3.580 13.533 

3 5.164 2.164 11. 283 131.978 5.085 2.085 7.363 58.556 

4 8.293 4.293 22.147 508. 924 7 .197 3 .197 9.955 109.319 

5 12. 771 7. 771 41.584 1789. 587 3.502 3.502 10.468 121. 851 

1 1.173 .173 .451 .234 1.134 .134 .400 .178 

2 2. 458 .458 1.934 3.949 2.331 .331 1.145 1.421 

3 4.689 1. 689 14.853 223.480 4.069 1.069 3.529 13.597 

4 6.517 2 .517 12.408 160.295 5. 996 1.996 6.648 48.179 

5 10.242 5.242 31.370 1011.574 8.011 3. 011 9.345 96.390 

1 1.137 .137 .406 .184 1.101 .101 .322 .114 

2 2.369 .369 1.081 1.305 2.316 .316 . 995 1.091 

3 3.707 .707 2.452 6.511 3.612 .612 1. 777 3.532 

4 7.493 3.493 52.857 2806.050 5.502 1.502 5.220 29 .504 

5 7.652 2.652 16.090 265. 930 6.956 1.956 6.457 45.525 

1 1.141 .141 .353 .145 1.088 .088 .309 .103 

2 2.319 .319 .892 .897 2.254 .254 .815 .728 

3 3. 477 .477 1.886 3.783 3.491 .491 1.567 2.698 

4 5.083 1.083 4.854 24.735 5.020 1.020 3.489 13.217 

5 7.236 2.236 18.397 343.456 6.511 1.511 4.791 25.238 

* Each entry is based on 1000 simulations. 
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TABLE XIII 

METHOD OF MOMENTS AND MAXIMUM LIKELIHOOD ESTIMATION 
OF k BASED ON SAMPLES OF SIZE 100* 
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Method of Moments Maximum Likelihood 
k -

Bias I A A 

I 
A A 

A 

k sk MSE k Bias s" MSE 
k 

1 1.189 .189 .659 .470 1.168 .168 .640 .438 

2 3 .111 1.111 7.325 54.889 3.212 1.212 5.230 28.817 

3 9.354 6.354 52.466 2793.056 5.098 2.098 7.169 55.792 

4 9.432 5.432 25.021 655.542 6. 930 2. 930 9.472 98.303 

5 12.487 7.487 44.594 2044.662 7.986 2.986 11. 023 130. 430 

1 1.107 .107 .321 .115 1.076 .076 . 277 .082 

2 I 2.282 .282 • 937 . 957 2.265 . 265 .853 .797 

3 3.766 .766 3.057 9.930 3. 932 .932 4.066 17.399 

4 5.350 1.350 I 4.550 22.530 5.956 1.956 7.917 66.499 

5 8.569 3.569 116.267 277.361 7.785 2.785 8.614 81. 953 

1 1. 079 .079 .279 .084 1. 050 . 050 .229 .055 

2 2.221 .221 .707 .549 2.198 .198 .707 .540 

3 3.481 .481 1.483 2.432 3.370 .370 1.488 2.349 

4 4. 796 . 796 2.557 7.173 4.821 . 821 3.478 12.774 

5 6.185 1.185 4.468 21.366 6.376 1.376 4.852 25.433 

1 1.080 .080 .261 .074 1. 050 . 050 .213 I .048 

2 2.164 .164 .619 .409 2.123 .123 . 508 l .274 

3 3.337 .337 1.174 1.491 3.329 .329 1. 012 1.133 

4 4. 583 .583 1.822 3.660 4. 610 .610 2 .410 6 .180 

5 6.024 1.024 3.451 12. 961 5. 996 . 996 2.998 9. 979 

1 1.090 .090 .242 .067 1.051 . 051 .196 .041 

2 2.125 .125 .529 .295 2.146 .146 .494 .265 

3 3.263 .263 .865 .817 3.210 .210 .821 .717 

4 4.339 .339 1.382 2.025 4.347 .347 1.420 2.136 

5 5 .539 .539 2.113 4.756 5.554 .554 2. 036 4.453 

* Each entry is the result of 1000 simulations. 
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TABLE XIV 

METHOD OF MOMENTS AND MAXIMUM LIKELIHOOD ESTIMATION 
OF k BASED ON SAMPLES OF SIZE 200* 
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Method of Moments Maximum Likelihood 
k - A A - A 

