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CHAPTER I 

INTRODUCTION 

The ability of transition metals to form organo derivatives was 

known as far back as 1824, when a Danish phannacist, W. Z. Zeise, re

ported the isolation of a compound, PtC1 2·C2H4, which is now known to 

be a dimer with a chlorine bridge. 1 Despite this early work, chemistry 

of olefin-metal compounds only began to be appreciated during the 

1950's. Now it has become evident that mono-, di-, and polyene acy-

clic and cyclic, conjugated, unconjugated, and cumulated aromatic and 

nonaromatic hydrocarbons and heteroatomic compounds form complexes 

with transition metals. 2 The formation of such complexes has contri-

buted greatly to our understanding of chemical bonding. It was post

ulated theoretically and confirmed experimentally that certain unstable 

organic compounds can be stabilized significantly by forming complexes 

with transition metals. Typical examples of these complexes are shown 

in Figure 1. The role of transition metals in stabilizing reactive 

compounds can be explained by the nature of their bonding. The most 

generally useful and most accepted description of this type of bonding 

for transition metal-olefin complexes is the Dewar-Chatt MO descrip

tion. 3 

In this description the bonding is assumed to consist of two in

terdependent components (Figure 2). One component involves the over

lap of filled ~-orbitals of the olefin with a-type acceptor orbitals 

2 
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of the metal; this component is referred to as 11 forward-coordination 11 • 

The second component, 11 back-donati on 11 , involves the fl ow of electrons 

from filled metal d or other o~-d~ hybrid orbitals into the anti-xz '" " 
bonding "-orbitals of the olefin. Both the donation of 'IT-bonding 

electrons to the metal a-orbital and the introduction of electrons into 

the 'IT*-antibonding orbital weaken the 'IT-bonding in the olefin and thus 

stabilize reactive olefins, e.g., cyclobutadiene. In the case of 

ionic compounds, e.g., the allylcarbonium ion and the cyclopentadienyl 

anion, all have relatively low lying molecular orbitals and can parti

cipate in forward-coordination or back-donation bonding. Thus, the 

charge on such reactive organic compounds can be delocalized onto the 

metal and this results in the stabilization of the ions. 

Synthetic Approaches to Cationic Trihapto 

Transition-Metal Complexes 

Emerson and Pettit reported the isolation of the first cationic 

trihapto tricarbonyliron complexes,~ cation l·' in 1962. 

H 

H 

H H 

Since then, the synthesis and chemistry of trihapto complexes of ca

tions, because of the great significance of cations theoretically and 

synthetically, have been the subject of extensive investigations, and 
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an enormous number of these types of complexes have been synthesized 

during the past fifteen years. 

The synthetic approaches used to generate trihapto complexes of 

cations can be classified according to two general pathways. In the 

first pathway one starts with an olefin bearing a substituent in an 

allylic position and forms the corresponding dihapto complex. Then 

the substituent is rearranged from the allylic position to the metal 

by photolysis or thermolysis (the formation of the complex and rear-

rangement of the substituent in some cases can occur in one step). 

Finally, the substituent is removed by an appropriate chemical reagent 

as an anion. 

~x 
I 
M 

-CO 

? 
M-X 

~ 
I 

(CO)le-Cl 

~ 
_,I~· 

M 

Ag BF 4 ~,--,, 
BF 

+Fe(C0) 3 4 

(1, ref. 5) 

In the second pathway one forms an olefin complex and then gene

rates a positive charge at an allylic position which causes the metal 

to move to delocalize the charge onto the metal. 

~x ~x 
I 
M 

> 
~ 

I 
~ 

,.:.·T~ 

M 63 M 
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Fe ffi Fe 
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(2, ref. 6) 

Elusive Silicon Species 

Silicon, a member of Group IVA, is isoelectronic with carbon and 

consequently forms tetravalent compounds. Although the formation of 

multiple pTI-PTI bonds is well known property of carbon, and a great 

body of experimental data is available on organic compounds containing 

isolated, conjugated, and cumulated carbon double bonds, aldehydes, 

ketones, imines, and carboxyl compounds, silicon is reluctant to form 

t bl 1 1 . 1 . . b d. 7' 8 Al d . t th s a e mo ecu es 1nvo v1ng PTI-PTI on 1ng. so, esp1 e e nume-

rous reports of the detection and/or isolation of a variety of car

bonium ions, the existence of silicenium ions, (also referred to as 

silylenium or silicon cations) still remains questionable. 

Multiple Bonded Silicon 

A structure with a multiple bond to a silicon atom was first re

ported by Gatterman in 1889.9 A silicon-nitrogen double bond was 

assigned to compounds obtained in the reactions of ammonia with chloro-

silanes. Since then, numerous claims for the synthesis of stable 

compounds containing silicon multiple bonds have been reported. How-

ever, each proposed structure has proven not to be correct. For 

example, Schlenk and RenninglO described the synthesis of a stable 

compound with a silicon-carbon double bond. Their work, however, was 
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reexamined by Kipping 11 , who proved that the previous authors had 

really been dealing with a mixture of a silane and a silanol (Eq. 3). 

Ph2Si=CH2 

Ph2(CH3)2Si + [Ph2(CH3)2siJ 2o + 

Ph-Ph+ Ph 2 Si(OH)CH3 (3) 

In 1952 Andrianov and Sokolov 12 announced the generation of an unstable 

species possessing a silicon-oxygen double bond in a mass spectrometer 

(Eq. 4-6). 

,,OH 
+ H20 ~ R2Si 

'OH 
(4) 

(5) 

(6) 

In recent years, additional reports have appeared concerning the 

transient formation of silicon analogs of unsaturated carbon compounds, 

such as from the pyrolysis of eight membered cyclocarbosiloxanes con

taining siloxane and silamethylene groups (Eq. 7). All the approaches 

chosen for the synthesis of a multiple bonded silicon have been col

lected in a recent review by Gusel 'Nikov and Nametkin. 13 

Me2~; - CH2 - f iMe2 

0 0 
I I 

Me2s; - CH2 - SiMe2 

Me2 
....,Si 

Me Si~···O 'CH 
21 : I 2 

H2c ••••. Si SiMe2 
'o/ 
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Me Me 
Me2 \ I 
Si Si 

o/ 'cH II 
I I 2 + C 

Me.2Si SiMe2 I\ 
'O/ H H 

Me2Si-__,j 

I SiMe2 

(7) 

These reports support the notion of the inherent instability of such 

species. 14 

Silicenium Ion 

Considering the Pauling electronegativities of silicon and carbon 

(1.8 and 2.5, respectively), one would expect ion formation for sili

con to be at least as easy as that for carbon, that is for the forma

tion of R3cffi. This is true for the formation in the gas phase. 15 , 16 

For example, in the mass spectroscopic study of 1-(trimethylsilyl)-3-

phenylpropane and s-(trimethylsilyl)-styrene, formation of silicenium 

ions was detected, and further evidence was provided by observation 
. 17 

of metastable ions. 

~ 
~(CH)=CH-Si(CH~ a CH3 0 ~ ffiSi-CH3 ~ j ""-' 

;r/ . ~ $ 
CH=CH ~; - CH3 + 

CH3 C H 
2 2 (9) 

However, in solution all attempts to obtain silicenium ions, R3s;+, 

have failed. Different methods which have demonstrated the existence 
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of carbonium ions have been applied to demonstrate the existence of 

trivalent positively charged silicon species. These methods are: (a) 

detection by physicochemical measurements, (b) preparation of stable 

salts, and (c) intervention as an intermediate in reaction mechanisms. 

Conductivity measurements indicate no appreciable ionization of 

Ph3SiCl in pyridine, nitrobenzene-aluminium tribromide, or liquid 

sulfur dioxide. 18 In contrast these solvents cause ionization of 

PhfCl.18, 19 

Attempts using silicon compounds 20 in place of carbon compound 

also have been made to repeat reactions which lead to stable carbonium 

ion salts, but no salts containing the silicenium ion were isolated 

(Eqs. 10 and 11). 

(10) 

( 11) 

Since Si-H bonds (6H = 70-76 kcal/mole) are weaker than C-H bonds 

(99 kcal/mole), triphenylsilane has been tried as a hydride source in 

its reaction with trityl cation, a common hydride acceptor (Eq. 12). 

Unfortunately hydride transfer did not occur; instead the formation of 

the bromosilane wai observed (Eq. 13). 

0 (12, ref. 21) 

(13, ref. 22) 
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In spite of the failure to demonstrate the existence of a stable 

silicenium ion, this species has often been invoked as a reaction 

intermediate. 23 Also, the hydride transfer from compounds containing 

a Si-H bond to an existing carbonium ion has been studied several 

times, but none of the results favor a mechanism involving Si-H bond 

ionization. 24 Extensive study of the racemization of optically active 

silanes bearing different substituents in a variety of solvent systems 

has been done. The resulting data are not consistent with a R3Si@ 

intermediate with a trigonal planar structure; however, the data are 

in agreement with a scheme involving coordination of the solvent with 

the silicon atom. 25 In 1975 two reports of the generation of silice

nium ions in methylene chloride at low temperature were reported by 

Corey. 26 In both cases an electronically stabilized silicenium ion 

was conceivably produced by hydride abstraction from silicon using tri-

phenylmethyl perchlorate in methylene chloride at low temperature to 

produce with silane .LL, a yellow-green solution, and with ..!Jl., a dark

green solution. When the cold triphenylmethyl perchlorate-silane solu

tions were added to a solution of sodium borodeuteride in diglyme, 

immediate decoloration was observed, and a high yield of triphenylme

thane and the deuterated silanes II or III were obtained. However, 

CH3-N 
'cH 

3 

II III 
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both reactions were reexamined by Barton27 , who discovered that not 

only silanes II and III, but a wide variety of silyl hydrides, react 

with triphenylmethyl perchlorate to instantaneously decolorize the 

solution and afford triphenylmethane and the silyl perchlorate. Also 

the silyl perchlorate Et3Si-OCl03 was shown to react immediately and 

quantitatively with NaBH4 to afford Et3Si-H under similar conditions 

as reported previously. Therefore, it was concluded that all of the 

evidence presented by Corey can be reproduced with systems for which 

there is no particular reason to presume silicenium ion involvement. 

Recently the reaction of compounds of the type (Me3Si) 3CSiRR'X (where 

X = I or H; R and R' = Me, Et, or Ph) with electrophilic reagents in 

alcohols and acids (or mixture of these) was studied by Eaborn. 28 

The results were interpreted in terms of the formation of a cationic 

intermediate by abstraction of X8 from the silane by the electrophile. 

A structure 1.1 involving a methyl group bridging two silicon atoms was 

suggested for this cation. 

IV 

Stabilization of Reactive Silicon 

Species by Transition Metals 

Because of the failure to generate stable multiple bonded silicon 

species and the ambiguity regarding the existence of silicenium ions, 

the coordination of silanes to transition metals and the investigation 
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of the chemistry of the resulting complexes have become an extensive 

research area. In 1969 several compounds possessing silicon sigma 

bonded to transition metal carbonyls were synthesized by Curtis. 29 

In an attempt to rearrange these to rr-bonded sandwich compounds, they 

were heated and photolyzed. But neither photolysis nor thermolysis 

gave the expected rr-sandwich complex (Eq. 14). 30 

Fe 

(14) 

In 1970 Fitch reported the synthesis of n4-dimethyldivinylsilane-

tricarbonyliron by treating the corresponding silane with dodecacar

bonyltriiron. 31 The IR spectrum of the complex was reorted to have 

peaks at 2010 and 1995 cm-1 in addition to the expected metal carbonyl 

peaks (2065, 1982, and 1967 cm-1). The two additional peaks were ex

plained by either the presence of pentacarbonyliron or a type of 

tautomeric motion in which the silicon atom may occupy two positions 

in the molecule one of which would require an iron-silicon interaction. 

In order to further examine the interaction of transition metals with 

silicon, complexes of the type: (CH3)3MCH==CH2·CuC1 and (CH3)2M(CH== 

CH2)2·2CuCl, (M =Si and Sn) were synthesized. 32 These complexes were 
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reported to be extremely stable compared to their carbon analogues, 

and in the case of the divinyl complexes, they appear to be among the 

most stable olefin copper (I) chloride complexes. The unusual stabi-

1 ity of these complexes was explained by the interaction between the 

w*-orbital and an empty d-orbital, such as dx2-y2 or d22, on the Group 

IV metal which delocalizes electron density onto the Group IVA metal 

by the backbonding of the transition metal. A direct d-d orbital in-

teraction between the copper atom and the Group IVA atom was considered 

as another alternative. 

A typical reaction of cr-allyl complexes is their facile protona

tion with acids to afford cationic w-olefinic metal complexes (Eq. 

15). 33 Despite the generality of this route, treatment of the cr-vinyl

silane complex n~C 5H5 (C0) 2FeSi(CH3 ) 2CH==CH2 with acid did not produce 

the anticipated cationic complex, rather the vinylsilane was replaced 

by the conjugate base of the acid (Eq. 16). 34 

~ 
I 

HX 

(C0) 2 Fe 

"-si(CH3)2-CH=CH2 

~ 
l 

(CO)z Fe'(] 

+ 

~CH 
I I 3 

(C0) 2 Fe Si-CH3 

"// 
HC 

\ 
CH3 

(n5-c5H5)Fe(C0) 2X + 

(15) 

+ 

HSi(CH3)2CH=CH2 (16) 
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Another approach to generate n-ethylenic complexes involves the 

hydride abstraction from a-alkyl complexes (Eq. 17). 35 

~ 
I CHR' 

(CO)le -11 
CHR 

+ 

(17) 

To modify the above route, H Si(CH3) 2-cH2Fe(C0) 2Cp was synthesized by 

Bulkowski 36 , but reaction of this complex with Ph3CBF4 as the hydride 

abstracting reagent did not give the desired complex. The only reac

tion was fluorination of the Si-H bond producing the new fluorosilyl-

FSiMe2cH2Fe(C0) 2Cp + 

Ph 3CH + BF3 (18) 

In 1976 Sakurai and his co-workers reported the synthesis of the 

n3-silapropenyltricarbonyliron complexes VIa and VIb by reacting enne

acarbonyldiiron with vinylpentamethyldisilane (Va) and 1,2-divinylte

tramethyldisilane (.Y.£.). 37 These complexes represented the first stable 

compounds of doubly bonded silicon (Eq. 19). 

The structures of the complexes were determined from various spec

troscopic data. The porton NMR spectra of the complexes show three 

Si-CH3 signals with relative intensities of 1:3:1. These signals were 

assigned to the protons of the anti-CH3, Si(CH3)3, and ~-CH3 groups 

by reference to the spectral data of the related n-allyliron com

plexes.38 The proton decoupled 13c-NMR spectra of the complexes were 
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Va, Z = (CH3)3Si VI a, Z =-(CH3) 3si 
b, Z = (C2H3)Me2Si b, Z = (C2H3)Me2Si (19) 

-
reported to show three C-Si signals with relative intensities of 1:3:1. 

The mass spectra of the complexes were reported to show the correspond

ing molecular ion and successive loss of three CO molecules. In the 

IR spectra of the complexes (thin film) an absorption at 1315 cm-1 

with medium intensity was detected. The C==C stretching frequency in 

the rr-allyl complex is known to appear at a frequency about 100 cm-1 

lower.than that of the free C==C bond. 39 Since the stretching fre-

quency of an uncoordinated Si==C bond was reported by Barton and 
40 -1 -1 Mcintosh to be 1407 cm , the peak at 1315 cm was assigned to a 

coordinated Si==C bond. However, the results of this thesis show the 

proposed structure is in error (see ahead). 41 

Spectroscopic Evidence for the Presence 

of Prr-drr Dative Bonds 

The possibility that partial multiple bonding might occur in com

pounds of the second and higher row elements was pointed out by 

Pauling42 , who suggested this phenomenon in order to account for the 

shortening of Si~X and Si~O bonds. Since then a vast number of 
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reports has been published to either confirm or deny the existence 

of Pn-d 1r bonds in the explanations of the unexpected behavior of sili

con compounds. 

The 29si-NMR spectra of a series of substituted methylsilanes 

have been studied by Hunter and Reeves. 43 They concluded that the 

compounds M(CH3)n(OR) 4_n give opposite trends for the M chemical shift 

compared to that of the corresponding carbon analogues. When M is 

carbon, the addition of an -OR group is strongly deshielding; while, 

when M is silicon, the effect is strongly shielding after the first 

-OR group. Similar behavior had also been observed for the attach

ment of nitrogen and fluorine atoms. 43 The authors assumed that "an 

increase in n-bonding manifests itself as a shielding effect whereas 

increasing the polarity of the sp3 orbitals causes deshielding. 11 

Ernst and co-workers44 studied the 29si-NMR chemical shifts of a num-

ber of aryltrifluoro-, aryltrichloro-, aryltriethoxy-, and aryltri

hydrosilanes, and reported that, in contrast to the chemical shift 

trends in aryltrihydro- and aryltrimethylsilanes, aryltrifluro-, aryl

trichloro-, and aryltriethoxysilanes gave downfield shitfs with in

creasing electron donation by meta and para substituents on the phenyl 

ring. The authors mentioned that arguments similar to those given by 

Hunter and Reeves43 could be used to rationalize these observations. 

