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CHAPTER I 

INTRODUCTION 

With the availability of nozzle sources, lasers for selective 

excitation, and sensitive spectroscopic techniques for identifying 

molecular states, the experimental reaction dynamicist can now control 

the energies of chemical reagents and observe the states of reaction 

products to an extent only imagined two decades ago. Already one can 

foresee the day when state-to-state cross sections, like those for 

spectroscopic transitions, will become available for chemical reactions. 

Although state-to-state cross sections are the ultimate goal, they are 

currently available for very few reactions. 

The desire to improve our fundamental understanding of reactive 

processes has not been the only stimulus to studies in reaction 

dynamics. The development of laser sources has been another. The 

search for new laser systems has inspired many experiments on chemical 

excitation, and existing lasers have served as photochemical sources for 

selective excitation. An important objective of dynamical theories is 

the elucidation of the connection between the form of the potential­

energy surf ace and the way in which the energy released passes into the 

products of reaction. An experimental study of energy distributions, 

combined with a dynamical treatment for a variety of hypothetical 

potential-energy surfaces, can lead to valuable conclusions about the 

actual topography of potential-energy surfaces. 

1 



The Study of Collision Dynamics 

The theoretical study of any chemical problem which falls within 

the domain of the Born-Oppenheimer approximation involves two basic 

steps: 

1. The evaluation of the potential-energy surface 
by solving the electronic Schrodinger's equation over 
the range of nuclear configurations demanded by the 
problem. 

2. Solution of the nuclear scattering problem on 
the potential-energy surf ace thus obtained. 

The most accurate type of potential-energy surface is a converged 

CI ab initio surface. In an ab initio calculation of the potential-

energy surface, the electronic Schrodinger equation is solved by 

employing different levels of approximations. The most widely used 

are the Hartree-Fock and Linear Combination of Atomic Orbitals-

Molecular Orbital-Self Consistent Field (ICAO-MO-SCF) calculations. 

2 

Due to the enormous amount of computer time required, these calculations 

are extremely difficult for many-electron systems. Considerable 

progress is being made, however, and complete potential surfaces with 

an accuracy acceptable for scattering studies for systems with up to 

30 electrons and four nuclei now lie within the present bound of accom-

plishment (1). 

In many scattering calculations the ab initio results cannot be 

employed directly and hence a suitable interpolation of the computed 

values is necessary. Ab initio results for the co2-H2 (2) and co2-He 

(3) systems have been computed and the potential-energy surface 

generated by a three-dimensional cubic spline interpolation technique 

(4). Classical trajectory calculations on such a spline fitted ab 

initio surface of the co2-H2 (2) and co2-He (3) systems and a quantum 
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mechanical scattering study on the latter system (5) have been shown to 

yield reliable results. 

Unfortunately, the Hartree-Fock calculation is inexact, and the 

energy obtained differs considerably from the true energy due to the 

correlation error. This arises due to the inaccurate description of 

the pair probability function for electrons of opposite spin. This 

error is especially large if the number of electron pairs predicted by 

the orbital model of the system changes during the course of the 

reaction or if the reaction does not involve closed-shell reactants 

and products. The method of configuration interaction, CI, first 

discussed by Hylleraas (6), is one of the oldest techniques used to 

surmount this problem. In a standard CI calculation, the excited state 

determinants are formed by systematically promoting electrons from the 

occupied orbitals of the ground state determinant to the vacant or 

virtual orbitals. The number of configurations which can be formed in 

this way from N electrons and n basis functions (7) is of the order 

N 
of n • Thus, even with today's high speed computers, a 'full' CI is 

possible only for very small systems. 

In order to overcome such difficulties while dealing with many-

electron systems, we resort to semi-empirical methods. Semi-empirical 

surfaces have the advantage of being simple and fast to compute and can 

be used to describe a much wider variety of systems than ab initio 

surfaces presently are able to do. Here, a simplified expression is 

used to represent the surface, and experimental results are either 

directly incorporated into it or fitted by adjustable parameters within 

the expression. Numerous three- and four-body investigations have 

shown that the simple valence-bond surfaces can correctly predict 



diatomic bond energies and lengths and fundamental vibration fre­

quencies. Moreover, Porter and Raff (8) have shown that the simple 

valence bond minimal basis wavefunction contains a significant amount 

4 

of configuration mixing. Recently, such methods have been used to 

obtain a representation for the potential-energy surface for the 

six-body CH4 + T* system. Equilibrium thermodynamic and spectroscopic 

data for reactants and products, the results of all-valence electron 

INDO and all-electron ab initio SCF and CI quantum calculations, and 

previously formulated three and four-body valence-bond potential 

surfaces were used to obtain this surface, and an unadjusted computation 

of the reaction dynamics was reported (9). These semi-empirical proce­

dures are especially useful if we seek to assess the role played by 

various reactant properties and surf ace topological features rather 

than to accurately represent any specific system. The effect and 

relative importance of different topological features of these surfaces 

may then be systematically studied by numerically varying the surface 

in any desired manner. 

The second phase in the study of collision dynamics is the 

scattering calculation which involves the solution of the nuclear 

equations of motion on the potential-energy surface computed. This 

can be done either quantum mechanically by solving the Schrodinger 

equation or classically by solving the Hamilton's equations of motion. 

In most calculations quantum conditions have been imposed as far as the 

initial states are concerned, but the actual motion over the potential 

energy barrier has been treated classically in the majority of studies. 

It is considerably easier to do this than to carry out a purely quantum­

mechanical treatment. The two main sources of error inherent in a 
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classical mechanical calculation are the neglect of energy quantization 

and quantum mechanical tunneling. However for reactions involving a 

large number of available quantum states, the classical treatment may 

be expected to be completely adequate. 

The first classical calculations were made for the H + H2 system 

by Eyring and Polanyi (10) and further work was done by Hirschfelder, 

Eyring and Topley (11). The first computer calculations of reaction 

dynamics were performed by Wall, Hiller and Mazur (12), for the H + H2 

system. It is now feasible to carry out complete cross section 

calculations by trajectory integrations for a system of three or more 

atoms (13). An unadjusted computation of the reaction dynamics in the 

CH4 + T* and cn4 + T* systems have been carried out by Raff (9). 

Similar calculations with an unrestricted potential for CH5 have been 

carried out by Valencich and Bunker (30). The isomerization of CH3NC 

molecule to CH3CN has been studied in great detail by Bunker and Hase 

(14) by the classical trajectory procedure. They used an empirical 

potential energy function for treating this six-body system and these 

authors used the results of approximately 6000 trajectories to calcu-

late energy dependent isomerization rate constants at excitations of 

70, 100 and 200 Kcal/mole. The hot-atom displacement reactions 

T* + CH3NC 

T* + CH3CN 

have been studied by Harris and Bunker (14). These are a few examples 

that elucidate the feasibility of trajectory calculations on many-atom 

systems. 
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Polyatomic Reaction Dynamics and the Effect 

of Surf ace Topology 

The role played by vibrational excitation in atom-diatomic 

molecule reactions is now reasonably well understood. Experimental 

studies using microwave (15), chemical (16) and IR laser (17) exci-

tation methods have shown that such excitation can produce a factor of 

100 or more increase in the measured reaction cross sections. Several 

theoretical investigations using model semi-empirical potential-energy 

surfaces have clearly related the effect to various topological features 

of the surface. Some of these features which will have an effect upon 

the computed reaction dynamics are the following: 

1. The magnitude of the energy barrier to reaction. 

2. Position of the barrier: The location of the 
barrier is found to determine what kind of energy is needed 
by the reagents in order to react at all. If the barrier 
is located deep in the entrance channel relative translation 
is found to be more effective in surmounting the barrier 
whereas if the barrier is located in the exit channel vibra­
tional energy is found to be more effective (18). However, 
the Chapman-Bunker (19) study suggests that this may not 
be true in the case of polyatomic reactions. It is impor­
tant to determine to what extent this result is an artifact 
of their surface and to what extent it is generally true. 

3. The curvature of the reaction path near the saddle 
point and the position of maximum curvature relative to the 
point of energy release. If most of the energy is released 
before the maximum curvature region, the product will be 
vibrationally excited. On the other hand if the point of 
energy release occurs after the maximum curvature region, 
most of the energy will go to enhance the relative motion 
producing products with little vibration. Polanyi and 
Sathyamurthy (20) have found that gradual curvature of the 
reaction coordinate at the saddle point significantly reduces 
the effect of vibrational excitation and Duff and Truhlar 
(21) have shown that the relative positions of maximum 
curvature and energy release can be important in an atom­
diatomic reaction. 

4. Nature of the inner repulsive wall of the potential-



energy surface: This has been shown to be a feature of 
critical importance for some atom-diatomic reactions (22). 

5. Formation of collision complex: The formation of 
a long-lived collision complex in the case of polyatomic 
reactions may be the cause for the absence of a marked 
dependence of the rate constant on the specification of 
initial vibrational modes of excitation since an efficient 
energy transfer to the reaction coordinate occurs via the 
collision complex (23). 

The effect of these features of the potential-energy surface on 

the collision dynamics is well understood, at least for the atom-

diatomic molecule reactions. The insight these studies have produced 

has been extremely important in the development of an understanding of 

the basic nature of atom-diatomic molecule reactions. 

Unfortunately, such a complete study is unavailable for the case 

of polyatomic reactions. Not only are the effects of the various 

surface features on the observed reaction dynamics unknown, but some-

times even a qualitative prediction of the effect of vibrational 

excitation of the reactants upon the reaction dynamics cannot be made. 

This is obviously due to the complexity of the problem. The dynamics 

of atom-diatomic molecule reactions are complex functions of the 

potential-energy surface features, and it is natural to expect such a 

relation to be more complex for polyatomic reactions. 

The reactions of c2H4 and OCS with o2 were studied by Manning, 

Braun and Kurylo (24) and no significant increase in the reaction rate 

was observed when either c2H4 or OCS were vibrationally excited (24). 

Similar effects were observed by Riley, Shatas and Arkle (25) in the 

reactions of diborane to yield various B H molecules. They carried 
nm 
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out the reaction with vibrationally excited diborane molecules produced 

by multipole photon absorption and observed that the reaction did not 



proceed more rapidly than with the reagents in the ground state. 

Weston and Ting (Z6) and Tsao and Root (Z7) have interpreted the 

results of their photolysis experiments on (CH3Br, Hz) and (CD3Br, Hz) 

systems to suggest that the reaction rate for 

(Rl) 

is significantly enhanced by excitation of the out-of-plane bending 

mode of CH3• However, contradictory results were obtained from the 

theoretical studies of reaction Rl by Bunker and Chapman (19). Bunker 

and Chapman studied the effect of vibrational excitation of CH3 on 

reaction Rl by using their previously obtained (CH5) potential-energy 

surface (Z8-30). They not only observed the absence of reaction rate 

enhancement on vibrational excitation but a significant decrease in 

the reaction rate. Excitation of the CH3 bending mode to vz = 6 

decreased the cross section by a factor of five. Similar computations 

were carried out by Raff (31) by using the unadjusted six-body 

potential-energy surface (9) and the results agreed with those of 

Bunker and Chapman (19). It was observed by Raff (31) that at a 

relative translational energy of 30 Kcal/mole, excitation of the CH3 

bending mode to the vz = 4 state reduces the reaction cross section by 

17% from that obtained with all reactants in the ground vibrational 

state. 

8 

On the other hand, Lussier, Reiser, Jensen and Steinfeld (32) have 

reported vibrationally induced dehydrohalogenation of chlorinated 

ethylenes. Cross (33) has found that the reaction cross section for 

the chemionization reaction 



with R an alkyl, acyl or inorganic halide, is very sensitive to 

vibrational excitation but is completely independent of translational 

energy. 

Finally, in those cases where vibrational excitation enhances the 

reaction rate, a mode selective enhancement is not observed. In the 

reaction of o3 + NO, Kurylo et al. (37) observed that all three modes 

make comparable contributions to the reaction rate enhancement. Thus 

9 

it is clear that the effect of vibrational energy on polyatomic systems 

has not been well understood and has been the subject of a number of 

recent experiments. It is clear that the microscopic effects that 

produce the observed results are not well understood. A thorough 

theoretical study of appropriate model systems has not yet become 

available. The present investigation consists of initiating such a 

study on the o3 + NO system. 

The reaction of NO with o3 produces visible (34, 35) and infrared 

(36, 37) emission from electronically and vibrationally excited N0 2. 

The thermal rate constants for these reactions are (35) 

o3 + NO 
+ 2 o2 + N02 ( A1) (I-1) 

k(T) 
11 150/RT) = (4.3 ± 1.0) X 10 exp(-2330 ± 

o3 + NO * 2 o2 + N02 ( B1) (I-2) 

k(T) (7.6 ± 1.5) x 1011 exp(-4180 ± 300/RT) 

Electronically excited o2 , although energetically accessible, is not 

observed (38). Clough and Thrush (35) argue that the different acti-

vation energies of the two reactions suggest that they take place on 

different potential-energy surfaces. 

Recently, lasers have been used to produce vibrationally excited 
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ozone and the enhancement of the chemiluminescence due to vibrational 

excitation has been studied in great detail. Pioneering work in the 

study of vibrationally excited reactions was carried out by groups at 

the National Bureau of Standards (43-46, 23) and at Cornell (47, 48). 

It has been found that laser excitation of o3 increases the reaction 

rate. Hui and Cool (47) and Gordon and coworkers (42) have observed 

that when the stretching modes (v1 and v3) of ozone were excited, the 

activation energies of both reactions (I-1) and (I-2) decreased by 

about 50%. Enhancement in reaction rate of the same order was observed 

even when the bending mode of ozone was excited. It was therefore 

concluded that mode selective enhancement was not observed. Stephenson 

and Freund (23) studied the effect of vibrational excitation of NO on 

the rate of these reactions. They observed comparable enhancement of 

the reaction rate. The interpretation of these bulk experiments is 

seriously complicated and it has not been possible to determine inde­

pendently the contributions of the individual modes to the reaction 

rate. 

Another class of experiments on the o3 + NO system, pioneered by 

Menzinger and coworkers (51, 52), are molecular beam studies. More 

recent beam experiments have been carried out by Van den Ende and 

Stolte (49, 50), by Valentini, Cross and Kwei (53), by Kahler, Kowalczyk 

and Lee (54) and by Brooks and Anderson (55). In these experiments the 

kinetic energy dependence of both the electronic and vibrational 

chemiluminescence of the o3 + NO reaction has been studied. The 

vibrational chemiluminescence exhibits no threshold and a finite signal 

is measured even at the lowest collision energy (1 Kcal/mole). In 

addition, the vibrational emission rises considerably slower with 
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increasing kinetic energy than the electronic emission. The electronic 

emission was found to be enhanced by raising the NO internal tempera­

ture. This has been shown to be due to the enhanced reactivity of the 

N0(2n312) fine structure component. Vibrational IR emission from No; 
was thus observed to exhibit an energy dependence different from 

electronic NO~ emission, confirming that the emitters are formed 

predominantly in distinct reaction channels rather than via a connnon 

precursor. 

Van Den Ende and Stolte (49) have studied the influence of 

internal (rotational and electronic fine structure states of NO) and 

translational energy upon the chemiluminescence. The chemiluminescent 

cross section was found to increase rapidly with increasing trans-

lational energy up to E(trans) = 1.2 ev. At very high translational 

energies (E(trans) > l.4ev) some levelling off begins to set in. A 

strong increase of an exothermal reaction cross section with trans­

lational energy is uncommon (57). For chemiluminescent exothermic 

reactions it may occur as a consequence of the branching processes 

where the chemiluminescent channel competes with the reaction channel 

leading to electronic ground state products. 

Valentini, Cross and Kwei (53) have carried out crossed-beam 

studies of the reaction using mass spectrometric detection. They are 

able to distinguish two peaks in the angular distribution of the N02 

product. Backscattered (with respect to the direction of the incoming 

NO molecule) is a signal attributed to the ground electronic state 

product, while a peak scattered to the side is attributed to the excited 

electronic state product. Interestingly, in preliminary studies they 

observe that different nozzle temperatures leave the ratio of the two 
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signals unchanged. This suggests, contrary to earlier statements, 

that the reactions giving rise to the different electronic states of 

the products should not be viewed as taking place on separate adiabatic 

potential-energy surfaces, but rather that nonadiabatic effects play an 

important role. 

Brooks and Anderson (55) in very recent work have controlled the 

NO beam by focussing with inhomogeneous magnetic fields. In this way, 

they observe the difference in reactivity of the NO fine structure 

components. They conclude that the NO electronic state has little to 

do with the chemiluminescent yield, but that for low J, chemilumines-

cence depends strongly on rotation. 

Among the striking features of the reaction is the fact that 

electronically excited nitrogen dioxide, NO;, is formed whereas 

electronically excited oxygen, o* 
2' is not formed though energetically 

accessible. For any process involving several electronic states, a 

correlation diagram provides basic information about energetically 

accessible states and their interactions. In a minimal state corre-

lation diagram one simply draws straight lines connecting states arising 

from reactants with states arising from products, in such a way that 

lines representing states of the same synnnetry do not cross. 

Redpath, Menzinger and Carrington (52) explain the observed 

features of the o3 + NO reaction by making use of the minimal state 

correlation diagrams. If the reaction is viewed to proceed through a 

planar transition state in which the NO approaches an end atom of the 

o3 molecule and abstracts that atom, ground state reactants correlate 

to ground state products as well as to N02 (2A1) + o2 ( 1~g) which is not 

observed experimentally. However, if the NO approaches o3 in the plane 



which bisects the o3 bond angle, the excited states of o2 are not 

adiabatically accessible. Other examples of reactions involving the 

center atom of a triatomic molecule have been seen (56). 

It was suggested that the excitation of the asymmetric stretch 

mode might be expected to increase the rate constant (23). However, 

13 

within the accuracy of presently available data, comparable enhancement 

of the rate constant was observed by excitation of either the stretching 

or bending modes of o3 (48). Stephenson and Freund (23) observed 

enhancement in reaction rate of the same order when NO was vibrationally 

excited. The absence of a marked dependence of the rate constant on 

the specification of the initial vibrational modes of excitation lends 

support to the hypothesis of an efficient energy transfer to the 

reaction coordinate via a collision complex or an efficient intra-

molecular energy transfer. 

In the present study, a theoretical investigation of the reaction, 

+ where N02 denotes vibrationally excited N02 , has been carried out. We 

have attempted to assess the role played by various reactant properties 

and surface topological features rather than to accurately represent 

the system. The potential energy hypersurf ace for the system has been 

obtained by semi-empirical procedures making use of all available data 

relating to the equilibrium thermodynamics and spectroscopy of the 

reactants and products of reaction. A part of the potential-energy 

surface has been spline fitted. This enabled us to study the effect 

and relative importance of different topological features of these 

surfaces by numerically varying the surface in any desired manner. The 
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collision dynamic study has been performed on such a surface using 

quasiclassical trajectory analysis. This involves solving Hamilton's 

equations of motion: 

Here the q's denote the coordinates, p's the conjugate momenta, the 

dotted variables are the derivatives with respect to time. H is the 

classical Hamiltonian and for a conservative system, H = T + V, the 

total energy of the system; T is the kinetic energy, T = l/2m.q7, and V 
1 1 

the potential energy. Hamilton's equations were solved by a predictor-

corrector method. The initial states of the trajectories were chosen 

randomly from the proper distribution functions for the phase angle, 

rotational quantum numbers, etc. The results from these trajectories 

were then averaged over these variables by the Monte Carlo procedure 

to calculate cross sections, rate coefficients, etc. The details of 

these procedures have been described elsewhere (58). 

Rotational-to-Translational Energy Transfer 

Processes in the HF-Ar System 

Molecular energy transfer is the study of the acquisition, transfer, 

and disposal of energy from the microscopic point of view. The 

bulk, macroscopic processes are traced to changes at the moelcular leveL 

Until recently, most of our knowledge about inelastic scattering 

processes came from bulk experiments, such as ultrasonic dispersion 

(59) and microwave line-broadening. Following the stimulating experi-

ments of Blythe, Grosser and Bernstein on K + n2 (60), the crossed 

molecular beam method has been employed with increasing frequency in 
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the investigation of inelastic processes. The availability of sophis­

ticated experimental techniques points to the need for the development 

of more efficient theoretical procedures for the treatment of the 

inelastic scattering processes. 

A technological device in which the energy transfer processes play 

an important role is the gas-phase laser. Lasers operate by the 

excitation of rotational-vibrational or electronic mpdes of the molecule. 

The power of the laser radiation output depends upon the population of 

the excited state. The energy transfer processes accompanying the 

bimolecular collision events decrease the lifetime of the excited state 

and thereby act as performance limiting factors in the operation of 

lasers. In certain cases, like the He-Ne laser, the excitation of Ne 

atoms is brought about by resonant energy transfer collisions between 

2's excited He and ground state Ne atoms. This excitation path is more 

efficient than the direct excitation of Ne by an electrical discharge. 

Hence it is necessary to understand these energy transfer processes in 

great detail in order to develop lasers with better performance. 

Because HF is an integral part of several laser systems, understanding 

the vibrational and rotational excitations and relaxations that occur 

in the molecule is vital to the improvement of the efficiency of HF 

lasers. 

The most accurate theoretical treatment of the scattering processes 

involves the use of the close coupling (CC) method of Arthurs and 

Dalgarno (61). However, the CC equations become very difficult to 

solve when there are a large number of scattering channels involved. 

Consequently, a variety of decoupling approximations have been developed 

to simplify the close-coupling formulation. Recently, Parker and Pack 



(62) have employed the Infinite Order Sudden Approximation (IOSA) 

method for the treatment of rotationally inelastic scattering. In 
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the IOS approximation, the internal states (rotational states, 

especially) of the molecule and also the centrifugal potentials are 

assumed to be degenerate. The former is referred to as the "Energy 

Sudden" (ES) approximation and the latter is known as the "Centrifugal 

Sudden" (CS) approximation. Integral and differential cross sections 

for the (co2-He) system obtained from the IOSA method were found to be 

in good agreement with experimental results. Agrawal and Raff (63) 

have investigated the effect of potential surface topography upon 

elastic and inelastic scattering in the (co2-He) system using the IOSA 

method. The results were in good to excellent agreement with the 

quasiclassical trajectory results (64), and with experiment (65). 

However, a condition for the validity of the IOSA approximation is that 

the fraction of the total translational energy transferred to internal 

modes during a collision be small. Consequently, difficulties arise 

if the IOS approximation is employed to examine processes in which 

large multiple quantum excitations of internal modes play an important 

role. 

Recently, a simple modification of the IOSA equations has been 

suggested that incorporates an explicit exit-channel velocity dependence 

into the scattering cross section (66). It has been shown that the 

resulting modified formalism (IOSAM) properly closes those channels 

required to be closed by energy considerations. In addition, a com­

parison of IOSAM and IOSA results with quasiclassical trajectory 

calculations in the rigid rotor (co2-He) system showed the IOSAM cross 

sections to be in significantly better accord with the trajectory 
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results (66). The simplicity and accuracy of the IOSAM method make it 

a viable method for routine analysis of the experimental results. 

The present study reports an investigation of rotationally 

inelastic scattering processes in the HF + Ar system using the modified 

IOSA method. This particular system was chosen because of its simpli­

city and because experimental data are available. Barnes et al. (67) 

have measured the state-to-state cross sections for rotational-to­

translational energy transfer in HF + Ar, as a function of collision 

energy. The data reported by these investigators exhibit several 

interesting features. For instance, the relative R ++ T cross sections 

are found to be unaffected by increasing the center of mass collision 

energy from 4 to 16 Kcal/mole (67). In the present study, the results 

of the IOSA (62) and IOSAM (66) formulations are compared with the 

experimental data (67). Both ab initio and semi-empirical potential­

energy surfaces have been employed in the calculations. 



CHAPTER II 

POTENTIAL-ENERGY SURFACE FOR THE o3 + NO SYSTEM 

The formulation of an unrestricted potential-energy surface for 

the o3 + NO system requires the computation of the potential energy as 

a function of the ten internuclear distances (see Figure 1). Thus, 

such evaluation by ab initio procedures is almost an impossible task. 

However, since the major point of current interest is the investigation 

of the effects of various topographical features of the surface upon 

the observed reaction dynamics of polyatomic systems, a formulation 

with maximum flexibility is favored over a more accurate representation 

with a reduced flexibility. 

Simple valence-bond type surfaces have been employed in numerous 

three- and four-body investigations. Raff (68) has carried out an 

unadjusted computation of the reaction dynamics in the (CH4 + T*) and 

(CD4 + T*) systems, using a valence-bond formulation of the six-body 

potential-energy surface that was a summation of three-body type terms. 

