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CHAPTER I 

INTRODUCTION 

The relationships of sections of energy or matter are the basic foun­

dation of engineering science. They are clearly defined by the second and 

third laws of Thermodynamics. However, as a more practical form, the re­

lationships may be expressed as state equations. As a result, a nonlinear 

matrix relation can be formed. The terms in the matrices have direct 

meaning in the physical world. 

Chang and Fitzgerald (1977) have illustrated the relationship of com­

partmental matrix models with stirred tank chemical reaction networks. 

The matrix terms are composed of the fractional input flow coefficients. 

Barkstresser .et al. (1979) has shown one application of compartmental 

methods in renal function identification. The compartments are the volume 

of the tracer distributions. Matis and Wehrly (1979) examined the appli­

cation of stochastic compartment models in drug kinetics. Not least, is 

the ever expanding use of the compartment model in ecological systems as 

illustrated by Gowdy (1978). 

The list of applications for compartment models has grown at a rapid 

rate, until the science of compartment model mathematics has become a 

study within itself, as illustrated by Sandberg (1978). Pre-dominant in 

compartmental methods is the linear donor-controlled compartment model 

and the resultant column diagonally dominant state coefficient matrix. 

The laws of mass or energy conservation find equivalent expression in the 



relationships of the diagonal terms with the off-diagonal terms in the 

coefficient matrix. 

2 

Such matrices have established a body of structural properties which 

are unique to matrices of their class. Diagonal dominance is just one 

property of the group. Concepts of connectivity and reducibility grow 

from the direct relationship to physical systems. There are many other 

properties implied by the unique structure of such matrices. Chapter I I 

recaps the work of Gowdy (1978) in examining the body of structural prop­

erties for deterministic compartment models. 

Compartment models are based on empirical observation, as evidenced 

in their use in parametric identification (Campello and Cobelli [1978], 

Mulholland and Gowdy [1977], Mulholland and Weidner [1980]). This fact, 

plus their close relationship to lumped models of the real world, neces­

sitates the use of stochastic methods in determining the models and their 

structural properties .. Chapter I I I examines the stochastic moments of 

compartmental states considered as random variables. Note that this 

study does not examine the relation commonly known as a stochastic com­

partment model. Rather, it examines what has been considered as a de­

terministic relation. Except, now, this study adds the practical effects 

of uncertainty. In particular, Chapter I II considers the effects of in­

put uncertainty in compartment model identification. A Monte Carlo study 

is performed, and a clear suggestion of behavioral properties for the 

variance is observed. The sample rate for identification is shown to 

fall within strict bounds established by the variance of the states. 

The dynamic variance obeys an equation of the form of the Lyapunov 

derivative matrix equation. While the equation is familiar, there is 

some difficulty in examining the properties of the variance, as opposed 
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to examining terms with the more conventional simple state matrix formu­

lation. Chapter IV examines a Kronecker algebra as a matrix to vector 

transformation. The nice structure of the Kronecker product and sum 

yield many simplifying forms for the matrix systems. An appendix is in­

cluded to list some of the more interesting algebraic identities. As a 

result of the Kronecker algebra, the Lyapunov equation is converted to 

the simple matrix form, allowing ready structural analysis. As an addi­

tion, Chapter IV examines the special case of compartment 11 stochastic'' 

systems, otherwise known as Markov processes. The Kronecker algebra is 

shown to have beneficial structure for multiple-unit Markov system decom­

position. 

The reformulation of the Lyapunov equation via the Kronecker algebra 

establishes an analytic approach for examining the preservation of struc­

tural properties of the state mean in the state variance. Chapter V 

examines a number of proofs utilizing the Kronecker algebra and establish­

ing the sought after structural properties. Matrix properties such as 

diagonal dominance, irreducibility, and boundedness are a few of the prop­

erties examined. 

The result of these new properties is a revised identification 

theory. Now dynamic confidence intervals may be constructed, and a new 

sample theory proposed. Chapter VI examines the specifics of the dynamic 

bounds on the variance of compartment models. Gershgorin (1931) theory, 

as well as the techniques presented by Gowdy (1978), play an important 

role in identification of the variance bounds. Finally, guidelines are 

proposed for continuing this research in the construction of a new sample 

theory for identification of compartment models. 



CHAPTER II 

REVIEW OF BACKGROUND LITERATURE 

Introduction 

The analysis of the structural configuration of a specific system, 

and the properties implied by that configuration, can lend valuable in­

formation toward the application of scientific principles in the identi­

fication and subsequent manipulation of that system. Importantly, the 

general structural properties of a class of systems can similarly lend 

information for the analysis of any particular system from that class. 

The general field of compartment modeled systems is such a class which 

has had great success in the past in applying this principle. 

This chapter will review pertinent literature in order to establish 

a sufficient background in the structural properties of compartment mod­

els. The first section will be a brief compilation of the historical 

development of compartment models. The next section will develop in more 

detail the properties of compartment models which are important to this 

study. 

It should be noted that the structural properties of compartment 

models are drawn from arbitrary system boundaries. Thus, the casual ob­

server of the physical system may not clearly visualize the structural 

identity. 

4 



5 

History 

The main concept of compartment models involves the dynamic relation­

ship of distinct units of mass or energy. Though a large number of sys­

tems models satisfy this rule, researchers in the area of compartment mod­

els restrict the definition more severely. Commonly, a compartment model 

is a group of lumped interconnected entities governed by the laws of mass 

or energy conservation. 

The structure of compartment models is inferred from samples of the 

compartments combined with "common sense" knowledge of the system. There­

fore, a compartment is assumed to be composed of one homogeneous substance, 

and correspondingly, the flow into the compartment is instantaneously mix­

ed to keep the compartment content homogeneous. Obviously, this assump­

tion is not exactly valid, but the nature of the system observations ren­

ders the assumption acceptable, and often unavoidable. 

Another assumption commonly applied is the property of "donor con­

trol." That is, the outflow from a compartment is dependent only on the 

content of that compartment. The state of the system is assumed to be 

below saturation. This type of compartment model represents the ecologi­

cal condition of ultimate resource limitation (Patten, 1975). 

The above are the general concepts applied to most compartment mod­

els in the literature. It is for this type of model that Sheppard (1948) 

first coined the term "compartment." However, the concepts were used 

much earlier in the twentieth century. 

Different areas of science can date the use of compartment models in 

their areas to different sources in the early 1900's. Hevesy (1923) was 

the first to use compartrrent models with tracer studies in the area of 

Biology. He used the concept when he demonstrated the uptake and loss 
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of lead ions in plant roots. Kostitzin (1935) applied the compartmental 

analysis approach to ecological systems. Teorell (1937) founded the use 

of COfll>artrnental analysis in pharmacokinetics to study the kinetics of 

drug absorption, distribution, metabolism, and excretion. 

Still the mathematical contributions could be traced back even far-

ther to the later part of the nineteenth century. The matrix properties 

of diagonal dominance can be traced back to Levy (1881) and Desplanques 

(1886). The relationships of positive quantities exhibit the properties 

of positive matrices, in particular, the dominant eigenvalue theory of 

Perron (1907) and Frobenius (1912). The analysis of the relationships 

of those eigenvalues uses the circle theory of Gershgorin (1931) to great 

effect. Finally, the influence of Taussky (1949), in promoting these then 

underemphasized results to the scientific community, cannot be left un-

mentioned. 

The analysis of the structural properties of compartment models re-

lies heavily on the mathematical theory of these pioneers married with 

the connective structure of the compartments, as illustrated by Hearon 

(1963) and Thron (1972). In particular, the identification theory of 

ecosystems has gained from this 11marriage11 (Mulholland and Gowdy, 1977). 

Matrix Compartment Model Structural Properties 

Possibly, the foremost property that compartment models must exhibit 

is the cons:ervation of mass. Sandberg (1978) expresses this property 

mathematically in the nonlinear equation 

. 
x. = 

I 
f. 

10 
(f .. - f .. ) 

I J JI 
- f . ' 

OI 
= 1 , • • • , n (2. 1 ) 

where there are n compartments in the system, the prime notation indicates 
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summation for all j :f 1, f is the mass flow rate to compartment r from rs 

compartments, subscript o indicates the environment, x. represents the 
I 

content of compartment i, and x. represents the time rate of change of x. 
I 

A hypothetical three compartment system governed by Equation (2. 1) would. 

be represented by Figure 1. 

Equation (2. 1) represents several types of systems (Brown, 1980). 

Many systems are accurately modeled by nonlinear, time varying relation-

ships. In particular, ecosystems and chemical kinetics are highly non-

linear. Ecosystems are often state and time dependent as discussed in 

Smith (1970). Chemical kinetics tend to fail the homogeneous substance 

assumption, giving rise to multiple sub-compartments for each compartment 

and rendering nonlinear relationships (Brown, 1980). 

However, an important method of observing the states of compartment 

models is through the injection of· tracers. Ideally a tracer is a radio-

active or stable substance which is kinetically indistinguishable from 
-

the compartmental contents. It also must be limited amounts in order to 

not perturb the observed system. Lastly, it must be uniformly distribut-

ed throughout the compartment. Various information about tracers may be 

obtained from Sheppard (1962), Jacquez (1972), and Shipley and Clark 

(1972). 

The analysis of these tracer experiments is valid with the assump-

tion of linearity (Gowdy, 1978). The tracer states are related similar-

ly to the states in the linear compartment model, except the new states 

are inversely proportional to the original states of the system. If the 

nonlinear rate coefficients are expressed by k .. f.(~.), the tracers are 
I J J J 

related by 
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. 
~. = 

I 

9 

n r [k •. f.(;.) o./;. - k .. f.(;.) o./;.] 
j= 1 I J J J J J J I I I I I 

(2. 2) 

where o. is the amount of tracer in compartment i, x. is the steady state 
I I . 

content of compartment i , o. is the ti me rate of change of o. , and o. < < 
I I I 

x .• 
I 

Another class of compartment models is the stochastic compartment 

model. Actually, this is two distinct types of models. First, the 

amount of material in the compartment can be considered as a finite num-

ber of particles, and a probability--such as the Markov process--can be 

derived to describe the model. In the second case the rate coefficients 

can be considered as random variables. When classical statistical tech-

niques are applied to the identification of compartment models, the esti-

mates of the rate coefficients may be considered as random variables 

with associated probability distributions. The first type of compartment 

model tends in the limit, as the number of particles approaches infinity, 

to approach the deterministic linear compartment model. The second type 

of compartment mode 1 is a facet of rea 1 world i dent i fi cation, which a 11 

compartment models exhibit. Unfortunately, the sample size is often in-

sufficient to identify the probability distribution and the related prob-

ability moments. 

Due to the wealth of information on linear systems, the most common 

compartment model is the 1 inear constant coefficient model. 

x., = f. 
10 

n 
+ r 

j=l 
(k .. x. - k .. x.) - k .x. 

I J J JI I 01 I 
(2. 3) 

where the terms are defined as before, except the k .. coefficients are 
I J 



10 

now time and state independent. Equation (2.3) can be restructured to 

fo rm (Th ron , 19 7 2 ) 

x = f + A x (2.4) 

where x is a n vector of the compartment states, f is the n vector of 

the flows from the environment to the compartments, and the coefficient 

matrix A is the matrix of transfer rate coefficients (a .. = +k .. ). Now 
. I J I J 

-a .. 
I I 

= a . + 
01 

n r 
j=l 

a .. 
JI 

(2. 5) 

The main emphasis of this study will be on compartment models of the 

form of Equation (2.4). 

It is important to note that when the flow rate from a compartment 

to the environment is zero, the sum of the terms in the column of Acor-

responding to that compartmeht is also zero. This is known as column 

diagonal dominance. 

Many of the important mathematical properties of compartment models 

are derived from whether the compartments are open (material can pass 

from the system, a . ~ O, or not), or whether it is strongly connected 
OI 

(material can pass from one compartment to any other compartment without 

leaving the system), or whether it contains any cycles (materials can 

loop around in three or more compartments). Both Hearon (1963) and 

Thran (1972) have written extensively on this subject. Since this study 

utilizes these results, their work will be largely recreated here, though 

in a much briefer form. 

It is important to note that the matrix A is by definition composed 

of real elements, and that the diagonal elements are of opposite sign 

from the off-diagonal elements. Since the matrix is structured to 
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exhibit diagonal dominance, when none of the compartments is closed (i.e., 

a."" 0, i=l, .•. ,n) the determinant of A is not zero (Taussky,1949). 
01 

This has important connotations. It implies that none of the eigenvalues 

of A is zero for a completely open system. It also implies that A is non-

singular and that its principal minors are nonsingular, under this assump-

tion. The singularity of A has serious implications in controllability, 

observability, identifiability, etc. 

When some of the compartments, considered as a set, are cut off from 

the rest of the system by null transfer rates, they are said to be not 

"strongly connected." The coefficient matrix A for such a system is said 

to be reducible to a diagonal form (Gantmacher, 1959) 

(2. 6) 

where A11 and A22 are square matrices. 