Z cr-@- I cr+ cr-
Si-Z 

X I 
Z cr

VIIa 

z 
/n\_~ie ze 
X~I 

z 
VIIb 
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Resonance structure VIIb would be stabilized by electron with-

drawal by X, leading to an increase in rr-bonding and, as a consequence, 

shielding of the silicon nucleus. This shielding overcompensates for 

the deshielding effect produced by an increase in the polarization of 

the Si~Z bond from electron withdrawal by X in VIIa. Resonance con

tributor VIIb would not be expected to contribute significantly to the 

ground state description of the phenyltrihydro- and phenyltrimethylsi

lane, and consequently normal electronic effects should be observed. 

Indeed such a simplistic explanation appears attractive, but semiempi

rical quantum chemical (CND0/2) ca1culations44 of electron density at 

silicon for phenyltrifluoro-, phenyltrihydro-, and phenyltrimethyl-

silanes indicated no unusual reversal in the density trends to account 

for the observations. 

The results of several studies of the NMR spectra of substituted 

methysilanes were thought to be best explained in terms of Prr-drr bond

ing between silicon and electronegative substituents. For example, 

the smaller than expected downfield shifts of the proton resonances in 

hexamethyldisiloxane45 and tris(trimethylsilyl)amine46 relative to 

those in tetramethylsilane, the smaller downfield shifts with in

creasing n in the series (CH3)4_nMCln and (CH3)3_nMCln when M is sili

con than when Mis carbon47 , the decrease in shielding along the series 

(CH3)3-SiX, X = F, Cl, Br, I; and the increase inJ(29SiH) in (CH3)3 

29siX along the series CHf F<Cl<Br<r 48 all have been explained in tenns 

of p'Tf-d 1T bonding. 

Ebsworth and Frankiss studied several substituted methylsilanes 

and related alkanes. 49 They reported that the s-proton shielding in 
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the series of compounds CH3SiH2X decreases along the series X = H, N, 

0, F, (which is consistent with increasing inductive deshielding), 

but increases along the series X =I, Br, Cl, F which is similar to 

the effect observed in the trimethylsilylhalides, and has been ex

plained in terms of increasing Pn-dn bonding between silicon and the 

halogen atoms in the order l<Br<Cl<F. However, the same effect was 

observed in ethyl, isopropyl, !-buty1 50 , and cyclohexy1 51 halides, 

and since it occurs in compounds in which the a-atom is carbon, Ebsworth 

and Frankiss believed it is unlikely to be caused by Pn-dn bonding and 

concluded that there is apparently no unusual bonding in the silicon 

compounds. Whether it is unjustified to use these reported effects 

as evidence in favor of the occurrence of n-bonding in silicon com

pounds or not still remains unanswered. 

Transmission of Electronic Effects 

in Coordinated n-Systems 

The bonding between olefinic ligands and the transition metals is 

best described by the Dewar-Chatt model. 3 Based on this model, the 

stability of the complexes could be expalined by: (a) interaction 

between the filled olefinic n-molecular orbitals with the empty orbi

tals on the metal, and (b) interaction of vacant olefinic antibonding, 

n*-molecular orbitals with filled hybrid atomic orbitals of the metal. 

Thus the stability of olefin-transition metal complexes and the trans

mission of electronic effects in coordinated n-systems are not only 

dependent on the substituents of the n-system, but also are dependent 

upon the metal. For example, stability constant studies show that 

conjugated C==C systems such as in crotonic acid fonn less stable 
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complexes than ethylene with platinum and silver. 52 Conversely sub

stituents which conjugate with the bonding C==C system appear to 

stabilize the olefin-metal bond in the case of iron. 

As a general rule formation of a complex between an olefinic rr-

system and a transition metal causes the lowering of the C==C stretc~

ing frequency by 60-150 cm-1 53 and the upfield displacement of the 

vinyl proton chemical shifts. 54 Both observations can be explained 

by the description of bonding proposed by Dewar and Chatt. The re

moval of electrons from the bonding rr-orbital of the ethylene and the 

placing of electrons into the antibonding rr*-orbital of the ethylene 

would weaken the C==C bonding and give rise to more single bonded 

character. 

The presence of substituents in substituted ethylenes can effect 

the olefin-metal bond strength by steric interactions or by changing 

the energies of the rr- and rr*-orbitals. In the case of conjugating 

substituents a considerable change in the energies of the rr- and rr*-

orbitals occurs. A number of conjugated olefin tetracarbonyliron com

plexes have been prepared; for example, (RHC==CHX)Fe(C0) 4 where X = 

CN, COOH, CHO, and -HC==CH2•55 It has been argued that the apparent 

increase in olefin-metal bond strength for conjugated olefins occurs, 

because the energies of the olefinic electrons more nearly match the 

energies of the iron electrons than in the case of ethylene and non-

conjugated olefins. 
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CHAPTER II 

STATEMENT OF THE PROBLEM 

The manner in which the stabilities and reactivities of organic 

species are modified by coordination to transition metals has received 

considerable attention over the past several years. One of the most 

interesting and synthetically useful applications in this area has in

volved the preparation of extraordinarily stable transition metal com

plexes of highly reactive species which are not normally stable at 

ambient temperature. 

In view of the paucity of the information regarding multiply 

bonded silicon compounds, as indicated in the Introduction, the pre

paration of stable transition metal complexes of highly reactive 

elusive silicon species and the examination of the physical and chemi

cal properties of such complexes would significantly enhance the 

knowledge of the chemistry of the free silicon species. As indicated 

earlier, several attempts have previously been made to prepare such 

complexes by rearrangement of a-silicon-metal complexes to their cor

responding ~-complexes. However, all these attempts have been unsuc

cessful. 

In view of the known stabilities of the (n3-propenyl)tetracarbon

liron cation and its halide derivative, the preparation (or transient 

generation) of dihapto complexes of substituted vinylsilanes was to be 
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pursued as possible precursors to (n3-1-silapropenyl)tetra (ortri)car

bonyl complexes (neutral or postively charged). The cationic trihapto

silapropenyl metal complexes were of special interest since they would 

embody the features of both a coordinated silicenium ion and a doubly 

bonded silicon species. The dihapto complexes of substituted vinyldi

methylsilanes would, in their own right, be of theoretical interest in 

terms of providing an opportunity to study the effect of transition 

metal complexation upon the transmission of electronic effects in a 

series of substituted vinylsilanes. The role of Prr-drr bonding in 

silicon compounds has been widely debated, and consequently the physi

cal and chemical properties of such complexes would clarify the im

portance of Prr-drr bonding in the free, as well as, complexed silicon 

species. 
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CHAPTER III 

RESULTS AND DISCUSSION 

Complexes of several vinylsilanes, as precursors for possible 

formation of a coordinated silicon-carbon double bond or silicenium 

ion, were prepared by reacting enneacarbonyldiiron with vinylsilanes 

(Eq. 20). The spectroscopic data for all of the vinyl silane com-

plexes are consistent with the dihapto structure, iron being coordi

nated to the vinyl system. 

Va, Z = (CH3)3Si VIII a, Z = (CH3)3Si 

c, Z = Me c, Z = Me 

d, Z = OEt d, Z = OEt 

e, Z = Cl e, Z = Cl 

f, Z = F f, Z = F 

g, Z = OSiMe2c2H3 g, Z = OSiMe2c2H3 

h, Z = OH h, Z = OH 

i ' Z = N3 j' Z = N 3 
j, Z = OPh (20) 

All of the vinylsilane complexes which were prepared are yellow, 

viscous liquids and compared to their carbon analogues, are remarkably 

stable. For comparison purposes, (ethylene)tetracarbonyliron has been 
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reported to decompose above -4o0 c. 56 Because the complexes are rela-

tively air sensitive and decompose upon standing at room temperature 

over a period of 4-5 hr., they are best stored in an inert atmosphere 

at o0c. The stabilities of the complexes are roughly correlated with 

the electronegativity of the substituent on the silicon. The higher 

the electronegativity of the substituent, the more stable is the com-

pl ex. 

The enhanced stability of the vinylsilane complexes compared to 

the carbon analogues has also been observed by Fitch and co-workers. 57 

They have argued that the vinylsilane complexes are stabilized through 

a mechanism which enhances their ability to accept back-donated elec

tron density from the metal such as by an interaction between the 

rr*-orbital of the olefin and a d-orbital of suitable symmetry on the 

silicon atom. Using the same argument the observed stability of the 

vinylsilane complexes prepared in this study and the effect of the 

substituents on the stability can be explained. The perturbation in

teraction of the rr- and rr*-orbitals of the olefin with a d-orbital of 

suitable symmetry on the silicon atom lowers both the rr- and rr*-orbi

tals of the olefin leading to enhancement of the back-donation of 

electrons by the iron, thus stabilizing the complex. The introduc-

tion of more electronegative substituentson silicon contracts and 

lowers the energy of the d-orbitals which results in greater overlap 

between the rr*-orbital of the olefin and ad-orbital of the silicon. 

Consequently, the capacity of the olefin rr*-orbital to accept the 

back-donated electron density from the iron increases and leads to 

stabilization of the complex. The other alternative is the direct 

involvement of an iron d-orbital with a d-oribital of suitable 
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symmetry on the silicon atom which also could cause the stabilization 

of the complexes. The more electronegative the substituent is, the 

more contracted the d-orbitals on the silicon are. Thus, a greater 

overlap between filled metal d-orbital and silicon empty d-orbital 

leads to the greater stabilization. 

Spectroscopic Characterization 

IR Spectral Data 

The IR spectra (Table I) of all of the complexes prepared possess 

three metal carbonyl stretching bonds at room temperature. However, 

the IR spectra of the complexes at low temperature, 90°K, show a 

shoulder at 2010-2040 cm-l in addition to the other three metal car-

bonyl stretching frequencies which is consistent with the presence of 

tetracarbonyl species. 

The IR spectra of the azide, chloride, and fluoride complexes all 

show peaks corresponding to a Si-Z or Z stretching frequency which is 

consistent with the preservation of the vinyldimethylsilane structure 

upon coordination. Interestingly, these stretching frequencies do 

not change appreciably by coordination of the vinylsilane to the 

metal: c.f. N3 2140 (complex) and 2143 (free ligand) cm- 1; Si-Cl 470 

and 470 cm-1; Si-F 864 and 878, 895 cm-1.58 

The IR spectra of all the complexes exhibit an IR absorption 

band with medium to weak intensity at 1317-1324 cm~ 1 • The IR spectrum 

of (ethylene)tetracarbonyliron is also reported to have peak at 1317 

cm-1•59 It is reasonable to assign this peak to a CH2 deformation. 



TABLE I 

SELECTED IR DATA FOR SUBSTITUTED ( n2-VINYLDIMFHYLSILANE )TETRACARBONYLIRON 
COMPLEXES VIII (cm- )a 

Me SiMe3 OEt OSiMe2c2H3b OPhb OHb F Cl N b 
3 

2058 m 2083 m 2088 m 2088 m 2085 s 2082 s 2091 m 2090 m 2085 m, 2140 
2040 s,sh 2030 s,sh 2040 s,sh 2010 s,sh 2010 s ,sh 2005 s,sh 
2000 vs 1997 vs 2000 vs 1990 vs 1980 vs 1990 vs 2012 2000 vs 2000 vs 
1971 vs 1973 vs 1975 vs 1968 vs 1900 vs 1970 vs 1974 vs 1980 vs 1970 vs 

1597 m 
1404 w 1400 w 1390 w 1400 w 1490 s 1400 w 1400 w 1407 w 1405 w 
1320 m 1317 m 1325 m 1316 m 1317 m 1319 m 1315 m 1316 m 1317 m 
1259 m 1245 s 1253 s 1256 s 1253 s 1252 s 1255 s 1254 s 1260 s 
1249 s 
1201 m 1200 m 1197 m 1195 m 1198 m 1195 m 1196 m 1195 m 1196 m 

1104 s 
1070 s 1032 s 1025 m 1030 m 1039 m 1042 m 1037 m 

853 s 835 s 838 s 830 s 910 s 830 s 864 s 844 s 839 s 
837 s 841 s 812 s 815 s 

800 s 792 s 784 s 774 s 795 s 790 s 790 s 
635 s 637 s 637 vs 638 s 695 s 
616 m 617 w 618 s 627 vs 624 m 624 m 615 m 625 s 
592 s 595 m 598 s 598 s 594 m 

aThin films {5-10 nm1) at 90°K, unless otherwise indicated. Spectra recorded at room temperature were 
only slightly different. 

bThin films at room temperature. 
N 
m 
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Mass Spectral Data 

All the vinylsilane complexes are sensitive to elevated probe 

and ion-source temperatures and easily lose carbon monoxide. Thus, 

special care is necessary for obtaining an accurate mass spectrum. We 

designed a special probe which would introduce the complex directly to 

the ion source chamber through a molecular leak. Also with repeatedly 

scanning at different temperatures, we were able to optimize the ion 

source temperature. 

All of the vinyldimethylsilane complexes examined by mass spec-

troscopy show mass peaks corresponding to the tetracarbonyliron complex 

and fragments from subsequent loss of four carbon monoxide molecules 

(Table II). Moreover, in all cases the mass fragment corresponding to 

(M+-Z) (m/e 253) is detected, which is evidence for the existence of 

the (n3-1-silapropenyl)tetracarbonyliron cation.!£ in the gas phase. 

The existence of a silicenium ion in the gas phase has been reported 

previously. 16 

CH 
H2C ~-,-~Si (CH3)2 

+ Fe(C0) 4 

IX 

NMR Spectral Data 

The 13c-chemical shifts of the vinyl carbon atoms of the complexes 

(Table III) appear at higher field than those of the corresponding free 

ligands (Table IV); they are consistent with a n2-tetracarbonyliron 

structure and were assigned from the inspection of the proton coupled 



28 

TABLE II 

MASS SPECTRAL DATA FOR SUBSTITUTED (n2-VINYLDIMETHYLSILANE)
TETRACARBONYLIRON COMPLEXES* 

m/e CH3 SiMe3 OEt Cl F 

p 268(9.1) 326(12.8) 298(8.1) 288(2) 272(8.3) 

P-Me 253(3.0) 311(3.5) 283(8.8) 273(1.5) ---------
P-Z 253(3.0) 253(3.5) 253(6.6) 253(4.0) ---------
P-CO 240(6.1) 298(9.9) 270(30.9) 260(17) 244(8.3) 

P-2CO 212 (14) 270(36.1) 242(50) 232(36) 216(14.6) 

P-3CO 184(33) 242(48.9) 214(27.9) 204(74) 188(29.2) 

P-4CO 156(69) 214(73) 186 {100) 176(79) 160(100) 

P-Fe(C0) 4 100(19) 158(30.5) --------- 120(100) 104(8.3) 

P-Fe(C0) 4, Me 85 ( 100) 143(39. 7) 115(74.3) -------- ---------
85(87.2) 184(44.9) 

(P-Fe(C0) 4, (P-3C0,2Me) 

SiMe3) 

73 (100) 

(SiMe3) 

*Values in parentheses are relative intensities. 

spectrum. The upfield shifts of the C absorption upon coordination 
a 

are conspicuously constant, -95 ppm; however, the upfield shifts of 

Cs absorption range from -88 to 97 ppm. The chemical shifts of 

the vinyl carbon atoms of the complex linearly correlate well with 
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Me 

SiMe3 

OSiMe2c2H3 

OH 

OEt 

OPh 

Cl 

F 

N3 

TABLE III 

13C-NMR CHEMICAL SHIFT DATA FOR SUBSTITUTED ( n2-VINYLDIMETHYLSILANE) 
TETRACARBONYLIRON COMPLEXES VIII* 

ca Cs Cs; M-CO 

45.1 41.8 0.26 211.7 

44.7 41.9 -1. 37; -4. 46 211. 7 SiMe3: -2.24 

43.7 40.6 2.41; 0.11 211.2 Ca:139.1 
C13 :131.6 

43.2 40.5 1.63; 1.31 211.2 

42.4 40.7 -0.26;-0.62 211.1 CH2: 58.7 

40.4 40.2 0.56;-0.03 210.6 c1,:154.4 
c2,:129.3 

40.6 39.6 3.90; 2.63 210.1 

38.6 39.4;39.2 0.35;-0.32 210.2 
0.23;-0.38 

37.7 39.3 -0.76;-1.89 210.0 

*Chemical shifts are in ppm relative to TMS in DCC1 3. 

SiMe2: 1.66; 
1.45 

CH3,: 18.3 

c3,:119.6 
c4,:121.3 

N 
U) 
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TABLE IV 

13c-NMR CHEMICAL SHIFT DATA FOR SUBSTITUTED 
VINYLDIMETHYLSILANES V* 

Ca. Cs 

30 

Cs; 

CH3 140.2 130.6 -1.57 

SiMe3 138.7 130.6 -2.30;-4.49 

OSiMe2c2H3 139.4 131.4 0.55; 0.41 

OH 138.6 132.1 -0.30;-0.41 

OEt 137.4 132.8 -2.1 

Cl 135.9 133.8 1.57 

F 135.1;135.8 134. 0; 134. 2 -1.33;-1.96 

N3 133.6 134.6 -2.75;-2.83 

*Chemical shifts are in ppm, relative to TMS in DCC1 3• 

those for the analogous carbons in the free ligand. By plotting the Ca 

and Cs chemical shifts in the complex against the analogous shifts for 

the carbons in the ligand, straight lines are obtained with correlation 

coefficients of 0.97 and 0.95 and slopes of 1.19 and -0.62, respective

ly (Figure 3 and 4}. The positive value of the slope for the graph of 

Cac versus CaF represent the similarity of the transmission of elec

tronic effects at Ca in these two systems; however, the negative slope 

value of the plot of Csc versus CsF indicates that the transmission of 

electronic effect at Cs has been inverted upon coordination. Such 
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Me3Si • 
CH3 

* 0SiMe2c2H3 
c2H50 OH 
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Figure 3. 13C-NMR Chemical Shifts: o Ca in Complex, Cac, 
vs. o Ca in Free Ligand, CaF· 
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Figure 4. 13c-NMR Chemical Shifts: o Cs in Complex, Csc' 
vs. o Cs in Free Ligand, C8p. 
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inversion is due to the back-donation of electrons from the metal to 

this carbon. Although the 13c-chemical shift values of Ca and Cs do 

not correlate to a high degree with the electronegativity of the sub-

stituents in either the complexes or in the free ligands, the relative 

magnitude of the shifts of the vinyl carbon atoms in both systems sug

gests that the substituent effect is primarily inductive in nature. 