Following this example, a semi-empirical potential-energy surface has 

been formulated for the o3 + NO system by making full use of the 

available data related to the equilibrium thermodynamics and spectra-

scopy of the reactants and products. The mathematical form of the 

surface is given by, 

VNO (R.,8.) • 4 i i 
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Figure 1. The 03-NO System; the lnterbond Angles are: (1) a 1; 
(2) a2; (3) e; (4) el; (5) e2; (6) 63 
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(II-1) 

where, 

v1 are three-body interaction potentials operating between two oxygen 

atoms and the nitrogen atom. v0 is the ozone three-body interaction 
3 

potential. v0 and VNO are the Morse potentials for the diatomic 
2 

interactions. vN02 (Si) is the bending potential for the N02 product 

molecule. v00 are the repulsive interactions operating among pairs of 

oxygen atoms between which no bond formation takes place and V is 
att 

an attenuation term. The variables, R.(l ~ i ~ 10) and the bond angles 
1. 

are defined in Figure 1. The detailed description and the functional 

forms of each of these terms are considered below: 

The function v1 (Ri,Rj'~) in Eq (II-1) is the three-body valence­

bond potential given by (69), 

2 2 k< + (J J ) + (J - J ) }}2 
BC - CA CA AB 

(II-2) 

where the Q's are the coulomb integrals given by, 

(II-3) 

and J's are the exchange integrals given by, 

(II-4) 

1EaS and 3EaS are the singlet and triplet state energies 
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respectively, for the aS diatomic system. The singlet state energies 

have been represented by a Morse function, 

1E a(R.) = D{exp{-2a(R. - R )} - 2 exp{-a(R. - R )}} 
al-' 1 1 e 1 e 

(II-5) 

where D is the bond-dissociation energy plus the zero point energy; 

R is the equilibrium separation of the diatomic molecule; and 
e 

k 
a = 1T\) (2µ/D) 2 (II-6) 

0 

where µ is the reduced mass of the diatomic a-S system. The values of 

these parameters for o2 and NO molecules are given in Table I. 

TABLE I 

MORSE PARAMETERS FOR THE DIATOMIC MOLECULES 

Parameter NOb 0 a 
2 

D/ev 6.6 5.21 

a/au -1 
1. 45327 1. 404 78 

R /au 
e 

2.1747 2.2816 

• (a) Spectra of diatomic molecules, G. 
Herzberg, Vol. I, p. 560. 

(b) Reference 95. 

The Morse parameters for the N-0 bond have been made to vary 
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smoothly as the reaction proceeds. In order to represent the physical 

situation more accurately, some semi-empirical quantum mechanical 

calculations have been carried out for a few configurations of the N02 

molecule. The experimentally observed exothermicity for the reaction 

N02 ---.. NO+ 0 

is 3 .11 ev (70). INDO open shell methods (71) have been used to calcu-

late the energies of N02 in its equilibrium configuration, and the 

separated NO molecule and oxygen atom. The computed endothermicity of 

the reaction is 

o = (6E)IND0/(6E) expt. 

(II-7) 

4.2211 (II-8) 

INDO calculations were carried out for a few intermediate config-

urations. The change in energy from the N02 equilibrium configuration, 

(~0 - ~6 )INDO' were scaled using the o parameter obtained as 
2 2 

indicated above. The N02 potential is represented by the sum of the 

Morse potentials for the two N-0 bonds if the interbond angle, 8, is 

equal to the equilibrium angle, 8 , for each configuration. The 
e 

potential of N02 at equilibrium, (VN02)eq' is -9.9lev (70), with the 

zero of the potential corresponding to the separated atom limit. By 

knowing (VN02 )eq and (~02 - E:ci2)INDO/o, vN02 for the various config­

urations have been calculated as follows: 

(II-9) 



By equating VNO to the sum of the Morse potentials, the value of the 
2 

Morse parameter, DNO' can be calculated as a function of the N-0 bond 

eq 
The values of (ENO -ENO )INDO and DNO as a function of the 

2 2 
distance. 

N-0 bond distance are given in Table II. These results have been 

fitted to a fourth degree polynomial by using a non-linear least 

squares procedure as follows: 
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DNO 6.6 - LiD (II-10) 

where, 

LiD = 1.65 

LiD + alRi + 
2 

ao a2Ri + 

LiD = 0 

R. ~ 2.21 
J. 

3 
a3Ri 

4 
+ a4Ri, 

R. > 3.3 
J. 

2.21 < R. < 3.3 -J. 

(II-11) 

where R. is the N-0 bond that is being formed. The values of the 
J. 

constantsa that have been employed in the calculation are, 

ao = 0.04 ev 

0.968394 -1 
al = ev•au 

0.232423 -2 
a2 ev•au 

-0.1378116 -3 
a3 ev•au 

-0.0078416 
-4 

(II-12) a4 ev 0 au 

(a) R. are in au. 
J. 

The equilibrium distance of the N-0 bond also changes as the 

reaction proceeds. This feature has been incorporated into the 

potential energy hypersurface formulation as follows: 
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R 2.1747 au R. > 3.3 e l 

2.1747 + 5 
R = 21723.2{exp(-0.049376 R.)} e l 

3.0 S R. ~ 3.3 
l 

R = 2.2575 R. < 3.0 e l 
(II-13) 

This functional form produces a smooth and rapid change of the 

equilibrium distance as the reaction proceeds. 

R./au 
l 

2.2575 

2.3810 

2.4188 

2.4566 

TABLE II 

VARIATION OF DNO WITH R~ 

6eq/deg 

138 0.0 

136 0.10166 

133.8 0.16407 

132 0.23537 

L1D = 6. 6 - DNO 

1. 58037 

1. 49136 

1. 464 76 

1.43757 

(a) The other N-0 bond distance in NO was fixed at the Equilibrium 
value= 2.2575 au. 

(b) All energies are in eV. 

By varying the Morse parameters as indicated above, we were able 

to obtain a potential-energy surface which approached the proper 

asymptotic limits, reproduced the experimental exothermicity, and the 



equilibrium geometries of reactants and products. 

Unfortunately, the triplet-state energies required in Eq (II-3) 

and (II-4) are much more difficult to obtain than is the case for the 

ground-state singlet. Hence, in order to obtain the triplet-state 

potential energies for o2 and NO, semi-empirical calculations of the 

type previously reported by Pohl, Rein and Appel (72) and by Pohl and 

Raff (73) have been employed. Similar procedures have also been 

employed by Raff, Stivers, Porter, Thompson and Sims (69) for evalu-

ating the triplet-state energies of HI and 12 . 

The triplet-state energies are given by, 

25 

(II-14) 

where H is the Hamiltonian for the diatomic system given by, 

H (II-15) 

where VA and VB represent core potentials. The triplet-state wave­

function is given by, 

X a (1) a (2) (II-16) 

where SAB represents the overlap integral <¢A I ¢B>. ¢A and ¢Bare 

the 2pa Slater-type orbitals for the 0 and N atoms given by (74), 

¢0 = 4.4040 r exp(-2.275 r)cos6 

~ = 2.9956 r exp(-1.950 r)cose 'f'N 

The triplet-state energy is now given by, 

(II-17) 
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(II-18) 

with 

(II-19) 

and 

(II-20) 

The integrals in Eq (II-19) and (II-20) have been evaluated by using 

the semi-empirical approximations previously employed (72, 73). This 

results in the following expression for the triplet-state energies. 

(II-21) 

3 The total energy, ET, relative to separated atoms A+ B in the ground 

state is given by (72, 73), 

(II-22) 

where I's are the ionization potentials of the atoms, R12 is the inter­

particle separation and A's are the electron affinities and 

<cjl A (1) (II-23) 

The parameters employed for the evaluation of the triplet-state energies 



for o2 and NO are given in Table III. The overlap integrals and the 

integral in Eq (II-23) have been evaluated analytically, using 2po 

Slater-type orbitals for the 0 and N atoms (74). Thus, the triplet-
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state energies are completely known, once the value of Z in Eq (II-23) 

has been fixed. However, because of the approximate nature of the 

treatment, the values cannot be expected to be accurate. By carrying 

out similar calculations on H2 (69), for which a functional represen­

tation for 3E was available (75), it was observed that, 

(II-24) 

3 In the present case, the ET values have therefore been corrected by 

using the above expression. 

TABLE III 

IONIZATION POTENTIALS AND ELECTRON AFFINITIES 
OF THE ATOMSa 

Atom I(au) A(au) 

N 0.5082 -0.0312 

0 0.6350 -0.0992 

(a) Reference 96. 

It was observed that the barrier height of the resulting potential-



28 

energy surface was dependent upon the value of Z employed in Eq (II-23). 

Thus, potential-energy surfaces with different barrier heights have 

been generated by using various values of Z ranging from 3.2 to 3.8. 

The triplet-state energies for o2 and NO computed for the various 

Z-values are given in Tables IV-VI. The triplet-state energies have 

been fitted to the following functional forms by making use of a non-

linear least squares procedure; 

and 

3ENQ = D3{exp{-2S(R - R )} + 2 exp{-S(R - R )}}, 
~µ n e n e 

R ~ R* 
n 

C{R +A} exp(-crR ), R > R* 
n n n 

(II-25) 

(II-26) 

The values of the various parameters, obtained by a non-linear 

least squares fit of the semi-empirical triplet-state energies, for the 

different Z-values, and the parameters employed in evaluating the 

singlet-state energies are given in Tables VII-X. As can be seen, the 

3 values for the extensive energy parameters, D, n3 and C, for the N-0 

1 2 
bond are 50% of those for the N-0 or N-0 bonds. This is to compensate 

for the fact that the N-03 interaction is counted twice by the functional 

form of Eq (II-1). 

v0 (R1 ,R4 ,R5) is the three-body interaction potential between the 
3 

oxygen atoms in the ozone molecule. This potential has been defined in 

terms of the three internuclear distances R1 , R4 and R5 by Murrel and 

Farantos (76). In the reactant limit, the potential for the o3 molecule 

is given by a sum of the three two-body terms and the three-body term 
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TABLE IV 

CALCULATED 3E VALUES FROM EQ (II-24) WITH Z = 3.2 

3 E from Eq (II-24) (eV) 
Rab(au) 

02 NO 

2.5 2.7423 3.0494 

2.6 2. 3815 2.7615 

2.8 1. 7251 2.1645 

3.0 1.1956 1.6159 

3.1 0.9815 1. 3754 

3.5 0.4125 0.6662 

4.0 0.1212 0.2335 

5.0 0.0074 0.0204 

6.0 0.0003 
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TABLE V 

CALCULATED 3E VALUES FROM EQ (II-24) WITH Z 3. 4 

3 
E from Eq (II-24) (eV) 

Rab (au) 
02 NO 

2.5 2.9390 3.2695 

2.6 2.5519 2. 9603 

2.7 2.1851 2.6385 

2.8 1.8480 2. 3196 

2.9 1.5459 2.0147 

3.0 1. 2804 1. 7312 

3.5 0.4416 0.7134 

4.0 0.1297 0.2499 

4.5 0.0337 0. 0776 

5.0 0.0079 0.0219 
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TABLE VI 

CALCULATED 3E VALUES FROM EQ (II-24) WITH Z = 3.8 

3 
E from Eq (II-24) (eV) 

Rab(au) 

02 NO 

2.4 3.7778 4.0243 

2.5 3.3324 3.7097 

2.6 2.8927 3.3579 

2.7 2.4762 2.9921 

2.8 2.0938 2.6297 

2.9 1. 7511 2.2836 

3.0 1.4501 1.9619 

3.2 o. 9686 1.4081 

3.5 0.4997 0.8077 

4.5 0.0380 o. 0877 
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TABLE VII 

TRIPLET-STATE ENERGY PARAMETERS FOR Z = 3.2 

Diatomic pair 
Parameter 

o-o 0-N 3o-N 

D3/eV 1. 28355 1. 66056 0.83028 

13/au-l 1.23508 1.09662 1. 09662 

A/au -2.13074 -2.48169 -2.48169 

C/eV·au-1 12586.7147 16649.8124 8324.906 

cr/au-1 3.04081 2.89868 2.89868 

R*/au 3.0 3.2 3.2 

TABLE VIII 

SINGLET-STATE ENERGY PARAMETERS 

Diatomic pair 
Parameter 

0-0 0-N 3o-N 

D/eV 5.21 Eq (II-10) DN0 /2 Eq (II-10) 

a/au 1.40478 1.45327 1.45327 

R /au 2.2816 Eq (II-13) Eq (II-13) e 
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TABLE IX 

TRIPLET-STATE ENERGY PARAMETERS FOR Z 3.4 

Diatomic pair 
Parameter 

o-o 0-N 3o-N 

D/eV 1.38512 1.55799 o. 77900 

13/au -1 
L 24345 0.88657 0.88657 

A/au -2.14125 -2.17002 -2.17002 

C/eV•au -1 14027.628 7250.1161 3625.0581 

cr/au -1 3. 05018 2. 71840 2. 71840 

R*/au 3.0 3.0 3.0 

TABLE X 

TRIPLET-STATE ENERGY PARAMETERS FOR Z 3.8 

Diatomic pair 
Parameter 

3o-N 0-0 0-N 

D/eV 1. 56728 1. 80137 0.90068 

13/au-l 1. 24965 0.94574 0.94574 

A/au -2.10705 -2.28416 -2.28416 

C/eV•au -1 14076.5935 11331.6366 5665.818 

cr/au -1 3.02263 2.78394 2.78394 

R*/au 3.0 3.0 3.0 
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(II-27) 

The three two-body terms are described by the v1 terms and v02 (RS) 

terms in Eq (II-1). The functional form used here is the one given by 

these authors (76). The Murrel-Farantos potential is defined in terms 

of the synmetry coordinates, Q1 , Q2 and Q3 which are in turn defined 

by the transformation 

,-
1//3 1/13 1/13 Ql R4 - R 0 

Q2 0 1//2 -11/2 R -1 RO 

Q3 2116 -1116 -1116 RS - R 0 (II-28) 

with R 1.5698 ~. The three-body term is given by, 
0 

(II-29) 

with 

p = 8.7066 + 6.5822 Ql + 13.9106 Qi 2 2 
- 17.193l(Q2 + Q3) 

2 2 
- 3.1421 Ql(Q2 + Q3) + 2.6323 

2 2 
Q3CQ3 - 3.0 Q2) 

(II-30) 

and 

G 
2 2 -3.0{exp{-7.5(Q2 + Q3)}} (II-31) 



35 

with the restriction 

Limit v0 
R + oo 3 

1 

O; i = 1, 4, or 5 (II-32) 

This potential function for o3 reproduces the harmonic force 

constants, equilibrium bond lengths and dissociation energy of the 

molecule. The fundamental vibration wavenumbers of o3 have been calcu-

lated by a variational method (77) and the results are compared with 

experiment in Table XI (76). The agreement between calculated and 

experimental values is very good. However, it must be remembered that 

the potential is based on a quadratic force-field assumption for the 

molecule and exact agreement is not expected. The good agreement with 

the known experimental features of the o3 potential makes it suitable 

for a dynamical study. 

TABLE XI 

FUNDAMENTAL VIBRATIONAL WAVENUMBERS OF o3 
CALCULATED BY A VARIATIONAL METHOD 

Theoretical (Ref. 76) 

E . a xperiment 

(a) Reference (82). 

Sym. st. 
cm-1 

1098 

1103 

Bend 
cm-l 

707 

701 

Asym. st. 
cm-l 

1043 

1042 



v0 (R5) and VN0 (R7) are simple Morse functions for the corres-
2 

ponding diatomic species given by 
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=DAB {exp(-2aAB(R. - R )) - 2.0 exp(-aAB(R. - R ))} 
i e i e 

(II-33) 

In the case of the N-0 bond, both DAB and Re are variables and are 

functions of the N-0 bond distance that is being formed or broken as 

the reaction proceeds. The functional forms for these parameters have 

been given earlier in Eq (II-10) to (II-13). 

The bending potential, VN02 (ei) of the N02 molecule has been 

assumed to have a harmonic form, 

(II-34) 

where Si is the 0-N-O angle in the N02 molecule. kbi is not a constant, 

but attenuates as the N-0 bond in the N02 molecule is being stretched. 

It should be noted that the nature of the attenuation will have a 

strong influence on the calculated cross sections. In order to obtain 

information about the attenuation of the bending forces, semi-empirical 

quantum mechanical calculations have been carried out. 

The force constant ~i has been computed under the assumption of a 

harmonic potential between the bonds. That is, for a given finite 

angular displacement, 68 = e. - e we define 
i e' 

6E o.s kb.cs. - e )2 
i i e (II-35) 

For various asymmetrically stretched configurations of the N02 molecule, 

the 6E values have been computed as a function of the displacement from 

the equilibrium angle using INDO open shell methods. The kbi's were 



then evaluated from Eq (II-35) for every ~8 value. The results were 

then extrapolated to ~8 + 0 to obtain kbi as a function of Ri. For 

the equilibrium configuration of N0 2(Ri = 2.25754 au), this yielded a 

value of 1.646 mdyne R/rad2 for the force constant, ~i' which com­

pares very well with the valence force field value of 1.624 mdyne 

R/rad2 (78). 0 
The values of kbi/kbi evaluated by these procedures are 

given in Table XII. These were fitted to the following functional 

form by using a non-linear least squares technique. 

2.2583 

2.3818 

2.4575 

TABLE XII 

INDO COMPUTED VARIATION OF 0-N-O BENDING FORCE 
CONSTANT AS A FUNCTION OF ~-O 

1.646 

0.82 

0.7156 

1.0 

0.4982 

0.4347 

(a) The other N-0 bond in N02was fixed at the equilibrium value. 
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4.32629{exp{-0.95627(R. - 2.25754)}} 
l 

(II-36) 

where Ri is the shorter of R2 , R6 and R3, which is the newly formed N-0 

bond. 
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The equilibrium angle, ee' has been computed for the N02 molecule 

as a function of Ri. It has been observed that 6e decreases linearly 

as one of the N-0 bonds in N02 is stretched. The results are shown in 

Table XIII and Figure 2. These results have been fitted to the 

following functional form by a linear least squares procedure. 

e e 
2.40855 

i = 2, 3 or 6 

0.458367(R. - 2.2583), 
]. 

R. are in au and 6 is given in radians. 
l. e 

TABLE XIII 

INDO COMPUTATIONS OF THE VARIATION OF THE EQUILIBRIUM 
ANGLE IN N02 AS A FUNCTION OF ~-O 

2.2583 

2.3818 

2.4575 

e /deg 
e 

138 

136 

132 

(a) The other N-0 bond in N02was fixed at the 
equilibrium value. 

(II-37) 

V (R.) are the short-range repulsive interactions operating 
00 ]. 

between pairs of oxygen atoms, among which no bond formation occurs. 
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2.24 2.28 2.32 2.35 2.40 2.44 
R (RlJl 

Figure 2. Variation of the Equilibrium Angle in N02 with ~-o· 
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These have been assumed to be of the following form: 

V (R.) 
00 ]. 

2 = exp(-1.8511 R.), 
]. 

i = 8, 9 and 10 (II-38) 

where R. is the internuclear distance in R. 
]. 

Vatt(Ri, R3) is an attenuation term described by, 

v0. (R. ){ tanh 
2 ]. 

(II-39) 

where R. is the shorter of the two 0-0 bonds in ozone. This term 
]. 

operates whenever the N atom approaches the central oxygen atom in o3 

(R3 ~ R~). When the N atom approaches the central oxygen atom, one of 

the 0-0 bonds in o3 is stretched (since the VI term becomes highly 

repulsive whenever all three atoms are close to one another), while the 

other 0-0 bond is not significantly affected. This will eventually 

lead to the formation of N03 + O, which is not desired. The Vatt 

(Ri, R3) term functions by attenuating the interaction between the 

shorter of the two 0-0 bonds in ozone, which would require a bond 

formation between 10 and 2o. This term enables us to leave open the 

channel leading to reaction through attack of N on the central oxygen 

atom. 

In order to study the effect of changing the barrier height of 

the potential-energy surface on the observed reaction dynamics, four 

different surfaces have been employed. These have been denoted Sl, 

S2, S3 and S4. These surfaces show a marked difference in the barrier 

heights, without a significant alteration of other surface features. 

Surface Sl has been obtained by using a value of Z = 3.2 with 

V (R., R3) set equal to zero. The three-body interaction potentials, att i 



VI' have been interpolated using a three-dimensional cubic-spline 

technique (79), while carrying out classical trajectory calculations 

on this surface, Sl. Surfaces S2, S3 and S4 have been obtained by 

using Eq (II-1) for the total potential, and with Z values 3.2, 3.4 

and 3.8, respectively. 

It has been observed that the position of the saddle point plays 

a major role in determining the reaction dynamics, at least in the 

case of atom-diatomic molecule reactions (18). In order to study the 

effect of changing the saddle-point position on polyatomic reaction 

dynamics, a surface, SS, has been formulated which has approximately 

the same barrier height as S3 but differs in the location of the 

barrier. To obtain surface SS, the potential VI has been replaced by 

a numerical grid of values that have been interpolated by using a 

three-dimensional cubic spline technique (79). The numerical grid of 

node values employed is given in Table XIV. 
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Contour maps of two-dimensional sections of these multi-dimensional 

hypersurfaces have been dravm by imposing suitable constraints on the 

coordinates. Representative maps of each of these surfaces are shown 

in Figures 3 to 10. The angles S, e (see Figure 1) and the bond 

distances R4 and R7 have been fixed at their respective equilibrium 

values. 