Extending the concept of reducibility with connectiveness for com-

partment models, Thran (1972) has shown that matrix A can be permuted to 

the form of Equation (2.6) where 

Al 1 , 

Al l = 

A p, 1 

A p+l,p+l 

A22 = 

0 

0 

A p,p 

0 

A n,n 



A 
p+ 1'1 

A n, 1 

A . 
p+l,p 

A n,p 

12 

The partitions separate the singular and nonsingular sets of compartments 

along the diagonal. The diagonal partitions are all irreducible and the 

diagonal blocks in A11 are all nonsingular, while the diagonal blocks in 

A22 are singular. From the diagonal dominance property; the column sums 

related to A11 are nonzero. It is obvious from the form of Equation 

(2.6) that the singular subset of the compartment model can be discon-

nected from the nonsingular section, and the scientific manipulation of 

the nonsingular subsystem can be performed. 

Before proceeding with the evolution of structural behavior for lin-

ear compartment models, it should be noted that many similar results 

exist for nonlinear compartment models, given certain key assumptions 

(Sandberg, 1978). The nonlinear forms are more powerful, though their 

applications are not useful to this study. 

A practicing systems scientist would appreciate knowledge of many 

of the behavioral characteristics of a particular compartment system. 

Many of the characteristics are wel 1 founded in common sense knowledge of 

the system. Stability and monotonic responsiveness are just a couple of 

these behaviors. The evaluation of the properties of the matrix A has 

added mathematical reinforcement to many of these empirical characteris-

tics, as well as suggesting many characteristics which are not clear. 

The circle theory of Gershgorin: (1931) adds a great amount of visual 

insight into the questioned properties. Let A be a nxn complex matrix. 

Then the spectrum of the eigenvalues of A is contained within the union 
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of then clrcles in the complex plane 

n 
lz-a .. js: r I a .. 1 

j I 
(2. 7) 

I I j=l 

A consequence of this theory is the inequality 

n 
l't.. 1 s; max { I 

j=l 
I a .. IJ 

j I 
(2. 8) 

where A. is the characteristic value associated with A. 

The concept of diagonal dominance can be pictorially represented in 

the complex plane using the Gershgorin theory. That is, for a .. < 0 and 
jj 

n 
I a .. I ~ t I a .. 1 = r. j = 1 ' • . • ' n jj i = 1 I j j 

(2. 9) 

let 

8. = I a .. 1 - r. j = 1 ' . . . ' n 
j Jj j 

(2. 10) 

then 8. ~ 0 defines the distance between the jth Gershgorin circle and 
j 

the imaginary axis in the complex A.-plane. If 8. = 0, then the eigen­
J 

value map corresponds to a closed compartment. lfa118.:f0,j=l, 
j 

., n, then the system is open and the eigenvalues are nonzero. None 

of the Gershgorin circles intersect the imaginary axis. 

Since the a .. are all negative, la .. ! ~ r., then all of the circles 
Jj Jj j 

are in the left half plane, and correspondingly compartment models are 

stable. 

Furthermore, except for notable exceptions (Wang, 1976), the eigen-

values of compartment models are assumed to be real (Hearon, 1963). Thus, 

the circles are centered on the negative real axis. This concept of the 

jth Gershgorin circle of a compartment model is illustrated in Figure 2. 
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w 

A. = a-+ Jw PLANE 

Figure 2. The jth Gershgorin Circle 
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One natural extension of the concept of the spectral graph of the 

circles is the idea of a bound on the responsive behavior of compartment 

models. Though necessary for stability, its identity is fundamentally 

important to many applications of this theory. 

Sandberg (1978) has shown that compartment mode.ls have unique equi-

1 ibrium points, if certain hypotheses are val id. More directly, Thron 

(1972) has shown that linear completely open compartmental systems have 

steady states, in response to certain driving input. Also under certain 

conditions, closed systems may have steady .state responses. 

With this concept of state the idea of bounds can be defined as 

bounds on the state trajectories between steady states. Completely open 

systems, in particular, obey the solution of Equation (2.4) (Bellman, 

1960) 

x(t) = exp(At) x(O) (2.11) 

Therefore, it is obvious that the dynamic trajectories between non-nega-

tive (non-positive) steady states remain non-negative (non-positive). 

Coupled with the concept of superposition, it is plain that the trajec-

tories do not overshoot the final steady state value. Otherwise a change 

of sign would occur. Carried one step further, it is clear that the 

transitions from one steady state to another are monotonic (Mulholland 

and Keener, 1974). A similar property has been proven by Sandberg (1978) 

for nonlinear compartment models. 

Hence, the transitions between steady states are bounded by the 

final states. Still, the Gershgorin spectrum can be utilized to derive 

even better bounds on compartment models. 

Frobenius (1912) has shown that any non-negative matrix A (a .. ~ 0) 
IJ 

has at least one dominant eigenvalue. This eigenvalue is referred to as 



16 

the Frobenius-Perron eigenval.ue of A. Since the coefficient matrix of 

Equation (2.11) is non-negative (Bellman, 1960), there is a dominant 

eigenvalue for the state transition matrix associated with A. Once car-

ried through the similarity transformation, it becomes evident that the 

matrix A has a dominant eigenvalue, and it is the least negative eigen-

value (6 = 0). Gowdy (1978) has derived the same result as above through 

a linear shift of the spectrum associated with matrix A. Since the ma-

trix A is finite, there also exists a minimum eigenvalue 

Cl. = max [ r. + I a .. 1 l 
j J JJ 

(2. 12) 

together with the Frobenius-Perron eigenvalue 

8 = min ( 8 . ) 
j J 

(2.13) 

These bounds are expressed by 

-a. < Al < ).2 < •• • < A. < A. n-1 n < - 8 (2. 14) 

where A. is an eigenvalue of A. Combining these bounds with the concept 

of a taxicab norm 

n 

I xi = l: 
j=l 

I x.1 
J 

(2. 15) 

it is easily shown that the solution of Equation (2.4) is bounded in 

norm by (Gowdy, 1978) 

exp(-a.t) jx(O)I ~ jx(t)I < exp(•6t) lx(O)I (2. 16) 

Thus the bounds suggested by the property of monotonicity can be conser-

vatively identified as a function of time once the ~pectral bounds are 

known. This is possibly a better bound than the final states argued 
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earlier. These bounds are extremely useful in describing a range of be­

havior associated with only partially identified systems .. 

Another important property of compartment models is identifiability. 

Bellman and Astrom (1970) indicate that a matrix A is identifiable only 

if any ch~nge in th~ coefficients results in a change in the observa­

tions. Thus the properties of controllability and observability are al­

so necessary. 

Cont ro 11 ab i Ii ty and obse rvab i 1 i ty a re wide I y accepted we 11 known 

properties throughout systems science; therefore, they will not be dis­

cussed here. Suffice it to say, that the rank of the coefficient matrix 

is related to these quantities, and hence cl'osed systems are uncontrol­

lable (Johnson, 1976). They are also unidentifiable. Fortunately, the 

closed section of any compartment system can be separated from the open 

section and the identification and manipul~tion of the open section is 

feasible. Unfortunately, controllability and observability are neces­

sary but not sufficient conditions for identifiability. The property of 

identifiability cannot be established (Gowdy, 1978). 

Even without the sufficient conditions for a proof of identifiabil­

ity, a great amount of research has still been conducted in this area. 

Many factors affect the observation of a system. For example, fixed 

digit observations add uncertainty in measurements. They also affect 

the sample rate. 

Commonly, the sampling theory of Shannon (1948) establishes bounds 

on the sample period in the identification of systems. However, the 

unique properties of compartment models allow for a different sample the­

ory to evolve. Specifically, sample bounds shown to have some meaning 

(Gowdy, 1978) are given by 
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-d -d - I Io In (I - I 0 ) < T < (-1 /an In (I 0 . ) (2. 17) 

where o and a are eigenvalue bounds derived earlier, dis the number of 

significant digits in the observation, and T is the sample period. 

Summary 

This chapter has discussed some. of the rich historical background 

of compartment models. In particular, the structural properties of cer-

tain types of compartment models have been examined. Among these are 

diagonal dominance, monotonicity, finite bounds, and stability. Certain-

ly, there are many other properties to discuss, but in the interest of 

moving ahead to consider compartment models with stochastic properties, 

the mentioned properties are sufficient. 

The next chapter will examine compartment models with the added di-

mension of random variables. This type of model is unlike any mentioned 

in the literature, but it is felt that it more closely emulates the 

real world than the previous approximations. The structural properties 

of these models are then examined in Chapter V. 



CHAPTER 111 

UNCERTAINTY AND IDENTIFICATION 

Int reduction 

The initial hypothesis of compartment models is based upon identifi­

cation considerations. The concept of the exchange of substance between 

entities is correct, but the consideration of models and representations 

of entities is limited by the accuracy of the identification of the sys­

tem. 

Chapter I I has illustrated many theoretical rules for compartment 

models. For the most part, they consist of deterministic models for the 

systems. As such they are incomplete, if not incorrect. 

Perhaps the most puzzling and frustrating experience of a novice ex­

perimentalist is the virtual impossibility of verifying deterministic 

physical laws via observations of the "real world. 11 A journeyman learns 

the shady, not quite true, connection between the incomplete theory and 

the actual observations. An easy approach would be to blame the discrep­

ancies on insignificant errors. Correction factors, experimental error 

are all widely recognized, but incorrectly their significance is over­

looked. The practice of applying physical laws which observations veri­

fy, more or less, is a problem which must be resolved as thoroughly as 

possible. It is for this reason that real systems are analyzed by sta­

tistical means, if possible. Stochastic analysis is a must, not a frill. 

19 
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A common practice of some scientists is to characterize observation­

al discrepancies as the effect of higher order nonlinear terms not car­

ried in the system model. There is no doubt that this analysis is par­

tially correct in some systems. There is also a practice of accounting 

the discrepancies as faulty equipment errors, which is partially true in 

sorre systems as well. At any rate, whatever the reason, observations re­

flect an uncertain property of nature. This uncertainty is not random, 

but its effects are indistinguishable from the random properties of sto­

chastic systems. Not just on sub-atomic levels, but on classical struc­

ture levels are the true descriptions of segrrents of matter fuzzy. 

It is incorrect to call this uncertainty an error, if by error there 

is an implication of a true description. The term error implies the 

existence, with adequate machi~ery and capable experimentalists, of ob­

servations which could exactly verify the constructs, mathematical and 

mental, proposed by scientists. However, a different implication of 

error is as a measure of uncertainty. It is this second definition that 

is the norm for this work. 

This work would argue that the deterministic rules of Chapter 11 

are correct, but incomplete. Some statement of the uncertain qualities 

of nature must be reflected in the study of compartment models. 

It is not suggested that all compartment models are stochastic. In­

deed, the exception is more often true than the rule. However, the ob­

servations of compartrrent models are indistinguishable from the observa­

tions of the random experiment establishing stochastic systems. As a 

compromise, it is suggested that compartment models are the deterministic 

models suggested in the 1 iterature, but with properties found in stochas­

tic systems. The compartmental states may be modeled successfully as 
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random variables, with distributions, moments, etc. Still, the relation­

ships involving structure and conservation hold. 

The effect of the stochastic properties is manifest most dramatic­

al Jy in the identification of the system, since it utilizes the observa­

tions directly. Since al I connections with the system are after .the 

identification, the stochastic properties must be reflected in control­

lers, fi I ters, etc. 

It is clear that the term 11 identification11 must be defined. The 

meaning of a compartment model with stochastic properties must also be 

explored. This chapter will be one primarily of definition, and of ex­

ploration of the imp! ication of uncertainty in identification. The vehi­

cle for the exploration is an attempt at combining statistics with some 

deterministic theory to derive 'sample period bounds for compartment mod­

els. 

The chapter wi I I begin with an attempt at laying the groundwork for 

the definition of the compartment model. The concept of state and system 

will be re-examined with unceftainty in mind. From these the dynamical 

models for moments and terms necessary for identification will be survey­

ed. It is assumed that the .co.ncept of probability distributions is well 

known, and will be mentioned only in reference to the concept of the sto­

chastic moments. 

The chapter will end with an examination of a particular Monte Carlo 

identification experiment. The results give surprising statistical impli­

cations which are the motivation for the stochastic property analysis of 

this work. 
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Definitions 

The mental identification of a system by an engineer is at first 

thought very clear. A finite set of machines, with interactions with 

the external environment, is not thought to be heuristically arbitrary. 

However, mathematical models of that system are usually not clear. 

Simplicity begs the use of deterministic linear relationships with a 

sixth sense feeling for making a project useful. Sometimes the system 

is not easily constrained to constructs examined in theory, and the sixth 

sense is the only guide. 

Possibly a helpful scientific approach would be in a three stage 

loop: observation, hypothetical identification, and manipulation. Engi­

neers are often content if a hypothetical model, though possibly incor­

re;t, renders the desired range of observaqon after manipulation. 

Rarely are observations from inside a system available. Environmen­

tal compartment models may be an exception. Usually, the true knowledge 

of a system is a collection of connected data from observations of input 

influences and output effects. 

This collection of input-output pairs is defined as a system by 

Zadeh and Polak (1969). Associated with this system is a bundle of rela­

tions known as an aggregate. Then a state is defined as a tag associated 

with the aggregate. 

The definitions suggested by Zadeh and Polak (1969) are very mathe­

matically pure. lhere is no arbitrary nature except for the misinterpre­

tation of the scientist. This work would extend the definitions from a 

mathematician's idealness to possibly an engineer's compromise. 

It could be suggested that observations are samples from an uncer­

tain experiment. The observations are in turn uncertain. The definition 



23 

of the system is the connection of a set ~f finite samples from a group 

of uncertain events. (Notice the events are not random, merely unknown.) 

Associated with this set are statistical estimates from observations. 