The comparison of the 13c-chemical shifts of the vinyldimethylsilanes 

with those of the related hydrocarbons, H2C==CH-CH2z, 60 shows an in

crease in the shielding of the Ca atom, ranging from 0.9 to 1.4 ppm, 

and a decrease in the shielding of the Cs atom, ranging from 17.1 to 

20.2 ppm. Similar behavior has also been observed by Yuriev and co

workers for the trisubstituted vinylsilanes H2C==CHSiZ3, Z = CH3, OEt, 

and Cl ,61 and has/been explained based on PTI-dTI interaction. The coupl

ing constant values (Table V) point to the similarity of the structure 

of vinylsilanes and their tetracarbonyl complexes. 

Since the contributions to the chemical shift changes induced by 

the substituent are generally either a result of inductive, field or 

resonance effects, the use of linear free-energy relationships has 

found great utility in the study of substituent effects in NMR spectro

scopy. 62 We have attempted to correlate the 13c-chemical shifts of 

vinyldimethylsilanes and their tetracarbonyliron complexes with several 

physical constants (Tables VI-IX) in hopes of learning about the rela

tive importance of these interactions and the mechanisms through which 

the substituent effects are transmitted. A two (or more) parameter 

equation such as Equation 21 was used, where a is the 13c-chemical shift 

of a particular carbon, A is an inductive effect parameter, and B is a 

resonance effect parameter. Such correlation was evaluated for the 



TABLE V 

COUPLING CONSTANT DATA FOR SUBSTITUTED VINYLSILANE 
AND THEIR COMPLEXES* 

z JC-Si-C-H J 
Ca Ha 

J 
CSHb 

Vinylsilanes 

CH3 118.7 142 .8 . 158.0 

SiMe3 119.9 142.6 158.3 

OSiMe2C2H3 118.4 142.8 158.0 

OH 118.4 140.4 158.3 

OEt 118.7 141.4 158.1 

Cl 121.1 146.9 159.4 

F 119.4 143.2 158.9 

N3 120.6 142.0 159.2 

Vinylsilane Complexes 

CH3 118.6 141. 7 157.7 

SiMe3 141.2 157.4 

OSiMe2C2H3 118.5 142.7 156.8 

OH 118.7 143.1 158.6 

OEt 119.3 136.2 158.6 

OPh 119.2 137.1 159.0 

Cl 121.0 137.4 158.4 

F 119.9 138.3 159.5 

N3 120.6 139.6 158.1 

*Values are in Hz. 
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J 
Cs Ha 

12.2 

12.3 

12.0 

11. 7 

11.8 

11.3 

11.8 

11.3 

3.2 

3.0 

5.4 

4.5 

4.8 

5.2 

3.6 

3.9 

5.1 



Position 

cl 
a 

cl 
f3 

c2 
a 

c3 
f3 . 

c3 
a 

c3 
f3 

c4 
a 

c4 
f3 

TABLE VI 

RESULTS OF THE LINEAR REGRESSION OF THE 
13C-CHEMICAL SHIFTS OF VINYLSILANES* 

al3C = aA + bB + 1 

a b a/b i r 

-7.40 ------- ------- 138.96 0.824 
(-8.53) (139.99) (0.977) 

6 .16 ------- ------- 131.12 0.957 
(6.19) (130.87) (0.989) 

-9.93 -4.43 2.24 138.23 0.901 
(-9.00) (-1. 36) (6.62) (139. 60) (0.986) 

6.94 1.36 5 .10 131.34 0.970 
(6.32) (0.38) (16.60) (130.98) (0.991) 

-9. 71 -2.79 3.48 138.11 0.927 
(-9.03) (-0.87) (10.40) (139.55) (0.988) 

6.93 0.93 7.45 131.40 0.978 
(6.34) (0.26) (24.4) (131. 00) (0.991) 

-11.15 -5.29 2.11 138.20 0.875 
(-10. 22) (-2.56) (3.99) (139.31) (0.956) 

8.52 2.19 3.89 131.33 0.935 
(7.38) ( 1. 27) (5.81) (131.18) (0.964) 
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Std. 
Dev. 

1.41 
(0.49) 

0.52 
(0.24) 

1.21 
(0.47) 

0.48 
( 0. 27) 

1.04 
(0.44) 

0.42 
(0.26) 

1.35 
(0.81) 

0.71 
(0.53) 

*Values in parentheses correspond to values with compounds ':J.j_ and .Yj_ 
excluded. Values a and b are correlation factors, i is the intercept, 
and r is the correlation coefficient. 

(1) al3c + a0I + ; (3) al3C = acrr + b0R+ + i 

(2) o13c = a0r + b0R + i (4) al3c = aF + bR + i 



Position 

(Si-CH3)1 

(Si-CH3)2 

(Si-CH3)3 

(Si-CH3)4 

(Si-f.H3)5 

(Si-f_H3)6 

TABLE VII 

RESULTS OF THE LINEAR REGRESSION OF THE 13c
CHEMICAL SHIFTS OF VINYLSILANES* 

o13C = aA + bB + cC + i 

a b c i r 

7.83 ------- ------- -2.02 0.841 
(5.90) (-1.77) (0.772) 

9.14 2.29 ------- -1.64 0.861 
( 6. 57) ( 1. 98) (-1.19) (0.802) 

9.13 1.57 ------- -1.54 0.873 
(6.43) (0.93) (-1. 30) (0.792) 

11.14 3.24 ------- -1.70 0.841 
(7. 97) (2.15) (-1.40) (0.854) 

(9.14) (-5.92) (-5. 87) (-9.45) (0.854) 

(9.02) (-3.27) (-5.58) (-9.09) (0.865) 
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Std. 
Dev. 

1.40 
( 1. 26) 

1.47 
( 1.45) 

1.41 
( 1.48) 

1.56 
( 1. 27) 

( 1. 79) 

( 1. 73) 

*Values in parentheses correspond to values with compounds Va and Vi ex-
eluded. Values a and b are correlation factors, i is the intercep'f:- and 
r is the correlation coefficient. 

(1) o13c = acr + i I (4) s13c = aF + bR + ; 

(2) s13c = acrI + bcrR + i (5) o13c = acrI + bcrR + cEs + i 

(3) o13c = acrI + bcrR+ + i (6) o13c = acrI + bcrR+ + cEs + i 



Position 

cl 
a 

cl 
s 

c2 
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c3 
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c3 
s 
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a 
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s 

TABLE VIII 

RESULTS OF THE LINEAR REGRESSION OF THE 13c-CHEMICAL 
SHIFTS OF VINYLSILANE COMPLEXES 

513c = aA + bB + i 

a b a/b i r 

-10.12 ------- ------ 44.30 0.893 
(-10. 78) (45.04) (0.956) 

-4.16 ------- ------ 41.53 0.970 
(-4.26) (41.66) (0.985) 

-12.45 -4.00 3.11 43.63 0.929 
(-11.23) (-1.34) (8.38) (44.65) (0.961) 

-4.58 -0. 72 6.36 41.41 0.977 
(-4.31) (-0 .17) (25.4) (41.61) (0.986) 

-11. 97 -1.79 6.69 43.69 0.930 
(-10.94) (-0.21) (52.1) (44.93) (0.956) 

-4.64 -0.47 9.87 41.37 0.986 
(-4.43) (-0.22) (20.1) (41.55) (0.989) 

-14.56 -5.32 2.74 43.59 0.894 
(-12.86) (-2 .87) (4.48) (44.27) (0.930) 

-5.79 -1.23 4.71 41.45 0.961 
(-5.21) (-0.70) (7.44) (41.54) (0. 987) 
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Std. 
Dev. 

1.32 
(0.76) 

0.27 
(0.17) 

1.19 
(0.83) 

0.26 
(0.19) 

1.18 
(0.87) 

0.20 
(0.17) 

1.44 
(1.10) 

0.34 
(0.18) 

*Values in parentheses correspond to values with complexes VIIIa and 
VIIIi excluded. Values a and b are correlation factors, i is the in-
tercept, and r is the correlation coefficient. 

(1) a13c = ao + i I (3) a13c = ao1 + boR+ + i 

(2) i3c b . a· . = a o1 + oR + i (4) a13c = aF + bR + i 



Position 

(Si-f.H3)1 

(Si-CH3)2 

(Si-CH3)3 

(Si-f.H3)4 

(Si-CH3)5 

(Si-CH3)6 

TABLE IX 

RESULTS OF THE LINEAR REGRESSION OF THE 13c-CHEMICAL 
SHIFTS OF VINYLSILANE COMPLEXES* 

813c = aA + bB + cc + i 

a b c i r 

2.33 -------- -------- -0.40 0.362 
( 1. 69) (0.25) (0.251) 

1.99 -0.60 -------- -0.50 0.369 
(2.70) (2.96) (1.11) (0.442) 

1.82 -0.50 -------- -0.57 0.384 
(2.80) ( 1.40) ( 1. 00) (0.451) 

3.51 -0.60 -------- -0.78 0.451 
(3.30) (2.34) (0.66) (0.458) 

(9.00) (-14.53) (-13.03) (-17.13) (0.965) 

(5.95) (-6.27) (-6. 27) (-7 .17) (0.766) 

37 

Std. 
Dev. 

1.56 
( 1.49) 

1. 70 
( 1.60) 

1.70 
( 1. 60) 

1.60 
(1.60) 

(0.57) 

( 1. 40) 

*Values in parentheses correspond to values with complexes VIIIa and 
VIIIi excluded. Values a and b are correlation factors, i is the in-
tercept, and r is the correlation coefficient. 

(1) o13c = acr + i I 
(4) o13c = aF + bR + i 

(2) 813c = a cr + b a + i I R (5) 813c = acrI + bcrR + cEs + i 

(3) o13c = acr + bcr I R+ + i (6) o13c - acrI + bcrR+ + cEs + i 
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a13c = aA + bB + i (21) 

13c-chemical shifts of the vinyl carbons in the vinyldimethylsilanes 

and their complexes, where: (1) A = o1, B = O; (2) A = o1, B = oR; (3) 

A= oI' B = oR+; and (4) A= F, B = R. Values for these physical con

stants are tabulated in Table X. In the study of the linea~ regression 

of the 13c-chemical shifts of the methyl carbon atoms an additional 

parameter, ES (Taft steric parameter),64 was also considered. The car-

relation factors, a and b, were determined by regression analysis, viz. 

a minimization of the difference between the experimental chemical 

shifts and the chemical shifts calculated using Equation 21. The term 

i is the intercept of the regression analysis and theoretically cor

responds to the calculated shift of a particular carbon in the parent 

system, Z = H. However, from the values of i tabulated in Table IX it 

is apparent that the intercept resulting from correlation of the (Si-CH3) 

13c-chemical shifts and the parameters, 8I, oR' and ES does not appear 

to be the 13c-chemical shift of the (Si-CH3) group when Z = H. 

From the linear regression data (Tables Vl and VIII) for both 

systems, the inductive effect of the substituents is the major substi

tuent effect on the 13c-chemical shifts of the vinyl carbons. The 

ratio of the correlation factors, a/b, represents the relative impor

tance of the inductive effect of the substituents. As can be seen from 

the tables, when there is a good linear correlation, the inductive ef-

feet predominates over the resonance by at least a factor of 5. The 

correlation factors for Ca and CS of vinyldimethylsilanes are of oppo

site sign whereas the correlation factors for Ca and CS of vinyldime

thylsilane complexes are of similar sign. These trends are apparent 
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TABLE X 

SUBSTITUENTS AND SUBSTITUENT CONSTANTS* 

Substituent crI crR crR+ F R ES 

Me -0.05 -0.12 -0.206 -0.04 -0.13 -1.24 

Cl 0.47 -0.24 -0.435 0.41 -0.15 -0.97 

F 0.52 -0.46 -0.767 0.43 -0.34 -0.46 

N3 0.42 -0.27 -0.270 0.30 -0.13 

CH 0.25 -0.62 -1.103 0.29 -0.64 -0.55 

OEt 0.27 -0.51 -0.847 0.22 -0.44 -0.55 

OPh 0.39 -0.42 -1.289 0.34 -0.35 -0.55 

SiMe3 -0.13 . 0.06 0.037 -0.04. -0.04 

*Ref. 63 and 64. 

from the 13c-chemical shifts given in Tables III and IV; the chemical 

shifts of Ca and Cs change, by changing the substituents, in the oppo

site direction in vinyldimethylsilanes and in the same direction in the 

vinyldimethylsilane complexes. A scheme which is consistent with this 

data involves a resonance contribution and inductive polarization of 

In the case of the vinyldimethylsilane complexes, the back-donation of 

cot oo- o+ o
H2c=CH-SiMe2z 

x 
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electrons by the metal to the TI-system overcomes the electron deficiency 

on the Cs generated by the substituent effect, thus resulting in the 

shielding of both Ca and c6 in the complexes. Interestingly, behavior 

similar to the vinyldimethylsilanes has been observed for the 3-substi

tuted propenes60 , systems in which the presence of pTI-dTI bonding is 

very unlikely. 

No correlation with substituent constants has been observed for 

the Si-CH3 13c-chemical shifts, either in the case of the vinylsilanes 

or in the case of the vinylsilane complexes. 

The 1H-NMR spectra of all the vinylsilane complexes (Table XI) 

except VIIc (Z = CH3) show two Si-CH3 signals with chemical shifts 

ranging from 0.00 to 0.54 ppm; with Z = CH3 only a singlet at 0.18 ppm 

is observed. The magnetic nonequivalence of the methyl groups on the 

silicon atom is due to their disastereotopic nature. A similar obser

vation has been reported by Fitch. 57 The NMR signals of the vinyl pro

tons of all of the complexes appear at higher field than those of the 

free-ligand vinyl protons because of the coordination of the TI-system 

to the iron atom. 54 The assignment of the proton chemical shifts was 

based on the relativ~ size of the vicinal coupling constants, where 

Jtrans>Jcis. 65 The signal f~r the cis vinyl proton Hb appears down

field from that for the trans, He, as observed with uncoordinated 

H H 
b.........._C=C/ a 

He/ I 'siMe2z 
Fe 

(co)4 

VIII 



z 

(CH3)Si 

CH3 

Cl 

c6H50 

OH 

c2H3Me2Si0 

N3 

c2H50 

F 

TABLE XI 

1H-NMR CHEMICAL SHIFT DATA FOR SUBSTITUTED 
(n2-VINYLDIMETHYLSILANE)TETRACARBONYLIRON 

COMPLEXES VI II* 

Ha Hb He Me 

2.15 dd 3.03 d 2.53 d 0.23,0.00 

2.14 dd 3.04 d 2.58 d 0.18 

2.08 dd 2.95 d 2.56 d 0.54,0.47 

1.99 dd 2.95 d 2.66 d 0.35,0.34 

1.96 dd 2.92 d 2.56 d 0.26,0.23 

1.94 dd 2.89 d 2.53 d 0.21,0.115 

1.92 dd 2.94 d 2.59 d 0.40,0.34 

1.90 dd 2.90 d 2.56 d 0.22,0.20 

1. 81 q d 2.88 dd 2.52 d 0.34,0.31 
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Jab Jbc 

10.5 14.8 

10.7 14.6 

10.5 13.9 

10.9 14.3 

10. 7 14.4 

10. 9 14.4 

11.2 14.3 

11.0 14.5 

10.4 14.4 

*Chemical shifts are in ppm relative to TMS in CS • 
are in Hz. Hydrogen atoms are designated accordi~g 

Coupling constants 
to structure VIII. 

vinylsilanes. 66 The chemical shifts of both Ha and Hb decrease as the 

electronegativity of the substituents increases (Figures 5 and 6); how

ever, the chemical shifts of He appears to be independent of the sub

stituent (Table XI). Plotting the proton chemical shifts of Ha and Hb 

against the electronegativities of the substituents gives an excellent 

straight line with correlation coefficients of 0.96 and 0.96 and slopes 

of -0.22 and -0.14, respectively (Figures 5 and 6). The chemical shifts 

of Ha are twice as sensitive as the chemical shifts of Hb toward the 
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Figure 5. Chemical Shift of Ha vs. the Electronega
tivity. 