sk I 
A 

" A 

k Bias s" MSE k Bias MSE 
k 

1 1.097 .097 .374 .149 1.060 .. 060 .297 .092 

2 2.354 .354 1.310 1.840 2.400 .400 1.473 2.329 

3 4.364 1.364 9.200 86.498 4.190 1.190 5.238 28.851 

4 9. 927 5. 927 64.621 4211. 008 6.428 2.428 7.846 67.463 

5 12.586 7.586 40.730 1716.490 8.119 3 .119 9.554 101. 010 

1 1. 057 .057 .218 . 051 1.044 .044 .195 .040 

2 2.139 .139 .599 .378 2.125 .125 .539 .306 

3 3.309 .309 1.308 1.806 3.308 .308 1.153 1.425 

4 4.628 .628 3.298 11. 271 4.729 . 729 3.204 10.800 

5 6.489 1.489 15.041 228.437 5.940 .. 940 3 .307 11. 821 

1 1.035 .035 .184 . 035 1.027 .027 .155 .025 

2 2.100 .100 .445 .208 2.086 .086 .385 .156 

3 3.166 .166 .788 .648 3.170 .170 .757 .603 

4 4.346 .346 1.280 1.758 4.312 .312 1.220 1.586 

5 5.507 .507 1. 914 3.919 5.554 .554 2.561 6.868 

1 1.039 . 039 .179 . 033 1.020 .020 .137 .019 

2 2. 077 .077 .395 .162 2.051 .051 .333 .113 
I 3 3.149 .149 .706 .521 3.128 .128 .613 .392 

4 4.219 .219 1.022 1. 093 4.223 .223 .957 . 965 

5 5.368 .368 1.594 2.675 5.509 .509 1.975 4.162 

1 1.039 .039 .158 .026 1.028 .028 .125 .017 

2 2.081 .081 .377 .148 2.056 .056 .321 .106 
; 

3 3.129 .129 .590 .364 3.107 .107 .533 . 296 

4 4. 230 . 230 .910 .881 4.230 .230 .853 .780 

5 5.268 .268 1.240 1.610 5.286 .286 1.299 1. 770 

* Each entry is the result of 1000 simulations. 
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Multistage Estimation of k 

We suggest that a multistage procedure may be useful in the esti

mation of k. Suppose five observations are taken at random from the 

population and the method of moments estimate of k is computed. Then 

another five observations are added to the sample and the MME of k re

computed. The process of adding five more values to the sample and 

determining the MME of k continues until the last two estimates differ 

by less than . 05 . 

mate of k. 

Then the last MME of k would be taken as the esti-

Table XV contains the results of the computer simulation for this 

procedure. Notice that the estimated bias, standard deviation, and MSE 

of k all tend to be reduced over comparable fixed sample size estimates. 

The values 1.lnder the "Stopping Criterion Not Met" column represent the 

number of times the stopping rule was not satisfied after taking 400 ob

servations. These samples were excluded from the computation of the 

other quantities in the table. 

Since there are times when we might need to stop sampling before 

meeting the stopping criterion, we considered two truncation rules. We 

assumed we would take as many as one hundred observations per sample. 

If we had not stopped, then we would either take the estimate based on 

the hundred observations or determine the two successive estimates 

closest together and take the second one of these as our estimate of k. 

Tables XVI and XVII present the results of 1500 computer simulations for 

these two procedures. Although inconclusive and contrary to intuition, 

it appears that the second truncation rule may be the better one. 

Further simulations have been conducted on the effects of increasing 

the number of observations between points where the MME of k are calcu-
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TABLE XV 

MULTISTAGE ESTIMATION OF k* 

1 · - " 
k Stopping " " µ N ~ k Bias s" MSE 

Criterion k 

Not Met 

1 1 0 43.28 1.08 1. 12 .12 .74 .56 

2 0 77 .18 2.17 2.25 .25 1. 40 2.04 

3 10 110.36 3.65 3.12 

I 
.12 2.02 4.09 

4 27 125.06 4.07 3.67 -.33 2.21 5.01 

5 65 142.63 4.82 4.33 -.67 2.42 6.32 

2 1 0 39 .14 .81 1.14 . 14 .61 .39 

2 0 57.57 1. 36 2.13 .13 1.01 1.04 

3 0 80.08 1.96 3.22 .22 1.57 2.51 

4 0 94. 77 2.55 4.40 .40 3.03 9.32 

5 4 114. 58 3.27 5.40 .40 3.17 10.18 

3 1 0 34.13 .71 1. 09 .09 .51 .27 

2 0 51.25 1. 21 2.14 .14 1.01 1.04 

3 0 70.30 1.66 3.14 I .14 1. 32 1. 75 

4 0 85.1012.11 4.25 I .25 2.09 4.44 

5 0 100.44 2.58 5.16 .16 2.54 6.47 

4 1 0 32.79 . 71 1.11 .11 .48 .24 

2 0 48.23 1.08 2.17 .17 .93 .89 

3 0 I 62.71 1.46 3.22 .22 1. 22 1.54 

4 0 77 .83 1. 92 4.23 .23 1. 66 2.82 

5 0 88.85 2.20 5.05 .05 2.25 5.05 

5 1 0 32.48 .62 1.12 .12 .51 .28 

2 0 46.29 1.02 2. 15 .15 .94 .90 

3 0 
I 

60.57 1.37 3.27 .27 1. 26 1.67 

4 0 69.93 1.68 4.14 . 14 1.80 3.26 

5 0 86.67 2 .18 5.17 .17 2.65 7.07 

* Each entry is based on 500 simulations. 
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TABLE XVI 