The identity of the system validates the estimates. This is all that 

the observation establishes. From insight the scientist establishes a 

hypothetical model. Then the model is verified as fully as possible with 

mathematics. The terms associated with the estimates are known as states. 

The only connection is insight verified with mathematics. 

This definition of a system is mathematically imprecise. However, 

it is a better representation of empirical systems. Observations must 

validate statistical significance arguments. Statements like "A state 

is the minimal information necessary to describe a system in all future 

time" are not necessary. Rather, a. state can be considered as a random 

variable. The probability distribution of that state lends insight into 

the probability distribution of that state in future time. 

It is clear that the connection between deterministic theory and 

stochastic theory for nonlinear systems is not known. For linear systems 

one could visualize the deterministic theory describing the deterministic 

moments from the stochastic nature of the system. The same is not true 

for nonlinear systems in general. Rather, it is believed that each par­

ticular nonlinear system must be examined for stochastic properties. 

Caution must be exhibited in applying stochastic theory for linear sys­

tems to 1 inear approximations of nonlinear systems. 

Once constrained to linear systems it becomes proper to discuss the 

moments of the state probability distributions, in particular the first 

few moments; mean, second moment, variance, and the variance of the vari­

ance are important, if the states are assumed to be Gaussian. 
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Defining the expectation operator by 

n 00 n E{x } = J a p (a)da. 
-co x 

(3. 1) 

where p (a) is the probability density function of x, th~ first few ma­
x 

ments are given by (Sage and Melsa, 1971) 

n ~ E{x} = J00 a p (a)da 
x -oo x 

00 

1/J X ~ E { XX 1 } = J_00 a a 1 p (a)da x 

00 

P Cl E{ (x - n ) (x - n ) '} = J (a - n ) (a - n ) ' p (a) da ·x x x -oo x x x 

(3.2) 

(3.3) 

(3. 4) 

The next few moments are clearly tensors and difficult to express 

by matrix terms, as yet. In addition to the variance, the variance of 

the variance is useful, and is also a tensor. 

Proceeding as in stochastic systems the continuous process is often 

described by the first order differential equation 

;(t) = A(t) x(t) + B(t) u(t) + G(t) w(t) (3.5) 

where x(t) is the state vector of the system, u(t) is the deterministic 

input vector to the system, w(t) is the random input vector to the sys­

tem, and ~(t) is the first derivative of the states x with respect to 

time. The coefficient matrices are deterministic and possibly time-

varying. (Note that random and the notion uncertain are used inter-

changeably, since the effects are indistinguishable.) 

The two input vectors u(t) and w(t) are a way of describing any 

type of stochastic input as a deterministic bias plus a zero-mean noise 

term. The term w(t) does not need to be white noise, but can be cons id-

ered as white, if the dynamic model of any colored noise is appended to 
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the system model. Since the mathematics are simplified by the white 

noise assumption, it will be adopted with the previous comment in mind. 

The dynamic transformations of the deterministic moments are de-

scribed by 

n (t) = A(t) n (t) + B(t) u(t) 
x x 

(3.6) 

~ ( t) = A ( t) '¥ ( t) + '¥ ( t) A' ( t) + B ( t) u ( t) n ' ( t) 
x x x x 

+ n (t) u' (t) B' (t) + G(t) V G' (t) x w (3. 7) 

where E'{w{t) w(T)'} = Vw od(t-T), and E{w(t)} = 0 due to the whiteness 

property of w(t). The dynamic trajectory of the variance is described 

by 

P(t) = A(t) P(t) + P(t) A' (t) + G(t) v G' (t) 
w 

(3. 8) 

The terms 1/Jx and 'p are matrices with th!e diagonal terms represent­

ing the notion of second moment and variance. The off-diagonal terms 

are expectation relations between different states. For this reason the 

matrix P is often known as the covariance of x. However, this is a 

source of confusion since 

C (t, T) = E{(x(t) - n (t))(x(t+·r) - n (t+T))'} (3.9) xx x . x 

is known as the covariance function of x, while 

R (t, T) = E{x(t) x(t +T)} (3. 10) 
xx 

is known as the correlation function of x. The problem is one of conven-

tion, and the distinction between the covariance P(t) and the covariance 

function C (t, T) is left to context. xx 

It is not i neons i stent to define 

P(t) = c (t, T) 
xx for T = 0 (3.11) 
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Equations (3.9) through (3.11) are especially meaningful for stationary 

systems where the covariance and correlation functions are functions of 

the lag -r only. 

The ideal moments are deterministic quantities. However, like the 

states, they have an uncertain aspect. They can only be known by esti­

mates. In turn, the estimates can be considered as random events accord­

ing to the rules of probability. The variance of the mean estimate is a 

function of the true variance. The variance of the variance estimate is 

a function of a term known as the variance of the variance. This term 

is a tensor if derived in a manner similar to the variance. However, it 

can be derived as a matrix, as wi 11 be suggested later. 

The sources of the uncertainty in observations are of three types. 

They are state noise, input noise, and measurement noise. The clear 

separation of each source is often difficult, but heuristically they can 

be identified somewhat. 

Measurement noise is a measure of the uncertainty associated with 

imperfect observation of a system, as opposed to the uncertainty which 

would be found using an ideal observor. That is, observations of a sys­

tem could take the form 

y = c x + v (3.12) 

where y is a 1 inear combination of the states plus a random factor stem­

ming from imperfect measurement, such as fixed digit samples, observer 

bias, etc. 

It is assumed that v is white noise with any known biases or color­

ed dynamics removed through calibration or compensatory techniques. 

Therefore, 
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E{v} = 0 (3.13a) 

E{v(t) v' (T)} = Vvod(t -T) (3 .. 13b) 

The measurement noise is the unavoidable error of observations. Such 

errors do not affect the state of the system unless included in some type 

of feedback. 

c' Input noise is the uncertain aspect of the driving forces. Any con-

trol or input like the system states have random properties, thus the 

white noise driving term w(t). 

Finally, state noise is a random fluctuation of the states due to 

internaJ system sources. Such noise is typically thermal noise, eddy 

currents, or such. State noise terms are often minor in effect, or at 

least indistinguishable from the uncertainty effects of the driving 

forces. Therefore, they are often ignored. 

Unfortunately, the individual contributions of the types of noise 

are difficult to identify in observations of the states. Indeed, the 

whole area of identification suffers drastically from the uncertainties 

of the observations. Signal-to-noise ratios reflect the relative magni­

tude of measurement noise. Very low SNR's render identification impossi~ 

ble, and therefore noise separation is also impossible. On the other 

hand, very high SNR's coupled with low system noise also render the ran­

dom effects inseparable. Still, the region where such problems occur has 

noise magnitudes which are too high to ignore completely. 

The separation of noise factors is just one problem area in identi­

fication. Often other difficulties are so severe as to overshadow the 

separation problem. At any rate, the identification of the system is a 

very important area of compartmental analysis. 
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For these reasons, the next section will discuss identification and 

the implication of uncertainties. 

Identification and Deterministic Sample Theory 

The term identification has several meanings. Appreciation of the 

complexity and uncertainty of real systems has rendered many simplifying 

connotations. For example, a method of forecasting future events from 

time series requires a great deal less information about the system orig­

inating the series than a method of forecasting future behavior in re­

sponse to different conditions. In turn the system identifications re­

quired by each method may vary vastly. Yet, given the same design condi­

tions the two models should agree to an acceptable significance. The two 

need not exactly agree because the system is after all uncertain and can­

not be exactly specified. 

Identification for this work will be constrained to finding the best 

linear model of the form of Equation (3.5) for a compartment model. The 

term 11 best 11 indicates the minimal variance model where a minimal variance 

model suggests the minimal spread of the model parameters around the esti-

mate means. 

Since the observations of systems are 11estimates 11 of the system mo­

ments, the resultant identified model is an estimate of the actual sys­

tem. Accordingly, these model estimates can be considered as random 

events with accompanying distributions. The variance of the estimates 

is one indicator of the 11 goodness 11 of the model. 

Many factors affect the estimates. Instead of considering every 

factor, this work will consider the effect of sample frequency on the 

variance of the model estimates. Many of the other factors are tied in 
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with the sample frequency, and thus some insight will be gained in those 

a re as as we 11 . 

The major constraints of sample theory have been the aliasing ef­

fects noted in the Nyquist sample bound for continuous band limited sig­

nals. Once the bandwidth, B, is known, a sample frequency of 2B can be 

shown by Fourier analysis to minimize modulation interference known as 

aliasing." 

However, the effect of finite digit quantization is to create new 

saJ1l>le bounds. Consider a simple exponential such as in Figure 3.· It 

is a continuous-time continuous-amplitude signal which is not bandlimit­

ed. The effect of roundoff quantization of 3 binary bits is shown in 

Figure 4. Clearly the effect of changing the sample period is to in­

crease the error in representing the exponential in identification. 

Smaller sample periods increase the correlation of consecutive samples, 

as shown in Figure 5. Larger sample periods increase the error by the 

loss of meaningful points in the representation, as shown in Figure 6. 

These quantization bounds have nothing in common with the Nyquist 

bounds. Indeed the Fourier anlaysis lends no proof of their existence. 

Though the effect of quantization is appreciable in the Fourier spectra, 

the connection of frequency to amplitude is nonexistent. 

However, as an indirect result, the discrete Fourier transform reso­

lution is tied to the quantization. The OFT is calculated by assuming 

the signal once sampled, is modulated, and thus periodic with period n 

points. The finite Fourier transform is represented by 

k = ± 1' ±2' •.. (3.14) 

where 
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and 

X(f, T) 
T 

= 1 x(t) exp(-j2~ft) dt 
0 

T 
Ak = (1/T) J x(t) exp(-j2~fkt) dt 

0 . 

Changing the sample period 6t where 
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T = n 6t (3. 15) 

has the effect of changing the interval of the Fourier spectrum, and 

thus alters the finite Fourier transform. 

Therefore, expanding the sample period with corresponding loss of 

significant points from the time series results in a corresponding loss 

of points in the Fourier spectrum. It has been argued that this bound 

is the Nyquist bound. Assuming continuous amplitude samples, it would 

appear to be so. Howev~r, discrete amplitude samples would render 

bounds other than the Nyqu1st frequency. In particular, an upper bound 

on the sample frequency would appear. 

A method for testing the previous hypothesis was proposed by Gowdy 

(1978). Simple regression identification of a compartment model could 

be perturbed by noise, and bounds on the variance of the model estimates 

could be examined statistically. 

Ecosystem tracer compartment models have many nice properties for 

identification. Typically, samples from each compartment of the system 

are available. The dynamics of the system· are slow enough to make iden-

tification of the sample bounds feasible. Also, a priori information is 

usually available on bounds for the flow rates; that is, ·on the maximum 

and minimum eigenvalues. 
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Given bounds of a and o on the eigenvalues of a particular compart-

mental ecosystem, Gowdy has proposed possible sample period bounds of 

+ -d 
T = (-1/an)ln 10 (3. 16) 

and 

= (-1/o)ln (l - 10-d) (3. 17) 

-1 
where d is the precision of the samples, a/2 = t o is the minimum 

0 

transfer out of the system, and t is the maximum turnover of the system. 0 . 

These bounds are derived from a set of deterministic norm bounds on 

the states of the system given by 

exp (-at) I x ( 0) I < I x ( t) I < exp ( -8 t) I x ( 0) I (3. 18) 

where I x(t) I is the taxicab norm of x(t). ' More will be said of the norm 

bounds and the derivation later. It is sufficient to note that the prop-

erties given in the previous chapter culminate in possible identification 

sample bounds, as proposed by Gowdy (1978). 

Given these bounds an identification experiment could be proposed. 

An ecosystem could be brought to steady state with a constant infusion of 

tracer material in the input. Then the input with tracer could be reduc-

ed by a set amount giving a response of the type of Figure 3 for each 

compartment. Again the type of response is known from the body of struc-

tural properties established in Chapter I I. 

With superposition a deterministic model of the form of 

. 
x = A x (3.19) 

could be proposed where n is the order of the system and the rank of A. 

The solution of Equation (3. 19) is well known by 
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x(t) = <p(t) x(O) 

where qi (t) = exp(At). 

In general, consecutive samples of the states would be related by 

x(i) = qi('t) x((i - l)L) 

where i is the index of the sample taken at uniform intervals. 

Since T is constant, n equations could be formed from the n+l set 

of observations. 

x(T) = qi(T) x(O) 

x(2T) 

x(m) =qi(,) x((n -1),) 

(3.22a) 

(3.22b) 

(3. 22c) 

2 
Then equations of Equation (3.22) could be expressed by the relation 

(3.23) 

where 

x 1 {x(O), x(i:), ..• ,x((n-l)T)} 

X2 = {x(-r), x(2T), , •• , x(nT)} 

-1 
qi (i:) = x2x1 (3.24) 

Equation (3.24) is simple nth-order zero-mean regression. 

The model parameter A is found from 

(3.25) 

-1 
where ln (X2x1 ) is found by similarity transformations similar to 

exp(At). Since the ecosystem is linear and probably contains real eigen-

values, the matrix A is unique. 
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The regression of Equation (3.25) was built into a Monte Carlo simu­

lation package. The samples observed from a typical system could be per­

turbed by zero-mean uniformly-distributed white noise, and model estimates 

could then be examined. 