4.0 

3.0 

2.0 

2.0 3.0 4.0 

Figure 6. Chemical Shift of Hb vs. the Electronega
tivity. 
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substituent effect. The 1H-chemical shifts of the methyl groups, using 

the average of the two chemical shifts, correlate linearly with CTI and 

ES (o 1H = 0.070 CTI- 0.29 ES - 0.12; r = 0.958; STD DEV = 0.04) which 

implies that the inductive and steric effects of the substituents are 

the major effects transmitted by the substituent. The greater value 

of the correlation factor for oI(0.70) compared to the value of 0.29 

for the ES correlation factor points to the larger contribution of the 

inductive effect of the substitutent on the Si~CH3 proton chemical 

shift over steric effects. 

The sum of the coupling constants lie in the narrow range of 24.4-

25.5 Hz. The constancy of the sum of the coupling constants has also 

been reported by Summitt and co-workers. 66 They explained that since 

the summation of coupling constants in vinyl systems correlates with 

the electronegativity of the substituent on the vinyl carbon, such con

stancy of the sum of the coupling constants in vinylsilanes supports 

the view that the silicon atom effectively shields the vinyl group, by 

forming a prr-drr bond, from inductive electronic effects exerted by the 

substituent. However, the sum of the spin-spin coupling constants of 
67 68 substituted propenes (H2C==CH-CH2Z, where Z = H, CH3 , OCH3 , Cl, Br, 

I70 ), a system in which the presence of Prr-drr bonding is very unlikely, 

also fall in a narrow range of 27.85-26.19 Hz. 

The 19F-chemical shift of the fluorine in the complex ~CDCl 3 = 

152.8 ppm (ref. CC1 3FD is similar to that observed for the fluorine 

in the free ligand (oCDCl = 162.2 ppm) and in the Me3SiF (oCDCl = 
3 3 

158 ppm71 ) which supports the conclusion that the structure of the vi-

nyl si lane upon coordination is preserved. The 1H-, 13c-, and 19F-NMR 

spectra of the fluoride complex VIIIf show long range 19F coupling 
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through the silicon which suggests the preservation of Si-F bond upon 

coordination. The 19F-1H coupling constants are 3JF-Si-C-CH = 7.a Hz, 

3JF-Si-Ha = 8.6 Hz, 4JF-si-C-CHb = 1.4 Hz, and 4JF-Si-C-CHc : a.a Hz; 

these values are similar to the values reported for fluorosilanes. 71 

Also, the greater long range coupling of fluorine with Hb (trans) com

pared to that with He (cis) has been observed in related systems. 72 

The 19F-13c coupling constants for the vinyl carbons, Cct and Cs, in the 

free ligand are substantial, JF-Si-C = 17.4 Hz and JF-Si-C-C = 4.2 Hz; 
a S 

however, the coupling constant of Cs decreases, and in the case of Ca' 

it vanishes upon coordination to the metal, JF-Si-C =a.a Hz; 
a 

JF-Si-C-C = 3.3 Hz. The 13c signal of the silicon methyl carbon in 
s 

the fluoride free ligand appears as a doublet owning to coupling with 

fluorine (JF-Si-CH ~ 15.5 Hz). In the case of the complex, the situ-
3 

ati9n is more complicated because of the diastereotopic nature of the 

silicon methyl groups, and slightly different coupling of fluorine with 

the two diastereotopic methyl carbon atoms is observed, JF-Si-(CH3)a = 

16.9 Hz; JF-Si-(CH3)b = 15.5 Hz. 

Evidence for the Nonexistence of a (n3-1-

Silapropenyl )tricarbonyliron Complex 

Recently the preparation of the first (n 3-1-silapropenyl)tricar-

bonyliron by reacting vinylpentamethyldisilane or 1,2-divinyltetramethyl

disilane with Fe2(C0) 9 was reported. 37 Reexamination of the reaction 

between vinylpentamethyldisilane and Fe2(co) 9 under the same reaction 

conditions (solvent, reaction time, work-up, etc.) resulted in the pro-

duction of the same yellow complex previously reported. The reaction 

was also performed under the same reaction conditions as used in the 



H2C=CHSi(CH3)2z + Fe2(C0) 9 

VIa, Z = Si(CH3)3 

b, Z = CH CH2 
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(19) 

preparation of the vinyldimethylsilane complexes VIII; the same product 

was obtained. 

The 1H- and 13c-NMR spectral data {Table XII) of the complex pre

pared in this study are the same as those reported except with very 

small and consistent differences in chemical shifts which represent a 

shift of the spectrum as a whole, or instrumental differences. 

The 1H-NMR spectrum shows three peaks at 0.23, 0.12, and 0.00 ppm 

with relative intensities in the ration of 1:3:1 which had been assigned 

by Sakurai to the ~-CH3Si, {CH3)3Si, and anti-CH3Si groups, respec

tively, in the proposed structure VIa. 37 An alternative interpretation 

of the spectrum which apparently had not been considered by the author 

is that the complex might possess structure VIIIa which would also gjve 

·-· 

rise to three peaks and the intensity pattern, 1:3:1, due to the dia-

stereotopic methyl groups on the silicon atom adjacent to the coordi-

nated double bond. 

The IR spectrum of the yellow liquid prepared in this study at 

room temperature is essentially the same as that reported for the pro

posed species VIa with the exception that an additional metal carbonyl 

band at 2080 cm-1 with weak intensity is detected by us. The absence 

of this peak from the reported IR data was apparently an inadvertent 
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H H 
b- c=c-- a 

He./ -........ SiMe2SiMe3 

Fe 
(C0) 4 

VI a VIII a 

TABLE XII 

NMR SPECTRAL FOR COMPLEXES 11 VIa 11 AND "VIIIa" 

VII Ia 

3.03 d, J=l0.5 Hz, H b 
2.53 d, J=l4.8 Hz, He 
2.15 dd, J-10.5;14.8 Hz, Ha 
0.23 s, Si(CH3)CH3 
0.12 s, Si(CH3)3 
0.00 s, Si(CH3)cH3 

211. 7 co 
44.7 c ,d,JcH=l41.2 Hz 
41.9 c ,t,J.c8=157.4 Hz 
-1.4 Si (CH3 JCH3 
-2.2 S~(CH3 ) 
-4.4 S1(CH3)CH3 

(1) Data from ref. 37 

(2) ~ = cVIa - oVIIIa 

13C-NMR 

vra1 

3.17 d, J=lO.O Hz, Hb 
2.67 d, J=l5.0 Hz, He 
2.29 dd, J-10.0;15.0 Hz, Ha 
0.38 s, Si(CH3 )cH3 
0.27 s, Si(CH3)3 
0.15 s, Si(CH3)cH3 

(3) na: no assignment made 
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omission. The magnitude of the metal-carbonyl stretching frequencies 

is consistent with either a tetra- or a tricarbonyl iron complex. How

ever, the IR spectrum of the yellow liquid at 90°K (thin film) shows a 

shoulder at 2030 cm-l in addition to the other three metal-carbonyl ab-

sorptions which is consistent with structure VIIIa. Moreover, we do 

not detect any appreciable absorption in the region 350-255 cm-l (ab

sorption for the M-SiR3 stretching frequency has been reported at 300 

cm-1, e.g., v(Fe-Si) for (CH2)3Si(CH3)2 Fe(C0) 4 has been reported to 

have the value of 302 cm-1 with medium intensity73 ). A peak at 1315 

cm-1 was assigned to the coordinated Si==C bond in the species VIa. 

The presence of similar bands in the IR spectra of the vinylsilane com-

plexes analogous to VIIIa (viz., VIIIc-j) (Table I), and also the pre

sence of similar absorption at 1317 cm-1 in the IR spectrum (thin film, 

solid state) of (ethylene)tetracarbonyliron59 would make the above as

signment doubtful. The elemental analysis of VIIIa and the reported 

values for VIa both cannot be used as a criterion for distinguishing 

between these two complexes definitively. This is due to the simila

rity of the deviation of the experimental data with that of the cal

culated data for both the tri- and tetracarbonyl compounds. 

The mass spectrum of the complex was reported to possess the fol-

lowing fragments: m/e (rel. intensity) 298(2.9), 270(4.9), 242(6.8), 

214(21.6), 158(23.9), 143(21.0), 85(54.4), 73(100). The presence of 

the fragment m/e 298 f2H3Si 2(Me5)Fe(C0) 3j, the fragments corresponding 

to the successive loss of three CO groups, and the fragment m/e 

73(Me3si+) as the base peak caused the author37 to conclude that the 

complex had the structure VIa without considering that the presence of 

mass 158 corresponds to the vinylpentamethylsilane and the unlikeliness 
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of the generation of vinylpentamethyldisilane from complex VIa. Reex

amination of the mass spectrum of the yellow complex 11 VIa 11 and examina

tion of the mass spectra of the analogous complexes VIIIc-j provided 

information about the sensitivity of these complexes to the elevated 

probe and ionsource temperatures, resulting in the fragmentation and/or 

decomposition of the complexes in such a way that we were not able to 

detect the parent peak either. With the design of a special inlet 

which would permit introduction of the complexes directly into the io

nization chamber through a molecular leak and setting the temperature 

of the ionization chamber at 100-ll0°c, the parent mass, which in all 

cases corresponded to the m/e for (vinylsilane)-Fe(C0) 4, became detec

table. 

Oxidative elimination of the metal from the complex VIIIa by 

eerie ammonium nitrate led to formation of the free ligand vinylpenta

methyl di si 1 ane which was detected by GC. This fact as we 11 as the com

parison of the physical ~onstants and spectral data represented above 

leaves no doubt, not only as to the identity of the complex prepared 

and that reported by Sakurai, but also as to the structure of the com-

. plex which is the tetracarbonyliron complex VIIIa, rather than the 

tricarbonyliron complex VIa, postulated previously. 

Reactions 

Since the (n3-propenyl)tricarbonyliron cation and its halide deri

vatives are well known and reported to be very stable, 74 attempts were 

made to prepare the analogous (n3-1-silapropenyl)tricarbonyliron species 

!!_, Y...!._ and/or the (n3-1-silapropenyl)tetracaronyl iron species 1!_. Gen

eration of the cationic complexes 1!_ and !!_was of special interest 
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since these complexes incorporate the features of both a coordinated 

silicenium ion and a doubly bonded silicon species. Attempts to ther-

+ Fe 
(C0) 4 

IX 

+ Fe 
(C0) 3 

XI 

CH 
~---~ 

H C -- I -SiMe 2 2 

' 

Fe-z (C0) 3 . 

VI 

mally rearrange the n2-chloride complex VIIIe to the complex .Y.l, Z = Cl 

(see Introduction, p. 6) in either refluxing ether, hexane, or benzene 

were unsuccessful; only decomposition products and some starting mate

rial were obtained. 

In an attempt to generate the cationic complex _!l or 2Ll_, two gen

eral approaches were taken: 1) treatment of the ethoxy complex VIIId 

with acid (see Introduction, p. 6), and 2) treatment of the chloride 

complex VIIIe with several halide abstracting reagents. 

With the hope of preparing cationic complexes by protonation of 

the ethoxy complex VIIId with the acids: sulfuric, acetic, hexafluoro-

phosphoric, and trifluoroacetic, were examined. Unfortunately, sulfuric 

acid decomposed the complex rapidly even at -8o0c. On the other hand, 

acetic acid failed to react with the complex even after extended periods 

at room temperature. Treatment of the ethoxy complex VIIId with hexa-

fluorophosphoric acid generated a new complex. The new complex was 

detected by the gradual disappearance of bands at 2088, 2000, and 1975 

cm-l and the appearance of new bands at 2091, 2012, and 1974 cm-1 in the 

IR spectrum of the reaction mixture at o0c. The new complex was charac

terized and found to be the fluoride complex VIIIf. Trifluoraceticacid 
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-caused the decomposition of the ethoxy complex at room temperature, but 

relatively clean reaction was observed at low temperature by 1H-NMR. 

At -100°c in either Freon-12 (CC1 2F2) or sulfur dioxide, the addition 

of trifluoroacetic acid (2 eqv.) to the ethoxy complex resulted in the 

disappearance of the original Si-CH3 signals and the appearance of new 

signals which were centered at 0.31 ppm and downfield by 0.04 ppm from 

the original signals. The original Si-CH3 signals.in CC1 2F2 and so2 

were separated from each other by 0.04 and 0.14 ppm, respectively; how

ever, the new signals were further apart (0.25 ppm) in CC1 2F2• As the 

temperature was gradually raised, the signals were reduced in intensity 

and new more closely spaced signals, 0.11 ppm apart, centered at 0.52 

ppm developed. In CC12F2, the transformation was complete at -35°C, 

but in so2 the transformation was more rapid and was accompanied by de

composition even at -7o0 c. 

The conversion of the initially formed species to the final species 

could be easily detected by the appearance of coordinated vinyl absorp

tion slightly downfield from that of the initial complex. The final 

complex was not isolated for further characterization owning to its ex

treme sensitivity towards moisture; it most likely is the trifluoroace-

tate complex VIII, Z = o2ccF3, because of the similarity of its spectrum 

with that obtained for the complex prepared from the chloride complex 

VIIIe and sodium trifluoroacetate. 

To identify the complex initially formed at low temperature three 

possible complexes were considered: 1) the n3-silapropenyl cationic 

complex _!!, 2) the n3-silapropenyl complex .YI, Z = o2ccF3, and 3) the 

protonated ethoxy complex XII. The formation of either..!! or .Y1_, Z = 
o2ccF3, necessitates the liberation of ethanol which could then be 
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protonated or react further with trifluoroacetic acid. Comparison of 

the 1H-NMR absorptions for the ethoxy group in the initial complex in 

CC1 2F2 at -100° and -ao0c with those obtained for the ethoxy group for 

solutions of ethanol and ethanol-trifluoroacetic acid in CC1 2F2 at 

-100° or -ao0c indicates that ethanol has not been liberated at these 

temperatures. Moreover, if the initial complex were ..!!. or Y.!_, Z = 

o2ccF3, there should be little if any change in the absorption of the 

ethoxy group in the conversion of either of these species to the tri

fluoroacetate VIII, Z = o2ccF3• However, as the conversion proceeds 

a new triplet for a newly formed ethoxy species grows with concomitant 

reduction in the triplet for the ethoxy group of the initial complex. 

These observations as well as the fact that the vinyl proton absorp

tions for the ethoxy complex are only slightly shifted upon the addi

tion of acid at -100°c suggest that the complex initially formed at 

-100°c is indeed the protonated ethoxy complex XII and not the desired 

cation IX. 

With the hope of preparing the cation ..!!. or ~' the ethoxy complex 

VIIId was treated with triphenylmethyl tetrafluoroborate and the chlor

ide and fluoride complexes, VIIIe and VIIIf, were treated individually 

with silver tetrafluoroborate, but in all cases the fluoride complex 

was generated, in 28%, 16%, and 5-10% yield, respectively (Eq. 22 and 

23). Formation of a Si-F bond by treating hydrosilanes and halosilanes 
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with triphenylmethyl tetrafluoroborate36 and silver tetrafluorobo

rate, 34 respectively, has been reported previously. Although the ca

tion .!! could be an intermediate, cleavage of the Si-Cl bond in concert 

with the formation of the Si-F bond is also reasonable. 

H2C==CH-SiMe20Et 
Ph3CBF4 

H2C=:CH-SiMe2F 
I + I 

Fe(C0) 4 Fe(C0) 4 (22) 

H2C=CH-SiMe2z + AgBF4 H2C=CH-SiMe2F 
I I 
Fe(C0) 4 Fe(C0) 4 (23) 

Z =Cl, F 

The chloride complex VIIIe was also treated with silver nitrate 

and thallium nitrate; however no evidence for the generation of a ca-

tionic intermediate was obtained. The starting complex was partially 

decomposed with the formation of a silver or thallium mirror. 

Reaction of the ethoxy VIIId and chloride VIIIe complexes with 

SbC1 5 in CH2c1 2 at -78°C, followed by work-up at room temperature re

sulted in the formation of (C0) 4FeC1 2 in 25 and 68% yield, respectively 

(Eq. 24). The reaction of chloride complex VIIIe with antimony penta

chloride was also performed at -100°c in so2 in a NMR probe; no evi

dence for the possible generation of the expected cation was observed. 

Disappearance of the coordinated vinyl proton absorptions and appearance 

of uncoordinated vinyl absorptions, simultaneously, was observed over 

the temperature range of -100° to -20°c. 

H2C 1 CH-SiMe2z 
+ SbC1 5 

Fe(C0) 4 

Z = OEt, Cl (24) 
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Formation of dichlorotetracarbonyliron is suggestive evidence for 

the initial attack of antimony pentachloride at the metal leading to 

the formation of (antimony pentachloride)tetracarbonyliron which is 

known to decompose to give dichlorotetracarbonyliron. 75 



CHAPTER IV 

EXPERIMENTAL 

All reactions were carried out under argon which had been passed 

through a drying column packed with anhydrous calcium sulfate and so

dium hydroxide. The glassware was thoroughly dried with a head gun 

while under an argon atomsphere. All solvents (reagent grade) were 

obtained from freshly opened bottles and were degassed. Degassing was 

done by purging the solvents with argon for 10-15 minutes immediately 

prior to use. Tetrahydrofuran was dried at continuous reflux with li

thium aluminum hydride or sodium benzophenone ketyl and was freshly 

distilled just before use. Dichlorodifluoromethane (Freon 12) and sul

fur dioxide were dried by passage through a column packed with 3A mole

cular sieves. Deactivated acid-washed alumina and 60-200 mesh silica 

gel were used for chromatographic purposes. Vinyltrimethylsilane, 

vinyldimethylethoxysilane, vinyldimethylchlorosilane, and 1,3-divinyl

tetramethyldisiloxane were purchased from Petrarch Systems, Inc. Vi

nyldimethylfluorosilane, pentamethylchlorodisilane, and vinylpentame

thyldisilane were prepared according to published procedures. 76 - 78 

Vinyldimethylazidosilane was prepared by nucleophilic addition of so

dium azide to vinyldimethylchlorosilane. 