EFFECT OF USING ESTIMATE BASED ON 100 OBSERVATIONS 
IF STOPPING CRITERION FOR MULTISTAGE ESTIMATION 

OF k NOT MET* 

-- " " Number of Times N s- k Bias A 

sk 
100 Observations N 

Taken 

58 44. 960 .609 1. 232 .232 . 811 

368 63.663 . 778 3.074 1.074 8.634 

624 73.703 .768 5.943 2.943 25.926 

765 78.987 . 723 9.549 5.549 56.282 

866 80.700 . 725 9.489 4.489 46.759 

9 37.813 .488 1.166 .166 .598 

144 55.810 .689 2.280 .280 1. 253 

369 66.607 . 729 3.610 .610 4.005 

591 
I 

75.460 . 710 5.609 1.609 10 .444 

695 78.357 .690 7.710 2. 710 17.964 

0 34.870 .420 1.156 .156 .500 

73 50.867 .633 2.243 .243 .988 

249 63.010 .706 3.355 .355 1. 665 

471 72. 080 . 710 4.693 .693 3.664 

622 76.693 .704 6.392 1.392 6. 911 

1 33.383 .405 1.139 .139 .498 

44 48.060 .606 2.229 .229 .997 

197 59.947 .690 3.284 .284 1. 517 

382 69. 210 . 711 4.447 .447 1.996 

540 75.220 .690 5.595 .595 2. 964 

0 33.253 .400 1.169 .169 .488 

36 46.043 .577 2.191 .191 .839 

144 58.137 .660 3.224 .224 1.248 

315 65.550 .716 4.364 .364 1.824 

455 72. 023 . 711 5.483 .483 2.632 

* Each entry is based on 1500 simulations. 
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A 

MSE 

. 711 

75.698 

680.815 

3198.427 

2206.542 

.385 

1.648 

16.408 

111.674 

330.038 

.274 

1.034 

2.897 

13.903 

49.696 

.267 

1.046 

2.381 

4 .185 

9.141 

.267 

.740 

1.608 

3.459 

7.161 
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TABLE XVII 

MINIMUM DIFFERENCE TRUNCATION RULE APPLIED IF 
STOPPING CRITERION OF MULTISTAGE ESTIMATION 

OF k NOT MET BY 100 OBSERVATIONS* 

-- -,,. A 

Number of Times N 5N k Bias 
100 Observations 

Taken 

47 45. 393 .605 1.255 . 255 

362 64.593 .756 2.646 .646 

652 74 .393 . 770 5.082 2.082 

773 78.533 . 730 5.991 1.991 

888 82.183 .701 6 .117 1.117 

3 37.257 .468 1.155 .155 

141 55.590 .675 2.347 .347 

352 66.420 . 728 3. 642 .642 

621 74.870 .741 5.184 1.184 

741 79.860 .688 6.651 1. 651 

0 35 .183 .416 1.153 .153 

80 so. 783 .632 2 .178 .178 

247 63.470 . 707 3.306 .306 

470 71. 230 .723 4.673 .673 

586 75.610 .697 5.962 . 962 

0 33.017 .410 1.123 .123 

33 48.223 .571 2.219 .219 

180 59. 717 .692 3.334 .334 

363 67.990 . 718 4.385 .385 

524 73. 653 .709 5.899 .899 

1 32.620 .385 1.147 .147 

38 46.700 .580 2.200 .200 

116 56.840 .659 3.240 .240 

302 66.923 . 691 . 4.404 .404 

488 74.250 .679 iS.618 .618 

*Each entry is based on 1500 simulations. 
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A 

s:' MSE 
K 

.857 .799 

2.988 9.347 

27.307 749.992 

23.197 542.070 

13. 357 179.656 

.602 .387 

1.494 2.352 

3.563 13.106 

8.142 67.692 

11. 089 125.694 

.494 .267 

1.009 1.051 

1.696 2. 969 

3.535 12.948 

6.360 41.377 

.505 .270 

.887 .834 

1.611 2.706 

2.163 4.829 

4.851 24.343 

.455 .229 

. 938 . 920 

1.355 1.893 

1. 841 3.552 

2.752 7.957 
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lated and of requiring a smaller difference in the last two estimates. 

Both tend to rapidly increase the average sample size while continuing 

to reduce the mean square error. 



CHAPTER VI 

TESTING AND ESTIMATION OF A COMMON k 

In this chapter, we shall determine the maximum likelihood estima-

tor of a k common to several negative binomial populations which may 

have different means. The likelihood ratio test (LRT) is then developed. 

Some comparisons in the precision of the estimate of the common k and 

the power of the tests when using the likelihood procedure and that due 

to Bliss and Owen (6) are also made. All of the work in this chapter 

is based on samples of fixed size. 

... ' 
Consider a random sample of size n. from population i, i = 1, 2, 

l 
t 

t, where L n. = n. 
i=l l 

Let xib be the b-th observation from the i-th 

population. Denote the number of observations in population i with the 

value j by m ... 
1-J 

Defineµ. to be the mean of the i-th population. 
l 

Assume that k is constant for each population but the means may vary. 

Then the natural logarithm of the likelihood function is 

t co 

9,n L= L: L 
i=l j=O 

t 
.= L 

i=l 

m .. 9.,n P(x. = j) 
1-J l 

Taking the derivative of L with respect toµ., we determine that 
l 

the MLE of µ. is X. . Using this fact and differentiating 9.,n L with re-
l l' 

spect to kc , we have that the MLE of the common value of k is the root 

75 
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of the following equation in k 
c 

t t co j " 1 2: n. .R,n(X. + k ) - n .R.n k = E 2: m .. 2: " 
i=l l. l.. c c i=l j=O l.J s=O kc + s 

Suppose now we want to test 

(6 .1) 

versus 

Let w be the restricted parameter space under H0 , and L(w.) the maximum 

value of the likelihood function of the sample where the parameters are 

restricted to w; hence, 

" L(w) t I [ ni = 'JT 'iT 

i~l b=l 

" Defining L(m to be the maximum value of the likelihood function of the 

sample where the parameters may take on any value specified in the union 

of H0 and H1 , we have 

" where k. is the maximum likelihood estimate of k based on the observa-
l. 

tions from the i-th population. 