The hypothetical ecosystem chosen for the simulation was first de­

scribed by_ Smith (1970). Though Smith 1 s model is not a real system model, 

it is built upon realistic numerical parameters. The system response 

mimics an aquatic ecosystem with phosphorous loading. 

Smith 1 s model consists of three compartments: water (x1), aquatic 

plants (x2), and a herbivore population (x3). The ecosystem input (u 1) 

is the phosphorous in the water flowing through the system. The output 

is the phosphorous in the exiting water, and the herbivores leaving the 

system through migration. The system interaction is illustrated in Figure 

7. 

Smith presents typical data for such a system, and from these data 

the rate coefficients were directly computed. The result is the follow­

ing model: 

xl = 5x2 + 5x3 -

x2 = 14x1 - 95x 2 

X3 = 90x2 - 14x3 

16x1 + ul (3.26a) 

(3.26b) 

(3.26c) 

The input rate u1 is 100 mg P per day in steady state. The rate coeffi­

cients are in terms of reciprocal days. 

The steady states were calculated for model Equation (3.26), and 

then Smith 1 s model was simulated on the IBM-370 computer using the CSMP 

simulation language package. The initial conditions were the steady 
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states for a constant input (u 1) of 100. The input of the system (t > 0) 

was u1 = O. This emulates the basic experiment design. 

Data were produced using a fourth-order Runge-Kutta integration rou-

tine with variable step size. Samples were produced at 0.001 time inter-

vals for ten units of time. The integration routine was checked with a 

matrix exponential. routine developed by Jessy Grizzle from a program 

written by W. Emmanuel at Oak Ridge National Laboratories. 

The resultant data were in floating point with a mantissa of the 

form of x.xxxx. This gives approximately five normalized significant 

digits (d). Since the eigenvalue bounds for the model were a= 120 and 

- -5 + o = 2, the sample bounds were calculated to be T = 5x 10 and T = 

0.02. Finally, 20 data sets were obtained at sample periods between 

0.005 and 0. 120. 

The identification method requires quantized samples of the system 

states. The effect of this quantization is to subtrace an unknown quan-

tity of value. 

Therefore, a pseudo-random number generator was designed to simulate ran-

-4 dom numbers, uniformly distributed between zero and 10 • These uncer-

tainties were added to the data to simulate the quantization effect. 

This provided the perturbations necessary for the statistical analysis. 

Ensemble averages of the perturbed parameters would yield the statistical 

sensitivity of the parameters. This was the basis of the Monte Carlo 

simulation. 

The random quantities were denoted by w, where 

(3.27) 
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Using standard statistical tests with a 0.05 level of significance, it 

was determined that 400 samples were required to estimate the mean and 

variance of w. Four hundred runs of the identification algorithm were 

computed for each sample period. The moment estimates were computed 

from 

n 
n = ( 1 /n) l a. 

I 
(3. 28) 

i = 1 

and 

2 
n 2 

(j = (1/(n-1)) l (a. - n) 
i = 1 I 

(3.29) 

Two entries in the coefficient matrix were determined to exemplify the 

range of behavior of the parameter ensembles. The mean and variance 

were therefore calculated for entries a 11 and a 12 in the matrix A. The 

results are tabulated in Tables I and I I. Plots of the means and vari-

ances of coefficients a and a versus sample period are graphed in Figures 

8 th rough 11 . 

A Chi-squared goodness-of-fit test of normalcy was performed on the 

identified parameter ensembles. The region of acceptance for the sample 

statistic was 

2 2 
x < xn a. 

' 
(3. 30) 

where the degrees of freedom (n) was 17, and the level of significance 

(a.) was 0.05. The results are also presented in Tables and I I. 

Examinations of the tables and graphs reveals that the mean does 

·not differ from acceptable limits of over the sample period range. How-

ever, the parameter variance estimates do exhibit the sample period 

bounds from the theory. The bounds exhibited by the plots are 



TABLE I 

MONTE CARLO RESULTS FOR 
COEFFICIENT a11 

--
T P.a 

A :I 
aa xs 

0·005 -16·024 1·39x10-2 32·4 
0·006 -15·973 7·90x 10-a 31·4 
0·007 -'-15·964 4·98x10-3 36·2 
0·008 -16·057 3·43x10-3 35·3 
0·009 -16·039 2·51x10-3 41·7 
0·010 -16·010 1·95x10-3 41·2 
0·011 -16·010 1·57 x w-3 31·1 
0·012 -15·983 1·31x10-3 25·7 
0·013 -16·022 1·12x 10-3 23·6 
0·020 -16·016 6·38x10-4 8·2 
0·030 -15·992 6·39x10-4 7·0 
0·040 -16·050 9·89x10-4 13·7 
0·050 -15·997 1·86x10-3 25·2 
0·060 -15·965 3·95x 10-3 10·8 
0·070 -16·007 9·67 x lo-a 15·1 
0·080 -15·780. 2·02x10-2 20·9 
0·090 -16·249 2·14x 10-2 6·8 
0·100 -16·190 3-40x10-2 14·5 
0·110 -16·178 5·57x10-2 19·7 
0·120 -16·368 9·33x10-2 55·7 

TABLE I I 

MONTE CARLO RESULTS FOR 
COEFFICIENT a12 

T P.a " I aa xs 
-

0·005 . 5·147 2·655 . 27·2 
0·006 4·793 1·194 23·3 
0·007 4·541 0·627 20·6 
0·008 5·578 0·372 19·2 
0·009 5·404. 0·241. 21·2 
0·010 5·035 0·168 18·2 
0·011 5·184 0·124 16·5 
0·012 4·888 0·096 16·9 
0·013 5·165 0·077 13·9 
0·020 5·113 0·033 5·7 
0·030 4'947 1·028 20·8 
0·040 5·322 0·040 14·3 
0·050 4·984 0·076 22·8 
0·060 4·786 0·145 14·4 
0·070 5·046 0·345 12·5 
0·080 3·680 0·701 19·5 
0·090 6·516 0·781 9·1 

. 0·100 6·160 1·262 12·9 
0·110 6•081 2·096 17·7 
0·120 7·306 3·485 45·1 

w 
\..0 
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approximately 0.007 and 0.07. Since the random nature of the real world 

is not considered by the sampling theory, the shift of the sample period 

bounds is not inconsistent. 

The spectral plots of Liff and Wolf (1966) illustrate a similar sam­

ple period range. They performed identification with z-tr~nsforms using 

a normalized integral squared error for a parameter fit criterion. Un­

certainty was introduced in the response through Gaussian white noise 

superimposed on the output. The NIS was plotted against the sample peri­

od as in the graphs presented here. 

Astrom examines a similar topic using an exponential fi~ting method. 

Since quantization was not in effect, the bounds were not noticeable in 

his graphs, other than the Nyquist related bound. 

Summary 

This chapter has been one of definition. The definition of a com­

partmental system has been examined from the viewpoint of an uncertain 

WO rl d. 

The meaning of a system and the states associated with the system 

has been examined in hopes of relating observation with mathematics. 

The result is a compromise without the preciseness typical of modern 

deterministic system theory. But, the uncertainty could be approached 

;:is being a stochastic property with resultant moments and probability 

theory. 

The motivation for such definitions has been the connection of com­

partment models with the identification of compartmental systems. There­

fore, the identification properties have been stressed heavily. In par­

ticular, the existence of sample period bounds from the quantization 
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effects plus behavior bounds was examined. Spectacularly enough, it was 

found that upper and lower bounds on the sample period exist. The ap­

proach of identifying the bounds from deterministic theory was not satis­

factory, though it did suggest a meaningful argument .for their location. 

The following chapters will examine the compartment models with sto­

chastic properties defined in this chapter. In particular, stochastic 

bounds on the moments will be related to sample period bounds in an 

attempt at a more satisfactory examJnation of the sample bounds' iden­

tity. 



CHAPTER IV 

A KRONECKER ALGEBRA WITH APPLICATIONS 

Introduction 

The extension of the structural properties of compartment models re­

lies chiefly on a matrix-to-vector transformation. This transformation 

is simply the result of rewriting the matrix equations into vector equa­

tions. Mathematically, this is represented by a Kronecker algebra. 

The key structure of a Kronecker algebr~ is the Kronecker product. 

All of the identities involved in the algebra are derived from the pro­

duct and its properties. Bear in mind that the Kronecker algebra is so 

termed to embrace a set of matrix equation identities. No connection 

with a mathematically defined "algebra" is intended. 

Several interesting Kronecker identities already exist or are easy 

extensions of the known identities. Since they are crucial to this study, 

they are listed in the Appendix. This is not an exhaustive compilation, 

but rather a collection which has some remote connection to the general 

area of compartmental analysis. 

There is some need for a set of definitions for the Kronecker iden­

tities. Particularly, the Kronecker sum is in need of a set form. 

This chapter will consist of an examination of the basic Kronecker 

structures, and then apply these structur~s to certain applications which 

are more general than compartment models. The principle of invariant im­

bedding can then be applied. These applications include the Kronecker 

44 
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form for the general linear matrix differential equation, and an exten-

sion of the stochastic matrix theory first proposed by Bellman (1960). 

In particular, the Kronecker series will be established to simplify the 

decomposition of multiple unlt Markov matrices. 

The Kronecker Structure 

There are mainly two Kronecker structures which are important to 

this study. They are the Kronecker product and the Kronecker sum. A 

Kronecker product is defined to be 

A® B = [a. . B] 
IJ 

( 4. 1) 

where A is a nxn matrix and B is a mxm matrix, and the Kronecker product 

is a nmxnm matrix. For clarity, the product' for two 2x2 matrices would 

be expressed by 

a 11 bl 1 a 11 bl2 a12 b 11 al2 bl2 

a 11 b21 a 11 b22 al2 b21 a12 b22 
A@B = 

a21 b 11 a21 b12 a22 b 11 a22 bl2 

a2l b21 a21 b22 a22 b21 a22 b22 

A distinct pattern is visible in the resultant matrix. Any row or 

column builds in a set positional pattern. If the elements of A and B 

are assigned modulo values, a numeric code is visible from the first row 

or column. 

The Kronecker sum is defined by 

A EB 8 1 = A@I +I @B m n (4.2) 

where A is again an nxn matrix, Bis a mxm matrix, and I. represents a 
J 
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jth-order identity matrix. An example of a Kronecker sum for 2x2 ma-

trices would be 

all +Bll b12 al2 0 

b21 all +b22 0 a12 
A~B' = 

a21 0 a22 + b 11 b12 

0 a21 b21 a22 + b22 

Again, if the elements of the Kronecker sum were assigned modulo 

values, a numeric code would be apparent. This code will be useful in 

the study of Markov equations. 

Once the structures are defined, it is simple to derive many of the 

identities shown in the Appendix. From these identities, many important 

relations with familiar matrix equations can be derived. 

The General Linear Matrix Equation 

The vector matrix equation 

~ ( t ) = A ( t ) x( t ) (4.3) 

where x(t) is an vector, A is a possibly time varying nxn matrix, and 

. ~(t) is the time rate of change of x(t); has found great use in modern 

engineering systems science. In general, Equation (4.3) may be consider-

ed to be a variation of the linear matrix equation illustrated in 

Brockett (1970) by 

X(t) = A(t) X(t) + X(t) B(t) (4.4) 

. 
where X, A, and Bare now time-varying nxn matrices, and X is the time 

rate of change of matrix X. 

The Kronecker product and sum are useful in analyzing Equation (4.4). 
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But, first a structural tool is necessary for reforming the matrices in-

to vectors. A stacking operator is defined as a matrix-to-vector trans-

formation which rewrites the elements of a matrix X into a vector x. A 

row stacking operator would form a column vector x from the n rows of X 

concatenated in descending order •. The notation for the row stacking 

operator would be x , and the result for a 2x2 matrix would be 
r 

(4.5) 

Similarly, a column stack would be columns concatenated into a column 

vector. 

(4. 6) 

With these operators, Bellman (1960) has illustrated, the Kronecker 

form of the matrix equation 

A X + X B = C (4. 7) 

is 

(AE!)B') x = c (4.8) 
r r 

Barnett (1973) has carried the work one step farther. He has shown 

that the time invariant form for Equation (4.4) can be represented by 

~ (t) = (AEl)B') x (t) (4.9) 
r r 

Equation (4.9) is another notation for Equation (4.3). The solution of 

the homogeneous Equation (4.9) is 

x ( t) = exp ( (A E9 B 1 ) t) x ( 0) 
r r 

(4. 10) 

where x (0) is the initial condition vector for x (t), with 
r r 

X(t) = exp(At) X(O) exp(Bt)' (4.11) 



48 

Theorem 4. 1 

The work of Bellman and Barnett can be viewed as special cases of 

the Kronecker form of Equation (4.4) given by 

x. ( t) = (A ( t) EB BI ( t)) x ( t) 
r r 

(4. 12) 

Theorem 4.2 

The state transition matrix of Equation (4.12) is the Kronecker pro-

duct of the state transition matrices of the subsystems corresponding to 

matrices A and B. · That is, 

(4.13) 

where 

x (t) = '(t) x (0) r r 
(4. 14) 

and 

• 
~A= A(t) rpA (4. 15) 

(4. 16) 

Proof 

Differentiating Equation (4. 13) gives 

From Equation~ (4.15) and (4.16) 

Since 



Finally, 

(A ® B) ( C ® D) = (AC) ® ( B D.) 

. 
'¥ = (A$A)@(I $B) +(I $A)@(B $B) 

. 