The contour lines have been plotted as a function of R1 and R2 

for various a values. The maps shown correspond to the a values for 

the minimum energy path. The maps of the surfaces not shown are quite 

similar in appearance. Reactants enter from the top of the figure and 

products exit from the right. The saddle point geometries have been 

determined correct to ± 0.01 au, using a two-dimensional spline 



R2(R6) 

1.50 
2.34 
2.62 
2.90 
3.18 
3.36 
3.64 
4.20 
4.76 
5.32 
6.10 
7.50 

12.00 
25.00 

R2(R6) 

1.50 
2.34 
2.62 
2.90 
3.18 
3.36 
3.64 
4.20 
4.76 
5.32 
6.10 
7.50 

12.00 
25.00 

TABLE XIV 

THE THREE-BODY INTERACTION POTENTIAL, VI, FOR o3 
-NO. ENERGIES ARE IN EV, DISTANCES ARE IN 

}\ AND ANGLES ARE IN RADIANS 

a.= 0.34 a.= 0.69 a. = 1. 04 a. = 1. 39 

A. Rl(R4) = 1.50 

51.6813 40.2296 33.4288 26.1775 
22.8973 17.1424 12.8334 12.0923 
19.9985 15.1877 12.7973 12.5362 
17.9111 14.0795 13.2957 13.2023 
15.7087 14.0038 14.1110 14.1335 
14.6161 14.1335 14.5237 14.5651 
14.1672 14.5047 15.1924 15.1410 
14.6702 15.2366 15.5580 15.4869 
15.3234 15.4993 15.5319 15.5305 
15.5176 15.5409 15.5524 15.5601 
15.5646 15.5719 15.5791 15.5840 
15.5928 15.5945 15.5959 15.5968 
15.5990 15.5990 15.5990 15.5990 
15.5990 15.5990 15.5990 15.5990 

a. = 1. 74 a. = 1. 90 a.= 2.44 a.= 2.79 

A. R1(R4) = 1.50 

25.1620 25 .1767 25.5346 25.6649 
11. 9360 11. 8645 11.7091 11. 6811 
12.3816 12.3340 12.2321 12.2153 
13.0884 13.0453 12.9822 12. 9723 
14.0159 13.9806 13.9332 13. 9261 
14.4423 14.4108 14.3696 14.3634 
15.0107 14.9832 14.9496 14.9444 
15.4482 15.4406 15.4331 15.4321 
15.5319 15.5329 15.5352 15.5359 
15. 5649 15.5663 15.5687 15.5693 
15.5865 15.5872 15.5882 15.5885 
15.5972 15.5973 15.5975 15.5975 
15.5990 15.5990 15.5990 15.5990 
15.5990 15.5990 15.5990 15.5990 
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a. = 1.57 

25.3337 
11. 9955 
12.4360 
13.1475 
14.0699 
14.4938 
15.0588 
15.4617 
15.5309 
15. 5629 
15.5855 
15.5971 
15.5990 
15.5990 

a.= 3.14 

25.7068 
11.6737 
12.2111 
12.9700 
13.9244 
14.3619 
14.9431 
15.4319 
15.5361 
15.5694 
15.5885 
15.5975 
15.5990 
15.5990 
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TABLE XIV (Continued) 

R2(R6) a.= 0.34 a. = 0.69 a. = 1. 04 a. = 1. 39 a. = 1.57 

B. Rl(R4) = 2.34 

1. 50 20.2301 12.1733 6.6849 6.0943 6.1119 
2.34 8.6607 -0.8370 -3.7363 -4.7627 -5.1824 
2.62 7.0484 -1. 4464 -4.0203 -4.9831 -5.2665 
2.90 4.8584 -2.2252 -4.2403 -5.0099 -5.2021 
3.18 2.9225 -3.2042 -4. 4071 -4.9347 -5.0403 
3.36 1. 6502 -3. 7112 -4.5084 -4.9217 -4. 9889" 
3.64 -0.7848 -4.3163 -4.7776 -4.9982 -5.0264 
4.20 -4.1830 -4.7174 -4.9382 -4.9878 -4.9869 
4.76 -4.7587 -4.9183 -4.9974 -4.9949 -4.9895 
5.32 -4.9601 -5.0430 -5.0529 -5.0408 -5.0366 
6.10 -5.2105 -5.2122 -5.2000 -5.1921 -5.1901 
7.50 -5.1913 -5.1855 -5.1815 -5.1799 -5.1796 

12.00 -5 .1778 -5.1778 -5.1778 -5.1778 -5.1778 
25.00 -5.1778 -5.1778 -5.1778 -5.1778 -5.1778 

R2(R6) a = 1. 74 a = 1. 90 a = 2. 44 a= 2.79 a.= 3.14 

B. Rl(R4) = 2.34 

1.50 6.1481 6.1785 6.2422 6.2636 6.2703 
2.34 -5.3902 -5.5014 -5.6431 -5.6632 -5.6682 
2.62 -5.4147 -5.4917 -5.5752 -5.5863 -5.5889 
2.90 -5.2944 -5.3398 -5.0836 -5.0888 -5.0899 
3.18 -5.0863 -5.1078 -4.8229 -4.8240 -4.8242 
3.36 -5.0157 -5.0278 -4.7323 -4.6521 -4.6521 
3.64 -5.0347 -5.0374 -4.7340 -4.7329 -4.7326 
4.20 -4.9836 -4.9808 -4.6754 -4.6743 -4.6740 
4.76 -4.9857 -4.9832 -4.8797 -4. 7791 -4.6789 
5.32 -5.0342 -5.0327 -5.0308 -5.0305 -5.0304 
6.10 -5.1891 -5.1885 -5.1878 -5 .1877 -5.1876 
7.50 -5.1794 -5.1793 -5.1792 -5.1792 -5.1792 

12.00 -5.1778 -5.1778 -5.1778 -5.1778 -5.1778 
25.00 -5.1778 -5.1778 -5.1778 -5.1778 -5.1788 
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TABLE XIV (Continued) 

R2(R6) a = 0.34 a = 0.69 a. = 1. 04 a = 1. 39 Cl= 1.57 

c. Rl (R4) = 2.62 

1.50 16.7270 9.2149 6.6349 6.6144 6.6603 
2.34 6.6448 -1. 8762 -4.4596 -5.4088 -5.6894 
2.62 6.7594 -L 9584 -4.3456 -5.3032 -5.5368 
2.90 5.6974 -2.1950 -4.2420 -5.0922 -5.2616 
3.18 4.5022 -2.6835 -3.9230 -4.5258 -4.6243 
3. J6 3.3516 -3.2419 -4.0952 -4.5034 -4.5667 
3.64 1.5760 -3.7544 -4.1956 -4.4184 -4.4444 
4.20 -3.1266 -4.2564 -4.4398 -4.4882 -4.4866 
4.76 -4.3020 -4.4009 -4.4887 -4.4849 -4.4795 
5.32 -4.3567 -4.4483 -4.4629 -4.4498 -4.4456 
6.10 -4.4901 -4.5010 -4.4872 -4.4785 -4.4765 
7.50 -4.4819 -4.4737 -4.4685 -4.4666 -4.4663 

12.00 -4.4646 -4.4646 -4.4645 -4.4645 -4.4645 
25.00 -4.4645 -4.4645 -4.4645 -4.4645 -4.4645 

R2(R6) Cl = 1. 74 Cl = 1. 90 a. = 2.44 a= 2.79 Cl= 3.14 

c. Rl(R4) = 2.62 

1.50 6.7592 6.8213 6.9024 6.9274 6.9350 
2.34 -5.8362 -5.9124 -5.9952 -6.0062 -6.0086 
2.62 -5.6480 -5.7030 -5.9566 -5.9634 -5. 9648 
2.90 -5.3362 -5.3719 -5.3026 -5.3062 -5.3070 
3.18 -4.6643 -4.6832 -4.3447 -4.3958 -4.3960 
3.36 -4.5904 -4.6012 -4.2550 -4.3051 -4.3050 
3.64 -4.4516 -4.4546 -4.1516 -4.1508 -4.1506 
4.20 -4.4834 -4.4812 -4.1766 -4.1758 -4.1756 
4.76 -4.4760 -4.4738 -4. 3710 -4.2705 -4.1704 
5.32 -4.4433 -4.4420 -4.4405 -4.4403 -4.4402 
6.10 -4.4756 -4.4751 -4.4745 -4.4744 -4.4743 
7.50 -4.4661 -4.4660 -4.4660 -4.4660 -4.4660 

12.00 -4.4645 -4.4645 -4.4645 -4.4645 -4.4645 
25.00 -4.4645 -4.4645 -4.4645 -4.4645 -4.4645 
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TABLE XIV (Continued) 

R2(R6) a. = 0.34 a.= 0.69 a. = 1. 04 a. = 1. 39 a. = 1.57 

D. Rl(R4) = 2.90 

1. 50 12.8988 7. 9284 7.2422 7.4493 7.5968 
2.34 4.5900 -2.7032 -4.6820 -5.3922 -5.5728 
2.62 5.7050 -2.4667 -4.4151 -5.1941 -5.3531 
2.90 6.0033 -2.0413 -3.9247 -4.7351 -4.8633 
3.18 5.4700 -2.3598 -3.5515 -4.1704 -4.2575 
3.36 4.8995 -2.6290 -3.3281 -3.7868 -3.8462 
3.64 3.5379 -3.0520 -3.3323 -3.5681 -3.5935 
4.20 -0.9039 -3.4252 -3.4950 -3.5418 -3.5403 
4.76 -3.4835 -3.4547 -3.5201 -3.5150 -3.5098 
5.32 -3.5355 -3.4914 -3.5033 -3.4892 -3.4853 
6.10 -3.4813 -3.4931 -3. 4776 -3.4682 -3.4663 
7.50 -3.4763 -3.4654 -3.4587 -3.4567 -3.4563 

12.00 -3.4547 -3.4547 -3.4546 -3.4546 -3.4546 
25.00 -3.4546 -3.4546 -3.4546 -3.4546 -3.4546 

R2 (R6) a. = 1. 74 a. = 1. 90 a.= 2.44 a.= 2.79 a.= 3.14 

D. Rl (R4) = 2.90 

1.50 7.6880 7.7459 7.8480 7.8732 7.8807 
2.34 -5.6594 -5.7018 -5.7422 -5.7468 -5.7478 
2.62 -5.4231 -5.4564 -5.6843 -5.6875 -5.6881 
2.90 -4.9159 -4.9407 -4.8587 -4.8607 -4.8611 
3.18 -4.2909 -4.3070 -4.1156 -4.1366 -4.1368 
3.36 -3.8676 -3.8783 -3.5814 -3.5818 -3.5818 
3.64 -3.6008 -3.6048 -3.6025 -3.6021 -3.6020 
4.20 -3.5376 -3.5363 -3.5325 -3.5319 -3.5318 
4.76 -3.5066 -3.5047 -3.5026 -3.5023 -3.5022 
5.32 -3.4832 -3.4821 -3.4809 -3.4807 -3.4807 
6.10 -3.4654 -3.4650 -3.4645 -3.4644 -3.4644 
7.50 -3.4562 -3.4562 -3.4560 -3.4560 -3.4560 

12.00 -3.4546 -3.4546 -3.4546 -3.4546 -3.4546 
25.00 -3.4546 -3.4546 -3.4546 -3. 4546 -3.4546 
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TABLE XIV (Continued) 

R2 (R6) a.= 0.34 a = 0.69 a= 1.04 a. = L 39 a. = L 57 

E. Rl (R4) = 3.18 

1.50 9.4871 7.7917 7.9337 8.2960 8.4382 
2.34 2.9122 -3. 4345 -4.5708 -5.0498 -5.1465 
2.62 4.3522 -3.1819 -4.3190 -4.8437 -4.9305 
2.90 5.4938 -2.7398 -3.7814 -4.3005 -4.3765 
3.18 5. 8964 -2.4700 -3.0528 -3.6007 -3.6654 
3.36 5.8757 -2.3762 -2.5890 -3.0654 -3.1167 
3.64 4.9910 -2.6052 -2.4699 -2.7415 -2.7681 
4.20 1.9120 -2. 7744 -2.5809 -2.6297 -2.6295 
4.76 -2.7025 -2.6496 -2.5987 -2.5927 -2.5881 
5.32 -3.0055 -2.5936 -2.5809 -2.5662 -2.5626 
6.10 -2.6305 -2.5746 -2.5555 -2.5456 -2.5438 
7.50 -2.5594 -2.5449 -2.5367 -2.5344 -2.5341 

12.00 -2.5325 -2.5325 -2.5324 -2.5324 -2.5324 
25 .00 -2.5324 -2.5324 -2.5324 -2.5324 -2.5324 

R2(R6) a= L 74 a. = 1. 90 a.= 2.44 a.= 2.79 a = 3.14 

E. Rl(R4) = 3.18 

1. 50 8.5266 8.5841 8.6829 8.7063 8. 7131 
2.34 -5.1882 -5.2075 -5.2199 -5.2206 -5.2207 
2.62 -4.9652 -4. 9813 -4.9897 -4.9902 -4.9903 
2.90 -4.4051 -4.4187 -4.4247 -4.4253 -4.4254 
3.18 -3.6887 -3.7013 -3.7049 -3.7055 -3.7056 
3.36 -3.1345 -3.1450 -3.1463 -3.1467 -3.1468 
3.64 -2. 7762 -2.7821 -2.7801 -2. 7801 -2.7801 
4.20 -2.6278 -2.6281 -2.6245 -2.6241 -2.6241 
4.76 -2.5855 -2.5841 -2.5824 -2.5822 -2.5821 
5.32 -2.5608 -2.5598 -2.5590 -2.5588 -2.5588 
6.10 -2.5430 -2.5426 -2.5423 -2.5422 -2.5422 
7.50 -2.5340 -2.5340 -2.5338 -2.5338 -2.5338 

12.00 -2.5324 -2.5324 ..,.2.5324 -2.5324 -2.5324 
25.00 -2.5324 -2.5324 -2.5324 -2.5324 -2.5324 
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TABLE XIV (Continued) 

R2(R6) CJ. = o. 34 CJ. = 0.69 CJ. = 1.04 CJ. = 1. 39 CJ. = 1. 57 

F. Rl(R4) = 3. 36 

1.50 8.5357 7.9987 8.3510 8.7598 8.8909 
2.34 1. 5565 -3.9855 -4.7203 -5.0926 -5.1530 
2.62 3.3092 -3.5857 -4.3631 -4.7116 -4.7653 
2.90 4.8830 -2.9894 -3.6336 -4.0054 -4.0532 
3.18 5. 7722 -2.6191 -2.8493 -3.2545 -3.2998 
3.36 5. 9722 -2.4927 -2.3850 -2.7919 -2.8322 
3.64 5.5547 -2.5147 -2.0520 -2.3440 -2.3698 
4.20 3.2100 -2.5273 -2.0937 -2.1474 -2.1484 
4.76 -2.0485 -2.3035 -2.1058 -2.0999 -2.0959 
5.32 -2.8735 -2.1370 -2.0873 -2. 0724 -2.0691 
6.10 -2.2523 -2.0857 -2.0620 -2.0520 -2.0503 
7.50 -2.0704 -2.0528 -2.0434 -2.0410 -2.0407 

12.00 -2.0392 -2.0391 -2.0391 -2.0391 -2.0391 
25.00 -2.0391 -2.0391 -2.0391 -2.0391 -2.0391 

R2(R6) a = 1. 74 a = 1. 90 a - 2.44 a= 2.79 a = 3.14 

F. Rl (R4) = 3.36 

1.50 8.9736 9.0279 9.1190 9.1401 9.1462 
2.34 -5.1763 -5.1866 -5.1890 -5.1885 -5.1883 
2.62 -4.7845 -4.7930 -4.7941 -4.7938 -4.7937 
2.90 -4.0695 -4.0776 -4.0780 -4. 0779 -4. 0779 
3.18 -3.3152 -3.3242 -3.3245 -3.3248 -3.3248 
3.36 -2.8456 -2.8546 -2.8540 -2.8542 -2.8543 
3.64 -2. 3778 -2.3846 -2.3822 -2.3823 -2.3823 
4.20 -2.1475 -2.1490 -2.1453 -2.1451 -2.1451 
4.76 -2.0936 -2. 0928 -2. 0911 -2.0909 -2.0909 
5.32 -2.0675 -2.0665 -2.0659 -2.0658 -2.0658 
6.10 -2.0496 -2.0493 -2.0489 -2.0489 -2.0489 
7.50 -2.0406 -2.0405 -2.0405 -2.0405 -2.0405 

12.00 -2.0391 -2.0391 -2.0391 -2.0391 -2.0391 
25.00 -2.0391 -2.0391 -2.0391 -2.0391 -2.0391 
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TABLE XIV (Continued) 

R2(R6) a. = 0.34 a. = 0.69 a. = 1. 04 a. = 1. 39 a.=1.57 

G. Rl (R4) = 3.64 

1. 50 8.2769 8.4751 8.9901 9.3424 9.4519 
2.34 -0.9245 -4.4999 -4.9222 -5.1254 -5.1506 
2.62 1. 4 791 -3.9707 -4.3836 -4.5797 -4. 6011 
2.90 3.4464 -3.3253 -3.6332 -3.8257 -3.8444 
3.18 4.9809 -2. 7212 -2.6808 -2.8913 -2. 9110 
3.36 5.5227 -2.5767 -2.2468 -2.4742 -2.4944 
3.64 5. 7743 -2.4790 -1. 7010 -1. 9465 -1. 9653 
4.20 4.3933 -2.3207 -1. 4998 -1.5692 -1. 5725 
4.76 -0.5447 -2.0008 -1. 4984 -1. 4945 -1. 4916 
5.32 -2.7566 -1. 6386 -1.4788 -1. 4641 -1. 4613 
6.10 -2.1474 -1. 4923 -1.4539 -1. 4437 -1. 4423 
7.50 -1. 4748 -1.4470 -1. 4356 -1. 4331 -1. 4328 

12.00 -1.4314 -1.4313 -1.4312 -1. 4312 -1. 4312 
25.00 -1.4312 -1. 4312 -1. 4312 -1.4312 -1. 4312 

R2(R6) a. = 1. 74 a. = 1. 90 a.= 2.44 a.= 2.79 a. = 3.14 

G. Rl(R4) = 3.64 

1.50 9.5217 9.5673 9.6427 9.6597 9.6646 
2.34 -5.1574 -5.1594 -5.1550 -5.1537 -5.1534 
2.62 -4.6062 -4.6080 -4.6037 -4.6028 -4.6025 
2.90 -3.8487 -3. 8511 -3.8472 -3.8467 -3.8465 
3.18 -2.9162 -2.9203 -2.9173 -2. 9171 -2.9170 
3.36 -2.5001 -2.5053 -2.5024 -2.5023 -2.5023 
3.64 -1. 9709 -1. 9771 -1. 9739 -1. 9739 -1. 9739 
4.20 -1. 5728 -1. 5759 -1. 5722 -1. 5721 -1. 5721 
4.76 -1. 4900 -1. 4903 -1. 4883 -1. 4882 -1. 4882 
5.32 -1. 4600 -1. 4594 -1. 4588 -1. 4588 -1. 4588 
6.10 -1.4417 -1. 4413 -1. 4412 -1. 4411 -1. 4411 
7.50 -1. 4327 -1. 4327 -1. 4326 -1. 4326 -1.4326 

12.00 -1.4312 -1. 4312 -1. 4312 -1. 4312 -1. 4312 
25.00 -1. 4312 -1.4312 -1.4312 -1. 4312 -1. 4312 
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TABLE XIV (Continued) 

R2 (R6) Ct = 0.34 Ct = 0.69 Ct = 1. 04 Ct = 1.39 Ct = 1.57 

H. Rl (R4) = 4.20 

1.50 9.0298 9.4693 9.8645 10.0919 10.1569 
2.34 -4.3196 -4.8413 -5.0518 -5.0988 -5.0974 
2.62 -3.1573 -4.3038 -4.4886 -4.5331 -4.5308 
2.90 -1. 0746 -3.6019 -3.7127 -3.7532 -3.7505 
3.18 1. 7621 -2.8364 -2.7297 -2.7685 -2.7667 
3.36 3.0883 -2.5672 -2.2640 -2.3039 -2.3029 
3.64 4.3694 -2. 2968 -1. 6026 -1. 6518 -1.6529 
4.20 5.0445 -2.0456 -0.8753 -0.9543 -0.9580 
4.76 3. 2774 -1. 6429 -0.7497 -0.7605 -0.7602 
5.32 -1. 8574 -1. 2353 -0.7253 -0.7141 -0.7124 
6.10 -2.4250 -0.8325 -0.7017 -0.6921 -0.6911 
7 .50 -0.8829 -0.7016 -0.6845 -0.6820 -0.6817 

12.00 -0.6804 -0.6802 -0.6802 -0.6802 -0. 6802 
25.00 -0.6802 -0.6802 -0.6802 -0.6802 -0.6802 

R2(R6) Ct = 1. 74 Ct = 1. 98 Ct = 2.44 Ct= 2.79 Ct = 3.14 

H. Rl(R4) = 4.20 

1.50 10.1984 10.2254 10.2687 10.2782 10.2808 
2.34 -5.0939 -5.0909 -5.0855 -5.0844 -5.0841 
2.62 -4.5272 -4.5247 -4.5201 -4.5192 -4.5190 
2.90 -3.7473 -3.7456 -3.7415 -3.7409 -3.7408 
3.18 -2.7643 -2.7641 -2.7603 -2.7599 -2.7598 
3.36 -2.3011 -2.3019 -2.2981 -2.2979 -2.2978 
3.64 -1. 6524 -1. 6548 -1. 6510 -1. 6509 -1. 6509 
4.20 -0.9589 -0.9631 -0.9593 -0.9593 -0.9593 
4.76 -0.7599 -0.7624 -0.7595 -0.7595 -0.7595 
5.32 -0. 7117 -0. 7120 -0. 7112 -0. 7111 -0. 7111 
6.10 -0.6906 -0.6902 -0.6904 -0.6903 -0.6903 
7.50 -0.6816 -0.6816 -0.6816 -0.6816 -0.6816 

12.00 -0.6802 -0.6802 -0.6802 -0.6802 -0.6802 
25.00 -0.6802 -0.6802 -0.6802 -0.6802 -0.6802 
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TABLE XIV (Continued) 

R2 (R6) a.= 0.34 a.= 0.69 a. = 1. 04 a.= 1.39 a.= 1.57 

I. Rl(R4) = 4.76 

1.50 9.8705 10.1422 10. 3564 10.4742 10. 5082 
2.34 -4.8139 -4.9683 -5.0458 -5.0430 -5.0376 
2.62 -4.2680 -4.3883 -4.4787 -4.4746 -4.4691 
2.90 -3. 5392 -3.6143 -3. 6971 -3.6913 -3.6860 
3.18 -2.6362 -2. 7173 -2.7073 -2.7002 -2.6954 
3.36 -1. 9837 -2.3629 -2.2369 -2.2293 -2.2250 
3.64 -0. 4712 -1. 9743 -1. 5664 -1. 5599 -1. 5566 
4.20 3.2928 -1. 6129 -0.7684 -0. 7741 -0. 7733 
4.76 3.4434 -1. 3718 -0.4255 -0.4486 -0.4493 
5.32 -0.2584 -1.0500 -0.3584 -0.3563 -0.3559 
6.10 -2.5687 -0.6323 -0.3352 -0.3276 -0.3269 
7.50 -1. 0940 -0.3495 -0.3197 -0.3173 -0. 3171 

12.00 -0.3162 -0.3157 -0.3156 -0.3156 -0.3156 
25.00 -0.3156 -0.3156 -013156 -013156 -0.3156 

R2(R6) a. = 1. 74 a. = 1. 90 a. = 2.44 a.= 2.79 a. = 3.14 

I. Rl(R4) = 4.76 

1.50 10.5298 10.5437 10.5657 10.5704 10.5717 
2.34 -5.0338 -5.0313 -5.0278 -5. 0271 -5.0270 
2.62 -4.4655 -4.4633 -4.4604 -4.4599 -4.4598 
2.90 -3.6827 -3.6807 -3.6786 -3.6783 -3.6782 
3.18 -2.6926 -2.6912 -2.6894 -2.6892 -2.6891 
3.36 -2.2226 -2.2217 -2.2200 -2.2198 -2.2197 
3.64 -1. 5548 -1. 5549 -1. 5530 -1.5529 -1. 5528 
4.20 -0. 7728 -0.7751 -0.7723 -0.7723 -0. 7723 
4.76 -0.4495 -0.4523 -0.4495 -0.4495 -0.4495 
5.31 -0.3557 -0.3569 -0.3555 -0.3555 -0.3555 
6.10 -0.3267 -0.3266 -0.3265 -0.3265 -0.3265 
7.50 -0. 3171 -0.3169 -0.3170 -0.3170 -0.3170 

12.00 -0.3156 -0.3156 -0.3156 -0.3156 -0.3156 
25.00 -0.3156 -0.3156 -0.3156 -0.3156 -0.3156 
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TABLE XIV (Continued) 

R2(R6) a = 0.34 a = 0.69 a = 1. 04 a = 1.39 ·a= 1.57 

J. Rl(R4) = 5.32 

1.50 10.3726 10.4989 10.6018 10.6594 10.6761 
2.34 -4.9232 -5.0051 -5.0149 -5.0028 -4.9986 
2.62 -4.3309 -4.4322 -4.4478 -4.4346 -4.4304 
2.90 -3.6371 -3.6490 -3.6655 -3.6514 -3.6475 
3.18 -2. 9719 -2.6761 -2.6747 -2.6599 -2.6563 
3.36 -2.8155 -2.2321 -2.2035 -2.1885 -2.1851 
3.64 -2.6596 -1. 6528 -1. 5319 -1. 5171 -1. 5142 
4.20 -1. 8072 -1.1999 -0.7305 -0.7190 -0. 7172 
4.76 -0.2440 -1.0363 -0.3557 -0.3531 -0.3526 
5.32 -0.3273 -0.8392 -0.2002 -0.2065 -0.2066 
6.10 -2.3022 -0.5404 -0.1625 -0.1581 -0.1578 
7.50 -1. 5670 -0.2112 -0.1487 -0.1466 -0.1464 

12.00 -0.1460 -0.1451 -0.1450 -0.1449 -0.1449 
25.00 -0.1449 -0.1449 -0.1449 -0.1449 -0.1449 

R2 (R6) a = 1. 74 a = 1. 90 a = 2.44 a= 2.79 a = 3.14 

I.• J. Rl (R4) = 5.32 

1. 50 10.6866 10.6933 10.7039 10.7061 10.7067 
2.34 -4.9961 -4.9947 -4.9928 -4.9925 -4.9924 
2.62 -4.4281 -4.4268 -4.4253 -4.4251 -4.4250 
2.90 -3.6454 -3.6442 -3.6430 -3.6429 -3.6428 
3.18 -2.6545 -2.6535 -2.6526 -2.6525 -2.6524 
3.36 -2.1835 -2.1826 -2.1819 -2.1818 -2.1818 
3.64 -1. 5129 -1. 5122 -1.5117 -1. 5116 -1.5116 
4.20 -0. 7165 -0.7167 -0.7159 -0.7159 -0.7159 
4.76 -0.3524 -0.3536 -0.3522 -0.3522 -0.3522 
5.32 -0.2066 -0.2078 -0.2066 -0.2066 -0.2066 
6.10 -0.1577 -0.1578 -0.1576 -0.1576 -0.1576 
7.50 -0.1464 -0.1462 -0.1464 -0.1464 -0.1464 