Spectroscopic Data 

Proton magnetic resonance and 13c-NMR spectra were obtained from 

54 
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a Varian XL-100-15 11 High Resolution NMR spectrometer equipped with a 

Nicolet TT-100 FFT accessory {operating at 25.2 MHz for 13c-spectra). 

All proton chemical shifts are reported relative to tetramethylsilane 

using carbon disulfide as solvent. The 13c-chemical shifts are reported 

relative to TMS using chloroform-d1 as solvent and internal standard, 

0 DCCL3=1970 Hz. Infrared spectra were obtained at ambient temperature 

using a Beckman-BA spectrometer and at 90°K using a Digilab FTS-20C 

FT-IR spectrometer, thin film 5-lOµm. Low and high resolution mass 

spectra were obtained on a CEC21-110B mass spectrometer with a Nova 

Data Acquisition system at 70 ev with an ambient inlet temperature and 

an ionsource temperature of 100-110°c. The samples were introduced 

directly into the ionization chamber through a molecular leak. Ultra

violet spectra were obtained on Beckman Model 25 UV spectrophotometer 

using hexane {spectra grade) as solvent. Spectroscopic data for the 

substituted vinyldimethylsilanes and their tetracarbonyliron complexes 

are given in Tables I-V and XI. Elemental analysis was obtained from 

Phillips Petroleum Co., Bartlesville, Oklahoma. Owing to the procli

vity of the vinylsilane complexes towards decomposition, the analyses 

are not as good as desired. 

Preparations 

Pentamethylchlorodisilane77 

Hexamethyldisilane (45 g, 0.31 mol) and concentrated sulfuric acid 

{163.5 g, sp. gr. 1.84) were placed in a 200-ml, three-neck flask 

equipped with a mechanical stirrer. The reaction was vigorously stirred 

under a hood at room temperature for 3.5 hours. Then the ~eaction 
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mixture was cooled with an ice-water bath, and 24 g (0.45 mol) of anhy

drous ammonium chloride was added to the mixture over 30 min with con-

stant stirring. The reaction mixture was stirred for an additional 30 

min. Separation followed by simple distillation of the organic layer 

gave 15 g of crude product. Fractional distillation of the crude pro

duct using a vigreux column resulted in the recovery of unchanged hexa

methyldisilane (5 g, bp 113-114°C) and pentamethylchlorodisilane 8.6 g 

(18.9%), bp 134-136°C (lit. bp 134-135°C). The purity of the product 

was examined by GC (col.: 15% DV 101 Chrom. G; Col. temp. 90°c; inj. 

temp. 100°c; and flow rate 57 ml/min);. the product contained pentamethyl

chlorodisilane (96%), and hexamethyldisilane (4%). 

Vinyl pentamethyl dis i 1 ane (.:@._) 78 

A 100-ml, three-neck flask equipped with a refluxing condenser was 

charged with 15 ml of a solution of vinylmagnesium bromide (1.4 M in 

THF, 0.021 mol). Then pentamethylchlorosilane (3.5 g, 0.021 mol) dis

solved in an equal volume of tetrahydrofuran was added dropwise over 

NlO min. After the addition was completed, the reaction mixture was 

refluxes for 15 hours. Then it was cooled and filtered. The solvent 

was removed in vacuo. The residue was extracted with pentane and after 

solven removal was distilled. Pure vinylpentamethyldisilane was ob

tained, yield 0.5 g (15%), bp 131-132°c (lit. bp 131-132°C). 

Vinyl dimethyl fl uorosi 1 ane {_~£fJ76 

Antimony trifluoride (6.0 g, 0105 mol) was placed in a 100-ml, 

three.-neck flask equipped both with a dropping funnel containing 4.0 g 

(0.03 mol) of vinyldimethylchlorosilane and with a column packed with 
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glass helices. The vinyldimethylchlorosilane was added dropwise and 

vinyldimethylfluorosilane (3.2 g, 92.7%) was collected from the head 

of the column using a short-path condenser and a cold receiver (Dry

Ice acetone). 

Vinyldimethylazidosilane (Y.i) 

Vinyldimethylchlorosilane (4.4 g, 36.5 mol) was dissolved in te

trahydrofuran (~15 ml) and the resulting solution placed in a 100-ml, 

three-neck flask furnished with a reflux condenser. To this solution 

sodium azide (2.4 g, 36.9 mol) was added, and the reaction mixture was 

refluxed for 5.5 hr. Then it was cooled and the solvent was removed 

in vacuo. Distillation of the crude product gave 1.44 g (27.3%) of 

vinyldimethylazidosilane (bp 56-57°C, 31 mm). 

Substituted (n2-Vinyldimethylsilane)

tetracarbonyl iron Complexes 

The (H2C=CH-SiMe2Z)Fe(C0) 4 complexes, where Z =Me, Me3Si, OEt, 

Cl, and F were prepared following a general procedure. Enneacarbonyl

diiron was suspended in diethyl ether and to thts solution the corre

sponding vinylsilane was added. The reaction mixture was stirred at 

room temperature until the suspended enneacarbonyldiiron had disappeared 

(4-5 hr). The reaction mixture was filtered through Celite, and the 

resulting filtrate was concentrated in vacuo using a rotary evaporater 

to yield a dark green, viscous oil. Vacuum distillation of the oil 

gave the corresponding tetracarbonyliron complex. In some cases, a 

second distillation was necessary in order to obtain the pure complex. 

In the case of the Z = OEt and Me3Si substituents complexes VIIId 
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and VIIIa, the crude oil was chromatographed on short columns of alu

mina and silica gel, respectively. The yellow bands were eluted with 

pentane. Removal of the solvent .:i!!. vacuo gave yellow oils which were 

purified further by vacuum distillation. 

(n2-Vinyltrimethylsilane)tetracarbonyliron (VIIIc) 

Viny.ltrimethylsilane (1.0 g, 10 mmol) and Fe2(co) 9 (4.5 g, 12.4 

mmol) were used; yield 0.67 g (25%); bp 25-27°c (0.25 mm). 

( n2-Vi nylpentamethyl dis i 1 ane) tetra carbonyl i ran (VI II a) 

Vinylpentamethyldisilane (550 mg, 3.48 mmol) and Fe2(C0) 9 (440 mg, 

1.21 mmol) were used; yield 0.23 g (60%); bp 45°C (0.005 mm); Amax= 

(hexane) 270(sh)(e 8800), 236(sh)(l4700), 212 nm(23300). 

(n2-Vinyldimethylethoxysilane)tetracarbonyliron (VIIId) 

Vinyldimethylethoxysilane (1.0 g, 7.69 mmol) and Fe2(C0) 9 (4.5 g, 

12.4 mmol) were used; yield 1.5 g (67%); bp 37-38°C (0.005 mm); Amax= 

(hexane) 262(sh)(e 8000), 215 nm(27000). Anal. Calcd. for c10H14Fe05Si: 

C, 40.28; H, 4.73 Found: C, 40.68; H, 4.71. 

( n2-v; nyl dimethylchl orosi 1 ane )tetracarbonyl i ran (VI IIe) 

Vinyldimethylchlorosilane (1.5 g, 12.4 mmol) and Fe2(C0) 9 (3.5 g, 

9.6 mmol) were used; yield 2.22 g (62%); bp 28-3o0c (0.005 mm). Anal. 

Calcd. for C8H9C1Fe04Si: C, 33.3; H, 3.14 Found: C, 35.01; H, 3.95. 

(n2-Vinyldimethylfluorosilane)tetracarbonyliron (VIIIf) 

Vinyldimethylfluorosilane (1.6 g, 15.38 mmol) and Fe2(C0) 9 (3.0 g, 
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8.24 mmol) were used; yield 1.5 g (36%); bp 24°C (0.03 mm). Anal. 

Calcd. for c8H9FFe04 Si: C, 35.3; H, 3.33 Found: C, 37.35; H, 3.80. 

Preparation of Complexes from the Chloride 

Complex and Nucleophile 

( n 2-Vi nyl dimethyl fl uorosi 1 ane)tetracarbonyl iron (VII If) 

(n 2-Vinyldimethylchlorosilane)tetracarbonyliron (VIIIe)(l.O g, 3.5 

mmol) was placed in a 50-ml, three-neck flask containing acetone, and 

anhydrous sodium fluoride (0.3 g, 7.1 mmol) was added. The reaction 

mixture was stirred at room temperature overnight. The solvent was re-

moved in vacuo and the resulting oil was extracted with pentane. The 

pentane was removed and the concentrated crude product was distilled to 

give the fluoride complex VIIIf 0.753 g (80%); bp 24°c (0.03 mm). 

(n 2-Vinyldimethylazidosilane)tetracarbonyliron (VIIIi) 

(n2-Vinyldimethylchlorosilane)tetracarbonyliron (VIIIe) (1.6 g, 5.5 

mmol) was dissolved in tetrahydrofuran in a 100-ml, three-neck flask. 

Sodium azide (0.37 g, 5.7 mmol), dried by heating at 80°c under vacuum 

for 24 hr, was added. The reaction mixture was stirred at room tempera

ture for 9.5 hr. It was filtered and the solvent was removed in vacuo. 

The resulting oil was extracted with pentane and the extracts were con

centrated. Vacuum distillation of the crude product yielded 1.17 g 

(71.5%) of (n2-vinyldimethylazidosilane)tetracarbonyliron (VIIIi) (45°C, 

0.005 mm). Anal. Calcd. for c8H9FeN3o4si: C, 32.56; H, 3.07 Found: 

C, 33.71; H, 3.51. 
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(n2-Vinyldimethylphenoxysilane)tetracarbonyliron (VIIIj) 

(n2-Vinyldimethylchlorosilane)tetracarbonyliron (VIIIe)(l.O g, 3.5 

mmol) was placed in a 50-ml, three-neck flask containing tetrahydrofu

ran and potassium phenoxide (0.46 g, 3.5 mmol) which had been prepared 

from phenol and potassium hydride. The reaction mixture was stirred 

at room temperature for 40 hr. At the end of this time, the reaction 

mixture was filtered through Celite and the solvent was removed in 

vacuo. The resulting oil was extracted with pentane, and the extracts 

were concentrated to give a yellow oil which was chromatographed on a 

column packed with alumina. Elution with pentane removed the (n2-l,3-

divinyltetramethyldisiloxane)tetracarbonyl iron, which had presumably 

been generated by hydrolysis of the unchanged chloride complex. Further 

elution with pentane-benzene (1:1) yielded the phenoxy complex VIIIj. 

A second chromatography was performed to remove traces of phenol; yield 

of pure phenoxy complex 35 mg (3.1%). 

Preparation of SilanoJ and Siloxy Complexes (VIIIh and VIIIg) 

These complexes were prepared most conveniently by hydrolysis of 

the chloride (or fluoride) complex by passage through alumina column. 

(n2-Vinyldimethylfluorosilane)tetracarbonyliron (VIIIf)(l.O g, 3.7 

mmol) was placed on a column packed with alumina. Elution with pentane 

yielded (n2-l,3-divinyltetramethyldisiloxane)tetracarbonyliron (VIIIg) 

0.55 g (85%). Anal. Calcd. for c12H18Fe05si 2: C, 40.~8; H, 5.12 Found: 

C, 38.16; H, 4.39. 

In addition to complex VIIIg a small amount of the starting 
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complex was recovered. Then elution with dichloromethane gave (n2-vi

nyldimethyl silanol )tetracarbonyl iron (VIIIh)(29.8 mg, 3%), which could 

be recrystallized from pentane to give an off-white solid, mp 42-43°c. 

Reactions 

Reaction of (n2-Vinylpentamethyldisilane)tetracarbonyliron 

(VIIIa) with Ceric Ammonium Nitrate 

(n2-Vinylpentamethyldisilane)tetracarbonyliron (VIIIa)(22 mg, 0.067 

mmol) was placed in a 25-ml, three-neck flask containing aqueous ace

tone (3 ml acetone and -0.5 ml water), and the solution was cooled by 

an ice-water bath. With vigorously stirring, eerie ammonium nitrate 

was added until no more gas evolution was detected. Then the reaction 

mixture was transferred to a separatory funnel containing cold water 

and was extracted with pentane (-5 ml). The pentane solution was ana

lyzed by GC (15% DV 101 Chrom. G. column, column temperature 85°C, in

jection temperature 100°c, flow rate 57 ml/min), which showed the pre

sence of vinylpentamethyldisilane. 

Reaction of (n2-Vinyldimethylethoxysilane)tetracarbonyliron 

(VIIId) with Hexafluoropho_sphoric Acid 

(n2-Vinyldimethylethoxysilane)tetracarbonyliron (VIIId)(2 g, 6.7 

mmol) was dissolved in diethyl ether in a 100-ml, three-neck. flask. 

The solution was cooled by an ice-water bath. Then hexafluorophosphoric 

acid diethyl ether complex (1.48 g, 6.7 mmol) was added dropwise. After 

the addition of acid was completed, the reaction mixture was warmed to 

room temperature and stirred for an additional three hours. The two 
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layers were separated, and the ether layer was concentrated i!!_ vacuo. 

Pentane was added and the solution was treated with solid sodium bicar-

bonate until no more carbon dioxide evolution was observed. The solu-

tion was filtered and the solvent was removed ill vacuo affording 1.4 g 

(75%) of (n2-vinyldimethylfluorosilane)tetracarbonyliron (VIIIf). The 

boiling point and spectral data agreed with that for the complex pre

pared from Fe2(C0) 9 and vinyldimethylfluorosilane. 

Reaction of (n2-Vinlydimethylethoxysilane)tetracarbonyliron 

(VIIId) with Trtphenylmethyltetrafluoroborate 

Triphenylmethyl tetrafluoroborate (1.3 g, 3.2 mmol) was dissolved 

in dichloromethane in a 50-ml, three-neck flask and the ethoxy complex 

VIIId (1.0 g, 3.4 mmol) was added. The reaction mixture was stirred 

for five hours at room temperature. An IR spectrum of the reaction 

mixture gave no evidence for the generation of a cationic complex. 

The reaction mixture was filtered, and the fitrate was concentrated in 

vacuo. A small quantity of methanol was added to the oily residue, and 

the insoluble tritylethyl ether was removed by filtration. Removal of 

the solvent from the filtrate gave 0.25 g (28%) of (n2-vinyldimethyl

fluorosilane)tetracarbonyliron (VIIIf), which was identified by compari

son of its spectral data with that for the authentic complex. 

Reaction of (n2-Vinyldimethylchlorosilane)tetracarbonyliron 

(VIIIe) with Silver Tetrafluoroborate 

(n2-Vinyldimethylchlorosilane)tetracarbonyliron (VIIIe)(0.6 g, 2.08 

mmol) was added to a stirred suspension of silver tetrafluoroborate (0.9 

g, 4.6 mmol) in tetrahydrofuran at o0c in a 50-ml, three-neck flask. 
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The reaction mixture was stirred for 30 min at o0c and then for 15 min 

at room temperature. Then the mixture was filtered. Concentration of 

the filtrate yielded 89 mg (16%) of a yellow oil which was identical 

in all respects to (n2-vinyldimethylfluorosilane)tetracarbonyliron 

(VIIIf). 

The fluoride complex VIIIf was also treated with silver tetra

fluoroborate using the same procedure. It decomposed and only 5-10% 

of the starting complex was recovered. 

Reaction of (n2-Vinyldimethylchlorosilane)tetracarbonyliron 

(VIIIe) _with Antimony Pentachloride 

The chloride complex VIIIe (0.3 g, 1.04 mmol) was dissolved in 

dichloromethane in a 50-ml, three-neck flask, and the solution was 

cooled to -78°C with a Dry Ice-acetone bath. A solution of antimony 

pentachloride (0.13 ml, 1.02 mmol) in dichloromethane (-4 ml) was added 

dropwise to the solution of the complex~ During the addition the reac

tion mixture became orange. After the reaction mixture had been stirred 

for 15 min, anhydrous diethyl ether (-15 ml) was added. The reaction 

mixture was stirred for an additional hour, during which time a yellow 

solid precipitated. The reaction mfature was warmed to room temperature 

and filtered under argon giving 150 mg (68%) of dichlorotetracarbonyli

ron, dp 85°C. Its IR spe,ctrum (H2Ccl 2) agreed well with that reported75 

for the authentic material. The IR spectrum of the filtrate was devoid 

of metal-carbonyl absorption. 
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(VUid) with Antimony Pe_ntachloride 
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Procedure analogous to that used in the chloride complex reaction 

above was followed. The ethoxy complex (0.5 g, 1.68 mmol) and antimony 

pentachloride (0.2 ml, 157 mmol) yielded 89 mg (25%) of dichlorotetra

carbonyliron, identical in all respects to that obtrained in the chlo

ride complex reaction. 
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CHAPTER I 

INTRODUCTION 

Catalysic conversion of olefins into the analogues of lower and 

higher carbon number (dismutation also called disproportionation) and 

olefin metathesis (the term metathesis is used in chemistry to describe 

reactions in which groups are transferred or exchanged: in organic 

chemistry the term has been used for the 11 scrambling 11 of olefins and 

acetylenes or the radical abstraction of an atom to produce another 

radical.) are the most interesting olefin reactions. Olefin dispropor

tionation was first discovered by Banks and co-workers. 1 In the pre-

sence of molybdenum or tungsten oxides on alumina, or of the correspond-

ing hexacarbonyls on alumina, the .D,.-butenes dismutate to olefins rang

ing from c2 to c8, with ethylene, propylene, pentenes, and hexenes as 

the main products. Further study done by Bradshaw and co-workers2 led 

to the conclusion that dismutation occurs via a 11 quasi-cyclobutane 11 

intermediate formed by the correct alignment of the carbon atoms at the 

double bonds of two reacting olefins; for example: 

C=C-C-C ----r 
C=C-C-C 

C ..• C-C-C C + C-C-C : : ::=:,;;- 11 II 
C •.. C-C-C C C-C-C (1) 

Using 14c-labelled propene, Mol and co-workers3 supported the formation 

of 11 quasi-cyclobutane 11 as an intermediate in the disproportionation of 

propenes. They reported that the ethylene formed from disproportiona

tion of 14c-labelled propene showed no radioactivity, in contrast with 
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the butene which showed a specific radi~activity twice as much as that 

of the starting material. 