= (A@1)($A@$B) + (l@B)($A@$B) 

= (A® I + I @ B) ($A@ $6) 

'!' = (A Ea BI ) '¥ 
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which is satisfied for the state transition matrix of Equation (4.12). 

Furthermore, 

'l'(t , t ) = I 
0 0 

(4. 17) 

from observation of the structure of the Kronecker product and the defin-

ition of WA and ~ 8 • Therefore, the theorem is proven. It is again left 

to the Appendix to establish the equality between Equation (4. 13) and 

X(t) = ~A(t) X(O) ~B(t) (4. 18) 

Once the solution of the homogeneous form {Equation (4.4)) has been 

found, it is easy to establish the.full linear matrix differential equa-

ti on 

X(t) = A(t) X(t) + X(t) B(t) + D(t) C(t) E' (t) (4.19) 

with Kronecker form 

~ (t) = (A(t) EBB' (t)) x (t) + (D(t) 0 E(t)) c (t) 
r r r 

(4. 20) 

The solution of Equation (4. 19) 

X(t) = ~A(t) X(O) ~B(t) 

(4.21) 
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has its alternate form 

xr(t) = (<IiA(t)®<Ii 8(t)) xr(O) 

+ (<Ii A ( t ,-r ) ® q, B ( t ,-r ) ) ( D ( T ) @ E ( T ) ) c r ( T ) d-r (4.22) 

where D, E, and C are compatible matrices. 

The Lyapunov Derivative 

An important variation of Equation (4.4) is the Lyapunov derivative 

given by 

P(t) =A P(t) + P(t) A'+ G(t) Q(t) G'(t) (4.23) 

where Pis a nxn symmetric matrix. Clearly, the row or column stack 

operators can be used, and the solution of Equation (4.23) is of the 

form of Equation (4.21) or Equation (4.22). The Lyapunov derivative 

will be useful in propagating the second moment for compartment models. 

Notice should be made of the eigenvalues of the Kronecker product 

and sum. The eigenvalues of the Kronecker product of two n-dimension 

matrices A and B are the n-squared values formed by the combinations of 

the products of the eigenvalues of A with the eigenvalues of B. The 

eigenvalues of the Kronecker sum are similarly the combinations of the 

sums of the eigenvalues of A with the eigenvalues of B. Clearly, the 

eigenvalues of the Lyapunov equation are repetitive. 

The Markov Process 

The matrix structure of a Kronecker sum can be viewed as being 

analogous to the transition maps of sequential theory. One application 

of this characteristic is in the decomposition of multiple unit Markov 

processes. 
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The states defined by Markov models are finite probabilities associ-

ated with specific process conditions. Examples of such states would be 

the probabilities of certain numbers of population members in a set area, 

or the probabilities of certain configurations of health states in a pop-

ulation. 

The Markov equations describe the transitions from one state to an-

other. Though the canonical notation differs, the equations are a form 

of the compartment model. The classical Markov process notation would 

be 

p(t) = A' (t) p(t) (4.24) 

where p is then vector of probabilities associated with the finite n 

conditions of the process, a .. (t) is the time-varying transition rate 
I J ' 

from state i to state j. Since the states aire finite probabilities, the 

strict diagonal negative equality holds: 

a .. ( t) 
I I 

n =-r a .. (t) 
j=l I J 

The solution of Equation (4.24) is well known by 

p(t) = lf(t) p(O) 

(4.25) 

(4.26) 

where 'i'(t) is the state transition matrix associated with A1 (t), and 

p(O) is the initial condition vector of p(t). 

Commonly, Markov processes are applied to describing the probabil-

ity relations of a group of population members. Given that each member 

j may haven. health conditions and that there are m members in the pop-
. J 

ulation, there are L states in the full Markov model, and 

m 
L = TI 

j=l 
n. 

J 
(4. 2 7) 
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Obviously 

m-1 
L = n II n. 

m j=l J 
(4.28) 

or 

Lm = L/n m 

m-1 
= II 

j=l 
n. (4.29) 

J 

Neglecting epidemics or catastrophes, the members of a population 

can be considered to be mutually independent. The probability of a 

simultaneous change in health among the population can be assumed to be 

zero. For this study, the states are assumed to be communicating. The 

effects of an irreversible change such as death are assumed to be an ex-

tens1on beyond this work. 

The state assignments are arbitrary. For convenience, they can be 

set into an order of decreasing health for the entire population. Cer-

tain states may be considered as equivalent and merged, but for this 

study the full unmerged model is desired. The merged form could always 

be found from permutations of the results. 

A specific state assignment is achieved if each condition of member 

j is assigned a modulo n. value with the order of decreasing value with 
J 

decreasing health. A numeric code is then formed if each unit is assign-

ed a positional value building to the right in the state designation. 

Though the position of a particular menber is arbitrary, the for·m of the 

Markov equation becomes very clear. 

Theorem 4.3 

Given a m unit Markov process with communicating states, and that 



unit m of the process is independent of the rest of the process with a 

Markov process relation of its n states 
m 

p(t) = F' (t) p(t) 
m 

the ful 1 process coefficient matrix can be represented by 
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(4.30) 

where Al_m(t) is the coefficient matrix of the Markov relation for the 

system without unit m. 

Proof 

Let the Markov relation be ordered as proposed above. Then matrix 

AL (t) can be separated into two matrices 

Al_(t) = B(t) + C(t) 

where B is the matrix of coefficients corresponding to unit n's changes 

in status. Matrix C is the matrfx of coefficients corresponding to the 

rest of the process. 

Matrix B is of the form of n-squared partitions of size (Lm)x(Lm). 

Each partition is diagonal due to the state order and the restriction on 

the possible status changes for the system. Each off-diagonal partition 

is of the form 

where f ki is the transition rate corresponding to a particular change in 

the health of unit m from state i to state k. 

Due to the diagonal equality, the diagonal partitions are 

B •• = f.. IL 
11 11 m 
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Therefore, matrix B corresponding to the addition of unit m to the 

population is 

B(t) = F' (t) ®IL m m 

by definition of the Kronecker product. 

Matrix C is block diagonal. Each (Lm)x(Lm) partition of C corre-

sponds to the system without unit m. 

are zero given the state ordering. 

Obviously the off-diagonal blocks 

Then diagonal blocks are equal and 
m 

correspond to changes in any of the other members in the population while 

keeping unit mat a constant health. Therefore, 

c ( t) I @A' 
n 

m 

by definition of the Kronecker product. Fin~lly, the theorem is proven 

by definition of the Kronecker sum. 

Corollary 4. 3a 

G.iven am unit Markov process with communicating states, and that 

every unit j of the process is mutually independent, the process coeffi-

cient matrix can be represented by 

m 
I (9F~(t) 

j=l J 
(4.31) 

where 

Proof 

The corollary fol lows naturally from continuing the theorem through 

the separation of each member. 
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Theorem 4.4 

Given the hypothesis of Theorem 4.3, the state transition matrix of 

the Markov chain corresponding to a n-unit Markov process can be repre-

sent.ed by 

'l'L (t) = <Pn (t) ® '!'Lm(t) (4.32) 
m 

Proof 

Given the Kronecker sum form of Equation (4.29), Equation (4.32) fol-

lows directly from the so-called "trivial" result of Theorem 4.2. The 

identity matrices must be kept consistent with the operation rank, but 

otherwise the proof is identical to the proof of Theorem 4.2. 

Corollary 4.4a 

Given the hypothesis of Corollary 4.Ja, the Markov chain state tran-

ition matrix can be represented by 

where 

Proof 

m 
'!'L (t) = II @qi.(t) 

i=l I 

m 

II ® <P • = <Pm ® <P m-1 ® · · · <P 2 ® qi l 
i=l I 

(4.3J) 

Again the corollary is just an extension of the main theorem re-

sults. 

An example has been included to clarify the arguments presented for 

the Markov decomposition. For simplicity, there are three binary state 



units in the population. They are exponentially distributed with con-

stant hazard models 

p. { t) 
J 

= [-A.j µj] p.{t) 
A.. -µ. J . 

J J 

where a typical transition diagram would be represented in Figure 12. 

The state assignments are given in Table 111, and the subsequent 
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coefficient matrix is represented by Figure 13. The decomposition struc-

tures of matrices B and C are clear from Figures 14 and 15. 

The i,j entry of the state transition matrix for the entire process 

would be given by {Henry and Weidner, 1980) 

'JI {i ,j) 
n 

where n = 3 and 

where 

n 
II qik{g(i,k), g{j,k)) 

k=l 

and the indices are determined from 

g{i,k) = [Li/2k-lJ] mod 2 + l 

( 4. 34) 

where la J is the greatest integer strictly less than a, and b mod 2 is 

the remainder of b, congruence modulo 2. 

It should be noted that the full Markov matrices are never needed in 

full force. The storage savings on large problems can be immense. Table 
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TABLE 11 I 

STATE ASSIGNMENTS FOR A TRI-UNIT SYSTEM 

State Unit Binary Weight Notation 

Pi 2 w1 w2 w3 
l up up up l I 

2 down up up 0 l 

3 up down up 0 . l 

4 down down up 0 0 

5 up up down 0 

6 down up down 0 0 

7 up down down 0 0 

8 down down down 0 0 0 

TABLE IV 

STORAGE SAVINGS OF TRI-UNIT DECOMPOSITION 

Number System Memory Utilization 
of Units Order Kronecker Eigenvalue 

2 6 10 

2 4 12 28 

3 8 22 88 

4 16 40 304 

5 32 711 I , 120 

6 64 140 4,288 

7 128 270 16,768 

8 256 528 66,304 

9 512 I ,042 263,680 

10 l ,024 2,068 1,051,648 



-(>.l +>..2+>..3) 

).1 

).2 

0 

>-3 

0 

0 

0 

µ1 

µ 

Figure 12. Transition Diagram for a 
Binary State Unit 

µ2 0 P3 0 0 

-(µl+).2+>..3) 0 µ2 0 P3 0 

0 -(>..1+µ2+).3) µl 0 0 113 

).2 ).l -(µ1+µ2+A3} 0 0 0 

0 0 0 -(},1+>-2+v3} µl µ2 

>-3 0 0 ).1 -(ii1+)./µ3) 0 

0 1..3 0 ).2 0 -(>.1+µ2+µ3) 

0 0 >-3 0 ).2 ).l 

Figure 13. Coefficient Matrix for a Tri -Unit System 
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0 

0 

0 

P3 

0 

µ2 

µ1 

- ( ll1 +µ2 +µ3) 
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->.3 0 0 0 113 0 0 0 

0 -}.3 0 0 0 ll3 0 0 

0 0 -).3 0 0 0 ll3 0 

0 0 0 -).3 0 0 0 ll3 

).3 0 0 0 -µ3 0 0 0 

0 ).3 0 0 0 -113 0 0 

0 0 ;i.3 0 0 0 -113 0 

0 0 0 ).3 0 0 0 -113 

Figure 14. Decomposition Structure B for a Tri-Unit System 

., 

-(;i.l+;i.2) µl µ2 0 0 0 0 0 

Al -(µ1+>-2) 0 µ2 0 0 0 0 

;i.2 0 -(Al+µ2) µl 0 0 0 0 

0 "'2 "'1 -(µ +µ ) 
1 2 

0 0 0 0 

0 0 0 0 -(>.l +>.2) µl µ2 0 

0 0 0 0 >.l -(µl+;i.2) 0 µ2 

0 0 0 0 
). 

0 -(>.1+µ2) 2 µl 

0 0 0 0 0 ).2 Al -(µ1+µ2) 

Figure 15. Decomposition Structure c for a Tri-Unit System 
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IV contains some of the storage savings of the proposed decomposition. 

The entire matrix can be found from n2n multiplications. The full 

matrix may be formed by less sophisticated techniques, but it is noted 

that often the full matr1x is often not necessary for many applications. 

This technique allows a method for escaping forming the full state tran­

s it ion mat r i x. 

Summary 

This chapter has dealt chiefly with the Kronecker forms and the 

applications of a Kronecker algebra. An efficient form for the solution 

of the general linear differential matrix equation has been established. 

As a result of this solution, the time-varying-coefficient multiple-unit 

Markov process can be decomposed, and an extremely efficient algorithm 

proposed for solving the Markov differential equation. 

Clearly, the Kronecker algebra is of great value. In addition, the 

Kronecker algebra may be used in evaluating variance equations for com­

partment models. That will be covered in the next chapter. 



CHAPTER V 

STRUCTURAL PROPERTIES OF THE VARIANCE 

In trbduct ion 

Previous chapters have been pieces from an overall puzzle concerning 

the stochastic properties of compartment models. Chapter II has estab­

lished a wealth of matrix structural properties for compartment models, 

while Chapter I I I has examined the relationship between the deterministic 

theory and the stochastic moments. Finally, Chapter IV proposed a new 

tool for examining the m6ment equations, namely a Kronecker algebra. This 

chapter will combine the three chapters into a set of matrix structural 

properties for the variance of the states of compartment models. 

It will be shown that the deterministic equation for the variance 

obeys the structural features of the compartment model. Hence, the fea­

tures of the spectral range--irreducibil ity, monotonic behavior, etc.-­

can be transferred. The concepts of open and closed system structures 

do not preserve any meaning and are ignored. 