12.00 -0.1449 -0.1449 -0.1449 -0.1449 -0.1449 
25.00 -0.1449 -0.1449 -0.1449 -0.1449 -0.1449 
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TABLE XIV (Continued) 

R2(R6) a = 0.34 a= 0.69 a = 1. 04 a = 1. 39 a = 1. 57 

K. Rl(R4) = 6.10 

1.50 10.6678 10.7105 10.7461 10.7663 10. 7721 
2.34 -4.9931 -4.9948 -4.9825 -4.9746 -4. 9727 
2.62 -4.4175 -4.4293 -4.4157 -4.4069 -4.4050 
2.90 -3.6297 -3.6487 -3.6338 -3.6243 -3.6225 
3.18 -2.6898 -2.6610 -2.6432 -2.6333 -2.6316 
3.36 -2.3011 -2.1934 -2.1722 -2.1622 -2.1605 
3.64 -2.0873 -1. 5342 -1. 5010 -1. 4909 -1.4894 
4.20 -2.3709 -0.8168 -0.7008 -0.6914 -0.6903 
4.76 -2.5483 -0.6146 -0.3264 -0.3189 -0.3182 
5.32 -2.2961 -0.5340 -0.1557 -0.1517 -0.1514 
6.10 -2.2354 -0.3973 -0.0680 -0.0689 -0.0689 
7.50 -2.1222 -0.1627 -0.0518 -0.0503 -0.0502 

12.00 -0.0518 -0.0489 -0.0487 -0.0487 -0.0487 
25.00 -0.0487 -0.0487 -0.0487 -0.0487 -0.0487 

R2(R6) a = 1. 74 a = 1. 90 a = 2.44 a= 2.79 a = 3.14 

' K. Rl(R4) = 6.10 

1.50 10. 7758 10. 7781 10.7818 10.7825 10.7827 
2.34 -4.9716 -4.9710 -4.9703 -4.9702 -4.9702 
2.62 -4.4040 -4.4035 -4.4029 -4.4028 -4.4028 
2.90 -3.6216 -3.6212 -3.6207 -3.6206 -3.6206 
3.18 -2.6308 -2.6304 -2.6300 -2.6300 -2.6300 
3.36 -2.1598 -2.1595 -2.1591 -2.1591 -2.1591 
3.64 -1. 4888 -1.4884 -1. 4883 -1. 4883 -1. 4882 
4.20 -0.6899 -0.6895 -0.6896 -0.6896 -0.6896 
4.76 -0.3180 -0.3179 -0.3178 -0.3178 -0.3178 
5.32 -0.1513 -0.1514 -0.1513 -0.1513 -0.1513 
6.10 -0.0689 -0. 0690 -0.0689 -0.0689 -0.0689 
7.50 -0.0502 -0.0499 -0.0502 -0.0502 -0.0502 

12.00 -0.0487 -0.0487 -0.0487 -0.0487 -0.0487 
25.00 -0.0487 -0.0487 -0.0487 -0.0487 -0.0487 
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TABLE XIV (Continued) 

R2(R6) a.= 0.34 a.= 0.69 a. = 1. 04 a. = 1. 39 a. = 1.57 

L. Rl(R4) = 7.50 

1.50 10.7999 10.8056 10.8106 10.8134 10.8142 
2.34 -4. 9720 -4.9662 -4. 9622 -4.9606 -4.9602 
2.62 -4.4084 -4.4003 -4.3951 -4.3932 -4.3929 
2.90 -3.6305 -3.6197 -3.6130 -3.6110 -3.6106 
3.18 -2.6449 -2.6308 -2.6225 -2.6203 -2.6199 
3.36 -2.1779 -2.1611 -2.1517 -2.1493 -2.1490 
3.64 -1.5175 -1.4922 -1. 4808 -1.4784 -1.4781 
4.20 -0.8608 -0.6986 -0.6818 -0.6793 -0.6791 
4.76 -1. 0729 -0.3380 -0.3090 -0.3066 -0.3064 
5.32 -1. 5590 -0.2025 -0.1399 -0.1378 -0.1377 
6.10 -2.1203 -0.1604 -0.0473 -0.0459 -0.0458 
7.50 -2.3047 -0.1002 -0.0094 -0.0094 -0.0094 

12.00 -0.0522 -0.0074 -0.0068 -0.0068 -0.0068 
25.00 -0.0068 -0.0068 -0.0068 -0.0068 -0.0068 

R2(R6) a = 1. 74 a = 1. 90 a = 2.44 a.= 2.79 a = 3.14 

L. Rl (R4) = 7.50 

1.50 10.8147 10.8150 10. 8156 10.8157 10.8157 
2.34 -4. 9601 -4.9600 -4.9599 -4.9599 -4.9598 
2.62 -4.3927 -4.3926 -4.3926 -4.3925 -4.3925 
2.90 -3.6105 -3.6105 -3.6103 -3.6103 -3.6103 
3.18 -2.6198 -2.6198 -2.6197 -2.6197 -2.6197 
3.36 -2.1489 -2.1488 -2.1488 -2.1488 :-2.1488 
3.64 -1. 4780 -1.4779 -1. 4779 -1.4779 -1. 4779 
4.20 -0.6790 -0.6789 -0.6789 -0.6789 -0.6789 
4. 76 -0.3064 -0.3063 -0.3064 -0.3064 -0.3064 
5.32 -0 .1377 -0.1374 -0.1376 -0.1376 -0.1376 
6.10 -0.0458 -0.0455 -0.0458 -0.0458 -0.0458 
7.50 -0.0094 -0.0090 -0.0094 -0.0094 -0.0094 

12.00 -0.0068 -0.0068 -0.0068 -0.0068 -0.0068 
25.00 -0.0068 -0.0068 -0.0068 -0.0068 -0.0068 
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TABLE XIV (Continued) 

R2(R6) a = 0.34 a = 0.69 a = 1. 04 a = 1. 39 a = 1. 57 

M. Rl (R4) = 12.00 

1.50 10.8210 10.8210 10.8211 10. 8211 10.8211 
2.34 -4.9582 -4.9581 -4.9581 -4.9581 -4.9581 
2.62 -4.3909 -4.3908 -4.3908 -4.3908 -4.3908 
2.90 -3.6087 -3.6086 -3.6086 -3.6086 -3.6086 
3.18 -2.6180 -2.6180 -2.6180 -2.6180 -2.6180 
3.36 -2.1472 -2.1471 -2.1471 -2.1471 -2.1471 
3.64 -1.4763 -1.4762 -1.4762 -1.4762 -1.4762 
4.20 -0. 6775 -0.6773 -0.6772 -0. 6772 -0.6772 
4.76 -0.3052 -0.3047 -0.3046 -0.3046 -0.3046 
5.32 -0.1370 -0.1360 -0.1359 -0.1359 -0.1359 
6.10 -0.0470 -0.0441 -0.0439 -0.0439 -0.0439 
7.50 -0.0518 -0.0063 -0.0058 -0.0058 -0.0057 

12.00 -0.4123 -0. 0012 0.0000 0.0000 0.0000 
25.00 0.0000 0.0000 0.0000 0.0000 0.0000 

R2(R6) a = 1. 74 a = 1. 90 a = 2.44 a= 2.79 a = 3.14 

M. Rl (R4) = 12.00 

1.50 10.8211 10.8211 10.8211 10. 8211 10. 8211 
2.34 -4.9581 -4.9581 -4.9581 -4.9581 -4.9581 
2.62 -4.3908 -4.3908 -4.3908 -4.3908 -4.3908 
2.90 -3.6086 -3.6086 -3.6086 -3.6086 -3.6086 
3.18 -2.6180 -2.6180 -2.6180 -2.6180 -2.6180 
3.36 -2.1471 -2.1471 -2.14 71 -2.1471 -2.1471 
3.64 -1.4762 -1. 4762 -1.4762 -1.4762 -1.4762 
4.20 -0.6772 -0. 6772 -0. 6772 -0. 6772 -0. 6772 
4.76 -0.3046 -0.3046 -0.3046 -0.3046 -0.3046 
5.32 -0.1359 -0.1359 -0.1359 -0.1359 -0.1359 
6.10 -0.0439 -0.0439 -0.0439 -0.0439 -0.0439 
7.50 -0.0057 -0.0057 -0.0057 -0.0057 -0.0057 

12.00 0.0000 0.0001 0.0000 0.0000 0.0000 
25.00 0.0000 0.0000 0.0000 0.0000 0.0000 
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TABLE XIV (Continued) 

R2(R6) a. = 0.34 a. = 0.69 a. = 1. 04 Cl. = 1. 39 Cl. = 1. 57 

N. Rl(R4) = 25.00 

1.50 10.8211 10.8211 10.8211 10.8211 10.8211 
2.34 -4.9581 -4.9581 -4.9581 -4.9581 -4.9581 
2.62 -4.3908 -4.3908 -4.3908 -4.3908 -4.3908 
2.90 -3.6086 -3.6086 -3.6086 -3.6086 -3.6086 
3.18 -2.6180 -2.6180 -2.6180 -2.6180 -2.6180 
3.36 -2.1471 -2 .1471 -2.1471 -2 .1471 -2.1471 
3.64 -1. 4762 -1. 4762 -1. 4762 -1.4762 -1. 4762 
4.20 -0. 6772 -0.6772 -0. 6772 -0.6772 -0. 6772 
4.76 -0.3046 -0.3046 -0.3046 -0.3046 -0.3046 
5.32 -0.1359 -0.1359 -0.1359 -0.1359 -0.1359 
6.10 -0.0439 -0.0439 -0.0439 -0.0439 -0.0439 
7.50 -0.0057 -0.0057 -0.0057 -0.0057 -0.0057 

12.00 0.0000 0.0000 0.0000 0.0000 0.0000 
25.00 -0.0007 0.0000 0.0000 0.0000 0.0000 

R2(R6) Cl. = 1. 74 Cl. = 1. 90 Cl. = 2.44 a.= 2.79 a.= 3.14 

N. Rl(R4) = 25.00 

1.50 10.8211 10. 8211 10.8211 10.8211 10.8211 
2.34 -4.9581 -4.9581 -4.9581 -4.9581 -4.9581 
2.62 -4.3908 -4.3908 -4.3908 -4.3908 -4.3908 
2.90 -3.6086 -3.6086 -3.6086 -3.6086 -3.6086 
3.18 -2.6180 -2.6180 -2.6180 -2.6180 -2.6180 
3.36 -2.1471 -2.1471 -2.1471 -2.1471 -2.1471 
3.64 -1.4762 -1. 4762 -1. 4762 -1. 4762 -1. 4762 
4.20 -0. 6772 -0. 6772 -0. 6772 -0. 6772 -0. 6772 
4.76 -0.3046 -0.3046 -0.3046 -0.3046 -0.3046 
5.32 -0.1359 -0.1359 -0.1359 -0.1359 -f).1359 
6.10 -0.0439 -0.0439 -0.0439 -0.0439 -0.0439 
7.50 -0.0057 -0.0057 -0.0057 -0.0057 -0.0057 

12.00 0.0000 0.0000 0.0000 0.0000 0.0000 
25.00 0.0000 0.0000 0.0000 0.0000 0.0000 
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Figure 3. Contour Plot of Surface Sl for a = 2.09 Radians. Contours 
are in Kcal/mole. X aesignates the saddle-point. 
Barrier= 0.71 Kcal/mole. 
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Figure 5. Contour Plot of Surface S2 for a= 1.90 Radians. Contours 
are in Kcal/mole. X designates the saddle-point. 
Barrier= 2.3~ Kcal/mole. 
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. Figure 6. Contour Plot of Surface S3 for a= 1.90 Radians. Contours 

are in Kcal/mole. X designates the saddle-point. 

Barrier = 3.57 Kcal/mole. 
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Figure 8. Contour Plot of Surface S5 for a= 1.90 Radians. Contours 
are in Kcal/mole. X designates the saddle-point. 
Barrier= 3.~ Kcal/mole. 
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Figure 10. Saddle-Point Region of Surface SS. Contours are in 
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interpolation between the grid points in this region. These are 

given in Table XV for surfaces Sl to SS. 

TABLE XV 

SADDLE-POINT GEOMETRIES 

Surface R0_0/au ~-0/au 0-0-N/rad Barrier 
Kcal/mole 

Sl 2.99 3.30 1.60 0.71 

S2 2.99 3.30 1. 90 2.3S 

SJ 2.99 3.30 1. 90 3.S7 

S4 2.99 3.30 1. 90 S.4 

SS 2.40 3.70 1. 90 3.5 

The contour lines are almost smooth. The saddle point is indicated 

with a cross. There is a slight discontinuity exhibited by the contour 

lines in the product valley. This arises from the polynomial functional 

form used to vary the dissociation energy of the N-0 bond. Other 

functional forms (exponential, gaussian) were tried for the variation 

of DNO' They were either found to increase the barrier height by 

operating over a very large range or introduce an undesirable second 

minimum in the product valley. Since the observed dynamics are not 

expected to be altered to a great extent, further investigation along 



65 

this line was not attempted. 

Surfaces Sl to S4 are almost identical except for the change in 

barrier height. The saddle point is located in the exit-channel. The 

minimum reaction path corresponds to the N atom approaching the o3 

molecule such that the 0-0-N angle is 110°. From the contour plots, it 

seems that there would be a very high steric requirement on the system 

in order for reaction to occur. The surfaces Sl to S4 are comparable 

to surface IIB2 of Chapman (80) in that the saddle point is located in 

the exit-channel. 

Surface SS has a barrier height comparable to that of 83 but the 

saddle-point has been shifted to an earlier position along the reaction 

path. There is a slight discontinuity introduced into the contour 

lines. This is due to the difficulty involved in replacing the inter-

action potentials, VI' by a (14Xl4Xl0) numerical grid of values. 

However, the prime objective was to obtain a surface with the saddle 

point located in the entrance channel. The objective has been realised 

but only with some loss in the smoothness of the contour lines. The 

0 minimum reaction path corresponds to an approach angle, 0-0-N, of 110 . 

Derivatives of the Potential-Energy Surface 

In order to carry out the quasiclassical trajectory calculations, 

derivatives of the potential energy with respect to the coordinates 

are required. Once the derivatives of the potential with respect to 

the various bond distances and bond angles have been obtained, it is 

a relatively simple matter to evaluate the derivatives with respect 

to the coordinates. The functional form of the potential has been 
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given previously in Eq (II-1). The potential surface derivatives 

required to solve the equations of motion are given by 

av 
10 av aR. 

= 1: -- . _J_ i = 1 to 15 (II-40) 
aq. j=l aR. aq. 

1 J 1 

where the R. are the ten interatomic distances. The (av/aR.) are con-
J J 

sidered below; the calculation of the derivatives of distances with 

respect to the coordinates is trivial. 

av 
(II-41) 

av avNoz ae 1 ( av1 o ( avNoz + av No))/ c (II-42) 
= --+ --+ 

aR2 ae 1 aR2 aR2 RiR2 aR2 aR2 

av cv r av I cvN02 av No)) j = -+--+o +-- c 
aR3 aR3 aR3 Ri R3 aR3 aR3 

+ 
avNo 2 ae 3 

--+ 
av 

att (II-43) 
ae 3 aR3 aR3 

av avo3 (av av ) , 
= --+ __ I+ att jc (II-44) 

aR4 aR4 aR4 aR4 

av av0 
(ava2)/c = ~+ (II-45) 

'ORS 3RS 'ORS 
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3V 3VN02 382 ( 3Vr ( 3VN02 3VNo)) / -+ -+ 0 --+-- c 
3R6 382 3R6 3 R6 Ri R6 3R6 3R6 

(II-46) 

3V 3VN02 381 3VN02 382 3VN02 a83 ( avNo )/c = -+ . -+ I-+ 
aR7 381 aR7 a82 aR7 a83 aR7 aR7 

(II-47) 

av avN02 a8 1 av00 
= -+-- (II-48) 

aR8 a81 aR8 aR8 

av avN02 a8 3 av00 
= . -+-- (II-49) 

aR9 a83 aR9 aR9 

av avN02 a8 2 av00 
= --+-- (II-50) 

aRlO a82 3R10 aRlO 

0 -1 
where c = 0.529177, Ri = Min(R2 , R3, R6), and av/aRj are in eV(A) . 

The various derivatives required to evaluate the av/aR. are now 
J 

considered. 

(II-51) 

and 

aDNO 
-- {exp{-2a. (R. - R ) } - 2 exp{-a.N0 (R1. - Re)}} 

3R. NO i e 
1 

aR 
x {l - _e} i = 2, 3 (II-52) 
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3D 0/3R. and 3R /3R. are given by Eq (II-74) and (II-75), respectively. 
N i e i 

The derivatives of the triplet-state energies are given by, 

3 0 -2 D Qs. {exp{-S.(R. - R.)} 
Ct.µ J.. J.. J.. J.. 

0 + exp{-2S.(R. - R.)}}; R. < 3.0 
J.. J.. J.. J.. 

(II-53) 

33E a.S = C exp ( -cr . R . ){ 1 - A.cr. - R.cr.} 
3R. J.. J.. J.. J.. J.. J.. 

J.. 

R. > 3.0 
J.. 

(II-54) 

3Qa.S a1E 33E 
= 0.5 { a.S + a.S} (II-55) 

3R. 3R. 3R. 
J.. J.. J.. 

3J a.S a1E 33E 
= 0.5 { a.S a.S} (II-56) 

3R. 3R. 3R. 
J.. J.. J.. 

Let, 

Then, 

3V1 aQAB 3J 
= --- {{0. 5 (ZJAB - JBC - JCA) . ___M} I S} (II-58) 

3R1 3R1 3Rl 

3V1 aQBC 
{{0. 5 (ZJBC - JAB - JCA) 

aJBC 
I s} (II-59) = --- . -} 

3R2 3R2 3R2 
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= --- (II-60) 

Similar expressions have been used to obtain the derivatives of 

v1 (R4 , R6, R3). Whenever surface SS was employed in the trajectory 

calculations, the derivatives of v1 with respect to R1 , R2, a 1 and 

R4 , R6 , a 2 have been obtained by cubic spline interpolation (79). The 

derivatives with respect to angles were converted to those with respect 

to distances by making use of the chain rule. The derivatives of the 

ozone three-body interaction potential with respect to the internuclear 

distances have been obtained as follows: 

Let 

= 

t.R4 R4 - R 0 

t.RS = Rs - Ro (II-61) 

and 

Ql = O.S774(t.R1 + t.R4 + t.RS) 

Q2 0.7071(t.R1 - t.RS) 

Q3 = 0.4082(2t.R4 - t.R1 - t.RS) (II-62) 

(P + G)v (II-63) 

where P, G and v have been described earlier. The required derivatives 

are given by, 
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aP aG av 
(- + -)v + (P + G) - , i = 1, 4 and 5 (II-64) 

CJR. 3R. CJR. 
l. l. l. 

with 

ap 3 aP CJQ. 
E l. 

= 
aR. i=l CJQ. aR. 

J l. J 

CJG 3 CJG aQ. 
l: l. 

= 
aR. i=l aqi CJR. 

J J 

and 

av av aq1 
= -·- (II-65) 

CJR. aql CJR. 
l. l. 

The derivatives required to evaluate Equations (II-65) are given by, 

aP 2 2 
6.5822 + 2(13.9106)Ql - 3.142l(Q2 + Q3) (II-66) 

(II-67) 

3P 
= -2(17.193l)Q3 - 2(3.142l)Q1Q3 + 3(2.6323)Q~ 

- 3(2.6323)Q; + 4(13.9659)Q3(Q~ + Q~) (II-68) 
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3G 
0 

3Ql 

3G 2 2 = 4.5Qi exp{-7.5(Q2 + Q3)}, i = 2, 3 (II-69) 
aq. 

l. 

av 2 = -2.3 sech (2.3Q1) (II-70) 
3Ql 

and 

aql aql aq1 
0.5774 = = 

oR1 aR4 3RS 

3Q2 - 3Q2 
0. 7071 = 

3R1 aR5 

3Q3 3Q3 aq3 
-0.4082 (II-71) = -1/2- = = 

oR1 aR4 aR5 

The derivatives of the Morse potentials are given by, 

(II-72) 

an No 
= -- {exp(-2a (R - R )) - 2exp(-a.N0 CR7 - Re))} 

aR. NO 7 e 
l. 

3R 
+2aNODNO {exp(-2a;NO(R7 - Re)) - exp(-a;NO(R7 - Re))} 3R~ 

l. 



with 

and 

oR 
e 

3R. 
J.. 

anr:m 

3R. 
J.. 

R. 
J.. 

2.21 < R . .::: 3.3 
l. 

= 0 otherwise 

4 . . 5 . 
= -5363.026R. exp(-0.0494R.), 3.02 < R. 

l. J.. J.. 

oR 
e 

oR. 
J.. 

= 0 otherwise 
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(II-73) 

(II-74) 

< 3.3 

(II-75) 

The constants ai (i 1 to 4) in Eq (II-74) have been given earlier 

(Eq (II-12)). 

(II-76) 

av Naz o 
= kb (0.95627) exp(-4.32629(Ri - 2.25754)) 

3Ri 

(II-77) 



and 

avatt 

'dR. 
]. 

av att 

= 2k~(0.95627) exp(-4.32629(Ri - 2.2575))(Mk) 

= 0, k' :/: k 

2 
= -2(1.851l)R. exp(-1.8511R.), 

]. ]. 
R. < 3.0 A0 

]. 

= 0 otherwise 

2D0 a.0 {exp(-a.0 (R. - R?)) - exp (-2a.0 (R. - R?))} 
22 2 1 1 2 1 1 

0 
X { tanh { 2. 0 (R3 - R3) } - 1. 0} 

2D0 {exp(-2a.0 (R. - R?)) 
2 2 ]. ]. 