* c = c - c 
+ 

* c = c - c 

* c .... c - c C *C - C 

' *· 
II + II 

c .... c - c C *C - C (2) 

The mechanism for the olefin metathesis has also been reported to 

involve 11 quasi-cyclobutane 11 ; however, Grubbs and Brunck4 provided evi

dence that these reactions involve a metallocyclic (a metal-carbon cr

bonded) intermediate instead of a direct metal-catalyzed electrocyclic 

rearrangement (Eq. 3). Other mechanisms have also been suggested. All 

of the suggested mechanisms have been accumulated in a review by Haines 

and Leigh. 5 

CHR CHR 

11-M-11 
CH2 CH2 

CH2 CHR 

11- M-11 
CH2 CHR (3) 

In 1968 Pennella and co-workers6 discovered that the disproportion-

ation reaction is not limited to alkenes, and alkynes also undergo dis

mutation using tungsten oxide as a catalyst. They proposed that the 

reaction mechanism involves the formation of a four membered interme-

diate from the two interacting acetylenic structures. The over-all 

process according to this mechanism involves the cleavage of two triple 

bonds and the formation of two new triple bonds. 
R' Ru 
I I r· R" 
c c 

'c-c/ 
Ill Ill 2R 1 -C === C-R 11 ~ I , '. I 

--_,,.. '., 
c-c 

R'/ 'R 11 c c 
L I I 

R' Ru (4) 
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Further study of alkynes disproportionation was done by Moulijn and co

workers. 7 They found that disproportionation is not limited to s-al-

kynes; a-alkynes also yield disproportionation products when the proper 

reaction conditions are chosen. Additionally, a quantitatively more 

important reaction appeared to be cyclotrimerization of the alkynes 

(Eq. 5). Greco and co-workers8 prepared and studied a number of acety-

lene complexes of tungsten and molybdenum halides. They proposed a 

3R - C === C 

(5) 

decomposition scheme which contained a metallocyclic intermediate to 

explain the formation of both metathesis and cyclotrimerization pro

ducts. In 1974 Pettit and co-workers9 observed the formation of the 

benzoferroles (Ila, and Illa), metallocyclic complexes, by the in

sertion of the tricarbonyliron moiety into (benzocyclobutadiene)tri

carbonyliron ..!_. They suggested that cyclobutadiene metal complexes 

could conceivably be involved in alkyne metathesis. Fritch and Voll

hardt10 studied the pyrolysis of substituted n4-cyclobutadiene-n5-

cyclopentadienylcobalt complexes, which led to the formation of the 

corresponding acetylene components, and concluded that cyclobutadiene-

metal complexes are potential intermediates in alkyne metathesis. 
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~Fe(C0) 3 co/ ,'\ 
I~ + ~ " '/ Fe- Fe · 

Fe(C0) 3 (C0}3 (COb 

I IIa IIIa (6) 

The controversy in the mechanism of the disproportionation (meta

thesis) of alkenes and alkynes encouraged the investigation on the syn

thesis and chemistry of metallocyclic complexes and a variety of meta

llocyclic complexes have now been synthesized. Three routes have been 

used to synthesize the metallocyclic complexes: 1) the reaction of ace

tylenes with metal carbonyls, 2) the displacement reaction of either 

the hetero or metallocyclopentadienes, and 3) the insertion of the 

metal carbonyls into cyclobutadiene-metal complexes. Other reactions 

have also been reported to afford metallocyclic complexes. For example, 

irradiation of o-bromostyrene in the presence of Fe(C0)5 led to the for

mation of benzoferrole IIIa and the (benzoferrole)tricarbonyliron com

plex 11_ via dehydrobromination (Eq. 7). 11 Also reaction of Os3(C0) 12 

hv 
Fe(C0) 5 

III a 

(C0) 3 
Fe~ 

+ "'v_-~ 
Fe _:::;:.Fe 

(CO )3 (C0)3 

IV (7) 

with 2,3-dimethylbutadiene afforded the binuclear complex analogous to 

ferrole. 12 
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(8) 

Reaction of Acetylene with Metal Carbonyl Complexes 

In 1953 Reppe and Vetter13 reported the isolation of a binuclear 

complex with the empirical formula c10H4o8Fe2 from the catalytic reac

tion of alkaline solutions of pentacarbonyliron and acetylene. How-

ever, the structure of this complex was a matter of controversy until 

1961, when an X-ray crystallographic analysis by Hock and Mills14 

determined that the binuclear complex isolated from the reaction of 2-

butyne and pentacarbonyliron under similar conditions employed by Reppe 

has the structure y_, M = M' = Fe(C0) 3; R1 = R4 = OH; R2 = R3 = CH3• 

Further investigation of the latter reaction by HLlbe1 15 led to the con-

v 

clusion that the reaction of iron carbonyl derivatives with substituted 

acetylenes in chemically inert organic solvents to form binuclear spe-

cies was general. Metallocyclopentadiene complexes of type y_ have 
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also been prepared from intra- and/or intermolecular cyclization reac

tions of macrocyclic alkadiynes with Fe3(co) 12 or Fe(C0) 5. 16 ' 17 In 

addition to iron, other transition metals have also been used to gene

rate metallocyclic complexes of type y_. For example, the reaction of 

hexafluorobut-2-yne with (n5-c5H5)2Rh(C0) 2 gives the complex (n5-c5H5)2 

Rh2(c4F6)2 (Eq. 9). 18 Oimethylacetylenedicarboxylate, CH3o2cc2co2cH3, 

(9) 

and methylacetylenecarboxylate, Hc2co2cH3, react with octakis(trifluoro

phosphine)dirhodium affording complexes y_ M = Rh(PF3)3; M' = Rh(PF3)2; 

R1 = R2 = R3 = R4 = C02CH3 and 'j_ M = Rh(PF3)3; M1 = Rh(PF3)2; R1 = R3 = 

co2cH3; R2 = R4 = H, respectively.19 Reaction of (C8H8TiC1.THF) 2 with 

acetylenes RC 2R1 (R = R' =Ph; R = R1 = .e_-tolyl; R1 =Ph, R2 = CH3) in 

the presence of j_-PrMgCl also led to the formation of binuclear com

plexes (Eq. 10). 20 



Displacement of Hetero- or Metallocyclopentadiene 

by Metal Carbonyls 
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This method has been used by Dettlaf and Weiss 21 to synthesize the 

parent ferrole complex, where M = M' = Fe(C0) 3; R1 = R2 = R3 = R4 = H. 

They have reported that the reaction of thiophene with Fe3(C0) 12 in n

heptane afford the ferrole complex Va. Most recently, during the course 

0e(C0)3 
1/ 

Fe(C0) 3 
Va (11) 

of our investigation the metallocyclic complex Vb, M = Fe(C0) 3; M' = 

(n5-c5H5)co was prepared from the reaction of (n5-cyclopentadienyltri-

. phenylphosphine(cobaltacyclopentadiene) complex with enneacarbonyldiron?2 

(12) 

Insertion of Metal carbonyls into Cyclobutadiene-Metal Complexes 

The product resulting from the insertion of metal carbonyls into 

a cyclobutadiene-metal complex was first reported by Bruce and co

workers. 23 They observed that the reaction of (tetramethylcyclobuta

diene)nickel chloride dimer with Fe{C0) 5 afforded the methyl substituted 

ferrole y, M = M' = Fe(C0) 3; R1 = R2 = R3 = R4 = cH3• The reaction of 

(tetramethylcyclobutadiene)nickel chloride with Fe3(C0) 12 gave a 
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complex with empirical formula (CH3)8NiFe(C0) 3, whose structure was 

latter shown by X-ray crystallographic analysis24 to be y_, M = Fe(C0) 3; 

M' = (n4-Me4c4)Ni; and R1 = R2 = R3 = R4 =Me (Eq. 13). This work re

presents the only study involving a mixed binuclear metallocyclic com

plex prior to our investigation. Rosenblum and co-worker25 prepared a 

2 

Me 

Me AMe 
~ Fe(C0) 3 

Me// 

Me 

Fe{C0) 3 

Me 

Me 1 

Ni 

Me 

e(C0) 3 

Me I Me 

Me~e (13) 

(n5-c5H5) (n4-c4H4)CO complex; photochemical reaction of this complex 

in the presence of cyclopentadienyldicarbonylcobalt afforded Ve. 

~ 
0o(C5H5) hv 

Co + (C 5H5)Co(C0) 2 ti 

@ 
Co(C5H5) 

Ve (14) 

Photochemical reaction of (benzocyclobutadiene)tricarbonyliron with 

Fe(C0)526 or thermal reaction of the same complex with Fe3(C0) 129 give 

the~- and unsym-benzoferroles !Ia and IIIa, respectively. 



~ I 
hv 

or t::. 

Fe(C0) 3 

~:e(C0)3 + 
1/ 

Fe(C0) 3 
II a 
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0 I fe(CO) 3 
Fe(C0) 3 

IIIa (15) 

While our work was in progress, Davidson27 reported that the ·bis

(hexafluorobut-2-yne) complexes react with Co2(C0)·8 to afford the meta-

1 locyclopentadiene complexes (Eq. 16). 

Z9 
R I R 

Ji~t-1( R 

M = i~, Mo 
R = Cf 3 {16) 



CHAPTER I I 

STATEMENT OF THE PROBLEM 

Although complexes of ferroles and benzoferroles have been known 

for sometime, and their osmium, rhodium, and cobalt analogues have been 

discovered during the last decade, very little is known about the phy

sical and chemical properties of these binuclear metallocyclic complexes. 

For example, the 13c- and 1H-NMR spectral data reported for these com

plexes are not consistent with each other. The 13C-NMR absorption of 

the carbons sigma bonded to the metal has been assigned to the most 

downfield peak, excluding the peaks corresponding to metal carbonyl, 

whereas the 1H-NMR absorption of the protons attached to these carbon 

has been reported to appear at higher field than the absorption of the 

other protons of the metallocyclic ring. 

The insertion of transition metal moieties in substituted (cyclo

butadiene)tricarbonyliron complexes was to be studied in hopes of deve-

1 oping a novel synthesis of metallocyclic complexes bearing two different 

transition metals and evaluating their physical and chemical properties. 

The relative positioning of the metals, which would be ascertained by X

ray crystallographic analysis of the complexes, would be of special 

theoretical interest. Additionally, the potential interpositioning of 

the two metal moieties at elevated temperatures was of interest and 

would be examined. 

As mentioned in the Introduction, only one mixed binuclear metal 
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complex, containing a Ni-Fe bond, was known which had been obtained 

accidently in the study of ligand transformation from the nickel com

plex to the iron carbonyl complexes. 



CHAPTER III 

RESULTS AND DISCUSSION 

~- and unsym- [ tricarbonyl (benzoferracyclopentadieneU-n5-cyclo

pentadi enylcoba lt and [tri carbonyl (benzoyl.ferracycl opentadi ene U-n5-

cycl opentadienyl cobalt were prepared from the insertion of (cyclopenta

dienyl )dicarbonyl cobalt into (benzo- and benzocylcyclobutadiene)tri-

carbonyl iron, land Y.!_, respectively. These complexes were prepared 

OJ I 
Fe(C0)3 

I IIb IIIb (17) 

0 0 If 

@CPh " 0 
HCPh 

[)-cPh 
I 

\ 
I (C5H5)Co(C0) 2 . co-:_ Fe + -
Fe(C0) 3 

Co -Fe 
(C5H5) (C0) 3 (C5H5) (C0) 3 

VI Vd Ve (18) 

to evaluate the physical and chemical properties of the metallocyclic 

complexes. In addition, the relative positioning of the metals and the 

fluxional behavior of the resulting metallocyclic complexes were investi-

gated. 
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The ~ri carbonyl (a-hydroxybenzyl ferracycl opentadi ene )J-n5-cycl o

pentadi enyl cobalt complexes, Vf and YJl., were prepared from the reduc

tion of corresponding ketone complexes, Vd and Ve (Eq. 19), to inves

tigate the stability of a positive charge positioned a to the meta

llocyclic ring. 

b.Rl 
I 

dR' 
Fe(C0) 3 

+ NaBH4 Fedo) 3 
II II 

Co(C5H5) Co(C5H5) 
0 
" Vd: R = H; R2 = CPh Vf: R' = H; R' = CHOHPh 1 1 2 

0 
II 

(19) Ve: R1 = CPh; R2 = H Vg: RI = CHOHPh; R2 = H 1 

The structure of complex IIb was determined by X-ray crystallo

graphic analysis; the structures of the rest of the complexes prepared 

are believed to be similar to that of IIb based upon spectroscopic data. 

The metallocyclic complexes prepared were usually red solids, the 

color changing from light-red to dark black-red depending on the sub

stituent on the metallocyclic ring. Crystals suitable for X-ray cry

stallographic analysis were usually obtained from a mixture of acetone 

and water. Complexes· Vf and Y9_ could only be obtained as viscous oils; 

attempts to crystallize these complexes were unsuccessful. In contrast 

to [cycl opentadi enyl ( coba ltacycl open ta di ene )J-n 5-cycl opentadienylcoba 1 t 

(Ve), but similar to ferroles and benzoferroles, all the complexes pre

pared were conspicuously stable toward air and moisture. The insertion 
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of (cyclopentadienyl)dicarbonylcobalt into (benzo- and (benzoylcyclo

butadiene)tricarbonJliron (!_and Y.l) led to the formation of complexes 

IIb and IIIb in a ratio of 5:1, and complexes Vd and Ve in a ratio of 

3:1, respectively, which suggests that the insertion occurred mainly 

from the stcrically less hindered side. The symmetry of the complex 

IIb causes the presence of a better conjugation in that complex than 

complex IIIb. Complex Vd could also have a higher degree of conjuga

tion because of the possible deviation of the benzoyl group in complex 

Ve from coplanarity with the metallocyclic ring due to steric inter

action with one of the metal-carbonyl groups. Thus, in addition to 

steric effects, thermodynamic considerations might also explain the 

observed ratio of the isomers. Although ferroles and complex Ve were 

reported to exhibit fluxional behavior (Eq. 20), examination of the 

variable temperature 1H-NMR spectra of complexes IIb and Vb did not re

veal any evidence for fluxional behavior in these complexes (Eq. 21 and 

22). 

M' 

M = M' = Fe(C0)3, R = Ph 

M = M' = (C5H5)Co, R = H 

R 

R 

(20) 



F.e(C0) 3 

~Co(C5H5 ) 

X-Ray Crystallographic Data 
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(21) 

(22) 

The X-ray crystallographic data has been tabulated in Tables I-IV. 

The structure of complex IIb {Figure 1) shows the cobalt to be sand

wiched between the cyclopentadienyl and the metallocyclopentadiene five 

membered rings in a cobaltocene type complex with average Co-cyclopen
o 

· tadienyl carbon distance 2.048(4) A and average Co-metallocyclopenta-
o 

diene ring carbon distance 2.035(3) A. The iron-cobalt distance is 
0 

2.482(1) A. The two five membered rings are eclipsed and not skewed 

(Fig. 1). The iron retains its coordination to three carbonyl groups 
0 . 

(average Fe-carbonyl carbon distance 1.784(4) A). The carbonyls show 

Fe-C-0 angles 176.9(3)0 -178.7(4) 0 and the carbonyl groups are nonbridg-

ing. The ferracyclopentadiene ring is approximately planar, but ex

amination of distances in the ring gives evidence of bond fixation 



Figure 1. The molecular geometry of 
c16H11 o3coFe. 
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Formula 

Mol. wt. 

TABLE I 

CRYSTAL DATA* 

c16H1103CoFe 

366.052 

:\ = 0. 71069 ~ 

a = 13.772 (4) 

b = 6.449 (3) 

c = 17 • 004 ( 6 ) 

s = 110.52 (2) 0 

v = 1414.45 

transmission factors .14 +.20 

4652 independent observations 

-3 Z = 4, Deal = 1.718 g cm 

*)Error in parentheses are deviations in the last significant 
figure. 