The likelihood ratio is then denoted by 

L(w) 
A = L(n) • 

If H0 is true, -2 times the natural logarithm of A is approximately a 

x2 random variable with t degrees of freedom for large value of n. 
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We propose to use the maximum likelihood estimate of the common k 

and to test the hypothesisin·(6.l) using the x2 approximation of -2 in\ 

under H • 
0 

Monte Carlo methods were employed to study the properties of our 

proposed estimation and testing procedure and to compare it with the 

standard one developed by Bliss and Owen (6). However, we can only pre-

sent our work in this area as a preliminary step .to future endeavors. 

We believe it gives some insight into the two procedures, but much more 

must be done before either method is fully understood or a comparison 

of the two is complete. 

In our simulations, we worked with two populations, and we took a 

sample of fixed size thirty from each one. Both populations had the 

same mean of one although we did not make this assumption when obtaining 

our estimates. 

We began by running 1,000 simulations based on Bliss and Owen's 

weighted regression procedure. A sample was drawn from each of the two 

populations. If either one of them resulted in s~ < X. 
1 1' 

it was dis-

carded and a new sample drawn. A weighted regression was performed 

iteratively until the last two estimates of k differed by less than .01 
c 

The test for equality of the two k's was based on the two-tailed chi-

square test statistic with one degree of freedom. The test was conducted 

with a stated significance level of • 05 • 

In Table XVIII, the fraction of the 1, 000 simulations in which H0 

was rejected is presented for each of the combinations of k's. The dia-

gonal entries represent the cases where the two values of k are equal 

and HO is true. In the off-diagonal entries, the k's in the underlying 

populations are not equal, and H is false. In many cases, we reject a 
0 
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true H0 more often than a false one, leading us to believe the test may 

be biased. 

TABLE XVIII 

ESTIMATED SIGNIFICANCE LEVEL OF THE WEIGHTED 
REGRESSION TEST OF A COMMON k 

Value of k in Population 

1 2 3 4 

1 .036 .038 .030 .039 

Value of 2 .043 .032 .028 
k in 

"'Popula- 3 .041 .029 
tion 

2 4 .033 

5 

1 

5 

.028 

.035 

.044 

.049 

.048 

For those cases where we failed to reject H0 , we proceeded to ob-

tain an estimate of the common k. As a measure of the precision of the 

estimate, we computed the estimated bias, the estimated standard devia-

tion, and the estimated MSE. These are presented in Table XIX. Con-

sidering the high MSE associated with MME and MLE estimation of k from 

samples of fixed size, this process seems to give good estimates of the 

common k. 

Next we turned to the proposed estimation and testing procedure 

based on the likelihood function. Again we ran 1,000 simulations for 
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each parameter combination. --2 
The X approximation is apparently not good 

for samples of this size since we seldom rejected the null hypothesis. 

Therefore, we decided to reject Ho if -2 in A was greater than two. The 

value two was chosen so that the es~irnatedsignificance levels of the two 

tests would be about the same. 

TABLE XIX 

ESTIMATION OF A COMMON k BASED ON THE WEIGHTED 
REGRESSION PROCEDURE 

A A A 

µ k k Bias SA MSE 
c c k 

1 1 1.287 .287 .981 1.045 

2 2.526 .526 2.978 9.144 

3 3.528 .528 3.799 14.714 

4 4.069 .069 5.308 28.182 

5 4.774 -.226 5.483 30.117 

Results of these simulations are presented in Table XX. Although 

there are some exceptions, we are more likely to reject H0 if it is 

false than if it is true, indicating this may be an unbiased test. Notice 

that as we go down the diagonal, the estimated significance level de-

creases. This is somewhat disturbing since it implies the significance 

level may depend on the value of the unknown, but equal parameters. 

If we failed to reject Ha. , an estimate of a common k was computed. 

The estimated bias, estimated standard deviation of the estimate, and 
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the estimated MSE are given in Table XXI. In each case the estimated 

MSE is less than the corresponding one computed under the Bliss and 

Owen process. 

TABLE XX 

ESTIMATEDSIGNIFICANCE LEVEL OF THE LIKELIHOOD 
RATIO TEST OF A COMMON k 

Value of k in Population 1 

1 2 3 4 5 

1 .126 .154 .194 .248 .221 

Value of 2 .067 .086 .078 .070 
k in 

Popula- 3 .059 .051 .051 
tion 

2 4 .043 .033 

5 .030 

From these simulations, there is an indication that the testing 

procedure based on the likelihood ratio is more powerful than the one 

based on the weighted regression although neither can be considered 

"good" for a mean of one and samples of size 30 from each of two popu-

lations. Also the maximum likelihood estimates are a little more pre-

cise than the regression estimates. 