2 0 X { sech { 2. 0 (R3 - R3)}}; 

0 2exp (-a.0 (R. - R.)) } 
2 ]. ]. 
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(II-78) 

(II-79) 

(II-80) 

The relationship between the distances and the angles and the coordinates 

and distances are as follows: 

a.1 = arcos((R~ + R; 
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2 + R2 2 
a.2 = areas( (R4 R3) /2R4R6) 

6 

el 
2 2 

areas ((R2 + R7 
2 

- R8)/2R2R7) 

2 + R2 2 
62 areas( (R6 7 - RIO) /2R6R7) 

2 2 2 
(II-81) 63 = areas ( (R3 + R7 - R9) /2Rl7) 

and 

R2 2 2 . 2 
= (x2 - x3) + (y2-y3) + (z2 - z3) 1 

R2 2 2 2 = (x2 - x4) + (y2 - y 4) + (z2 - z4) 2 

R2 2 2 2 = (x3-x4) + (y3 - y 4) + (z3- z4) 3 

R2 2 2 2 = (x3 - xl) + (y3-yl) + (z3 - zl) 4 

R2 2 2 2 = (xl - x2) + (yl-y2) + (zl - z2) 5 

R2 2 2 2 = (xl - x4) + (yl - y 4) + (zl - Z4) 6 

R2 2 2 2 = (x4 - x5) + (y4-Y5) + (z4 - z5) 7 

R2 2 2 2 = (xs - x2) + (y5-y2) + (z5 - z2) 8 

R2 2 2 2 
9 (x5 - x3) + (y 5 - Y3) + (z5 - z3) 

2 2 2 2 
(II-82) RlO = Cxs - xl) + (yS-yl) + (zs - zl) 

The non-zero derivatives of the angles with respect to the distances are 

given by, 
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aa.1 
(R2cosa.1 - R1)/R1 R2 sina.1 3R1 

aa. 
1 (R1cosa.1 - R2)/R1 R2 sina.1 = 

3R 
2 

aa: 
1 

R3/Rl R2 sina.1 = 
3R3 

aa. 
2 = (R6cosa.2 - R4)/R4 R6 sina.2 3R4 

aa.2 
(R4cosa.2 - R6)/R4 R6 sina.2 = 

3R6 

3ct2 
R/R4 R6 sina.2 = 

3R3 

ae1 
(R7cose1 - R2)/R2 R7 sine1 = 

3R2 

ae1 
(R2cose1 - R7)/R2 R7 sine1 = 

3R7 

ae1 
= R8/R2 R7 sine1 

aR8 

ae 2 
(R7cose 2 - R6)/R6 R7 sine 2 

3R6 
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ae 2 
(R6cose 2 - R7)/R6 R7 sine2 

aR7 

ae 2 
R10/R6 R7 sine 2 = 

aRlO 

ae 3 
(R7cose3 - R3)/R3 R7 sine 3 = 

aR3 

ae 3 
(R3cose 3 - R7)/R3 R7 sine 3 = 

aR7 

(II-83) 

The derivatives of the total potential with respect to the cartesian 

coordinates shown in Figure 1 are 

av av aR4 av aR5 av aR6 av aR10 
= -+- -+-- --+-- . --

axl aR4 ax1 aR5 axl aR6 ax1 aRlO axl 

av av aR4 av aR5 av aR6 av aRlO 
--+-- --+- --+-- . --

ay1 aR4 ayl aR5 ayl aR6 ay 1 aRlO ayl 

av av aR4 av aR5 av aR6 av aRlO 
= --+-- -+-- --+--

azl aR4 azl aR5 az 1 aR6 az 1 aRlO azl 

av av aR1 av aR2 av aR5 av aR8 
= --+--· --+- -+--. 

ax2 aR1 ax2 aR2 ax2 aR5 ax2 aR8 ax2 
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av av aR1 av aR2 av aR5 av aR8 
= ·-+- ·-+- . -+-. -

ay2 aR1 ay2 aR2 ay2 aR5 ay2 aR8 ay2 

av av aR1 av aR2 av aR5 av aR8 
= -+-· -+-· -+-· 

az2 aR1 az2 aR2 az 2 aR5 az2 aR8 az2 

av av aR1 av aR4 av aR3 av aR9 
= -+-· -+-· -+-· 

ax3 aR1 ax3 aR4 ax3 aR3 ax3 aR9 ax3 

av av aR1 av aR4 av aR3 av aR9 
= -+-· -+-· -+-· 

ay3 aR1 ay3 aR4 ay3 aR3 ay3 aR9 ay3 

av av aR1 av aR4 av aR3 av aR9 
= - . -+-. -+-· -+-·-· 

az 3 aR1 az 3 aR4 az 3 aR3 az 3 aR9 az 3 

av av aR2 av aR3 av aR6 av aR7 
= -+-. -+-· -+-· 

ax4 aR2 ax4 aR3 ax4 aR6 ax4 aR7 ax4 

av av aR2 av aR3 av aR6 av aR7 
= -+-· -+-· -+-· 

ay4 aR2 ay4 aR3 ay 4 aR6 ay 4 aR7 ay 4 

av av aR2 av aR3 av aR6 av aR7 
= -+- -+-· -+-· 

az4 aR2 az4 aR3 az4 aR6 az4 aR7 az 4 

av av aR7 av aR8 av aR9 av aRlO 
= -+-· -+-· -+--· 

ax5 aR7 axs aR8 a:x:s aR9 ax5 aRlO a:x;s 

av av aR7 av aR8 av aR9 av aRlO 
-+-· -+-· -+--· 

ays aR7 ay s aR8 ay s aR9 ay s aRlO ays 
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av av 
= 

aR7 av 
--+--

aR8 av 
--+--

aR9 av 
--+-- (II-84) 

'dzs 'dRs 'dzs 'dR9 'dz 5 'dRlO 

The derivatives of the interatomic distances with respect to the car-

tesian coordinates are given by, 

'dR. (x - x ) 
_J_ = ]J \) 

'dx. 
l 

R. 
J 

(II-85) 

where x and x are the x coordinates of atoms µ and v, (1 ~ µ ~ 5) and 
]J \) 

(1 ~ v ~ 5) whose interatomic distance is R .• Similar equations hold 
J 

for 'dR./'dy. and 'dR./'dz •• 
J l J l. 



CHAPTER III 

QUASICLASSICAL TRAJECTORY STUDY OF THE EFFECTS 

OF SURFACE TOPOGRAPHY UPON THE REACTION 

DYNAMICS OF POLYATOMIC SYSTEMS 

Calculational Methods 

The quasiclassical trajectory procedure has been described in 

detail by Porter and Raff (58). In the classical regime, the trajec-

tories of the atoms in colliding molecules may be obtained by the 

numerical solution of the Hamilton's equations of motion: 

3H 

qi = 
3p. 

1 

(III-1) 

3H 
pi = i = 1, 2, ... 3N 

aq. 
1 

(III-2) 

where the q. 's are the coordinates and p.'s the conjugate momenta of an 
1 1 

N-particle system. H is the classical Hamiltonian given by, 

H T + V, (III-3) 

where T is the kinetic energy and V the potential energy of the system. 

It has been found that cartesian coordinates are the most suitable 

for treating polyatomic systems (68). In the present case, the positions 

of the atoms have been described by using the cartesian coordinate 
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systems shown in Figure 11. The positions of the atoms in the o3 

molecule have been described initially with respect to the space-fixed 

coordinate system XYZ. The o3 molecule is initially oriented in the 

XY plane with the principal axes of inertia coinciding with the space-

fixed axes such that the symmetry axis lies along the Y-axis. The 

center of mass of the o3 molecule lies at the origin of XYZ. The 

positions of the atoms in the NO molecule have been described with 

respect to the space-fixed X'Y'Z'. The axes of X'Y'Z' are parallel 

to those of XYZ, but the origin of the former lies at the center of 

mass of NO. The kinetic energy and potential energy of the system in 

terms of the cartesian coordinates described in Figure 12 are given by 

3 

1/2 E 2 l/m 
2 l/m 2 

T = (l/m p. + Pi+3 + Pi+6 0 ]. 0 0 

i=l 

80 

l/~ 
2 l/m 2 

+ Pi+9 + Pi+l2) (III-4) 
0 

v V(ql, q2' ... q15) (III-5) 

The potential has been described in Chapter II. The equations of motion 

are: 

where m. = m for i 
]. 0 

= 

= 

av 

'Oq. 
]. 

(III-6) 

i = 1, 2' ... 15 (III-7) 

1 to 9 and 13 to 15; mi = ~ for i = 10, 11, 12. 

If we assume the coupling between the vibrational and rotational 
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Figure 12. Cartesian Coordinates and Conjugate Momenta 
for the o3-No System 



energies of the molecule to be negligible, the kinetic energy of the 

triatomic molecule may be separated into a rotational part and a 

vibrational part. 

We have assumed that the vibrational motion of a non-linear tri-

atomic molecule can be separated into three modes that are approxi-

mations to the normal modes (see Figure 13). Since we are not 

interested in the energy transfer processes between the modes, an 

exact separation is not required. The normal coordinates, Qk' are 

defined in terms of the components /:J.X etc., by the relations, 
a. 

/:J.x 
a. 

/:J.y 
a. 

3 

1: 
k=l 

3 

1: 
k=l 

3 

1a.kQk 

ma.kQk 

83 

/:J.za. = L na.kQk 

k=l 

(III-8) 

where /:J.X are the displacements from equilibrium given by, 
a. 

/:J.x = 
a. 

e 
x - x 

a. a. 

and the constants la.k' ma.k and na.k are determined so that, 

3 
2 1: m v 

a. a. 
a.=l 

3 

1: 
k=l 

(III-9) 

(III-10) 
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3 

v = (III-11) 

with 

(III-12) 

where vk's are the fundamental vibration frequencies of the molecule. 

If we assume the o3 molecule to lie in the X-Y plane, and the NO 

molecule along the X'-axis, we may derive the following expressions for 

the cartesian displacement coordinates by making use of Eq (III-8) to 

(III-10) and the normal modes shown in Figure 13. 

1 

Llx 1 (l/2m0 )~Q1 - l/c Q3sin/3/2 

!,; 

Llyl = (l/6mo)2Q2 - l/c Q3cosi3/2 

Llz 1 = 0 

!,; 
Llx2 -(l/2mo) 2Ql - l/c Q3sini3/2 

k 
b.y2 = (l/6mo) 2Q2 + l/c Q3cosi3/2 

Llz2 = 0 

Llx3 = 2/c Q3sini3/2 

Lly3 
~2 

-2(1/6m0 ) Q2 

l:lz 3 0 (III-13) 
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where 

(2m (1 
2 1: 

c = + 2sin S/2)) 2 with 
0 

s = the vertex angle in 03 

1: 
ti.x4 = -(mo/~mT) 2 QNO 

1: 
ti.xs = (~/mOmT) 2 QNO 

ti.y4 = ti.ys = ti.z4 = ti.zs = 0 (III-14) 

with~ = m +~ 0 

The kinetic energy, after neglecting the rotational-vibrational 

interaction, may be written as (81), 

= 

3 

1/2 (I w2 + I w2 + I w2 + l: xx x yy y zz z 
l:=l 

(III-15) 

The first three terms represent the rotational kinetic energy and the 

last term represents the vibrational kinetic energy of the molecule. 

It should be noted that the terms involving the products of inertia do 

not enter the rotational kinetic energy expression since the principal 

axes of inertia of the molecule have been assumed to coincide with the 

space-fixed axes. The moments of inertia I , I , I are given by, xx yy zz 

3 

I = _r m (Y~ + z:) xx 0 1 1 

i=l 



I 
YY 

I zz 

3 

1: 
i=l 

3 

1: 
i=l 

2 Z~) m (X. + 
0 1 1 

2 2 
m (X. + Y.) 

0 1 1 

The kinetic energy of the NO molecule is given by, 

where INO is the moment of inertia for NO; 

= ' 2 '2 m._x 4 + m x 
N o 5 
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(III-16) 

(III-17) 

(III-18) 

From these expressions for the kinetic energy, both the total angular 

momentum ~03 and ~O and the momenta conjugate to the normal coordinates 

Pk and PNO can be found: 

3To3 
= = I w 

aw xx x 
x 

3To 
3 

M (03) I YYWY y 
awy 

<3To 

(03) 
3 

M = = I w z zz z 
awz 
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aTNO 
M (NO) = = 0 

x 
awlx 

3TNO 
M (NO) = = 1NOwly y 

awly 

3TNO 
M (NO) = ·= 1NOwlz (III-19) z 

awlz 

and 

aT0 
3 . 

pk = = Qk' k = 1, 2, 3 
aqk 

aTNO . 
PNO = = QNO (III-20) . 

aq 
NO 

Thus the vibrational and rotational kinetic energies are given by, 

3 

Tvib (03) = 1/2 1: p2 
k 

k=l 

z 
E (03) = 1/2 1: M. (03)w. 
rot l. l. 

i=x 

T "b (NO) 
2 = 1/2 PNO 

Vl. 

(NO) 1/2 2 2 (III-21) E = 1NO(wly+ wlz) rot 
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The total vibrational energies of the molecules are given by, 

3 

E (03) = T (03) + VO = r Ek vib vib 
3 k=l 

(III-22) 

where 

(III-23) 

and 

E "b (NO) vi 
= 

= (III-24) 

It should be noted that since the potential energy used is not harmonic, 

the normal coordinates and their energies can only be approximations to 

the real behavior of the molecule. 

Selection of Initial Conditions 

In the quasiclassical trajectory calculations, the initial state of 

the system is specified by the allowed quantal levels of the molecule. 

It should be emphasized, however, that once the initial state is deter-

mined, the system is treated in a completely classical manner. The 

initial conditions of each collision trajectory are specified by a set 

of energy and geometry parameters. The initial state of the trajectory 

for the ozone-nitric oxide system is defined by the following parameters: 

for ozone the vibrational and rotational quantum numbers n1 , n2 , n3, J, 

K, the vibrational phase angles o1 , o2, o3, an angle w1 which defines 
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the plane of rotation of the molecule, the angles which define the 

orientation of the molecule ¢1 , ¢2 , ¢3 ; for nitric oxide the vibrational 

quantum number n4 , the rotational quantum number JNO' the vibrational 

phase angle o4 , an angle $2 which defines the plane of rotation of the 

' molecule, the angles which define the orientation of the molecule ¢1 , 

¢z• ¢3; the impact parameter b, the initial relative velocity vector 

VR, and the initial distance R8 between the centers of mass of o3 and 

NO. These parameters have been used to obtain the initial cartesian 

coordinates. 

The vibrational energy of ozone has been assumed to be given by, 

= (III-25) 

where 

= 

(n2 + 1/2) + 1/2 x23 (n2 + l/2)(n3 + 1/2) 

(n3 + 1/2) + 1/2 x12<n1+l/2)(n2+1/2) 

= 

(n3 + 1/2) + 1/2 x23(n2 + l/2)(n3 + 1/2) (III-26) 

Since ozone is an asymmetric top, the rotational energy levels 

cannot be represented by an explicit formula. However, the asymmetry 

parameter for ozone, defined as 
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K = 2B - A - C/A - c (III-27) 

where A, Band Care the rotational constants, is equal to -0.968 (82). 

This is very close to the value of -1 for a prolate symmetric top. 

Hence ozone has been approximated to be a prolate symmetric top. The 

rotational energies of o3 have been assumed to be given by, 

= 1/2 (B+C)J(J+l) +(A- l/2(B+C))K2 (III-28) 

The constants in Eq (III-26) and Eq (III-28) have been given by Barbe 

et al. (82) and are given in Table XVI. 

The specification of the initial rotational energy of o3 requires 

two quantum numbers J and K. These were selected from a Boltzmann 

distribution of rotational energy levels at the desired temperature, T. 

The rotational energies were initially computed for various J and K 

values using Eq (III-28) and were arranged in the order of increasing 

energy. These ordered levels, each associated with a particular J and 

K were designated with a single quantum number, M. The initial M value 

was chosen (58) as the nearest integral solution to the Equation, 

~(M) 

where 

= 

with 

M 

E ~,exp(-EM 1 /kT) 

M'=O 

00 

E gMexp(-~/kT) 
M=O 



TABLE XVI 

SPECTROSCOPIC CONSTANTS OF o3 AND NO 

a Equilibrium geometry 

0 
R = 1. 2717 A 
s = 116.57° 

H . f . a armonic requencies 

1103 cm-1 
701 cm-1 

1042 cm-1 

b Anharmonic constants 

x11 = - 4.9 cm-1 
X22 = - 1.0 cm-1 
X33 -10.6 cm-1 

X12 - 9.1 cm-1 
x13 = -34.8 cm-1 
x23 = -17.0 cm-1 

b c Rotational constants ' 

3 
x X = X - L a..(v. + 1/2), X =A, B, C 

e i i 

A = 3.55176 
e 

a.i -2.981 E-03 

a.~ -5.342 E-04 

a.1 = 5.312 E-04 

Nod 
= 

(a) Reference 82. 
(b) Reference 82. 
(c) Values are in cm-1. 
(d) Reference 83. 

i=l 

B e 
a.~ = 
a.~ 

B 
a.3 = 

0.44906 

2.554 E-03 

1.269 E-03 

3.992 E-03 

1904.03 -1 cm 

13. 97 cm-1 

1. 705 cm-l 

0.0178 cm-l 

c e 
a.c 

1 
a.c 

2 
a.~ 

= 0.39876 

2.319 E-03 

= 2.307 E-03 

= 3.613 E-03 
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gM = 2 ( 2J + 1) if K 1 0 

(2J + 1) if K = 0 (III-29) 

and ~(M) is a pseudorandom number selected from a uniform distribution 

between 0 and 1. The initial M state was then converted to an initial 

(J,K) pair. 

The rotational and vibrational energies of NO have been assumed to 

be given by, 

E .b(NO) 
V1. 

E (NO) 
rot = 

2 
we (n4 + 1/2) + ~O (n4 + 1/2) 

(III-30) 

The constants have been defined by Herzberg (83) and are given in 

Table XVI. 

The initial rotational quantum number for NO, JNO' has also been 

chosen from a thermal Boltzmann distribution. This is achieved by 

finding the nearest integral solution to the equation, 

= (III-31) 

where 0 ~ ~J ~ 1. 

For a harmonic potential, the time dependence of the normal coordi-

nates is given by, 

= (III-32) 

2 2 
where Ak = 4TI vk and ok is an arbitrary phase factor, 0 ~ ok ~ 2TI. 

The phase factors are selected randomly from a uniform distribution. 
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(III-33) 

where ~k are pseudorandom numbers uniformly distributed between 0 and 1. 

The initial momenta conjugate to the normal coordinates are given by, 

Pk (t=O) = 

The + sign is used when 0 < ok ~ TI and the - sign is used when 

TI < Ok ~ 2TI. 

(III-34) 

The normal coordinates Qk are converted to the cartesian coordi-

nates as follows: 

1 

- l/c 0 sin_@,_- Re s 
xl (l/2m0 )~Q1 sin-·3 2 03 2 

k f3 Re s 
yl = (l/6mo) 2Q2 - l/c Q cos-- 1/3 cos-z 3 2 03 

zl 0 

k 
Q3sinf + R~ sin~ x2 = -(1/2mo) 2Ql - l/c 

3 2 

1 f3 Re s 
y2 = (1/6m0)~Q2 + 1/c Q3cos-z - 1/3 cos-

03 2 

z2 0 

x3 = 2/c Q . f3 
3sin-z 

k Re f3 
y3 -2(1/6m0 ) 2Q2 + 2/3 cos-z 

03 

z3 0 
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X' = 
4 

Y' = 0 
4 

Z' = 0 
4 

k e 
X' = (~/momT) 2QNO + (~/~)RNo 5 

Y' = 0 
5 

Z' = 0 (III-35) 
5 

e e 
where R03 and RNO are the equilibrium bond distances in o3 and NO, 

respectively. From these cartesian coordinates, the principal moments 

of inertia of o3 and NO are calculated. For the o3 molecule lying in 

the X-Y plane, with the figure-axis along the X-axis, the total 

rotational angular momentum, and the X-component are given by, 

= J (J + l)'h2 

and 

= (III-36) 

The angle ~l' defining the plane of rotation of the molecule is chosen 

randomly from a uniform distribution. 

~l 0 s ~5 s: 1 (III-37) 

Under these conditions, the components of the angular momentum are given 

by, 



where a= arcos(L /L). 
x 

L 

L 

L 

x 

y 

z 

= Kn 

L sina. cos1)J1 

L sina. sin1)J1 

The components of the angular velocity are, 

w L /I 
x x xx 

w = L /I y y YY 

w = L /I z z zz 
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(III-38) 

(III-39) 

The angular momentum components for the NO molecule assumed to be along 

the x'-axis are given by, 

= 0 

= (III-40) 

where 1)J 2 is the angle specifying the rotational plane of the molecule 

and is chosen randomly from a uniform distribution. 

= (III-41) 

The components of the angular velocity for the NO molecule are, 

0 
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= (III-42) 

Given the Qk's and Pk's, the time derivatives of the normal coordinates 

are easily obtained: 

= Pk, K = 1, 2, 3 

= PNO (III-43) 

The momenta conjugate to the cartesian coordinates are now given by, 

h· . 8 . 
Pxl = (mo/2) 2Ql - m /c sin-zQ3 - m w Y 

0 0 z 1 

h· 8 • 
pyl (mo/6) 2Q2 m /c cos-z Q3 + m w xl 

0 0 z 

Pzl = m (w Y1 - w x1) 
0 x y 

h. • B • 
Px2 = -(mo/2)2Ql m /c sin-zQ3 - m w Y 

0 0 z 2 

h. B • 
py2 = (m/6) 2Q2 + m /c cos-zQ3 + m w x2 

0 0 z 

m (w Y2 - w x2) 
0 x y 

m (w Y3 - w x3) 
0 x y 
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p I 

x4 
1::. 

-(mo~/~) 2QNO 

p ' = ~wlzx' 4 y4 

p ' = -~wlyx4 z4 

b 
p ' = (mo~/mT) 2QNO x5 

p I = mowlzXS y5 

p ' = -mowlyXS (III-44) 
z5 

The o3 and NO molecules were then randomly oriented in space by rotating 

about the Y, Z, X and Y', Z', X' axes respectively, through randomly 

chosen angles. 

x. 
l. 

Y. 
l. 

z. 
l. 

p . 
Xl. 

p . 
yi 

p . 
Zl. 

Rx(¢l)Rz(¢3)Ry(¢2) 

-f 

Rx(¢l)Rz(¢3)Ry(¢2) 

f 

x. 
l. 

Y. 
l. 

z. 
l. 

p . 
Xl. 

p . 
yi 

p . 'i= 1, 2, 3 
Zl. 

(III-45) 

Similar transformations have been carried out for the NO molecule 

with the rotational angles ¢.'s replaced by ¢~'s. The R, R and R 
l. l. x y z 

functions are the three-dimensional rotation matrices given in Table 
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XVII. The angles ¢. and ¢~ were chosen randomly from a uniform distri-
i J. 

but ion. 

¢~ = Zn~', 0 ~ ~. ~' ~ 1 
J. 

(III-46) 

The origin of the space-fixed frame is defined as the center of 

mass of o3• The coordinate system X'Y'Z' is at a distance ~S from the 

center of mass of o3 and hence the origin of XYZ. The coordinates of 

NO are therefore: 

= 

= 

= 

= 

= 

If the impact parameter is b, and if the center of mass of NO is 

approaching from the -X direction in the XY plane, 

2 2 h 
- (R - b ) 2 , s = -b, = 0 

The impact parameter is chosen using the linear transformation, 

(III-47) 



R (cf>) 
y 

R (cp) = 
z 

R (cf>) 
x 
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TABLE XVII 

ROTATION MATRICES 

0 

1 

0 

sin<P 0 

cos<f> 0 

0 1 

[ 
1 

0 

0 

1 

cos<P 

-sin<f> 
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b = (III-48) 

where ~b is a pseudorandom number uniformly distributed between 0 and 1. 

The initial relative velocity vector is assumed to be directed 

along the X-axis and the center of mass velocity is set to zero. Thus 

the NO center of mass velocity translates in the X-direction with 

velocity (m0 /m0 + ~0)VR, and the o3 center of mass translates in the 
3 3 

-X- direction with velocity (~0/m03 + ~0)VR where mo3 = 3 mo and 

~O = ~ + m0 . The relative velocity may be chosen from a thermal 

Boltzmann distribution if the rate constant is to be computed, or we 

may run a batch of trajectories with a specified relative velocity 

if the reaction cross section is to be computed. The former is 

achieved by choosing VR to be the solution to the following equation. 

2 2 
(exp (-µVR/2kT)) (VR + 2kT/µ) = 

2 
(1- F;(VR))X(exp(-µVM/2kT)) 

(V~ + 2kT/µ) (III-49) 

where µ is the reduced mass of the system given by, 

µ = (III-50) 

and VM is the threshold velocity, below which the probability of 

reaction is negligible. ~(VR) is a pseudorandom number uniformly dis­

tributed between 0 and 1. 

The momenta in the space-fixed cartesian coordinates are now given 

by, 

= 
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PX = PX - mo(~o/mo3 + ~o)VR, Py = 
PY2' pz Pz 

2 2 2 2 2 

PX Px3 - mo(~o/mo3 + mNO)VR, Py p ' pz Pz 
3 3 Y3 3 3 

PX = Px4 + ~(mo3/mo3 + ~o)VR, Py = Py ' pz = pz 
4 4 4 4 4 

PX = PX + m (m0 /m0 + mNO)VR, Py Py ' Pz = pz (III-51) 
5 5 0 3 3 5 5 5 5 

The complete set of initial coordinates and momenta are now defined. 

Numerical Integration of the Eguations of Motion 

The determination of the classical trajectories for the o3-No 

system requires the solution of the thirty coupled first-order differ-

ential equations (Hamilton's equations). Once the initial coordinates 

and momenta have been specified, this can be achieved by numerical 

methods. 

In the present study, the set of coupled differential equations 

have been solved by using a fifth-order Adams-Bashforth predictor and 

a sixth-order Adams-Moulton corrector with the fourth-order Runge Kutta 

as the initiator (97). 

The accuracy of the integration routine was monitored by (a) energy 

conservation, (b) conservation of each component of the total linear 

and angular momentum, and (c) back integration and step size reduction 

procedures. A variable step size has been employed in the calculations, 

in order to decrease the computation time. A step size of 0.04 tu in 

the non-interaction region and 0.015 tu in the interaction region 

yielded results with the desired accuracy. The units employed in this 
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study are given in Table XVIII. 

Analysis of Final States 

The determination of the results of a given trajectory requires 

a set of appropriate end tests along with the expression for various 

energies, scattering angles and bond distances in terms of the cartesian 

coordinates and momenta. 

The trajectory was considered reactive if 

R i > R 
00 s' 

and (III-52) 

R00i and R00 ref er to the 0-0 bonds in ozone. The superscript i 

designates the 0 atom abstracted by NO. ~O refers to the N-0 bond in 

N0 2 and Re's are the equilibrium bond distances. 