87 

~3-R4 1.352(5), R4-R5 1.415(6), and R5-R6 1.352(5) 2]. Normal carbon-
o 

carbon bond length in benzene is 1.40 A; carbon-carbon double bond 

length is 1.33 R; and carbon-carbon single bond length is equal to 

1.53 E. Thus bond fixation is manifested by increased double bond 

character of two of the bonds in the six membered ring and increased 

the single bond character of the other carbon-carbon bonds of thatring. 
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TABLE II 

POSITIONAL PARAMETERS FOR c16H11o3CoFe* 

x(cr(x)) y(cr(y)) z(a(z)) U equiv x 104 

Co(l) 0.28934(4) 0.81171(6) 0.79594(2) 3.34(1) 
Fe(l) 0.27063(3) 0.79894(7) 0.93582(2) 376(1) 

CPl 0.4278(3) 0.7250(7) 0.7870(3) 701(18) 
CP2 0.3567(3) 0.7608(7) 0.7069(2) 615(15) 
CP3 0.3242(3) o. 9671 (6) 0.7026(2) 544(13) 
CP4 0.3750(3) 0.0578(6) 0.7814(3) 615(15) 
CPS 0.4384(2) 0.9068(8) 0.8338(2) 679 (16) 
Rl 0.2558(2) 0.5734(5) 0.8565(2) 406 (10) 
R2 0.1745(2) 0.5925(5) 0.7768(2) 397 (10) 
R3 0.1400(3) 0.4457(6) 0.7093(2) 514(12) 
R4 0.0646(3) 0.4900(7) 0.6366(2) 605 (14) 
RS 0.0198(3) 0.7002(6) 0.6246(2) 567(13) 
R6 0.0515(2) 0.8469(6) 0.6851(2) 488( 11) 
R7 0.1297(2) 0.7966(5) 0.7649(2) 384( 10) 
RB 0.1778(2) 0.9286(5) 0.8343(2) 387(9) 
Cl 0.3886(3) 0.6920(7) 0.0092(2) 488(14) 
C2 0.2893(3) 0.0460(6) 0.9879(2) 557(3) 
C3 0.1794(3) 0.6875(6) 0.9736(2) 481 ( 11) 
01 0.4628(2) 0.6284(6) 0.0560(2) 781(12) 
02 0.2970(3) 0.2004(5) 0.0207(2) 931(17) 
03 0.1192(2) 0.6082(6) 0.9954(2) 759(13) 
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TABLE II (Continued) 

x(cr(x)) y(cr(y)) z(a(z)) U equiv x 104 

HPl 0.4629(3) 0.5964(7). 0.8069(3) 
HP2 0.3343(3) 0.6619(7) 0.6619(2) 
HP3 0.2755(3) 0.0346(6) 0.6547(2) 
HP4 0.3677 (3) 0.1987(6) 0.7966(3) 
HPS 0.4816(2) 0.9258(8) 0.8914(2) 
Hl 0.3007(2) 0.4547(5) 0.8703(2) 
H3 0.1701(3) 0.3096(6) 0.7155(2) 
H4 0.0404(3) 0.3997 (7) 0.5922(2) 
HS -0.0340(3) o. 7328(6) ' 0.5723(2) 
H6 0.0222(2) 0.9837(6) 0.6751(2) 
H8 0.1650(2) 0.0752(5) 0.8313(2) 

*) U equiv = (U 11 + u22 + u33 )/3. 

er (U equiv) - ~crUii)*Uequiv] /zUii)*/6 
-

Errors in parentheses are deviations in the last significant 
figure. 

While few other cobaltocene structures have been examined by sin-

gle crystal X-ray diffraction techniques, comparisons may be made with 

cobaltocene,28 a cobaltocenium salt, 29 and with two other structures 

containing the metallocyclic ring.~ 21 The carboxycobaltocenium hexa

fluorophosphate shows an average Co-cyclopentadienyl carbon (Co-Cp) 

distance of 2.029(9) R as compared with an average of 2.048(8) R ob-

served in the X-ray of complex IIb. However, the cobaltocene shows an 

average Co-Cp distance of 2.096(8) ~ which is considerably longer than 

that in cobaltocenium salt and complex IIb. The lengthening of Co-Cp 
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TABLE III 
0 

BOND ANGLES (0 ) AND DISTANCES (A) FOR c16H11o3coFe* 

Fel - Cl 1.803(4) CPI - CP2 1.398(S) 
Fel - C2 1. 797( 4) CP2 - CP3 1. 397 ( 6) 
Fel - C3 1.7S3(4) CP3 - CP4 1.403(S) 
Fel - Col 2 .482(1) CP4 - CPS 1.399(6) 
Fel - Rl 1. 94S (3) CPS - CPI 1. 396(7) 
Fel - RB 1. 941(3) 

Rl Fel RB 80 .1 (1) 
Col - Rl 1.992(3) Rl Fel C2 16S.2(2) 
Col - R2 2.060(3) RB Fel Cl 1S9.0(2) 
Col - R7 2.076(3) C3 Fel Col 133. 9(1) 
Col - R8 2.013(3) R8 Fel C2 89.6(1) 
Col - CPI 2.043(S) Rl Fel Cl 92.S(2) 
Col - CP2 2.061(S) C3 . Fel RB 99 .8(1) 
Col - CP3 2.070(4) C3 Fel Rl 91.9(2) 
Col - CP4 2.044(4) C3 Fel C2 100.4(2) 
Col - CPS 2.020(4) C3 Fel Cl 100.2(2) 

Col Fel Rl Sl.8(1) 
Rl - R2 1.429(3) Col Fel RB S2.4(1) 
R7 - R8 1.416 (4) 
R2 - R7 1.43B( 4) Fel Cl 01 178.7(4) 
R2 - R3 1.43S (4) Fel C2 02 177.1(4) 
R3 - R4 1.3S2(4) Fel C3 03 176.9(3) 
R4 - RS 1.41S(6) R8 R7 R2 112.4(2) 
RS - R6 1.3S2(5) Rl R2 R7 111.6 (3) 
R6 - R7 1.443(4) R6 R7 R2 118. 7 (3) 

R3 R2 Rl 129.2(3) 
ClOl 1.130(S) R2 Rl Fel 116. 7 (2) 
C202 1.128(S) R7 R8 Fe·l 116.9(2) 
C303 1.14l(S) 

*) Errors in parentheses are deviations in the last significant 
figure. 
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TABLE IV 

THERMAL PARAMETERS FOR c16H11o3coFe* 

Ull U22 U33 U23 U13 U12 

Co(l) 308(2) 412(2) 305(2) 15(2) 137 (1) 24(2) 
Fe(l) 421(2) 428(3) 296(2) 19(2) 147(2) 64(2) 
CPl 53(2) 84(3) '91(3) 27(3) 48(2) 24(2) 
CP2 70(2) 73(3) 60(2) -11 (2) 46(2) -9(2) 
CP3 54(2) 70(2) 46(2) 17(2) 26(2) -1(2) 
CP4 60(2) 58(2) 81(3) -6(2) 44(2) -17(2) 
CP5 36(2) 119(4) 48(2) 1(2) 14(1) -17(2) 
Rl 47(1) 43(2) 36(1) 4(1) 19(1) 5(1) 
R2 42(1) 44(2) 37(1) O(l) 19(1) -4(1) 
R3 62(2) 50(2) 44(2) -6(2) 21(2) -12(2) 
R4 ·62(2) 75(3) 41(2) -12(2) 14(2) -27(2) 
R5 46(2) 80(3) 39(2) 8(2) 9(1) -12(2) 
R6 35(1) 66(2) 44(2) 14(2) 12(1) 2(1) 
R7 31(1) 50(2) 37(1) 7(1) 15(1) 1 (1) 

RS 39(1) 42(2) 40(1) 4(1) 20(1) 10(1) 
Cl 54(2) 59(2) 34(2) -3(2) 16(2) 9(2) 
C2 70(2) 53(2) 40(2) 3(2) 15(2) 7 (2)' 
C3 52(2) 57(2) 37(2) -4(2) 18(1) 4(2) 
01 66(2) 103(2) 52(2) -1(2) 4(1) 32(2) 
02 133(.3) 55(2) 79(2) -20(2) 21(2) 2(2) 
03 72(2) 101(2) 67(2) 1 (2) 39(2) -13(2) 

*) Anisotropic thermal parameters in the form: 
[ 2 2 *2 2 *2 2 *2 * * exp -2 TI (u11h a + u22k b + u331 c + 2u 12hka b + 

* * * *O 4 3 2u13hla c + 2u23klb c ) x 10 for Co(l) and Fe(l) x 10 for 

all other atoms. 

Errors in parentheses are deviations in the last significant figure. 
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in cobaltocene compare with that of cobaltocenium salt has been ex

plained by the presence of an electron in an antibonding orbital of 

cobaltocene which would decrease the bonding of Co-Cp. 29 Thus, it is 

resonalbe to suggest that the cobalt in complex IIb is partially posi

tive due to donation of electrons to the iron to satisfy the inert 

gas configuration of iron. Two other sturctural investigations of the 

related metallocyclic systems, benzoferrole Ila and ferrole Va, show 

that the bond angles and distances observed for complex IIb are not 

atypical. The structure of benzoferrole Ila shows iron-ring carbon 

distances of 1.95 and 1.96 ~; the same as those of the complex IIb 

{1.945(3) and 1.941(3) ~) within experimental error. The structure of 

ferrole also shows distances that are euqivalent to those observed in 

the complex IIb [{cf. 1.936(6) and 1.953(5) E]. Bond angles at iron 

are also similar [so.1(1) 0 for complex IIb and 79.'8{3) 0 for the ferrole 

J . 0 
complex . The ferrole complexes show metal-metal distances of 2.51 A 

0 
and the complex IIb shows metal-metal distance of 2.482(1) A. The 

structures of benzoferrole and ferrole show semibridging carbonyl groups 

with one of the three carbonyl groups attached to the iron, bent into 

bridging configuration with the other metal atom [Fe-C-0 angle 167.3(7)0, 

for ferrole, and 166-167°, for benzoferrol~]. The structure of the com

plex IIb shows no such semibridging carbonyl ~e-C-0 angles 176.9(3)-

178. 7 ( 4) 0] • 

Benzoferracyclopentadiene Complexes 

The appearance of a singlet at 8.19 ppm in the 1H-NMR spectrum of 

complex IIb, integrating for two protons, was assigned to the protons 

attached to the carbons adjacent to the metal. Such downfield shift 



93 

observed for these protons represent the electron withdrawing character 

of Fe(C0) 3 group. Contrary to our observation Victor and co-workers11 

have interpreted the 1H-NMR spectrum of unsym-benzoferrole Illa based 

on the electron releasing character of the Fe(C0) 3 group. The 13c

NMR chemical shifts of complex IIb were assigned by the consideration 

of the bond fixation and the electron-withdrawing property of the tri

carbonyl iron group. The peak at 153.8 ppm was assigned to c1 = c8 be

cause of its proximity to the iron. The assignment was supported by 

the 13c-proton coupled spectrum. The peak at 115 ppm was assigned to 

c2 = c7 owing to the lack of C-H coupling. The peaks at 129.0 and 

130.9 ppm were assigned to c4 = c5 and c3 = c6, respectively, using 

butadiene as a model. This model is consistent with the bond fixation 

observed by the X-ray crystalographic analysis and the ability of the 

cyclohexadiene of benzoferroles to form the corresponding dienetricar

bonyl iron complex.IO, 25 

Although a structure similar to that for unsym-benzoferrole IIIa 

was tentatively suggested for the other isomer, IIIb, obtained from 

the insertion of cyclopentadienylcobalt moiety in benzocyclobutadiene

tricarbonyl iron complex.!..., all the spectroscopic data of this complex 

and comparison of these data with that in relating benzoferrole sup-

ported such an assignment. 

The high resolution mass spectrum of complex IIIb gives a parent 

mass fragment corresponding to c16H11o3coFe. Investigation of the 

mass spectra fragmentation of benzoferroles Ila and IIIa, and complexes 

IIb and IIIb revealed that all of these complexes follow similar frag

mentation. The fragmentation pathway is illustrated in Fig. 2 and 3. 

Attempts to detect metastable peaks were unsuccessful in all cases. 
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The 1H-NMR chemical shifts of complex IIIb are similar to those re

ported for the unsym-benzoferrole IIIa, if the chemical shift assign

ment for H1 and H2 are reversed. 

Benzoylferracyclopentadiene Complexes 

The high resolution mass spectra of complexes Vd and Ve give a 

parent mass fragments corresponding to c19H13o3coFe. The 1H- and 13c
NMR spectrum of these complexes are comparable with their analogous 

ferroles (Table V and VI). Thus, a structure similar to ferroles is 

tentatively suggested for complexes Vd and Ve. Such a structure is 

related to those reported by Yamazaki and co-workers, 22 as mentioned 

in Introduction p. 71. An X-ray study of complex indicated that the 

iron is in the plane of five-membered metallocyclopentadiene ring and 

the cobalt is rr-complexed to the metallocyclopentadiene ring. Although 

these data might also be consistent with structure .Y..!_; comparative bond

ing study of conical fragments by Hoffmann30 suggests the preference 

of the structure Vd and Ve to the corresponding structure VI due to the 

stronger M-C a-bonds in Vd and Ve. 

{t~@ 
Fe{C0) 3 

VI 

The matter as to which one of these complexes is the 2- or 3-sub

stituted benzoyl complexes was determined based on the polarity of these 



TABLE V 

1H-NMR CHEMICAL SHIFTS DATA1 

Complex Hl H2 H3 H4 cP Others 

va2 6.75(dd) 6.15(dd) 6.15(dd) 6.75(dd) 
(2.4, 5.3) (2.3, 5.3) (2.3, 5.3) (2.4, 5.3) 

Vb 7.39(dd) 5.88(dd) 5.88(dd) 7.39(dd) 4.88($) 

vc3 8.21(5) 4.96(m) 4.96(m) 8.21(t) 4.96, 4.84(ds) 

Vd 2.72(m) ---------- 6.28(dd) 7.72(m) 4.96(s) Ph: 7.44-
(2.5, 5.2) 7.72(m) 

Ve ---------- 5.95(dd) 5.75(t) 7.45(dd) 5.14(s) Ph: 7.24-
(2.4, 5.0) (2.4) (2.4, 5.0) 7.67(m) 

Vf 1 7.37(d) ---------- 5.76(dd) 7.3l(d) 4.86(s) CH: 5.38(s) 
(2.5) (2.5, 5.0) (5.0) PH: 7.19(s) 

Vf 2 7.37(d) ---------- 5.94(dd) 7.31(d) 4.9(s) CH: 5.21(s) 
(2. 5) (2.5, 5.0) (5.0) PH: 7.17(m) 

Vg ---------- 5.82(dd) 5.64(t) 7.20(m) 4.94(s) Ph: 7.2(m) 
(2.4, 5.2) (2.4) CH: 5.30(s) 

1) cs2 as solvent; values in parentheses are coupling constants in Hz. 

2) Reversal of proton-assignment reported, cf. ref. 21. \0 
-....,J 

3) Reversal of proton-assignment reported, cf. ref. 25. 



TABLE VI 

13c-NMR CHEMICAL SHIFTS DATA1 

Complex cl C2 C3 C4 cP M-CO Others 

(Va2) 156.4 112.1 112.1 156.4 
{159) (169) {169) (159) 

(Vb) 157.0 101.4 101.4 157.0 81.1 
(156) (167) (167) (156) (180) 

(Vd) 159.8 114.3 103.2 155.7 82.4 212.7 C=0:195.9; Ph: 138.4 
(156) (169) (156) (181) T29.6, 129.1, 133.6 

(Ve) 173.7 96.6 100.9 156.3 82.6 201.5 C=0:198.8; Ph: 137.4 
(168) {168) (154) (181) 129.7, 128.8, 132.9 

Vf 1 155.66 107 .1 100.8 145.13 81.4 213.5 CH=74.0; Ph: 128.7 
128.6, 127.9, 127.7 

Vf 2 149.59 107 .1 100.8 145.22 81.45 213.5 CH=74.3 127.6 
127.3, 126.95, 126.8 

Vg 154.6 98.5 100. 7 147.2 81.4 220.1 CH=83.2 

1) acetone-d6 as solvent; values in parentheses are coupling constants in H2 • 

2) In agreement with literature values, cf., ref. 31. 
~ 
co 
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complexes. The presence of an electron-withdrawing group such as ben-

zoyl on the carbon adjacent to the iron would presumably make the 

molecule more polar than were the benzoyl group on the carbon posi-

tioned beta to the metal. Thus, the complex which had been collected 

first from the column as a red band was assigned as the 3-substituted 

benzoyl complex Vd and the complex which has been collected second 

from the column as a pink band was assigned as the 2-substituted ben

zoyl complex Ve. The proposed structural assignment of the two com

plexes was in agreement with th~ spectroscopic data and comparison 

of that data with those of related comple~es (Table V and VI). 