In another attempt to study the comparative power of the two tests, 

we tried the following approach. A sample of size thirty was drawn from 
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each of two populations having the same values of the parameters µ and 

k, and the test statistic for the regression test computed. This was 

done one thousand times and 

a = P(T > x2 ) 
calc 

estimated for each of the one thousand observed X2 l values, where T ca c 

represents the possible values of the test statistic. This produced 

significance levels under the null hypothesis. Then various alterna-

tives were considered. For each alternative, two samples were drawn, 

one from each population. The test statistic was computed, and the 
A A A A 

observed significance level, F(a), determined. A plot of F(a) against 

a was made with three alternatives plotted on each graph. 

TABLE XXI 

MAXIMUM LIKELIHOOD ESTIMATION OF A COMMON k 

--
-
A " A 

µ k k Bias s" MSE 
c c k 

1 1 1.307 .307 I .835 .791 

2 2.544 .544 I 
2.162 4. 972 

3 3.465 .465 3.565 12.927 

4 3.997 -.003 3.609 13.025 

5 4.254 -.746 3.645 13.845 
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This procedure was repeated for the likelihood ratio test, and the 

plots based on the two tests compared. Some of these plots are pre-

sented in Figures 9 - 16. When the mean is five, both tests are more 

powerful than when the mean is one. This is reasonable since k affects 

the shape of the distribution more as µ increases. The plots of the 

alternatives under the likelihood ratio are slightly higher than the 

corresponding ones in the regression procedure, indicating more power. 

The plots in Figures 15 and 16 have the significance levels based 

on µ = µ = 5 
1 2 

and The alternatives have µ 1 = µ 2 = 5 

and k1 = k 2 . We would hope that F(a) = a in these cases. There is 

a marked tendency for F (a) > a for the regression test statistic, but 

a rough equality appears to hold for the likelihood ratio test statistic. 



PLOl Of C.tJNFR•Slf~Lf\I ~YM60L IS VALUE Of a<2 

CUM=.._ ... ~ .. 

1 •• 

l .o 552 
9559222 

99999!5~222.:: 

99!555522222'2 

Ue9 + 99 9955 22 222 

006 

".1 

a.o 

Oo5 

o •• 

0 .3 

.0.2 

~9999!5'5!55222 

9'995 55!552222 
9555 22 

99995!55 2 222 
9995555 2 222 

g9595 222 
999~55~ 222 

9999~5!55 2222 
9999~9 !555 2222 

99 999 5~~555 2222 
~999 55555 2222 

99 5!.55!5 2222 
99999555 

999955'5'55 
222C2 

22222 
9999 555 22222 

9999 ~,55 2222 
9999 5555 222 

999 5~5 2~2222 

9999 5555 222 
999'9 555~ 

~99 55555 
222 

222 
99~~555 £2222 

9999555 222 
9995~5 2222 

75555 
9SS 

2~222 

2222 
9955 22 

999555 222Z 
99555 2222 

9555 22 
955 22Z 

0.1 • 955~2.222 

o.o 

NOH::: 

9!5522.i! 
95222 

922 
+~2 

-·-----------·----~-----+-----------+------~---·----~-----·~---------+-~--------·-----------·-----------+-----------·~--o.o 0.1 0.2 (1.3 o... c.5 a.ti ~.1 o .. e 0.9 i.c 

SIGLE \I 

26Cl5 OliS HIDDEN 

Figure 9. Plot of F(a) of the 
Alternatives, Hi: 
k2 = 9 (9), Versus 

Weighted Regression Test Statistic Under the 
ki=l, k2=2 (2), Hi: k1=l, k2=5 (5), and Hi: 
& Under Ho: k1=1, k2 = 1 When JJi = JJ2=1 

ki = i, 00 
0..l 



(.YMFH 

I .2 

I• I 

1.0 

o.~ 

o ... 

0.7 

".6 

"•" 

o.4 

0.3 

o.z 

0.1 + 

PLOl Of C~MffitSl6LEV SV MBCll IS ~ALUE CF ~2 

9952~ 

9ft95222' 
99999ess222 

9999~222222 

999999552 222 
999955550222~ 

9'99955555 222 
99S9!ie!Se 22222 

g99999~s~e~ 2222 
~99999 5555 22222 

99999 555555 2222 
9999 sses 2222 

9999999 ~~~55~ 2222 
999 5555~5 2222 

99 99~ 5e, :i 2222 
'5199999 555 2222 

2222 9999 555 
9'9'ii9«i 555555 

9999 sse5 
22222 

2222 
9~9 5555 222 

99 !5~!i~ 

999 S~55 
9999 55 

222 2 
22222 

222 
999 55!1?1 222Z 

9'999 55! 222 22 
9'99 ~55S 2222 

~999 ~55~ 2222 
'ii9 555!5 2222 

9999 !15 22 2~2 
99 5555 22 

.. §1§1~55 2222 
9~9'§i .f ~5 222 

91J19 ~5fi: 2222 
995555 22 2 

'-1955 22:22 2 
999!;1S 222 

9555 22 
I so5 222 
I 952222 
f95222 

o.o •ei2 

-t-----------t----~-----+--~--~---r-----------+-----------t-----------+-----------~-----------T-----------+------------t----
0. 0 0.1 0.2 ..::.J o.• o.~ <l.ti 0.1 o.s 0.9 a.o 

SIGlEV 

NJTE: 2561 00 S HjUOEN 

Figure 10. Plot of ~(&) of the Likelihood Ratio Test Statistic Under the 
Alternatives, H1: ~1=1, k2=2 (2), Hi: k 1 =1, k2=5 (5), and H1:k1=l, 
k2 = 9 (9), Versus 44. {Jn411r tlu: ~l :;=; 1, k2 = l Wh~n µ1 = JJ2 = 1 

co 
+:--



<.UMFR 

' .<.! 