The trajectory was considered non-reactive if 

1, 2, 3 

The final-state dynamic properties of interest are as follows: 

If j and k designate the 0 atoms that form the o2 molecule, the 

final velocity of the o2 center of mass is given by, 

The final relative velocity vector is, 

V' -R (mo + ~o 1~o )Yb 
2 2 2 2 

(III-53) 

(III-54) 
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TABLE XVIII 

UNITS USED IN THE o3-NO QUASICLASSICAL TRAJECTORY COMPUTER CODE 

Quantity Units Cgs Equivalent 

distance angstrom (R) 1.0 E-08 cm 

time time unit (t.u.) 1. 01804287 E-14 s 

velocity velocity unit (v.u.) 0.9822769 E+06 cm/s 

energy electron volt (eV) 1. 60219 E-12 erg 

mass atomic mass unit (amu) 1. 6604345 E-24 g 

momentum momentum unit 1. 631006 E-18 dyne.s 

angular momentum angular momentum unit 1.631006 E-26 erg.s 

Planck's constant, h/2'1T 0.0646551 eV-tu 1.0545887 E-27 erg.s 

Boltzmann constant, k 8.61734 x 10-5 eV/°K 1. 380662 E-16 
0 

erg/ K 

speed of light, c 3.05201 x 10-4 cm/t.u. 2.99792 E+lO cm/s 

(a) These units are similar to the molecular units used by Raff et al., 
J. Chem. Phys. 2.§_, 5998 (1972). The units differ only in the unit 
of distance. 

(b) These values are based on the physical constants recommended by the 
CODATA Task Group on Fundamental Constants and are taken from 
Physics Today, Sept. 1974. 
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The scattering angle H, the angle between the initial and final velocity 

vectors, is given by, 

(III-55) 

since the initial relative velocity vector has been assumed to be along 

the X-axis. 

In order to compute the final internal energies of the molecule, 

the motions of the molecular centers of mass have been subtracted from 

the cartesian coordinates. 

= 

= 

1, 4, 5 (III-56) 

where 1 designates the 0 atom abstracted from o3 • 

= P - m. (mNO /mo + m.._o ) (VR') 
Xi l. 2 2 N 2 x 

= 

= (III-57) 

The atomic coordinates relative to the respective centers of masses of 

the product molecules are, 

x. 
l. 

= 
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Y. = Y. - l/~02 (moYl + ~y4 + moY5) l. l. 

z. = z. - l/~02 (mozl + ~z4 + moZ5)' i = 1, 4, 5 (III-58) 
l. l. 

and 

x. x. l/m0 (m X. +mo~) l. l. 2 0 J 

Y. = Y. - l/m0 (m Y. + moYk) 
l. l. 2 0 J 

z. = z. - l/m0 (m z. + moZk), i=j,k (III-59) 
l. l. 2 0 J 

The o2 molecule is oriented along the X-axis by rotating it about the 

X-axis by an angle ~l given by, 

= 
-1 

tan (Z ./Y.) 
J J 

and then about the Z-axis by an angle ~ 2 given by, 

tan - l (Y ~ /X ~ ) 
J J 

(III-60) 

(III-61) 

where Y~ and X~ are the coordinates of atom j after the first rotation. 
J J 

The coordinates and momenta are transformed by using the rotational 

matrices given in Table XVII. The moment of inertia of the o2 molecule 

is calculated by using the transformed coordinates. 

= (III-62) 

The moments of inertia and the products of inertia of N02 are calculated 



as follows: 

1: 
2 2 

I m. (Y. + Z.) xx l l l 

i 

2 Z~) I = 1: m. (X. + yy l l l 

i 

2 2 
I = 1: m. (X. + Y.) 

zz l l l 

i 

I = L m.X.Y. xy 1 1 1 

i 

I = L m.Y.Z. 
yz l 1 1 

i 

I = 1: m.X.Z. 
xz l l l 

i = Q,, 4, 5 

i 

The final angular momenta are obtained as follows: 

= 

and 

L (Y .P z .P ) 
i zi i Yi 

i 

L (Z.p 
l x. 

i 
l 

i 

X.p ) 
l z. 

l 

Y.p ), i = £, 4, 5 
l x. 

l 
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(III-63) 



= 

i 

= 

i 

(Z.p 
l. x. 

l. 

- X.p ) 
l. z. 

l. 

Y.p ), i = j, k 
l. x. 

l. 

The angular velocity components of N02 are given by, 

wx(N02) I -I -I Mx (N02) xx xy xz 

wy(N02) = -I I -I My(N02) xy yy yz 

w2 (N02) -I -I I M2 (N02) 
xz yz zz 

If I is the moment of inertia matrix, then 

-t 
where I is the transpose of the adjoint of I 

I I +I I I "I +I I 
yy zz yz I I I - r 2 xy zz xz yz xy yz xz yy 

-t l I I +I I 
I I - 12 I I +I I I = 

xy zz xz yz xx zz xz xx yz xy xz 

I I +I I I I +I I I I - 12 
xy yz yy xz xx yz xy xz xx yy xy 

The angular velocity components of o2 are given by, 
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(III-64) 

(III-65) 

(III;...66) 

(III-67) 



= 

The total internal energies of the molecules are given by, 

E. (N02) int . v + 1/2 l: N02 
i 

+ 1/2 1: 
i 

m. 
i 

m. 
i 

m. 
i 

i = £, 4, 5 

i = j, k 
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(III-68) 

(III-69) 

where V's are the potential energies of the molecules. The rotational 

energies of the molecules have been assumed to be given by, 

E (N02) 
rot 

= 

= 

z 

1/2 E Mi(N02)wi(N02) 

i=x 

(III-70) 

The vibrational energies of the molecules have been calculated using the 

following expressions: 

= E. (N02) - E (N02) 
int rot 

E. (02) - E (02) 
int rot 

(III-71) 

Statistical Averaging 

Any physically observable quantity is an average over a large 
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number of collision events. In order to obtain a reasonable estimate 

for the experimentally measurable quantities, the theoretical procedure 

should consider the various possible collisions. Thus the calculation 

of the reaction cross sections and rate constant for the reaction 

requires the evaluation of multi-dimensional integrals. For instance, 

the rotationally averaged total reaction cross section for the reaction 

of o3 with NO may be written as, 

co co 

-1 
= QM l: 

M=O 

g__exp(-E /kT) QJ-1 l: g exp(-EJ /kT) 
-M ~ NO - JNO NO 

3No=O 

2TI d¢ 2TI d¢ 2TI d¢ 2TI d¢' 2TI d¢' 2TI d¢' x/ 1 f 2 I 3 I 1 f 2 I 3 
2TI 2TI 2TI 2TI 2TI 2TI 

0 0 0 0 0 0 

co 

x ~ 2TIP(JNO'M'wl.w2,¢i,¢~,b,VR,ni)bdb 
0 

(III-72) 

where Q's are the rotational partition functions, F(o1 ... o4) is the 

normalized probability density function for the observation of phase 

angles o1 to o1 + do 1 •.• o4 to o4 + do 4 , and P(JN0 ,M,wi,¢i,¢~,b,VR,ni) 

is the probability of reaction determined by the quasiclassical trajec-

tory procedure. 

These multi-dimensional integrals can be most conveniently carried 

out by using the Monte Carlo technique. The major advantage of this 

procedure is that it converges at a rate that is approximately indepen-
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dent of the dimensionality of the integral. In this method, the 

variables of integration are transformed to random numbers on the 

interval (O,l) as was done in Eq (III-29,31,33,37,41,46,48,49). The 

Monte Carlo approximant to the integral in Eq (III-72) is given by, 

2 
21Tbmax 

N 

1: l;i pi = 
b 

(III-73) 
N i=l 

where N is the total number of trajectories, I;~ is the random number 

used to select the impact parameter and Pi is the probability of 

reaction of the ith trajectory. Pi is 1 if the trajectory is reactive 

and 0 if it is non-reactive. 

The Monte Carlo error is, 

e: = 

N N 2 ~ r 
(l;i)2 

r 
l;i { 1: - l/N{ 1: } }X 100 

b b 
i=l i=l 

(III-74) 

Nr 
l;i 1: b 

i-1 

where Nr is the number of reactive trajectories. There is a 68% proba-

bility that the actual error in the integral is less than e:. 

The rate coefficient may be obtained by using either of the 

following two procedures: The reaction cross sections can be averaged 

over a Boltzmann distribution of relative velocities to obtain the rate 

coefficient as follows: 

k(T,n.) 
1 

k: 3/2 
= c(2/1T) 2 (µ/kT) 
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00 

x/ (III-75) 

where c is a conversion factor used to obtain the rate coefficient in 

3 -1 -1 
cm mole sec • VM is the threshold velocity chosen such that, 

= (III-76) 

The second method of computing the rate coefficient involves 

evaluating the integral in Eq (III-75) by the Monte Carlo procedure. 

This is achieved by selecting VR randomly using Eq (III-49). If N 
r 

reactive trajectories were encountered in a set of N trajectories, the 

rate coefficient is given by, 

k(T,n.) = 
1 

2 2 
X exp(-µVM/2kT).2~b 

max 

N 
r 

x l/N L 
i=l 

with the statistical error determined by Eq (III-74). 

Results and Discussion 

(III-79) 

The collision dynamic studies can be broadly divided into two 

types: 

1. Those in which the prime objective is to provide 
a model for a particular reactive system, and 

2. Those in which the prime objective is the examin­
ation of the effect of systematic variation in some parameters 
governing the reaction dynamics. 
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The present investigation is an example of the latter. 

In the present study, an investigation of the effects of various 

topological features of the potential-energy surface on the observed 

reaction dynamics of polyatomic systems has been carried out by 

employing quasiclassical trajectory procedures. Five different 

potential-energy surfaces, Sl to SS, have been used in the calculations. 

Surfaces Sl to S4 differ considerably only in their barrier heights. 

Surface SS has a barrier height comparable with S3 but differs in the 

position of the saddle point. 

In order to choose the maximum impact parameter b , batches of 
max 

200 trajectories were run with fixed impact parameters b, and relative 

velocities VR. The value of b was taken to be that value of b for 
max 

which no reactive trajectories were encountered in a batch of 200. The 

values of b thus determined were in the range of 3.4-3.6 R for the 
max 

potential-energy surfaces employed in this study. 

In order to determine the threshold velocity VM, batches of 200 

trajectories were run at fixed relative velocities VR, and impact 

parameters chosen from a uniform distribution (Eq (III-49)). The value 

of VM was assumed to be that value of VR below which no reactive tra­

jectories were encountered in a batch of 200. 

In the present study, an initial separation of 8.5 au between the 

molecules was used. The rotational states were chosen from a Boltzmann 

distribution at T K. The initial vibrational states of the molecules 

were assigned specific values. All other variables were chosen from 

their appropriate distribution functions as described earlier in the 

chapter. 

On surfaces Sl and S2, reactive trajectories were encountered down 
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to very low relative velocities. Hence the threshold velocity VM, was 

taken to be 0.0 on both these surfaces. The rate constants were then 

computed at two different temperatures by using Eq (III-77) for the 

ground vibrational state reactants and also for those in which one 

quanta of energy was introduced through the antisymmetric stretching 

mode of ozone. Batches of 200 trajectories were run in each case. Six 

to ten reactions were encountered for the ground vibrational state 

whereas more than twice as many reactions were encountered for the 

vibrationally excited case. The activation energies and frequency 

factors have been calculated by assuming that the Arrhenius equation 

is a good representation for the temperature dependence of the rate 

coefficients for this system. The results are presented in Tables 

XIX and XX. The statistics are poor in the case of ground-state 

reactants, due to the very low probability of reactive events. 

TABLE XIX 

ARRHENIUS PARAMETERS FOR THE GROUND STATE REACTANTS 

Surf ace b ;<;. In Aa E /Kcal mole max a 

Sl 3.5 -24.00 0.86 

S2 3.6 -24.48 1.39 

S3 3.4 -25.45 2.13 

E . b xperl.Illent -27.97 2.33 

3 -1 -1 (a) A values are in cm -molecule sec • 
(b) Reference 47. 
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TABLE XX 

ARRHENIUS PARAMETERS FOR THE VIBRATIONALLY EXCITED (0010) REACTANTS 

Surf ace In A'a E '/Kcal mole % Decrease 
a in E 

a 

Sl -22.72 0.63 27 

S2 -23.77 0.32 77 

S3 -24.84 0.32 85 

Experiment b -28.60 1.03 56 

3 -1 -1 
(a) A values are in cm -molecule sec • 
(b) Reference 47. 

The maximum impact parameter on surface S3 was chosen to be 3.2 ~. 

The threshold velocity for the ground vibrational state reactants was 

found to be 0.09 vu. When one quanta of energy was introduced through 

the antisymmetric stretching mode of ozone, the probability of encoun-

tering a reactive event was enhanced considerably and no threshold was 

observed. The cross sections have been computed as a function of 

relative velocities at a rotational temperature of 400K. The results 

are given in Table XXI. Table XXI compares the cross sections obtained 

with the vibrationally excited o3 molecules with those obtained when 

the same total energy is available through relative translation. The 

results clearly indicate that vibrational energy is much more effective 

than relative translation, in promoting the reaction. 

On surface S4, occurrence of a reactive event was much less 

probable with ground vibrational state reactants, even at very high 
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relative translational energies. In order to increase the statistical 

accuracy, the maximum impact parameter b , was made to vary with the max 

relative velocity. Calculations have been carried out with ground 

state and vibrationally excited 03 (001) with VM = 0.145 vu and the 

results are given in Table XXII. Less than six reactive trajectories 

were encountered in a batch of 200. A more detailed investigation was 

not attempted on this surface, due to the low probability of reactive 

events. 

TABLE XXI 

CROSS SECTIONS (A0 ) 2 OBTAINED ON SURFACE S3 

S (ER) 

ER E' 
R Ground state Excited state 

Kcal/mole Kcal/mole vibration + vibration + 
Rel. trans. (ER) Rel. trans. (E ') 

R 

4.79 1. 79 0.0321 ± 0.01 1.54 ± 0.3 

8.52 5.52 0.177 ± 0.04 1.08 ± 0.2 

16.69 13.69 0.077 ± 0.02 0.80 ± 0.16 

19 .16 19.16 0.019 ± 0.005 0. 70 ± 0.14 

In order to investigate the effectiveness of vibrational excitation 

in promoting the reaction, it is necessary to compare the rate constants 

obtained on vibrational excitation with those that would be obtained if 
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the excitation quanta (3.0 Kcal/mole of energy) were distributed sta-

tistically among all the reactant degrees of freedom in the collisional 

center of mass. The equivalent thermal temperature Twas determined by 

inserting the constant volume heat capacities (40) into the equation 

( NO 03 ) , 
c + c - l.5R dT 

v v 
= (III-78) 

For T0 = 308K, the ambient temperature in the experimental cell, this 

yields a value of T = 575K. The increase in thermal rate constant for 

such a temperature rise is given by, 

= 
k(575) 

k(308) 
(III-79) 

and this is compared with the enhancement obtained on vibrational 

excitation namely, 

k' (308) 
= (III-80) 

k(308) 

TABLE XXII 

RATE CONSTANTS COMPUTED ON SURFACE S4 

400 

400 

Reactant state 

(0000) 

(0010) 

3 -1 -1 
k(T)/cm -molecule ·sec 

2.35 x 10-16 

X 10-14 
1.02 
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The computed R1 and R2 values for surfaces Sl to S3 are given 

in Table XXIII. The statistical uncertainty of the results corresponds 

to a variation of 20-40%. These results clearly indicate that 

vibration is much more effective than relative translation on these 

surfaces. This effect becomes more pronounced with increasing barrier 

height. This type of result is analogous to that which has previously 

been observed for atom-diatomic exchange reactions (18). 

Surf ace 

Sl 

52 

S3 

TABLE XXIII 

EFFECTIVENESS OF VIBRATION OVER RELATIVE TRANSLATION 
IN PROMOTING THE REACTION 

Barrier 
Kcal/mole 

o. 71 

2.35 

3.57 

R1 = k(575)/k(308)a 

1. 92 

2.84 

5.02 

R2 = k'(308)/k(308)a 

5.16 

11.84 

35.09 

(a) Results have a 20-40% statistical error corresponding to one sigma 
limit. 

k(T) - Rate constant with ground state reactants at T K 
k'(T) - Rate constant with (0010) reactants at T K where the numbers 

in parenthesis are the vibrational quantum numbers of 03 and NO. 

Thus for surfaces with a "late" barrier, vibrational excitation 

seems to be much more effective than relative translation in promoting 

the reaction. Similar behavior has been observed in the case of 
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atom-diatomic molecule reactions (18). These findings can be understood 

by considering the path of a reactive trajectory across the potential­

energy surface. Figure 14 shows the course of a typical reactive 

trajectory on surface S4. The course of the trajectory can be under­

stood by thinking of the path that a rolling marble would take across 

the surface. In Figure 14 we see that the momentum of a rolling ball 

travelling transverse to the entry valley of the energy surface tends 

to carry it over the barrier placed in the exit-valley. The transverse 

momentum in the entry-valley is converted to parallel momentum along 

the exit valley. This illustrates the effectiveness of vibrational 

energy on this class of surfaces (Sl to S4). The results on this class 

of surfaces can be compared to those on the surface IIB2 of Chapman 

(80). It has been observed that vibrational energy enhances the proba­

bility of reaction on surface IIB2 in which the barrier is located in 

the exit-channel. 

It has also been observed that most of the available energy goes 

into N02 vibration. From Figure 14 it is seen that vibration begins 

to set in only later in the product valley. In the case of atom­

diatomic molecule reactions, when sufficient energy is available through 

the exothermicity of the reaction, the molecule exhibits vibrational 

excitation even while entering the product valley (18). This is due 

to the fact that there is only one vibrational mode in the case of 

diatomic molecules, whereas in the case of non-linear triatomic 

molecules there are three vibrational modes. When the N02 molecule is 

formed, the bending mode is excited. The time lag observed in Figure 

14 is due to the time taken for coupling between the bending and 

stretching modes of N02 to produce intramolecular energy transfer. 
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However, it has been experimentally observed that vibration is only 

as effective as relative translation in promoting the reaction, for this 

system. This leads us to predict that the 'actual' surface probably has 

an 'early' barrier. 

On surface SS, cross sections have been evaluated as a function of 

relative velocities at a rotational temperature of 400 K, for the ground 

vibrational state reactants and for those in which one quanta of energy 

was introduced through the antisymmetric stretching mode of ozone. The 

results given in Table XXIV and Figures 15 and 16 indicate the absence 

of a threshold velocity on this surface. The same behavior has been 

observed experimentally by Redpath et al. (52). The zero point energies 

of the o3 and NO molecules are 4.07 and 2.72 Kcal/mole respectively. 

The barrier is about 0.6 Kcal/mole less than the zero point energy of 

ozone. The absence of a threshold probably implies that most of the 

zero point energy is available in the reaction coordinate. This enables 

the system to cross over the barrier even at very low relative trans­

lational energies. 

In order to evaluate the effectiveness of vibration over relative 

translation, the cross sections that would be obtained if one quanta of 

excitation (3 Kcal/mole of energy) were available through relative 

translation are compared with the cross sections obtained on vibrational 

excitation in Table XXIV. The results indicate that vibration is as 

effective as relative translation especially at high relative velocities. 

At low relative velocities, vibration seems to be slightly more effective 

than relative translation. However, within the present error limits, 

these results suggest that vibration and relative translation make com­

parable contributions to the reaction rate enhancement. 
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Figure 15. T.otal Reactive Cros~ Section Versus Relative Translational 
Energy on Surface S5 for (0000) State of Reactants 
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Figure 16. Total Reactive Cross Section Versus Relative Transla­
tional Energy on Surface SS for (0010) State of 
Reactants 
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TABLE XXIV 

CROSS SECTIONS (R/ OBTAINED ON SURFACE SS 

Ea 
S(ER) 

ER 
Kcal/mole Kcal/mole ground state vibration excited state vibration 

+ rel. trans. (ER) +rel. trans. (E') 
R 

4.36 1. 36 1.44 ± 0.58 2.59 ± o. 76 

5.13 2.13 !. 75 ± 0.7 3.15 ± 0.9 

6.06 3.06 1.96 ± 0.78 3.95 ± 0.9 

7.79 4.79 2.73 ± 1.09 2.82 ± 0.76 

11.5 8.5 4.32 ± 1. 73 4.91 ± 1.02 

The rate constants have been evaluated by averaging over a 

Boltzmann distribution of relative velocities at T K. We have assumed 

that the rotational contributions do not alter the results significantly 

and have carried out the calculations at a rotational temperature of 

400 K. ln k is plotted vs l/T in Figures 17 and 18 for the ground 

state and the vibrationally excited (0010) reactants. It should be 

noted that the rate constants calculated are larger than the experimental 

values by two orders of magnitude. The potential-energy surface formu-

lation is probably inadequate to represent the system exactly. Since 

the reaction involves several electronic states, it might be necessary 

to assume a surface hopping model rather than carrying out calculations 

on a single potential-energy surface. However, no threshold was 

observed and a finite signal was measured even at the lowest collision 
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Figure 17. Arrhenius Fit to the Rate Constants for the o3-No System 
Obtained on Surface SS for the (0000) State of Reactants. 
k(T) is in units of cm3/molecule-sec. Ea= 1174.9 
cal/mole. ln A= -24.75; A is in units of cm3/molecule-sec. 
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N~~~~~.--~~~--.~~~~-....~~~~-.-....c.~~~...-~~~~.--~~~--.~ 
10.00 0.60 l. 60 2.i.10 3.20 ILQO 4.60 s. c..; 

1000/T 

Figure 18. Arrhenius Fit to the Rate Constants for the o3-No System 
Obtained on Surface SS for the (0010) State·of Reactants. 
k(T) is in un·its of cm3/molecule-sec. E' = 740.16 cal/mole; 
ln A' = -23.91; A' is in units of cm3/mol~cule-sec. 
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energy (1 Kcal/mole) in the molecular beam experiments of Redpath et al. 

(52). In the flow tube experiments conducted by Hui et al. (47), an 

activation energy of 2.3 Kcal/mole was measured for this reaction. We 

are unable to rationalize these observations at this point. 

In order to investigate the importance of other vibrational modes 

of ozone and NO in enhancing the reaction rate, rate constants have been 

computed using Eq (III-77) with one quanta of energy in each of these 

modes. Tables XXV and XXVI give the results for the reactants in the 

various initial vibrational states designated by (n1n2n3n4), where n1 , 

n2 and n3 are the quantum numbers corresponding to the bending, 

symmetric stretching and antisymmetric stretching modes of o3 respec­

tively, and n4 is the vibrational quantum number of NO. Since one 

quanta of energy in the bending mode is less than one quanta of energy 

in the stretching modes, calculations have also been carried out with 

1.5 quanta of energy in the bending mode in order to make the comparisons 

meaningful. The results seem to indicate that the bending mode is 

slightly more effective in enhancing the reaction than the stretching 

modes. This difference is probably insignificant in view of the present 

error limits and we may expect all three modes to make comparable con­

tributions to the reaction rate enhancement. Vibrational excitation of 

NO does not result in any observable enhancement of the reaction rate. 

This probably indicates that the reaction proceeds through a direct 

mechanism rather than going through a complex formation, at least on 

these surfaces. It is reasonable to expect this, since the present 

surface formulations are not associated with a well at the saddle point 

which would favor a complex formation. The trajectories were direct 

and no evidence for the formation of even a transient complex was 
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observed. This is made clear by Figures 19 and 20 where the distances 

of the bonds involved in the reaction are plotted as a function of time 

for two randomly chosen reactive trajectories. 

TABLE X:XV 

COMPARISON OF THERMAL RATE CONSTANTS AND THOSE OBTAINED 
WITH VIBRATIONALLY EXCITED NO 

k(T) x 1011 3 -1 cm -molecule sec 
T K 

(0000) (0001) 

300 0.26 ± 0.05 

400 0.42 ± 0.1 0.39 ± 0.2 

-1 

500 0.57 ± 0.11 0.79 ± 0.37 

600 0.74 ± 0.2 1.01 ± 0.4 

700 0.95 ± 0.22 

The absence of a mode specific behavior can be either due to the 

formation of a collision complex or due to very rapid V-V intermode 

coupling. The formation of a collision complex is ruled out since 

vibrational excitation of NO does not cause an appreciable enhancement 

of the reaction rate. The V-V coupling of the v1 and v3 modes was 

found to be very rapid (84). Since the frequencies of the v1 and v 3 

modes are nearly equal (1103 cm and 1042 cm, respectively), it was 
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observed that in a very short time interval following the laser exci-

tation of the v3 mode, the v1 and v3 modes undergo rapid intermode and 

intramode V-V exchange to establish a quasisteady Boltzmann-like 
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vibrational distribution in the vibrational manifold of each mode (84). 