First, the basic structure of the variance differential equation is 

examined. This is followed by a set of theorems for the structural prop­

erties of the variance coefficient matrix. Finally, partitions of the 

covariance equations are examined for an argument which establishes the 

behavioral properties of the variance for compartmental systems. 
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The Variance Differential Equation 

Consider a system composed of n compartments where the flows out of 

the compartments are related by the stochastic relation. 

x = A x + B w ( 5. 1 ) 

The terms are defined by 

E{w(t)} = 0 

E{w(t) w'(-r)} Qod(t-T) 

E{x(t)} = n(t) 

Cov{ x ( t) x' ( t)} = p ( t) 

The mean n is related dynam i ca 11 y by 

n = A n (5. 2) 

The variance P is related by 

. 
P = A P + P A' + B QB' (5. 3) 

An example for a second order system is illustrated by Figure 16. 

Matrix A is nxn with strictly real values. The diagonal terms are 

non-positive, and the off-diagonal terms are non-negative and related by 

I a .. 1 
I I 

n 

;::: I' a .. 
j JI 

Therefore, the column sums are non-positive. This is the negative 

Minkowski matrix. The eigenvalues of A also have non-positive real 

(5.4) 

parts. Though it should be noted that for the rest of this study, the 

eigenvalues are assumed to be real. 

Assume that the system modeled by Equation (5. 1) is strongly con-

nected, hence irreducible (Thron, 1972). Since the strongly connected 



[~II ~12] =ti! a12 [P11 P12] +[pl! P12 a 11 a21] 
P21 P22 a21 a22 P21 P22 P21 Pzz al2 a22 

b 11 b\2] [qi! q12l lb11 b21 
+I 

b21 b22 q21 q22 I I bl 2 b22 

Figure 16. Covariance Equation for a Second-Order System 

O' 
w 
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portions of a system can be separated from the rest of a not-strongly 

connected system, this assumption is acceptable. Second, assume the sys-

tern is completely open. This implies that the inequalities of Equation 

(5.4) are all strlctly greater than in sense. Therefore, the column sums 

are negative. 

By convention a matrix A is defined as negative(positive), if every 

element a is negative(positive). Similarly, a matrix A is non-positive 

(non-negative), if every element is less than or equal to zero (greater 

than or equal to zero). Alternatively, a symmetric matrix is positive 

definite(negative definite), if the quadratic form x'Ax is positive(nega-

tive) for all values of x except x = 0. A symmetric matrix A is positive 

semi-definite(negative semi-definite), if the quadratic form is positive 

(negative) or zero for all x .P. 0. It is important to note that Pis posi-

tive semi-definite, but not necessarily non-negative (Searle, 1971). 

Equation (5,3) can be rewritten as a set of scalar equations 

n n 
PkJ. = I (a .. Pki + aki p .. ) + l 

i=l JI IJ . Q, 
(5. 5) 

where the diagonal terms are 

(5.6) 

or as a vector matrix equation 

. 
p =Fp +Gq 

r r r 
(5. 7) 

where F (·AffiA),.G = (B@B), pr is the column vector composed of the 

rows of P, q is the similar row stack of Q, EB is the Kronecker sum oper­
r 

ator, and 0 is the Kronecker product operator. Matrices F and Gare of 

2 2 2 
dimension n xn , and p and q are n vectors.· Second order examples of 

r r 

Equations (5.5) and (5.7) are shown in Figures 17and18. 
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p 11 = allpll + allpll + al2pl2 + al2p21 + (BQB')ll 

P12 = a2lp11 + allp12 + a22p12 + a12p22 + (BQB')12 

P21 = a 1 l P21 + a2lpll + a12p22 + a22p21 + (BQB I) 21 

P22 = a21p21 + a2lp12 + a22P22 + a22p22 + (BQB I) 22 

Figure 1 7. Second-Order Example of Equation (5.5) 

P11 a 11+a11 a12 a12 0 p 11 
. 

a22+a 11 0 P12 a21 a12 P12 
= . 

0 P21 a21 al l+a22 a12 P21 

P22 0 a21 a21 a22+a22 P22 

bllbll bllbl2 b 12b 11 b12b12 q 1 l 

b 11 b21 bllb12 bl2b21 b12b22 0 

+ 
b2 l b 1 l b21b12 b22bl 1 b22b12 0 

b2lb21 b21b22 b22b21 b22b22 q22 

Figure 18. Second-Order Example of Equation (5.7) 
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The first-order vector Equation (5.6) is a straightforward equation 

which could be though to model a hypothetical system. The 11 pseudo-system11 

has structural properties implied by F and .G in much the same manner as A 

implies the properties of the physical compartmental system'. 

Matrix F Properties 

Theorem 5.1 

Given vector Equation (5.6), where matrix A is diagonally dominant 

as in Equation (5.4) and is a negative Minkowski matrix, Matrix F is a 

diagonally dominant negative Minkowski matrix. 

Proof 

The terms of F can be expressed by 

(5.8) 

where j = (r - 1) mod n + 1, k = (c - 1) mod n + 1, h = l r/n J + 1, i = lc/nJ + 1, 

and la J is the greatest integer strictly less than a, n is the dimension 

of A, 8jk is the Kronecker delta defined by 

1 ' 

0, 

j = k 

j '/: k 

and a mod b is the remainder, g, when a/b = f + g/b (all terms a, b, f, g 

a re integers). 

Therefore, the diagonal terms of Fare 

f 
rr 

since j = k, h = i. 

(5.9) 



The sum of any column 1 from matrix F is 

n 
\'I 

fH + l 
r=l 

a .. + 
JJ 

n 

t 
i=l 

n 
\'I 

a .. + ahh + l 
I J i =J 
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(5. 10) 

Therefore, matrix Fis diagonally dominant with its column sums composed 

of the n2 sums of the columns of matrix A. Hence Fis a negative Minkowski 

matrix and the proof is complete. 

It is well known (Bellman, 1960) that the eigenvalues of F(A.) are 
I 

the sums of the eigenvalues of A(µ.). That is 
J 

A. = 
I 

for a 11 j, k in A. 

Lemma 5.2 

The spectral range is now defined by 

A • = 2µ . < A. ~ A = 2µ min min - 1 max max 

where A. is a proper value of F. 
I 

Coro l 1 a ry 5. 2a 

The spectral radius p(A) is defined by p(A) 

p (F) = 2p (A) 

Corollary 5.2b 

(5.11) 

(5.12) 

= max I A. I ; therefore, 
I 

(5.13) 

Since p (A) < II A II for any matrix norm corresponding to a vector 

norm, then 

2p (A) < II F II (5.14) 
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Proof (Householder, 1964) 

Let A x = X x, x I 0, X a proper value of A, then 

llx xii= !xi llxll ~ llxll lub(A) ~ II xii llAll (5. 15) 

for ~ny consistent pairs of vector and matrix norms~ 

Corollary 5.2c 

Si nee F p = X p, p I 0, then 

Ix!= !IFPl!ll!Pll (5.16) 

for any X a proper value of F. More directly, 

for any vector norm. 

From Barnett (1973), for a square matrix A, I the identity matrix 

A ® I = P ( I ® A) P 

where P is defined by 

V = P V or V = P V 
c r r c 

where V is the column stack of matrix V and V is the row stack of ma-
c r 

trix V. Also 

p = p-1 = p• 

Definition: A square matrix is reducible if a permutation of the 

rows and columns of A permutes A into the form 
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where A11 and A22 are square matrices, and 0 is the null matrix. 

Theorem 5.2 

If A is an_ irreducible square matrix, then Fis an irreducible square 

matrix. 

Proof 

The proof is one of contradiction. Assume F is reducible, then 

MFM' = H 

where H is a lower triangular matrix, M is an arbitrary permutation ma-

tr ix. 

MFM I = M (A ® I + ' I ® A) MI 

= M(A@l)M 1 + M(l@A)M 1 

= M (A ® I ) MI + MP (A ® I ) PM I 

unless: I. MP= M, or 11. MP= N, where N(A ® l)N' is lower triangular, 

then F is not reducible. 

I. Since P ~ I, unless A is reducible, then condition I. fails. 

11. Similarly, M ~ I, Ni: I, and M '/: P. Substituting M = NP 

MFM I = NP (A ® I) PN I + N (A ® I) NI 

= N(I @A)N' + N(A@ l)N 1 

This requires 

MFM' = NFN 1 

or M = N. But P '/: I. So M ~ N, and condition I I. fails. Thus F is not 

reducible, unless A is reducible. 
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Coro 11 a ry 5. 2. 1 

If A is a reducible matrix, F is a reducible matrix. 

Proof 

Since A is reducible, there exists a permutation matrix P such that 

PAP' = G 

The Kronecker sum of G is 

H=GffiG' 

By inspection, H is of the form 

where H11 and H22 are square matrices, since G is of reduced form. Then, 

H=G@l+l©G 

= PAP I ® I + I © PAP I 

= PAP' 0 PP' + PP' 0 PAP' 

= (P 12) P) (A@ I) + (I @A)) (P@ P)' 

MFM' 

Since (P@ P) = M is a permutation matrix, F is reducible. 

Lemma 5. 3 

If A is irreducible and singular, then F is irreducible and singular. 

Proof 

Since A is irreducible and singular, it has all zero column sums 
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(Taussky, 1949). Therefore, F is irreducible and singular from Equation 

(5. 10) and Theorem 5.2. 

Corollary 5. 3a 

If A is irreducible and nonsingular~. F is irreducible and non-

singular. 

Proof 

The proof follows directly from Equation (5.10) and Taussky 1 s (1949) 

Theorem 11. 

Lemma 5. 4 

Matrix F is nonsingular, if and only if the compartment system is 

completely open, hence A is nonsirigular. 

Proof 

The proof follows directly from Equation (5. 11) and Thron 1 s (1972) 

Theorem 2. 

Definition: A matrix F composed of a function of one or more other 

mat r i ces A, B , • i s s ymme tr i c i f 

fk. n = f (a .. , b ·, . • . ) 
)(, IJ nm 

has a corresponding cross diagonal element 

fnk = f(a .. , b , ... ) 
)(, J 1 mn · 
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Lemma 5.5 

The terms of the Kronecker Sum (A® I and I ©A) are index symmet-

ric and therefore F is index symmetric. 

As a direct result of Lemma 5.5, the sum of column l in F corre-

sponds to the sum of row l in F via the indices of the elements a .. in 
JI 

the column sum are reversed to a .. in the row sum. 
I J 

Covariance Partition Equations 

and Behavioral Properties 

The variance terms along the diagonal are usually the main interest 

of a study of the second moment equation. With that purpose in mind, it 

is possible to separate the matrix variance equation into a set of scalar 

equations for the off-diagonal covariance terms and a set of scalar equa-

tions for the diagonal variance terms. 

The off-diagonal terms of Equation (5.3) may be written as 

n 

= (all + amm) Pim+ l (ami Pii + ali Pim) 
i ~Q,, m 

with no forcing term, assuming the driving term BQB 1 is diagonal. Consid-

er a vector p3 composed of the off-diagonal terms of matrix P in row­

stacked order, and a vector p1 composed of the diagonal terms of matrix P 

in row stack order. Equation (5.18) could be written as 

(5.19) 

A third-order example of Equation (5. 19) is shown in Figure 19. The dia­

gonal terms of F( 3) are by inspection 
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. 
P12 all+a22 a23 0 0 0 a13 P12 
. 

a 11+a33 0 0 0 P13 a32 a12 P13 
. 

0 0 a 11 +a22 0 Pz 1 a13 a23 P21 
. 

0 a22+a33 0 0 Pz3 a21 a31 P23 
. 

0 0 P31 a32 0 a33+al 1 a12 P31 . 
0 0 0 a33+a22 P32 a31 a21 P32 

a21 a12 0 

a31 0 a13 
P11 

a21 a12 0 
Pzz 

+ 
0 a32 a23 

P33 

a3 I 0 a13 

0 a32 a23 

Figure 19. Third-Order Example of Equation (5.19) 



f ~~) = 
1 1 au, + amm (5.20) 

Matrix F( 3) like Fis index symmetric. Thus the sum of column k is 

n 
f (3) + ,. 

kk l 
j=l 

a. 1m + a mm + 
n 

l 
i ;'t, m 

a. 
I 

(5.21) 

Hence, F(3) is diagonally dominant. Furthermore, if a£m 7' 0 or amt 7' 0, 

j,2-n 
I f < 3) I > I ' fJ~ 3k) 

kk . l j= 

regardless of whether A has zero column sums or not. 

(5. 22) 

Since pki = pik' the set of equations in Equation (5.19) is composed 

of two equivalent sets of equations. 2 Let p2 be the (n -n)/2 vector com-

posed of the terms of p3 with the equivalent pairs replaced as single 

terms. Now, Equation (5.19) can be replaced by 

(5.23) 

where F(2) and F(l) are (n 2 - n)/2 x (n 2 - n)/2. Matrix F(2) is again in­

dex symmetric. The column sums of F(Z) corresponding to element pik are 

exactly the column sums of F( 3) corresponding to term pik or pki" Hence 

F( 2) is also diagonally dominant, and has the structural form of A or F. 

A third-order example of Equation (5.23) is shown in Figure 20. 