I o l 

1.0 

PLOT Of CUMFR•SIGLEV 

9 9 99 999 9 
9 Ci199W9999 99c;9 9 5S5 5555555~55!!5 !!5 

9g9999~99 5~5555!~5~55~ 

9999 5555555 55 
0.9 999 

99 
9 

99 

555!5~~~ 

555 
5b555 

55 
o.e • 9 5~ss 

I 9 s5 

' 9 05 
I 9 :ls 

o. 7 ... 9 5 
I 95·s 

22222 
22222 

2222 

' 95 
1955 

22'22 
22222 

o.6 •95 222 
195 2222 
195 2222 
1'95 22222 

u.s •95 2222 
195 222 
195 2~2 
j95 222 

Oe4 •55 2222 
Is 222 
I 5 222 
'5 2 2 

0 • .:1 •5 222 '5 22 
15 22 
15 22 

0.2 ,.5 22 
15 22 
Is 22 
'522 

0 .1 + 52 
1s2 
122 
12 

0 .o +2 

SY MSOL IS VALUE OF l<.2 

9 555 9 595 
~5 555 

2222 
222.C:22 

222222 

222 22222 
22222 

5 5 5 5 95 s 222 

2 2222222 
222222 

2222222 

2222222 
2 22222 

- ·-----------+---- -- - ---- .,_ _____ ----- ·----------·---------·---------·---------:+-----------·--- ------- -+----------·-----
o. o 0.1 0.2 o.3 o.4 o.s o.6 0.1 c.e 0.9 1. o 

S 1GLE V 

NOrE; 267J OfJS HlUOt.N 

A A 

Figure 11. Plot of F(~) of the Weighted Regression Test Statistic Under the 

Alternatives, Hi: ~l == 1, k2 == 2 (2), H1: k1 == 1, k2 == 5 (5), and Hi: k1 =l, 
k2=9 (9), Versus a Under Ho: k1=l, k2=1 When µ1=µ2=5 

00 
Ul 



'-UMFR 
l .2 

I .1 

loO 

o.9 .. 

PLOl Of (UMfRtSlGLfV 

9999 9 g 
91l 99999999 5 55555 555 555 5 555 

999g9 55~5555 

Q~~9 555555 
99 5555, ft 

SYMBOL IS '11,._UE OF K.2 

5 5 599 59 5 s 5 
5 

5 55 5 
2222222222 

:n2n2 2 2 2 
2222222 

222.:222 
9 55555 222222 
9 555 

99 555 
o.a + 9 555 

I 99 555 
I 9 s 
I "' 55 

u.1 •9'9 5 
19 5 
19 55 
19 5 

o.6 +9'55 
195 
195 
155 

2222 
22 

2222 
222 

2222 
o.s H:i 

15 
I 5 
Is 

22 

o... ·~ 

222 
222 

22 I!> 
15 
I 5 

22 

o.3 •5 
15 
j 5 
j 5 

22~ 

Z2 
22 

222 
2 

o.z •5 22 
ts 2 
15 22 
IS 2 

0.1 +52 
122 
12 
12 

0 .o •2 

222 
22 

222222 
22222 

22 

22222 2 
222222.22 

22222222 
222222 

22222 
22222 

2222 

-+--~--~---·----~----- ..... ----------+-----------·-----------·-----------·-~--------·-----------+-----------·----~-----+----o.o 0.1 0.2 0.3 o • .- o.~ o.6 0.1 o.e 0.9 t.a 

! IG LE \ 

NOIE: 2109 085 HIOOEN 

Figure 12. Plot of F(&) of the Likelihood Ratio Test Statistic Under the 
Alternatives, Hi: lq=l, ~2 =2 (2), Hi: ki=l, k2=5 (5), and H1:k1=l, 
k2 = 9 (9), Versus 3. Under Ho: k1=1, kz = 1 When JJl = JJ2 = 5 

00 

°' 



•· 

'Ut4F N. 
•• 2 

Io I 

1.0 

Plll OF CllfflFP*SJ(LfV SY Me.OL IS YA.LUE CF K2 

I 1 l l l l l 99555 
I llllllllll 1 1 II II 1 9'il9!5555 

0 .~ 
It IHI I 

1 111 l I 
I JJ ll I 

IJI 1111 llll 
!111111 l Ill 

Hlllll 1 

99999955 
99999 ~555 

99S·9 55!55 

'il9999 5555 
9999 5'!:55 

99999 !!>55 

008 I 11 '9999'»9 55555 

Uo7 

0 ... 