The 1H-NMR chemical shifts and the corresponding coupling constants 

of complexes Vd and Ve are similar to that reported for ferroles and 

[cyclopentadienyl(cobaltacyclopentadiene)J-n5-cyclopentadienylcobalt 

(Ve), Table V. However, contrary to our assignments, the 1H-NMR spec

tra of ferrole Va and its cobalt analogue Ve have been interpreted by 

Weiss 21 and Rosenblum, 25 respectively, assuming that the metal of the 

metallocyclic ring shields the proton attached to the carbon adjacent 

to the metal. Such an assumption is not consistent with the 1H-NMR 

spectra of benzoferrole (Ila) and complex IIb. The 1H-NMR spectra of 

both complexes show a singlet, corresponding to the proton attached 

to the carbon adjacent to the metal, at 7.3 and 8.19 ppm, respectively, 

which are the most downfield absorption observed in those spectra. The 

presence of a quartet at 7.72 ppm in the 1H-NMR spectrum of complex Vd 

which contains two proton on the carbons adjacent to the iron, and the 

presence of a triplet and a quartet positioned at 5.75 and 5.95 ppm, 

respectively, in 1H-NMR spectrum of complex Ve which contains oneproton 
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attached to the carbon adjacent to the iron, are compatible with the 

assignment of the structures. All of the chemical shifts of the com

plexes prepared were solvent dependent, moving downfield by changing 

the solvent from carbon disulfide to acetone-d6. The 13C-chemical 

shifts of the complexes (Tavel VI) have been assigned on the basis of 

13c-proton coupled spectra. These chemical shifts and the related C-H 

coupling constants are in good agreement with those reported for the 

analogous ferroles. The appearance of the 13c-resonance signals for 

c1 and c4, the carbon atoms adjacent to the iron, downfield relative 

to the signals for c2 and c3 is a reflection of the electron-withdraw

ing character of the Fe(C0) 3group. Examination of the mass spectral 

fragmentation of complexes Vb, Vd, Ve, and the rhodium analogue, 

c4H4(C0) 3Fe(n5-c5H5)Rh (Vh) made in our laboratory by King, revealed 

that all of these complexes appear to follow the same spectral frag

mentation pathway as illustrated in figure 4. The metastable peaks 

corresponding to the (M+ - iCO) __,.. [M+ - {i+l)co] transitions were 

observed in the low resolution mass spectra of all the complexes. Ad-

ditionally the metastable peaks at m/e 85.4 and 81.3 which correspond 

to (180 ~124) and (180 ~121) transitions were observed for complex 

Vb. For complex Vh metastable peaks at m/e 226.4 and 126 corresponding 

to ·(276-+ 250) and (224 ~ 168) were observed. 

a-Hydroxybenzylferracyclopentadiene Complexes 

Reduction of both complexes Vd and Ve with sodium borohydride af

forded the corresponding alcohols Vf and YlL• respectively. The NMR 

spectra of complex Vf showed that it was a mixture of two diastereomers. 

Attempts to separate these two diastereoisomers were not successful. 
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In contrast to the reduction of complex Vd, reduction of complex Ve 

gave apparently onlyoneisomer which could be because of steric or 

thermodynamic reasons. The 1H- and 13c-NMR spectra of these complexes 

were similar to those of related complexes, Tables V and VI. The only 

noteworthy feature about the spectra of these complexes is the change 

in the magnitude of the coupling constants and a change in the chemical 

shifts in the 1H-NMR spectrum of complex Y.9_, with change in solvent. 

The 1H-NMR spectrum of this complex in carbon disulfide gives a triplet 

and a quartet at o 5.64 and 5.82 ppm (Tavle V), respectively. However, 

changing the solvent from carbon disulfide to acetone-d6 causes the 

triplet and the quartet to each become a singlet (each singlet inte

grated for one proton) positioned at 8 5.98 and 6.1 ppm. No reasonable 

interaction between solvent and complex which would lead to the disap

pearance of the coupling constants was found. The mass spectral frag-

mentation patterns for these complexes were different from those pre-

viously described. These complexes prefer to lose a molecule of water 

(after successive loss of C0 1 s), followed by the loss of the iron and 

the formation of the cobaltocenium ion. 

Reactions 

Attempts were made to generate carbonium ion positioned alpha to 

the meta 11ocyc1 i c ring to study the stabi 1 i ty of such an ion ( Eq. 23). 

VII (23) 
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Treatment of complex Vf with aqueous fluoroboric acid (10 eqv.) 

at o0c in acetic anhydride followed by addition of ether did not af-

ford any precipitation. The work-up of the reaction at roomtemperature 

afforded a viscous oil. The 1H-NMR of the recovered oil did not pro

vide any information due to high contamination with impurity (or im

purities). However, the mass spectra of the oil afforded m/e (rel. 

intensity): 464(7.1), 436(3.7), and 380(67.4) which correspond to 

the molecular ion for acylated alcohol (VIII) and the subsequent loss 

of CO's. Treatment of complex Vf with ·trifluoroacetic acid (TFA) at 

low temperature was also examined by 1H-NMR. Addition of TFA to this 

complex at -7o0c in sulfur dioxide resulted in the downfield shift of 

the signal for the benzylic proton and the cyclopentadienyl protons by 

0.5 and 0.6 ppm, respectively. Other protons were not detected due to 

the lack of resolution. The downfield shift of the signal for the ben-

zylic proton need not point to the formation of the desired cation. 

Such downfield shift is most likely due to the protonation of the hy

droxyl group. The 1H-NMR spectrum of the complex Vb in TFA has also 

been studied in our laboratory by Or. McKennis and a similar downfield 

shift for the cyclopentadienyl signal was also observed. Thus, the 

observed downfield shift for the signal of cyclopentadienyl does not 

provide any evidence relating to the generation of the desired cation. 
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Treatment of complex Y.-9_ with trityl tetrafluoroborate in dichlo

romethane resulted in the decomposition of the complex. 



CHAPTER IV 

EXPERIMENTAL 

All reactions were carried out under argon which had been passed 

through a drying column packed with anhydrous calcium sulfate and 

sodium hydroxide. The glassware was thoroughly dried under argon using 

a heat gun. All solvents were reagent grade, anhydro~s, and degassed. 

The process of degassing the solvents and drying sulfur dioxide was 

identical to that used in part I of this thesis. Also, the same kinds 

of alumina and silica gel were used for chromatographic purposes. (Cy

clopentadienyl )dicarbonylcobalt and (cyclobutadiene)tricarbonyliron 

were purchased from Strem Chemical, Inc. (Benzocyclobutadiene)tricar

bonyliron and (benzoylcyclobutadiene)tricarbonyliron complexes were 

prepared according to published procedures. 32 , 33 

Proton NMR and 13c-NMR spectra were recorded on the same instru

ment as previously mentioned. All 1H- and 13c-chemical shifts are re

ported relative to tetramethylsilane using either acetone-d6 or carbon 

disulfide as solvent. Infrared spectra either with pentane as solvent 

or with a KBr pellet were obtained at ambient temperature using either 

a Beckman-BA, or a Perkin Elmer 681 infrared spectrophotometer, re

spectively. Low and high resolution mass spectra were obtained at 

70eV with an inlet temperature of -150°c and an ion-source temperature 
0 of -250 C. 

105 
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A crystal of ~ricarbonyl(ferrabenzocyclopentadiene)J -n 5-cyclo

pentadienylcobalt complex IIb was mounted on a Syntex P3 four-circle 

automated diffractometer. Graphite-monochromated molybdenum Ka radia-
o 

tion (A= 0.71069 A) was used. Unit cell dimensions were determined by 

a least squares fit of the angles of 12 independent reflections; a = 

13.772(4), b = 6.449(3), c = 17.004(6) ~' and B = 110.52(2) 0 during 
0 

normal allignment. The calculated density (cell volume 1414.4(3) A3) 

with four molecules per unit cell (MW= 366.05) is 1.718 g.Cm-3. A 

e-2e scan mode with variable scan width was used for data collection 

with 2emax = 110°. The intensities of three standards did not decline 

over the data collection period. 4652 independent reflections were 

classed as observed [IF0 l/crJF0 l>3.0, where F0 is the observed structure 

amplitude and aF0 is its corresponding estimated standard deviation] 

after subtraction of background and correction for Lorentz and polari

zation factors. Solution proceeded by direct methods. Least squares 

refinement of the scale factor, positional and temperature factors gave 

an R factor of 4.8% [the agreement factor, R = ~II F0 1 - !Fe[ l/IIF0 U x 

100, where Fe is the calculated structure factor corresponding to F0 , 

the observed structure factor. The summation is over all the observed 

reflections~. Hydrogen positions were calculated and not allowed to 

vary. Unit weights were used throughout. 

Preparations 

Sym- and Unsym- ttricarbon.vl {ferrabenzocyclopentarliene)]-n5-cyclopenta

dienylcobalt (!...!_£, and .!J..l!~) 

A solution of (benzocyclobutadiene)tricarbonyliron (0.5 g, 2.07 
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mmol) and (cyclopentadienyl)dicarbonylcobalt (1.3 g, 7.2 mmol) in.!!_

octane (-35 ml) was refluxed for 30 min. At the end of this time the 

reaction mixture was chromatographed on alumina. The unchanged (cyclo

pentadienyl )dicarbonylcobalt, observed as a yellow band, was removed 

by elution with pentane. A red band was then eluted with a mixture of 

benzene/pentane (1/1). Removal of solvent yielded a mixture of the 

sym- and unsym-complexes IIb and IIIb; yield 236 mg (31%); ratio~: 

unsym = 5:1 based on 1H-NMR. Repetitive chromatography on alumina 

using a mixture of benzene/pentane (1/4) as eluant effected the sepa

ration of the isomers: ~-Complex: mp 94-96°C; 1H-NMR (cs2): 8 4.5 

(s, c5H5), 7.2 (m, H3 and H4), and 8.19 (s, H1); 13c-NMR (acetone-d6): 

c5 82.0 (C5H5, JCH = 180 Hz), 129.0 (C4, JCH = 161 Hz), 139.9 (C 3, JCH = 

167 Hz), 115.0 (C2), 153.8 (C1, JCH = 154 Hz), and 213.6 ppm (CO); IR 

(pentane): 2035(m), 1985(vw), and 1968(s) cm-1; High resolution MS: 

365.9337 (ca.365.9388); MS m/e (rel. intensity) (assignment): 366 

(4.3) (M+), 338 (11.8) (M+-GO), 310 (20.2)(M+-2CO), 282(100)(M+-3CO), 
+ + + 256 (12.l)(M -3CO, c2H2), 223 (13.7) (M -3CO, Co), 200 (9.9) (M -3CO, 

+ + c2H2, Fe), 150 (9.6) (C7H7Co ), 141 (2.4)(C2H2FeCo ), 124 (28.5) 
+ + + (C5H5Co ), 121 (9.4) (C5H5Fe ), and 115 (6.6) (FeCo ). Unsym-complex: 

1H-NMR (CS2):o 4.56 {s, C5H5), 6.69 (d, J = 5.4 Hz, H2), 6.80-7.16 

(m, H5 and H6), 7.23 (d, J = 5.4 Hz, H1), 7.70(d, J = 8.5 Hz, H7), and 

8.1 (d, J = 8.5 Hz, H5); 13c-NMR (acetone-d6): o4.56(C5H5), 129.8(C5), 

130.8 (C4), 124.2 (C3), 100.2 (C2), and 151.4 ppm (C1); IR (CS2); 2025 

(vs), 1952 (vs, broad), and 1910 (sh) cm-1; High resolution MS: 

365.9397 (ca. 365.9388); MS: identical pattern to that for ~-complex 
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(Benzoylcyclobutadiene)tricarbonyliron (VI) 33 

Aluminum chloride (1.5 g, 0.01 mol) was placed in a 50-ml, three

neck flask containing 15 ml of carbon disulfide and the solution was 

cooled by ice-water bath. To this solution freshly distilled benzoyl 

chloride (0.73 g, 0.005 mol) dissolved in 4 ml of carbon disulfide was 

added over 5 minutes. The reaction mixture was stirred for 5 more 

minutes. At the end of this time, a solution of (cyclobutadiene)trj

carbonyliron (1.0 g, 0.005 mol), dissolved in 4 ml of carbon disulfide 

was added over a period of 10 min. The solution was stirred at o0c 

for 45 min and then for additional 30 min at 35°c. At the end of this 

time, the reaction mixture was poured onto 15 g of cracked-ice and 

transferred to a separatory funnel. Fifty milliliters of water was 

added and the phases were separated. The aqueous layer was extracted 

three times each with 50 ml of ether. The combined organic layers were 

washed three times with 50 ml of water and dried over magnesium sulfate. 

The dried solution was filtered and the solvent was removed in vacuo. 

The crude oil was extracted by pentane and crystalized from pentane, 

0.61 g (39.4 %); mp 62-63°C; 1H-NMR (cs2): o 4.4 (s, H3), 4.52 (s, 

H2 = H4), and 7.44 (m, Ph) ppm; 13C-NMR (acetone-d6): 8 67.9 (C2 = c4), 

· 70.9 (C3), 72.4 (C1), 128.1 (C:31), 129.3 (C2,), 133.4 (C1, ), 137.2 

(c4,), 190.9 (C==O), and 213.0 (Fe-f.O) ppm; IR (pentane): 2060 (vs), 

2000 (vs), 1900 (vs), 1648 (w) cm-1• 

[Tricarbonyl(2- and 3-benzoylferracyclopentadiene~-n 5-cyclopenta
dienylcobalt (Y..Q.., yg_) 

(Benzoylcyclobutadiene)tricarbonyliron (0.165 g, 0.56 1T111ol) was 



109 

dissolved in !!,-octane (15 ml) in a 50-ml three-neck flask and (cyclo

pentadienyl)dicarbonylcobalt (0.43 g, 2.4 mmol) was added. The reac

tion mixture was refluxed for 20 hr. At the end of this time the 

resulting dark-black solution was chromatographed on alumina. Elution 

with pentane removed the unchanged (cyclopentadienyl)dicarbonylcobalt, 

as a yellow band. Elution with a mixture of pentane/benzene (1:1) re

sulted in the appearance and movement of two bands, red and pink in 

color. They were collected and the solvents were removed. Total 

weight was 0.136 g (58.1%). The first band, the red band, complex Vd 

was a dark-black red oil which solidified by sitting in the refrigera

tor, mp 86-87°C; IR (KBr): 2024(vs), 1955(vs), 1940(vs), 1650(s), and 

1597(w) cm-1; High resolution MS: 419.9567 (ca. 419.9494); MS (rel. 

intensity) (assignment): 420 (11.U (M+), 392 (25.4) (M+-CO), 364 

(77.2) (M+-2CO), 336 (100) (M+-3CO), 310 (2.6) (M+-3CO,C2H2), 308 

(69.8) (M+-4CO), 280 (6.8) (M+-3CO,Fe), 252 (34.8) (M+-4CO,Fe), 249 
+ + + (86.0) (M -4CO,Co), 226 (10.7) (HC2PhCoCp ), 223 (39.~ (HC 2PhFeCp ), 

+ + + 
212 (9.8) (C11H80Fe ), 200 (24.7) (Clo HaOFe ), 186 (18.4) (C9H60Fe ), 

+ ~ + 
180 (22.8) (CpCoFe ), 175 (6.3) (C9H8Co'), 150 (10.6) (C7H7CO ), 140 

+ + + (29.3) (HC2CoFe ), 124 (91.4) (CpCo ), 121 (56.6) (CpFe ), 115 (35.8) 
+ + (FeCo ), and 98 (8.9) (C3H3Co ). The second band, the pink band, com-

plex Ve was recovered as a red solid and was recrystalized from pentane: 

mp 130-131°C; IR(KBr): 2031(vs), 2022(vs), 1952(vs), 1933(vs), 1642(s), 

and 1615(w) cm-1; High resolution MS: 419.9481 (ca. 419.9494); MS: si

milar pattern to that for the red band. 
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Both isomers of the benzoyl complex were quantitatively reduced to 

the respective alcohols using the following procedure. 

The benzoyl complex (Vd or Ve) was dissolved in 40 ml of methanol 

in a 50-ml three-neck flask, and the resulting solution was cooled by 

ice-water bath. Then sodium borohydride (3 eqv.) was added, and the 

reaction mixture was stirred for 30 min at o0c and an additional one 

hour at room temperature. At the end of this time the reaction mixture 

was added to Et2o-H20 in a separatory funnel. The ether layer was col

lected and washed four times with 70 ml of water. It was dried with 

anhydrous sodium sulfate and then filtered. The solvent was removed 

and the desired complex was obtained as a dark-red oil. A small amount 

of hydrocarbon was also obtained; however, it was removed by chromato

graphy using silica gel and elution with pentane; 3-hydroxybenzyl com

plex Vf: IR _(cs2): 2028(vs), 1955(vs, broad), and 1920(sh) cm-1; High 

resolution MS: 421.9627 (ca. 421.9651); MS: 422(12.2) (M+), 394(23.4) 

(M+-CO), 366(34.7) (M+-2CO), 339(13.5) (MH+-3CO), 338(80.5) (M+-3CO), 

320(42.l)(M+-3CO, H20), 294(13.3) (M+-3CO, H20, C2H2), 266 (33.3) (M+ 
+ + -3CO, OH, Fe), 265(100) (M -3CO, H20, Fe), 175(10.5) (CPCoC4H3 ), 150 

+ + + 
(23.2) (CPCoC2H2 ), 141(5.9) (C2H2CoFe ), 124(53.1) (CPCo ), and 115 

+ (5.1) (CoFe ); 2-hydroxybenzyl complex Y..9_: IR(cs2): 2030(vs), and 

1957(vs) cm-1; High resolution MS: 421.9675(~ .. 421.9651); MS: similar 

pattern to that for the 3-hydroxybenzyl complex Vf was observed except 
+ the fragment 189(7.9) (CPCoCP ) was also observed. 
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