The diagonal terms of P, the variances, can be expressed by 

n n 
= Zakk Pkk + I' ak.1 (pk.1 + p.,k) + l bk. bk. q .. 

i=J i=l I I I I 
(5.24) 

or 

(5.25) 
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P12 all+a22 a23 a13 P12 

P13 = a32 al 1+a33 al2 P13 

P23 a31 a21 a22+a33 P23 

a21 a12 0 P11 

+ a3 l 0 al3 P22 

0 a32 a23 P33 

Figure 20. Third-Order Example 
of Equation (5.23) 
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Matrix F(5) is diagonal with 

(5.26) 

A third-order example of Equation (5.24) is illustrated in Figure 21. 

By definition, the terms of p1 are non-negative. By inspection, ma­

trices F(l) and F(6) are non-negative. Unlike the general compartmental 

state, the covariance of the states is not defined as being non-negative. 

However, if considering the donor-controlled (washout) compartment model, 

all non-negative covariance terms may be practical. 

Mathematically, the covariance (p 1 and p2) can be considered as non­

negative if the initial conditions on Pare non-negative and the driving 

terms are all non-negative (Thran, 1972). Specifically, this could be 

expressed as an extension of Thron 1 s Theorem 7, 

Lemma 5. 6 

For any matrix F of the form of Equation (5. 7), the solution of 

dp/dt = F p is non-negative if the initial values are non-negative. 

Proof 

Since the driving terms in Equations (5.23) and (5.25) are non-nega-

tive, then p1 and p2 are non-negative if p2 (o) is non-negative. 

The driving term in Equation (5.3) may be considered to be diagonal 

due to the practical limitations of the experiments. The off-diagonal 

covariance terms may be considered as non-negative if the experiment is 

begun from the null steady state where the states are practically indepen-

dent. Lemma 5.6 has interesting applications on the behavior of the vari-

ance terms. 
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of Equation (5.24) 
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Coro 11 a ry 5 . 6a 

In any multicompartment system with a steady state solution, if the 

initial value is a steady state, the covariance of each compartment state 

changes from its initial to its final state without overshoot, if in every 

compartment the initial covariance is not less than the final steady state 

quantity or if in every compartment it is not greater. 

Coro 11 ary 5. 6b 

When a system initially in steady state with input covariance Q re­

sponds to a non-negative step function covariance 6Q, which leads to a 

new steady state, the transitions of the covariance to the final steady 

state are monotonic in all compartments. 

Summary 

This chapter has brought together the concepts of the deterministic 

moments with the structural properties of the compartment model. An ex­

tension of the structural properties has resulted in properties for the 

variance of the compartmental states. 

The general equations for the variance have been examined at great 

detail. Resulting from a Kronecker algebra, the properties of the matrix 

A could be transferred to matrix F. He.nce, the properties of the mean 

have influence on the properties of the variance. Finally, a few of the 

behavioral properties were examined for specifically the variance and the 

off-diagonal covariance terms. 

The next chapter will utilize these properties in proposing a new 

identification experiment, and possibly a meaningful extension of the 

sampling theory. 



CHAPTER VI 

VARIANCE BOUNDS AND PROPOSED FUTURE RESEARCH 

Introduction 

The previous chapters have proposed various structural properties 

for the statistical variance of the compartment model states. The vari­

ance has been shown to behave similarly to the mean in monotonic respon­

siveness, spectral range, etc. This chapter will be devoted to the 

application of the structural properties in a particular area, namely 

variance bounds for identification. 

A new basic experiment will be proposed with the concept of new dyna­

mic bounds on the mean estimate resulting from the bounds on the variance. 

As is typical, the assumption of Gaussianly-distributed random variables 

will be carried throughout the discussion. The result of the examination 

will be guidelines for future endeavors in compartment model identifica­

tions and sampling. 

The Revised Basic Experiment 

Basically, the identification experiment is the same as in Gowdy 

(1978). However, modification must be performed to hopefully gain suffi­

cient information to estimate the moment parameters. It is suggested 

that the experiment be of the form of Figure 22. Initially, the system 

states should be brought to a steady state region. This region should 

be of sufficient length to establish reasonable estimates on the mean and 

79 
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variance of the states. Standard time series techniques can be utilized 

for this purpose. These estimates are the initial condition estimates 

for the transition region. 

Similarly, a final steady state region is sampled to establish esti­

mates of the final moments for the transition region. Supefposition c~n 

then be applied to obtain the relationships of Chapter V. 

Note the experiment is still a negative step response to avoid the 

precursor problem. Also, Lemma 5.6 and subsequent corollaries will apply 

for the transition region with a step function input. 

From pilot experiments or similar a priori information, a sampling 

theory can be developed utilizing bounds on the sample mean. An enlarged 

view of the transition region with sampling could be represented by Fig­

ure 23. 

Traditional techniques would attempt to remove the trend and analyze 

the·data with assumptions of ergodicity and hence equal variance samples. 

However, the trend in the data in the desired information and cannot be 

easily estimated or neglected. 

Referring to Figure 23, if the confidence intervals on the samples 

overlap, the samples are not statistically independent. Therefore, the 

sample period would be too small. On the other hand, if using a fixed 

interval regression, the samples could be taken too far apart, and again 

statistical significance will be lost. 

For these reasons, the variances will be approximated by bounds at 

least in trace from the information in Chapter V and the eigenvalue spec­

trum suggested by Gershgorin (1931). Confidence intervals may result 

from such an analysis. 
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Variance Bounds 

It is evident that the variance is known only through estimates. 

Therefore, the variance is open to the same confidence interval argument 

as the mean. However, some use is found in utilizing the practical as-

pects of the experiment, and therefore analyzing the confidence intervals 

using the variance estimate as the actual variance. Future research may 

prove useful in determining the variance of the variance estimates. 

The s.tate transition matrix of Equation (5,7) is given by 

ip(t) = L ::(t) L-J ( 6. 1 ) 

where 

::(t) = exp(At) (6.2) 

· . 'bl 2 2 . f h ' f F . d' 1 L 1s an 1nvert1 e n xn matrix o t e eigenvectors o , A 1s a 1agona 

2 2 n xn matrix of the eigenvalues such that 

L-l FL= A ( 6. 3) 

The eigenvalues of Fare defined to be the roots of 

! r A - Fj = 0 (6.4) 

As was ·noted in Chapter V, the eigenvalues are related to the eigenvalues 

of A and hence to the compartment turnovers. Th is results from the Gersh:-

gorin spectrum. 

It is known that for a nxn complex matrix A, the spectrum is contain-

ed within the union of then circles in the complex plane described by 

n 
I>- -a .. I < I' la .. ! 

JJ i=I IJ 
j=J, ... ,n (6. 5) 

This is the circles theorem accredited to Gershgorin (1931). The 
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circles theorem is interpreted to mean the eigenvalues of a matrix A lie 

within the circles of the spectrum. 

As a consequence of the Gershgorin theorem and the eigenvalue rela-

tion, Theorem 6.1 can be stated. 

Theorem 6. 1 

For a complex matrix F, formed by F = AE!)A', the spectrum is con-

2 tained in the union of then circles in the complex plane 

I I. - a .. 
I I 

(6.6) 

Proof 

Theorem 6. 1 is actually a restatement of Gershgorin's theorem with 

substitution for the terms in F formed by the Kronecker sum. 

The circles aspect grows from a substitution of 

n n 

I' I a .. 1 + I' I akh I 
i=l JI k=l 

(6. 7) 

Then Equation (6.6) is a closed circular region in the /.-plane of radius 

rih and center at aii + ahh. 

The utility of the Gershgorin spectrum is realized by a theorem by 

Frobenius (1912). 

Theorem 6.2 

An irreducible non-negative matrix A always has a positive charac-

teristic number r, which is a simple root of the characteristic equation. 

The moduli of all the other characteristic numbers are at least r. A 
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characteristic vector z with positive coordinates corresponds to the 11 dom-

inant 11 characteristic number r. 

Gowdy (1978) has illustrated how to apply this theorem to matrices 

of compartmental systems. In short, if a diagonal matrix zl, where z = 

max (a .. ), is added to A, then Frobenius' theorem can be applied. There-
• I I 
I 

fore, there is at least one real, simple eigenvalue which is dominant. 

Correspondingly, due to Relation (5. 11), there is at least one real, sim-

ple least-negative eigenvalue of F which is dominant. It is 

A = 2µ (6. 8) 
max max 

If the system is completely open, none of the Gershgorin circles for 

matrix A touch the imaginary !.-axis. That is, 

n 

la .. ! > I' la .. ! = r. 
JJ i=l IJ J 

j=l, ... ,n (6.9) 

Similarly, the Gershgorin circles for matrix F do not touch the imag-

inary axis if the system is completely open. 

n n 

I a .. + ahh I > I' I a .. 1 + I' I akh I = 
J J . i = 1 I J k= 1 

(6. 10) 

The circle spectrum is represented in much the same manner as Figure 3. 

Since all of the eigenvalues of Fare negative real numbers, due to 

the eigenvalues of A being negative real numbers, they can be ordered and 

bounded as 

-2 a < "1 < "2 < • < A 2 < -2 o 
n 

where the eigenvalue bounds are defined in Gowdy (1978) as 

o = max 
j 

(r. + ja .. !) 
J JJ 

(6.11) 

(6.12) 
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and 

o = min 
j 

(ja .. ! - r. :f. 0) 
JJ J 

(6.13) 

These bounds can be used to establish the range of behavior of the covari-

ance trajectories. 

Theorem 6.3 

The covariance can be bounded by 

exp(-2a(t)) tr(P(O)) s tr(P(t)) s exp(-2 (t)) (tr(P(O)) 

+ IP2(0)j) 

if p2 (0) > 0. 

Proof 

Consider Equation (5.24) with the effect of the input removed. 

n 

~kk = 2 akk pkk + I' aki (pki + pik) 
i = 1 

(6. 14) 

where akk < O; aki > 0, all k :f. i; pki > 0. For each k and tin [O,t), 

(6.15) 

On the interval [O,t) for each k, 

(6. 16) 

and 

( 6. 1 7) 

The trace of P (sum of the diagonal variance terms) 



n 
tr(P(t)) = l pkk(t) ~ exp(+2a 11 (t)) P11 (0) 

k=l 

+ .•. + exp(+2a (t)) p (0) 
nn nn 

By definition, pkk(t) > O; therefore, 

t r ( p ( t ) ) 2: exp ( - 2a ( t ) ) t r ( P (0) ) 
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(6.18) 

(6. 19) 

This gives a lower bound on the terms in the variance of the compartmental 

states. 

An upper bound on the variance can be estimated, but is not as close 

as the lower bound. Consider the sum of Equations (5.18) form= l, ... , 

n; 1 = m, ••. , n. This is IP 11 + IP2 1, where 

n 

I YI = I 
i = 1 

Iv -I I 

n n 

= l l ((ann +a ) Porn 
m=l Jl=l lfvlfv mm ifv 

n 

+ l (a · Po •1 + an· p. ) 
·..1. ml ifv !fvl 1m 
lr!l,m 

Equation (6.21) is equivalent to 

where 

-a . 
01 

= a .. + 
I I 

n n 

l 
m=l 

I 
=m 

((a 0 +a )p 0 ) 

Oitv om lfvm 

n 
+ l (a .. +a .) p .. 

i=l II 01 II 

n 

l 
j=l 

a .. 
JI 

(6.20) 

(6.21) 

(6.22) 
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Then 

(6.23) 

The maximum observed exogenous turnover can be estimated a priori 

and gives the bound o. Therefore, the upper bound is 

( 6. 24) 

Proceeding as in the derivation of Equation (6. 19), the upper bound on 

the covariance is 

(6.25) 

Note that IP 11 = tr(P). Therefore, 

tr(p(t)) + IP2 (t)I ~ exp(-2o (t)) (tr(P(O) + IP2 (o)!) (6.26) 

Since IP21 ? 0, 

tr(P(t)) ~ exp{-2o (t)) (tr(P(O)) + IP2 (o)!) (6. 27) 

The variance of the compartmental states are then bounded by 

exp(-2a (t) tr(P(O)) ~ tr(P(t)) ~ exp(-2 o (t)) (tr(P(O)) 

+ IP2 {o)i) (6.28) 

This completes the proof. 

If the eigenvalue bounds (a and o) are known a priori, then these 

variance bounds are meaningful due to the presence of the estimates of 

P(O) at the beginning of the transient region in the basic experiment. 

Fortunately, many compartmental analysts have rough estimates for a and o 

due to the relationship with the exogenous turnovers of the system. The 

minimal eigenvalue bound (a) can be estimated by twice the inverse of the 

maximum turnover rate. The maximum eigenvalue bound (o) can simply be 
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the minimal Gershgorin range of the inverse of the minimal turnover rate. 

Future Research Efforts 

G1ven the bounds on the variance from the previous section, it is 

possible to construct confjdence intervals on the transient region mean 

bounds proposed by Gowdy (1978). The combination of the two would yield 

a new basis for an identification sampling theory. 

Gowdy's bounds would be useful due to the existence of the initial 

value mean estimates from the revised basic experiment. A confidence in­

terval on the mean could be formed by approximating two standard devia­

tions around the mean estimate. The two-standard deviation range would 

be found from the initial value estimates of the variance. 

All statistical measures are inexact by definition. Therefore, great 

laxity is incorporated in the experimental procedure. Only experimental 

knowledge can solve the difficult problem of meaningfully utilizing the 

statistical information. This point, though felt to be unsatisfactory, 

is an inescapable part of systems identification. For this reason any 

theory, such as this work, can only yield guidelines for identification 

and not firm threshold decisions. 