Oob 

o.~ 

ll 999'99CJI 5555:,, 

lll 99999 55555 

l 11 9'il'.il9 5555 

11 9999 SSS 

11 
11 

II 
11 

11 
II 

II 
11 
I 

ll 

II 
I 

c;~99 

'9<i9S9 
99 

9999 

'i19S9 
999 

555 
5555 

99$9S ~55 

99999 5555 
9995~ 5555 

9'i999 
999 

5fl5~'5 

f.555 
99999 

9999 
999 

5555f 
55 

55!:5 
994.il9 55~5 

5'555 
5555 

5~5~5 

55S 

o • .J • • 99Cil ~5 55 

I sg~ ~s~ss 

99i 5,55'55 
9S99 !SS~ 

0.2 .. 1 951-:.0 555 

I 1 99 ~555 

11 'i1~9 &5:i 
,. 9'.lt 5b5 

0.1 ... 1#99 556 
H 9 sss 
I I ~:';!;555 
I 955 

I) .o ·~'5 

-+-----------~-----------+-----------·-~---~---·----~-----·------~---·-----------·-----------·-----------·-----------+----
fJ .O 0.1 c.2 c.3 o.4 c.s o.ti o.7 c.e 0.9 1.0 

S IGLE V 

NOl'E: 2 065 HAD IO!:iSING VALUES as1~ oes HIDDEN 

Figure 13. Plot of F(a) of the Weighted Regression Test Statistic Under the 
Alternatives, Hi: ~l = 4, k2 = l (l), H1: k1 = 4, k2 = 5 (5), and H1: k1 
k 2 = 9 (9), Versus et Under H0 : k 1 = 4, kz = 4 When JJJ = JJ2 = 5 

4, 
00 ..__. 



C.V~k 

'.~ 

Io I 

I .o 

Oo9 

111 

u lll&l 
l 111 ll 

PLOT Of CUMftHSl6LEV S'l'MeCL IS VALUE OF K2 

111ll1 11 

1 111 lllUJ 1111 l I I 
llillllllllllll 

II 
11 l'!il~9 

959:5S5 
99995555 

9999955555 
'5i999955~S 

999955555 
9999555~ 

.l l l l 999~ssses 

a ,a 

a .1 

1J.6 

0 .s 

111 
l l.l l 
l 

111 
11 

ii 
I 

II 

I 

11 
1 

9'i9999955~ 

99999 555!:1 
9999 ~55~ 

999'.iil9 S55e>5 
999Q9 55~5 

9~99 ~555 

999999 5555 
999 5555 

9999 55e-
99~9 

99999 
9999 

99 

5555 
S555 

555 
555!5 • 1 

I 1 
I 

99999 
9999 

5!:>55 
555 

<lo4 

99999 
9999 

I ... 
11 
11 
11 

999 
999 

9999 
5~~~ 

55115 
o.~ .. 1 999 se.s5f) 

'. 9'il'i 55~55 
11 999 555 
11 999 sos 

0 .. 2 .. I 99 55-5 
11 99 555 
11 99999 555 

I• 99 5555 
~.1 •l 999 5555 

I 1 99 5555 
I 199555 
19955 

o.o +55 

555 
555 

5 55 

- ·--------- --· ----·------+------------ ·-------- --- ·-------- --·-------- --- ·----------·-----------·-- .. --------· ----------- ·----
&J .O 0.1 0.2 o.3 a.4 o.5 o.t. o.7 o.e 0.9 1.0 

NOit.;; 

Figure 

S IGLE V 

! O&S HAD MISSING V'LUE5 c:;aig OBS H IOOEtil 

14. Plot of ~(~) of the Likelihood Ratio Test Statistic 

Alternatives, H1 :"k1=4, k 2 .... L!U ..... JilL~J.""i4, k2= 
k2 = 9 (9)~ Ve:i;sus. a Under Ho: k1 == 4, k2 = 4 When P1 

Under the 

5 (5), and H1: k1 
µ2 = 5 

4, 
00 
00 



(.Uf'llFR 

1.2 

••• 

I .O 

o.~ 

Ood 

u.1 

o.6 

0 .s. 

o •• 

... 3 

0 -~ 

0.1 

PLOl Of CUMfJ;.itSIGLE\I ~~~SOL I~ ~ALUE OF K2 

22 
22!:~5 

5599 
225999 

5299 
259Cil 

'-f999 
.i2e5!)9 

2.C:St.99 
229S55 

~~59S5 

~Sfl299 

:0222~99 

2.522~t;i'i'i 

~~559<.19 

225~S99'ii'9 

22~~99S 

5!2_.2C9Cil~ 

'::522~2299S'99 

~f5224: 999 
225i2 S9 99 

525 ~99 

2522 "J9fJ<li 
~4:255 9'.l99 

522 9999 
255 9~9<; 

5255999~ 

,22 5991i 9 
?~2555999 

222CSSS9ti9 
222555~9~9~ 

~22~'!5~9999 

'2225f5 999 
2224:55555 999 

222 55 5 9999 

..:: ,;,: ' 55 5!: 9999 
2.i:!22 555~9c;99 

.i:!2::=5S559'i9 
2..:!55S~!i;:.ii~ 

52~5~99 

v.o •6~5999 

-f----------------~-----P.----------t-----~---·-~---------·-----------~-~--~----+-----------·--------~-+-----------·----
o.o 0.1. 0.2 c.J 0.4 o.~ c.ti 0.1 o.e 0.9 1.0 