The V-V exchange with the v2 mode appears to occur on a somewhat 

longer time scale. The average vibrational energy defect for single 

quantum exchange from the v1 and v3 modes to the v2 mode is only about 

370 cm-l compared with about 1073 cm-l for the V-T relaxation of the 

v1 and v3 modes. Hence, the V-V coupling between the v2 and (v1 and 

v3 ) modes is expected to be faster than the V-T relaxation of the v1 

and v3 modes. The rate constant for the V-V exchange with the v2 mode 

has been observed to be an order of magnitude smaller than the rate 

constant for the coupling between v1 and v3 modes (lower limit for the 

magnitude of the rate constants for such near-resonant intermode 

coupling processes is 1.6 x 105 sec-l torr-lat 298 K) (84). 

The V-V coupling processes in ozone have been investigated by 

subdividing the vibrational energy of ozone into the energies of the 

individual normal modes as the reaction proceeds. 

= k = 1,2,3 

However, this procedure is only approximate since the ozone potential is 

not harmonic and the normal mode energies develop large fluctuations. 

The normal mode energies have been computed for a few time intervals 

before reaction (when the reactants still exist as o3 +NO). The com­

bination of normal mode energies which yield approximately the same 

total energy as at t = 0 have been chosen to be the energies before the 

commencement of reaction. 



TABLE XXVI 

RATE CONSTANTS OBTAINED WITH VIBRATIONALLY EXCITED 
OZONE (n1 n2 n3) ON SURFACE SS 

11 3 -1 1 k(T) x 10 cm -molecule sec-
T/K 

(0100) (l.SOOO) (0010) 

300 1.21 ± 0.36 

400 l.S7 ± 0.4 1.61 ± o.s 

soo 1.08 ± 0.39 2.S2 ± 0.6 1.98 ± 0.6 

600 l.7S ± O.Sl 2.37 ± 0.7 

700 2.60 ± 0.6 2.84 ± 0.8 

The initial normal mode energies and the normal mode energies 
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before the commencement of reaction are shown in Table XXVII for three 

different initial states of reactants. 

It was observed that there is sufficient coupling of the normal 

modes as the reaction proceeds. Thus it is not possible to characterize 

one mode as directed along the reaction coordinate. This rapid coupling 

between the normal modes accounts for the absence of a mode specific 

behavior in this system. 

We have also examined certain average properties of the products. 

Table XXVIII gives the values of the fraction of the available energy, 

partitioned into the product modes for various initial states of 

reactants on surface SS. Table XXIX compares these values on the 

different surfaces employed. 



TABLE XXVII 

ANALYSIS OF NORMAL MODE ENERGIES OF OZONE 

Normal mode energies 

Initial At t = 0 Before reaction State 

El E2 E3 El E2 E3 

(100) 0.132 0.069 0.066 0.070 0.09 0.09 

(010) 0.044 0.208 0.066 0.107 0.138 0.08 

(001) 0.044 0.069 0.197 0.121 0.124 0.138 

(a) Energies are in eV. 

TABLE XXVIII 

FRACTION (%) OF THE AVAILABLE ENERGY DEPOSITED IN THE 
PRODUCT MOLECULES ON SURFACE SS AT T = 400K 

Initial state % Energy 

of reactants 
(N02)vib (N02)rot (02)vib (02)rot 

(0000) 37.8 16.1 5.1 8.0 

(0100) 35.3 15.3 6.9 13.4 

(1000) 44.7 12.8 5.2 8.5 

(0010) 40.8 15.2 6.1 6.4 

(0001) 42.9 16.9 3.6 10.0 
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TABLE XXIX 

FRACTION (%) OF THE AVAILABLE ENERGY DEPOSITED IN 
THE PRODUCT MOLECULES AT T = 400K 

% Energy 
Initial state 
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Surface of reactants (N02)vib (N02) (02)vib (02)rot rot 

S3 (0010) 39.1 20.4 2.4 10.7 

S4 (0010) 44.5 12.7 3.2 11.1 

SS (0010) 40.8 15.2 6.1 6.4 

In the case of atom-diatomic molecule reactions, it has been 

observed that the major part of the available energy appears as vibra-

tion in the molecular product on those surfaces with the barrier 

located in the entry valley. On those surfaces with the barrier 

located in the exit valley, only a small part of the available energy 

appears as product vibration (18). The results obtained for the poly-

atomic system differs from those for the atom-diatomic molecule 

reactions. The results clearly indicate that most of the available 

energy goes into N02 vibration. The partitioning does not show a 

strong dependence on surface topography or reagent energy distribution. 

Consequently, it would appear that measurements of energy partitioning 

have little information content related to potential surface topography 

in this system. 

The mean scattering angle has been calculated by using the 

expression, 
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N 

< e = ~~ 6./N, 
i i 

(III-79) 

i=l 

where ~~ is the random number used in selecting the impact parameter 

f h .th · e · h · 1 f h .th or t e i traJectory, . is t e scattering ang e or t e i trajec-
i 

tory and the sum extends over all the reactive trajectories. The mean 

scattering angle of the N02 product can then be obtained from, 

< e > = 
N02 

Table XXX lists the values of the mean scattering angles for the various 

impact parameter ranges. It is observed that the scattering angle 

decreases with increasing impact parameters. However, at all impact 

parameters the N02 molecule is scattered into the backward hemisphere 

with respect to the incoming NO molecule. The mean scattering angle 

for the N02 product was calculated to be 157°. The average scattering 

angle for the N02 product has also been computed for the surfaces Sl 

to SS for the (0010) vibrational state of the reactants at a temperature 

of 400 K. These data are given in Table XXXI. It is seen that irre-

spectiveof the topography of the potential-energy surface, the N02 

product is scattered into the backward hemisphere with respect to the 

direction of the incident NO molecule. Similar behavior has been 

observed for the atom-diatomic molecule reactions (18). It has been 

observed that at low reagent energy, irrespective of the position of 

the saddle point, the molecular product is scattered back.wards. The 

fact that the N02 product is scattered into the backward hemisphere on 

these surfaces probably implies that the reaction occurs via an 
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abstraction mechanism. The NO molecule approaches the ozone molecule 

0 at an approach angle, OON, greater than 100 , abstracts one of the end 

oxygen atoms in ozone and rebounds back to form the products N02 + o2 • 

Smaller approach angles are found to be less favorable due to energy 

considerations. 

TABLE XXX 

SCATTERING DISTRIBUTION OF THE PRODUCT MOLECULES FOR 
THE GROUND STATE REACTANTS ON SURFACE SS 

b/R <e. > /deg 
i Oz 

<6.> 
i NOz 

/deg 

0 - 0.5 3.2 176.8 

0.5 - 1. 0 11.6 168.4 

1. 0 - 1.5 29.4 150.6 

1. 5 - 2.0 40.2 139.8 

2.0 - 3.5 63.2 116.8 

The scattering angle has also been computed for the initial 

reactant states (0000), (0010) and (0030) on surface SS at T = 400 K. 

The results are given in Table XXXII. The N02 product is scattered 

into the backward hemisphere irrespective of the initial state of 
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reactants. The scattering angle is observed to decrease slightly with 

increasing energy. This difference is probably insignificant in view 

of the present error limits. 

TABLE XXXI 

AVERAGE SCATTERING ANGLES ON SURFACES Sl, S2, S3 and SS 

Surface 

Sl 10 so 

S2 19 200 

S3 12 200 

SS lS 200 

Initial reactant state is (0010); T = 400 K. 

NR is the number of reactive trajectories. 

Ntot is the total number of trajectories. 

TABLE XXXII 
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143 

142 

143 

SCATTERING ANGLES FOR VARIOUS INITIAL STATES OF REACTANTS ON SURFACE SS 

Initial state 

(0000) 

(0010) 

(0030) 

1S7 

143 
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Similar calculations have been reported recently by Chapman (80). 

Chapman has attempted to exaggerate the possible effects by carrying 

out calculations at significantly higher energies than are present in 

the experimental studies but was unable to obtain good statistical 

accuracy. However, it has been reported that vibrational energy was 

more effective on those surfaces in which the barrier was located in 

the product valley, but no studies of the systematic variation in 

barrier height or barrier position within a set of surf aces was carried 

out. The present investigation has attempted a systematic analysis of 

the importance of the various topological features in determining the 

reaction dynamics in a polyatomic system. The results of the present 

calculations show agreement in a qualitative sense with those of 

Chapman (80). 

Conclusions 

The present study has investigated the effects and importance of 

some surface topological features in determining the reaction dynamics 

in polyatomic systems. It has been found that the position of the 

saddle-point plays a role very similar to that in the case of atom­

diatomic molecule reactions. However, the energy partitioning in the 

product modes differs from that observed in the atom-diatomic molecule 

case. Thus we see that the behavior of the atom-diatomic molecule 

reactions may be used to predict the outcome of larger systems only 

with difficulty. It has also been observed that the No2 product is 

scattered in the backward hemisphere with respect to the direction of 

the incident NO molecule. This probably implies that the reaction 

proceeds via an abstraction mechanism. 
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The absence of a mode-specific behavior does not necessarily imply 

that the reaction proceeds via formation of a collision complex. It is 

observed that the intermode V-V coupling occurs in a time interval much 

shorter compared to the collision time; thus the reaction exhibits no 

mode-specific behavior. 

The partitioning of available energy among the product modes is 

found to be independent of the surface topography and also the initial 

state of reactants. Similar behavior is also observed for the average 

scattering angle. Thus it seems impossible to obtain information about 

the detailed topographical features of the potential-energy surface 

from a measurement of these quantities. The incorporation of the 

experimental data into such a multi-dimensional hypersurface is 

obviously a very difficult task. 



CHAPTER IV 

POTENTIAL-ENERGY SURFACE FOR THE HF + Ar RIGID 

ROTOR SYSTEM 

Two different potential-energy surfaces have been employed in the 

present study, a pairwise Lennard-Jones (12, 6) potential and an ab 

initio spline fitted SCF surface (SAI) augmented by a Van der Waals 

attractive term to compensate for the lack of configuration mixing in 

the SCF wavefunction. 

Spline Fitted Ab Initio Surf ace (SAI) 

An unrestricted potential-energy surf ace formulation would require 

the calculation of the ab initio energies as a function of three 

variables, R, r and I' (see Figure 21). The dimensionality of the 

problem can be reduced from three to two by approximating the HF 

molecule to be a rigid rotor. This approximation considerably 

simplifies the problem and is expected to be a valid approximation 

due to the following reasons: 

1. At ordinary temperatures, only the ground vibra­
tional state is appreciably populated. Thus the vibrational 
amplitude is minimal, and the variation in R is therefore 
small. 

2. Rotationally inelastic scattering is mainly affected 
by the variables r and I', the distance of the He atom from 
the center of mass of the HF molecule, and the angle which 
the He atom makes with the HF bond axis, respectively (see 
Figure 21). 
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Figure 21. The HF-Ar Rigid Rotor System 
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The most accurate ab initio calculation is the one which incor­

porates configuration interaction (CI). In such calculations, a proper 

account of the electronic interaction is made by correlating the motion 

of all the electrons, so that the position of one depends on the in­

stantaneous position of the other, rather than on the average position 

of the other electrons. The major disadvantage of a CI calculation is 

the enormous amount of computer time required for treating even very 

simple systems. Since the correlation error is considerably smaller 

in the case of closed-shell systems, an LCAO-MO-SCF (Linear Combination 

Of Atomic Orbitals-Molecular Orbitals-Self Consistent Field) approxi­

mation in the Hartree-Fock limit is expected to yield results with 

reasonable accuracy for these systems. 

The LCAO-MO-SCF energies for the HF-Ar rigid rotor system have 

been evaluated using gaussian-70 (85). The basis sets were taken 

directly from those provided by the program. In all cases, the HF 

molecule was fixed at its equilibrium geometry Cl)iF = 0.9171 R). 
The basis sets employed for both Ar and HF consisted of Slater-type 

orbitals (STO's) approximated by expansions of gaussian type orbitals. 

The valence shells of Hand F were represented by two STO's: one 

approximated by a three-term gaussian and the other by a single 

gaussian (31G). The inner shells of F and all the orbitals of Ar were 

represented by STO's approximated by a six-term gaussian expansion. The 

extended basis set was chosen after carrying out certain preliminary 

calculations with minimal basis sets and various extended basis sets. 

The comparison shown in Table XXXIII indicates that the 6-31G basis for 

HF and a (ST0-6G) basis for AR yields energies lower than those obtained 

with minimal basis sets and other extended basis sets, with only a 
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slight increase in computational time. Hence, the more accurate 

(6-31G) extended basis set for HF and a (ST0-6G) basis set for Ar were 

chosen. 

TABLE XXXIII 

COMPARISON OF TIMES AND ACCURACIES OF THE DIFFERENT BASIS 
SETS FOR ARGON AND HF 

Basis b c l:IE (eV) Er=ii (au) E (au) 
co 

Hf Ar 

ST0-6G ST0-6G -624.48419 -624.55410 !. 92976 

4-31G ST0-4G -623.99840 -623.92722 !. 93697 

ST0-5G -624.71911 -624.64783 !. 93963 

ST0-6G -624.94149 -624.87018 !. 94053 

5-31G ST0-4G -624.07480 -624.00322 !. 94790 

ST0-5G -624.79551 -624.72382 !. 95068 

ST0-6G -625.01789 -624.94617 !. 95163 

6-31G ST0-4G -624.09455 -624.02287 !. 95056 

ST0-5G -624.81526 -624.74347 !. 95340 

ST0-6G -625.03764 -624.96582 !. 95433 

Timed 
(sec) 

22.74 

15.83 

19.36 

23.11 

17.15 

19.92 

23.76 

17.67 

20.52 

24.58 

(a) Basis employed was the one provided by the Gaussian-70 program. 

(b) Energies correspond to the configuration with I'= 90° (Ar perpen-
dicular to the HF bond axis). 

(c) E corresponds to the interaction energy for r = 25 Zand r = 90°. 
00 

(d) The time tabulated is that required to calculate E (r = 2.0 ~). 
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The ab initio energies have been evaluated at various r and r 

values and are given in Table XXXIV. The results were interpolated by 

using a cubic spline interpolation technique (79) which enabled us to 

determine the potential energy as a function of r and r. 

The ab initio surf ace thus evaluated does not include configur-

ation interaction. The dispersion forces which operate between systems 

at large distances are a result of a small, but significant, correla-

tive interaction of the motions of the electrons in the two systems. 

Thus, the polarization of the two systems resulting from this long 

range correlative effect and the accompanying small change in energy 

are not properly represented in the Hartree-Fock description of the 

combined system. In order to compensate for the lack of configuration 

mixing in the SCF wavefunction, the spline fitted ab initio surface 

has been augmented by a Van der Walls attractive term. 

with 

= -4.0 s (cr /r) 6 
0 . 0 

(IV-1) 

(IV-2) 

where r is the distance of the He atom from the center of mass of the HF 

molecule. s and cr are the L-J parameters for the HF-Ar interaction. 
0 0 

s 0 was taken to be the geometric mean of the s values for HF and Ar and 

cr was taken to be the arithmetic mean of the cr values for the collision 
0 

partners, i.e. , 

E 
0 

= (IV-3) 



r 

1. 4 

1. 6 

1.8 

2.0 

2.2 

2.4 

2.6 

2.8 

3.0 

3.2 

3.4 

3.7 

4.0 

4.3 

4.7 

s.o 

6.0 

7.0 

8.0 

10.0 

11. 0 

TABLE XXXIV 

AB INITIO INTERMOLECULAR POTENTIAL FOR THE RIGID ROTOR HF-Ar 
SYSTEM. ENERGIES ARE MEASURED IN eV FROM THE ENERGY 

OF HF AND Ar AT INFINITE SEPARATION. 
r IS IN R 

r = o0 r = 5° r = 10° r = 15° r = 20° r = 30° 

78.2680 75.5422 68.3664 58.9929 49.5655 34.9561 

30.3621 29.5884 27.4819 24. 5710 21. 4495 16.1652 

12.1116 11. 8673 11.1923 10.2341 9.1678 7.2399 

4.7662 4.6860 4.4618 4.1364 3.7634 3.0528 

1. 6823 1. 6566 1.5826 1. 4739 1. 3473 1.1006 

0.3547 0.3478 0.3282 0.2999 0.2678 0.2098 

-0.1980 -0.1976 -0.1963 -0.1934 -0.1879 -0.1673 

-0.3876 -0.3847 -0.3759 -0.3616 -0.3422 -0.2915 

-0.4043 -0.4007 -0.3900 -0. 3728 -0.3500 -0.2925 

-0. 3428 -0.3393 -0.3293 -0. 3132 -0.2921 -0.2394 

-0.2551 -0.2523 -0.2441 -0.2309 -0.2137 -0.1715 

-0.1351 -0.1334 -0.1284 -0.1205 -0.1102 -0.0857 

-0.0588 -0.0580 -0.0555 -0.0517 -0.0468 -0.0353 

-0.0217 -0.0213 -0.0204 -0.0188 -0.0169 -0.0124 

-0.0048 -0.0047 -0.0045 -0.0041 -0.0037 -0.0027 

-0.0015 -0.0015 -0.0014 -0.0013 -0. 0012 -0.0010 

-0.0004 -0.0004 -0.0004 -0.0004 -0.0003 -0.0003 

-0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

-0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

-0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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TABLE XXXIV (Continued) 

r = 40° r = 50° 0 r = 10° r = 80° r = 85° r r = 60 

1. 4 26.8623 23.0220 21. 2724 20.4269 19.9826 19.8512 

1. 6 12.9065 11.1965 10.3416 9.9170 9. 7244 9.6851 

1. 8 5. 9287 5.1667 4.7509 4.5385 4.4539 4.4450 

2.0 2.5331 2.2124 2.0340 1. 9504 1. 9317 1. 9393 

2.2 0.9173 0.8073 0.7548 0.7439 0.7618 o. 7777 

2.4 0.1761 0.1687 0.1818 0.2091 0.2443 0.2629 

2.6 -0.1340 -0.0924 -0.0473 -0.0026 0.0379 0.0557 

2.8 -0.2317 -0.1704 -0.1138 -0.0655 -0. 0277 -0.0127 

3.0 -0.2275 -0.1644 -0.1099 -0.0672 -0.0365 -0.0252 

3.2 -0.1814 -0.1272 -0.0827 -0.0499 -0.0280 -0.0204 

3.4 -0.1263 -0.0855 -0.0536 -0.0313 -0.0173 -0.0126 

3.7 -0.0605 -0.0390 -0.0232 -0.0130 -0.0069 -0.0050 

4.0 -0.0240 -0.0149 -0.0086 -0.0047 -0.0026 -0.0019 

4.3 -0.0083 -0.0050 -0.0029 -0.0016 -0.0010 -0.0008 

4.7 -0.0018 -0.0012 -0.0008 -0.0006 -0.0005 -0.0004 

5.0 -0.0007 -0.0006 -0.0005 -0.0004 -0.0004 -0.0004 

6.0 -0.0003 -0.0003 -0.0004 -0.0004 -0.0004 -0.0003 

7.0 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

8.0 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

10.0 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 

11.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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TABLE XXXIV (Continued) 

r r = 90° r = 100° r = 110° r = 120° r = 130° 

1.4 19.7663 19. 701~6 19.7312 19. 7793 19.7995 

1.5 9.6729 9.7005 9.7500 9. 7738 9.7459 

1.8 4.4517 4.4922 4. 5377 4.5585 4.5396 

2.0 1.9542 1.9944 2.0299 2.0449 2.0327 

2.2 0.7958 0.8325 0.8601 0.8711 0.8639 

2.4 0.2809 o. 3121 0.3329 0.3414 0.3378 

2.6 0.0715 0.0962 0.1114 0.1177 0.1163 

2.8 -0.0002 0.0180 0.0285 0.0329 0.0328 

3.0 -0.0162 -0.0039 0.0029 0.0058 0.0062 

3.2 -0.0145 -0.0068 -0.0027 -0.0009 -0.0005 

3.4 -0.0091 -0.0046 -0.0024 -0.0013 -0.0010 

3.7 -0.0037 -0.0020 -0.0012 -0.0008 -0.0008 

4.0 -0.0015 -0.0009 -0.0007 -0.0006 -0.0005 

4.3 -0.0006 -0.0005 -0.0004 -0.0004 -0.0004 

4.7 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

5.0 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

6.0 -0.0003 -0.0004 -0.0003 -0.0003 -0.0004 

7.0 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

8.0 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

10.0 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 

11.0 0.0000 0.0000 0.0000 0.0000 0.0000 
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TABLE XXXIV (Continued) 

r r = 140° r = 150° r = 160° r = 170° r = iso0 

1.4 19. 7711 19.7032 19.6222 19.5585 19.5345 

1. 6 9.6664 9.5566 9.4473 9.3679 9.3390 

1.8 4.4833 4.4053 4. 3277 4.2712 4.2507 

2.0 1.9963 1.9464 1. 8967 1.8606 1.8475 

2.2 0.8415 0.8108 0.7804 0.7585 0.7505 

2.4 0.3248 0.3070 0.2893 0.2765 0.2719 

2.6 0.1095 0.0999 0.0902 0.0833 0.0808 

2.8 0.0296 0.0249 0.0202 0.0168 0.0155 

3.0 0.0050 0.0029 0.0008 -0.0007 -0.0013 

3.2 -0.0008 -0.0015 -0.0024 -0.0030 -0.0032 

3.4 -0.0011 -0.0013 -0.0017 -0.0019 -0.0020 

3.7 -0.0008 -0.0008 -0.0009 -0.0009 -0.0009 

4.0 -0.0005 -0.0005 -0.0005 -0.0005 -0.0005 

4.3 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

4.7 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

5.0 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 

6.0 -0.0003 -0.0004 -0.0003 -0.0004 -0.0003 

7.0 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

8.0 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

10.0 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 

11.0 0.0000 0.0000 0.0000 0.0000 0.0000 



This gives cr = 3.278 ~and e /k = 198.9146 deg. 
0 0 

Lennard Jones Potential-Energy Surf ace 

The LJ (12, 6) pairwise potential is given by 

= 

where each term has the form 

V. (R.) 
1 1 

= 
6 (cr./R.) ) 

1 1 
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(IV-4) 

(IV-5) 

(IV-6) 

The cr parameters for the Ar-H and Ar-F interaction and the e parameter 

for the Ar-H interaction were obtained from the NASA compilation (86) 

of LJ parameters and the use of arithmetic and geometric mean combining 

rules for the mixed interactions. The e and cr parameters for the H atom 

in the HF molecule were taken to be the geometric and arithmetic means, 

respectively, of the tabulated values for isolated H and He. The cr 

parameter for F in HF was taken to be that for Ne. The e value for F 

was chosen such that the well depth of the resulting potential approached 

the estimated well depth of 0.017 eV (86) for the HF-Ar interaction. 

The mixed interaction parameters required were then obtained from 

cr = (crH + crAr)/2 Ar-H 

crAr-F (crF + crAr)/2 
;.,; 

eAr-H = (eArEH) 2 (IV-7) 

The values of all parameters are given in Table XXXV. The intermolecular 



potential obtained by using the LJ (12, 6) pairwise potential are 

plotted vs r for I' = 90° in Figure 22. 

Interaction 

H-Ar 

F-Ar 

HF-Ar 

TABLE XXXV 

LENNARD-JONES PARAMETERS 

a s./k (deg) 
]. 

48.2862 

138.8522 

198.9146 

(a) k is the Boltzmann constant. 

3.01875 

3.086 

3.278 
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CHAPTER V 

STUDY OF THE ROTATIONALLY INELASTIC SCATTERING 

IN THE HF-Ar RIGID ROTOR SYSTEM USING THE 

INFINITE ORDER SUDDEN 

APPROXIMATION 

METHOD 

Calculational Methods 

In recent years, a number of quantum mechanical sudden approxi-

mations have been employed for molecular scattering calculations (87-91). 

Some of these are very simple and yet work well at normal collision 

energies. The Infinite Order Sudden Approximation (IOSA) belongs to 

this category. The simplicity and accuracy of the IOSA method make 

it very suitable for routine analysis of experimental data. A simple, 

direct derivation of the IOS equations for the rotationally inelastic 

scattering accompanying a rigid rotor-atom collision has been given by 

Parker and Pack (62). The application of the IOSA method to the rigid 

rotor HF + Ar system follows very closely the treatment of the co2-He 

rigid rotor system by Parker and Pack (62) and by Agrawal and Raff (63). 

Hence, only the important results will be given here. 