The bounds on the variance would yield dynamic confidence limits on 

the mean. Hopefully better confidence limits could be found than through 

the false assumption of ergodicity and its accompanying statistical pro­

cedures. 

At this point there must be a discussion of a misconception in samp-

1 ing theory, namely nonuniform sampling. Typically, statisticians con­

vert raw experimental data into ergodic data through trend-removing trans­

formations. If the data are simple functions, such as a single exponential 
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curve or a quadratic, this amounts to taking a log or a power of the data. 

It has been noted that the sampling theory changes with the transforma­

tion. Thus, nonuniform sample periods as a function of a log or a power 

are found meaningful. Sampling at log rates is known as µ-law sampling. 

Data which are composed of complex combinations of exponentials can­

not be organized into simple µ-law schemes. This is the common misconcep­

tion. However, if there is a clearly dominant exponential factor, then 

it can be analyzed by µ-law methods. Typically, systems would require an 

eigenvalue which is dramatically separated from the rest of the eigenval­

ues. Some compartmental systems have this characteristic, but it is not 

known whether the trait is widespread enough to warrant such a general 

procedure. 

The problem with applying µ-law to a set of exponentials is that 

much of the information identifying the nondominant eigenvalues is lost. 

Often, the other eigenvalues can be ignored as illustrated by the popular­

ity of Box-Jenkins techniques, Karhunen-Loeve transformations, and princi­

pal value analysis. If the compartmental system has a separated dominant 

eigenvalue, then µ-law combined with Prony's method or some similar curve 

peeling method would find great use. The structural properties of this 

thesis would still be of great use in the alternate identification method. 

Evidently, µ-law sampling would have adverse effects on the regres­

sion technique presented in this study. Therefore, this scheme has not 

been considered. 

If uniform sampling is maintained, then minimal bounds on the sample 

period would be derived from the minimal period over which the samples 

significantly decrease. This would be the period over which the quanti­

fied data exhibit a change greater than the sum of two initial value 
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standard deviations and two standard deviations after one time period. 

The second standard deviation could be approximated by a meaningful adap­

tation of the variance bounds (Equation (6.28)). 

The upper bound in Equation (6.28) is not satisfactorily tight. Fur­

ther examination of the off-diagonal covariance terms could possibly im­

prove the upper bound. Since the terms are statistical estimates, the 

bounds may be sufficient in their present state. 

The maximum sample period will again be determined by a significance 

argument. The maximum sample period would be determined by the maximum 

time period over which at least n+l significant samples of each compart­

ment could be obtained and still be contained in the transient region. 

Clearly, it would be a function of the minimal eigenvalue. Fortunately, 

good approximations exist for the minimal eigenvalue. 

These comprise the more meaningful suggestions for future research 

endeavors which uti·l ize the structural properties established in this 

study. In addition, several interesting prospects have been encountered 

which could bear further investigation. 

Of most immediacy would be the extension of the work to negative 

off-diagonal covariance initial values. Though heuristically it is mean­

ingful to argue for positivity, a mathematical argument is felt to be 

necessary, if it exists. 

Second, the extension of structural properties to partially closed 

systems is necessary. It should be noted that Smith's model in Chapter 

I I I is partially closed. Yet the structural properties of sampling 

bounds are observed. In turn the argument for variance structural prop­

erties for some partially closed systems is established. 

Frequency spectrum techniques are of little use on this topic. The 



92 

effects of quantization and sampling are difficult to approach through 

the continuous Fourier transform. The entire basis of the frequency spec­

trum for aperiodic signals would have to be re-established. 

Of more promise is the possible analysis through Walsh basis func­

tions. Still the am~litudes are are continuous functions, not discrete. 

It is felt that discrete amplitude basis functions are one of the most 

important topics remaining for analysis in identification. 

The difficulty with the previous efforts in discrete communication 

theory (signal processing) is the lack of causality. It is sufficient 

for communications identification to propose a model which will recon­

struct the signal. Such models need not have any connection with the 

physical world. For this reason, the wealth of digital signal processing 

work must be examined for techniques which do have direct connection with 

the real-world system. It is those techniques which are of use in general 

identification. 

Summary 

This chapter has been one of application. The structural properties 

of compartment models have been utilized in examining the Gershgorin spec­

trum for the variance. Resulting from the eigenvalue spectrum has been 

an approach for dynamically bounding the trace of the variance of the com­

partmental states. A revised basic identification experiment has been 

proposed which would furnish statistical estimates for the bounds derived 

in Gowdy (1978) and for the new variance bounds. 

Future research endeavors have been proposed for utilizing the vari­

ance bounds, hence the structural properties in a sampling theory for 
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compartment model identification. Additional research topics have been 

proposed which result from the examination presented here. 
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APPENDIX 

A KRONECKER ALGEBRA CATALOG 

Notation 

Kronecker Product, Direct Product, Tensor Product 

Kronecker Sum 

Determinant of A 

Rank of A 

Spectral range of A 

Eigenvalue i of A 

Eigenvector i of A 

Diagonal matrix formed with the eigenvalues of A 

Matrix formed of the eigenvectors of A 

Matrix formed of the eigenvectors of B 

Trace or spur of A 

e. Unit vector (1 in element i, 0 elsewhere) 
I 

Eik Elementary matrix (ei ek) 

U Permutation matrix (exactly one 1 in each row and column, 

0 elsewhere) 

A' Transpose of matrix A 

A-l Inverse of matrix A 

A[k] A Kronecker power of A 

f (A) An analytic function of A 

7r@ A Kronecker product series building to the left 

97 
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L: EB A Kronecker sum series bu i 1 ding to the 1 ef t 

A A row stack of matrix A (a column vector formed by the row vee-
r 

tors of A concatenated in ascending numerical order), i.e., for 

A - 2x2 

A A column stack of A (a column vector formed by the column vec-
c 

tors of A concatenated in ascending numerical order), i.e., for 

A - 2x2 

M A particular permutation matrix defined by A = M A 
r c 

n The rank of matrix A (A is assumed square; see Brewer [1978] for 

nonsquare matrices) 

m The rank of matrix B 

The Kronecker Product 

A. A@B = a .. B 
I J 

I.e., for A - 2x2 and B - 2x2 

a 11 b 11 a 11 bl2 al2 b 11 . al2 bl2 

A@B 
a 11 b21 a 11 b22 al2 b21 al2 b22 

= 
a21 b 11 a21 bl2 a22 b 11 a22 bl2 

a21 b21 a21 b22 a22 b21 a22 b22 

·s. 1. A(A ® B) is the set of mn numbers (Bellman, 1960) 

A.(a) >-.(B) 
I J 

i=l, ... ,n;j 1 , • • • , m 

2. x(A 0 B) = x. (A) 0 x. (B) 
I J 

(Be 11 man , 1960) 
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C. R(A@ B) = R(A) R(B) (Marcus, 1960) 

(Marcus, 1960) 

E. tr(A@ B) = tr(A) tr(B) (Marcus, 1960) 

F. (A® B) I = A I ®BI (Marcus, 1960) 

G. If A and Bare Hermitian, A©B is Hermitian (Marcus, 1960) 
\'· 

H. If A-l and B-l exist, (A @B)-l exists and 

(Marcus, 1960) 

I. B@ A = M (A@ B)M, where m = n (Barnett, 1973) 

l. M = l: l: E. k 0 Ek. 
j k I I 

(Brewer, 1978) 

2. M = M-l = M' (Brewer, 1978) 

J. (T-l@ S-l) (A@ B) (T@ S) = .A(A)@ A(B) 

where T-lAT = A{A), S-l BS= A(B) 

K. A(A)©A(B) = A(A@B) 

L. (A 0 B) @ C = A 0 (B@ C) (Bellman, 1960) 

M. (A + C) @ B = A@ B + C@ B (Marcus , 1960) 

N. (A+B)0(C+D)=AQS)C+A0D+B@C+B@D (Bellman,1960} 

0. (A@B)(C@D) = AC@BD (Bellman, 1960) 

P. (I @A) (B@ I) = (B@ I) (I 0 A) (Neudecker, 1969) 

Q. f ( I ® A) = I @ f (A) (Barnett, 1973) 

R. f (A 0 I) = f (A) @ I (Barnett, 1973) 

S. exp( I 0 A) = I@ exp{A) (Barnett, 1973) 

l 
I 
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T. exp(A 0 I) = exp(A) ®I (Barnett, 1973) 

u. A(k+l] = A@A(k] (Be 1 1 man , 1960) 

v. (AD) [k] = A[k] D[k] (Be 11 man, 1960) 

n 
w. IT 0 A. = A @ A l Q9 . . . A2 Q9 Al 

i 1 n n-

x. (AB) = (I 0 A) B = (B'Q$)1)A = (B'(g}A)I 
c c c c 

(Neudecker, 1969) 

Y. (AB) = (A 0 I) B = (l@B')A = (A@B')I 
r r r r 

z. (ABC) = (A @C') B 
r r 

AA. (ABC)c = (C' @A)B 
c 

(Note: Lynch et al. (1964] and Brewer [1978] have good extensions of the 

product application into the solution of partial differential equations 

and a matrix calculus.) 

BB. The derivative of the Kronecker Product is defined by 

Proof 

d/dt(A(t) 0 B(t)) = A(t) 0 B(t) + A(t) 0 B(t) 

d/dt(A(t)@B(t)) = lim(A(t+h)@B(t+h) - A(t)0 B(t))/h 
h+o 

= lim(A(t+h)0B(t+h) - A(t)QS>B(t)+A(t+h)(g}B(t) 
h+o 

- A(t + h) 0 B(t) )/h 

= lim(A(t+h) Q9 (B(t+h) - B(t)) + (A(t+h) 
h+o 

-A(t)) 0 B(t))/h 

if A(t) and B(t) are differentiable at t 



101 

= A(t) 0 B(t) + A(t) 0 B(t) 

This ends the proof. 

cc. The exponential of the Kronecker product is 

1. exp(A 0 B) = I + (AQSlB) + 1/2 (AQSlB)(A(8)B) 1 + •.. 
nm 

2. exp(A Q9 B) = (T@ S) (exp(A(A)@A(B)) (T@ S)-l 

The Kronecker Sum 

A. A E£j B' = A Q91 + I Q9 B m n 

i.e., for A - 2x2 and B - 2x2 

al 1 +bl l bl2 al2 0 

b21 a 11 + b22 0 al2 
A ffi B' = 

a21 . 0 a22 +bl l bl2 

0 a21 b21 a22 + b22 

B. 1. A (A EB BI) is the set of nm numbers (Bell man, 1960) 

A.(A) + A.(B) 
I J 

i=l, ••• ,n; j=l, ..• ,m 

2. x(AffiB') is the set of nm vectors 

x. (A)@ x. (B) 
I J 

C. Tr(AffiB 1 ) = m tr(A) + n tr(B) 

D. If A and Bare hermitian, AEfjB 1 is hermitian. 

E. (AE!jB 1 ) 1 = A'Ef)B 

F. (AE}jB)(B C =A@ (B@C) iff c = c• 



102 

n 
G. I Ee Ai = An Ee (An-l E9 ... E9 (A2 E9 A1))) 

where the· identity matrices ~atisfy the structure. 

H. sin(AE!1B') = siri(A) ® cos·(B) + cos(A)@sin(B) 

I. A(AEf) B') = A(A)Ef) A(B) 

J. (T- 1@s- 1)(AffiB')(T@S) ='=A(A)Ei)A(B) 

Proof 

-1 . -1 
where T AT= A(A) and S BS= A(B) 

A EBB' = A© I + I© B 

= (TA(A)T-l@ SS-l) + (TT-l@ SA(B)S-l) 

= (T@S)(A(A)@ t)(T©S)~l 

+ (T©S)(i@A(B))(T@s/1 

= (T@ S) (A(A) ©I + I© A(B)) (TQ?) S)-l 

= (T©S)(A(A)Ef)A(B))(T(g)S)-l 

End of proof. 

K. The exponential of the Kronecker ~um is defined by 

(Barnett, 1973) 

(Lynch,. 1964) 

1. exp (A EE> B 1 ) = I + (A EE> BI ) + l /2 (A ED BI ) (A ED BI )' + 
nm 

2. = (T@S) exp(A(A)EfjA(B))(T@S)-l 

L. exp(A ED B') = exp(A)@ exp(B) 

l • exp (A EE> B 1 ) = exp (A ® I + I ® B) 

= (exp(A ®I)) (exp( I® B)) 

= (exp(A)@ l)(t(8>exp(B)) 



= exp (A}® exp (B} 

2. exp(A EB B1 ) = ((T@S)(exp(A(A)Ef)A(B)){T®S)-l 

since 

exp(A.(A} + A.(B)) = exp{A.(A}) exp(A.(B)) 
I J . I J 

exp(A(A) EB A(B)) = exp(A(A)) ® exp(A(B)) 

exp(AE[;)B') = (T@S)(exp(A(A))@ exp(A(B)))(T@S)-l 

exp(A EBB 1 ) = exp (A)® exp (B) 

3. Refer to the proof in Chapter IV. 

M. The derivative of the Kronecker sum is defined by 

d/dt(A(t)EB 8 1 (t)) = (A(t)EB B1 (t)) 

Proof 

d/dt (A(t) EBB' (t)) = d/dt (A(t) ®I + I® B(t)) 

= d/dt (A(t} <8) I}+ d/dt (1(29 B(t})-

= A(t)Ef>s 1 (t) 

where A and Bare differentiable at t. 
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