!IGLE:\. 

f'tOTE.: 41 065 HAO '41$SlNG VALUES 2(140 OBS H IOOEH 

Figure 15. Plot of F(a) of the Weighted Regression Test Statistic Under the 
Alternatives, H1:".k1=2, kz=2 (2), H1: k1=5, kz=S (5), and H1:k1 
kz = 9 (9), Versus a Under Ho: k1=1, kz = 1 When µ 1 = µ 2 = 5 

9, 00 
'.0 



CU"4r~ 

1.2 

••• 

•• o 

Uo\I 

o.s + 

PLOT Of (llMFRtSiGLEV !iYliteOL IS \l"LlJE OF IC.2 

529 
55952 

292259 
99999 

2922955 
955!;5 

5595 
29559 

29299 
265599 

225999 

0.1 + 

0 ... 

~ .s + 

Oo4 

Oo;J 

0.2 

Ool 

55599 
5555999 

55252999 
52229999 

55252999 
55221i1999 

5 5229299 
52e s2 2999 

52299'i99 
5559999 

529999 
~!i2529'iii'.11 

5529299 
!555299'Sl9 

22599999 
259999 

225599'i 
2259999 

22999 
262999 

22~29999 

22251999 
22:;99 

2559 
2959 

2.95~5 

2295 
2599 

2.529 

o~ ·~ . . 
-·-----------+----~-----·-----------·-----------+----~-----·-----------·-----------·-----------·-----------·-----------·----o.o o. 1 0.2 c.3 o • .- c. 5 c. 6 c.7 o.e o.g 1.0 

SIG LEV 

NOtE: 27e2 a .. s tUOOION 

Figure 16. Plot of F(a) of the Likelihood Ratio Test Statistic Under the 
Alternatives, Hi: "ki = 2, k2 = 2 (2), Hi: ki = 5, k 2 = 5 (5), and Hi: ki 
k 2 = 9 (9), Versus a Under Ho: ki = i, k 2 = i When JJi = µ 2 = 5 

9, \,() 

0 



CHAPTER VII 

SUMMARY 

Our study is devoted to the negative binomial distribution. Se

quential procedures to estimate the mean with a prescribed degree of 

precision are developed. A multistage method of estimating the second 

parameter k is presented and compared to the method of moments and max

imum likelihood estimates. Further, a proposed, fixed-sample-size es

timation and testing procedure for a k conunon to several populations 

with differing means is developed and compared with the standard one. 

When presented a sample from a negative binomial distribution with 

a single unknown parameter µ, we know the minimum variance unbiased 

estimator of µ is X . However, if we want to collect a sample so that 

the estimate of µ has a specified degree of precision, then we need to 

take a sample of optimum fixed size n*. Generally, n* depends on the 

unknown parameter and is thus unknown. Three sequential procedures 

designed to obtain a desired level of precision are developed. One aims 

at estimating µ with a specified coefficient of variation of the esti

mate, C. Another estimates µ within a proportion p of µ with confidence 

1 - a., and the last attempts to estimate µ within d units with confi-

dence 1 - a . One of the features of each of these methods is that all 

major computations may be completed before taking the observations, and 

only the total needs to be considered in deciding whether or not to 

stop. The limiting behavior of the procedures is investigated, and 
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Monte Car ) methods are used to study the results for moderate C, p, 

and d. 

92 

A no Jarametric, sequential procedure is developed to estimate the 

mean with l specified coefficient of variation of the estimate, C. In 

addition ) proving some limit results, the behavior for moderate values 

of C when :he negative binomial is the underlying distribution is con

sidered. 

For 1e two-parameter negative binomial distribution, we show that 

there is ) complete sufficient statistic. It is shown by use of simu

lation th ~ a proposed multistage procedure for estimating k tends to 

reduce si Jificantly the bias, the standard deviation of the estimate, 

and conse iently the MSE when compared to fixed-sample-size MME and MLE 

estimates 

Fina Ly, we compared the MLE of a k common to several populations 

which may 1ave differing means with the estimates obtained by Bliss and 

Owen's (6 procedure of weighted regression. We also considered the 

comparati =power of the two tests for equality of the k's. Since we 

only work i with two populations, each having the same mean, and samples 

of size t Lrty were drawn from each, we can view this work as only a 

prelimina f step to a more detailed comparison. There are indications, 

however, iat the likelihood-based procedure produces more precise 

estimates ~nd has greater power. 
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Professional Experience: Undergraduate assistant, Department of 
Mathematics, West Texas State University, 1971-1973; graduate 
teaching assistant, Department of Mathematics, West Texas 
State University, 1975-1976; graduate teaching assistant, 
School of Mathematical Sciences, Oklahoma State University, 
1977-1980; graduate research assistant, Department of Ento
mology, Oklahoma State University, sunnners of 1978, 1979; 
graduate research assistant, Department of Statistics and Ag
ricultural Experiment Station, Oklahoma State University, 
1980-1981. 

Professional Organizations: American Statistical Association, The 
Biometric Society, The Institute of Mathematical Statistics, 
Sigma Xi. 