The Hamiltonian for the system (see Figure 21) may be written as 

H = • r (V-1) 
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2 
where 1 is the operator corresponding to the square of the orbital 

op 

angular momentum representing the rotation of atom A about the BC 

2 
center-of-mass and J is the operator corresponding to the square of 

op 

the molecular angular momentum representing the rotation of the BC 

molecule. µBC is the reduced mass of the molecule BC; µ is the reduced 

mass of the system given by 

(V-2) 

The Schrodinger equation for the system is 

(E-H)i/; = 0 (V-3) 

The wavefunction for the system may be expanded as 

ij;JMjl = 
-1 JMJ"l JM G (r)Y (R,r) r j"l" j"l" (V-4) 

j" l" 

where the J and Mare the total angular momentum quantum numbers; j" 

and l" are quantum numbers corresponding to the eigenvalues of the 

operators J 2 and 12 respectively. 
op op' 

YJM (R,~) can be expressed in terms of the initial state wave­
j"l" 

functions by making use of the Clebsch-Gordan theorem. 

+j +l 
JM (R,r) I I C (j "l" J ;m j 11m111M) Y. (R)Ylm (~) (V-5) yj "l" = 

Jmj 1 
m.=-j m =-1 

J 1 

Substitution of Eq (V-4) into Eq (V-3) followed by multiplication by 

JM* A A 

Yj'l'(R,r) and integration over all space yields the following radial 



equation 

where 

2µ/11 2 X 1; 1; <JMj'l' IV I JMj"l">G~l~ (r) 

2 
k.' 

J 
= 

j" l" 

{E-1i.2 j'(j'+l)/21 }2µ/n 2 
0 
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(V-6) 

(V-7) 

JMjl 
Eq (V-6) is an infinite set of coupled equations for Gj'l' (r). It is 

very difficult to solve this set of equations, especially when a large 

number of coupled equations must be included in order to obtain con-

verged cross sections. 

The IOSA method simplifies the problem by replacing the angular 

momentum operators in the Hamiltonian by eigenvalue forms, namely, 

and 

J2 = ~2 j(j + 1) 

where 1 and j are suitable constants. 

This approximation simplifies the problem enormously. The 

resulting radial equation is 

2 2 2 - - 2 jI 
{d /dr +k-:--1(1+1)/r }g (r,r) 

J 

The matrix element of the g functions, 

(V-8) 

(V-9) 

(V-10) 
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GJMjl 
j I l' = 

-:-1 
< JMj ' 1' J gJ ( r , r) I JMj 1 > (V-11) 

are approximate solutions of Eq (V-6). It can be shown that GJMj 1 
j I l' 

satisfy the set of equations 

-JMjl 
Gj 'l' (r) = 

2µ/n 2 L 1: <j'l'JMjVJj"l"JM>G~i~(r) 
j" l" 

These are identical with Eq (V-6) except that k., has been 
J 

(V-12) 

replaced by k~ and l' by 1 on the left hand side of the equation. By 
J 

the definition of k. 1 given by Eq (V-7), it may be inferred that the 
J 

IOS equations will be valid whenever the kinetic energy is large 

compared to the rotational energy spacing. 

In order to evaluate the scattering amplitude and the cross 

section, a choice has to be made for j and l. In our calculations, 

j was chosen to be the initial rotational quantum number, j, and I was 

chosen to be the final orbital quantum number. With this choice, the 

radial equations were solved to obtain the phase shifts, n1 , and then 

the various cross sections were evaluated by using the following 

expressions due to Parker and Pack (62). 

State-to-State Cross Sections 

cr(j'+-j) 1: c2 (jj "j'; OOO)cr (j" +- 0) 

k: j" 
J 

(V-13) 



where 

with 

o(j"+O) = 'TT/(2j"+1)k2 r 
0 

I k-:'1 1 l 2 
(21' + 1) ti, 

= (j" + 1/2) 

l' 

+l k~ /{1- exp{2in1J 

-1 

(r)} }p . 11 (cosr)dcosr 
J 
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(V-14) 

(V-15) 

The expression for the state-to-state cross sections derived by 

the IOSA method (Eq (V-13)) is independent of the exit-channel velocity. 

Consequently, the above IOSA method yields significant cross sections 

even for those transitions closed by energy conservation constraints. 

In order to eliminate this undesirable feature, the IOSA equations were 

modified by Agrawal and Raff by including an explicit exit-channel 

velocity dependence (66) into the expression for the scattering cross 

section. 

The IOSA expression for the scattering amplitude is 

A 

f (j 'm. ' + j m I r) 
J 

!:: 
i(:rr/k.k. I) 2 

J J ·-
(-1) 1- 1 (21+1)~ 

JM11 'm1 , 

XC(jlJ;m.OM)C(j'l'J;m.,m1 ,M) 
J J 

x<JMj 11'1J1 cnlJMjl>Y1, (r) 
fill I 

Under the modified IOSA method, this becomes, 

(V-16) 



f (j 'm. I+ jm I r) 
J 

k 
= i ( 1T /k. k-;) 2 

J J 
JMll'm1 , 

<-1) 1-I (21+ l)!z 

XC(jlJ;m.OM)C(j'l'J;m.,m11 M) 
J J 

x<JMj'1' I TII en I JMjl>Y1 , _ <r) 
ml I 

The modified expression for the scattering cross section is 

(J (j I + j) = 
2 2 

(k. I /k-:) (k /k. ) L 
J J 0 J 

j II 

c2 (jj "j ' ; 000) cr (j" + O) 
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(V-17) 

(V-18) 

which is explicitly dependent upon the exit-channel velocity, k.,. 
J 

This modification is very simple. It simply involves multiplying 
_1,: h: 

the scattering amplitude obtained by the IOSA method by k-:2k~,. Since 
J J 

the cross sections are directly proportional to the square of the 

amplitude, the expressions for the cross sections derived by the IOSA 

-1 method are modified by multiplying by k~ k.,. 
J ] 

As can be seen from Eq (V-13) - (V-15), the calculation of the 

state-to-state cross sections is very simple once the phase shifts are 

evaluated. Thus, the major portion of the calculation resides in the 

computation of the phase shifts, n1 . 

The WKB phase shift formula employed to compute the required n1 is 

= lim { 
R+oo 

where 

R 

j {k2 - (1+1/2) 2 /r2 - U}!zdr - kR + (1 + l/2)1T /2} 

r~ 
1 

(V-19) 



= 2µE/1i. 2 

u = 2µV/n2 

k is the wave number, V the potential energy and r. the classical 
J. 

turning point. 
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(V-20) 

(V-21) 

The N-point Gauss-Mehler approximation to this integral is given 

by (92), 

N 

kr. 1: 
J. 

j=l 

w.f(x.) + (l+l/2-kr.)1T/2 
J J J. 

where the points x. and the weights appropriate to the weighting 
J 

2 k 
function (1- x ) 2 are given by Kopal (92) as, 

xj cos{rrj/(2N+l)} 

and w. = 
J 

2 
(l-x,)rr/(2N+l) 

J 

(V-22) 

(V-23) 

This enables a very rapid calculation of the phase shifts. The integral 

in Eq (V-15) was evaluated numerically by using the Gaussian quadrature. 

The total number of phase shifts required depends upon the initial 

relative translational energy. The phase shifts, n1 (r), are to be 

evaluated for various 1 values ranging from 0 to 1 where, max 

1 % ka max 

and lim n1 (r) -+ 0 
1+1 

max 

(V-24) 
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a is the range over which the interaction potential is appreciable and 

k is the wave vector given by, 

k 
k: 

(2µE) 2 /h (V-25) 

In the present case, calculations have been carried out at three 

different initial translational energies, namely T. = 4, 9, and 15 
l 

Kcal/mole on the LJ(l2,6) surface. The number of phase shifts evalu-

ated at these energies were 300, 500 and 600, respectively. Figure 23 

shows a plot of n1 (r) vs 1 for the LJ(l2,6) surface at Ti 9 Kcal/mole 

for r = 100°. Calculations have been carried out at T. = 4 Kcal/mole 
l 

on the ab initio surf ace and the number of phase shifts evaluated was 

200. The phase shifts, n1 (r), are plotted vs 1 in Figure 24 for 

r = 100°. 

Results and Discussion 

State-to-state cross sections have been calculated for the initial 

rotational states j = 0, 1 and 2 at three different initial trans-

lational energies using the IOSAM method on the pairwise LJ(l2,6) 

potential surface. These are given in Tables X:XXVI to X:XXVIII. Figures 

25 and 26 show a comparison of IOSAM results for both the LJ(l2,6) and 

ab initio surfaces with the experimental data reported by Barnes,et al 

(67) for initial states j = 1 and 2, respectively, at a relative trans-

lational energy of 4 Kcal/mole. Since the experiment yields only 

relative cross sections, the figures give the results in terms of cross 

section ratios. For the j 1 calculations, the (cr(j' + l)/cr(3+ 1)) 

ratios are given. For the j 2 calculations, the values of (cr (j' + 2) I 

cr ( 4 + 2)) are plotted. 
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(a) 

TABLE XXXVI 

IOSAM RESULTS FOR THE STATE-TO-STATE INTEGRAL CROSS SECTIONS 
ON THE LJ(l2,6) POTENTIAL SURFACEa 

j I 

Ti = 4 Kcal/mole 

CJ(j I+- 0) CJ(j I +-1) CJ(j I+- 2) 

0 3.4606 1.3845 

1 10.0754 5.1519 

2 6.3262 8.0869 

3 3.2137 4.3676 7.2361 

4 1. 4274 2.3750 3.7423 

5 1.2266 1.1201 1. 9855 

6 0.6896 0.9068 0.9238 

7 0.4569 0.4526 0.6538 

8 0.0 o.o 0.1089 

9 0.0 o.o 0.0 

Cross sections are in units of (~) 2. 

T. = 4 Kcal/mole. 
l 
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(a) 

TABLE X.XXVII 

IOSAM RESULTS FOR THE STATE-TO-STATE INTEGRAL CROSS SECTIONS 
ON THE LJ(l2,6) POTENTIAL SURFACEa 

j ' cr (j ' + O) CJ (j I + 1) cr (j' + 2) 

0 2.3922 1.1762 

1 7.0817 3.8219 

2 5.6506 6.2026 

3 3.4336 3.9792 5.6913 

4 1. 3794 2.7301 3.4750 

5 1. 7018 1.1373 2.3257 

6 0.8050 1. 3157 1.0108 

7 0.8457 0.6881 1. 0986 

8 0.5316 0.6609 0.6114 

9 0.4476 0.4525 0.5579 

10 0.3374 0.3531 0.3694 

11 0.2142 0.2236 0.2518 

Cross sections are in units of cR) z. 
T = 

1. 
9 Kcal/mole. 
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(a) 

TABLE XXXVIII 

IOSAM RESULTS FOR THE STATE-TO-STATE INTEGRAL CROSS SECTIONS 
ON THE LJ(12,6) POTENTIAL SURFACEa 

j' CJ (j I + 0) CJ (j I + 1) cr (j ' + 2) 

0 1. 9988 1.1225 

1 5.9488 3.3624 

2 5.4798 5.5153 

3 3.5929 3.8793 5.1181 

4 1. 3623 2.9159 3.4002 

5 1.9042 1.1278 2.4604 

6 0.8060 1.4302 1.0082 

7 0.8554 0.6985 1. 2065 

8 0.5615 0.6901 0.6466 

9 0.4989 0.5158 0.6234 

10 0.4533 0.4547 0.4588 

11 0.3952 0.3838 0.3878 

Cross sections are in units of (g) 2. 

T. = 
l. 

15 Kcal/mole. 
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(e) and ( •) are the IOSAM results on the LJ(l2,6) and 
SAI surfaces, respectively. ( .. ) are the experimental 
data (Reference 67). 
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As seen from the figures, the computed state-to-state T~R cross 

sections on the LJ(l2,6) surface for transitions with j' > j are in 

excellent accord with the experimental results. For transitions with 

j' <j, the degree of agreement is significantly reduced. In general, 

the infinite-order sudden calculations tend to underestimate the cross 

sections for the de-excitation processes. Overall, the cross sections 

scale as an inverse power of ~Ejj'' in accord with a recently proposed 

expression suggested by Brunner, Driver, Smith and Pritchard (93), 

(J (j I + j) (V-26) 

where Ti and Tf are the initial and final relative translational 

energies. 

The results obtained on the ab initio surface are found to be in 

generally poor agreement with the experimental data for all transitions. 

This is surprising in view of the fact that a similar surface formu-

lation yielded results in good agreement with experiment for the (He,co2) 

system (63). The probable reasons for the discrepancy are: 

1. The asynnnetry of the (Ar,HF) system is incompatible 
with the assumption that the attractive interaction operates 
between the centers-of-mass. 

2. The calculations at the SCF level are inadequate in 
spite of the closed-shell nature of this system. 

Barnes et al, (67) found the relative T~R cross sections to be 

almost insensitive to the relative translational energy, T., over the 
1. 

range 4 Kcal/mole~ T. ~ 16.0 Kcal/mole. Figure 27 shows the IOSAM 
1. 

cross sections computed on the LJ(l2,6) surface at T. = 4, 9 and 15 
1. 

Kcal/mole. The line represents the experimental results of Barnes et al 
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(67). The Pritchard correlation is obeyed very well at each energy, and 

the overall agreement between theory and experiment is reasonably good. 

The state-to-state cross sections have also been evaluated as a 

function of the well depth, using the pairwise LJ(l2,6) potential. The 

results for the initial states j = 1, 2 at an initial relative trans-

lational energy of 4 Kcal/mole are given in Tables XXXIX and XL. It is 

seen that an increase in the well-depth, decreases the cross sections 

for those transitions with ~j = ±1 and increases the cross sections for 

those transitions with ~j = ±2. The cross sections corresponding to 

larger ~j transitions are almost unaffected by the change in the well-

depth. 

The total inelastic cross sections for the initial states j = 0, 

1, 2 have been evaluated as a function of the relative translational 

energy on the LJ(l2,6) potential-energy surface. These are given in 

Table XLI. It is seen that the total inelastic cross sections decrease 

with increasing energy, and that at each energy, they are almost inde-

pendent of the j-state. Similar behavior was observed in the (co2-He) 

system (63). The total inelastic cross section includes significant 

contributions from many state-to-state processes. The summation over 

all such transitions tends to average out the dependence of crtotal on 

j. Suzukawa, et al (94) have also observed a similar behavior in the 

quasiclassical trajectory calculations of the co2-Kr system. In this 

classical case, this behavior was explained as being due to the fact 

that the rotational periods are much larger than the collision times. 

Total inelastic cross sections have also been evaluated as a 

function of the well-depth for T. = 4 Kcal/mole and the initial states 
i 

j = 0, 1 and 2. These results are given in Table XLII. The total 



(a) 

TABLE XXXIX 

IOSAM RESULTS FOR THE STATE-TO-STATE INTEGRAL CROSS SECTIONS AS A 
FUNCTION OF THE WELL-DEPTH OF THE POTENTIAL SURFACEa 

170 

j' E = 0.007 eV E = 0.01 eV E = 0.016 eV 

cr(j '+-1) cr (j '+-1) cr(j'+-1) 

0 4.3285 3.9120 3.4606 

1 

2 9.7577 9.1691 8.0869 

3 2.8811 3.3920 4.3676 

4 2.2763 2.6357 2.3750 

5 1.2097 1. 0293 1.1201 

6 0.7816 0.8948 0.9068 

7 0.5010 0.4676 0.4526 

Cross sections are in units of (~) 2 . 
Ti = 4 Kcal/mole 

Initial j-state = 1 



(a) 

TABLE XL 

IOSAM RESULTS FOR THE STATE-TO-STATE INTEGRAL CROSS SECTIONS AS A 
FUNCTION OF THE WELL-DEPTH OF THE POTENTIAL SURFACEa 

E: = 0.007 eV e: = 0.01 eV E: = 0.016 eV 
j I 

(j I +- 2) (j I +- 2) (j I +- 2) 

0 0.8096 1. 0518 1. 3845 

1 6.2763 5.8413 5.1519 

2 

3 8.6282 8.1363 7.2361 

4 2.5450 2.9659 3.7423 

5 1. 9154 2.1758 1. 9855 

6 0.9920 0.8676 0.9238 

7 0.5771 o. 6472 0.6538 

8 0.1174 0.1111 0.1089 

Cross sections are in units of cR) 2. 

T. = 4 Kcal/mole 
1. 

Initial j-state = 2 
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TABLE XLI 

TOTAL INELASTIC INTEGRAL CROSS SECTION ON THE LJ(l2,6) SURFACEa 

j 
Energy (Kcal/mole) 

4.0 9.0 15.0 

0 23.4158 22.4321 21. 8584 

1 20.7697 20.1352 19.6103 

2 21.1868 20.3899 19.7950 

(a) Cross sections are in units of (~) 2 . 
Initial j-states = 0, 1, and 2 

TABLE XLII 

TOTAL INELASTIC INTEGRAL CROSS SECTION AS A FUNCTION 
OF THE WELL-DEPTH OF THE POTENTIALa 

Well-depth (eV) 
j 

0.007 

0 23.2575 

1 21. 7360 

2 21. 8010 

(a) Cross sections are in units of (~) 2 • 
T. = 4 Kcal/mole 

]_ 

Initial j-states = 0, 1 and 2 

0.01 

23.4931 

21.5005 

21. 7972 

0.016 

23.4158 

20.7697 

21.1868 
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inelastic cross sections are seen to be almost independent of the 

well-depth. Thus, it is unlikely that the evaluation or measurement 

of total cross sections will enable such topographical details of the 

surface to be accurately determined. 

Figures 28 and 29 show a comparison of cross section ratios com­

puted by the IOSA and IOSAM procedures on the LJ(l2,6) surface with 

the experimental ratios obtained by Barnes, et al (67) at Ti = 4 

Kcal/mole. For virtually all transitions, the computed IOSAM cross 

sections are found to be in better accord with the experimental data 

than is the case for the IOSA results. This is particularly true for 

transitions associated with large positive ~j. 

Table XLIII gives a similar comparison of IOSA and IOSAM results 

on the ab initio surface. Although the degree of agreement between 

theory and experiment is significantly less for the ab initio surface 

than for the LJ(l2,6) formulation, the IOSAM results are still found 

to be in better agreement with experiment. This enables us to conclude 

that the improvement in IOSA results achieved by the inclusion of an 

explicit exit-channel velocity dependence into the scattering cross · 

section is a general feature of the theory that is independent of the 

detailed topography of the potential-energy surface. 

Conclusions 

Our study of the rotationally inelastic scattering processes in 

the HF-Ar system illustrates that the IOSAM method should be the 

method of choice for the routine analysis of experimental data. Several 

interesting points have emerged from this study. 

A simple LJ(l2,6) pairwise potential formulation is capable of 
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Figure 28. Comparison of IOSAM and IOSA Cross Section 
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j' 

0 

1 

3 

4 

5 

6 

7 

TABLE XLIII 

COMPARISON OF IOSAM AND IOSA CROSS SECTION RATIOS 
{cr(J' +- 2)/cr(4+- 2)} ON THE SAI SURFACE TO THE 

MEASURED RATI.OS 

IOSA IO SAM Experiment 
Reference 67 

0.135 0.1588 0.680 

1.542 1. 786 1.866 

2.271 2.437 2.000 

1.000 1.000 1.000 

1.185 1.067 0.453 

0.985 0.753 0.267 

0.849 0.479 0.106 
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yielding results in reasonable agreement with experiment. The cross 

sections were found to scale as an inverse power of the energy trans-

ferred from relative translation to the HF rotation, ~E .. ,, in 
JJ 

accordance with the expression proposed by Brunner, Driver, Smith and 

Pritchard (93). Surprisingly, results obtained on the SAI surface are 

in relatively poor agreement with experiment. 

The total integral cross sections for the initial j-states 0, 1 

and 2 were observed to decrease with increasing relative translational 

energy. At a given energy, the variation of the total inelastic cross 

section with the initial j-state is very small. The state-to-state 

integral cross sections and the total inelastic cross sections have 

been calculated as a function of the well-depth of the potential at 

T. = 4 Kcal/mole. The state-to-state integral cross sections change 
i 

appreciably with changing well-depth, whereas, the total inelastic cross 

sections are almost invariant with well-depth. This enables us to 

conclude that it is unlikely that the evaluation of total inelastic 

cross sections will enable such topographical details of the surf ace 

to be accurately determined. 

The IOSA and IOSAM results have been compared with the experimen-

tally measured cross section ratios. It was observed that the IOSAM 

results are in significantly better agreement with experiment than the 

IOSA results, for both the LJ(l2,6) and the SAI surfaces. This indicates 

that the modification of the IOSA method by including an explicit exit-

channel velocity dependence into the scattering cross section yields 

significant improvement in the calculated results, irrespective of the 

topography of the potential-energy surface employed. 
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APPENDIX 

DESCRIPTION OF BASIS FUNCTIONS EMPLOYED IN THE 

LCAO-MO-SCF CALCULATIONS FOR THE 

HF-Ar SYSTEM 

An extended 6-31G basis set was employed in the calculations. The 

valence shells of the atoms were described by the sum of two terms, one 

being a three gaussian expansion and the other a single gaussian expan-

sion. The inner shells were described by a six gaussian expansion. 

For hydrogen, the functions may be written as 

3 
-+ 

l: (a~, 
-+ 

l/Jis (r) = c' f r) ls,k s 
(A-1) 

k=l 

-+ + 
l/J" (r) = els f (ak, r) ls s (A-2) 

For fluorine, the functions may be written as 

6 
+ -+ 

1/Jls(r) = l: c f (a.lk' r) ls,k s (A-3) 

k=l 

3 

l/Jzs (;) l: c' f ca.2k' -;) 2s,k s 
(A-4) 

k=l 
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and 

+ 
i./J' (r) = 
2p 

x 

+ 
i./J" (r) zs 

+ 
i./J" ( r) 2p 

x 

3 
~ I + 
~ c' f (a.Zk' r) 2p,k PX 
k=l 

= 

similarly for the p and p orbitals. y z 

For Argon, the functions may be written as 

6 
+ I + 

i./Jls (r) = c f (a.lk' r) ls,k s 
k=l 

6 
+ 

~ 
+ 

i./Jzs (r) = c f (a.2k' r) 2s,k s 
k=l 

6 

= 
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(A-5) 

(A-6) 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

Similarly for the 3s and 3p orbitals. The f's are Gaussian functions 

defined as 

+ 
f (a, r) 

s 
3/4 2 

(2a./~) exp(-a.r ) (A-11) 

5 3 1/ 4 2 
(128a /~ ) x exp(-a.r ) (A-12) 

The values of e's and a's are given in Table XLV and are due to Pople 

and coworkers (85). 
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TABLE XLIV 

BASIS SET COMPONENTS 

Atom Orbital Exponent s Coef. p Coef. 
Type (a) (c ) (c ) s p 

Hydrogen ls 0.187311E02 0.334946E-01 0.0 

0.282539E01 0.234727E+OO 0.0 

0.640121EOO 0.813757E+OO 0.0 

ls' 0.161278EOO O.lOOOOOE+Ol 0.0 

Fluorine ls 0.700171E04 0.181962E-02 o.o 

0.105137E04 0.139161E-01 0.0 

0.239286E03 0.684053E-01 0.0 

0.673974E02 0.233186E+OO 0.0 

0.215799E02 0.471267E+OO 0.0 

0.740310E01 0.356619E+00 0.0 

2sp 0.208479E02 -0.108507E+OO 0.716287E-01 

0.480831E01 -0.146452E+OO 0.345912E+OO 

0.134407E01 0.112869E+Ol 0.722470E00 

2sp' 0.358151E00 O.lOOOOOE+Ol O.lOOOOOEOl 

Argon ls 0.699467E04 0.916360E-02 o.o 

0.128246E04 0.493615E-01 o.o 

0.358787E03 0.168538E+Ol 0.0 

0.123253E03 0.370563E+OO 0.0 

0.478628E02 0.416492E+OO 0.0 

0.197125E02 0.130334E+OO 0.0 



187 

TABLE XLIV (Continued) 

2sp 0.486299E03 -0.132528E-Ol 0.375970E-02 

0.926886E02 -0.469917E-01 0.376794E-01 

0.288076E02 -0.337854E-Ol 0.173897E+OO 

0.110833E02 0.250242E+OO 0.418036E+OO 

0.481349E01 0.595117E+OO 0.425860E+OO 

0.220637E01 0.240706E+OO 0.101708E+OO 

3sp 0.167219E02 -0.794312E-02 -0.713936E-02 

0.447828E01 -0.710026E-01 -0.182928E-01 

0.167940E01 -0.178503E+OO 0. 762162E-01 

0.751731EOO 0.151064E+OO 0.414510E+OO 

0.371993EOO 0.735491E+OO 0.488962E+OO 

0.191713EOO 0.276059E+OO 0.105882E+OO 
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